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In the preceding paper [1], we have introduced several notions related to the
“functional completeness.” ‘
We shall now study the relationship between these notions.

1. (k)-completeness and ~-completeness

We consider here the whole set & k¥ of 'elementary functions defined
over (ky*. )

DeriNiTION 1.

DK(a, by={Fe &(ky*; 3feKla, b), D\ F=[*}
where
K(a, b)y={feQ(); f(a, -, @=f(, -, b)}
Remark. '
K(a, b)e K(a, b) S K(e, b)

LemmA 1. Let & be a subset of &(k)*.
1) If & is ~-complete, then & is strongly (k)-complete.
2) DKla, b) is strongly (k)-complete while it is zof ~-complete.

Proof. 1) is evident.
2) Let S be the spectrum of &.
Obviously, ; ,
S=(g, K(a,0), 6 ¢, )
and ' '

U Gy=Ke, 1

as it is easily verified. Therefore DK(a, b) is not ~-complete.
Now let us consider an arbitrary mapping 7% in 2(k) having p variables. We
define a mapping ¢ as follows. Pl
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I(my, -y zp) i y#Ez
g(xl? ey py Yy Z): .
0 if y=z.
Since geK{a, b),

D-g*e DK(a, b)
Let O, £ be the mappings in £ (k)* defined as follows,
For any ue(k)* and any =0,
Ow)(#)=0 and E(u)(?)=1.
Obviously,
0, EeDK(a, b)
and therefore
F=D-g#(P?x - X PEXO- PP X E-P?) ¢ DK(e, D),
Besides,
D - F(uty, -+, tp)(t)
29(741(t)1 "ty up(t); O: 1)
=Il(ltl(t), Yy up(t))
Thus we have
D~ F=j®
Since & is arbitrary, DK(a, b) is strongly (k)-complete.

DEFINITION 2.
) Cla, b)={feQk); Vi, -, xaela, b},
Sz, oy 20)=fla, a, -+, @)}
2) DC(a, b)={D-f*; feC(a, b)}

Remark. 1f FeDC(e, b), then

F(uy, -5 ua)(0)=0
for any wue(k)y*.

Lemma 2. Let & be a subset of &(k)*.
1) If & is strongly (k)-complete, it is (k)-complete.
2) DC(0,1) is (k)-complete while it is not strongly (k)-complete, pro-
vided that &=3.
Proof. 1) 1is evident.
2)  Suppose that
FeDCQO, 1)
and that
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D-F.-F=f* e (1)

for some fef(k) and some N=1.

A. F can be written in the following form.

F=D-fi¥G1 X XGp) e (2)
where '
FoeC(0, 1), Gy, -, G,e DCO, THU®
Therefore
D F=f¥(D Gy X o X D™ Gp)  veiviieneeineenns (3)
Remark. D fr=fxD-"  for n=0.

Rpt-f*=f*Rz1 for p=l.
D D"=D-@m if y (n—m)=0.
R;-Ri'=Rz for p, g=1.
Now let us consider the sequence v defined as follows
v=1"*%(1t1, **+, Uy)
Obviously,
v=D"¥.F(uy, -, ttz)
= DGy X o X DGty -+ ) oveoriverierenne ()
If Gi=P%, then we can substitute D-¥*G; in (4) by D-¥+ly;.

If G;eDC(0, 1), then G; can be written in such a form as (2) and D-V+'G;
can therefore be substituted by

DgHGiX - XGD e (5)
or

gFD N GIX - XD VG i (6)
for some g; in C(0, 1) and some G}, -+, G4 in DC(0, T)U¥, according to

N=1 (5%
or
Nz2. (6"
In repeating such substitution, we shall obtain the following representa-
tion of »: _
' v=R(D"Nuy, oy Dy, 1, ++, U,

