Some Counterexamples in the Theory of Embedding Manifolds in Codimension Two

By Yukio Matsumoto*

Department of Mathematics, College of General Education, University of Tokyo, Komaba, Meguro-ku, Tokyo 153

(Received June 27, 1975)

§ 1. Introduction.

A famous theorem due to Browder, Casson, Sullivan, Haefliger and Wall (referred to as BCSHW) states that a homotopy equivalence $f: M \to W$ of a closed m-manifold M to a compact (m+q)-manifold W is homotopic to a piecewise linear (PL) embedding provided that codimension q is greater than or equal to three [14, §11.3.4]. This theorem naturally leads to a question asking whether the corresponding result holds in the case the codimension q=2. It is proven by Cappell and Shaneson that for any closed even dimensional (say, m-dimensional) manifold M with *finite* fundamental group of certain type, there are infinitely many (m+2)-manifolds W, simple homotopy equivalent to M, such that any simple homotopy equivalence $f: M \to W$ cannot be homotopic to a PL embedding [3]. Consequently, the BCSHW theorem fails in codimension two.

In this paper, we shall give a rather simple example which shows this failure.

Theorem 1. Let m be a positive integer with $m \equiv 2 \pmod{4}$. Then there exists a compact orientable PL(m+2)-manifold W^{m+2} with the following properties: W^{m+2} has the homotopy type of a product of spheres $S^1 \times S^{m-1}$, but no homotopy equivalence $f: S^1 \times S^{m-1} \to W^{m+2}$ is homotopic to a PL embedding.

Here a PL embedding means a not necessarily locally flat one. It should be noted that our example has an *infinite* fundamental group contrasting with Cappell and Shaneson's examples¹⁾.

Our method of construction also gives a remarkable example of a knotted torus,

Theorem 2. Let $m \equiv 2 \pmod{4}$ and suppose $m \geqq 6$. There exists a locally flat PL embedding

^{*} The author is partially supported by the Fūjukai Foundation.

¹⁾ For $m \ge 6$ the fundamental group of our example is an infinite cyclic group. The existence of such an example contradicts an announcement in [2, p. 578, line 10].

$$i: S^1 \times S^{m-2} \to S^1 \times S^m$$

which induces an isomorphism of fundamental groups but cannot be extended to any PL embedding of $S^1 \times D^{m-1}$ into $S^1 \times D^{m+1}$.

Note that, in knotted spheres, any PL embedding $S^n \to S^{n+2}$ can be extended to a PL embedding of disks $D^{n+1} \to D^{n+3}$ by conical extension.

§ 2. The obstruction to finding a locally flat spine.

In this section, we recall some results of condimension two surgery [7]. Proofs will be omitted. For a detailed account, refer to [7].

Suppose that a compact oriented PL manifold W^{m+2} of dimension m+2 has the same simple homotopy type as an oriented, connected, finite Poncaré complex X of formal dimension $m \ge 5$. Then one of the most fundamental problems would be to find a closed PL m-submanifold M^m of W^{m+2} such that the inclusion mapping $M^m \to W^{m+2}$ is a simple homotopy equivalence. If such a submanifold exists, we shall call it a *spine* of W^{m+2} . Although in this paper we are mainly concerned with PL embeddings which are not locally flat in general, we first formulate an obstruction theory to finding a *locally flat* spine.

Given an m+2-manifold W^{m+2} satisfying the above condition, one can find a locally flat closed m-submanifold L^m which is exterior $\left[\frac{m}{2}\right]$ -connected²⁾ [5, Lemma 3.4]. Furthermore, the isomorphism class of the fundamental group $\pi_1(W-L)$ is independent of the choice of L^m . The inclusion $W-L \subset W$ induces an onto homomorphism $\pi \to \pi'$ of fundamental groups whose kernel is generated by a central element t. The element t is represented by the 'positive' S^1 -fiber of the associated S^1 -bundle with a D^2 -bundle neibourhood N of L^m . The i-th relative homotopy groups $\pi_i(W-L, N-L)$ has the structure of a (left) $Z\pi$ -module $\left(i \ge \left[\frac{m}{2}\right] + 1\right)$. Here note that the ring $Z\pi$ (or $Z\pi'$) is equipped with an involution '-' defined by $g \longmapsto g^{-1}$.

