On the Structure of Spinor Groups with Positive Index

By Takashi TASAKA

Department of Mathematics, College of General Education, University of Tokyo. Komaba, Meguro-ku, Tokyo 153

(Received January 28, 1975)

In this paper, we study the structure of the spinor group Spin(V), where V is a quadratic space with positive index over a field K of characteristic $\neq 2$. We will show that Spin(V) is generated by two subgroups which are isomorphic to a certain subspace of V, when $\dim V \geq 3$.

1. Preliminaries.

Assume that K be an arbitrary field of characteristic $\neq 2$. Let V be an n-dimensional non-degenerate quadratic space over the field K with quadratic form Q. We denote also by Q(x,y) the symmetric bilinear form which determines the quadratic form Q, that is, for any $x \in V$, we have Q(x) = Q(x,x). We take an orthogonal base $\{e_1, \dots, e_n\}$ of V: $Q(e_i, e_j) = \alpha_i \delta_{ij}$, with $\alpha_i \in K^{\times}$ and $1 \leq i$, $i \leq n$.

In a vector space V, we denote by $\langle x_1, \dots, x_r \rangle$ the subspace of V spanned by the vectors x_1, \dots, x_r .

We assume that the index of V is positive. So we may take an orthogonal base $\{e_1, \dots, e_n\}$ such that $Q(e_1)=1$ and $Q(e_2)=-1$. Put

(1)
$$a=e_1+e_2, b=2^{-1}(e_1-e_2),$$

then $\{a,b\}$ is a hyperbolic pair in V (i.e., Q(a)=Q(b)=0 and Q(a,b)=1), and we have a hyperbolic plane $H=\langle a,b\rangle=\langle e_1,e_2\rangle$ in V. We denote by U the orthogonal complement of H. Thus, $U=\langle e_3,\cdots,e_n\rangle$. It is clear that Q induces a non-degenerate quadratic form on U.

Let C(V) be the Clifford algebra of V which contains V canonically, and let $C_0(V)$ be the even Clifford algebra of V. We denote by J the main involution of C(V), that is, $J(x_1 \cdots x_r) = x_r \cdots x_1$, for $x_i \in V$. From the definition, we have, $x^2 = Q(x)$ and xy + yx = 2Q(x, y), in C(V), where $x, y \in V$. For an invertible element X of C(V), we denote by ϕ_X the inner automorphism of C(V) defined by X, that is, for $Y \in C(V)$, $\phi_X(Y) = XYX^{-1}$. The Clifford group $\Gamma(V)$ of V is defined by

$$\Gamma(V) = \{X \in C(V)^*: \phi_X(V) \subset V\}.$$

For $X \in \Gamma(V)$, the restriction of ϕ_X to V is an automorphism of the quadratic space V which we will denote by φ_X or $\varphi(X)$. Clearly the mapping $\varphi: X \to \varphi(X)$ is a homomorphism of $\Gamma(V)$ into the orthogonal group O(V) of V, which we call the vector representation of $\Gamma(V)$.

We note that, for a non-singular vector x, we have $x \in \Gamma(V)$, and $\varphi_x = -\tau_x$, where τ_x denotes the symmetry defined by x. Thus we have

$$(2) xyx = -Q(x), \tau_x y,$$

for a non-singular vector x of V and any vector y of V.

The even Clifford group $\Gamma_0(V)$ is defined by $\Gamma_0(V) = \Gamma(V) \cap C_0(V)$. Then, for an element X of $\Gamma_0(V)$, we have $\varphi_X \in SO(V)$. The kernel of φ in $\Gamma_0(V)$ is the intersection of $\Gamma_0(V)$ and the center of C(V) which is the multiplicative group K of K. Note that the field K is contained in the center of C(V) canonically.

