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In this paper, we study the structure of the spinor group Spin (V'), where
V' is a quadratic space with positive index over a field K of characteristic =2.
We will show that Spin (V) is generated by two subgroups which are isomor-
phic to a certain subspace of V, when dim VVz3.

1. Preliminaries.

Assume that K be an arbitrary field of characteristic ==2. Let 7 be an
n-dimensional non-degenerate quadratic space over the field & with quadratic
form @. We denote also by Q(», ) the symmetric bilinear form which deter-
mines the quadratic form @, that is, for any xeV, we have Q(x)=Q(z, z). We
take an orthogonal base {e, ---, en} of Vi Qe ¢;)=aidy;, with e;eK” and 1:=i,
i=n. : ,

In a vector space V, we denote by <, -, 2> the subspace of V" spanned
by the vectors xy, -+, &y

We assume that the index of 17 is positive. So we may take an orthogonal
base {ey, -+, e} such that @e,)=1 and Q(e;)=—1. Put

(1) A=¢;-es, b=2"(e;—ey),

then {, b} is a hyperbolic pair in V" (i.e., Q@)=Q})=0 and e, b)=1), and we
have a hyperbolic plane H=<a,b>=<e,es>> in V. We denote by U the
orthogonal complement of A. Thus, U= <ey -+, ex>. It isclear that @ induces
a non-degenerate quadratic form on U.

Let C(V) be the Clifford algebra of 17 which contains 17 canonically, and
let Co(V") be the even Clifford algebra of . We denote by J the main involu-
tion of C(V), that is, J(xy--ay)=w,-2y, for a;€V. From the definition, we
have, 2*=Q(z) and zy+yr=2Q(x, v}, in C(V), where x,yelV. TFor an invertible
element X of C(V), we denote by ¢r the inner automorphism of C(V') defined
by X, that is, for YeC(V), ¢x(Y)=XYX"'. The Clifford group I'(V) of V is
defined by

I'(V)y={XeC(V)=: ¢x(V) Vi
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For Xel'(V"), the restriction of ¢y to 77 is an automorphism of the quadratic
space 7 which we will denote by ey or ¢(X). Clearly the mapping ¢: X—e(X)
is a homomorphism of (V) into the orthogonal group O(V) of V, which we
call the vector representation of (V).

We note that, for a non-singular vector x, we have ze/(V), and ¢.=—12
where =, denotes the symmetry defined by ». Thus we have

(2) wyw=—Qr). Tay,

for a non-singular vector  of 7 and any vector y of V.

The even Clifford group I"o(17) is defined by "V )=I'(V )ﬂC(,(T/) Then,
for an element X of ["(17), we have ¢xeSO(V). The kernel of ¢ in [(V) is
the intersection of /'(¥") and the center of C{V") which is the multiplicative
group K+ of K. Note that the field /& is contained in the center of C(V)
canonically.

For any XeC(V"), we define the norm w(X) by o(X)=X-J(X). It is well-
known that the mapping » induces a homomorphism of /"«(T") into the multipli-
cative group K* of K. The spinor group Spin (V) of V is defined as the kernel
of this homomorphism, that is,

Spin (1) ={Xel"y(1"): (X)) =1}.

In our case (ind(17)>0), the homomorphism v is surjective. (For these facts,
see E. Artin [1].)

2. Elementary Subgroups.

From now on, we assume that n=dim "23. We have fixed a hyperholic
pair {a, b} in VV by (1). For any xeU= <ey, -+, e,>, We put

(3) E(z)=14az,
(4) F(x)=1+bz,
then we have the following two propositions.
ProrosrTION 1.
(a) E@)eSpin(V) and E(2)E(y)=E(x+y) for @, yeU.
(b) For veV, we have 4
(5) ¢ () =0+2Q(x, )a—2Q(a, V) x)a—2Q(a, v)x.

(¢) G={E):xeU} is a subgroup of Spin(V) which is isomorphic to the
additive group of U.