Now suppose that m is even: m=2n. A key observation in [7] was that the $\mathbb{Z}\pi$ -module $G=\pi_{n+1}(W-L,N-L)$ carries a $(-1)^n t$ -hermitian form $\lambda\colon G\times G\to \mathbb{Z}\pi$ in the sense of Bourbaki, ALGEBRE, ch. 9, § 3, $n^\circ 1$) and a 'quadratic form' $\mu\colon G\to \mathbb{Z}\pi/\{a-(-1)^n \bar{u}t;\ a\in\mathbb{Z}\pi\}$ which are related as $\lambda(x,x)=\mu(x)+(-1)^n \overline{\mu(x)}t,\ \mu(x+y)=\mu(x)+\mu(y)+\lambda(x,y)$. The form (G,λ,μ) is not necessarily non-singular, but it becomes non-singular over $\mathbb{Z}\pi'$ after being tensored with $\mathbb{Z}\pi'$. Thus we obtain a $(-1)^n t$ -hermitian form which is defined over $\mathbb{Z}\pi$ and becomes non-singular over $\mathbb{Z}\pi'$. We call a form of this type³⁾ a $(-1)^n \cdot Seifert$ form over $\pi\to\pi'$. One can define the concept of stably null-cobordant Seifert forms, analogously to that of

²⁾ A taut submanifold in the sense of Thomas and Wood [13].

³⁾ The form of essentially the same type was independently discovered by M Freedman [4].

split hermitian inner product spaces [9] or kernels [14]. Thus we can obtain the 'Witt group' of $(-1)^n$ -Seifert forms. It is an abelian group and is denoted by $P_{2n}(\pi \to \pi')$.

Returning to our geometrical situation, the 'Witt class' of the $(-1)^n$ -Seifert from (G, λ, μ) associated with L^{2n} does not depend on the choice of L^{2n} and only depends on W^{2n+2} . Moreover, denoting the class by $\eta(W^{2n+2}) \in P_{2n}(\pi \to \pi')$, W^{2n+2} admits a locally flat spine if and only if $\eta(W^{2n+2}) = 0$, provided that $2n \ge 6$.

Our result in [7] is slightly more general. It concerns not only the absolute case but also the relative case and can be stated as follows:

Theorem 2.1. [7, Theorem 5.10] Let (W^{2n+2}, K^{2n-1}) be a pair consisting of a compact oriented PL 2n+2-manifold W and a locally flat, oriented, closed (2n-1)-submanifold K^{2n-1} in the boundary ∂W . Suppose that the pair (W^{2n+2}, K^{2n-1}) has the same simple homotopy type as an oriented, connected, finite Poincaré pair (X^{2n}, Y^{2n-1}) of formal dimension $2n \ge 6$. Then there is canonically defined a unique obstruction element $\eta(W, K)$ in the group $P_{2n}(\pi \to \pi')$ which vanishes if and only if W admits a locally flat proper 2n-submanifold M^{2n} with $\partial M = K$ such that the inclusion map $M^{2n} \subset W^{2n+2}$ is a simple homotopy equivalence. Here the homomorphism $\pi \to \pi'$ is associated with an exterior n-connected, locally flat 2n-submanifold L^{2n} with $\partial L = K$, and is defined to be $\pi_1(W-L) \to \pi_1(W)$.

As in the absolute case, such M^{2n} will be called a spine of (W, K).

Next we shall state a realization theorem of the obstruction. Let K^{2n-1} be an oriented, closed PL (2n-1)-manifold with $\pi_1(K) \cong \pi'$. Let $\pi \to \pi'$ be an onto homomorphism whose kernel is generated by a central element t. By a result of Wall [14, p. 125], such a homomorphism can be realized by an oriented S^1 -bundle $E \to K$ with the total space E, so that the induced homomorphism $\pi_1(E) \to \pi_1(K)$ is identical with $\pi \to \pi'$. (The identification sends t to the element of $\pi_1(E)$ represented by an oriented fiber.) Let N be the total space of the D^2 -bundle associated with $E \to K$.

