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Introduction and Summary.

In this paper the author presents a unified treatment of the theory of
distribution semi-groups and that of locally equicontinuous semi-groups. These
theories are complementary to each other. To explain this situation, let us con-
sider the Cauchy problem for the following evolution equation:

%u(t, z)=Pla, D)ul(t, z), t>0, zeR",

(0, )= qp(x),

where Pz, D) is a linear differential operator independent of £ The well-
known Hille-Yosida theorem has attained great success in solving this problem
by the method of functional analysis. In applying this theorem to this problem,
we must choose a suitable Banach space X such as LP(R™), and check the con-
dition on the resolvent (A1—A)~' of the operator A in X which is a realization
of P(x, D). After these processes, the solution operator {7;: £=0}, called a semi-
group of class C,, will be obtained. Formally we have a representation:

on 7= 5 |- ara

which can be considered as the inverse Laplace transform of (1—A)-*. But if
one cannot check the condition on the resolvent in the Banach space chosen by
him, there are, probably, two alternative ways of interpreting the formula (0. 1).
The one is to understand the continuity of 7, with respect to ¢ in a more
generalized sense. The other is to change the Banach space X by the other
topological vector space £ to the effect that the operator P(z, D) generates a
semi-group of class C, in E. The notion of the distribution semi-groups of
Lions [11]“is the typical one of the former way. There have been several
works concerning this subject (Foias [6], Yoshinaga [23], [24], Da Prato-Mosco
{3], 4], Fujiwara [7], Barbu [1], Ushijima [20], etc.). Above all, Chazarain [2]
characterized the generator of a distribution semi-group in terms of its re-
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solvent. As for the latter way, there has been sufficient literature also. For
example, the theory of equicontinuous semi-groups in locally convex spaces was
written in the textbook of Yosida [25] (see also Schwartz [16], Miyadera [12],
and Komatsu [9]). Koémura [10] treated the theory of continuous semi-groups
in locally convex spaces. It is to be noted that generators of such semi-groups
have not necessarily resolvents because of the generality of spaces. Therefore,
she introduced the generalized resolvent via the generalized Laplace transform,
and gave a characterization of the generators of locally equicontinuous semi-
groups in locally convex sequentially complete spaces.

Preparing the forthcoming paper [22], the author felt deeply the necessity
of describing the theory of locally equicontinuous semi-groups in terms of dis-
tribution semi-groups, which will be done in this work. For the sake of self-
containedness, proofs of the results will be given completely as far as possible
even if some of the results are known theorems or straightforward generalizations
of them. The present results will be effectively used in [22], where we will also
characterize the distribution semi-groups in Banach spaces in terms of Iocally
equicontinuous semi-groups.

Although Lions’ original definition of distribution semi-groups was given in
Banach spaces, this can be extended to the case in general locally convex
spaces. Then we will reach the concept of the well-posedness of a linear
operator for the Cauchy problem in the sense of distribution. An operator A
in E is well-posed in this sense if and only if it has the generalized resolvent
in the slightly modified sense of Komura’s definition. The present discussions
will be carried out mainly under the assumption of the sequential completeness
only (cf. Shiraishi-Hirata [18], Fattorini [5], where the quasi-completeness was
assumed).  There will be also some methodological differences from the treat-
ment of Lions. Namely, the generator A will be considered to be a closed
operator in E, while it was mainly considered to be a continuous operator from
the domain D(A) with the graph topology into £. And we will investigate the
inhomogeneous equation:

d
(0. 2) —zﬁu——Au_.f

in @.(E), the totality of E-valued distributions on R' whose supports are con-
tained in [0, co), while @4 (E) means L(9D-, E) in Lions’ theory (- is the
totality of C*-functions on R* with supports limited from the right).

The outline of this article is as follows. In §1, after some notational pre-
paration we will give it as the definition that A is well-posed if and only if for
any fe®i(E) there exists a unique #e D, (E) satisfying the equation (0.2) and
‘depending continuously on f. It is to be noted that the well-posedness of A'does
not necessarily imply the denseness of the domain of A. An element T eD’(L(E))
is said to be boundedly' equicontinuous if {J(¢): ¢ belongs to a bounded set
of @} forms an equicontinuous family in L(E). Then, in the sequentially
complete space £, the well-posedness of A is equivalent to the existence of a
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boundedly equicontinuocus T e\ (L(E)) such that % g—AT =5 and that

AT>DTA (§1). In Banach spaces, A is densely defined and well-posed if and
only if A is the generator of a regular distribution semi-groups. In general
spaces, this correspondence will be proved under some restrictions in §3. In
§4, the locally equicontinuous semi-groups and their adjoint semi-groups will be
discussed in our settings. We will add some consideration on the analyticity
of such semi-groups. Finally, the proofs of some technical propositions and a
modified version of Kémura's fundamental theorem will be given in Appendix.

The author expresses his hearty gratitude to Professors Y. Kémura and
S. T. Kuroda for their valuable discussions, useful advices, and constant encourage-
ments during the preparation of this paper.

§1. The well-posedness of the Cauchy problem in the sense of distribution.

Let L(E, F) be the totality of continuous linear mappings from E to F,
where £ and F are separated locally convex spaces. Throughout the present
paper the set L(Z, F) is considered to he a separated locally convex space with
the topology of uniform convergence on bounded sets. Namely a base of
neighbourhoods of 0 in the space L(E, F) is formed by the family of sets:

Up, By=1r: sup Bf(a)<1},

where p runs on all continuous semi-norms of F, and B runs on all bounded
sets in E. The set L(E, E) is denoted by L(E).

Let us abbreviate Schwartz space D(RY) (0F D, e O Deor, s by D (or D,
or Q). Consider the totality of E-valued distributions, 9/(E)=L{®d, E). For
any feD'(E), f(¢) denotes its value in A at peg. Sometimes we need the value
of f at the test function ¢ with parameters. To clarify the indepep\dent variable
we use the notations such as file(, 5)), D, Ds and Dy, s (=D R D= D(RY).
The notions of support, differentiation, and multiplication by C*-functions for
E-valued distributions are defined in the same fashion as in the case of scalar
valued distributions. The support of f is denoted by supp(f). We have:

d . d
(57 Jor=r (= 5 ¢) for any gean,

if & is C®, then (af)(p)=Sflap) for any peg.

Let @4(E) be the totality of elements of . )'(E) whose supports are contained
in [0, o0). It is a closed subspace of @/(E). Hereafter 9/ (E) is considered to
be a locally convex space with the induced topology. For E=C (complex
number field), 9'(C) (or 94(C)) is denoted by @’ (or DL).

For any linear operator 7, we denote its domain (or range, or null space)
by D(T) (or R(T), or N(T)). If D(TYUR(T)CE, T is said to be in E, ‘
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Definition 1.1. A linear operator A in F is said to be well-posed for the
Cauchy problem at /=0 in the sense of distribution (well-posed, in abbreviation)
if for any fedi(E) there exists a unique we '\ (F) satisfying the following
conditions:

(A. 1) u(p)e D(A) for any peq),
(A.2) the mapping: f—u belongs to L(D (X)),
(A. 3) (72,]; z¢>(<p)—Az¢(p)= ) for any ge .

