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Abstract

In this information explosion era, data volumes grow drastically, posing great
challenge to the data-intensive applications, such as the database management sys-
tems. These data-intensive applications are required to process the huge amount
of data quickly. However, in the current hard disk-based storage system, the speed
gap between the CPU and hard disks becomes the bottleneck to improve the per-
formance. At this time, the Solid State Disk (SSD) is on the spotlight. The SSD,
mainly composed of flash memory, has a significant performance advantage over
the traditional hard disk. The read performance of SSD is about two orders of
magnitude better than that of hard disk. The sequential write performance of SSD
is also much better than that of hard disk. However, the random write perfor-
mance of SSD is comparable or even worse than that of hard disk, because of the
“erase-before-write” design of the flash SSD. Therefore, comprehensive study is
required to incorporate the flash SSDs into the existing enterprise database man-
agement systems.

In this dissertation, I performed a research on the possibility of building high
performance database management systems with SSDs. Firstly I provided the ba-
sic performance study of the flash SSD. I built a micro benchmark to bypass the
operating system buffer cache to get the real performance offlash SSD. With the
micro benchmark, I got the performance results of flash SSD. Iimplemented a
flash SSD measurement and simulation system. Secondly I had the performance
evaluation of database system with TPC-C benchmark. The IO behavior in the
TPC-C experimental system was analyzed along the IO path. Next, I described
the SSD-oriented scheduling methods, confirmed the potential performance im-
provement by static ordering and merging IO trace, and verified the expected per-
formance gain through online IO replaying. The evaluation of this scheduling
system showed that it can significantly improve the IO performance of database
system on flash SSDs. I summarized the findings, and drew a conclusion that the
write defering and coalescing, address converting and aligning was very effec-
tive with little resource in the scheduling system. Therefore, the proposed SSD-
oriented scheduling was effective to improve the database performance. Finally, I
concluded the dissertation and described the future work.
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Chapter 1

Introduction



1.1 Background

In the information explosion era, the data volume grows drastically, posing great
challenge to the data processing applications in current system, especially the
system for data-intensive applications, such as the database systems. The per-
formance of current system is mainly limited by the storage system, because the
CPU speed and multi-core technology have been fully developed, while the speed
of storage system, mainly composed of the rotating hard disks, has not been im-
proved proportionally. Therefore, the speed gap between the CPU and disks lim-
its the performance of the data-intensive applications, especially when the size of
the datasets exceeds the amount of main memory, the processing of the massive
dataset cannot satisfy the requirements.

With the emerging of new storage device, such as the solid state disk (SSD),
the speed gap between CPU and disk is expected to be reduced. The SSDs, es-
pecially flash memory SSDs, are drawing more and more attention in the storage
world. Jim Gray once said “Flash is disk, disk is tape”, and inthe book “The 4th
Paradigm” he envisaged so-called “CyberBricks” using the SSD to act as node
for the distribute computing of the massive dataset [25]. With the performance
and volume increases quickly, the SSDs are being incorporated into the enterprise
storage systems and expected to play a vital role.

While the SSD is viewed as a promising storage alternative for storage sys-
tem, it is also recognized that the access performance of SSDs is quite different
from that of the traditional rotating hard disks, and existing systems are mainly
designed and tuned based on the hard disks for decades. It is very necessary to
carefully examine and re-consider the existing systems in order to maximize the
performance benefits of SSDs. Therefore, I performed the study on flash SSD and
examined the techniques for the existing database systems on SSDs to fully utilize
the performance advantage of SSDs.

1.2 Contributions

My contributions are summarized as follow:

1. I built a micro benchmark, verified the performance characteristics of flash
SSD.

2. I studied the database performance on SSDs with the analysis along the IO
path. I used TPC-C benchmark, several “high-end” SSDs on themarket,
two file systems with contrary write strategies (in-place update vs. non-in-
place update), and two widely used DBMSs for the evaluation.I examined
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the IO behaviors along IO path in the OS kernel and provided myanalysis
on the usage of flash SSDs.

