Functional Studies of Automata (II)

By Akihiro Nozaki

Institute of Mathematics and Department of Pure and Applied Sciences, College of General Education, University of Tokyo

(Received September 24, 1970)

In the preceding paper [1], we have introduced several notions related to the "functional completeness."

We shall now study the relationship between these notions.

1. (k)-completeness and \sim -completeness

We consider here the whole set $\mathcal{E}(k)^*$ of elementary functions defined over (k)*.

Definition 1.

$$DK(\alpha, b) = \{F \in \mathcal{E}(k)^*; \exists f \in K(\alpha, b), D^{-1}F = f^*\}$$

where

$$K(a, b) = \{ f \in \Omega(k); f(a, \dots, a) = f(b, \dots, b) \}$$

Remark.

$$K(a, b) \circ K(a, b) \subseteq K(a, b)$$

LEMMA 1. Let \mathcal{F} be a subset of $\mathcal{E}(k)^*$.

- 1) If \mathcal{F} is \sim -complete, then \mathcal{F} is strongly (k)-complete.
- 2) DK(a, b) is strongly (k)-complete while it is not \sim -complete.

Proof. 1) is evident.

2) Let S be the spectrum of \mathcal{F} . Obviously,

$$S=(\phi, K(a, b), \phi, \phi, \cdots)$$

and

$$S = (\phi, K(\alpha, b), \phi, \phi, \cdots)$$

$$\bigcup_{i=0}^{\infty} (\widetilde{S})_i = K(\alpha, b)$$

as it is easily verified. Therefore DK(a, b) is not \sim -complete.

Now let us consider an arbitrary mapping h in $\Omega(k)$ having p variables. We define a mapping g as follows.

$$g(x_1, \dots, x_p, y, z) = \begin{cases} h(x_1, \dots, x_p) & \text{if } y \neq z \\ 0 & \text{if } y = z \end{cases}$$

Since $g \in K(a, b)$,

$$D \cdot g * \in DK(a, b)$$

Let O, E be the mappings in $\mathcal{E}(k)^*$ defined as follows. For any $u \in (k)^*$ and any $t \ge 0$,

$$O(u)(t)=0$$
 and $E(u)(t)=1$.

Obviously,

$$O, E \in DK(a, b)$$

and therefore

$$F = D \cdot g^*(P_1^p \times \cdots \times P_p^p \times O \cdot P_1^p \times E \cdot P_1^p) \in \overline{DK(a, b)},$$

Besides,

$$D^{-1} \cdot F(u_1, \dots, u_p)(t)$$

$$= g(u_1(t), \dots, u_p(t), 0, 1)$$

$$= h(u_1(t), \dots, u_p(t))$$

Thus we have

$$D^{-1} \cdot F = h^*$$

Since h is arbitrary, DK(a, b) is strongly (k)-complete.

Definition 2.

1)
$$C(a, b) = \{ f \in \Omega(k); \forall x_1, \dots, x_n \in \{a, b\}, f(x_1, \dots, x_n) = f(a, a, \dots, a) \}$$

2)
$$DC(a, b) = \{D \cdot f^*; f \in C(a, b)\}$$

Remark. If $F \in DC(a, b)$, then

$$F(u_1, \dots, u_n)(0) = 0$$

for any $u_i \in (k)^*$.

LEMMA 2. Let \mathcal{F} be a subset of $\mathcal{E}(k)^*$.

- 1) If \mathcal{F} is strongly (k)-complete, it is (k)-complete.
- 2) DC(0, 1) is (k)-complete while it is *not* strongly (k)-complete, provided that $k \ge 3$.

Proof. 1) is evident.

2) Suppose that

$$F \in \overline{DC(0,1)}$$

and that

for some g_i in C(0, 1) and some G'_1, \dots, G'_q in $\overline{DC(0, 1)} \cup \emptyset$, according to

N=1(5')

or

$$N \ge 2$$
.(6')

In repeating such substitution, we shall obtain the following representation of v:

$$v = h^*(D^{-N}u_1, \dots, D^{-1}u_n, u_1, \dots, u_n,$$

 $DH_1(u_1, \dots, u_n), \dots, DH_s(u_1, \dots, u_n))$

where

$$h \in \overline{C(0,1)}$$
,

$$H_1, \dots, H_s \in \overline{DC(0, 1)} \cup \S$$
.

