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Let % be the finite field with ¢ elements (¢g==p". p is a prime number).
We consider the representation of G=SL(2, k), induced by the identity re-

presentation of N= {((1) 916

H={f(a,b), a,bek; f(0,0)=0}

), X€ k}. This representation is described as follows:

T,f(a, b)=f(aa+rb, fa+db) for g= (;‘ /;) cC.

We define the norm of f € H by |[f||*= bEE, [ f(a,b)}®. Then T, is unitary.

For a multiplicative character y of %, we put
fla,0)= 3 A f (ta, 1) .

Then, we have fx(ta, t0)=2x()fx(a, b), that is fx is a y-homogeneous function.
We donote by Hyx the sub space of H consisting of yz-homogeneous functions.
Then, as is easily seen, Hx is a invariant subspace and

H—-—-E@Hx .

(orthogonal projection Py onto Hx is given by Pxf=fx)
Denoting by U,* the restriction of 7, to Hx, we have the following direct sum
decomposition;

Tg: :% @ng .

It is known [1] that if yx=¥% (i.e. x is not real), (ng’, Hy) is irreducible and
U,* and Ug* are equivalent to each other.
Therefore, there exists an isometry V of Hx onto Hz such that

VU#=UV .

Moreover, V is unique up to a constant factor.

In this paper we shall give the explicit form of V by means of the func-
tional equation of the KEisen stein series for some discontinuous group of
Hilbert modular type.
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1. Here we are concerned with some type of discontinuous group introduced
by T. Kubota in his study about reciprocity law.

Let k be algebraic number field of degree n=7,-+2r» with »; real conjugates
kW (1<K1<Cr1) and 7 pairs of complex conjugates &™), k00 (1 +1m<ri--7,).

Let o be the ring of integers in k2. For an integral ideal § in %, we put

r= {y: (Z 2) € SL, 0) ;f—z-(é 1°>modf} .

I' can be regarded as a discrete subgroup of
G=S8SL(2, R)*x -+ xSL(2, R)xSLZ,C)x---xSL2, C)

by the injection map: I 3y—(F%,---), where we denote by 7® the i-th
conjugate of 7.
Therefore I' operates discontinuously on X=K/G

where K=50@)x --- xSO2)x SU2)» - - - xSU(2)

(a2 maximal compact subgroup of G). Moreover, the fundamental domain of
I" is of finite volume. X can be realized as follows:

X=H X XHy X HeX - XHs .
where Hy={r=x+iy, y>0} (upper half plane)
He={{=(z,v); zeC, v>0} (upper half space).

SL(2, R)> g operates on H, as a fractional linear transformation. If geSL(2, C),
g operates on M. in the following way;

gg:( g (@az+b)(cz+d)-+acv? )
lez+dl+|cvl? lez+d|2+|cv|?

By combining these, we can see how  operates on X. (for details see
Kubota [4]).

2. For a given prime number p and a positive integer », there exists an
algebraic number field of degree # such that (p) is prime in 2 (For example,
see Hasse [3]).

For this % and f, we define the group [ as in 1.

Let § be the different of 2. Then, there exists an integral ideal a’ and
cek, such that d=ca’?. We put a=a'"!. As (p,d)=0, we have

afpa==p/(p) = Fpn .

Now, we define the theta series as follows.
For t:(tl, et tr+r) (f]>0), deaxa and (71 Ty Crl-i-l, .t Crl—)-rz)eX, we put
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el ) [ |2
(1) @(f, (2): St exp [_7[{ by fe ez, f)
a&aXa k=1 ICkl Ve
az=agmod p
13 rlirz # !a"’21+ﬁ“)[2+la‘l’vz[2 }] '
l=r+1 ICL‘ v

{O(t, &) depends only on the class of & mod p, d=(a, b))
Then we have the following theta formula:

(2) o = mee 51 5 Srlile (L 1)
pZ"‘N(Zf) Amod p pat
r Tty
‘where we put N = Ot I #.