Let O be the zero operator in E: Ozx=0 for any xzc¢E. Then the following
proposition is clear.

Proposition 1. 1. The operator O is well-posed in E. For any feDE), u
in Definition 1.1 is determined as

we)=flag), H(t)= gt ()t

where a(t) is an avbitrary C”-function such that supp(a)Cla, oo), a>—oco, and
that a(t)=1 for t=0.

Now we recall the facts concerning the generalized Laplace tranlsform of dis-
tributions, which were discussed by T. Komura in [10]. Let ¢(2)= »2;—8 e*o(f)dt

o —on

for complex 2 and peg. Let D={@¢: pe ). The space D can be considered to
be a separated lccally convex space such that the mapping: ¢—¢ is a homeo-
morphism from @ onto D. Let IV(E)=L(D, E). There is a homeomorphism :
f—F from @'(E) onto D/(E) defined by the relation: f(@)=f(¢) for any ¢eg.
The functional f is called the generalized Laplace transform of 7. Let D\(E)
={f: fed'(E)}. It is a closed subspace of D'(E) since &'(E) is the closed
subspace of 9/(E), and it is homeomorphic to @4(E) by the mapping: f—f.
Let Feq’, and let xcE. Define f=F®ux by the equality: (F®a) (¢)=F(p)zx
for any ge®.. It is clear that feD/(E) (or @\(E)) if Feq’ (or &%), and that
f=F®ua. For example, we have Qo) =i®r=1®z.

For any linear operator A in E, we define the operator 4 in D'.(E) induced
by A through the relations:

D(A)={f: feD'UE), fle)eD(A) for any ¢e®, and the mapping ¢ defined
by glg)=A(f(¢)) belongs to DL(E)},
Af=§ for any FeD(4).

It is to be noted that a linear operator A in £ is closed if and only if its
induced operator A4 is closed in @{(F) (Cf. proposition 4. 3 of [10]), and that if
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zeD(A), then for any Fe®}, F@xeD(A) and AF ®Qz)=F ® Ax.
We also define the operator 1€ L(9'(E)) by the relation:

@fX)=70a)=f—p= (5 o)

Definition 1.2. A linear operator A in E is said to have a generalized
resolvent if (1—A4) has the inverse (21—4)! belonging to L(D,(E)).

Combining Definition 1.1 with 1.2, we have

Proposition 1. 3. A linear operator A in E is well-posed if and only if it
has a genervalized resolvent.

The following propositions are consequences of the above definitions which
are easily proved.

Proposition 1. 4. A well-posed opevator is closed.
Proposition 1. 5. If (A—A)*=(Q—B)"Y, then A=5.

Let O be the operator induced by O. Since O is well-posed by Proposition
1.2, it has a generalized resolvent (A—0)~* by Proposition 1.3. We denote
(A—0)* by 2%

" Proposition 1. 6. The following identities hold.
(1) AAf=AaF  for feD(A).
(ii) A2—A)yt=(2—A4)"A
(i) AQ—A)yf=a—-A)'Af  for feD(A).
(iv) A=Ay =24 27 AQR—-4)
(V) @AY= AF AT 2 A A) AN for feD(AY).
Proof. See Lemma 5.3 and the proof of the equality (5.17) of [LO].

Remark. Instead of 94 (&), Komura considered the space 9u(E), the totality
of elements of L{D(~cw,a1, £) vanishing on e o3, With the topology L{D(-w,a1, £),
where Di-c,a1 is the space of all functions in & with supports contained in
(—co, ] with the topology induced by &. For any fixed >0, the induced
operator A and the generalized resolvent (A—A4)~* were considered in Dy(E),
the image of 94L(E) by the generalized Laplace transform. It is quite easy to
see that some statements given in [10] such as Proposition 4. 3 or Lemma 5. 3
are true for the present setting,
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§2 A characterization of the well-posedness.

Definition 2. 1. An L(E)-valued distribution g is said to be bhoundedly
equicontinuous, if for any continuous semi-norm p on E and any bounded set
B in &), there exists a continuous semi-norm ¢ on £ satisfying that

T (p)e)<glx) for any ¢eB and zeF.

For any ged’(L(E)), the mapping T (p)z is a separately continuous bilinear
mapping from @ x E into E. Hence if E is barreled, then every I e@/(L(E))
is boundedly equicontinuous, for, a fortiori, <(¢)x is hypocontinuous (see
Theorem 41. 2 of Treves [19]).

Theorem 2.1. Let a lineay operator A be well-posed in a locally convex
space E. Then A is closed, and theve exists a boundedly equicontinuous
T eD'I(E)) salisfving the following properties.

(T.1) For any xeE and oed), I (p)xeD(A) and (% aq ) (@)x— AT (p)x=0(p)x.
(T.2) For any xeD(A) and ¢, T(p)Ar=AT (¢)z.

Proof. Let us define
@1 T(@r=(A~A) 1R x)()

for any zeF and ped. Then Tz (Tx)e)=T (g)x) can be considered as an
element of @(F), since u=x for f=6@=x in Definition 1. 1. The condition
(A. 2) is equal to the fact that for any continuous semi-norm p on £ and any
bounded set A of ¢, there exist a continuous semi-norm ¢ and a bounded set
B satisfying

sup p(u(e))<sup g(f(¢)).
pEd ¢EB
Substituting #=9x and f=0®x into this inequality, we have
(2.2) sup p(9 (g)z) <sup | (0)|g(w).
LIS pER
This inequality implies T{(¢)eL(E). Next we prove that TedD’'(L(E)). For

an arbitrary continuous semi-norm p on £ and bounded set B of E, let
V={TeL(E): sup (Tx)<1}, and let U={peD: sup (T (p)xy<l}. Then clearly

gUcV. On the other hand the closed absolutely convex set U is a barrel, for
it absorbs any element g€, namely we have

sup p(T (o)) =C,< o,
r€D )

since the set {Jw»: xeB} is bounded in &'(E). Therefore U is a neighbourhood
of zero in the barreled space ¢. Hence we have that T eq/(L(E)). Moreover



On the Abstract Cauchy Problems 99

the estimate (2. 2) implies that g is boundedly equicontinuous. Since Jxe@i(E)
for any zeF, supp(d)c[0, oo). The condition (. 1) follows from the conditions
(A. 1) and (A. 3). The condition (. 2) follows from (iii) of Proposition 1. 6.

The converse assertion holds if £ is sequentially complete. Namely we
have

Theorem 2. 2. Let E be a locally convex sequentially complete space. Then
a lineay operator A in E is well-posed if and only if A is closed and there
exists a boundedly eguicontinuous I € DL(L(E)) satisfying (.1) and (T . 2).

The proof of ‘if’ part is based upon the following two Propositions. in
which the sequentially completeness of £ is a priori assumed. Although the
proofs of these Propositions are standard arguments, these facts consist -of the
crucial points of our theory. So we will give them in Appendix of this a’rticle:

Proposition 2. 1. The algebraic tensor product D.@F is dense in D ED.
If A is a closed operator, then D'\ @ D(A) is dmse in D(A) which is topologized
by the graph topology of A.

