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There are a number of well-known theories which are concerned with the
construction of complicated “ machinery ” from a small number of basic elements—
for instance, the combinatorial construction of (k-valued) logical networks.
Minsky and many others considered the construction of binary automata and
have obtained important results.

In this paper we propose a general framework which integrates these theories,
especially those of Kudrjavtiev, Loomis and Ibuki. Several variants of the
notions of ‘universality’ and of ‘functional completeness’ are formulated within

the framework.
Several theorems related to these notions shall he given in the subsequent

paper : functional studies of automata (II).

1. Physical Background

We shall start with an’ informal exposition of the “machinery” to he
considered.

1.1, I-0 devices

An [-O device is a machinery having a number of “input terminals” and
an “output terminal”, It receives “input signals” from the input terminals and
emits an “output signal® through the output terminal.
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Figure 1.
Uy, +++, Up: input terminals, V: output terminal

We assume that:
1) there are k distinct “signals” denoted by

0,1,2,--,k—1.
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2) input and output signals are functions of a variable # which moves ina
discrete set of “moments” denoted by

01,23, .

Each input (output) signal is one of the above-mentioned signals 0, 1, k-1

Let U, -, U, be input terminals and V the output terminal of an I-O
device A.

We represent by ui(#) (by »(f)) the signal passing through a terminal U;
(V, respectively) at a moment £

u; and o represent sequences of signals, that is, functions from

N:{Or 1: 29 }
to
We also assume the following conditions:
3) The sequence » of output signals is uniquely determined by the sequences
%, -+, #y Of input signals.
In other words, the input-output behavior of a device A is deterministic and
can be represented by a mapping from
(RY:x - X (B)* (n factors)
to
(fey*

where (B)* is the whole set of functions from N to (k).
4) The value v(%) of v at a momens ¢, depends only on the values

?41(0), rey, Z{l(to)

ux(0), -+, ta(o)
and

un(0)> T Zln(fo) .

In short, an output signal is independent of the future input.

1.2. Connection of I-O devices

Let A, A be I-O devices having two input terminals. We consider a new
device A obtained from these devices.

The construction of a new device can be specified by showing how to connect
the terminals of A, A, and A,. For instance:
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Figure 2.

The input terminals of A and the output terminals of A4, A, are called
‘senders since they supply to other terminals external input signals and output
signals. The output terminal of A and input terminals of A;’s are called receivers
since each of them must be connected to one of the senders.

We can therefore represent a connection among these terminals by a mapping
% from the set of receivers to the set of senders.

Let us denote the input terminals of A by 0 and 1 and the output terminals
of A, and of A, by 2 and 3. The connection of terminals shown in Figuie 2
is then represented by the following table:

- Table 1.

Ay A

Output of A

1.3. Automaton
An automaton

A=(S, Ur V, sﬂy.f’ (])

is a six-tuple of finite sets S, U, V, an element s, of S and functions f, ¢ defined
as following:

fi SxU—S
g: SxU—-V,

Under some modest conditions, the behavior of an electronic circuit is repre-
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sented by an automaton. FEach element of S represents an internal state of this
circuit, ¢ represents the input-output behavior and f represents the transition of
the internal state of this circuit.

f is called state transition function and g is called owutput function.

We can assume, without loss of generality, that

S=(&)", U=(k)", Vs (B) e, (1)
and that

We shall denote
F(1, oy By Y1y o0y Yn) = (2], -, )
fi(‘rli "ty mma ?/1: "ty ?/7!):1:1{
gl&yy =y Loy Y1, s Yn)=(21, *+, Zr)
G521, 5 Ty Y1y *o0s Yu) =25

We shall call (k)-automaion an automaton satisfying the conditions (1) and (2).

2. Mathematical Framework

2.1. Admissible Functions
We shall denote by M(X, Y) the whole set of functions from X to Y.

R)=1{0,1, -, k—1} (k=2)
N={0,1,2, -}
(Ry*==DM(N, (%)) .
Let X be a non null set.

Ou(X)=M(X" X)
0(X)= ngn(X).