Evidently,

$$v(0) = f(u_1(0), \dots, u_n(0))$$

= $h(u_1(N), \dots, u_n(1), u_1(0), \dots, n_n(0), 0, \dots, 0)$

since $D \cdot u(0) = 0$ by the definition of D.

The value

$$v(0) = f(u_1(0), \dots, u_n(0))$$

depends only on $u_i(0)$'s. So the value of the function h is independent of its first Nn variables $u_1(N), \dots, u_n(1)$ which can be considered as free variables independent of $u_i(0)$'s.

This independence has an important consequence: in the precess of substitution explained before, we can replace $D^{-s}P_j^N$ by any function without affecting the value v(0).

Now suppose that all functions of the form

$$D^{-s}P_i^N$$
, $s\neq 0$

have been replaced by

$$D^{-s}(D \cdot h_0 * \cdot P_1^N)^s$$

where h_0 is an arbitrarily fixed function with one variable in C(0, 1). Then we shall obtain the following relation:

$$v(0) = [h'^*(u_1, \dots, u_n, DH'_1(u_1, \dots, u_n), \dots, DH'_r(u_1, \dots, u_n))](0)$$

where

$$h'\!\in\!C(0,\,1)^N,$$

$$H'_1, \dots, H'_r \in \overline{DC(0, 1)} \cup \emptyset$$

Remark.

$$h' \in C(0, 1)^N \subseteq C(0, 1)$$

Suppose that

$$x_1, \dots, x_n \in \{0, 1\}.$$

Then

$$f(x_1, \dots, x_n) = h'(x_1, \dots, x_n, 0, \dots, 0)$$

= $h'(0, \dots, 0, 0, \dots, 0)$

since $h' \in C(0, 1)$. Thus we can conclude that any function f represented strongly by a function F in $\overline{DC(0, 1)}$ belongs to C(0, 1).

DC(0, 1) is therefore not strongly (k)-complete.

B. The (k)-completeness of DC(0, 1) can be shown in the following manner, provided that $k \ge 3$.

Let f be an arbitrary function having n variables. We consider functions h, g defined as follows.

$$h(x_1, \dots, x_n, y) = \begin{cases} f(x_1, \dots, x_n) & \text{if } y = 2 \\ 0 & \text{otherwise} \end{cases}$$
$$g(x) = 2 \quad \text{for any } x.$$

Evidently,

$$h, g \in C(0, 1), Dh^*, Dg^* \in DC(0, 1).$$

Now for any $u_1, \dots, u_n \in (k)^*$,

$$\begin{split} & D^{-2}Dh^*(P_1^n \times \dots \times P_n^n \times Dg^*P_1^n) \\ = & h^*(D^{-1}P_1^n \times \dots \times D^{-1}P_n^n \times g^*P_1^n) \\ = & f^*D^{-1}. \end{split}$$

Therefore f is represented by

$$h^*(P_1^n \times \cdots \times P_n^n \times Dg^*P_1^n) \in \overline{DC(0,1)}$$

with index (1, 1, 1).

Since f is arbitrary, DC(0, 1) is (k)-complete.

LEMMA 3. Le \mathcal{F} be a subset of $\mathcal{E}(k)^*$.

- 1) If \mathcal{F} is (k)-complete, then it is weakly (k)-complete.
- 2) Let S be the subset of $\Omega(k)^*$ defined as follows:

$$S = \{R_2 \cdot f^* \cdot R_2^{-1}; f \in \Omega(k)\}$$

S is weakly (k)-complete, while it is *not* (k)-complete. The proof is immediate.

THEOREM 1. Let \mathcal{F} be a subset of $\mathcal{E}(k)^*$.

