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§1. Introduction.

A famous theorem due to Browder, Casson, Sullivan, Haefliger and Wall
(referred to as BCSHW) states that a homotopy equivalence f: A — W of a
closed m-manifold M to a compact (m-g)-manifold T¥ is homotopic to a piece-
wise linear (PL) embedding provided that codimension ¢ is greater than or equal
to three [14, §11.3.4]. This theorem naturally leads to a question asking
whether the corresponding result holds in the case the codimension g=2. Itis
proven by Cappell and Shaneson that for any closed even dimensional (say, m-
dimensional) manifold 3 with finite fundamental group of certain type, there
are infinitely many (m+2)-manifolds W, simple homotopy equivalent to M, such
that any simple homotopy equivalence f: A — ¥ cannot be homotopic to a PL
embedding [3]. Consequently, the BCSHW theorem fails in codimension two.

In this paper, we shall gwe a rather simple example which shows this
failure.

THEOREM 1. Let m be. a positive integer with m=2 (mod 4). Then there
exists a compact orientable PL (m+-2)-manifold W™ with the following properties:
W™= has the homotopy type of a product of spheres ST3S™, but no homotopy
equivalence f:S*xS™t — W™+ is fomotopic to @ PL embedding.

Here a PL embedding means a not nécessarily locally flat one. It should be
noted that our example has an nfinite fundamental group contrasting with
Cappell and Shaneson’s examples?.

Our method of construction also gives a remarkable example of a knotted
torus. :

THEOREM 2. Let m=2 (mod4) and suppose m=6. There exists a Zacalz’v
flat PL embedding ‘

* The author is partially supported by the Fajukai Foundation.
1) For m=z=6 the fundamental group of our example is an infinite cyclic group.
The existence of such an example contradicts an announcement in [2, p. 578, line 10].
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which induces an isomorphism of fundamental groups but cannot be extended fo
any PL embedding of S*x D™ into S§'xDm+*,

Note that, in knotted spheres, any PL embedding S*— $*** can be extended
to a PL embedding of disks D**' — D*** by conical extension.

§2. The obstruction to finding a locally flat spine.

In this section, we recall some results of condimension two surgery [7].
Procfs will be omitted. For a detailed account, refer to [71.

Suppose that a compact oriented PL manifold W™*? of dimension m+2 has
the same simple homotopy type as an oriented, connected, finite Poncaré complex
X of formal dimension m=5. Then one of the most fundamental problems
would be to find a closed PL m-submanifold A4 ™ of W™+ such that the inclusion
mapping M™ — W™*2 is a simple homotopy equivalence. If such a submanifold
exists, we shall call it a spime of W™ Although in this paper we are mainly
concerned with PL embeddings which are not locally flat in general, we first
formulate an obstruction theory to finding a locally flat spine.

Given an m-+2-manifold W™ satisfying the above condition, one can find

a locally flat closed m-submanifold L™ which is exterior [%-]-connected” [5,

Lemma 3.4]. Furthermore, the isomorphism class of the fundamental group
#(W—L) is independent of the choice of L™. The inclusion W—L G W induces
an onto homomorphism = — =’ of fundamental groups whose kernel is generated
by a central element ¢z The element ¢ is represented by the ‘positive’ S'-fiber
of the associated S'-bundle with a D*bundle neibourhood N of L™. The i-th
relative  homotopy groups = (W-—L, N~L) has the structure of a (left) Zr-
module (121'%]4_1) Here note that the ring Zz (or Zz’) is equipped with an
involution ‘~’ defined by ¢+ g%

Now supposge that 2 is even: m=2n. A key observation in [7] was that the
Zr-module G=r,.(W—L, N—L) carries a (—1)*#-hermitian form i: GXG— Zx
in the sense of Bourbaki, ALGEBRE, ch, 9, §3, n°1) and a ‘quadratic form’ p:
G — Zzfla—(—1)"at; aeZz} which are related as A(x, x)= p(x)+ (= 1)"n(x)t, plz-+y)
=plx)+p(»)+i{z,v). The form (G, p) is not necessarily non-singular, but it
becoms non-singular over Zz’ after being tensored with Zz’. Thus we obtain
a (—1)*-hermitian form which is defined over Zz and becomes non-singular over