Proposition 2. 2. For any boundedly equicontinuous I e@D\(LE)), there
exists @ unique convolution operator T+eL(DWE)) satisfying that for f=FQa
with Fe Dl and xek

2.3 (T e)=T lalt)Fs(e(t+s)),

where «(f) is an arbitrary C*-function such that supp(e)cie, oo), (l>—co and
that a()=1 for t=0. :

Proof of “if’ part of Theorem 2. 2. Let us define a linear operator R . in
7
'(E) as

Rf=(Txf), = JeDi(E).
Then by Proposition 2.2, ReL(D'(E)). By (2.3) and (9.1) we have

2.4 ‘ ' (A-A)Rf=F
for any feD,\,®ZFE. And also by (2.3), (Z.1) and (I.2) we have
(2. 9) Ra-A)=7F

for any feD{®D(A). The closedness of 4 and the first statement of Proposi-
tion 2.1 imply that (2.4) holds for any fel (F) The second statement of
Proposition 2.1 assures that (2.5) holds for any feD(A4). Therefore we have
R=(a—A)"", namely A has a generalized resolvent. By Proposition 1.3, 4 is
well-posed. '

Now we examine the well-posedness of the dual of a well-posed operator.
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Let E'=L(FE, C). We denote the elements of £’ by &/, y/, ---, and write <z, «/>
for the value of the linear form x’ at the point z of E. For a densely defined
linear operator A in E, define its dual operator A’ through the relations:

D(AN={«': there exists y’e£’ such that (Aw, #'y={x, y') for any zeD(A)},
Ala' =y,
Since D(A) is dense in E, A’ is uniquely defined and closed in £’

Theorem 2. 3. Let E be a barreled sequentially complete space. If a linear
operator A in E is well-posed and densely defined, then A’ is well-posed in E'.

Proof. The space E’ is sequentially complete since E is barreled. Let
T=a(¢) for an arbitrarily fixed pe®. It is clear that 7VeL(E'). For any z'el’,
we have that TVz’eD(A’) and A'T'2'=(AT)Y2’. In fact, for any zeD(4) it
holds that

Az, T'a"y={(TAxz, 2'>=(ATz, 2’7,

where the last equality follows from the condition (. 2) in Theorem 2. 1. If
a’eD(A’) we have

Az, T'2'>S=(ATe, &'>={Tr, A'z’>=(z, T'A'%’>.

This implies that A’7/z'=T'A’s" if z'eD(A’). Thus we have established the
conditions (g.1) and (T.2) for 4’ and g’ where I’ is defined by T'(p)
=(T(¢)) for gep. Now we show that I’ can be considered as an element
of @"(L(E"). The topology of L(E’) is determined by the semi-norm system

{Pzs,m}:
Pp.p(T= sup Kz, T’z for T'eL(E),
Z€B, x’eB’

where B (and B’) runs on all bonded sets in £ (and E’). Hence we have
Ppp(T(p)Y)= sup KT (phr, z)|=sup Pp(T(¢)x),
x€B, x'eB’ 2eB

where Pp(x)= sug](x, x’y|. Since E is barreled, Pp(z) is a continuous semi-
z'en
norm on E. Since T e’ (L(E)), for any %>>0, there exist a constant C and an
integer »>0 such that
Py s (T (p))<C sup Jo'P(8)
0 j<n, teRL

holds for any ¢e®i Thus we have shown that J’eq’ (L(E")). It is clear
that supp(g’)c[0, co). The bounded equicontinuity of < implies that the set
C={T(pz: peA, xeB} is bounded in E where A (and B) is a bounded set in
@ (and E). Then we have for any gpeA
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Pﬁ(g’(fﬁ)ﬁ')=51ég KT (@), '] <S'él(13 [y, &' =LPe(z').
Z yeC

This implies the bounded equicontinuity of .
Now applying ‘if’ part of Theorem 2.2, we have the assertion.

Remark. The topological properties, which were used in the above proof,
are 1) the sequential completeness of E’, and 2) the equicontinuity of the
strongly hounded set in F£’. Since £ is assumed to be sequentially complete,
every weakly bounded set in £’ is strongly bounded. Hence every barrel in £
is the polar of a strongly bounded set in £'. Therefore 2) implies that £ is a
barreled space. Then the property 1) is automatically satisfied.

In this direction, we have the following

Corollary. Let E be a reflexive locally convex space (ie. it is barrelled and
every bounded set is relatively weakly compact). An operator A in E is well-
posed with dense domain if and only if its dual operator A’ in E’ is well-posed
with dense domain.

Proof. Since a reflexive space is quasi-complete, Z and £’ are sequentially
complete. Note that D(A’) is o(E’, E) dense, which implies A(Z', E) dense by
the reflexivity of E. Hence the assertion follows from Theorem 2. 3.

§3. Distribution semi-groups.

Throughout this paragraph, the sequential completeness is always assumed
on a locally convex space £ Now we give the definition of distribution semi-
groups under some modifications of the original one of Lions [11]. Almost all
the results of this paragraph are essentially due to him.

Definition 3.1. An L(E)-valued distribution & is said to be a distribution
semi-group (D.S.G., in short), if 7 satisfies the following conditions.

(9.1) < is boundedly equicontinuous and belongs to D4(L(E)).
(D.2) F(exd)=T(DT(P) if @, peD™.
(9.3) For any x=T(H)y, where ¢ed* and yek, there exists an [-valued
function 2(#) such that:
(1) a@)=0 for £<0,
(i) a(0)=w,
(iii) «(f) is continuous for =0,

(iv) SI(go)x:—‘Sm o(a(t)dt for any ged.
0
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(. 4) Let 90(T)= N NT(p), then :(T)={0}.
ced™

Let ®(I) be the totality of finite linear combinations of elements of the
set U R(T(¢). Then a DS.G. T is said to be a regular D.S.G. (RDSG, in

PEDT, .
short) if it satisfies

(@.5) R(T) is dense in £.

Let g he a D.SG. in E. For any Feg) with compact support, we can
define an operator G (F') in £ Dy the relation

Ty = Zl T (Fxepy;  for z= Zl T(pn)yi€ R(T).
J= J=

By the argument due to Peetre [13], g (F) is uniquely determined and closable
in E. In fact, for any ¢e9* we have

T@T(F)a= Z T ()T (Fro s

= Zl T (Fxppe)y;

J=

= Zl T ()T (v
£

= T (Fxp),

where we have used the condition (&.2) and the fact Fxpe* for any ped*.
Therefore T (F)x is a uniquely defined linear operator by (9.4). Let {z.} be a
net in @) satisfying that lim, z.=0 and lim. (& )z.=z Then we have for
any ged*, lim, T(p)z.=0, and T (p)z=lim, T(@)T (F)x.=lim, T (¢*F)z.=0. By
(D. 4) z=0, which implies that T (F) is closable.

Definition 3. 2. The closure A of g (—4d')is called the generator of a D.S.G.
o, where & is the derivative of the Dirac measure 4.

