Mathematics

Nomalizing Procedure of Sequences over Ordinary
Logical Constants

By Hiroakira Ono

Department of Physics, Faculty of Science, University of Tokyo
(Communicated by A. Nozaki)

(Received February 1, 1967)

1. Introduction

In the ordinary formalism of logic, an arbitrary sequence of primitive
symbols such as A—VB or CA3D do not always make sense as a logical for-
mula. We must therefore define a class of “well-formed formulas” to exclude
these senseless sequences among the whole class of sequences of primitive symbols.
On the other hand, K. Ono proposed a new powerful formalism for a primitive
logic LO, after which all sequences of primitive symbols can be regarded as
well-formed?.

The above-mentioned logic LO, introduced by K. Ono himself, is an in-
tuitionistic predicate logic having only two logical constants “implication ” and
“universal quantifier”. Primitive symbols in the formalism are head- and tail-
brackets ([,]) together with symbols in an infinite list {x, ¥y, —}. These sym-
bols in the same list are used to denote both predicate variables and individual
variables. For example, a formula R(x, ¥) in the ordinary formalism is denoted
by [rxy]. The formulas representing “A implies B” and “for all x, R(x) holds”
are denoted by [«][b] and x[rx], respectively.

Theoretically, this formalism for LO seems sufficient to represent many
logical systems, since the lower classical predicate logic LK as well as the
intuitionistic predicate logic LJ, etc. is interpreted faithfully in LO®. For
practical purposes, however, it would be much more convenient if we can use
other logical constants such as “conjunction”, “disjunction”, “negation”,
“existential quantifier”, etc..

In this paper, we shall show another formalism in which these logical
constants are allowed as primitive symbols and still any sequences of primitive
symbols are construed as representing some logical propositions. More pre-
cisely, we shall construct an algorithm to transform any sentence (a finite
sequence of primitive symbols) into a normal sentence (a well-formed formula
in the ordinary sense.)

The following examples may be helpful in understanding the main dif-
ference of our formalism from ordinary ones. The primitive symbols of our
formalism are head- and tail-brackets ([, 1), negation (—), conjunction (A), di-
sjunction (V), existential quantifier () and an infinite list of variables®. In the
following list, we shall illustrate the interpretation of the NORMAL sentences
in our formalism.

26 H. Oxo
1. [rxixe—zx.] (r and xi’s are variables.)
: predicate R(xi, Xz, — , Xn).
2. [1 : any fixed proposition.
3. [—[A] : not “A”. (“A” denotes the interpretation of A.)
4. [z[A]] : For any %, “A” holds.
5. [3x[A%} : There exists x such that “A” holds.
6. [VILAJA:1—[A]: “A1” or “ Ax” or—or “An”.
6.1. [VI[AI DA
7. [IATA[Az}—TA]]]: “Ay” and “ A:” and —and “ A.”.
7.1. [AILAL 1 CA”.
8. [[Ad[AJ—[A[A]ll : “A” is deducible from « A;”, “ A", --- and“ A.".
9. [x[A4ly] : formula obtained by substituting y for x in “A47”.

For instance, ()0 F(x))D(p2{(x)F(x)) in the ordinary formalism is ex-
pressed as [[x[[P1 NP2l x]11]]. [xx] denotes a predicate X(x). [x[xx]] and
[x{xx]y] denote a predicate meaning “for all £, X(x)” and a predicate obtained
by substituting » for x in X(x), respectively. [«%[]] denotes “for all x, A*
holds”. (A* denotes any fixed proposition.)

2. Normal Form of a Sentence

2.1. Proper and Normal Sentences

We define PROPER and NORMAL sentences. Hereafter, the following
notations are adopted for convenience.

1) wvariables: x, v, z, # (# denotes any fixed variable.).

2) meta-logical variables standing for any single primitive symbol or the

null sequence: a, b, ¢, d, ai, b .
3) meta-logical variables for any sentence (any sequence of symbols):
A, B,C, D, A, B:.