1) F is ~-complete

 $\implies \mathcal{F}$ is strongly (k)-complete

 $\implies \mathcal{F}$ is (k)-complete

 $\implies \mathcal{F}$ is weakly (k)-complete

2) Provided that $k \ge 3$, \mathcal{F} is weakly (k)-completete

 \Rightarrow \mathcal{F} is (k)-complete

 $\implies \mathcal{F}$ is strongly (k)-complete

 \Rightarrow \mathcal{F} is \sim -complete.

2. (k)-completeness and (k)-universality

Here we consider the set $\mathcal{A}(k)^*$ of all admissible functions defined over (k).*

THEOREM 2.

- 1) If a subset \mathcal{G} of $\mathcal{A}(k)^*$ is weakly (k)-complete, then it is (k)-universal.
- 2) There exists a subset \mathcal{F} of $\mathcal{A}(k)^*$ which is *not* weakly (k)-complete although it is (k)-universal.

Proof. 1) is evident since

$$\overline{\mathcal{F}} \subseteq [\overline{\mathcal{F}}]$$

(see the proposition 1 in [1], page 28.)

2) Let F be a mapping defined as follows.

$$F(u, v, w)(t) = \text{Max} \{u(t-1), v(t-1)\} \oplus 1$$

if both of the following conditions are satisfied.

a)
$$t \ge 1$$

b)
$$w(i) = F(u, v, w)(i)$$
 for all i less than t .

Otherwise,

$$F(u, v, w)(t) = 0.$$

Evidently,

$$F \in \mathcal{A}(k)^*$$
 although $F \notin \mathcal{E}(k)^*$

Now let us consider a mapping G:

$$G=[F]_{a,h}$$

where 2 indicates that G has two variables and h is the conector defined as follows (see the figure bellow.)

i		j	h(i, j)	_
0		0	3	
1		1	1	
1		2	2	
1	* * * * * * * * * * * * * * * * * * * *	3	3	

Figure 1.

We can verify easily that

$$G(u, v)(t) = \text{Webb}(u(t-1), v(t-1))$$

for any $t \ge 1$, where

Webb
$$(m, n) = \text{Max} \{m, n\} \oplus 1$$
.

As it is well known, the mapping Webb is a "Sheffer function", i.e.,

$$\overline{\{\text{Webb}\}} = \Omega(k)$$
.

Theorefore $\{G, D\}$ is (k)-complete and $\{F, D\}$ is (k)-universal.

Now we shall show that $\{F, D\}$ is not weakly (k)-complete.

We consider a mapping H with one variable obtained from $\{F, D\}$ by loop-free composition. H can therefore be written in the form:

where s is an integer and G_1 , G_2 , G_3 are mappings in

$$\overline{\{F,D\}} \cup \emptyset$$

We assume that the expression (1) is in a sens minimal: more precisely, we assume that

$$G_1$$
, G_2 , $G_3 \neq F(G_1 \times G_2 \times G_3)$

Remark. If $G_1 = F(G_1 \times G_2 \times G_3)$, then $H = D^sG_1$. In consequence, there exists a sequence u such that

$$F(G_1 \times G_2 \times G_3)(u)(t_0) \neq G_3(u)(t_0)$$

for some t_0 . Then by the definition of F,

$$D^s \cdot (G_1 \times G_2 \times G_n)(u)(t) = 0$$

for all $t>t_0+s$.

It is now obvious that H can *not* represent weakly any function f with one variable in $\Omega(k)$ except the constant function whose value is always equal to 0. This completes the proof of the theorem.

3. (k)-universality and universality

The notion of weak representability is too broad to discuss the construction of automata. We shall therefore introduce another variant of representability.

DEFINITION 3. A function G is said to be synchronously representable (or s-representable) by a function F if

$$R_{p}^{-1}D^{-(pd+c)}F = GR_{p}^{-1}D^{-c}$$

for some non-negative integer c and some positive integers p and d.

Remark. We assume here that the delay is an integer multiple of p.