3. I designed a SSD-oriented scheduling system. I employed the checkpoint
information from application as IO management window to be used by my
scheduling system. I built the the validation system with static ordering and
merging of IO trace to verify the effectiveness of this SSD-oriented schedul-
ing system, and implemented an online scheduling system with flexible con-
figurations and validated the effectiveness.

1.3 Outline

The following chapters will be organized as follow: chapter2 will give a brief
introduction to the flash SSD. Chapter 3 will list the existing works in this field.
chapter 4 will present my study on the basic performance of flash SSD. Chapter
5 will provide the performance evaluation of SSD-based database system using
the TPC-C benchmark, as well as the IO analysis along the IO path. Chapter 6
will describe the scheduling system with various IO scheduling techniques. The
evaluation of this scheduling system will be provided in chapter 7. Finally, I
provided the conclusion in chapter 8.



Chapter 2

Flash SSD



2.1 Flash SSD

Flash SSD is composed of NAND flash memory. NAND flash memory isa kind
of EEPROM (Electrically Erasable Programmable Read-Only Memory). There
are two types of NAND flash memory; SLC and MLC. SLC flash memorypro-
vides better performance and endurance, while MLC flash memory makes large
capacity available. As for the price, SLC flash memory is moreexpensive than
MLC flash memory.

There are three operations for NAND flash memory: read, write(program),
erase. The read and write operations are very fast, while theerase operation is
time-consuming. Table 2.1 summarizes necessary time for each operation in a
4GB flash memory chip [54]. The data cannot be written in place. When updating
the data, the entire erase-block containing the data must beerased before the up-
dated data is written there. This “erase-before-write” design leads to the relatively
poor performance of random write.

Table 2.1: Basic Performance of Flash Memory Chip[54]

Page Read to Register (4KB) 25µs

Page Write from Register (4KB) 200µs

Block Erase (256KB) 1500µs

Recently, the large capacity flash memory is starting to appear in the market.
Large capacity flash memory chips are assembled together as the flash SSD (Solid
State Drive), with dedicated control system, emulating thetraditional block device
such as hard disk. The internal structure of the flash SSD can be shown by block
diagram in Figure 2.1. The flash SSD can be directly connectedto the current
system by the SATA interface1. Inside the flash SSD, the “On-board System”
contains the mapping logic called Flash Translation Layer (FTL) which makes
the flash SSD appear to be a block device. The “NAND Flash Memory” packages
are assembled with a number of parallel flash memory buses, which are called
“Channels” by some manufacturer[30].

2.2 Flash SSD Products

At the time author wrote this dissertation, the flash SSD is mainly with SATA and
PCI Express (PCIe) interface. The SATA flash SSD has a good compatibility with

1Some flash SSDs are packed with the PCIe interface.
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Figure 2.1: An example of internal structure of flash SSD

the existing system and is easy to use for the end user. While the PCIe flash SSD
can be seen in some enterprise storage solutions [16].

The flash SSDs can also be divided into to SLC flash SSD and MLC flash
SSD, depending on the type of flash memory used inside the SSD.As introduced
in section 2.1 about the features of SLC and MLC flash memory, the SLC flash
SSD is usually expensive, and purchased by the users with higher performance
requirements. The MLC SSD is cheaper with large capacity, can be used for low-
end personal computer.

Table 2.2 listed three SLC flash SSDs used in this dissertation.

2.3 Flash SSD and Database System

The performance of database system, especially the online transaction processing
system (OLTP), is limited by the performance of disk-based storage system. The
small and random IOs in database system is very challenging for the disk heads
to seek and response quickly. Because of the innate mechanical characteristics of
hard disk, the performance of the hard disk is hard to be improved so much. At
this time, the flash SSD seems a good alternative for the database system because
there is no moving part for the SSD. Table 2.3 provides a performance compari-
son between hard disk and flash SSD by the performance value disclosed in the
specification. We can see that the seek time of OCZ SSD is abouttwo order of
magnitude faster than that of the hard disk.