4) the null sentence: %.

In any sentence of the form AxB]C, the variables x is called a TAIL-
VARIABLE if B consists of variables only. Any variable in a sentence which
is not a tail-variable is called a HEAD-VARIABLE. We will next explain the
notion “pairing of head- and tail-brackets in a sentence”, which is used in
Definition 1. Any pair of a head- and a tail- brackets in a sentence is called
PAIRED if and only if it satisfies the following conditions: 1) The head-
bracket stands before the tail-bracket. 2) The number of head-brackets
between them is equal to the number of tail-brackets between them. 3) If the
sentence between them is of the form aiez—an , then in any sentence aige—a;
for each 1<i<m, the number of head-brackets is not smaller than the number
of tail-brackets.

“If a head-bracket ¢ and a tail-bracket d are paired, then ¢ (or d) is called
the PARTNER of d (or ¢).

Normalizing Procedure of Sequences over Ordinary Logical Constants 27

DEFINITION 1. Any sentence aizz—a- is called PROPER if and only if it satisfies.
the following conditions.

1.1. as=[and a.=].

1.2. a@: and a. are paired.

2.1. If a; is —, then ai-1 and @+ are head-brackets.

2.2. If @i is A or V, then a@i-i, @1 and a;42 are all head-brackets.

2.3. If @ is a head-variable, then ai-1 is 3 or [, and @1 is [.

2.4. If a; is 4, then ai-1 is [, ai+r is a variable, and @iz is [.

3.1. If @ is =, and aii=[and ar=] are paired, then ar.: is a tail-bracket
whose partner is ai-:.

3.2. If ai is A or V, and aii=[and ar=] are paired, then ax: is a tail-bracket.
whose partner is @i-i.

3.3. If a; is a head-variable, @i-: is [, and ai+1=[is the partner of ar=], then
either ary: is a tail-bracket whose partner is @i-1, Or ar+1 is a variable and.
ar+2 18 a tail-bracket whose partner is @i-i.

3.4. If a; is 3 and as2=[and ar=] are paired, then ai+1 is a tail-bracket whose
partner is @i-i. ;

4. If a;=[, ar=] and a; and a are paired, then either both @;—: and a1 are
variables, or arst is [or].

Any pair of brackets in a proper sentence are really paired in the or-
dinary sense. Obviously, any bracket in a proper sentence has its partner.

DEFINITION 2. Any sentence is called NORMAL if and only if it is proper and
satisfies the following condition 5.

5. If ai=[, @is=[, and a1 and @ are paired, then arii¢] unless a@i-i is A

or V and @[.

For instance, [V[[xy][z#]]] is normal. [[V[[xy][z2]]]] and [V [[[xy][z2]]]} are pro-
per but not normal. V[[xyl[z#]] and [V[xy][z#]] are not proper. Roughly
speaking, a normal sentence is a kind of proper sentence which contains no
redundant pairs [[—]]. We denote normal sentences as A4, B, D, etc..

2.2. Transformations

We introduce here the list of transformations. Suppose that there is a
transformation Ci«—C; in the list and that a sentence AC:B is given. If -
A and B satisfy the conditions of transformation Ci«——Cs, then AC.B can
be transformed into a sentence AC:B. We denote this as ACiB—— AC:B.
We define that every transformation is symmetric, i.e., Ci«—Cy implies.
C;«——C;. Hence, A—— B implies B—— A. If Ai—— A, As—r As,——
Ap-1—— Ay, then we denote this as Ai1é&=> As. Obviously, transformability
&= is an equivalence relation. -In the following list, we assume a#[and b=].

1.1. a4 —— —1[61 .

28 H. Owro

1.2. CQ c[[cz ,
cla «———c[la (for c=AN, V).
1.3. dxae——3xla,
[e— Fuf (# is a fixed variable),
Jee—I[c (for c=—, A, V, 3, D).
2. ac «— alc (for c=—, A, V, 3).