Definition 4. Let \mathcal{F} be a subset of $\mathcal{A}(k)^*$.

- 1) \mathcal{F} is said to be *strongly* (k)-universal if for every function h in $\Omega(k)$ there exists a function H in $[\mathcal{F}]$ which represents synchronously h^* .
- 2) \mathcal{F} is said to be *strongly universal* if for every automaton A there exists a triple of integers of the form

which satisfies the following condition.

(*): "Let G be the output sequence function of A. Let r be the number of output of A. Then

$$P_1^rG, \dots, P_r^rG$$

are s-representable by functions

$$F_1, \cdots, F_r$$

in $[\mathcal{F}]$ each of which has the common index (p, pd, c)."

LEMMA 4. Let \mathcal{F} be a subset of $\mathcal{A}(k)^*$.

1) \mathcal{F} is (k)-complete

 $\Longrightarrow \mathcal{F}$ is strongly (k)-universal

 $\Longrightarrow \mathcal{F}$ is (k)-universal.

2) F is strongly universal

⇒ F is universal

 $\implies \mathcal{F}$ is (k)-universal.

The proof is immediate.

Remark. Any function f in $\Omega(k)$ can be taken as the output sequence function of a one-state automaton with one output.

Definition 5.

$$E(u)(t)=1$$

$$O(u)(t)=0$$
 for any $u \in (k)^*$ and any $t \ge 0$

$$T(u)(0)=1, T(u)(t)=0 \text{ for } t \ne 0.$$

E, O, T are functions with one variable whose values are independent of the argument u. In what follows we shall identify $E \cdot P_i^N$, $O \cdot P_i^N$, $T \cdot P_i^N$ with E, O, T, respectively.

THEOREM 3. Let \mathcal{F} be a subset of $\mathcal{A}(k)^*$ containing the set:

$$B = \{E, O\} \cup \{D^n \cdot T; n \ge 0\}$$

Then the following conditions are equivalent.

- 1) F is strongly universal.
- 2) \mathcal{F} is strongly (k)-universal.

Proof. "1) \Rightarrow 2)" is obvious (see the remark just before the definition 5.) The proof of thd converse is rather complicated.

A. Let

$$A = ((k)^m, (k)^n, (k)^r, (0), f, g)$$

be an arbitrary (k)-automaton with n-input and r-output.

Let G be the output sequence function of A. We denote:

$$A_{i}=P_{i}^{r}G, f_{i}=P_{i}^{m}f, g_{i}=P_{i}^{r}g.$$

B. We define a function h with (2m+n+r+1) variables as follows.

$$h(x_{1}, \dots, x_{m}, y_{1}, \dots, y_{n}, a_{1}, \dots, a_{m}, b_{1}, \dots, b_{r}, c)$$

$$f_{i}(x_{1}, \dots, x_{m}, y_{1}, \dots, y_{n})$$
if $a_{1} = \dots = a_{1} = 1$, $a_{i+1} = \dots = a_{m} = 0$ and $b_{1} = \dots \dots = b_{n} = c = 0$,
$$g_{j}(x_{1}, \dots, x_{m}, y_{1}, \dots, y_{n})$$
if $a_{1} = \dots \dots = a_{m} = c = 0$, $b_{1} = \dots = b_{j} = 1$ and $b_{j+1} = \dots = b_{r} = 0$,
$$0$$
 otherwise

Remark. If c=1, then h=0.

C. Suppose that a subset \mathcal{F} of $\mathcal{A}(k)^*$ is strongly (k)-universal.

There exists then a function H in $[\mathcal{F}]$ which represents synchronously h^* , i.e.,

$$R_{p}^{-1}D^{-(pd+c)}H = h*R_{p}^{-1}D^{-c}$$
(1)

for some p, d and c. (Note that p, $d \ge 1$, $c \ge 0$). We construct from H the following functions.