It should be carefully considered to incorporate the flash SSD into the current
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Table 2.2: Basic specifications of the SSDs used in the dissertation

Manufacture SLC/MLC Form
Interface Capacity

Cache Heads/
Model /RPM Factor Size Channels
Mtron

SLC 3.5” 32GB 16MB1 4 channels2
PRO 7500 SATA
[45] 3.0Gbps

Intel
SLC 2.5”

SATA
64GB 16MB3 10 channels

X25-E[30] 3.0Gbps [31]
OCZ

SLC 2.5”
SATA

120GBVERTEX EX 3.0Gbps 64MB Not found
[49]
1 Reported by hdparm[24] in my test system.
2 Estimated by the number of Flash Bus Controller (FBC) in the block diagram.
3 Obtained by the memory chip used in the 32GB model.[1]

Table 2.3: Performance specifications of the SSDs and hard disk used in this
dissertation

Manufacture
Sustained Rate Performance Value

Model
HGST

300MB/s1
Seek time:

HDS72107 8.2ms read (typical)
[26] 9.2ms write (typical)
Mtron Sequential Read IOPS(4KB): 12,000
PRO 7500 Read: 130MB/s Sequential Write IOPS(4KB): 21,000
[45] Write: 120MB/s Random Read IOPS(4KB): 12,000

Random Write IOPS(4KB): 130
Intel Read: 250MB/s Random Read IOPS(4KB): 35,000
X25-E[30] Write: 170 MB/s Random Write IOPS(4KB): 3,300
OCZ

Seek Time: less than 0.1msVERTEX EX Read: 260MB/s
[49] Write: 100 MB/s
1 This bandwidth is connection bandwidth. Sustained transfer rate is not

disclosed in the data sheet.
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system, because the current system has been optimized basedon hard disks for a
long time. In order to maximize the performance benefit of flash SSD, the existing
system should be carefully evaluated. There are a lot of works about optimizing
the existing database system for flash SSD, as will be seen in next chapter.

2.4 Summary

The basic characteristics of flash SSDs are introduced. The flash SSD seems a
promising alternative to the hard disk in the database system, however, it must be
carefully evaluated due to the different characteristics.



Chapter 3

Related Work



3.1 Introduction

A lot of researchers have shown a large amount of contributions on the research
of SSDs. I organized some of the existing works as follow.

3.2 SSD

3.2.1 Flash Translation Layer

Flash Translation Layer (FTL) bridges the operating systemand flash memory.
The main function of FTL is mapping the logical blocks to the physical flash data
units, emulating flash memory to be a block device like hard disk. Early FTL
used a simple page-to-page mapping[34] with a log-structured architecture[53].
It required a lot of space to store the mapping table. The block mapping scheme
was proposed in order to reduce the space for mapping table. The scheme intro-
duced the block mapping table with page offset to map the logical pages to flash
pages[5]. However, the block-copy may happen frequently. To solve this prob-
lem, Kim improved the block mapping scheme to the hybrid scheme by using a
log block mapping table[37]. More works are shown in [51][15][36].

3.2.2 Evaluation

Agrawal et al.[3] studied the internal design trade-offs that will have impact on
the performance. A comprehensive evaluation of the flash devices can be seen in
uFLIP[9][7].

[20] studied the overhead of SSD in existing system by DirectIO. They used
the random read request (random write is an opposite but identical operation) to
measure the overhead. The overhead was measured in responsetime and CPU
clocks of each phase along the IO path. Compared to the service time of SSD, the
overhead of the platform was still small. So that authors acclaimed that the current
platform with SATA interface was sufficient for the SSD. Excluding the overhead
of SSD, the major overhead of the rest functions along the IO path came from
the generic OS/Device functions (e.g. Driver, Interrupts,Context-switching), not
from the storage specific functions such as SCSI or ATA processing.

[52] studied the performance of Intel X25-E flash SSDs in the RAID system.
The experiment results showed that the performance of SSD ina RAID (0,5,10)
system did not scales well; rather, the random IOPS performance of the RAID0
system degraded more than 30% than that of the single SSD. However, the random
IOPS performance scaled well with the number of RAID controllers. Moreover,
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author found that the software RAID was better than the hardware RAID. All this
confirmed that the RAID controllers were the performance bottleneck.