For any $X \in C(V)$, we define the norm $\nu(X)$ by $\nu(X) = X \cdot J(X)$. It is well-known that the mapping ν induces a homomorphism of $\Gamma_0(V)$ into the multiplicative group K^* of K. The spinor group $\mathrm{Spin}(V)$ of V is defined as the kernel of this homomorphism, that is,

Spin
$$(V) = \{X \in \Gamma_0(V) : \nu(X) = 1\}.$$

In our case (ind (V)>0), the homomorphism ν is surjective. (For these facts, see E. Artin [1].)

2. Elementary Subgroups.

From now on, we assume that $n=\dim V \ge 3$. We have fixed a hyperbolic pair $\{a,b\}$ in V by (1). For any $x \in U = \langle e_3, \dots, e_n \rangle$, we put

$$(3) E(x) = 1 + \alpha x,$$

$$(4) F(x) = 1 + bx,$$

then we have the following two propositions.

Proposition 1.

- (a) $E(x) \in \text{Spin}(V)$ and E(x)E(y) = E(x+y) for $x, y \in U$.
- (b) For $v \in V$, we have

(5)
$$\varphi_{E(x)}(v) = v + 2Q(x, v)a - 2Q(a, v)Q(x)a - 2Q(a, v)x.$$

(c) $\mathfrak{G}=\{E(x):x\in U\}$ is a subgroup of $\mathrm{Spin}(V)$ which is isomorphic to the additive group of U.

Proof. Clearly $E(x) \in C_0(V)$. The norm of E(x) is given by

$$\nu(E(x)) = (1 + ax)(1 - ax) = 1 - axax = 1.$$

Calculating the inner automorphism $\phi_{E(x)}$, we have

$$\phi_{E(x)}(v) = (1+ax)v(1-ax) = v + 2Q(x, v)a - 2Q(a, v)Q(x)a - 2Q(a, v)x,$$

for any $v \in V$. Thus, $\psi_{E(x)}(v) \in V$. This shows the first part of (a) and (b). Clearly

$$E(x)E(y) = 1 + ax + ay + axay = 1 + a(x+y) = E(x+y)$$
.

Thus all are proved.

The same holds for F(x), that is,

Proposition 2.

- (a) $F(x) \in \text{Spin}(V)$ and F(x)F(y) = F(x+y) for $x, y \in U$.
- (b) For $v \in V$, we have

(6)
$$\varphi_{F(x)}(v) = v + 2Q(x, v)b - 2Q(b, v)Q(x)b - 2Q(b, v)x.$$

(c) $\mathfrak{F}=\{F(x):x\in U\}$ is a subgroup of $\mathrm{Spin}(V)$ which is isomorphic to the additive group of U.

We call these subgroups $\mathfrak E$ and $\mathfrak F$ the elementary subgroups of $\mathrm{Spin}(V)$ defined by the hyperbolic pair $\{a,b\}$. Note that, in Eichler's notation [2], p. 13, we have

$$\varphi(E(x)) = E_{-2x}^a$$
 and $\varphi(F(x)) = E_{-2x}^b$.

LEMMA 1. We put $\varepsilon = e_1 e_2$, then $\varepsilon^2 = 1$, and

- (a) $\varepsilon x = x\varepsilon$, for any $x \in U$.
- (b) $-\varepsilon a = a\varepsilon = a$ and $\varepsilon b = -b\varepsilon = b$.
- (c) $ab=1-\varepsilon$ and $ba=1-\varepsilon$.

Proof. These can be proved by direct calculations.

Putting, for $\alpha \in K^{\times}$,

(7)
$$P(\alpha) = 2^{-1} \{ (1+\alpha) + (1-\alpha)\varepsilon \},$$

we have

Proposition 3.

- (a) $P(\alpha) \in \Gamma_0(V)$ and $\nu(P(\alpha)) = \alpha$.
- (b) $P(\alpha)P(\beta) = P(\alpha\beta)$.

