Remarks on the Stufe of Fields

By Genjiro Fujisaki

Department of Mathematics, College of General Education, University of Tokyo, Komaba, Meguro-ku, Tokyo

(Received January 31, 1973)

1. Let A be a commutative ring with an identity 1. The "Stufe" of A is the smallest number of squares possible in such a representation that $-1=a_1^2+\cdots+a_s^2$, $a_i\in A$ $(i=1,\cdots,s)$, and is denoted by s(A). If such a representation is impossible, $s(A)=\infty$. A. Pfister [6] has shown that, for arbitrary field F of characteristic not 2, s(F) is a power of 2 or ∞ . M. Knebusch [4] has shown, in generalizing Pfister's theorem, that s(A) of a local ring A is a power of 2 or ∞ if 2 is a unit in A; if 2 is not a unit, s(A) is a power of 2 or ∞ or a number of form 2^n-1 .

Now, let F be a field with an additive valuation, and O be the valuation ring in F. Then O is a local ring with its quotient field F. In this case, we shall prove the following proposition.

Proposition. Let F be a field with an additive valuation and O be the valuation ring in F. Then we have s(O)=s(F).

*Proof.** It suffices to prove $s(O) \leq s(F) = s$. Let $-1 = e_1^2 + \dots + e_s^2$, $e_i \in F$. If all $e_i \in O$, then done. Suppose $W(e_1) = \min_{\substack{1 \leq i \leq s \\ 2}} \{W(e_i)\} < 0$, where W denotes the valuation of F. Then $-1 = (e_1^{-1})^2 + \left(\frac{e_2}{e_1}\right)^2 + \dots + \left(\frac{e_s}{e_1}\right)^2$, e_1^{-1} , $\frac{e_i}{e_1} \in O$ $(i = 2, \dots, s)$, whence $s(O) \leq s = s(F)$.

2. Let F_r be a finite extention of rational p-adic number field Q_p and O_r be its ring of integers. The quadratic form $\sum_{i=1}^5 X_i^2$ has, by a well known theorem, a non-trivial zero in F_r , whence $s(F_r) \leq 4$. If $\mathfrak{p}+2$, i.e., F_r is an extension of Q_p , $p \neq 2$, then $-1 \equiv x^2 + y^2 \mod \mathfrak{p}$ has always a solution in O_r . Hence, by Hensel's lemma, $-1 = x^2 + y^2$ has a solution in O_r , whence $s(F_r) \leq 2$. Note that if $\mathfrak{p}+2$, $s(F_r) = 1 \Leftrightarrow \sqrt{-1} \in F_r \Leftrightarrow N\mathfrak{p} \equiv 1 \pmod 4$ and $s(F_r) = 2 \Leftrightarrow N\mathfrak{p} \equiv 3 \pmod 4$.

Now let $\mathfrak{p}\mid 2$, i.e., $F_{\mathfrak{p}}$ be an extension of 2-adic number field Q_2 . We may suppose $\sqrt{-1} \mathfrak{p}_F$. Then " $-1=x^2+y^2$ has a solution in F." \Leftrightarrow " $-1 \in N_{F_{\mathfrak{p}}(\sqrt{-1})/F_{\mathfrak{p}}}(F,(\sqrt{-1}))$ " \Leftrightarrow "cyclic algebra $A_1=(-1,F,\sigma)$ splits", where σ denotes a generating automorphism of $F_{\mathfrak{p}}(\sqrt{-1})$ over $F_{\mathfrak{p}}$. But the cyclic algebra

^{*} Author owes this proof to Prof. Y. Watanabe, to whom he is thankful.

A is nothing but the quaternion algebra over F_{i} , $F_{\nu}+F_{\nu}i+F_{\nu}j+F_{i}k$, with $i^{2}=i^{2}=-1$, k=ij=-ji.

Denoting by D_2 the quaternion algebra over Q_2 , $Q_2 + Q_2 i + Q_2 j + Q_2 k$, with $i^2 = j^2 = -1$, k = ij = -ji, we have $A_1 = D_2 \otimes_{Q_2} F$, and the invariant $inv_1 A_2 \equiv [F_2 : Q_2] inv_2(D_2) (mod 1)$. As it is well known that $inv_2(D_2) = \frac{1}{2}$. A_2 splits if and only if $[F_2 : Q_2] \equiv 0 \pmod{2}$. Hence we have the following proposition. (cf. [1])

Proposition. Let $F_{\mathfrak{p}}$ be a finite extension of p-adic field $Q_{\mathfrak{p}}$. If $\mathfrak{p}+2$ then $s(F_{\mathfrak{p}}) \leq 2$. If $\mathfrak{p}|2$ and $\sqrt{-1} \notin F$, then $s(F_{\mathfrak{p}}) = 2$ if and only if $[F_{\mathfrak{p}} \colon Q_2] \equiv 0 \pmod{2}$, and s(F) = 4 otherwise.