DermiTioN 1. C; is an operator defined over (k)* as follows:

[ u(t) for iI<s
(Cs-u)(t)=]o

for #=s

C; is called cut-off operator.
C; is extended immediately to [(%)*]":
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Co~ (21, -+, ttn)=(Csr 241, -+, Cs~1tn) .
DeriNiTION 2. Let F be a function in ©,(ky*:
F: (¥ —(R)* .
F is said to be admissible if it satisfies the following condition:

(V5>0) Co-F=Co F-Cy-;y

Remark.
(C-?'F)'C’I':C&"(F'C’l') .

F is said to be weakly admissible if
CF=CFC
for any s=0.

Remark. F is admissible (or weakly admissible) if ths value o(f;) of
v="F(uy, -+, un) at a moment 7z, depends only on the values (8, -, #.(f) for £<z,
(or for #=t,, respectively).

The input-output behavior of an -0 device is represented by a weakly
admissible function (Assumption 4), 1.1.)

We shall denote the whole set of admissible functions (weakly admissible
functions) by .7 (by 4, respectively).

2.2. General Operation of Composition

In the following, we shall abbreviate £.(k) by 2, and .(k)* by QF.

As it has been mentioned in 1.2, construction of a new device A by a
number of (elementary) devices A, ---, As can be specified by a mapping % from
the set of ‘receivers’ to the set of ‘senders’. In the following, we shall represent
senders and receivers by integers and pairs of integers in the following manner:
Representation of senders '

1) the i-th input terminal of A...... i

2) the output terminal of A;......... #+7,
where » is the number of input terminals of A.

Representation of veceivers
1) the output terminal of A............ 0, 0)
2) the j-th input terminal of A;...... (i, 7).

DEFINITION 3. A comnector h is a mapping from a subset of NXN to a
subset of M.

DerINITION 4. Let
Fl: Tty ];‘S

be admissible functions having respectively (1), -, n(s) variables.
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Let 2 be a connector whose domain D and image [ are the sets as following:
D={0,01u{G,0); 1=i=ss, 1=s7=n0)}
I={1,2,3, -, nts}

where » is a certain positive integer.
As we shall see below, we can associate to any n-tuple of sequences

Uy, ey Un€(R)*
the sequenceé
Wiy *oy oy Wars€(R)E
which satisfy the following conditions.
1) w;=1u; V for 1sisun
2) W= Fe(Wna. 1y, s Waii,nciry) for 1=iss.

We denote by

[Fy o, Fol
the function of Q¥ defined as follows:

[Fy, - Flnltn, oo tt) =Wn o0 -

Proof of the existence and wuniqueness of wny;
Since F;'s are admissible,

Catrn1=CFiCra(0ng,1y, =+ )
for any #>0. We have therefore
a) Wa1i(0) = (Crttin +)(0)
=[CFCownci,, +)1(0)
=F(0,0, -, 0)0)

where Oe(k)* denotes the constant sequence such that

O)=0
for all 1=0.
In a similar way, we can obtain
b) War i@ =[FilCi-1 Wi, 135 - Com1 Wraioney)(E) -

Now the values



Functional Studies of Automata (I) 27

Wre1(8), -5 W s(?)
are recursively determined by b) starting from the values
10n11(0), +++, Wns(0)

which are determined by a). The uniqueness of w,.;'s is now evident.

On the other hand, the sequences w,,;'s defined by a) and b) satisfy obviously
the condition 2). The existence of wy.; is therefore obvious.

The function [Fy, -+, Fily is called function composed from [, -, Fs according
to a connector h.

Remark. 1f some Fi's are weakly admissible, the composed function may
not be defined.

DerFINITION 5. Let < be a subset of 4.

We denote by [F] the set of all functions which can be obtained from &
by the operation of composition.

LemmMa 1. Any function composed from F is admissible.
COROLLARY. FolFlca.
The proof is immediate from the definition 4.

2.3. Other Operation of Composition
2.3.1. Loop-free composition

DeriniTION 6. A connector / is said to be loop-free if it satisfies the following
condition :
1200, H<n-i for any i%0.

