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We showed in [2] the existence of a Hopf algebra over an arbitrary field
whose antipode is not bijective. In this note we strengthen this result as in the
title. 'We adopt the terminology and definitions in [1].

Let % be a field. The forgetful functor from the category of Hopf algebras
over k to that of coalgebras over % has a left adjoint functor H. In other words
for any coalgebra C there exist a Hopf algebra H(C) and a coalgebra map #:C—
H(C) such that Hom (%, H): Hopf(H(C), H)— Coalg (C, H) is a bijection for any
Hopf algebra H. H(C) is called the free Hopf algebra generated by C. We prov-
ed the following facts in [2].

1. Let A be an algebra over k. If we put

L(C, A)={(fdizoeHom(C, A)N| fiu=f;" in Hom(C™, A)}

then the map f]—(feSteu)iso is a bijection from Alg(H(C), A) onto L(C, A), where
Cov denotes C (resp. the opposite of C) for i even (resp. odd) and S is the an-
tipode of H(C).

2. Let My(k) be the nxn matrix algebra over £ and M,(k)* be its dual
coalgebra. Then the antipode of H(M,(k)*) is not bijective for #>1.

Now we reduce the problem.

ProposiTioN 1. If there exist a coalgebra C over k, a coideal 1 of C, an
algebra A over k and an element (fi)izo of L(C, A) such that

Full=#0  filI=0 for i>0
then there exists a Hopf algebva whose antipode is not injective.

Proof. Let u:C—H(C) be a free Hopf algebra. J= §, Si(u(l)) is a coideal

of H(C) such that S(/)cJ. So the ideal K of H(C) generated by / is a Hopf
ideal of H(C). The algebra map from H(C) to A determined by (f)ise is zero on
J, s0 is on K. Hence f, can be factorized as

fo: Cm—s H(C)—— HC)| K~ A,
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By hypothesis and definition we have
SH(C)IK)
H(C)| K—— H(C)|K) .

IdKer(C

IcKer(C

This means that the antipode S of H(C)/K is not injective.

CorROLLARY 2. If there exist an algebra A, a finite dimensional algebra M,
a subalgebra N of M and elements

quM@A—'N@ Ay X1y KXoy Xy« » '€N®—’4

such that xa=x7" in MRAY, then there exists a Hopf algebra whose antipode
is not injective.

Proof. Take C=M* and I=Ker(M*—N*). Then (%) belongs to L(M*, A)
and x,|/+#0, x,|I=0 for i>0.

CorOLLARY 3. If there exist an algebra A over k and matrices x;€ Mu(A),
Yie M, (A), 1=0,1,2,---, and ZyeMym(A) such that we have

Xy O\ [x W
= for some W=0
Zy Y, K *

and X;h,='X;, Yih=Y;,
wherve 'X is the transpose of X, then we have the same conclusion.

Proof. Put M=M,..(k),

X 0
N=~{ (Z Y); XeMu(k), YeMy(k) and ZeMnxm(k)}'

and Xo O\
Xon= .
‘Zo Y,

Then we have %eM® A~ N A and there exists an element (%, %, %z, - -) of
L(M*, A) such that xi, xs,--+ belong to N®A.

In what follows we fix an integer n>1 and put A=H(M,(E)*). Let X he
the element of M,(A) which corresponds to u: My(k)*—A under the identification

Hom(Mx(k)Y*, A)=M,(E) R A=M,(A).

Then S(X) corresponds to Sow. So S(X)=X"! in M,(A). The fact- S is not
bijective is equivalent to that that the transpose ‘X is not invertible. Hence the
map

X0 AP AT, (e, B (%, )X
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is not bijective, because End(4A™) =M (A). We may and shall assume that the
antipode S of A is injective, because if contrary the theorem would have been
proved.

RemMa 4. If S is injective then 'X: A*—A" is injective.
Proof. S is an anti-algebra map. If x-'X=0, then
0=4(S(5+ X)) = SCX) - 15(x) = X1 15() .
So x=0.

CorOLLARY 5. If the antipode S of H(MR)¥) is injective, then there exist a
vector space V over k and elements X; of Mu(End(V)), i=0,1,2,--+, such that
Xih=tX; and

IYO . Vn'—"" ‘V‘n’ (vl; Y on)}_“_)(vl; A vvz)«K\)
1S injective but not surjective.

CorOLLARY 6. There exists an infinite cardinal wy Such that for any aza,
there exist V and X; as in COROLLARY 5 such that

a=dim; V=dimy, Coker X,

Proof. Let V and X; be as in CororLrAry 5. It is sufficient to take ay
=dim;V and @V, BX;.

LemMa 7. Theve exist @ vector space V' over k and matrices X, M(Endi( 1)),
i=0,1,2, -+, such that X7}, ='X; and Xo: V"V is surjeclive but not injective.

Proof. Let V and X; be as in Cororrary 5. Put V*=Homy(V, k) and
f*=Homu(f, k) for feEndy(V). If we identify (V*)*=(V*)*, then we have X'*
=(x¥); for XeM,(Endi(V)). Hence we have

(XF) =X =(X) =1(X}).
Because X§: V*'—V#*" is surjective but not injective, the proof is complete.
Remarx 8. The analogue of COROLLARY 6 is also valid.

THEOREM 9. Let k be a field. There exists a Hopf algelva over k whose
antipode is not injective.

Proof. Let n be an integer >1. If the antipode S of A=FH(M,(k)*) is not
injective, then the proof is complete. So we assume that S is injective. Let a
be a sufficiently large cardinal. There exist a vector space V over £ and
matrices X;, Y;eMy(End(V)), i=0,1,2,---, such that
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Gh="Xi Y=Y
Nyt V*——T" 1is injective
Yo V*—=T" is surjective
and
a=dim,;Y=dim; Coker X;=dim; Ker Y.
If we decompose V*=M®PN=PPE such that
X V"-—;—*M and P=Ker Y,

then there exists an isomorphism from P onto N. This means that there exists
a matrix Z,e M, (Endi(V)) such that

Xo O\ [+ W
= for some W=+0
Z, 0 Yo £3 *

By CoroLLARY 3 the proof is complete.
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