Now suppose that we are given a locally flat spine K_1 of N. Let K_0 be the zero cross-section of $N \to K$. Then the pair $(N \times [0, 1], K_0 \times \{0\} \cup K_1 \times \{1\})$ is simple homotopy equivalent to $(K \times [0, 1], K \times \{0\} \cup K \times \{1\})$, hence the obstruction $\eta(N \times [0, 1], K_0 \times \{0\} \cup K_1 \times \{1\}) \in P_{2n}(\pi \to \pi')$ is well-defined by Theorem 2.1.

We have the following

THEOREM 2.2. Suppose $2n \ge 6$. Let η_0 be any prescribed element of $P_{2n}(\pi \to \pi')$. Then there exists a locally flat spine K_1^{2n-1} of N such that $\eta(N \times [0, 1], K_0 \times \{0\} \cup K_1 \times \{1\}) = \eta_0$.

Theorem 2.2 follows from [7, Lemma 5.2] and the relative s-cobordism theorem.

§ 3. An example of a (-1)-Seifert from over $(Z \to 1) \times Z$

Let $(Z \rightarrow 1) \times Z$ denote the projection $Z \times Z \rightarrow Z$ of the direct product of

infinite cyclic groups to the second factor. These groups are considered to be multiplicative and let t (or s) be the positive generator of the first (or the second) factor of $\mathbf{Z} \times \mathbf{Z}$.

In the category whose objects are onto homomorphisms of groups $\pi \rightarrow \pi'$, the kernels of which are generated by a preferred central element t, we define a morphism

$$(\pi_1 \to \pi_1') \implies (\pi_2 \to \pi_2')$$

to be a pair (h, h') of homomorphisms which makes the diagram commute:

$$\begin{array}{ccc}
\pi_1 & \xrightarrow{h} & \pi_2 \\
\downarrow & \downarrow & \downarrow \\
\pi_1' & \xrightarrow{h'} & \pi_2'
\end{array}$$

(h is assumed to preserve the preferred element t.)

Then there is the 'inclusion' morphism

$$(Z \rightarrow 1) \Longrightarrow (Z \rightarrow 1) \times Z$$

defined by the pair of inclusions to the first factors: $Z \subseteq Z \times Z$, $1 \subseteq 1 \times Z$. By the functorial property of the *P*-groups [7, p. 301], we have a homomorphism

$$i_*: P_{2n}(Z \to 1) \longrightarrow P_{2n}((Z \to 1) \times Z)$$

induced by the 'inclusion' morpism.

The aim of this section is to show that if m=4k+2, the homomorphism i_* is not surjective. For this, it will suffice to give a (-1)-Seifert form over $(Z \to 1) \times Z$ whose 'Witt class' in $P_{4k+2}((Z \to 1) \times Z)$ is not contained in the image of i_* . Such an example is given as follows:

$$\begin{split} (G,\lambda,\mu): G &= Ax_1 \bigoplus Ax_2, \\ \lambda(x_1,x_2) &= -\overline{\lambda(x_2,x_1)}t = -s^{-1} \\ \mu(x_1) &= s - 1, \qquad \mu(x_2) = -1, \\ A &= Z[t,t^{-1},s,s^{-1}]. \end{split}$$

Remark. We found this form in a study of a 'spineless' 4-manifold [8]. Note that the matrix $(\lambda(x_i, x_j))$ of the form is given by

$$\begin{bmatrix} (s-1) - (s^{-1} - 1)t, & -s^{-1} \\ st, & -1 + t \end{bmatrix}$$

Lemma 3.1. The element η_0 of $P_{4k+2}((\mathbf{Z} \to 1) \times \mathbf{Z})$ represented by the above form is not in the image of i_* .