7', We call .a form of this type® a (—1)“Seifert form over z — z’. One can
define the concept of stably nwull-cobordant Seifert forms, analogously to that of

2) A feuwt submanifold in the sense of Thomas and Wood [13].
3) The form of essentially the same type was independently discovered by M
Freedman [4]. ‘
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split hermitian inner product spaces [9] or kernels [14]. Thus we can obtain the
‘Witt group’ of (—1)"-Seifert forms. It is an abelian group and is denoted by
Poy(z — '),

Returning to our geometrical situation, the ‘ Witt class’ of the (—1)"-Seifert
from (G, 1, ¢2) associated with L** does not depend on the choice of L** and only
depends on W% Moreover, denoting the class by 7{ W% e Pouln — z’), W2
admits a locally flat spine if and only if 5»( W**+)=0, provided that 2n=6.

Our result in [7] is slightly more general. It concerns not only the absolute
case but also the relative case and can he stated as follows:

THEOREM 2.1. [7, Theorem 5.101 Let (W2 K*-Y) be ¢ pair counsisting
of a compact oriented PL 2n+2-manifold W and a locally flat, oriented, closed
(2n—1)-submanifold K- in the boundary o0W. Suppose that the pair (W32,
K=Y has the same simple homotopy itype as an ovienmted, comnected, finite
Poincaré pair (X, YY) of formal dimension 2nz=6. Then there is canon-
ically defined a unique obstruction element (W, K) in the group Pan(z — =’) which
vanishes if and only if W admits a locally flat proper 2n-submanifold M*™ with
dM=K such that the inclusion map M2 G W™t is a simple homotopy equivalence.
Here the homomorphism = — =’ is associated with an exterior n-connected, locally
flat 2n-submanifold L™ with dL=K, and is defined to be my(W—L)— = ().

As in the absolute case, such M** will be called a spine of (W, K).

Next we shall state a realization theorem of the obstruction. Let K**-! be
an oriented, closed PL (2z—1)-manifold with =(K)=x'. Let ==z’ be an onto
homomorphism whose kernel is generated by a central element 7. By a result
of Wall [14, p. 125], such a homomorphism can be realized by an oriented S'-
bundle £— K with the total space E, so that the induced homomorphism (&)
— (K) is identical with =— z’. (The identification sends # to the element of
=:(E) represented by an oriented fiber.) Let N be the total spece of the D*-
bundle associated with £ - K. V

Now suppose that we are given a locally flat spine A, of N. Let K, be
the zero cross-section of N— K. Then the pair (Nx[0,1], Kyx{0}UK;x{1}) is
simple homotopy equivalent to (K> [0,1], Kx{0} UK x{1}), hence the obstruction
W NX[0, 1], Kox{0} UK, X {1)€Pon(x — ') is well-defined by Theorem 2.1.

We have the following

THEOREM 2.2. Suppose 2nz6. Let n, be any prescribed element of Py, (z— x').
Then there exists a locally flat spine K™ of N such that y(Nx[0,1], Kyx{0tu
K 1 X {1}) =0. '

Theorem 2.2 follows from [7, Lemma 5.2] and the relative s-cobordism
theorem.
§3. An example of a (—1)-Seifert from over (Z—1)xXZ

Let (Z-1)xZ denote the projection ZxZ-— Z of the direct product of
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infinite cyclic groups to the second factor. These groups are considered to he
multiplicative and let 7 (or s) be the positive generator of the first (or the second)
factor of Zx Z.

In the category whose objects are onto homomorphisms of groups z—=’, the
kernels of which are generated by a preferred central element #, we define a
morphism

m— ) = (m )

to be a pair (&, /4’) of homomorphisms which makes the diagram commute:

h
Ty ————> Tg
Loy
a1 ——

(A is assumed to preserve the preferred element £.)

Then there is the ‘inclusion’ morphism
(Z2—1) = (Z->1)xZ

defined by the pair of inclusions to the first factors: Z G ZxZ, 1G1xZ. By
the functorial property of the P-groups [7, p. 301], we have a homomorphism

iy Py(Z—1) — Pp((Z—>1)X Z)

induced by the ‘inclusion’ morpism.