Proof. Clearly E(x)eCy(V). The norm of E(z) is given by
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wE(x))=1+ar)(l—ax)=1—arar=1.
Calculating the inner automorphism ¢z, we have
dpan(0)={1+az(l—az)=0+2 Qx, v)a—2 QXa, v)Qx)a—2 Qa, v)x,
for any ve V. Thus, ¢uw(@)e V. This shows the first part of (a) and (b). Clearly
E(E()=1Var+ay+aray=1+a(x+y)=Elz+y).
Thus all are proved.
The same holds for F(z), that is,

ProrosiTiON 2.
(a) F(x)eSpin (V) and F(2)F(y)=F(z+vy) for o, yeU.
(b)Y For veV, we have

(6) cran0)=v+2Q(x, 1)b—2 Q(b, 1)Q(x)b—2 QD v)x.

(¢) F={F(x):xeU} is a subgroup of Spin (V) which is isomorphic to the
additive growp of U.

‘We call these subgroups € and % the elementary subgroups of Spin(V)
defined by the hyperbolic pair {z, b}. Note that, in Eichler’s notation [2], p. 13,
we have

o(E(2)=E%, and o(F(2))=E",.

LemMmAa 1. We put e=e.es, then =1, and
(a) sx=uwxs, for any xelU.

(b)) —sa=aee=a and sh=-—be=D.

(¢) ab=1—¢ and ba=1—-.

Proof. These can be proved by direct calculations.
Putting, for aeK*,
(7) Plo)=2"{1+a)+1—a),
we have

ProposiTION 3.
(a) Pl)el' (V) and v(P(a))=a.
(b) P(@P(p=P(ap)

Proof. For aeK®, a+b and a+ab are non-singular vectors, and we have
(a+b)a+ab)y=2P(a). Thus Pla)el’o(V). The other statements can be proved
by direct calculations.

We put P={P(a):aeK*}, then B is a subgroup of I'y(V) which is isomor-
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phic to A, Prop. 3. shows that ["(1") is a semi-direct product of Spin (V") and
R in which Spin (¥ is normal.

From Lemma 1, it follows that Pla)e=aa, aP(c)=a, P(@)b=0b, bP(a)=uD,
and Pilajr=wPla) for any xelU. So we have vpwl@)=aa, opwb)=a'b, and
epwlr)=rx for any »el/. Also we have

{8) Pla)E (2)Pa) ' =E(nx),
(9 PlayF{o)Pla) ' =F(a'x).

That is, § normalises & and %, respectively.
Now, for ae/*, we put

(10) Ala)=a"'P o).
Then we have

PROPOSITION 4.

{a) La)eSpin (V) and Ale)l(p)=Haf).

(b) Y={lw):aek ~} is a subgroup of Spin (V) which is isomorphic to K*.
Lspecially [{~1)=—1.

Proof. These are clear from the definition of A(a).

Remark., If dim V=2, it is easy to see that Spin (V)=¢.

3. The Structure of spinor group.

Let U be the orthogonal complement of H= < a, b>= e, e.>. We denote
by U~ the set of all non-singular vectors in U. For zeU*, we put &=(2Q(x))~",
and put

(1 Ww)=FE (@) F ()£ ().
From (8) and (9), we have
(12) Pl@)W ()P (a) =W (az).
Lemnma 2. For xzelUs, we have
(13) W(x)=(a+zb),
where Z=(2Q(x))".
Proof. In the algebra C(V'), we have
W{x)=(1+az)1+sbz)1l+ax)
=1+200+ &by —2Q(x)(ba +ab)—2Q(x)abax
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=qax-Ehe={a+h)u.
Note that abe=2a. q.ed.

From Lemma 2, it follows ¢pem=rtas+ts for wel . This shows that

e (U)=U and ¢y (H)=H. The restriction of ¢y to {7 is the symmetry
in U defined by the non-singular vector » which is nothing but the restriction
of the symmetry r, in ¥ to the subspace U.