Corollary. (cf. [1] p. 21). Denoting by $\left(\frac{\cdot}{\mathfrak{p}}\right)$ the quadratic norm residue symbol in $F_{\mathfrak{p}}$, we have

$$\left(\frac{-1, -1}{\mathfrak{p}}\right) = \begin{cases} 1 & \text{for } \mathfrak{p} + 2\\ (-1)^{\mathsf{LF}_{+} : Q_{2} \mathsf{I}} & \text{for } \mathfrak{p} | 2. \end{cases}$$

Proof. $\left(\frac{-1, -1}{\mathfrak{p}}\right)$ is 1 if and only if $1 = -x^2 - y^2$ has a solution in $F_{\mathfrak{p}}$ and -1 otherwise.

3. Let F be an algebraic number field of finite degree. The Stufe $s(F) = \infty$ if and only if F has a real conjugate, whence $s(F) < \infty$ implies that F is a totally imaginary number field. Suppose $s(F) < \infty$. Then the Hasse principle shows that the quadratic form $\sum\limits_{i=1}^5 X_i^2$ has a non-trivial zero in F, whence $s(F) \le 4$. Hence s(F) = 1, 2, 4 or ∞ . But s(F) = 1 means simply $\sqrt{-1} \in F$. We shall give another proof of the following well known theorem ([1], [2], [3]). Our proof is essentially the same as one in [2].

Theorem. Let F be an algebraic number field of finite degree. Then $s(F) \leq 2$ if and only if F is totally imaginary and the local degrees of F at all primes of F extending the rational prime 2 are even.

Proof. We may suppose $\sqrt{-1} \notin F$. Then, " $-1 = x^2 + y^2$ has a solution in F" if and only if $-1 \in N_{F(\sqrt{-1})/F}(F(\sqrt{-1}))$, which is equivalent to the statement: "the cyclic algebra $A = (-1, F(\sqrt{-1})/F, \sigma)$ splits, where σ is a generating automorphism of $F(\sqrt{-1})/F$." A splits over F if and only if A splits locally everywhere. But A is nothing but the ordinary quaternion algebra F + Fi + Fj + Fk, $i^2 = j^2 = -1$, ij = k = -ji, whence $A = D \otimes_Q F$, where D is the ordinary quaternion algebra over Q, and the \mathfrak{p} -invariant $inv_i A = [F_{\mathfrak{p}} \colon Q_{\mathfrak{p}}] inv_{\mathfrak{p}} D$ for $\mathfrak{p} \mid \mathfrak{p}$. Since D has invariant $\frac{1}{2}$ at prime divisor $2, \frac{1}{2}$ at ∞ , and 0 at all other prime divisors of Q, A splits, therefore, if and only if $F_{\mathfrak{p}} = C$ (the complex

field) for all infinite primes $\mathfrak p$ and $[F_{\mathfrak p}\colon Q_2]\equiv 0\pmod 2$ for all $\mathfrak p|2$. This proves the Theorem.

4. Finally we shall make a simple remark on the Stufe of fields.

Proposition. Let F be a field of characteristic not 2 and $\sqrt{-1} \notin F$. Then s(F) = 2 if and only if there exists such a cyclic extension E over F that [E: F] = 4 and $E \supset F(\sqrt{-1})$.

Hence, for a finite algebraic number field F, not containing $\sqrt{-1}$, there exists a cyclic extension E over F, of degree 4 and $E \supset F(\sqrt{-1})$, if and only if F is totally imaginary and the local degrees of F at all primes extending the rational prime 2 are even.

This proposition follows, for example, from N. Bourbaki, Algebre, Chap. V § 11 Exercices 7).

References

- [1] Connell, I.G., The Stufe of Number Fields, Math. Z., 124, 20-22 (1972).
- [2] Fein, B., Gordon, B., and Smith, J., On the Representation of -1 as a Sum of Two Squares in an Algebraic Number Fields, J. Number Theory 3, 310-315 (1971).
- [3] Hasse, H., Darstellbarkeit von Zahlen durch quadratische Formen in einem beliebigen algebraischen Zahlkörper, J. reine u. angew. Math., 152, 113-130 (1924).
- [4] Knebusch, M., Runde Formen über semi-localen Ringen, Math. Ann., 193, 21-34 (1971).
- [5] Peters, M., Die Stufe von Ordnungen ganzer Zahlen in algebraischen Zahlkörpern, Math. Ann., 195, 309-314 (1972).
- [6] Pfister, A., Zur Darstellung von -1 als Summe von Quadraten in einem Körper, J. London Math. Soc., 40, 159-165 (1965).