Proof. For $\alpha \in K^{\times}$, $\alpha + b$ and $\alpha + \alpha b$ are non-singular vectors, and we have $(\alpha + b)(\alpha + \alpha b) = 2P(\alpha)$. Thus $P(\alpha) \in \Gamma_0(V)$. The other statements can be proved by direct calculations.

We put $\mathfrak{P}=\{P(\alpha): \alpha \in K^{\times}\}\$, then \mathfrak{P} is a subgroup of $\Gamma_0(V)$ which is isomor-

phic to K^* . Prop. 3. shows that $\Gamma_{\mathbf{0}}(V)$ is a semi-direct product of $\mathrm{Spin}\,(V)$ and \mathfrak{P} in which $\mathrm{Spin}\,(V)$ is normal.

From Lemma 1, it follows that $P(\alpha)a=\alpha a$, $aP(\alpha)=a$, $P(\alpha)b=b$, $bP(\alpha)=\alpha b$, and $P(\alpha)x=xP(\alpha)$ for any $x\in U$. So we have $\varphi_{P(\alpha)}(a)=\alpha a$, $\varphi_{P(\alpha)}(b)=\alpha^{-1}b$, and $\varphi_{P(\alpha)}(x)=x$ for any $x\in U$. Also we have

(8)
$$P(\alpha)E(x)P(\alpha)^{-1}=E(\alpha x),$$

$$(9) P(\alpha)F(x)P(\alpha)^{-1} = F(\alpha^{-1}x).$$

That is, \$\partial \text{normalises & and \$\varphi\$, respectively.

Now, for $\alpha \in K^{\times}$, we put

$$A(\alpha) = \alpha^{-1} P(\alpha^2).$$

Then we have

Proposition 4.

- (a) $A(\alpha) \in \text{Spin}(V)$ and $A(\alpha)A(\beta) = A(\alpha\beta)$.
- (b) $\mathfrak{L}=\{A(\alpha): \alpha \in K^*\}$ is a subgroup of Spin(V) which is isomorphic to K^* . Especially A(-1)=-1.

Proof. These are clear from the definition of $A(\alpha)$.

Remark. If dim V=2, it is easy to see that Spin $(V)=\mathfrak{L}$.

3. The Structure of spinor group.

Let U be the orthogonal complement of $H=\langle a,b\rangle =\langle e_1,e_2\rangle$. We denote by U^\times the set of all non-singular vectors in U. For $x\in U^\times$, we put $\xi=(2Q(x))^{-1}$, and put

$$(11) W(x) = E(x)F(\xi x)E(x).$$

From (8) and (9), we have

(12)
$$P(\alpha)W(x)P(\alpha)^{-1} = W(\alpha x).$$

LEMMA 2. For $x \in U^{\times}$, we have

(13)
$$W(x) = (\alpha + \hat{\xi}b)x,$$

where $\xi = (2Q(x))^{-1}$.

Proof. In the algebra C(V), we have

$$W(x) = (1+ax)(1+\xi bx)(1+ax)$$
$$= 1+2ax+\xi bx-\xi Q(x)(ba+ab)-\xi Q(x)abax$$

$$=ax+\xi bx=(a+\xi b)x$$
.

Note that aba = 2a.

q.e.d.

From Lemma 2, it follows $\varphi_{W(x)} = \tau_{a+\xi b} \cdot \tau_x$, for $x \in U$. This shows that $\varphi_{W(x)}(U) = U$ and $\varphi_{W(x)}(H) = H$. The restriction of $\varphi_{W(x)}$ to U is the symmetry in U defined by the non-singular vector x which is nothing but the restriction of the symmetry τ_x in V to the subspace U.

Proposition 5. For $x, y \in U^{\times}$, we have

(14)
$$W(x)W(y) = -Q(x)^{-1}P(Q(x)/Q(y))xy.$$

Proof: From Lemma 2, we have

$$W(x)W(y) = -(a+\xi b)(a+\eta b)xy$$

where $\xi = (2Q(x))^{-1}$ and $\eta = (2Q(y))^{-1}$. It is easy to show that $(a+\xi b)(a+\eta b) = 2\xi P(\eta/\xi)$.