Proof. We construct two left inverses ρ_+ , ρ_- of the homomorphism i_* as follows: Let (G, λ, μ) be a (-1)-Seifert form over $(Z \to 1) \times Z$. Then by substitution s = 1, it gives rise to a (-1)-Seifert form over $Z \to 1$, and this defines the homomorphism

$$\rho_+: P_{4k+2}((Z \to 1) \times Z) \longrightarrow P_{4k+2}(Z \to 1).$$

The substitution s=-1 gives another homomorphism

$$\rho_-: P_{4k+2}((Z \to 1) \times Z) \longrightarrow P_{4k+2}(Z \to 1).$$

Since both homomorphisms are left inverses of i_* , if the element η_0 were in the image of i_* , we would have $\rho_+(\eta_0) = \rho_-(\eta_0)$. However, this is not the case. To show this, we define the Murasugi signature [10]:

$$\sigma_M: P_{4k+2}(Z \to 1) \longrightarrow Z.$$

Let (G, λ, μ) be a (-1)-Seifert form over $Z \to 1$. By substitution t = -1, the (-1)t-hermitian form λ gives rise to a symmetric bilinear form over Q defined on $G \underset{\Gamma}{\otimes} Q$, where $\Gamma = Z[t, t^{-1}]$. $\sigma_M(G, \lambda, \mu)$ is defined to be the signature of this symmetric bilinear form. It is not difficult to see the above definition gives a well defined homomorphism σ_M .

Now let us compute $\sigma_M \rho_{\pm}(\eta_0)$ using the matrix which was given in *Remark* in page 52:

$$\sigma_M \rho_+(\eta_0) = \text{sign} \begin{pmatrix} 0, & -1 \\ -1, & -2 \end{pmatrix} = 0,$$

$$\sigma_M \rho_-(\eta_0) = \operatorname{sign} \begin{pmatrix} -4, & 1 \\ 1, & -2 \end{pmatrix} = -2.$$

Therefore, $\rho_{+}(\eta_{0}) \neq \rho_{-}(\eta_{0})$. This completes the proof of 3.1.

Remark. Lemma 3.1 was announced in [8]. This lemma implies that Shaneson's splitting formula which was proven for Wall groups [12] does not hold in our P-groups.

Let $h: \pi \to \pi'$ be an onto homomorphism whose kernel is generated by a preferred central element t. Then a morphism $b: (\pi \to \pi') \Rightarrow (id: \pi' \to \pi')$ is defined by b=(h,id). The morphism induces a homomorphism $b_*: P_{2n}(\pi \to \pi') \to P_{2n}(\pi' \to \pi')$. Since $P_{2n}(\pi' \to \pi')$ is identical with the Wall group $L_{2n}(\pi')$, we have obtained a homomorphism

$$b_*: P_{2n}(\pi \to \pi') \longrightarrow L_{2n}(\pi').$$

See [7, p. 309]. In particular, we have

$$b_*: P_{4k+2}((Z \to 1) \times Z) \longrightarrow L_{4k+2}(Z).$$

LEMMA 3.2. Let η_0 be the element of Lemma 3.1 then $b_*(\eta_0)=0$.

Proof. Let (G, λ, μ) be the (-1)-Seifert form over $(Z \to 1) \times Z$ which was given earlier and represents η_0 . Then, since $(G, \lambda, \mu) \underset{\lambda}{\otimes} Z[s, s^{-1}]$ is obtained by substitution t=1, $b_*(\eta_0)$ is represented by the (-1)-hermitian form given by

$$(G', \lambda', \mu'): G' = \Lambda' x_1 \oplus \Lambda' x_2,$$

$$\lambda'(x_1, x_2) = -\overline{\lambda'(x_2, x_1)} = -s^{-1},$$

$$\mu'(x_1) = s - 1, \quad \mu'(x_2) = -1,$$

$$\Lambda' = \mathbb{Z}[s, s^{-1}].$$

From this, it follow that (G', λ', μ') is a kernel, for $x_1 - x_2$ generates a subkernel in the sense of Wall [14, Lemma 5.3]. This proves $b_*(\eta_0) = 0$.

§ 4. Proof of Theorem 1.