.DH;('MI, s Mn), AR DH;(’lﬁ, t un))
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where
neC(0, ),
Evidently,
U(O) z.f(Ytl(O): Tty un(()))
=2ts(N), -, 2t6,(1), 2#:(0), «-, 2,(0), 0, -+, 0)

since D-u(0)==0 by the definition of D.
The value
' 2(0)=7(2:(0), -+, #a(0))
depends only on #;(0)'s. So the value of the function % is independent of its
first Nu variables #,(N), -+, #,(1) which can be considered as free variables inde-

pendent of 2;,(0)s.
This independence has an important consequence: in the precess of substi-

tution explained before, we can replace D-*P¥ by any function without affecting

the value 2(0).
Now suppose that all functions of the form

D=PY, s#0
have heen replaced by
DD hy*- PYY
where 7, is an arbitrarily fixed function with one variable in C(0,1). Then we
shall obtain the following relation:
0(0)=["*(ats, ++, thn, DH{ (01, -+, 9), +-+,
DHi(uy ++, #2))](0)

where E
R eC(0, 1)¥,
» - Hi, -, Hl € DC0, 1)U
Remark. ‘ A7eC(0, ¥ 2C(0, 1)

Suppose that
o D1y vvr, 2,600, 1)

Then
o f(xl, Y wﬂ):h,(”vh cety Ly 0) Ty O)

271'/((): ttty 0: 0; "ty 0)
since #’€C(0, 1). Thus we can conclude that any function f represented strongly

by a function F in DC(0, ) helongs to C(0, 1). ﬁ
DCQ, 1) is therefore not strongly (%)-complete.
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B. The (k)-completeness of DC(0, 1) can be shown in the following manner, pro-
vided that k=3, o
* Let'f be an arbitrary function having # variables. We consider functions
h, ¢ defined as follows. ‘
Sy, oy @) i y=2
By wees o 9)= [[ 0 otherwise
gle)=2 for any «.

Evidently, :
h, geC(0,1),  Di*, Dg* e DC(O, 1).

Now for any #,, ---, u,€(k)¥,
D=2DI*¥(PP X - X P2 X Dg*PP)
=D 1P X s X D PR X g*PY)
=f*PD-,
Therefore f is represented by o
BHR(PRX - X PL X Dg*PP) € DCO, 1) ‘
with index (1, 1, 1).
Since f is arbitrary, DC(0, 1) is (k)-complete.

Lemma 3. Le & be a subset of & (k)%
1) If & is (k)-complete; then it is weakly (&)-complete.
2) Let S he the subset of 2(&)* defined as follows:
 S={Ref*RiY; feO®)
S is weakly (k)-complete, while it is mot (k)-complete. - The ' proof is

immediate.

TurEorEM 1. Let & be a subset of &(k)*.

1) & is ~-complete
—> & is strongly (k)-complete“
—> F is (k)-complete
—> F is weakly (%k)-complete -

2) Provided that £=3, & is weakly (k)-completete
2> & is (k)-complete
= g isAstrongly (k)-complete
ﬁ;:} G is ~-complete,
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2. (k)-completeness and (k)-unix;ersality
Here we consider the set (Z(k)* of all admissible functions defined over (k).*

THEOREM 2.

1) If a subset & of Ji(k)* is weakly (k)-complete, then it is (k)-universal.
2) There exists a subset &F of _(k)* which is not weakly (k)-complete

although it is (k)-universal.
Proof. 1) is evident since
Fcig]
(see the proposition 1 in [1], page 28.)
2) Let F be a mapping defined as follows.
F(u, v, w)(¢)=Max {u(t—1), o¢—1)} D1
if both of the following conditions are satisfied.
a) izl

b) w@=F(u, v, w)@) for all i less than £
Otherwise,

Fu; v, w)()=0.
Evidently,

_ Fe J(kys although Fé¢&(k)*
Now let us consider a mapping G:
G= [F To.n

‘where 2 indicates that G has two variables and % is the conector defined as
follows (see the figure bellow.)

i j )
0 0 3
1 1 1
1 2 2
1 3 3
" Ot
» Ol (() - —0z

J—

Figure 1,
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We can verify easily that

G, v)(H)=Webb (u(t—1), v¢~1))
for any #=1, where
Webb (m, n)=Max {m, n}D1.

As it is well known, the mapping Webb is a “Sheffer function”, ie.,
Webhj = (k). '

Theorefore {G, D} is (k)-complete and {F, D} is (%)-universal.

Now we shall show that {¥, D} is not weakly (k)-complete.