$$F_{i} = H(P_{1}^{m+n} \times \cdots \times P_{m+n}^{m+n} \times \underbrace{E \times E \times \cdots \times E}_{j} \times O \times O \times \cdots \times O \times D^{c}T)$$

$$H_{j} = H(P_{1}^{m+n} \times \cdots \times P_{m+n}^{m+n} \times \underbrace{O \times \cdots \times O}_{m} \times \underbrace{E \times \cdots \times E}_{j} \times O \times \cdots \times O)$$

Obviously,

$$F_i, H_i \in \mathcal{F} \subseteq [\mathcal{F}]$$

and

$$R_n^{-1}D^{-(pd+c)}H_i = q_i * R_n^{-1}D^{-c}$$
(2)

Now let us consider the value of F_i .

$$\begin{split} &[R_{p}^{-1}D^{-(pd+c)}F_{i}(S_{1},\,\cdots,\,S_{m},\,U_{1},\,\cdots,\,U_{n})](t)\\ =&[h^{*}R_{p}^{-1}D^{-c}(S_{1},\,\cdots,\,S_{m},\,U_{1},\,\cdots,\,U_{n},\,1,\,\cdots,\,1,\,0,\,\cdots,\,0,\,D^{c}T)](t)\\ =&\begin{cases} 0 & \text{if} \quad R_{p}^{-1}D^{-c}D^{c}T(t){=}1,\\ [f^{*}R_{p}^{-1}D^{-c}(S_{1},\,\cdots,\,S_{m},\,U_{1},\,\cdots,\,U_{n})](t), & \text{otherwise.} \end{cases} \end{split}$$

Remark 1.
$$R_{p}^{-1}D^{-c}D^{c}T(t)=1 \iff t=0.$$

2. $D^{-1}R_{p}^{-1}D^{-c}F_{i}=D^{-1}f^{*}R_{p}^{-1}D^{-c}$ (4)

D. We compose now function A'_i with n variables in the following manner.

$$A'_{i}=[H_{j}, F_{1}, \cdots, F_{m}]_{n, q}$$

where q is the connector defined as follows.

$$q(i,j) = \begin{cases} n+1 & \text{for } i=j=0, \\ n+j+1 & \text{for } j \leq m \\ j-m & \text{for } j>m \end{cases}$$

Therefore

$$A'_{i}(U_{1}, \dots, U_{n}) = H_{i}(S_{1}, \dots, S_{m}, U_{1}, \dots, U_{n})$$
(5)

where

$$S_i = F_i(S_1, \dots, S_m, U_1, \dots, U_n)$$
(6)

In the following we shall show that A'_j represents synchronously A_j with index (p', d', c'), where

$$p' = pd, d' = 1, c' = pd + c.$$

E. The goal of this paragraph is the following equality.

$$R_{pd}^{-1}D^{-(2pd+c)}A_i' = A_i R_{pd}^{-1}D^{-(pd+c)}$$
(7)

Let U_1, \dots, U_n be arbitrary (k)-sequences. We denote:

$$u_i = R_{pd}^{-1} D^{-(pd+c)} U_i$$
(8)

Then

$$v = g_j^*(s_1, \dots, s_m, u_1, \dots, u_n)$$
(10)

where s_1, \dots, s_m are the sequences determined by tye following equations.

$$s_1(0) = \cdots = s_m(0) = 0$$
(11)

$$D^{-1}s_i = f_i^*(s_1, \dots, s_m, u_1, \dots, u_n)$$
 (12)

(see the definition 5 in [1].)

On the other hand,

$$R_{pd}^{-1}D^{-(2pd+c)}A'_{j}(U_{1}, \dots, U_{n})$$

$$=R_{d}^{-1}D^{-d}R_{p}^{-1}D^{-(pd+c)}A'_{j}(U_{1}, \dots, U_{n}) \qquad (D^{-d}R_{p}^{-1}=R_{p}^{-1}D^{-pd})$$

$$=R_{d}^{-1}D^{-d}g^{*}R_{p}^{-1}D^{-c}(S_{1}, \dots, S_{m}, U_{1}, \dots, U_{n}) \quad (\text{see (5) and (2).})$$

$$=g^{*}R_{pd}^{-1}D^{(-pd+c)}(S_{1}, \dots, S_{m}, U_{1}, \dots, U_{n})$$

$$=g^{*}(s'_{1}, \dots, s'_{m}, u_{1}, \dots, u_{n}) \qquad (13)$$

where

$$s_i' = R_{pd}^{-1} D^{-(p_{d+c})} S_i$$
(14)