3. If there is a tail-bracket in #A4] which has no partner, then #4] —— #[A].

If there is a head-bracket in [A% which has no partner, then [A# — [A]#.
4. If ai=[, an=], and @ and @, are not paired, or if m=#[or a.], then

Baias — an% — #lasae anl .

5. If [A] is proper, then

5.1, for C=x, 3, 3x (If C=x, then 4+3 and b is not a variable.),
aCl[Alb ——a[C[A]}]b,
[CAJD — [C[A]]D,
aC[A]l ——a[C[A]] .

5.2. if a3, then
ax[Alyb «—— al[x[A]y10 ,
[x[Alyd —— [x[Aly]b,
ax[Aly] «— alx[ADY] .

5.3, a—[Alb «— a[[A]]b,
[—[A]p —— [—[A]lD,
a—[A]] e a[—[A]]l .

5.4, for c=A, V,
ac[Blb «—sa[c[Blb ,
[c[Blb «— [c[BlID,
ac{B]] «—s alc[B]] .

(If"A is of the form @ig2—an and ai=[, then B=A. Otherwise B=[A4].)

Suppose that any given sentence is of the form CAD. Then any one of
the transformations 5 can be applied to A, only after all transformations 5
are applied to C as far as possible.

6. If [A] is proper and ¢ is not a variable, then
c[A]x+~——>c[A][x .

When this transformation is applied to any sentence B in the direction
from left to right (G.e., c[Alx —— c[A][x) , it must be applied only after trans-
formations 5 is applied to B from left to right.

7. If A is proper, then [A]«— A unless A4 is of the form [aa:—an] ,
where a:#[and either A or V stands just before A. ,

If x is a tail-variable in any sentence A, then x is a tail-variable also in
the sentence A’ which is obtained from A by any one of these transformations®.
We introduce some notations about transformations. 7T(2) (or 7'(i)) means
applying the i-th transformation from left to right (or from right to left) as

Normalizing Procedure of Sequences over Ordinary Logical Constants 2%

far as possible. 73({) means applying the i-th transformation from left to:
right only once. T()7(j) denotes the combined operation of 7(G) and 7(J)
(first T(j) and next T()). T(m)— T()=T(js)— T(j1) means that for any
sentence A, the sentence obtained from A by operating T(im)— T(:) is the
same sentence obtained from A by operating 7(j»)— 7(j1) . Obviously, T{(%ks)
— T(k)) T () — T(61) = T(kp) — T()T(jn)— T(j1) for any T(k,) — T(k) as far as
TGw)— TE)=T(ju)— T(j) . We show next an example of these transforma-
tions. Sentence I[x[zx is transformed into Fulx[zx by 1.3 (we express it as.

B[x[zxLE{u[x[zx), and E!u[x[zx——z—ﬂ [3 u[x[zx—sﬁ[a u[x[zx]—:i-é[él ulxlzx]}
> [Fufxlzx]]] .
So 3A[x[zx is transformed into a normal sentence [Ju[x[zx]]]. In the next

section 2.3, we will show that any sentence is transformed uniquely into a.
normal sentence, independently of the order of transformations applied.

2.3. Normalizing Process and Normal Form

In this section, we prove our main theorem that any sentence can be trans-
formed into a normal sentence. We define an operation NP = T(7)T(3)T(6)T(5)
TWTB)T(2)T(1) and call NP, NORMALIZING PROCESS. It can be shown that.
NP yields really normal sentence. In the following, C(i) denotes the i-th con-
dition of a normal sentence.

LEMMA 1. Normalizing process without 7(7) makes any sentence proper..

LEMMA 2. Normalizing process makes any sentence normal.