Prorosition 5. For z,yel ", we have
(14) W)W y)=—Q(z)" P (QLx)/Q)ay.
Proof: From Lemma 2, we have

W)W (y)=—(a+2b)la+yb)zy

where &=(20(x)"! and 7=(2Q(y))~". It is easy to show that (a+Zb)a+zb)=

28P (5/8). q.e.d.
CoroLLARY 1. For xelU" and ieK*, we have

(15) W) '=W(—a)=— Wz

(16) W)W (@) =A(2) and W(x)"' W (dz)=1(i"").

Proof. These can be deduced from (14) and the definition of W(a).

CorROLLARY 2. If we denvte by G the subgrowp of Spin (V') generated by G
and F, then Q is contained in G.

Remark. Interchanging E and F, we put Wiz)=F(e)E{(¢x)F (x), then we
have W/(x)T (x)~'=.(Z), where &= (2Q(x))"".

Prorosition 6. For xeU*, we have

a7 W ()E ()W () =F(—& ),
(18) W@ F W) ' =E(—5"22u)

where &=(20(x))™! and <, is the symmetry in V defined by .
Proof. We put ¢=a+2b, then

W(@)E ()W) = —cx(l+ay)ce= —(cacx+crayce)
=) )+ cac- wyx-

As Qo)=2&=0(x)"", we have, from (2),
W@E W (x) ' =1l+ca coy=1—Ebcy=F(—E&-ty).
Also (18) can he proved in the similar way. q.e.d.

DeriniTiON. We denote by 28 the subgroup of Spin (V') generated by W(z)
with 2e U and by U the subgroup of Spin(V") generated by W(z)W (y)"! with

44384
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x,ye U, It follows from (16) that ¥ is contained in 1.

It is already shown that ¢ (U)=U. So, for any XeW, the restriction wy
of ¢r to U is an automorphism of the quadratic space U. Thus we have a
homomorphism o of %8 into OQ(U). Clearly o is surjective, and the restriction
of @ to I is a homomorphism of 11 onto SO{U).

Prorosition 7. The kernel of the homomorphism o is the subgroup R, and
Q is central in 1.

Proof. From Cor. 1 to Prop. 5, we have
W DWW (@) =47,

Thus & is central in U, but is not central in 8. As 1 has index 2 in 2B, it
suffices to show that the kernel of @ in W is 8 Assume that Xell be in the
kernel. We write

X=W(a)Wiay) -« Wias),

with a;e U*. By Prop. b, we can write X=aP (f)x2e+-22n, With certain scalars
« and 5. As aP(5) commutes with every vector of U, the element ;- 2. of
Cy(U) should be central in the algebra C(U7) of U. That is, @;---2w, is a scalar.
Thus X=a'P(3). From l=u(X)=a"-5 it follows that Xe{. g.e.d.

The special orthogonal group SO(H) of the hyperbolic plane H=<a, b>> is
isomorphic to the multiplicative group A~ of K in the following way. Let
seSO(H ), then o(a) is a scalar multiple of ¢. We denote this scalar by =, Then
7 is an isomorphism of SO(H) onto K -.

For Xell, the restriction =y of ¢r to the hyperbolic plane H induces an
element of SO(H). We also denote by =y the corresponding scalar of this rest-
riction. Thus we have a homomorphism = of W into K. From (14), we have
(W ()W (1))=Q(x)/Q{y). Thus the image of = is a subgroup of K~ generated
by Q(z)/Q(y) with » yell”, Also it is clear that the kernel of z is isomorphic
to the spinor group Spin (I7) of U.

4. A generator system for the spinor group Spin (V).

We will show that Spin () is generated by the two elementary subgroups €
and §.

Lemma 3. For TeSpin (V), if er(@)=5"'a and ¢p(b)=5b, with 3eK*, then
T is contained in 1.