Proposition 3.1. Let T be a D.S.G. in E with the generaior A, and let &
be the closure of R(T) in E. Then A is an operator in R, and D(A) is dense
in &. Consequently T is an R.D.S.G. if and only if D(A) is dense in E.

Proof. Note that R(<T) is a core of A4, and that AR(T)CR(I).

Theorem 3.1. Let I, E, A, R be as in Proposition 3.1. Then A is densely
defined and well-posed in &H. Let T+ be the restriction of T on &. Namely
THe)a=T(@x if veR and T(gxeR for any pedD. Then T+ is an R.D.S.G.
in R with the generator A. The genevator of an R.D.SG. in E is densely
defined and well-posed in E.
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Proof. The conditions (@). 1), (&.2) and the sequential completeness of £
imply that the function «(#) in (9. 3) is represented as
(3.1) #(6)=YO) T s~y

where Y(#) is the Heaviside function. In fact, the right hand side of (3.1)
clearly satisfies the requirements (i) to (iii) in (&.3). Moreover we have for
any e+

%

T TPy = T(pxd)y =G s<8 jgo(l‘)¢($~f)fli> Y
0

= Sm Sﬁ(f)ﬂ' (s —D)ydt.
0
On the other hand we have by (&. 3)
Tt = oo,

Hence (3. 1) holds. Using this representation, we have
(3.2) T@OT(H=T(Yp)rg)  for any ped and ge,

for it holds that for any yekFE,

T T (@) = S:w)w(t)dz = ij,a(r)s.rs(r,b(s—mydt

= .\ pttpts— 0t Jy=a (@i

Since (Yo)rped* for pegd and ¢ed*, the equality (3.2) implies that T(¢)
transforms ®R(I) into R(I), hence & into &F. Therefore I+ is a D.S.G. in &.
It is clear that the generator of I+ in & coincides with A. Since D(A)= 3,
by Proposition 3.1, g+ is an R.D.S.G. with the generator A.

Now we check the conditions (9.1) and (<7.2) in Theorem 2.1 to the

present A in ®. First we show that for any ze R(T) and ged,
[ T (p)ze D(A) and
(3.3) )

| A (@)w=— T (o o~ (0.
We may assume without loss of generality that x=T (¢)y for some $ep* and
yeE. Then (3.2) implies that T (¢)re R(T)cD(A), and that

AT (p)e=AT(Yo)d)y

=—T(Ye)x¢) )y

=~ T (XY *d)y-
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Since (Yy)' =Y +¢(0)0, it holds that
AT (@le=—~T (Yo' )y —¢(0)T (0x)y
=—=T(e") T ()y—(0)T (My-

Thus (3. 3) is valid for any ze R(T) and geg). Since the operators in the right
hand of (3. 3) are continuous on & and A is closed, (3. 3) is valid for any ze &
and ¢eg. Namely we have (9.1). Also we have for x=9(¢)y with ¢eD*
and yekF,

AT (g)r=—~T(Ye)=¢) )y
=—T(Ye)dly
==y
=T (p)Ax.
Again by the closedness of A, (. 2) follows from this equality.

It is quite natural to imagine that the L(Z)-valued distribution & in
Theorem 2.1 must be a D.S.G. with the generator A if A is well-posed in £.
The author, however, can not prove the validity of this statement. In this
direction, we can say

Proposition 8.2. If A is well-posed in E, then I in Theorem 2.1 satisfies
the conditions (4. 1) to (D. 3).

Proof. The condition (@.1) is already proved in Theorem 2.1. For any
cedt and yek, let 2)=Y()T{e(s—8)y. Then «(f) satisfies the requirements
(i) to (iii) in the condition (&.3). By the condition (7.1), we have that
z(f)eD(A), and that

»g;g;(t)~Am(t)=5 Ky

as an identify in @/(E). In other word the generalized Laplace transform 2 of
a(t) belongs to D(4), and satisfies £=(21—A4)'(1&®y). Therefore we have ()
=T y. This implies the condition (4. 3). Noticing the sequential completeness
of £, we have for any ¢ed,

TOT =\ POa(ndt

Il

" oI (s~
i

=T(Y)@)y.
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As a special case of this equality, we have the condition (¢). 2) for ¢e D™
Consider the following condition:
(3.4) Any feg’(E) whose support is the origin can be represented as a finite

sum of Dirac measure and its derivatives:

®

n
f== jZOECJ"@xj, .'I»‘jEE.

From the treatment of Lions, we can understand that the condition (3. 4) is one
of sufficient conditions for (9. 4) (see the proof of Proposition 3.4). Of course
the Banach space E satisfies (3.4). The following Proposition is a corollary of
this fact.

Proposition 3. 3. If there exists a continuous novm p on E, then E has the
property (3. 4).

Proof. Let E, be the completion of E by the norm p. Let fed/(E) with
supp (f)={0}, We may consider j/ as an element of H'(Z,). Since £, is a

Banach space, there exist an integer #<co and z;€£, such that f= 3 ®uz;
holds as an element of @’(E,). The value f(¢), however, belongs to ]Z‘o for any
ped. This implies that z;eE for 0<j<n. Hence f= 3 6P x; holds as an
element of 9'(E). =

From this proposition, every countably normed space has the property (3. 4).
Other examples of spaces I satisfying (3.4) were investigated by Shiraishi-
Hirata [18]. Here we give another formal extension of the result of Lions.

Definition 3. 3. An F-valued distribution feg)’(E) is said to be of finite
order on the interval (—4&, &); if there exist an integer n#>0 and an F-valued
continuous function ¢(f) on [—k, k] satisfying that for any ¢eDy

on

fp=(=1r{" goutna.
The integer » is called the order of f on (—k&, k).
An L(E)-valued distribution T ed/(L(E)) is said to be normal if for any
xekE, TzeP'(E) is of finite order on some interval (—k, &).
A well-posed operator A is said to be normally well-posed, if, for any f=6®x,
xeF, u in Definition 1.1 is of finite order on some interval (—Z, k).

Remark. In the above definition, the interval (—#, &) and the order of Jx
(or #) on it may depend on z. If E is a Banach space or a complete (DF) space,
then. every FE-valued. distribution is of finite order on any bounded interval
(—Fk, k) (see Schwartz [14], Propositions 23, 24).
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Proposition 3.4. If a linear operator A in E is normally well-posed, then
the relation:

F(pe=A-A)'1Rx)¢)
determines a normal D.S.G.

Proof. By Definition 8.3, & is normal. By Proposition 3.2, g satisfies
(. 1) to (. 3).

Let ze92(). Then supp (Tz)={0}. Since T is of finite order on some
interval (—%, k), there exist an integer n<co and x;€ E(0<j<n) satisfying that

Tr= Z P Qs
This can be proved just as the same as in the scalar case (see Schwartz [21],
p. 100). Moreover z;€D(A) for any j since G (v)weD(A) for any peg. By the
condition (. 1), we have the identity

n
Z 69 R Axy= Z DRz, — Q.

From this, we have
0= =g =rreeeere =2
Thus (9. 4) is proved.
We summarize the result concerning the normal R.D.S.G.

Theorem 3. 2. A linear opevator A in E is the genemtér of a normal R.D.S.G.
if and only if A is normally well-posed with dense domain.