We consider a mapping H with one variable obtained from {F, D} by 1oop~
free composition. # can therefore be written in the form:

H=D*F(GiXG3sXGa)  eererrireirarenans (L
where s is an integer and Gy, G,, Gs are mappings in
{F,Diut

We assume that the expression (1) is in a sens minimal: more precisely, we
assume that

Gly G2y GS#F(G],XGzXGs)

Remark. If Gi=F(G,xXGyxGy), then H=D'G.
In consequence, there exists a sequence #z such that

F(G1 % Ga X Gy)(u)(to) # Gs(20)(ts)
for some #. Then by the definition of F,

DS' (G1 X Gz X Gs)(u)(z‘)=0
for all >4 +s. ;
It is now obvious that H can ot replesent weakly any function f with one
variable in (k) except the constant function whose value is always equal to 0.
This completes the proof of the theorem.

3. (k)-univeasality and universality

The notion of weak representability is too broad to discuss the construction
of automata. We shall therefore introduce another variant of representability.

DeriniTION 3. A function G is said to be synchronously mpresenmble (or
s-representable) by a function F' if

Rp'D-POF=GRZ D™
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for some non-negative integer ¢ and some positive integers p and d.
Remark. We assume here that the delay is an integer multiple of 2.

DeriniTioN 4. Let & be a subset of _7(k)*.

1) &is said to be strongly (k)-universal if for every function 7 in 2(k)
there exists a function A in [&] which represents synchronously 7%

2) & is said to be strongly universal if for every automaton A there exists
a triple of integers of the form

(hpd, o)
which satisfies the following condition.

(*): “Let G be the output sequence function of A. Let # be the number
of output of A. Then

PiG, -, PiG .
are s-representable by functions
Fyy e, Fy
in [&F] each of which has the common index (p, d, ¢).”
Lemma 4. Let &F be a subset of _g(k)*.
1) & is (k)-complete ‘
—> & is strongly (k)-universal
—> & is (k)-universal.
2) & is strongly universal ‘
—>» & is universal
—> & is (k)-universal
The proof is immediate.

Remark. ‘/Any function fin Q(k) cétn be ‘cakeyﬁ ‘as the output sequence
function of a one-state automaton with one output.
DEFINITION 5.
E@)(t)=1
O)(@®) =0
TG)0)=1, TG)(H)=0 for ¢=0.

for any wue(k)* and any =0

E, O, T are functions with one variable whose values are independent of the
argument #. In what follows we shall identify E.P¥, O-PY, - PY with E, O, T,
respectively. : ,

TuaeoreEM 3. Let & be a subset of (7(k)* containing the set:
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B={E, Oju{D"-T; n=0}

Then the following conditions are equivalent.

1) & is strongly universal.

2) & is strongly (k)-universal.

Proof. “1)=>2)” is obvious (see the remark just before the definition 5.)
The proof of thd converse is rather complicated.

A. Let
A=((R)™, (B)", (R), (0), 1 o)

be an arbitrary (k)-automaton with n-input and r-owtput.

Let G be the output sequence function of A.
We denote:
Ai=PiG, fi=P%f, 9;=Piq.

B. We define « function h with 2m-+n+r+1) variables as follows.

(@, vy By Y1y 05 Yns A1y **5 Uy Dy, o2y By €)
Jil@s, 5 Ty Y, %5 Yn)
if ay=-=a=1, qu.= =0 and
By eoeeee = b= =0,

=0 g/{x1, " Ty Y15ty Yn)
if ay==eeeees =ap=0=0, [)lzzbjzl
and by =+ =b,=0,

\ 0 otherwise.

Remark. If ¢=1, then A=0.

C. Suppose that a subset F of AR is strongly (k)-universal.

There exists then a function Z in [F] which represents synchronously
h* ie.,
RFpD-PUHOF=R*RID-C s (1)

for some p, d and ¢. (Note. that p, d=1, ¢=0).
We construct from H the following functions.
i
Fi=H(PP %o X PIIEX EXEX X EXOXOX - XOXD'T)
Hi=HP" X X PRIt OX o XOXEX - X EXOX - x0)
| SORORS— | SR

n 7
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Obviously,
E,, HieGc[F]
and
RyD-PUOH=g  R7D° i (2)

Now let us consider the value of Fi.