The aim of this section is to show that if m=4k+2, the homomorphism i,
is not surjective. For this, it will suffice to give a (—1)-Seifert form over
(Z—1)xZ whose ‘Witt class’ in Pue((Z—1)XZ) is not contained in the
image of i,. Such an example is given as follows:

(G, A ;l) . G;‘./f.i‘x@.”l.'l}z,
/:("L‘l, .'L'g)——- *—*2(&‘2, .Z‘1)f= —s!
) =51, @) =—~1,

A=Z[ 17, 5,57

Remark. We found this form in a study of a ‘spineless’ 4-manifold [8].
Note that the matrix (A(w;, z;)) of the form is given by

[(s~1)—(s~1—1)t, ——5“1}
st , —1+2



(]

Some Counterexamples in the Theory of Embedding Manifolds 5

Lemma 3.1, The element ny of Puo((Z— 1)XZ) represented by the above
form is not in the image of i,. :

Proof. We construct two left inverses p., o~ of the homomorphism i, as
follows: Let (G,2, ) be a (—1)-Seifert form over (Z—1)x.Z. Then by sub-
stitution s=1, it gives rise to a (—1)-Seifert form over Z -1, and this defines
the homomorphism

0+t Py (Z— 1) X&) — PuywolZ — 1)
The substitution s=—1 gives another homomorphism
0 Pupss((Z— )X Z) — Pyio(Z—1).

Since both homomorphisms are left inverses of Z,, if the element 7, were in the
image of iy, we would have p.(p)=p-(n). However, this is not the case. To
show this, we define the Murasugi signature [10]:

(7572 P4k<.1.2(Z_" 1) — Z.

Let (G, 4, 1) be a (—1)-Seifert form over Z-— 1. By substitution t=—1, the
(—1)t-hermitian form i gives rise to a symmetric bilinear form over @ defined
on GRQ, where I'=Z[t,t7']. ox(G, 4 ) is defined to be the signature of this

<
symmetric bilinear form. It is not difficult to see the above definition gives a

well defined homomorphism ay.
Now let us compute ayp.{7) using the matrix which was given in Remark

in page 52:

0, -1
oarp+(70) =sign =0,

]

( . ""4) 1) 2
o3 p-(na)=Sign =—2.
MO-\Na 1’ 9

Therefore, p.(gs)#p-(p). This completes the proof of 3.1.

- Remark. Lemma 3.1 was announced in [8]. This lemma implies that
Shaneson’s splitting formula which was proven for Wall groups [12] does not
hold in our P-groups.

Let si:z— ' be an onto homomorphism whose kernel is generated by a
preferred central element # Then a morphism b:(z—z) > (@d:x’ — ') is
defined by b=(%,id). The morphism induces a homomorphism by : Pu(z — z/) —
Poy(x’ — x'). Since Puy(r’— z’) is identical with the Wall group L., ('), we
have obtained a homomorphism

by s Pon(m = =) —— Log(a’).

See [7, p. 309]. In particular, we have
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Dyt Pl {Z — 1) X Z) —— Lol Z).
LemmMa 3.2, Let wo be the element of Lemma 3.1 then by(y)=0.

Proof. Let (G, 4, ) be the (—1)-Seifert form over (Z-— 1)xZ which was
given earlier and represents . Then, since (G, 4, ;z)@Z [s, 571 is obtained by

substitution =1, b7 is represented by the ( —1)-herrﬁitian form given by

(G2, 1) G =1 i@ A e,

ple)=s-1, u(rs)=-1,
V=2Z[s,57.

From this, it follow that (G’, %/, p) is a kernel, for @;—x. generates a subkernel
in the sense of Wall [14, Lemma 5.3]. This proves bu(7)=0.

§4. Proof of Theorem 1.

In case m=2, Theorem 1 was proven in [8], So we may suppose that m=
4k +2=26. Let S'>5"% be a product of 1- and (m~—2)-spheres. Since dim (5! x S™-2)
=m—12=5, one can find, by Theorem 2.2, a locally flat spine K of $'x8"-2xD?
such that the obstruction 7(S'%S™~2xDPx[0,1], S*xS™-2x {0} x {0} U K X {1}) =7,
where 7, is the element of Pu.o({Z—1)xZ) given in §3. We claim that K
is PL homeomorphic with S'xS™-%. To prove this, construct a locally flat,
oriented, proper -submanifold V™ of S$'xS"2xD*x[0,1] such that oV=

St S {0} X {0V U K % {1}, V7™ may be assumed to be exterior [ —?]—connected

[5, Lemma 3.4]. Since the inclusion V'™ — S'xS»-2x D?x [0, 1] is [%ﬁ]-connected
[7, Lemma 1.3], we have
HE(V™: Z)=0.