Corollary 1. For $x \in U^{\times}$ and $\lambda \in K^{\times}$, we have

(15)
$$W(x)^{-1} = W(-x) = -W(x).$$

(16)
$$W(\lambda x)W(x)^{-1} = A(\lambda) \text{ and } W(x)^{-1}W(\lambda x) = A(\lambda^{-1}).$$

Proof. These can be deduced from (14) and the definition of W(x).

Corollary 2. If we denote by G the subgroup of Spin(V) generated by \mathfrak{C} and \mathfrak{F} , then \mathfrak{L} is contained in G.

Remark. Interchanging E and F, we put $W'(x) = F(x)E(\xi x)F(x)$, then we have $W'(x)W(x)^{-1} = A(\xi)$, where $\xi = (2Q(x))^{-1}$.

Proposition 6. For $x \in U^{\times}$, we have

(17)
$$W(x)E(y)W(x)^{-1} = F(-\xi \cdot \tau_x y),$$

(18)
$$W(x)F(y)W(x)^{-1} = E(-\xi^{-1} \cdot \tau_x y),$$

where $\xi = (2Q(x))^{-1}$ and τ_x is the symmetry in V defined by x.

Proof. We put $c=a+\xi b$, then

$$W(x)E(y)W(x)^{-1} = -cx(1+ay)cx = -(cxcx+cxaycx)$$
$$= Q(c)Q(x) + cac \cdot xyx$$

As $Q(c) = 2\xi = Q(x)^{-1}$, we have, from (2),

$$W(x)E(y)W(x)^{-1}=1+\tau_c a \cdot \tau_x y=1-\xi b \cdot \tau_x y=F(-\xi \cdot \tau_x y).$$

Also (18) can be proved in the similar way.

q. e. d.

DEFINITION. We denote by \mathfrak{W} the subgroup of Spin (V) generated by W(x) with $x \in U^{\times}$ and by \mathfrak{U} the subgroup of Spin (V) generated by $W(x)W(y)^{-1}$ with

 $x, y \in U^{\times}$. It follows from (16) that \mathfrak{L} is contained in \mathfrak{U} .

It is already shown that $\varphi_{W(x)}(U) = U$. So, for any $X \in \mathfrak{V}$, the restriction ω_X of φ_X to U is an automorphism of the quadratic space U. Thus we have a homomorphism ω of \mathfrak{W} into O(U). Clearly ω is surjective, and the restriction of ω to \mathbb{N} is a homomorphism of \mathbb{N} onto SO(U).

Proposition 7. The kernel of the homomorphism ω is the subgroup \mathfrak{L} , and \mathfrak{L} is central in \mathfrak{U} .

Proof. From Cor. 1 to Prop. 5, we have

$$W(x)A(\lambda)W(x)^{-1}=A(\lambda^{-1}).$$

Thus $\mathfrak Q$ is central in $\mathfrak U$, but is not central in $\mathfrak W$. As $\mathfrak U$ has index 2 in $\mathfrak W$, it suffices to show that the kernel of ω in $\mathfrak U$ is $\mathfrak Q$. Assume that $X \in \mathfrak U$ be in the kernel. We write

$$X = W(x_1)W(x_2)\cdots W(x_{2h}),$$

with $x_i \in U^*$. By Prop. 5, we can write $X = \alpha P(\beta) x_1 x_2 \cdots x_{2h}$, with certain scalars α and β . As $\alpha P(\beta)$ commutes with every vector of U, the element $x_1 \cdots x_{2h}$ of $C_0(U)$ should be central in the algebra C(U) of U. That is, $x_1 \cdots x_{2h}$ is a scalar. Thus $X = \alpha' P(\beta)$. From $1 = \nu(X) = \alpha'^2 \cdot \beta$, it follows that $X \in \mathfrak{L}$.