[44] provided performance evaluation of several flash SSDs,specially the eval-
uation of three Enterprise Class PCIe SLC flash SSDs: Virident tachIOn 400GB
PCIe-x8, FusionIO ioDrive Duo 2x 160GB PCIe-x4, Texas Memory Systems
RamSan-20 450GB PCIe-x4. The performance of of PCIe SLC flashSSDs was
significant compared to the SATA MLC flash SSDs. The comparison showed that
no device outperformed others consistently in all the cases, that is, none of these
device was one size fit all device. The device should be carefully evaluated by the
customer’s IO pattern.

3.3 File Systems

Most of the file systems for flash memory exploited the design of Log-structured
file system[53] to overcome the write latency caused by the slow erase operations.
JFFS2[32] is a journaling file system for flash with wear-leveling. YAFFS[63] is
a flash file system for embedded devices. DFS[33] provided a file system design
on flash storage layer instead of the FTL layer. The DFS was designed to bypass
the traditional file system buffer and perform direct accessto the SSDs via the
flash storage layer. Author argued that the common FTL based interface, com-
bined with the traditional file system, would have much overhead. Because the
traditional file system was designed for hard disk system, the buffer and access
pattern were not optimized for flash SSD. Since flash SSD has much fast access
performance, the file system buffer and access pattern should be re-considered.
Therefore, they advocated to build the file system onflash storage layerinstead
of the FTL layer. Based on the flash storage layer, the newly designed file system,
Direct File System (DFS) could perform the direct access. Several applications
were evaluated on DFS with the comparison to EXT3.

3.4 Database Systems

3.4.1 Embedded Systems

Early design for database system on flash memory mainly focused on the em-
bedded systems. FlashDB[48] was a self-tuning database system optimized for
sensor networks, with two modes; disk mode for infrequent write and log mode
for frequent write. LGeDBMS[35], was a relational databasesystem for mobile
phone.
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3.4.2 Large Database Systems

As flash SSDs are being used in enterprise storage platforms,many researchers are
focusing on the performance of the flash SSDs instead of the raw flash memory.
A good summary about the usage of flash for DBMS can be seen in [4], in which
the usage of flash for DBMS had been categorized into three contexts: (1) as a log
device for transaction processing system with all data residing in memory, (2) as
the main storage media for transaction processing, (3) as anupdate cache for the
data warehouse applications. Authors provided the techniques and evaluation for
each context. FlashLogging[14] gave further information about (1).

Some work with log-structured file system for database system is as following.
Myers[46] had a study on the usage of flash SSD in database systems and provided
the IO throughput comparison between the LFS and the conventional file system.
The evaluation of database systems on SSD using TPC-C benchmark with log-
structured file system can be found in [60] and [61]. Comparison of flash SSD
and hard disk-based Raid-0 system with TPC-C can be seen in [42].

[47] studied migrating the server storages to SSDs, and showed that it was
not a cost-efficient solution at that time. For large enterprise database, the SSD
may not be cost-efficient to store the whole database even when author wrote this
dissertation. Therefore, using the SSD as a cache tier to thehard disk is consid-
ered. To use flash SSD as a cache for the large storage system seems to be a trend
for large system providers, such as the Oracle Exadata Version 2 [50]. [11] used
the DB2 snapshot utility to gather the IO information, then decided which objects
should be put into the “limited” SSD. Another data placementscheme for SSD
was proposed in [12]; unlike previous solution, it cached region-based data instead
of page-level or object-level data[11]. Different regionson disk were logically di-
vided by the access frequency and marked with different “regional temperatures”.
The SSD behaved as a write-through cache. When reading, readthe SSD firstly.
When updating, update the pages on SSD (if cached) and HDD together. This
design performed random writes to the SSD at page granularity, because author
assumed that there were no noticeable performance difference between the ran-
dom writes and sequential writes onhigh-endSSD such as FusionIO. Holloway
[27] proposed the DD which combined the SSD with HDD to bufferthe random
write. The elapsed time of DD was compared with that of NILFS with a read-
intensive workload. A reversed solution, using the hard disk as the write cache to
extend the SSD life time, can be seen in [55]. Besides extending the SSD lifetime,
it could also reduce the IO latency as acclaimed.