Proof. We will show that every condition of proper (or normal) sentence:
is satisfied after we transform any given sentence by 7(3)7(6)— 7(1) (or NP).
Notice that once any condition C(j) holds at a part of a given sentence,
whatever operation 7(i) we may apply, C(j) also holds at that part unless:
i=6. Because if /7, then each transformation 7() only adds some symbols:
to a given sentence, and each condition C(j) is concerned with either some:
symbols before or after a symbol such as 3, or head-(or tail-) part of a given
sentence, or before or after a proper part?.

By 7(1, 1) and T(2), C(2.1) holds and by T(1.2) and T(2), C(2.2) holds. By
7(1.3) and T(2), C(2.4) holds. By T(3), every bracket has a partner. By 7(6),
C(1.1) holds. Extending proper part by applying 7(5) successively, we can.
obtain at last a sentence in which C(2.3) and C(3) hold. Next we apply 7(6).
In this step, if any given sentence is of the form C[A]xB, then B consists of
only variables and some tail-brackets following these variables. Because if B’
contains — or A or V or 3, then by 7(2), B must contain head-brackets, and
if B contains head-brackets, then C[A]xB—— C[Al[xB by T(5). So B must
consist of only variables followed by some tail-brackets. Now C[A]xB——
ClAl[xB by T(6). (Notice that we have only to apply 7(6) once.) C[A][xB is.
not proper. So we must apply 7(3) once more. Then C@) and C(1.1) hold.
We have not applied 7(7) yet and can see that all conditions from C(1) to-

30 H. Ono

C(4) are satisfied. Thus Lemma 1 holds. Let us now apply 7(7), then it is
easily shown that C(5) holds. Hence Lemma 2 holds.

THEOREM ,

a) For any sentence A, there exists at least one normal sentence B such
that A&=B.

b) For any pair of normal sentences B and C satisfying A&=> B and
A&=C, B=C holds.

Proof.

a) By Lemma 2, we can make any sentence normal.

b) Let us assume A&=>B and A(:)C Then B&=>C and thereisa
sequence (A, As,— , A.) such that Ar=B, As=C and for 1<i<n—1 A; is
transformed into A:wi by applying only one transformation. Let D be the
normal sentence obtained from D by NP. Now we will prove NP=NPT1()
=NPT,'(¢) for any i. If we succeed in it, then we can also prove B=C. For
B=A,, As=As ,—and A.-.=C follow immediately from this fact. (See Fig. 1.)

B
NP][
B

S A= e — S Ana = C

!

1)

g =

Fig. 1

1. Transformations 1.1, 1.2 and 1.3 are obviously commutative.
TWT:(1)=T(1) by the deﬁnl’uon Hence, NP T:(1)=NP.
1.1 1.1
For 1.1, —[a—— —a— —[a. Hence TA)Ty'(1.1)=T(1).
For 1.2 and 1.3, the similar propositions hold. Thus NP 7:'(1)=NP.
2. Letcbe A or V. (See transformation 2.)
1. bea—— blca —= bclla ,
bea—— bella — blella , so TQTWTH2)=T@)T() .
Hence, NPT(2)=NP .
2. blea — bea— bella — blclla
blca —— blc[la . Hence NPTy'(2)=NP .
NPT:(2)=NPT:'(2)=NP can be proved similarly in other cases ¢=—, 3.
3. Case 1, where the given sentence A contains no A, V, 3, .
Suppose that A is expressed in the form C]D, and in C], there is a tail-bracket

which has no partner.
3

A== [CID—[C1D— [C'D",

A= A2 [CID——[C']D'. Hence, NPTy(3)=NP .
NP7:(3)=NP can be proved similarly also in the case where A is of the form
CID. :

Normalizing Procedure of Sequences over Ordinary Logical Constants 31

Case 2, where A contains at least one A or V or 3 or —.
Suppose that A=C]D and C contains m head-brackets having no partner and
tail-brackets having no partner (#>0). If m=£0, the tail-bracket in ques-
tion must have a partner. We consider therefore only the case m=0.

