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In a series of papers in this journal Ichiro Murase introduced the notion of
a quasi-matrix ring over a division ring [7]. He showed that under rather
general conditions an Artinian, generalized uniserial ring is a quasi-matrix ring,
and conversely.

In an attempt to obtain a more natural representation of a quasi-matrix
ring an interesting class of prime, Noetherian rings was encountered. We call
these rings infinite quasi-matrix rings. Every quasi-matrix ring is a homomor-
phic image of an infinite quasi-matrix ring.

Infinite quasi-matrix rings are in a sense generalizations of polynomial
rings. In fact, these two classes of rings share many properties: As already
mentioned, they are prime and (left and right) Noetherian. Further, they are
Jacobson semisimple; every proper homomorphic image is Artinian and gener-
alized uniserial; and every two-sided ideal is principal.

The author wishes to express his gratitude to Professor Murase for his
encouragement and many helpful remarks concerning this paper. Thanks are
also due to P. A. Grillet and W. T. Spears for useful remarks.

1. Preliminaries.

Let K be a ring with identity and let S be a semigroup denoted multiplica-
tively. The semigroup ring K(S) of S over K is the ring whose underlying
group is the free K-module with basis S; multiplication is defined by the rule

(2709) (S at0s) = 2 3 r9ato)e
where f,¢: S—K are finitely non-zero.

A larger class of rings may be obtained if we consider semigroups with
zeros: Let z be a multiplicative zero for S. Clearly then Kz is an ideal
of K(S). The contracted semigroup ring K[S] of S over K is the quotient
ring of K(S) modulo Kz. One easily sees that K[S] may be constructed as
the free K-module with basis S—{z} in which multiplication is given by the
rule above, subject to the identification of the zero, 0, of the module and the
zero, z, of S.
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Of course, every ring R may be thought of as either the semigroup ring of
the one element semigroup S={l} over itself or as the contracted semigroup
ring of {1,0} over itself. And, in general, any semigroup ring over a ring K
may be thought of as a contracted semigroup ring over the same ring K: one
simply adjoins an external zero to the original semigroup. The converse,
however, is false; e.g., the ring K, of mXnu matrices over a division ring
K is the contracted semi-group ring of the semigroup {e;;}U {0} of matrix
units over K. On the other hand, if a semigroup S contains more than one
element, then the semigroup ring K{(S) contains the non-trivial ideal of ele-
ments ¥ f(s)s where 3 7(s)=0. Hence, if #>>1 we cannot have K(S) isomor-
phic to K,, [5].

In the theory of semigroups, terms such as subsemigroup, ideal, direct
product, etc., usually have the same meaning as the corresponding terms: sub-
ring, ideal, direct sum, etc., in ring theory, if one forgets about the additive
structure of a ring. The quotient of a semigroup by an ideal, however, re-
quires a separate treatment:

Let I be an ideal of a semigroup S. Let S/I be the set consisting of those
elements s in S which are not in I together with an element 0 which is
assumed to be not an element of S. S/I becomes a semigroup with zero, 0, if
we define the product of two elements s, to be their product s in S if s,#eS
and st¢l, and to be 0 in all other cases. S/I is called the Rees factor semigroup
of S modulo I. Clearly S/I is a homomorphic image of S.

One easily verifies that the canonical homomorphism of S onto S// may be
extended to a ring homomorphism from the contracted semigroup ring A[S]
onto the contracted semigroup ring K[S/I]. The kernel of the latter homomor-
phism is easily seen to be K[I], and so we have

KI[SYK[IN1=K[S/I]
whenever I is an ideal of S.

Remark. Because of the above comment concerning semigroup rings, we
cannot hope that all ideals of a semigroup ring K(S) be of the form K() for
some ideal 7 of S. On the other hand, for certain semigroups with zeros it is
the case that every ideal of KJ[S] has the form KI[/] for some ideal  of the
semigroup S. E.g., any subsemigroup S of the semigroup of ordinary nxn
matrix units satisfies this property, if en, -+, €.n€S and if K is a division ring.
Murase's quasi-matrix units semigroups also satisfy this property. It should,
however, be noted that the infinite quasi-matrix semigroups introduced below
do not have this property.