k=1 1=7y41

Proof. We put

FZ)=F(, -, Lrppr)= X €Xp [——ﬁ{,%‘;l ',‘Z":‘] {Cr4-a®)C B(L+-ath)

aEaxa

=0 (mod p)
e b, mCm [
+2 3 =Gt aM)CO(Gta®)r ||
l=r+1 ECZI
Jnlt
Ve 1<i<n,
w1
. Yi ’ Vi
Ctid =
Izz"l2 +ui, %
B ’ ’ +1ZiZLritr
zi 1
Z)i’ Vi

GER? (IKisr),  €Cr+1Kisri+re) .
As we have

FZ+B=FZ), for peaxa, p=0modyp
we have

F(Z)= 2 Cwe » *"™ (Fourier expansion of F(Z))

e @d)—ix (@)L

where

71+1g

SptMZ= kEIfM"C"Jﬂ 3 (MG
= =7y

19



20 A. ORIHARA

Cx is calculated as follows:

- s Bgcng g s Lz, ce }]
Cur IN(o)| o szn,(,,m exp[ 7{% caf RO 3 ey et

27

"”‘“S taz 2«"‘2 T1+Te
e »~7? dZ= IO Cu® .
IN@IB i
. ) —ty Eote0ie 2Lt
If 1<igr, Ci= e ‘el e » dx

R2

legl P

— |¢il e"”“;ft—i't”im“mi.
ti

—ox itz Dz -”“‘ (tarZ 480 2)
e dz

IF n+1Li<ritre, Cﬁ’zg e Tegl
o2

lesl ——— 1
27 1H;0 (0 37
,': 2

— —‘éi)g"“;f

Hence we have

o pva —_'__l_ z (7 ,4_. ot 74Ty )(:1] ; 1 }
6, D=F@)= gy 3¢ 7 B, M Com Mk |5 2L amCom g

s e S tar ~.__1__ el S? I3 [ { 1
wer © N Au%dp ; exp P ;‘ lexlts

Meaxn

XULCH™ Mi42 S, NLCO M }] .

fcilt

As we have

0 1\, (0 =1\ _ 1
(% 0)al )=a". for aesze0),

we finally obtain the following:

=g st o () A=)
act, &)= ritegl( L 4) . =
D= SNy b —10)%
_ 1 ..mS .
_—pZnN(t) Angodpe Pl i‘\ @<pf A) )

3. By definition, the Eisenstein series for [ is

E((z, 2), s; (a, b)) by i — 2 :
T, 2), §; (@ = -
R aFEn k=1 e+ AR (laP 24 B0 B |aP g [2)?
(a,ﬁ}E{a:b} mod pg
{ay81~{ea,e8

}
g=unit, z=1mod (p}

where (z,2)e X, ag,b€qa, and s is a complex number whose real part is suf-
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Aficiently large. As is known, using the theta series (1), E((s, 2), s; (@, 8)) can
be extended to the whole complex plane as a meromorphic function.
For e SL(2, 1), we have

E((z, 2), s; (@, b)=E((z, 2), 5; (@, D)) .

An particular, E((z, 2), s; (@, b)) is I-invariant.
For a character y mod (p) such that y(—1)=1 and y3ZX, we put

B2, 5 @), =, 3 TOEG,2), s; (ta, 1) .

Let & be the space spaned by E(---, s; (a, ), %.)
Then, the representation of SL(2,0) in & defined by

Sz, )= fG(z, 2)

induces a representation of SL(2, Fpn)=SL(2, 0)/I", which is nothing but the
representation (U,*, Hx) defined in introduction.

By virtue of the theta formula (2), E((z,2),s; ---, 3) has a functional
«equation of the following form;

(3> E((fr Z), S, vy, X):c<S)VXE((Ta 2)7 1_3, Tty )—C) .

-where Vx is an isometry of H; onto Hx defined in the following way.
{c(s) is a scalar. Here we need not determine the explicit form of ¢(s).)

For  feH, V,‘f<a)=ﬁsg{léz; Wa—DFQ+F () if aeK=Fym
—Lls.srw. if g=oo .
p* Tiex

‘(Here, for simplicity, we put (¢, 1)=a, (1,0)=cc. f is determined by the
-values at these points.)