The special orthogonal group SO(H) of the hyperbolic plane $H=\langle a,b\rangle$ is isomorphic to the multiplicative group K^* of K in the following way. Let $\sigma\in SO(H)$, then $\sigma(a)$ is a scalar multiple of a. We denote this scalar by π_a . Then π is an isomorphism of SO(H) onto K^* .

For $X \in \mathbb{N}$, the restriction π_X of φ_X to the hyperbolic plane H induces an element of SO(H). We also denote by π_X the corresponding scalar of this restriction. Thus we have a homomorphism π of \mathbb{N} into K^\times . From (14), we have $\pi(W(x)W(y)) = Q(x)/Q(y)$. Thus the image of π is a subgroup of K^\times generated by Q(x)/Q(y) with $x, y \in \mathbb{N}$. Also it is clear that the kernel of π is isomorphic to the spinor group Spin(U) of U.

4. A generator system for the spinor group Spin (V).

We will show that Spin (V) is generated by the two elementary subgroups $\mathfrak E$ and $\mathfrak F.$

Lemma 3. For $T \in \text{Spin}(V)$, if $\varphi_T(a) = \beta^{-1}a$ and $\varphi_T(b) = \beta b$, with $\beta \in K^{\times}$, then T is contained in \mathbb{N} .

Proof. We put $\tau = \varphi_T$. As $\tau(H) = H$, we have $\tau(U) = U$. Thus τ induces an element of SO(U) which we will denote by τ' . By the theorem of Cartan-Dieudonné, there exist even number of non-singular vectors $z_i(1 \le i \le 2h)$ in U

such that $\tau' = \tau_{z_1} \cdots \tau_{z_{2h}}$, where τ_z means the symmetry in U defined by z, in this case. The spinor norm of τ is a class of $K^\times/(K^\times)^2$ which contains the scalar $\beta^{-1}Q(z_1)\cdots Q(z_{2h})$. As $\tau = \varphi_T$ with $T \in \operatorname{Spin}(V)$, this scalar is equal to a square μ^2 with $\mu \in K^\times$. We put

$$T_1 = W(z_1) \cdots W(z_{2k}) I(\lambda).$$

Clearly we have $\omega_{T_1} = \tau' = \omega_T$. Taking the scalar λ suitably, we can show that $\pi(T_1) = \pi(T)$. More exactly, it suffices to put

$$\lambda = \mu(Q(z_1)Q(z_2)\cdots Q(z_{2h-1}))^{-1}$$
.

Thus $\varphi_T = \varphi_{T_1}$, that is, T and T_1 differ only by the factor ± 1 . As $-1 = A(-1) \in \mathbb{I}$, $T = \pm T_1$ is contained in \mathbb{I} .

For an element $T \in \text{Spin}(V)$, we put $\beta(T) = Q(a, \varphi_T(b))$, and we define a subset \mathfrak{X} of Spin(V) in the following way;

$$\mathfrak{X} = \{ T \in \text{Spin}(V) : \beta(T) \neq 0 \}.$$

Proposition 8. Notation being as above, we have $\mathfrak{X} = \mathfrak{G}\mathfrak{F}\mathfrak{U}$, and for $T \in \mathfrak{X}$, the decomposition T = E(x)F(y)X, with $X \in \mathfrak{U}$, is unique.