[R;th(pd+c>Ei(S], Tty Omy l]h ty U;t)](t)
z[}ﬂ*R]_llD—c(S'l; A Smo Z]-lv Ty Un: 1) R 1: O) ) 0: DPT)]U)

{0 if RpDDTH=1, (3)
T IF*RFDS, -+, Sy Usy +, UnI(®), otherwise.
Remark 1. RFDD'T(H=1&==t=0.
2. DRFDF,=D"Y*R7D™" (4
D. We compose now function AL with n variables in the following manner.

Ai=[H, Py, Faln.g

where ¢ is the connector defined as follows.

n+1 for i=j=0,
g, =1 n+j+1 for j=m
j—m for j>m
Therefore
AUy, - U)=HySy, «+, Sy Uy 5, Un) e, (5)
where ‘
S=FSy = S U o U eoveeeeseee (6)

In the following we shall show that A} represents synchronously A; with
index (p’, d', ¢’), where

P =pd, d' =1, ¢'=pd+c.

E. The goal of this parasraph is the following equality.
Ry DGO Al A, Rps D=4 (7)

Let U, ---, U, be arbitrary (k)-sequences.
We denote:
Uy=RyD-FOT, (8)
v=A 0101, -, M) (9)
Then ,
P=07(S1, vy Sma U1y 7ty Un) - eeeeereeeniieenanes a0
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where sy, -+, sp are the sequences determined by tye following equations. -
§:(0) =+ =5, (0) =0 L e (1)

D=1 (81, ==y Smy Uay "5 %)~ ierevevieneseins (12)
(see the definition 5 in [1].) ‘ , ‘ :
On the other hand,

R;&D—(MRHC)A;(U” o, Ua) :
=RDRFD-PUALTT . U (DR =Rz D7)
"=RPDGFRFD S,y Swy Usy -, Un) (see (5) and (2).)

=Ry DEPEO(S, e Sy Uy ey Us)
=*(Sl, =y Shy %1, *+, Un) ' [ (13)
where
Si=RpgD-F4OS, (14)
We shall now verify that
Si=5;
al si(0)=Rz'D-PTHOFYS,, -, U»](0)=0=s(0).
(see (3) and Remark 1 in the paragraph C.)
b/ By (4) and (6), ‘
Dsi=D"1Rp5 D~ P0G =D R71R giD‘ff"l NS,
=D R f*R5S1, -+ Smy Us, -+ U
=fF Ry D= PIO(Sy, oy Sy Uy o, Uh)
:f*(si’ ooy s;;“ g, o, un)
Thus s; satisfies the same equations as s;. Since the equations of the form
(11)-(12) have unique solution, we have

sh=s;.
By (5), (10) and (13), we obtain the desired equality (7).
F. (Conclusion) Ay is s-represeniable by A} with mdev (pd, pd, pd+c).
Since the index is independent of j, the condition .(*) in the definition 4, 2)
is satisfied and therefore & is strongly universal.
4. Olﬁ‘enwproblems

The following problems still remain to be,,sblvéd. o
1) Suppose that a subset & of &©2)* (or .1(2)*) is (2)-complete.
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Is the set & strongly (2)-complete?
2) Suppose that a subset & of &(k)* is (k)-universal.
Is the set & weakly (k)-complete? (This not the case for F < k)™
3) Suppose that a subset & of _i(k)* is weakly (k)-complete.
Is the set & strongly (k)-universal?
4) Suppose that a subset & of _j(k)* is (k)-univeral.
Is the set & universal?
5) To obtain the following equivalence, what condition(s) should be imposed on
the set &7
F is ~-complete &> & is strongly (k)-complete.

~-complete

strongly (%&)-complete
Fe=n v
(k)-complete

{strongly (k)-universal
strongly universal

weakly (k)-complete

universal

(%)-universal

Figure 2. Each arrow represents logical implication.
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Errata in [1]

pp. 25-26, Definition 4.
a/ We denoted in [1] a composed function by

[Fl: ) Fs]k

However; as in this paper (II), the number z of the variables of the composed
function should have been explicitly specified:

[Fly Tty FS]?L.h
b/ We should have assumed that
20, W=n+s
or, at least,
0, 0)>n
(If not, (PH*e[F]. Therefore Lemma 1 becomes invalid.)
page 28, Lemma 3, 1): The following condition must be assumed.
Gef =G

page 34, line 19: The right hand of the definition of the set K should be read
as follows.

{D-f*; fe(2), £, -, 0=, -, 1)}