Proof. The ¢if’ part follows from Propositions 3.3 and 3.1. The ‘only
if? part follows from Theorem 3.1 and Definition 3. 3.

As for the dual of the generator of an R.D.S.G., we have

Theorem 3.3. Let E be a sequentially complete barreled space. Let I
be an R.DSG. in E with the gemerator A. Then A is densely defined, A’
is well-posed in E', and I’ is @ D.S.G. in E'. Let E* be the closure of R(I")
in E', and let A¥ (and <T+) be the wvestviction A'lg+ (and I'|z+). Namely
DAN={r"eD(AN: af, A’z'eE*), and Ata'=A'x" for x'e D(A*). Then A* is the
generator - of I'. And It is an RDS.G. in Et with the densely defined
generator A*. If E is veflexive, then an operator A in E is the generator of
an R.D.S.G. if and only if A" in E' is the generator of an R.D.S.G.

Proof. By Theorem 3.1, A is well-posed and densely defined in E. So by
Theorem 2.3, A’ is well-posed in E’. By Proposition 3.2, &’ has the pro-



On the Abstract Cauchy Problems 107

perties (9.1) to (9. 3). Moreover the property (&.5) for g implies the pro-
perty (9. 4) for /. Hence g’ is a D.S.G. in E'.

Let A, be the generator of g/, and let g+ be the restriction of g’ on E*.
Then by Theorem 3.1 again, A, is the generator of an R.D;S/.g: gt in Bt
And it has the generalized resolvent R* such that R*f=(T*+f) for any
FeEDL(E). On the other hand, the closedness of A+ follows from the closedness
of A’. Since A, coincides with A’ on R(T’), we have A.cA+. Hence (T.1)
for A, and g+ implies (9.1) for A+ and <+ Moreover we have for any
ved) and x'eD(A*)

TH) A =T () Al = A" T (p)a’
=A'T (g = A*T H(p)a.

Thus (g.2) also holds for A* and g*. By Theorem 2.1 and its proof, the
generalized resolvent of A* exists and coincides with R*. Hence by Proposition
1.5, we have A, =

The last statement follows from the fact that if & is reflexive, then the
property (4. 4) for & implies the property (&.5) for .

§4. The locally equicontinnous semi-group and its analyticity.

Definition 4.1. Let E he a separated locally convex space. A family of
operators {T.e€L(E): weA} is sald to be equicontinuous, if for any continuous
semi-norm p on £ there exists a continuous semi-norm ¢ on E such that

P Tox)<q(x)

holds for any zeFE and acA.

When the index set A is a topological space, the family {T.: acA} is said
to be locally equicontinuous, if for any compact subset K of A the subfamily
{T.: «e K} is equicontinuous.

Definition 4.2. A family {7,: =0} in L(E) is called a semi-group, if it
satisfies the following conditions:

(To. 1) TiTy=T for any £, >0,

(T,.2) Tu=1 (the identity operator),

(T%.3) lim Tyx=Tx for any s=0 and xekF.
Ly

It is noted that every semi-group {73} is locally equicontinuous if the space
E is barrelled (see Proposition 1.1 of Kémura {10]).
The generator A of a semi-group {73} is defined by

Ax=1im i~ (Tp—Dz
rlo
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whenever the limit exists in £.

Now we state a characterization for the generator of a locally equicon-
tinuous semi-group, which corresponds to Theorem 2. 2. Throughout the rest
of this paragraph the sequentially completeness of the space E will be always
assumed.

Proposition 4. 1. A lLnear operator A in E is the generator of a locally
equicontinuous semi-group if and only if A is a densely defined closed operator
and theve exists a locally equicontinuous family {T,: t20} in L(E) satisfying the
conditions (Ty. 2), (To. 3) and the following :

(Aa) For any zeD(A) and t=0,
d
TZ«’IIED(A) and 7? T}.’L‘:‘AY‘[?UZ :Z‘gA.”(?.

In this case, {T,: t=0} becomes the locally equicontinuous semi-group with the
generator A. The semi-group {Ty: t=0} can be considered as a normal R.D.S.G.
o with the generator A, wheve T is defined by

4.1 aq (gﬁ)a;—-zs oY Txdt  for any ped) and xekF.
0
Proof. ‘Only if’ part. Let {T:} Dbe the locally equicontinuous semi-group
whose generator is A. So as to have the statement, it suffices to prove that A
is densely defined and closed satisfying the condition (A4,) for {7}}. Although

this has been shown in Komura [10], we prove here in terms of E-valued dis-
tributions. By definition, we have easily

d\F
. 2) (-{77> Tww=ATw=T,Ax

+
for any xeD(A) and #=0, where (%) means the right derivative. Let peg.

Then we have
o d\* o
S (;7(&‘)<f-w> Tz dz‘:g o) T Az dl.
0 dit 0

After some elementary calculation, we have

the left hand side =~§m¢'<zmmdz——¢(0)x,
JO
and

oo 13
the right hand side =§ <,n’(t)§ T Axds dt.
0 0

%
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Therefore, we have
"o (10| nidads) dr=eiope
Let f be an element of @4(E) such that

t
T,J/;-—S TAwds  for 30,
0

fi@) =
0 for £<0.

Then we have
d
=

as an identity of an ZE-valued distribution. By Proposition 1.1, f=YQux.
Hence ;

@ 3) AT S‘ T\ Azds
[1]

holds for any #¢>0 and axzeE. Since {T;: #>0} is locally equicontinuous, (4. 3)
implies the closedness of A. Consider J(p)z defined by (4.1). Then for any
zeE, we have that J(p)zeD(A), for }‘Lin(;l Y TG (@ae=—T(¢p")z, and that
T (ps)e—x where @0 in measure. Therefore D(A) is dense in E. Finally the
condition (4,) follows from (4. 3) and (4. 2).

‘If’ part. Consider & defined by (4.1). By the local equicontinuity
of {I;} and the condition (7% 3), & is a boundedly equicontinuous element
of DL(L(E)). By the conditions (A4o) and (. 2), the conditions (g.1) and
(7.2) are satisfied for the present A and . Hence by Theorem 2.2, A
is’ well-posed. Moreover it is normally well-posed, for the Cauchy problem:

i Au=0QRz in P.(E) has the solution #= gz. Since A is densely defined

by condition, we have, by Theorem 3.2, that A is the generator of the normal
RDSG. g. The condmon (9.2) for g implies the condition (7,.1) for
{T:: =0}

To make sure the discussion, we prepare the definition of an FE-valued
holomorphic function. Under this definition, almost all good properties on holo-
morphic functions, such as the Cauchy's integral theorem and the power series
expansion theorem, are valid on E-valued holomorphic functions. It holds also
that if a sequence of E-valued holomorphic functions on a domain converges
uniformly on every compact subdomain, the limit function 13 holomorphic. For
the proofs of these facts, see e.g. Komatsu [9].
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Definition 4. 3. Let f(z)=f(+is) is an FE-valued function defined on a
domain in the complex plane. We call f(z) holomorphic if it satisfies the
conditions: :

(H.1) f(z) is infinitely differentiable as an Z-valued function of real variables
t and s.
(H.2) Tt satisfies the Cauchy-Riemann differential equation:

0

-f( )——( i

)fer=o.