Therefore, the normal 2-disk bundle of V'™ in S'xS"2x D*x[0,1] is trivial,
and we obtain a normal map in the sense of Browder [1]: (V™ oV ™) — (§'x
Sm-23¢[0, 1], S* xS0 {0} US' X S™-2x{1}). By [7], the surgery obstruction for this
normal map in the usual sense is Du(7yy)€Lixs2(Z). However, Lemma 3.2 states
that by{)=0. Thus we can perform surgery on V"™ to make it an s-cobordism.
This proves our assertion that K™ '=S'xS"-2, [6].

Next, glue a copy of SI*XDm-!xD? (=S'xDmy to S'xS™2xD*x[0,1] by
identifying each point (#,9,5) of S'XoD™*x D*(cS'x D™~*x D* with the point
(0,0, 5)x{0} of S'xS"-2xD*x[0,1] to form a manifold ¥ which is again PL-
homeomorphic with S*x D™+, The new manifold Y contains in its boundary
the locally flat (m—1)-manifold KX {I{cS' % S"*xD*x{1}cdY). The pair
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(Y, K" %{1}) has the homotopy type of the pair (S';cDn-1 3(S'» Dn-1)), and,
by Theorem 2.1, the obstruction 7( ¥, K;"'x {1}) can be defined in P ((Z— )% Z).
By naturality of the obstruction {7, p. 305],

(Y, K"t {1})
=S Sm-2x DEx [0, 1], S'x S™2x {0} < {0y U K < {1})

e/

Since Y=S5'x D™, aY=S5'XS" and KM x{1}=S'» 5", we have the following
lemma :

Lemma 4.1, Let m=2 (mod 4). There is a locally flat embedding i:S" X S™*
— S*X S™ which satisfies the following :

(1) i induces an isomorphism of fundamental groups.

(2) Considering i to be an embedding into the bounadry of S*X D™, the
pair (S'X D™ (ST XS is homotopy equivalent to (S*x D=1, 3(Stx D™-1)).

(3) The obstruction 7(S*}X D™ i(S* > S™ ) 1ePy((Z—1)XZ) is equal to 7,
of §3.

We continue the proof of Theorem 1. Let 77™ be the locally flat submanifold
of $'xS"-*xD*x[0,1] constructed earlier in this section. By gluing S'x D!
XSS X D1 D% to V™S xS itxD*x[0,1]) along S'xaDm13x%1{0}, we

obtain a locally flat, exterior [ﬂ]-connected submanifold ¥ of ¥. The normal

2

2-disk bundle of V in ¥ is trivial. Let @:¥xD?*— ¥ be a normal frame.
Restricting @ to the boundary, we have normal frame of oV G 3Y, that is, a
normal framing ¢:S'XS™ X D* — §'xS™ of i, i being the embedding of Lemma
4.1. Takeanother copy of the product S*xD"-*x D* and glue it to ¥(=8!'x Dn+1)
by identifying each point (4,5,&) of S'%aD"'xDN(cS'xDm-1x D% with the
point (0, p,&) of S'xS™ (=3Y). We have obtained a suitably oriented (m-+2)-
manifold W™

Wuit=Stx Dm-'x D*U Y.
$

Wm+2 is homotopy equivalent to S‘>”S"" 1) Moreover, in W™+, there is a locally
flat exterior [—;AJ connected, framed m-submanifold L™ defined to he S'xDm-!
x {0} UV(c: Stx Dm- ’XDQU Y=Wm+%). It is easy to see that the associated homo-

morplnsm with L™, m(W—L)ﬁm( W), is isomorphic with (Z—1)xZ. By
Theorem 2.1, the obstruction (W) to finding a locally flat spine is defined as
an element of P,((Z — 1)x Z), and by naturality of the ohstruction,

(W) =y(Y, (S x5"*))
=p(¥, K" x{1})