LEMMA 2. Let h be the comnector which we consideved in the definition 4.
If k is loop-free, then
1) the connector hy defined as follows is also loop-free:

a) be: {5, N)eD; isr}—{L, 2, -, ntr}
b) 70, 0)=n—+7
c) - R, D =h(, ) for ix0.

2) wr=[F1, -, Fln,

‘where wy is the sequence defined in the definition 4.

The proof is immediate.

2.3.2. Free Closure
Let X be an arbitrary set.



28 A. Nozaxi

DeFiniTION 7.
1) Suppose that fe2,(X) and that

g1, e, gPGQq(X)
Jlgix -+ gp) Is the function of £2,(X) which is defined as follows:
Tgix - Xgplas, -+, mq)

=f g1, -+, Zg)y -y O, oy 291 .

2) FoG={f(g1x-Xqy); 0:€G}
where feQ,(X) and GE2,(X).
Remark. JoGSR,(X)
3) FoG= U U Fo(GN2X)).
JeF g=1

Lemma 3.

1 (FoG)e H=Fo(G-H)
2) FCF, GCG D FoGCF (.

DrriniTioN 8. A projection P¥ is a function defined over X# as follows:
Pgll\r(:vl) Yy -'L'N)::L'i .

We denote:
§,={P?; 1=i=N}

§= U &n .

n=1

Derinrrion 9. Let F be a subset of Q(X). o
F is the smallest subset of ©(X) which satisfies the following conditions.

1§ FoF

2) FoF«(Fu¥).

Remark. 2) is equivalent to the following condition.

2) FeFENLp g1, g€ (FUSNLG, > gl X - X gp)eF .

ProrosiTioN 1. Let SO,
& is identical to the whole set of functions which can be obtained by iterative
application of loop-free composition from F.

Proof. a) Suppose that FeQy(k)*, Gy, -, Gpely(k)*. Then we have
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F(Gx X Gp)=[Gy, -+, Gp Fla
where % is the function defined as follows:
70, 0)=p+q+1
Wi, =5  for 1=i=p, 1<j<q
Mp+1,Py=q+; for 1<j<p

Every function in & can be therefore obtained from & by loop-free compo-
sition.

h) Suppose that F is the function of » variables composed from Fy, -, Fs
according to a loop-free connector /.

If 2(0,0)=#n, then

F=Plw.p» -
If 70, 0)=n-7 then
F=G,
where
Gr=[Fy, -+, Fln,

(see the lemma 2).
Now we shall show that G,e&F
1 r=1:

Gr=Fy(Pfa.nX - X Pha.aayn) -
2) Suppose that G;e&F for i<r.
erFA[L XX Hy’;(r))

where
(Phes If kn)Sn

"Neropn i k>,

Since A(r,j)—n<r, this completes the proof.
For the other operations of composition, the reader is referred to Minnik
and to Naemura.

3. Basic Problems

3.1. Representability
"We shall start with introducing new operators over (2)* to define the notion
of representability. o

DerNiTION 1. Let p be a positive integer and ue(k)*,
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Ry Tor =
" lO otherwise

(Ra*u)(y=u(pt) .

Let g be an arbitrary integer
w(t—q) for t—g=0
(Dq.u)(z‘)z{()( ' otherwise .
These operators are immediately extended over [(&)*]":

D% (2, tn)=(D%;, -+, D) etc.
Examples. Suppose that #(0)=0, u(1)=1, #(2)=2 and #(3)=0. Then
1 DY u(0)=0, Dreu(1)=0, Du(2)=1, -
2) D u(0)=1, D-1y(1)=2, D1 4(3)=0, - .

D" is therefore a “shift operator ”.
In the following, we shall abbreviate D* by D.

3) Re22(0)=2(0)=0, Re-u(1)=0,
Rou@=ul)=1, Rou®=0,
Ro-t(d)=1(2)=2, -+ .