2. Quagi-Matrix Units Semigronp Rings.

Let MU(n) denote the usual semigroup of all 7% Xz matrix units
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€11 €12 " Cin
@21 €20 Con
€n1 Ena ' Ean

together with 0. This semigroup may be enlarged by extending each row
infinitely to the right. More precisely, let S() denote the semigroup with
elements

€11 €12 " €1n Cipyr

Cay €2z -t €ap Capaiy tC
(1)

Cn1 €n2 *** Cun €nmi1

together with a symbol 0. Define products as follows:

[en,i—jm if i=j (mod n)

enil jp = .
1 otherwise.

By a complete, block infinite quasi-matrix semigroup (of degree %) we mean
a subsemigroup of S(x) which contains all the elements in an area such as that
represented by the shaded portion of the following figure:

N My eee M e on

" //’////////// //// ///////////
(2) W)

.

n T YA

where the integers #; are fixed but arbitrary subject to the condition 0<z; <7, <
--<n. Note that in a sense this is analogous to a complete, block triangular
matrix ring.

The simplest case is that in which n;=i, i.e., each diagonal block is 1x1.
In this case the semigroup consists of elements

€11 €12 v €in Ermyl
Con . Can Capy1

(3)

Cnn €nmi1
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together with 0. For simplicity we shall deal mostly with semigroups of the
form in (3) which we shall denote by @QM(»n) and refer to as an infinite quasi-
MAtrix Semigroup.

We shall be primarily interested in the contracted semigroup ring K[QM (#)]
over a division ring K. We call this an infinite quasi-matrix ving (of degree n
over K). Using (2) instead of (3) one obtains a complete, block infinite quasi-
MALTIX Ting.

TuroreMm 1. Let I be any non-zero ideal of @M(n). Let S denote the Rees
Sfuactor semigroup of QM(m) modulo I. Then, for a division ring K, K[S] is a
quasi-matrixz ring in the sense of Murase. Conversely, every such ring can be
obtained in this manner.

Proof. Let p; be n integers such that 1<p,<p.< -+ <pu<pr+n. Let 7
denote the subset of QM(n) consisting of all e;; with j=p, together with 0.
This can be easily seen to be an ideal. The Rees factor semigroup 7" of Q@M (n)
modulo [ consists of e;; where j<p; together with an element 0. Multiplication
in T is given by ewepm=¢ni-zx if i=7 (mod #) and i—j+k<ps, and all other
products yield 0.

Now K[T] is precisely what Murase called a quasi-matrix ring.

We leave it to the reader to verify that every ideal of @M (n) has this
form.

Remark., Murase also defined quasi-matrix rings of general form. From
our point of view these correspond to the contracted semigroup rings of Rees
quotients of the semigroups indicated by (2).

To facilitate computations in these rings we now introduce a new way of
representing them.
‘ Let K[z] denote the ring of polynomials in & over a division ring K. Let
A denote the ring of 2ll #Xn matrices (@;;) over K[z] such that x divides a;;
whenever i>j. Symbolically we write

Klx] Klx] --- Kz}
(z) Klz] - K=l

.....................

() (x) - Klx]

THEOREM 2. The infinite quasi-matrix ring K[QMn)] is isomorphic to the
ring A of matrices of the form (4).

Proof. Note that we always consider @M (n) as a subsemigroup of S(x)
given by (1). Let us consider the following element of K[QM(n)],

n
Y= ) Ciisn-
i=1
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n
Then we have ¢*= 3 ¢js1pn, and so
=1

?/keij:: eyt =e; Jrkn s

as can be readily seen by the multiplication rule of S(). Hence the elements
of QM (n) can be written as follows.

€11 €1 0 €ip YO1 YC1n v YCia Y'ly o

Cuy *+v Con YOa1 Yz v Ylon YLy -+

Enn Yn1 YCnz *++ Yenn Y1 -+

Since the elements ¢;; (1<i<n, 1<j<n) are essentially the usual matrix
units, it is clear that K[QM(n)] is isomorphic to A defined by 4). Let
E;; 1<i<n, 1<j<n) be the matrix units for A. Then the above isomorphism
is given hy

(5) 2P By — yteii=e; jirn .

Theorem 2 enables us to handle an infinite quasi-matrix ring with almost
the same facility as the full matrix ring. One would conjecture that many
properties of K[z] which are inherited by the full matrix ring (K[x]). would
also be inherited by K[QM(n)]. This is indeed true. In fact, we have the
following theorem.