The following Theorem is a slight variant of the fundamental result due
to Komura (see Theorem 3’ of Komura [10]). We will give its proof in
Appendix 3.

Theorem 4.1. A linear operator A in E is the generator of a locally equi-
continuwous semi-group if and only if A is demnsely defined and well-posed such
that there exists an L(E)-valued entive function R\(2) satisfying the following
two conditions:

(Ro- 1) /‘n L a _R ( l) [l>0 n=0,1,2, -
7’2‘ d n V2 i y Ly &
is equiboﬁz‘z‘nuéics.
' S ' 1 o+ioo
(Ro. 2) - 70@ae)=7\" " eR ez

holds for any xeE and e, and «>0.

Now we rewrite Theorem 3.3 to the case of the dual semi-group of a
semi-group.

Proposition 4. 2. Let E be a sequentially complete barreled space. Let
{T.: t=0} be a semi-group with the generator A. Let A+ be the generator of the
DS.G. G/ in E', where T is defined by (4.1). Let E* be the closure of R(T')
in E'. Then {Ty: t=0} forms a locally equicontinuous semi-group in E* with
the generator A, which coincides with the restriction A’ to E*.

~ Proof. First we note that g is an R.D.S.G. with the generator A by
Proposition 4.1. Hence by Theorem 3.3 g’ is an RDS.G. Let I* be the
restriction of ¢’ to E*. Then I+ is an RD.S.G. with the generator A*=A’z+.

The family of linear operators {T: >0} in L(E’) is locally equicontinuous,
for {7T,: >0} is locally equicontinuous since £ is barreled. The family' { T3
satisfies the conditions (7p. 1) and (7% 2) and the ‘condition :

(4. 4) Tiq (e =T (Y T, for any pe and t>0,
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for these conditions are satisfied by {7} and g. From (4.4), we have
Tre(E*). The family {T;: t>0} in L(E*) satisfies (7i.1) and (Tv.2). It is
quite easy to show that for any >0, pe @+ and &’€E’, it holds

(o, TIT @)y = S“’J@(s-rxm o34,
0

This implies that T2’ is an E’-valued continuous function if 2’eQR(g’). Since
the family {7%: £>0} is locally equicontinuous, 7'z’ is continuous for #20
for any z'eE*. Namely {77} be a locally equicontinuous semi-group in E*.
Moreover we have the representation:

g+((,o)x’=g°°¢(t)m'dt for any wed and a’eE*.
0

In fact, the right hand converges in E* and coincides with I7/(¢)z’. Therefore,
the generator of {T}: >0} coincides with the generator A* of g+ by Proposi-
tion 4. 1.

Now we can reprove the following Theorem, which has been already
obtained by Komura [10] in a little more general form.

Theorem 4. 2. Let E be a sequentially complete barreled space. Let
{Ty: t=0} be a semi-group with the generator A. Let E*+ be the totality of
elements x'€E’ such that Tix' is continuous in E' for t>0. Then E* coincides
with the closure D(A’). Let T7 be the wvestriction T, to E*. Then we have
(Tt t=0 forms a locally equicontinuous semi-group in EV such that its
generator A+ is the largest restriction of A’ with range in E*.

. If E is reflexive, fhen A’ generates a locally equicontinuous semi-group
{T%: t=0} in E".

Proof. The space E* defined in Proposition 4.2 is denoted by Ej." Clearly
the present L+ contains E;. Conversely if z'€E*, then for dny g¢eg the
integral S o) Tix'dt exists in Ef, and equals to g'(p)z’. Choose a sequence

0
{pj}c @ converging to ¢ in measure. Then g’(¢;)a’ converges to x’. Namely
we have Et=E{.
Let xeD(A) and z'eD(A’). Then we have

oy Thans’ — T’y =< Tvnz— Tiw, )

‘i t+h
=<S T, Awdo, m’>

t

‘ t+h
=<Ag Toxdo, =’ >
vi

t+h
=<g T, zdo, A':L’,>

t
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Since D(A) is dense in E, we have for any xeF and z'e€D(A"),
t+h

4. 5) @;ﬂMW—Tm§=<g

vt

T.xdo, A’z >

Since the set {T,x: i<o<t+1, xzeB} is bounded for any hounded set B, (4.5)
implies that a’eE*. Therefore we have that D{(A’)=FE*. The remaining state-
ments follow from Proposition 4. 2.

Remark. A well-posed operator is not necessarily densely defined. Con-
sider the left translation in the space LP(R'). Let A, be the operator a5 in
LR (1<p<oo). Namely we have

D(Ap)={feL?(R"): f is absolutely continuous on any compact interval,

and —d-feL”(Rl)]

ds N

4= L 1 for fenia,)
Apf=—=J for (Ap).

The operator A.. is closed, but not densely defined. Let us define
T 1=\ o0r e+
0

for any ¢eQ and feL”(R'). Then e\ (L™(RY) and satisfies (7. 1) and (. 2)
for A.. g is a D.S.G. by Theorem 3.1. It is an RDS.G. in E,=QR(T) with
the generator A*. What are A, and FE.? Incidentally we have that A.
=(—A.), and that —A, is the generator of the semi-group of right trans-
lation in L'(R'). Hence, by the proof of Theorem 4.2, E,=FE*=the totality
of bounded functions which are uniformly continuous on R! Also we have
A, =(—A)", Le.

D(A)={f($)eCU(R), £, f'eE"),
(4, 1)) = £ ()

Now we give some consideration on the analyticity of locally equicontinuous
semi-groups. Let Y,={z: |arg z| <6} for real ¢, and let ¥, be its closure.

Definition 4. 4. A family {T(z): zeX,} in L(E) is called a holomorphic
semi-group, if it satisfies the following conditions:

(T3 1) T@TE)=T(z+z") for any z, #'¢X,
(7w 2) T(0)=1,
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(Tw. 3) lim T(2x=T(z)x  for any zcZ, and xck,
2l -z

(Th.4) T(2)z is an E-valued holomorphic function in Y, for any zek.

Theorem 4.3. Let 0 be such that 0<0<=/2. Then the following three con-
ditions are equivalent for « linear operator A in E.

(1) Ais the generator of a locally equicontinuous semi-group {(Ts: £3=0}
having @ holomorphic extension {T(2): zeX,), which is a locally equicontinuous
Jamily in L(E) and satisfies that for any zeE T(2)x is holomorphic in 3, and
continuous on 3.

(II) A is @ densely defined closed operator. And there exists a locally
equicontinuous holomorphic semi-group {T(2): ze3,} satisfying that

(Ar. 1) T(2)xeD(A) and %T(z)x'——AT(z)x Jor any zeE and zeXy—{0}.

(An. 2) TRAz=AT(z)xr  for any zeD(A) and zeZ,.
(III) Both ¢"A and e A generate locally equicontinuous semi-groups.

Proof. (I)=>(II). By Proposition 4.1, A is densely defined and closed.