We shall now verify that

$$s_i' = s_i$$

a/
$$s_i'(0) = R_p^{-1} D^{-(p_{d+c})} F_i(S_1, \dots, U_n)](0) = 0 = s(0).$$

(see (3) and Remark 1 in the paragraph C.)

b/ By (4) and (6),

$$\begin{split} D^{-1}s_{i}' &= D^{-1}R_{pd}^{-1}D^{-(pd+c)}S_{i} = D^{-1}R_{d}^{-1}R_{p}^{-1}D^{-(pd+c)}S_{i} \\ &= D^{-1}R_{d}^{-1}f^{*}R_{p}^{-1}(S_{1}, \, \cdots, \, S_{m}, \, U_{1}, \, \cdots, \, U_{u}) \\ &= f^{*}R_{pd}^{-1}D^{-(pd+c)}(S_{1}, \, \cdots, \, S_{m}, \, U_{1}, \, \cdots, \, U_{n}) \\ &= f^{*}(s_{1}', \, \cdots, \, s_{m}', \, u_{1}, \, \cdots, \, u_{n}) \end{split}$$

Thus s_i' satisfies the same equations as s_i . Since the equations of the form (11)-(12) have unique solution, we have

$$s_i' = s_i$$

By (5), (10) and (13), we obtain the desired equality (7).

F. (Conclusion) A_j is s-representable by A'_j with index (pd, pd, pd+c).

Since the index is independent of j, the condition (*) in the definition 4, 2) is satisfied and therefore \mathcal{F} is strongly universal.

4. Open problems

The following problems still remain to be solved.

1) Suppose that a subset \mathcal{F} of $\mathcal{E}(2)^*$ (or $\mathcal{A}(2)^*$) is (2)-complete.

Is the set F strongly (2)-complete?

- 2) Suppose that a subset \mathcal{F} of $\mathcal{E}(k)^*$ is (k)-universal. Is the set \mathcal{F} weakly (k)-complete? (This not the case for $\mathcal{F} \subseteq \mathcal{A}(k)^*$)
- 3) Suppose that a subset \mathcal{F} of $\mathcal{A}(k)^*$ is weakly (k)-complete. Is the set \mathcal{F} strongly (k)-universal?
- 4) Suppose that a subset \mathcal{F} of $\mathcal{A}(k)^*$ is (k)-univeral. Is the set \mathcal{F} universal?
- 5) To obtain the following equivalence, what condition(s) should be imposed on the set \mathcal{F} ?

 \mathcal{F} is \sim -complete $\iff \mathcal{F}$ is strongly (k)-complete.

Figure 2. Each arrow represents logical implication.

Reference

[1] Nozaki, A., Functional Studies of Automata (I), Sci. Pap. of College of General Education, Univ. of Tokyo, **20**, pp. 21-36.

Errata in [1]

pp. 25-26, Definition 4.

a/ We denoted in [1] a composed function by

$$[F_1, \cdots, F_s]_h$$

However, as in this paper (II), the number n of the variables of the composed function should have been explicitly specified:

$$[F_1, \dots, F_s]_{n,h}$$

b/ We should have assumed that

$$h(0, 0) = n + s$$

or, at least,

(If not, $(P_i^n)^* \in [\mathcal{F}]$. Therefore Lemma 1 becomes invalid.)

page 28, Lemma 3, 1): The following condition must be assumed.

$$G \circ \emptyset \subseteq G$$

page 34, line 19: The right hand of the definition of the set K should be read as follows.

$$\{D \cdot f^*; f \in \Omega(2), f(0, \dots, 0) = f(1, \dots, 1)\}$$