LProof. We put c=¢r. As «(H)=H, we have «(I/)=0. Thus ¢ induces an
element of SO(U) which we will denote by /. By the theorem of Cartan-
Dieudonné, there exist even number of non-singular vectors z{1=i=9%:) in U
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such that «’=c, -----r;y,, where . means the symmetry in U defined by z, in
this case. The spinor norm of - is a class of K-/(K 7 which contains the
scalar 37'Q(z,)+-@(2). As r=¢p with TeSpin (), this scalar ‘is equal to a
square »* with pe/ . We put

Ty=Wi(z) - W(z) 1(4).

Clearly we have wp=t'=wy. Taking the scalar i suitably, we can show that
=(Ty==(T). More exactly, it suffices to put

A= p(€(20)Q(25) - Ql Zon- 1)) .

Thus ¢r=e¢r, that is, T and T, differ only by the factor +1. As —1=.1(—1el,
T==+T, is contained in 1L q.e.d.

. For an element TeSpin(V), we put 5(7)=Q(«, ¢r(h)), and we define a subset
X of Spin (V) in the following way;

X={TeSpin (V) : HT)=0}.

ProrosiTion 8. Notation being as above, we have ¥=CFU, wnd for TeX,
the decomposition T=E (2)F ()X, with Xell, is unique.

Proof. 1t is clear that T=F (a)F (y).X is contained in ¥, because
er(0)=¢pu(rx 1 D)= rx (b —2Q(z)a —2x),

that is, B(T)==y"* Now we prove the uniqueness of the decomposition. Put
E(x)F (i X=E(x)F (y)X,, with X, X,€ll, then we have

E(x—z)F(y)=F(y) X, X' = X, X' F (1),

where ¥, 18 a vector in U determined by (17) and (18). That is,
E(z—x)F (y—y)=X.X-'. Consider the operation on b of the vector representa-
tion of both sides of the above formula, then we have

‘Pﬁ'(mx)F(yg)(b)z b—26)(«eq)ax ~ 2is, and 9"‘1"(5): 0,

where wy=2—2;, yy=y—y. and ¥Y=X,X*. Thus we have x,=0, that is, 2=,
As FNU={1}, the equality F(y)X=F (y,)X, means that y=y, and X=X, Note
that every element F(y)=1 does not leave invariant the subspace U. (cf. Prop.
2).

Finally, assume that 7Te€X, then we can write

op(D)=aa+ b+,
where f=HT)=0, and zeU. As Qgr(0))=0, we have 2a3+Q(x)=0. We put
T=E(25)"x)T,
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then we have ¢gpib)=35h. Writing c¢rle)=po-+ih+y, we have ;=51 and
Z04+-Q0n =0, Put

T7=F2 5T,

then we have cpdey=j5"'a and ¢y (h1=3h. From Lemma 3, it follows that
T"ell. That is,

T=F{— (25 w)F (=27 anT",
with 77ell. (.e.d.

Prorosition 9.
Spin ()= U Fla)XF @)
FEL

Proof. For TeSpin (1), if H(T)=0, then we can write ¢rlli)=waz+y. Put-
ting T#=F{o)TF(~x), we will show that T*eX for some zel. As ¢r«(0)=
cranlaa+y), we have 3(T%)=2(—aQ(r)+Q(x »)). Changing » hy Az, if necessary,
we can show that there exists a vector Zr such that 7%eX. Note that [A|=3
{from the assumption. . e. d.

These proofs are analogy of Eichler's one [2].
As 11 normalises the subgroup %, Prop. 8 and 9 shows that
(19 Spin (T7)=REFIL

Remark 1. From (19), we can explain the cellular decomposition of the
quadratic surface in the projective space P(V7) of ¥V defined by the equation
Qla)=0.

Remerk 2. If ind(U7)=0, then the subgroups Fll and W make the B-N
pair for the group Spin{(}") in the sense of Tits. DBut this iz already known,
because Il is a minimal K-parabolic subgroup of Spin (1) [3]. If ind(U)>0,
we could not seek any A-N pair in Spin{17).
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