A block level optimization, Page-Differential Logging (PDL)[39] proposed to
accumulate the page differentials in buffer then writes to flash memory once. The
logical page may be updated many times before it was written to flash. When
a logical page was requested to write to flash memory, PDL willfirstly read the
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base page from flash memory, then got the differentials by comparing the logical
page and the base page, only wrote the differentials to device. When the page
was read from flash memory again, the base page and the differential page were
read out together to reconstruct the logical page. Prior work, in-Page Logging[41],
proposed to co-locate a data page and its log records in the same physical location.

As for the utilization of the high read performance of SSD, [59] studied the
algorithms in query processing and provided a join algorithm, FlashJoin, with the
TPC-H evaluation.

3.4.3 Index

Lazy-Adaptive Tree[2] used buffers for nodes to host the updates and write to flash
devices in batch. [11] proposed the FD-Tree, which using a small B+-tree (head
tree) to hold many random writes within a small space, because on flash SSDs
the performance of random writes on a small address space wasclose to that of
sequential writes. When the head tree was full, the data weremerged into the
below levels of the head tree in batch, hereby the random writes were converted
into sequential write by merging in batch. An B-tree implementation on FTL can
be found in [62] .

3.4.4 Key-Value Store

[17] used flash SSD as cache between main memory and disk for the specific
application, key-value store. The in-memory hash table used the compact key sig-
nature to save the space and keep more keys in memory. Two applications were
chosen to be evaluated: online multi-player gaming and storage de-duplication.
In multi-player gaming, the states of the player was stored as key-value store
and accessed frequently. The storage de-duplication was a techniques to remove
the redundancy of backup system. Files in the backup systemswere divided
into chunks, and hash signature algorithms were used to determine whether two
chunks were identical. The main data structure was hash.

3.5 Enterprise Systems

Gordon[13], was a powerful cluster built with flash memory for data-intensive
applications. Oracle used PCIe flash memory inside their enterprise stor-
age solutions[16], and showed great performance improvement by the TPC-C
benchmark[57]. EMC incorporated the flash drives into theirstorage solutions
to boost the performance for data-intensive applications [19][18].



Chapter 4

Basic Performance of Flash SSDs



4.1 Introduction

The flash SSD has the capability of disk emulation, but its internal mechanism is
different of that of conventional hard disk (HDD). The performance characteris-
tics should be carefully studied when considering about thedeployment into the
current systems. In this section, I presented my experimental examination with
three major SSD products.

Some literatures have disclosed the basic performance of several flash memory
SSDs [9][46]. In this section, I developed the micro benchmark, validated some
general features of flash SSDs reported by the existing work.I built a measure-
ment system, which was flexible to not only get the performance of the specific
flash SSD products, but replay and measure the real workload trace.

4.2 Experimental Environment

Dual-core Intel Core 2 Duo 1.86GHz

2GB Memory

SATA 3.0Gbps Controller

CentOS 5.2      64-bit

Kernel 2.6.18

Flash SSD

Mtron PRO 7500

32GB

Flash SSD

OCZ VERTEX EX

120GB

Flash SSD

Intel X25-E

64GB

Hard Disk (HGST)

Hitachi HDS72107, 

32M Cache, 750GB

Dell Precision™ 390 Workstation

3.5”, 7200RPM, SLC, 2.5” SLC, 2.5” SLC, 2.5”

Figure 4.1: Experimental setup

In this section, I presented my basic performance study on three commercial-
ized flash SSDs. Figure 4.1 illustrates my test system with three flash SSDs and a
hard disk. In chapter 2, Table 2.2 has provided some basic information from the
specification of these high-end (relatively fast and reliable with SLC flash memory
chips inside) flash SSDs from the major product lines of Mtron, Intel and OCZ.