In case m=2, Theorem 1 was proven in [8], So we may suppose that $m=4k+2\geqq 6$. Let $S^1\times S^{m-2}$ be a product of 1- and (m-2)-spheres. Since dim $(S^1\times S^{m-2})=m-1\geqq 5$, one can find, by Theorem 2.2, a locally flat spine K_1^{m-1} of $S^1\times S^{m-2}\times D^2$ such that the obstruction $\eta(S^1\times S^{m-2}\times D^2\times [0,1],S^1\times S^{m-2}\times \{0\}\times \{0\}\cup K_1\times \{1\})=\eta_0$, where η_0 is the element of $P_{4k+2}((Z\to 1)\times Z)$ given in § 3. We claim that K_1^{m-1} is PL homeomorphic with $S^1\times S^{m-2}$. To prove this, construct a locally flat, oriented, proper m-submanifold V^m of $S^1\times S^{m-2}\times D^2\times [0,1]$ such that $\partial V=S^1\times S^{m-2}\times \{0\}\times \{0\}\cup K_1^{m-1}\times \{1\}$. V^m may be assumed to be exterior $\left[\frac{m}{2}\right]$ -connected [5, Lemma 3.4]. Since the inclusion $V^m\to S^1\times S^{m-2}\times D^2\times [0,1]$ is $\left[\frac{m}{2}\right]$ -connected [7, Lemma 1.3], we have

$$H^2(V^m: \mathbf{Z}) \cong 0.$$

Therefore, the normal 2-disk bundle of V^m in $S^1 \times S^{m-2} \times D^2 \times [0,1]$ is trivial, and we obtain a normal map in the sense of Browder [1]: $(V^m, \partial V^m) \to (S^1 \times S^{m-2} \times [0,1], \ S^1 \times S^{m-2} \times \{0\} \cup S^1 \times S^{m-2} \times \{1\})$. By [7], the surgery obstruction for this normal map in the usual sense is $b_*(\gamma_0) \in L_{4k+2}(\mathbf{Z})$. However, Lemma 3.2 states that $b_*(\gamma_0) = 0$. Thus we can perform surgery on V^m to make it an s-cobordism. This proves our assertion that $K_1^{m-1} \cong S^1 \times S^{m-2}$, [6].

Next, glue a copy of $S^1 \times D^{m-1} \times D^2$ ($\cong S^1 \times D^{m+1}$) to $S^1 \times S^{m-2} \times D^2 \times [0,1]$ by identifying each point (θ, p, ξ) of $S^1 \times \partial D^{m-1} \times D^2 (\subset S^1 \times D^{m-1} \times D^2)$ with the point $(\theta, p, \xi) \times \{0\}$ of $S^1 \times S^{m-2} \times D^2 \times [0,1]$ to form a manifold Y which is again PL-homeomorphic with $S^1 \times D^{m+1}$. The new manifold Y contains in its boundary the locally flat (m-1)-manifold $K_1^{m-1} \times \{1\} (\subset S^1 \times S^{m-2} \times D^2 \times \{1\} \subset \partial Y)$. The pair

 $(Y, K_1^{m-1} \times \{1\})$ has the homotopy type of the pair $(S^1 \times D^{m-1}, \hat{o}(S^1 \times D^{m-1}))$, and, by Theorem 2.1, the obstruction $\eta(Y, K_1^{m-1} \times \{1\})$ can be defined in $P_m((\mathbf{Z} \to 1) \times \mathbf{Z})$. By naturality of the obstruction [7, p. 305],

$$\begin{split} & \eta(Y, K_1^{m-1} \times \{1\}) \\ &= \eta(S^1 \times S^{m-2} \times D^2 \times [0, 1], \ S^1 \times S^{m-2} \times \{0\} \times \{0\} \cup K_1^{m-1} \times \{1\}) \\ &= \eta_0. \end{split}$$

Since $Y\cong S^1\times D^{m+1}$, $\partial Y\cong S^1\times S^m$ and $K_1^{m-1}\times\{1\}\cong S^1\times S^{m-2}$, we have the following lemma:

LEMMA 4.1. Let $m \equiv 2 \pmod{4}$. There is a locally flat embedding $i: S^1 \times S^{m-2} \to S^1 \times S^m$ which satisfies the following:

- (1) i induces an isomorphism of fundamental groups.
- (2) Considering i to be an embedding into the boundary of $S^1 \times D^{m+1}$, the pair $(S^1 \times D^{m+1}, i(S^1 \times S^{m-2}))$ is homotopy equivalent to $(S^1 \times D^{m-1}, \partial(S^1 \times D^{m-1}))$.
- (3) The obstruction $\eta(S^1 \times D^{m+1}, i(S^1 \times S^{m-2})) \in P_m((\mathbf{Z} \to 1) \times \mathbf{Z})$ is equal to η_0 of § 3.