CID— (1D~ [C1D”

Suppose that C'’ contains p more head-brackets which are generated by
T@2)T(1), g of them have their partners in C'' and » of them have their part-
ners in D'(g++<p and ¢<n) . '

Let s (or £) be the number of the tail- (or head-) brackets in D'’ which have
no partners. Then,

[C1D" == [C1D"] -] = [[C1D"]

e v et N et
n—q-+-1 p—q—r n—q+l+s p—q—r-+t
def.

=[b1b2— ba] .

On the other hand, if p=¢, then C]D—— C"']D"'——[C""|D".
Thus T(2)T1)Ty3)=T:3)T()T(1), therefore NPT:(3)=NP.
If p>q, then ClD—2o C1D"'——[-+ [C1D"] -] ——[--- [C"1D""] -+]
N S’ S—— ——
n—q p—q—r—1 n—q+s p—q—r—+i—1
—=byba— b .

(a) If b: and b. are not paired and the head-bracket before 5: and the tail-
bracket after b, are paired,
then

(61— bu] —— [b1—by] , and by — by —— [bs—bu] .

Hence, NP7(3)=NP.
(b) 1. If b: and b, are paired, then

[bl'—bn]'_—')[bl—bn]:[[bz_bn—l]n , and

bi—by —— by—by=[bs— bu-i] .
2. If b: and b. are not paired and the head-bracket before &, and the tail-
bracket after b, are also not paired, then

[bs— bu) —— [bs—bal] , and by— by—> [bs—bu] .
Let [c1—cp] be either [be— bu-1] or [b1—ba], then [[c1— ¢xl] 204, [led —ed'll,
and [c;—cp]fﬁﬁ* [er' —¢q] .
Since [ci'—¢g'] as well as [[¢:"—c¢,']] is proper by Lemma 1,

[[C1’—cq']]——7~—+ [ci'—¢,] . Hence, NPTy(3)=NR .
NPT(3)=NP can be proved similarly in the case where A is of the form
~ C[D. NPT:.'(3)=NP can be proved also similarly.
4, Case 1, where the given sentence aa:—ar contains n head- and m tail-
brackets which have no partner (m, n>0) .

32 H. Ono

4 1,2 , 3 ,
a—ar— [ai—ar]— [e/'—@/']— [-+ @' —a'] -~ -] .
N—v—/

—
m—q n-+p—q
(Suppose that [@:'—a'] contains p more brackets than [@i—ax] and ¢ of them
have their partners.)
On the other hand;
If @#=, A, V, 3, then
t— ar — ay'— o —— [~ la'—a']---].
B ve— ——
m—p n+p—q
Hence, NPT (4)=NP .
If as=— or A or V or 3, then
ar—ax LN [a) —a = [[@a—a]---].
m—q+1 n+p+l—g
Now, we can prove NPT1(4)=NP just as we have proved Case 2 of 3.
Case 2, where m=0 or n=0. NPTi(4)=NP can be proved similarly 1.
this case. NP71'(4)=NP can be proved similarly.

5. Let ¢ be either A or Vv, and B be the proper sentence which is defined
in the list of transformations.

e[B) — [c[Bll —> [c[Bl] , and c[B] —— [c[B] > [¢[B].

Hence, NPT1(5)=NP .

[e[BI]— ¢[B] = [({BI~"*>[¢[B]] , and

[e[BI]—= [¢[B]] . Hence, NPTy (5)=NP .
NPT(5)=NPT:'(5)=NP can be proved similarly in other cases.

6. We will prove NPTy (6)T(5)=NP , since 7(6) must be applied after apply-
ing 7(5). Suppose that the given sentence is of the form Bdc[Alxc
A=aa:—a» and [A] is proper.
Case 1, where c¢=[,]1. NPTW(6)7(5)=NP can be proved easily.
Case 2, where c=A, V .
If d#[,1, —, and a:=[, then
(a) d is not a variable;

dc[Alx s dlc[A]]lx SN d[c[A]][x-l—Ns-% [DlclAllllx, and
de[Alx — D[c[A}x ——> [D{c[Alllx —— [DIc[Alll[x .
(Here we define D=3u if d=3, D=d[if d=A, V.)
(b) d is a variable;
delAlx —=— [d[c[Allx]— [d[c[All%] , and
de[Alx — dlc[Alx— d[c[Allx — [d[c[A]lx] .