I developed a micro benchmark tool running on the Linux system. The bench-
mark tool has the capability of automatically measuring overall IO performance
by issuing several types of IO sequences (e.g. purely sequential reads and 50%
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Micro Benchmark

Real Trace

Trace
Replayer

Kernel Tracer

Linux

OS

Kernel

IO Simulation

Real Trace

IO Simulator

Linux OS

Model

HDD SSD SSD

Figure 4.2: Measurement System

random reads plus 50% random writes) to a target SSD. The benchmark tool by-
passed the file system and the operating system buffer herebyclarifying the pure
performance of the given SSDs. The effects of file systems andoperating system
buffers will be discussed in later sections. As for the caching inside the SSDs, the
SSDs allow me to change their controller configurations, butI employed default
settings in all the experiments: read-ahead prefetching and write-back caching
were enabled, because the vendors are supposed to ship theirproducts with rea-
sonable configurations.

The entire measurement system is illustrated in Figure 4.2.I built the mi-
cro benchmark to get the raw IO performance by bypassing the OS kernel. At
the same time, the kernel tracer can obtained the IO trace andreplay it for the
validation. The real trace can also be replayed by the trace replayer. The mi-
cro benchmark results can be used to generate the IO Simulation Model, which
enables the IO simulator to replay the real trace.

4.3 Experimental Results

4.3.1 IO Throughput

I firstly examined the IO throughput of sequential accesses.Three cases are com-
pared for each device in Figure 4.3 to 4.6. Higher throughputs were confirmed in
most of the cases in the SSDs than the hard disk, but several exceptions were also
seen. In Figure 4.4, the read and write throughputs of Mtron’s SSD were close to
each other and saturated at around 120MB/s, which is consistent with the band-
width specifications in Table 2.3. In Figure 4.5, the read andwrite throughputs of
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Figure 4.5: IO Throughput for Sequential Access: Intel
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Figure 4.6: IO Throughput for Sequential Access: OCZ
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Intel’s SSD were much higher than that of Mtron’s SSD, but thewrite throughput
decreased when request size became larger than 32KB. The acclaimed bandwidth
in Table 2.3 was also confirmed in Figure 4.5 when the request size was set to
1MB1. In Figure 4.6, the read throughput of OCZ’s SSD was higher too, but the
write throughput was the worst. The confirmed bandwidth herewas lower than
that indicated in the Table 2.3.

Random accesses were next studied. Figure 4.7 to 4.10 shows the through-
puts that were observed for random accesses when then numberof outstanding
IOs was set to one. The read throughput kept untouched as thatof sequential
throughput and much higher than that of the hard disk, while the write and the
mixed-access throughputs were drastically degraded on Mtron’s SSD and OCZ’s
SSD. In the case of mixed access, reads and writes were respectively given 50%
probability. I had expected that the mixed-access throughput would fall between
the read throughput and the write throughput, but the observation was that the
mixed-access throughput was comparable with the write throughput, as denoted
by “mix(50r50w)” in Figure 4.8 to 4.10. Similar observations are also confirmed
by other researchers and this characteristic is sometimes calledbathtub effect[21].
Only on Intel’s SSD, the write and mixed-access throughputswere clearly better
than that on hard disk. Section 4.3.3 will present more results.

The same experiment was conducted with 30 outstanding IOs. The results
are shown in Figure 4.11 to 4.14. The read throughput improved clearly on the
hard disk, Intel’s SSD and OCZ’s SSD, while significant improvement was not
confirmed for the read throughput in Mtron’s SSD and the writeand mixed-access
throughputs in all the SSDs.

I had expected that some clear relation could be seen betweenthe performance
of flash SSDs and the internal design information disclosed by the manufacturers.
Let us look back at the vendor-disclosed design informationsuch as cache size
and channel number cited in Table 2.2. Unfortunately I couldnot find strong re-
lationship between such design information and the experimental results above
presented. It is clear that the overall performance is also impacted by more other
design factors, yet vendors only disclosed limited design information. Figure 4.4
and 4.5 shows that Intel’s SSD has relatively high transfer rate than Mtron’s SSD.
This might be caused by design difference of internal channels; Intel’s SSD holds
ten channels whereas Mtron’s SSD has only four. However, additional informa-
tion such as the bandwidth of internal channels, namely MB/s, is not disclosed.
Further analysis is not possible for me due to the lack of information. Experiment
presented in this section can be seen as an alternative way for me to understand
the basic performance characteristics.