THEOREM 3. Ewvery infinite quasi-maivix ring over a division ring satisfies
the following properties:

(1) The Jacobson radical is zero.

(ii) Ewery proper homomorphic image is Artinian and generalized uwiserial.

(iii) Ewvery two-sided ideal is principal.

(iv) It is prime, and left and right Noetherian.

This theorem will be established in the next two sections in some cases as
corollaries to more general propositions.

3. Pattern Rings and Generalizations.

In this section R will always denote a ring with identity and R, will be
the ring of all #x# matrices over R. We shall denote the matrix units of R,
conventionally by e;; 1<i<n, 1<j<#n). Although these notations originally meant
elements of S(#), there will be no fear of confusion.

Let £ be any quasi-ordering, i.e., transitive, reflexive relation on the set
{1,2, -, n}. Let I be any ideal of R. Then A=(I,R, <,n) will denote the
subring of R, consisting of all matrices } 7i5e;; where ryel if i<y If, for
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example, < is the usual ordering of the integers, then A will be the ring of
matrices indicated by:

R R R
B I R R
(6)

I I - R

If /=0, this is just the ring of all upper triangular matrices over R.

Another example is the ring corresponding to the quasi-ordering < on
1,2,3,4, defined by 4<2<1, 4<3<1 and i<i for i=1,2,3,4. This yields the
ring of all 4x4 matrices of the form:

R I I I
R R I I
R I R I
R R R R

In case /=0, the rings obtained by this process are the same as the pattern
rings considered by Mitchell [6]. The case in which /=0 and R is a field or
division ring was investigated by Clark [2], [3], and [4].

Our immediate motivation for considering these rings is that if we specialize
(6) by taking R=K[x] and I=(x), then we obtain the infinite quasi-matrix ring
).

One easily verifies that the ring A=(J/, R, <,n) is a subring of R, which
contains all of the matrix units e;=e;. Furthermore, if i<j, then e;eAd. If
i<, then we can only say that re;;€ A for rel.

In the remainder of this section we adhere to the following notation: I is
an ideal of R; < is a quasi-ordering of 1,2, -, %, and »(I) (resp. XI)) denotes
the right (resp. left) annihilators of 7 in R.

THEOREM 4. If v(I)=0 or {I)=0, and if R is (Jacobson) semisimple, then
A=W, R, £, n) is also.

Proof. Let J denote the radical of A. Then, as is well known, since e¢; is
idempotent, the radical of e;Ae; is e;Je;. Since R=e;Ae; and R is semisimple,
we have e;Je;=0.

Suppose that #e,, is a non-zero element of e,/e,. Now, if #(I)=0, Irx0
and so there is an element wxel such that xrx0. Since zel, ze,ped, and so
areg=(xe,p)7en,) 1S a non-zero element of e,/e,. - This contradiction shows that
eple,=0 for all p,g. Hence /=0. A similar argument applies if /(/)=0.
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COROLLARY. Lel R be a semisimple ring containing no zero divisors. Then
I, R, <, n) is semisimple for all non-zero ideals I of R.

Example. To see that the annihilator condition in the above theorem is
necessary, consider the ring R=K@K where K is a field and let /=K@(0).
Then A may be represented as the ring of all matrices

K 0 K 0
0 K 0 K
K 0 K 0 |
0 0 0 K

since R is isomorphic to the ring
(o »)
0 K
One easily shows that A is not semisimple.

THEOREM 5. If R is a principal ideal ring, then so is any subring A of R
which contains Rey for all i=1,2, -, n.

Proof. (We call R a principal ideal ring if every two-sided ideal is generated
by a single element.)
Let B be an ideal of A. Then the sets

(7) B¢j={?’GR|7’6’¢jGB}
are ideals of R. Let By=Rb;;R. Then B is generated by I byje

THEOREM 6. If R is Artinian (Noetherian), then so is any subring A of Ry
which contains R.

Proof. As usual, we identify R with the R-multiples of the identity in Rn.
Consider R, as a left R-module as usual. Then R, is finitely generated as an
R-module and A is a submodule. If R is Artinian (Noetherian), then so is any
finitely generated R-module. A submodule of an Artinian (Noetherian) module
is again Artinian (Noetherian). Thus, since a left ideal of A is a left R-module
and also a submodule of R,, the conclusion is clear.