It suffices to show (A 1), (As 2) and (T3.1) for the given holomorphic exten-
sion {T(2): ze3,). Let zeX,—{0}. Then we have"

1

d —

T
¢ ({—2)?
where C is a sufficiently small circle enclosing z. By this representation,
%T(z) can be considered a; an element of L(Z) for zeX,—{0}. For meD(A),
two functions 7(z)Az and ET(z)x are both holomorphic in z and coincide

with each other on the real positive line. Therefore, we have

dg for wek,

4. 6) 7?; T(z)x=T(z)Az  for any zeD(A) and zeY,~{0}.

Next let D(A®)= a D(A™). - Since R(I () D(A) and AG(¢)=9 (—¢') for any
n=0Q

ped* where g is the RD.S.G. defined in Proposition 4.1, D(A*) is dense in E.

For any ze€D(A®), T,x is infinitely differentiable :

4.7 <~§—i;—) i Tix=ArTix=T,A" for £=0.

For any zeX,—{0}, there exists a positive number ¢ such that the following
expansion is valid in the topology of E,

. 8) T@a= Y (z;f) <—§7> T for any weZ. |
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From the above two identities (4. 7) and (4. 8), we have that
4.9 T(2)Ax=AT(2)x for any weD(A") and ze,—{0}.

By (4. 6) for any zeD(A™), it holds that
(4. 10) AT(2)x= gdg T(z)x for any zeX,—{0}.

Since ﬁé T(z)eL(E), the closedness of A and the denseness of D(A®) guarantee

the validity of (4.10) for any xeE. Moreover, since D(A®) is a core of A, we
have from (4. 9) for any zeX,—{0}

4. 11) AT(z)a=T(2)Az for any xeD(A).

By the closedness of A and the local equicontinuity of {T'(z): zeZ,}, (4.11)
holds for any zeX,. Namely we have (4;.1) and (4. 2). Hence we have for
z, 2eXy—{0} and xeF

T+2)e—TT (")

(" 2 et 2~ TQad
S 7 (z+a"' =0T (wdt

i

il

T(z+2' —O(A—-A)T(Q)dl

2!
z+z’
z

Thus the identity
TR)T(z)=T(z+2")

holds for z, 2/€X,—{0}, and for z, 2’¢X, by continuity.

(ID=>(ID). Let Tw(t)=T(e) for 120 and |0’{<. Then {Tu(t): t=0} is
a locally equicontinuous semi-group. If |#/|<0, conditions (A,.1) and (A 2)
imply that : v

for any xeD(A) and >0, Tp(@)xeD(A)=D(e? A) and
(Ao 0) d '
v Top(Dx=e" ATy (t)x= Tp(t)(e" A)a.

Tending ¢ to +#, we have the relation (A4,. ¢') for ¢’=-=+¢. Applying Prop-
osition 4.1 to ¢*%A4, we have the conclusion (III).

(IID=—={@). Let T.(# (and 7-(£)) be a locally equicontinuous semi-group
generated by ¢“A (and e%“A). First we show that

(4.12) TOT-(S)z=T-(s)T-(Dx for any zeF and £, $=0.
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If zeD(A), as functions of # Dboth sides of (4.12) represent solutions of the
Cauchy problem: -

—gf #(t)=e? Ax(t), x(0)=T-(s)z.

Since ¢"A is well-posed, the solution is unique. Hence (4.12) holds for aeD(A).
By continuity it holds for any wxeF. Now noticing that ZGE(;‘ can be re-
presented uniquely as z=tfe¢!?+se~ with £, s>0, we define

T(z)=T(te*"+se )= T (£)T-(s).

By (4.12) and the local equicontinuity of {TW(#)} and {7-(f)}, the family of

operators {T(z): ze3,} is locally equicontinuous satisfying (Z;. 1) to (3. 3). To

prove (7. 4), it suffices to show that T'(z)x is holomorphic for xeD(4). By an

elementary calculation, the Caucby-Riemann operator takes the following formi:
d i 4 0

—1i0 — pll

9z~ sin2¢ of os |’

Since 5%— T\ (8) T-(s)a = e"AT.(t) T-(s)z and 503— Tu(t) To(s)z= T (e AT(s) =

=g WAT,()T-(s)z- if xeD(A), we have that ?]% T(z)x=0. Therefore T(z)x is
holomorphic, and satisfies that for any xeD(A) and z¢%,, T(z)xeD(A) and

% T(e)o=AT(Jo=T()Az.

Applying Proposition 4.1 to the above situation again, we have that A is the
generator of a locally equicontinuous semi-group {7'(f): t=0}.

Appendix.
1. Proof of Proposition 2. 1.

First we show that 9\®F (and D\ .®F) is dense in PHL(F) (and D .(E)).
This can be executed through two steps. The 1st step is to show that the
totality of FE-valued C»-functions with supports contained in [0, co), which is
denoted by C%(E), is dense in Q\(&). The 2nd step is to show that the closure
of PLRE in PL(E) contains CHE).

It must be noted that an FE-valued piece-wise continuous function f is
considered to be an element of /() by the formula:

r@=\" o7 for any pea,

where the integral in the right hand is convergent in £ in the sense of
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Riemann since £ is sequentially complete. The 2nd step is easily obtained by
the approximation of feC3(E) by a sequence of step functions {fu}. For ex-
ample we choose f, as

nan

()= Z Xn 5O F (5277,

where ¥, ;(Z) is the characteristic functlon of the interval [727*, (j-+1)2-7).
Then we have

s ~re=\"_sotnm-roa

converges 0 in F uniformly with respect to ¢ belonging to a bounded set of

. This implies that f,—f in DLE).
Now we proceed to the Ist step Choose an even functlon o(t)e D satisfying

that supp (p)c(—1,1), p=0 and S p@)dt=1. Let p.()=e"p(c"*) for ¢>0. For
-1
any feQD’'(E), define p.xfe D'(E) as

(e ) @)= loxp)  for any ped.

Then p+f converges to f in Q'(E) as ¢ tends to 0 by definition. On the other
hand fi(e.(f—s)) is an FE-valued C=-function. Moreover it is equal to psf. In
fact, we have by the sequential completeness of &

I sostote—snas
= lim ; osp)dsflot—s7)
=tim /i 3 plo)nit—s)ds,)
= £ilim 3 et=sp(sds,)

=1(|"_ott=s)9as)

where we have used, for the validity of the 3rd equality, the fact that the
finite Rieman sum J] p.(f—s,)o(s;)4s; converges to (ps¢)(#) in P. Next we

define a shift operatojr 7y in D'(E):

(w S N@)=fslp(s+2))  for any ped.
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Let us define fi=rz.(p.xf) for ¢>»0. Then fie@'(E) if fed'(E). In order to
complete the step 1, it suffices to show that f, converges to f in @'(E) as | 0.
But this follows from the facts that {o.«f: 0<e<1} forms an eguicontinuous set
in @'(E), and that =,f converges to f uniformly on an equicontinuous set of
D(E).

The fact that DL Q®D(A) is dense in D(4) follows also from the ahove
proof, for it holds that D(A)=D.(D(A)) where D(A) is considered to be a
sequentially complete space topologized by the graph topology of A.