21
‘where Sy= %‘,{)e”ﬁ"sf'g“x(a) . (Gauss sum)

If we extend y to K =KU{co}, by setting x(co)=1, the above formula can the
.above formula be written in a simpler form:

(4) Vef (@)=~ Sz 3 1la—DF (D), 2k .
b Py .
From (3), we obtain
ng Vx: Vngi

ithat is, Vy is an isometry which gives the equivalence of (U,*, H;) to (U,*, Hy)
(the intertwining operator).
Remark 1. In case K is the real number field, the representation cor-
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responding to (U/*, H) is given in the following form:

H=I¥—co, ), Upflx)=lcxt+d|-0+ w>f<“;i§ ) g€ SLE,R).
(p is a real number). It is known (for example, see [2]) that (U,?, H) and
Uy, H) are equivalent to each other and the intertwining operator V is given
as follows:

Vfx)= [x—yl*=tf(9)dy .

r ( ) S

This is quite similar to (4). (It is to be noticed that the Gauss sum is the
“gamma function” for finite fields and [¢|* is a multiplicative character of K

(4) may be obtained in the same way as in [2]. But the situation is more
complicated, because we can not ignore “the point at infinity”.

£

For example, the “spectrum?” of {U,:" : E—”:(é ‘i)} is not simple. Conse-
quently, the operator which commutes with Us* is not “diagonal”.

Remark 2. In case y(—1)=—1, instead of @(¢; 4) we consider the following:

6(t; &)=AF(5)
Kl 3

—Ty

=5 o F(Z) is as in 2. (&, p)=C1) .

where 7 A
Then, we have the formula analogous to (2), by means of which the
intertwining operator can be determined also in this case.

4. Eisenstein series plays an important role in the theory of (infinite
dimensional) unitary representations.

For example, the structure of the continuous spectrum of a discrete sub-
group of SL(2, R) is closely connected with the functional equation of the
Eisenstein series for this group.

Moreover, we need the Eisenstein series to construct the trace formula,.
which gives the asymptotic distribution of the point spectrum (see Tanaka [5]
Here we give the explicit form of the functional equation of the (restricted)
Eisenstein series for I'p (principal congruence subgroup of Stufe p).

1) For a character mod py(y(—1)=—1), we put

ys

(m%.—.-; lmr+mn|?

m=ay, n=ay(p)

E(z, s; a1, a2)=

—1
E(z,s; x):::};l X(@E(z, s; 0, 1)

~1
Eous, s; = % 1OEG, 53 4,q) 0<g<p-1
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Eiz, s; x)
E(z,s; x)=< : ) .
Epi(z, 55 %)

Then, we have
E(z,s; p)=¢(s, )T2E(r,1—s; 1) .
«/”EF(&-%) L@s—1,%)
VPI(s) L(2s, )

where ols, =

(L(s, x)=Dirichlet L-function with the character y)

_ «/;?1’(3— —-21—) £(2s—1)
I'(s) £(2s)

(¢(s)=Riemann zeta function)

r 0’ 1’ sy 1 .
1: 0.’ X(p——l)y o {X(l)
Tx:~—1z 'x(l)"‘ ' :
Vploon e e
: woap=D
1 zp=1), -~ 21, 0
T p—1, pEt—l, e, pB—1
_ 1 . T . .
pr-1 -
‘p%—l_.l’ ..... , p__]_ B

2) If y(—=1)=—1, we put

e me+n
E(z,s; ai, az)= .
(@8 an @)= X R Imetal

ms=aq,n=a9 (D)

(Ew(z, s; ) and E(c,s; x) are defined as in 1))
Then, we have

E(z,s; p)=0¢(s, DTxE(r,1—5; %) .
iv 7 I(s) L(2s—1,%)
— 1 _ *

VP F<s+ —2~) Ls, 7)

where w(s, )=

1E1

A=

2=l

23
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Ty is the same as in 1).
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