=770
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It remains to prove that W™+* admits no PL spine. Suppose, on the con-
trary, that W=»** admits a PL spine M™ Let j:M™- Wm2 he the PL
embedding which ‘is a homotopy equivalence. We apply Noguchi’s obstruction
theory [11] to the map j. Let C, denote the knot cobordism group of locally
flat PL k-knots in k+2-spheres. Then his theory tells us that if Hy(M™; Cpi 1)
=0 for any ¢ such that m—2=i=p, then any PL embedding f: M"™ — Wmn'2 is
homotopic to a p-flat embedding, see [11, p. 204]. In our situation, M™ is
homotopy equivalent to S'xS™! with m=2 (mod 4). Since Cy=0 for any even
integer =0, we have

HiM™; Cpei-)=0

for any i such that m—2=i=1. Therefore, j: M™— W™-2 is homotopic to a
1-flat PL embedding j’. Then by the definition of 1-flatness, the PL spine 7/(M™)
may be assumed to be lacally flat except at one point, at which the pair (Wm+2,
F(M™)) is locally a cone over a knotted (m—1)-sphere in a (m+1)-sphere. By
naturality of z-obstruction and the fact that the knot cobordism group Cp-; is
isomorphic to P,(Z — 1) ([7, Proposition 6.2]), the above observation implies that
H(W™+) (=n,) is contained in the image of :

i*:Pm(Z—**1)"”'Pm((z—>1)xZ)‘

This contradicts Lemma 3.1. We have completed the proof of Theorem 1.
By the same method, one can prove a more general result:

TueoreM 4.2. Let m be « positive integer with m=2 (mod4). Let M™ be
a closed m-manifold with Hy(M"™; Z)=H(S'xS"*; Z). Then there exists @
compact orientable (m+2)-manifold W™+ which is simple homotopy equivalent to
M™ but admits no PL spine.

§5. Proof of Theorem 2.

Let {:S*%xS"%— §'xS™ be the locally flat PL embedding of Lemma 4.1.
We shall show that 7/ cannot be extended to any PL embedding S'xDn-!—
Stx Dm+l, Suppose, on the contrary, that i is extended to a PL embedding ¢:
Sty Dm=t — §'x D™ '=Y. Then a submanifold M™ of W='* defined by

M™=8'x D" x {0} U H(S' x D)
St Dt DR g YV=Tyms2

would be a PL spine of W™ This contradicts what is proven in §4. This
completes the proof. :



[1]
(2]

[10]
[11]
[12]
[13]

[14]

Some Counterexamples in the Theory of Embedding Manifolds 57

References

W. Browder, Surgery on simply-connected manifolds, Ergebnisse der Mathematik,
Band 65, Springer-Verlag, 1972.

S. E. Cappell and J. L. Shaneson, Nonlocally flat embeddings, smoothings, and group
actions, Bull. Amer. Math. Soc., 7€ (1973), 577-582.

S.E. Cappell and J.L. Shaneson, Totally spineless manifolds, Tupology (to appear).
M. Freedman, Surgery on codimension 2 submanifclds, (to appear).

M. Kato and Y. Matsumoto, Simply connected surgery of submanifolds in codimen-
sion two I, J. Math. Soc. Jepan, 24 (1972), 586-608.

M. Kervaire, Le théoréme de Barden-Mazur-Stallings, Comwment. Math. Help. 40
(1965), 31-42.

Y. Matsumoto, Knot cobordism groups and surgery in condimension two, J. Fac.
Sci. Univ. Tokyo, Sect. IA, 20 (1973), 253-317.

Y. Matsumoto, A 4-manifold which admits no spine, Bull. Amer. Math. Soc., 81
(1975), 467-470.

J. Milnor and D. Husemoller, Symumetric bilinear forms, Ergebnisse der Mathematik,
Band 73, Springer-Verlag, 1973.

K. Murasugi, On a certain numerical invariant of link types. Tvans. Amer. Math.
Soc., 117 (1965), 387-422.

H. Noguchi, Obstruction' to locally flat embeddings of combinatorial manifolds,
Topology, B (1966), 203-213.

J.L. Shaneson, Wall’s surgery obstruction groups for ZxG, Aun. of Math., 80
(1969), 296-334.

E. Thomas and J. Wood, On manifolds representing homology classes in codimen-
sion 2, Invenitiones Math., 25 (1974), 63-89.

C.T.C. Wall, Surgery on compact manifolds, Academic Press, 1970.