2. Proof of Proposition 2. 2.

If £ is a quasi-complete barreled space, then Proposition 2.2 is a corollary
of the general result concerning the convolution of vector-valued distributions
(see Proposition 39 of Schwartz [17]). It seems to need some words for the
extension of the result to a sequentially complete space. This is based upon
the following Proposition (cf. Proposition 33 of [17]).

Proposition A.1. Let E be a locally comvex sequentially complete space.
Then for any boundedly equicontinuous TeD'(L(E)), there exists a wunique
product operator I ® € L(D'(E), L(D(RY), E)) satisfying the following conditions:

(1) (@RNsdpS)REEN=T (S ()  for oeDs and e D,
(2) (TRND=T(FU(s, )z  for f[=FQuz with Fed’, reE and (e D(R?).
(3) supp (T ®f)csupp (I)xsupp (f).

Proof. Define T ®f on 9,@D, by the relation (1). Since T RS can be
considered as a continuous bilinear mapping from ,x &, to E, it has a unique
extension which is denoted by the same symbol,

I RFeL(D®.9, B)y=L(D(R, B)

where the symbol ~~ means the completion (see e.g. Proposition 43. 4 of [19]). Let
K Dbe a hounded set in @(R*®). Then there exist bounded sets 4 and B in ¢
such that any #eK can be represented as

0(s, t)= Zl znﬂﬁn(s)‘/:’n(t)
n=

where i‘ W<l with 7,20, ¢.eA, ¢,€B, and Z is taken in the topology of
n=1 n=1
D(R?) (see Corollary 2 of Theorem 45. 2 of [19]). Hence we have for such ¢

(T ®1))= 2 20T (@) £ ()

The right hand is in £ because of the sequential completeness of E. Therefore
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T RFeL(D(R?), £). The properties (2) and (3) are easy consequences of the
above mentioned facts. Let p» be a continuous semi-norm on E. Since g
is boundedly equicontinuous, there exists a continuous semi-norm ¢ such that
T (p)e)<qx) for any geA and x¢E. Then we have for eX

(T RF)W)< z T T (ea) ()

ii: Zng(F(¢gn))
<sup q(f (-

This estimate implies that 9 & is a continuous linear mapping from Q'(E)
into L{(P(R?, E).

To prove Proposition 2. 2, it suffices to define
(T #/Np)=(I @ Nalb)g(t+$)al(s))  for any pe,
for the mapping:
¢(t) = at)o(t+s)a(s)

is continuous from & into Q(R?).

3. Proof of Theorem 4. 1.
‘Only if* part. Proposition 4.1 implies that A is densely defined and well-
posed. Let
1
RJ(Z):L':S e~ Tadt.
0

Then R, (4) is an L(&)-valued entire function satisfying the condition (R,. 1).
Moreover for w>0 and g€, we have

90(2)]?1(2)50111

w1 ca

_L
)

w=—i o3

i o3 1
S go(}t)g e~ Tyudtd)
0

@+l oo
S tp(Z)@'“dZ) Tiwdt
0

w—1 o3

-

=,
S o) Todt

0
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=g (g
=-A)7 (1 Q) ).

‘If’ part. Noticing the following expansion

n==()

_ ca (2__#)71 [#n-u ( d )n - X
- nz——;o pr n! \dp Rl(#)j$’
we can conclude, by the condition (R,. 1), that for any »>0, the family {Ri(4):

Re 1w} in I(E) is equicontinuous. Therefore we can define an L(E)-valued
continuous function G() by the formula:

Ra= T %(z—mn[(%)"Rl(z)lwx

wdi o pli
O

— B2,

w—i oo A

2ri

which vanishes for #<0. Consider ¢=D*GeD\(L(E)). Namely we have

(A1) g(go)ngmgo”(t)G(z‘)xdt for peg and zcE.
0
The condition (R,. 2) implies that
‘ wt+i
@A R(A)az,

-1

Gp)= S
and that

(A.2) Gle)=9 (o) for @edD..

Here T is the L(E)-valued distribution determined by the generalized resolvent
(1—A)'. By (A1) and (A.2), g is of finite order on the interval (—1,1).
Hence & is an R.D.S.G. by Propositions 3.1, 3.2 and 3. 3.

Let 6, be the dirac measure at teR'. For any t>0, a linear operator (i)
in R(T) is uniquely determined (see the discussion after Definition 3.1). Let
us denote (6,) by S;. Namely we have

Sw= 2, TCeus= 2, T eks =)
= =
for 120 and z= ,_‘n] T ()Y€ R(T)-
i=1
It holds from (9. 3)

(A.3) g(@;czgmgg@smz for ze R(T) and e .
0
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Choose a function pe @~ such that g ot)dt=1, p=0. Consider the convolu-
tion p#D*G: ’

(DG)t)= S ot —5)G(s)dse L(E).
Then the family in L(£)
(O D*C)): 150, ped*, S:p(z‘)dt-——l, 030
is equicontinuous. In fact, since (oxD*G)(#) vanishes for £<0, being estimated
by the function ¢, we have an approximate formula:
(0xD*G)(2)

. » © (___1)11( l‘zt n+1 dn ~
=tim e B T Do

Py n={
for >0, where F (2)=gme*“F(t)dt (see Hille-Phillips [8], Theorem 6.3.3). On
0
the other hand, we can easily justify the following calculus.

(P*D”G)(ﬂ) (DZP*G)(A) DXo(nG(2)
=22 RD) = A R:()-

Since the condition (R,. 1) implies the equicontinuity of the family

nY

‘uu -1 d n’~ @
(2 ﬂ) R 120, 020, | ohar=1],
4 0
we have ‘

,;; n‘ (n+1)! (d )(PU‘)RI(/!))

is equicontinuous with respect to p>>0, #>0 and ped* satisfying Smp(t)dt::l
]

and p>=0.

The equalities (A.2) and (A.3) imply that D*G@)z=Swa if 01<t<1 and

zeR(T). Hence if we take a sequence {p,>0}c @+ satisfying S o O)dt=1,
0

converging to 4§, 0<¢<1, we have that {S,: 0<¢<1} is equicontinuous on R(T).

Hence, by contmmty in ¢, {S;: 0<#<1} is equicontinuous on R(T). Since R(T)

is dense in £, {S;: 0<¢<1} is an equicontinuous family in L(&), where S,eL(E)

is the closure of S;.

Let us define
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Tz=§z-m[§1]["] 0<i<on.

Then {T;: t>0} forms an locally equicontinuous family in L(F) satisfying
(To. 2) and (Ts. 3). It holds that for any ge @ and xzekE,

(4. 4 T (o= gm@(l‘) Towdt
. 0

o

In fact, (A.4) holds for 26 R(T) by (A4.3) since 7; is the closure of S; for any
t>0. Since R() is dense in E, (A. 3) holds for any zeF.

The condition (.2) for g implies the condition (7v.1) for {7}}. Hence
{T;: t>0} is a locally equicontinuous semi-group. By Proposition 4.1, the gener-
ator of {7;: >0} coincides with the generator of &, which is the operator A.
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