We continue the proof of Theorem 1. Let V^m be the locally flat submanifold of $S^1 \times S^{m-2} \times D^2 \times [0,1]$ constructed earlier in this section. By gluing $S^1 \times D^{m-1} \times \{0\} (\subset S^1 \times D^{m-1} \times D^2)$ to $V^m (\subset S^1 \times S^{m-2} \times D^2 \times [0,1])$ along $S^1 \times \partial D^{m-1} \times \{0\}$, we obtain a locally flat, exterior $\left[\frac{m}{2}\right]$ -connected submanifold \tilde{V} of Y. The normal 2-disk bundle of \tilde{V} in Y is trivial. Let $\Phi: \tilde{V} \times D^2 \to Y$ be a normal frame. Restricting Φ to the boundary, we have normal frame of $\partial \tilde{V} \subset \partial Y$, that is, a normal framing $\Phi: S^1 \times S^{m-2} \times D^2 \to S^1 \times S^m$ of i, i being the embedding of Lemma 4.1. Take another copy of the product $S^1 \times D^{m-1} \times D^2$ and glue it to $Y(\cong S^1 \times D^{m+1})$ by identifying each point (θ, p, ξ) of $S^1 \times \partial D^{m-1} \times D^2 (\subset S^1 \times D^{m-1} \times D^2)$ with the point $\Phi(\theta, p, \xi)$ of $S^1 \times S^m$ ($\cong \partial Y$). We have obtained a suitably oriented (m+2)-manifold W^{m+2} :

$$W^{m+2} = S^1 \times D^{m-1} \times D^2 \cup_{\phi} Y.$$

 W^{m+2} is homotopy equivalent to $S^1 \times S^{m-1}$. Moreover, in W^{m+2} , there is a locally flat exterior $\left[\frac{m}{2}\right]$ -connected, framed m-submanifold L^m defined to be $S^1 \times D^{m-1} \times \{0\} \cup \widetilde{V}(\subset S^1 \times D^{m-1} \times D^2 \cup Y = W^{m+2})$. It is easy to see that the associated homomorphism with L^m , $\pi_1(W-L) \to \pi_1(W)$, is isomorphic with $(Z \to 1) \times Z$. By Theorem 2.1, the obstruction $\eta(W)$ to finding a locally flat spine is defined as an element of $P_m((Z \to 1) \times Z)$, and by naturality of the obstruction,

$$\eta(W) = \eta(Y, i(S^1 \times S^{m-2}))$$

$$= \eta(Y, K_1^{m-1} \times \{1\})$$

It remains to prove that W^{m+2} admits no PL spine. Suppose, on the contrary, that W^{m+2} admits a PL spine M^m . Let $j:M^m\to W^{m+2}$ be the PL embedding which is a homotopy equivalence. We apply Noguchi's obstruction theory [11] to the map j. Let C_k denote the knot cobordism group of locally flat PL k-knots in k+2-spheres. Then his theory tells us that if $H_i(M^m; C_{m-i-1}) \cong 0$ for any i such that $m-2 \geqq i \trianglerighteq p$, then any PL embedding $f:M^m\to W^{m+2}$ is homotopic to a p-flat embedding, see [11, p. 204]. In our situation, M^m is homotopy equivalent to $S^i\times S^{m-1}$ with $m\equiv 2\pmod 4$. Since $C_k\cong 0$ for any even integer $k\ge 0$, we have