TuroREM 7. Let R be a ring such that every proper homomorbhic imagé is
Artinian, then A=, R, <,n) has this property also if r([ V=I(I1)=0.

Proof. Let B be a non-zero ideal of A and let B;; be as in (7). Suppose
B0 for some p,¢q. Let b be a non-zero element of By, By the annihilator
hypothesis we can find x,y in 7 such that xby is not zero. ~ Since x and y are
in I, zeip and yey; are in A for any i and j. Hence (zby)eiy=/(zei)(bepg)(yeyy) is



106 W. E. CLark

a non-zero element of B, and xbyeB;;. Thus, if B is not zero, B;; is not zero
for all i,j.

Now as a left R-module A=@M;; where M;;=Re;; or Mij=1Ie;;. Also,
B=@C;; where Cij=DBye;. It follows that as a left R-module A/B=@ (M;;/Csj).
Since M;;/C;; is isomorphic to R/B;; or I/B;;, it is clear that as a left R-module
AlB is Artinian; hence as a ring A/B is Artinian.

THEOREM 8. Let R be @ ring conlaining no zero divisors, and let I be a
non-zero ideal of R. Then A=(I, R, £, %) is prime.

Proof. Assume that a¢Ab=0 for some a,beA. Now if « and b are both
non-zero, we have eee; and eybe, non-zero for some i,7,,q. Let z be a non-
zero element of I, then wzej, is in A. But then (ewe))(xejp)(esbe,) is clearly a
non-zero element of e;(@Ab)e,, This contradiction shows that e=0 or b=0.
Hence A is prime.

4. Quotients of Infinite Quasi-Matrix Rings.

In this section, X will denote a division ring and K[z] the ring of poly-
nomials in z over K. Obviously every (two-sided) ideal of K[z] is of the form
K{zlf=fK[z] for some monic polynomial f whose coefficients are in the center
C of K. We denote such an ideal by (f).

Lemma 1. Let A=((z), Klz], <, n) where < is the usual ovder of the in-
tegers. Then every ideal of A is of the form

(f1) (f12) -+ (fin)

(le) (fﬁ‘.’.) (fzn)
(8) ,

.....................

(fm) (fn?,) v (fnw.)

where each fij is @ monic polynomial in Clx] such that

(a) lf ]<h1 .f’ﬁj:filb or xfihy

(b) if i<k, fiy=fuy or zfi.

Conversely, any additive subgroup of A of the form (8 which satisfies (a)
and (b) is an idecl of A.

Proof. Let I be an ideal of A. Then as in Theorem 5, [ is a group direct
sum of Ijje;; where [;; is an ideal of K[z]. Thus [;;=(fi;) for a monic poly-
nomial f3; in Clz]. This is what we mean by having the form (8).

Now let us observe that if ¢ and % are monic polynomials in C{z], then
the following statements are equivalent:

(1) g=h or g=zh

(ii) =zke(g) and ge(h).

‘We now recall that e;;eA if i<j and that ze;; is always in A.
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To prove (a) note that

afinesj=fenein)(wens) € 1.

It follows that zfin€(fi). If </ we have e;eA and hence

Jijein=(fijei)emel.

This implies that fi;€(fis). Thus we have zfine(fi;) and fye(fin), and so ()
holds by the above comment.

A similar argument establishes (b).

Now from (a) it is clear that

for each i, and
(10 (f1)2(fe)2 - =2 (fni)

for each j. It is also clear that each f;; is either egual to fin or zfiu. In
particular, for all p, g, 2(fig) €(fip). Similarly, each fi; is equal to fi; or zfiy
and 2(fq;) S(fp;) for all p, q.

Let us prove that a subgroup of A" of the form (8), which satisfies (z) and
(b), is an ideal. Let 3] gi;ei;6A. To show that (8) is a left ideal it suffices to
show that for each #,s, frs divides % grifese TO see this, note that if 2>r, then

(frs)S(frs); S0 we need only consider those 2<r. But if 2<r, then ge(z) and
therefore zfys divides grxfis. Thus, ¢ref/us€(2f%s), Which by the ahove comment
is contained in (fys).

A similar argument shows that (8) is a right ideal.

Definition. We will say that an ideal H having the form (8) is homogeneous
if each fi; is a power of = or equal to 1.