2 R u@=u®=0, Ri'ul=u@=2,
R u(2)=u(4), -

R, represents the function of an “encoder”™ which emits signals bearing
information at intervals of p unit time.
R;* represents the function of a “decoder” which reconstructs original

sequence of signals.
5) Ry=Rit=D'=]
where [ is the identity operator: [l-u=wu
LemmA 1. Let p be a positive inleger
1 D-?.DP=]
2) - Rt Rp=I.
The proof is immediate. k

Remark, D?P-D-?xI, RpRp'#lI.
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DeriniTioN 2. Let F, G be functions in 2.(%)*.

G is said to be weakly representable by F, G3F in symbol, if the following
condition is satisfied:

(p=1)(Adz0)(T¢cz0) Rp'-D-@o.F=G-Rz*-D°.

If p=1, G is said to be representable by F.

If p=1 and ¢=0, G is said to be strongly representable by F.

The number p is called information rate. d is called delay and ¢ is called
initialization time. The triple

(p,d,0)
is called index of F with respect to G.

3.2.. Neuman type problem
Every function % in 2(k) induces naturally a function in Q(&)* as follows:

(&) ==R2s(2), -+, #n(L)) .
We denote this function over (k)* by #*:
v=R*(2ty, +, Un) -

DermviTioN 3. Let &F be a subset of Q(k)*.

G is said to be (strongly) (B)-complete if for every function % in Q) Z* is
(strongly) representable by a function H belonging to &.

& is said to be (k)-umiversal if for every function % in Q(k) k* is weakly
representable by a function belonging to [<F].

DeriniTiON 4. Let cQ(X).
G is complete « F=0(X).

Here arises an interesting problem: what are the necessary and sufficient
conditions for & to be (k)-complete, strongly (k)-complete, (k)-universal or
complete ?

We shall call such a problem Newmann type problem.

Von Neumann investigated in 1956 sets of binary devices and remarked that
a device which reckons with certain time lag the Sheffer’s function:

S, y)=1—x-y

could not generate all logical functions. In our terminology, he has shown that
the set {D-S*} is not (2)-complete while the set {S} is complete in Q(2).

Remark, It is obvious that: strongly (k)-complete = (%)-complete
= (k)-universal,



32 A. Nozaki

3.3. Kleene Type Problem

Let
A=, U, V, 80,15 0)
be an automaton such that
) S=(k)", U=(®)", V=(k)"
2) 50=(0,0,---,0).

Hereafter we shall call such an automaton (k)-awtomaton with n input and
¥ output.
Obviously, f, g are mappings from (&)™** to (k)™ and to (k)", respectively.

DeriNiTION 5. The owtput sequence function G of an automaton A is the
mapping from M(N, U) to M(N, V) which is defined as following.
Let 2 be an arbitrary element of M(N, U).

1) s(0)=s,

2) s(+1)=7(s(2), ()
3) o(t)=g(s(2), u(®))
4) G(u)=v.

Remark. If A is a (k)-automaton with # input and » output, then G is a
mapping from [(&)*]" to [(&)*]".

DermniTioNn 6. Let &, ¢ be subsets of Q(k)*. ¢ is said to be wniformly
vepresentable by & if the following condition is satisfied:

(A(p, d, o)XY Ge Y I Feq)
G is weakly represented by F whose index is (p,d, ¢).

DeriNitioN 7. Let A be a (k)-automaton with » input and » output and G
its output sequence function. Let & be a subset of Q(&)*.
A is said to be realizable if

are uniformely representable by <.

& is said to be wmiversal if any automaton is realizable by [F].

Kleene Type Problem: What are the necessary and sufficient conditions for
g R(k)* to be universal? :

Remark. . Kleene has shown that any binary automaton could be constructed
by so-called ‘majority organs’ which might have inhibitory inputs,
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Minsky has shown that the set of following devices could generate any
binary automaton.

A: conjunction device

B: disjunction device

J: non-monotone I-O device.

A few years later, Arden considered a similar problem in a rather general
framework and obtained under certain assumptions the following result.

For any <&@, & (2)-universal = & universal. (see 4.1) »

This result can be generalized to the case &< Z(k)* as it shall be shown
in the subsequent paper: functional studies of automata (II).