Proof. It is clear that T = E(x)F(y)X is contained in \mathfrak{X} , because

$$\varphi_T(b) = \varphi_{E(x)}(\pi_X^{-1} \cdot b) = \pi_X^{-1}(b - 2Q(x)a - 2x),$$

that is, $\beta(T) = \pi_X^{-1}$. Now we prove the uniqueness of the decomposition. Put $E(x)F(y)X = E(x_1)F(y_1)X_1$, with $X, X_1 \in \mathbb{I}$, then we have

$$E(x-x_1)F(y)=F(y_1)X_1X^{-1}=X_1X^{-1}F(y_2),$$

where y_2 is a vector in U determined by (17) and (18). That is, $E(x-x_1)F(y-y_2)=X_1X^{-1}$. Consider the operation on b of the vector representation of both sides of the above formula, then we have

$$\varphi_{E(x_3)F(y_3)}(b) = b - 2Q(x_3)a - 2x_3$$
, and $\varphi_Y(b) = \pi_Y^{-1} \cdot b$,

where $x_3=x-x_1$, $y_3=y-y_2$ and $Y=X_1X^{-1}$. Thus we have $x_3=0$, that is, $x=x_1$. As $\mathfrak{F}\cap \mathfrak{U}=\{1\}$, the equality $F(y)X=F(y_1)X_1$ means that $y=y_1$ and $X=X_1$. Note that every element $F(y)\pm 1$ does not leave invariant the subspace U. (cf. Prop. 2).

Finally, assume that $T \in \mathcal{X}$, then we can write

$$\varphi_T(b) = \alpha a + \beta b + x,$$

where $\beta = \beta(T) \neq 0$, and $x \in U$. As $Q(\varphi_T(b)) = 0$, we have $2\alpha\beta + Q(x) = 0$. We put

$$T' = E((2\beta)^{-1}x)T$$

then we have $\varphi_{T}(b) = \beta b$. Writing $\varphi_{T}(a) = \gamma a + \delta b + y$, we have $\gamma = \beta^{-1}$ and $2\gamma \delta + Q(y) = 0$. Put

$$T'' = F(2^{-1}\beta y)T',$$

then we have $\varphi_{T''}(a) = \hat{\beta}^{-1}a$ and $\varphi_{T''}(b) = \hat{\beta}b$. From Lemma 3, it follows that $T'' \in \mathbb{I}$. That is,

$$T\!=\!E\,(-(2\beta)^{-1}x)F\,(-2^{-1}\beta y)T^{\prime\prime\prime},$$

with $T'' \in \mathbb{N}$.

q. e. d.

Proposition 9.

Spin
$$(V) = \bigcup_{x \in U} F(x) \mathfrak{X} F(x)^{-1}$$
.

Proof. For $T \in \text{Spin}(V)$, if $\beta(T) = 0$, then we can write $\varphi_T(b) = \alpha a + y$. Putting $T^* = F(x)TF(-x)$, we will show that $T^* \in \mathfrak{X}$ for some $x \in U$. As $\varphi_{T^*}(b) = \varphi_{F(x)}(\alpha a + y)$, we have $\beta(T^*) = 2(-\alpha Q(x) + Q(x, y))$. Changing x by λx , if necessary, we can show that there exists a vector λx such that $T^* \in \mathfrak{X}$. Note that $|K| \ge 3$ from the assumption.

These proofs are analogy of Eichler's one [2].

As II normalises the subgroup &, Prop. 8 and 9 shows that

$$\operatorname{Spin}(V) = \operatorname{Feb}(V)$$

Remark 1. From (19), we can explain the cellular decomposition of the quadratic surface in the projective space P(V) of V defined by the equation Q(x)=0.

Remark 2. If $\operatorname{ind}(U)=0$, then the subgroups FII and $\mathfrak B$ make the B-N pair for the group $\operatorname{Spin}(V)$ in the sense of Tits. But this is already known, because FII is a minimal K-parabolic subgroup of $\operatorname{Spin}(V)$ [3]. If $\operatorname{ind}(U)>0$, we could not seek any B-N pair in $\operatorname{Spin}(V)$.

References

[1] Artin, E., Geometric algebra, Interscience, 1957.

[2] Eichler, M., Quadratische Formen und orthogonale Gruppen. Springer-Verlag, 1952.

[3] Tits, J., Algebraic and abstract simple groups. Ann. of Math. 30, 313-329 (1964).