LemMa 2, Let A be as in Lewmwna 1 and let T be an ideal of A. Then
I=Hf where H is homogeneous and f is a monic polynomial in Clx] such that

(2, )=1.

Proof. Write I in the form (8), and let fi.=x%f where (f,z)=1. From
Lemma 1 each f;; is equal to a%f, z**Yf or z***. For j<(i, since fiye(x) it is
clear that in case s=0, f;; must be equal to one of af or x*. The point is
that after dividing out f what is left is a homogeneous ideal in 4. That it is
an ideal follows from the converse of Lemma 1.

LemMA 3. Let A and I be as in Lemma 2. Then,
AlIz=AIHD AIADAIAS.D - @ AlAS,,

where H is homogeneous and the fi are pairwise relalively prime monic poly-
nomials in Clz). -
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Proof. As in Lemma 2, let J=Hf where f is not divisible by z. Now, to
show that A/I=A/HDAJAS it suffices to show that Hf=HNASf and that
A=H+Af. The first part is clear since a matrix is in HNAS if and only if
its (,7)-th entry is in an intersection (2% N{(z/)=(z%) or (z)N(f)=(a*f), where
(x)) means the (5, 7)-th entry in H. To show the second part it suffices to show
that e;=e;e H+Af for each i. Note that for some j>0, x/e;eH. In any case,
feie AFf. Since (f, x)=1, it is clear that e;c H+AS.

To complete the proof it suffices to show that if f==f1f, where (fy,f2)=1
in Clz], then A/Af=A/Afi@A/ASf.. This follows by essentially the same
argument used in the previous paragraph.

THEOREM 9. Let A=((x), K[x], <, n) where < is the usual order of the
integers. Then every proper homomorphic image of A is Artinian and gener-
alized uniserial.

Proof. It suffices by Lemma 3 to prove that A/H and A/Af are generalized
uniserial, where K is a homogeneous ideal in A and f is a power of an
irreducible monic polynomial in C[z]. That they are Artinian follows from
Theorem 7.

We first consider the isomorphism (5) between A=((x), K[z], <,n) and
K[QM(@#)]. Under this isomorphism H corresponds to an ideal of K[QM(®m)],
which has a basis (over K) a semigroup ideal of @M (n). Thus, A/H has the
form K(S) where S is as in Theorem 1, and hence it is a quasi-matrix ring
over K. Therefore A/H is generalized uniserial by Murase [7].

Let f=¢™ where g is an irreducible monic polynomial in C[z]. Then the
ideal (g) is maximal in K[z], and so from Lemma 1 it is clear that Ag is a
maximal two-sided ideal of A. Hence A/Ag is simple. Since A/Ag is the
quotient of A’=AJAf by the nilpotent ideal Ag/Af, it follows that A’ is a
primary ring. Since obviously every two-sided ideal of A’ is a principal ideal,
A’ is uniserial by a theorem of Asano [1].

Finally, we conclude Theorem 3.

Proof of Theorem 3. It is well known that K[x] has no zero divisors and
satisfies the properties (i)—(iv). It follows from Theorem 2 that an infinite
quasi-matrix ring A is isomorphic to a ring ((x), K[z], <, ») where < is the
usual order of 1,2, -, n. Thus, from Theorems 4—9, we conclude immediately
that the properties (i)—(iv) hold for A.

Remark. Every complete, block, infinite quasi-matrix ring (2) may be
represented as the ring of all block matrices over K[x] of the form

By Bz -+ By

Bii By - B
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where B;; is an n;Xn; matrix over K[z] such that every entry of B;; is divisible
by x if i>j. This is clearly of the form ((x), K[x], <, ») if one defines the
quasi-order < appropriately. One may establish fairly easily that Theorem 3
also holds for this class of rings. However, the details of the analogue of
Theorem 9 are somewhat more cumbersome.

Question. To what extent do the four properties in Theorem 3 characterize
such rings? It is clear that rings of the form ((p), R, <, n) where (p) is a
prime ideal of a principal ideal domain R share all these properties with the
possible exception of the latter part of (ii).

Rings satisfying the condition that all proper homomorphic images are
Artinian are investigated by Ornstein [8]. However, Ornstein’s work concerns
mostly non-prime rings which, except in trivial cases, have non-zero Jacobson
radicals.
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