4. Neumann Type Problem on Elementary Functions

In the following, we shall introduce a variant of the notion of completeness,
~-completeness, which is defined for a set of ‘elementary functions’.

4.1. Elementary Functions
DeriviTioN 1. A function GeQ(k)* is said to be elementary if there exists
a function geQ(k) which satisfies the following condition:
(3s=0): D°-G=g*.

The number s is called delay of G. s is unique unless ¢ is constant.
We denote by & (k)* the whole set of elementary functions in Q(k)*.

Remark. The operation carried out by a logic element of an electronic
circuit is usually represented by an elementary function. :

An elementary function with delay 1 is called wnit delay function.

An elementary function with delay 0 is said to be combinatorial. A function
GeQ(k)* is combinatorial if there exists a function geQ2(k) such that G=g* If
we identify ¢ and ¢*, then the set of all combinatorial functions can be denoted
by Q). '

4.2. Spectrum over (k)
A spectrum S is a series of sets

SO, 81, Sg, AR
We denote:
S=(Ss).

DEFINITION 2. ,
' SCS &= (V. 20)  SiSS;.

DeriniTION 3. Let ¢ be a set of elementary functions:’

FeE®.
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The spectrum of & is the series of subsets of Q(k) defined as follows:
Si=lge(k); AGe T, g*=D"*-G}.

4.3. ~~completeness
We consider here a spectrum over (%), that is, a series of subsets of Q(k).
DEeFINITION 4. Let S=(S5;) be a spectrum over 2(k).

We denote by § the minimum spectrum which satisfies the followmg con-
ditions.

1) Sas
2) $)22(8)act
3) 5).2@)n-00@)s  for 0=d=n

where « denotes the product defined in 2. 3. 2.

. DerinitioNn 5. (Kudrjavtiev)
Let & be a set of elementary functions and S the spectrum of &.
& is said to be ~-complete if

0 =00

Remark. 1) ~-complete =>(k)-complete.
The reciprocal is not true. For instance, the followmg set is (2)-complete
(Ibuki) but not ~-complete (Kudrijavtiev).

K={feQ(2); f(0,0, -, 0)=r(1,1, -, 1)}

2) If S;=¢ for i>0, then G ~-complete &= §y=0Q(k) &> S, complete,
3) In general,

i§0<§>i_c;{g; *eFicly; grelT]).

5. Comments and Further Problems

Neumann type problems can be classified accoding to the choice of the
following alternatives.

1) Closure operation: [F], &, § ,

2) Representability : Strongly representable, replesentable, Weakly repre-
sentable.

3) Restriction on the set F to be considered: FCO* FC. i, FS&.
FC 2 etc.

4y Value of k: £=2,3, .
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Comparison of these alternatives is desirable as well as the following related
problems:

1) characterization of minimal complete sets.

2) characterization of maximal incomplete sets.

In the case when @, the situation is satisfactory.

1) Post has given all maximal incomplete sets contained in 2(2) and thus
solved the Neumann type problem for the case when & S (2.

2) Ibuki has shown that there exist exactly 42 distinct types of minimal
complete sets in 2(2).

3) Stupecki has given a certain criterion for & S@(%) to be complete which
are refined by Salomaa and Bulter.

4) Jablonski has given all maximal incomplete sets contained in £(3).

5) Rosenberg has given the characterization of all maximal incomplete sets
in Q&) for k=3,

For the case when & < & and k=2, Kudrjavtiev has given the characterlzatmn
of maximal ~-incomplete sets. Ibuki considered the set of unit delay functions
and characterized the maximal (2)-incomplete sets and minimal (2)-complete sets.

The author has given a certain criterion for F< & to be ~-complete and
ennumerated all maximal ~-incomplete sets of unit delay functions for the case
k=3.

For the case when F<. 4, we know very little. However, Minsky and
Loomis investigated the case k=2 and obtained certain conditions for & to be
(2)-complete.

The following problems remain to be solved.

1) Comparison of (k)-universality, (k)-completeness and ~-completeness.

2) Characterization of maximal ~-incomplete sets of elementary functions.

3) Characterization of (k)- complete sets of elementary (or admissible)
functions.
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