Hence, NPT(6)T(5)=NP. The same proposition can be proved in other cases
and the case wherein ¢=-1 or 3. NPT1'(6)=NP can be proved similarly.
7. Let A be proper.

3

Normalizing‘ Procedure of Sequences over Ordinary Logical Constants 33
(@) [Al— A—" A, and [4] —[A]— A .
Hence, NPTy(7)=NP .
b) A—— [A]—5 [A]— A, and A — A.
Hence, NPTy'(7)=NP .

Q.E.D.

By our Theorem, there exists only one sentence B for any sentence A
such that A&=>B. So, we call this B the NORMAL FORM of A. Now,
we can say that any sentence has one and only one normal form of it. For
example, suppose that a sentence [[V xu]x[zy is given.

[V xulalzy —— [V [[xalalzy —— [V [xdadzy]ll] —— [V [zl ——

[V I[xl[#[zv]]]]] (proper)—— [V [[x][xlzy]]]] (normal). Thus, [\ [[xz]x[zy11]]
is a normal form of [[V xu]x[zy and therefore [[V xu]x[zy means that X(u) or

for any %, Z(y) holds®.

3. Conclusions

In this paper, we have discussed the case in which primitive symbols are
[,1,, A, V,3 and an infinite number of variables. If we add “implica-
tion (D) to primitive symbols, we should express “A implies B” as [D
[[AI[B]1]. But in this case it would be necessary for us to construct a trans-
formation so that there exist only two normal sentences between the head-
bracket just after “ D7 and its partner. It does not seem to be too difficult
to do so.

Our formalism can be used for any logic which has these primitive sym-
bols, such as LK or minimal logic LM. But if we eliminate negation “—”
from primitive symbols, 1.1 of our transformations, 2.1 and 3.1 of our de-
finition of normal sentence, we can obtain a formalism of positive logic LP.
In this case, if we regard [] as constantly false proposition A and define
“not A” by “A implies A ”, then we obtain another formalism for LM or LK.

If we restrict primitive symbols to [,] and an infinite number of variables,
transformations to 3, 4, 5.1, 5.2, 6, 7 and definition of normal sentence to 1,
2.3, 3.3, 4, 5 with obviously necessary modifications, we obtain a formalism for
primitive logic LO. Thus, we can say that our normalizing procedure gives
a formalism which makes any sentence “well-formed” for most logics.

References

[1] Ono, K., A formalism for primitive logic and mechanical proof-checking, Nagoya
Math. J., 26 195-203, (1966).

, A certain kind of formal theories, Nagoya Math. J., 25 59-86, (1965).

, On universal character of the primitive logic, Nagoya Math. J., 27 331-

353, (1966).

[2]
[3]

n

2)

4)
5)

7

8)

H. O~o

See K. Ono [1], {2]. The author would like to express his gratitude to K. Ono and
A. Nozaki for their many suggestions which have helped greatly in preparing this
paper. ‘

See K. Ono [3].

As for ‘‘implication”, see section 3 of this paper.

See section 3 of this paper.

‘When we interpret any given sentence of the form 8, we must verify that it is not
the part of the form 6 or 7.

The similar proposition does not hold with respect to a head-variable. For instance, 3 2y
is transformed into [3 #[y]]. ¥ is a head-variable in 3zy but a tail-variable in [32[y]].
It is easily verified that if a given sentence A is normal, then 7T(;)4 (sentence ob-
tained from A by applying T(¢)) is equal to A for any 4 and that if A is proper and
77, then T@HA=A .

As for interpretation of normal sentences, refer to section 1.