$$H_i(M^m; C_{m-i-1}) \cong 0$$

for any i such that $m-2 \ge i \ge 1$. Therefore, $j:M^m \to W^{m-2}$ is homotopic to a 1-flat PL embedding j'. Then by the definition of 1-flatness, the PL spine $j'(M^m)$ may be assumed to be lacally flat except at one point, at which the pair $(W^{m+2}, j'(M^m))$ is locally a cone over a knotted (m-1)-sphere in a (m+1)-sphere. By naturality of η -obstruction and the fact that the knot cobordism group C_{m-1} is isomorphic to $P_m(\mathbf{Z} \to 1)$ ([7, Proposition 6.2]), the above observation implies that $\eta(W^{m+2})$ (= η_0) is contained in the image of

$$i_*: P_m(\mathbf{Z} \to 1) \to P_m((\mathbf{Z} \to 1) \times \mathbf{Z}).$$

This contradicts Lemma 3.1. We have completed the proof of Theorem 1. By the same method, one can prove a more general result:

THEOREM 4.2. Let m be a positive integer with $m \equiv 2 \pmod{4}$. Let M^m be a closed m-manifold with $H_*(M^m; \mathbf{Z}) \cong H_*(S^1 \times S^{m-1}; \mathbf{Z})$. Then there exists a compact orientable (m+2)-manifold W^{m+2} which is simple homotopy equivalent to M^m but admits no PL spine.

§ 5. Proof of Theorem 2.

Let $i: S^1 \times S^{m-2} \to S^1 \times S^m$ be the locally flat PL embedding of Lemma 4.1. We shall show that i cannot be extended to any PL embedding $S^1 \times D^{m-1} \to S^1 \times D^{m+1}$. Suppose, on the contrary, that i is extended to a PL embedding $\psi: S^1 \times D^{m-1} \to S^1 \times D^{m+1} = Y$. Then a submanifold M^m of W^{m+2} defined by

$$\begin{split} M^{m} = & S^{1} \times D^{m-1} \times \{0\} \underset{i}{\cup} \phi(S^{1} \times D^{m-1}) \\ \subset & S^{1} \times D^{m-1} \times D^{2} \underset{\phi}{\cup} Y = W^{m+2} \end{split}$$

would be a PL spine of W^{m+2} . This contradicts what is proven in § 4. This completes the proof.

References

- W. Browder, Surgery on simply-connected manifolds, Ergebnisse der Mathematik, Band 65, Springer-Verlag, 1972.
- [2] S. E. Cappell and J. L. Shaneson, Nonlocally flat embeddings, smoothings, and group actions, Bull. Amer. Math. Soc., 79 (1973), 577-582.
- [3] S.E. Cappell and J.L. Shaneson, Totally spineless manifolds, Topology (to appear).
- [4] M. Freedman, Surgery on codimension 2 submanifolds, (to appear).
- [5] M. Kato and Y. Matsumoto, Simply connected surgery of submanifolds in codimension two I, J. Math. Soc. Japan, 24 (1972), 586-608.
- [6] M. Kervaire, Le théorème de Barden-Mazur-Stallings, Comment. Math. Helv. 40 (1965), 31-42.
- [7] Y. Matsumoto, Knot cobordism groups and surgery in condimension two, J. Fac. Sci. Univ. Tokyo, Sect. IA, 20 (1973), 253-317.
- [8] Y. Matsumoto, A 4-manifold which admits no spine, Bull. Amer. Math. Soc., 81 (1975), 467-470.
- [9] J. Milnor and D. Husemoller, Symmetric bilinear forms, Ergebnisse der Mathematik, Band 73, Springer-Verlag, 1973.
- [10] K. Murasugi, On a certain numerical invariant of link types. Trans. Amer. Math. Soc., 117 (1965), 387-422.
- [11] H. Noguchi, Obstruction to locally flat embeddings of combinatorial manifolds, Topology, 5 (1966), 203-213.
- [12] J. L. Shaneson, Wall's surgery obstruction groups for Z×G, Ann. of Math., 90 (1969), 296-334.
- [13] E. Thomas and J. Wood, On manifolds representing homology classes in codimension 2, *Inventiones Math.*, **25** (1974), 63-89.
- [14] C.T.C. Wall, Surgery on compact manifolds, Academic Press, 1970.