1I do not show it here for the brevity.
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4.3.2 IO Response Time

Since the random access performance is important to typicaldatabase applica-
tions such as the transaction processing systems, I furtherstudied the response
time. The response time distribution are shown in Figure 4.15 to 4.18. I have the
following observations:

Random ReadThe random read response time was close to each other among
three SSDs. Note that I saw a single sharp cliff in each cumulative frequency
curve for the SSDs. This means that most of random reads couldcomplete in a
very small range of response times. Such small variance in response times was
not confirmed in conventional hard disk, where the rotational platter always gives
unpredictability of response times.

Random WriteCompared with random read, random write gave more compli-
cated characteristics. Two major cliffs were confirmed around 100 microseconds
and 10,000 microseconds respectively in Mtron’s SSD. Although the inside logic
is not documented, my conjecture is that the long response time is caused by the
inside flush operations. When the on-disk buffer is full, thecontrol system will
flush some pages and make room for the new requests. The flush operation is very
time-consuming since it may incur the erase operations. Similarly, multiple cliffs
were also confirmed in Intel’s SSD and OCZ’s SSD.

Random 50% Read 50% WriteThis pattern (denoted by “mix(50r50w)” in
the figures) is close toRandom Write. Although the pure read performance was
very high and almost predictable, the write performance andthe mixed-access
performance were sometimes much poor and its variance was significant.

It is clearly shown in Figure 4.16 that the random write performance of Mtron
SSD is different from the rest SSDs (two cliffs in the write curve in Figure 4.16),
so I further presented the detailed IO response time information of Figure 4.16,
as shown in Figure 4.19, which shows each response time of the4KB random
write request on Mtron SSD. Two belts of data values are clearly shown in Figure
4.19. Most of the values in the below belts are smaller than100µs. In the upper
belts, data points are scattered between10000µs and 30000µs, representing a
very long response time. Since the inside logic is not documented, my conjecture
is that the long response time may be caused by the flush operation in the “On-
board System” described in Figure 2.1. When the “Buffer” is full, the “On-board
System” will flush some pages and make room for the new requests. The flush
operation is very time-consuming since it may involve many internal activities
which may incur the “erase” operations.
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Figure 4.15: IO Response Time Distribution for Random Access (Single Thread):
HGST
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Figure 4.16: IO Response Time Distribution for Random Access (Single Thread):
Mtron
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Figure 4.17: IO Response Time Distribution for Random Access (Single Thread):
Intel
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Figure 4.18: IO Response Time Distribution for Random Access (Single Thread):
OCZ
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Figure 4.19: IO behavior of random write access on Mtron SSD(4KB Request
Size)

4.3.3 Bathtub Effect

Bathtub effect[21] indicates the performance characteristics of mixed access pat-
terns of reads and writes. In order to understand the performance characteristics of
the mixed access patterns, I performed the experiments by varying the percentage
of read requests. The percentage of read requests was variedfrom 0% to 100%
with the 10% increase. The results are shown in Figure 4.20 to4.31, whose x-axis
shows the read percentage.

As shown in Figure 4.20 to 4.22, the overall IO throughput (read+write) is
much better at either side of the pure sequential read and pure sequential write,
and the throughput is the worse in the middle of the x-axis with 50% reads and
50% writes.

Figure 4.23 to 4.25 further provides the average response time in the mixed
sequential access pattern. It shows that the read performance becomes much
worse in the mixed access pattern compared to the pure read case (read percentage
100%). It also shows that the write performance was getting better slightly when
increasing the percentage of reads.

Figure 4.26 to 4.28 shows the random IO throughput with mixedaccess pat-
tern, the performance is better at either side except the Intel’s SSD. Figure 4.29
to 4.31 further discloses the average response time of each access pattern. The
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Figure 4.20: IO Throughput of Mixed Sequential Access Pattern: Mtron
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Figure 4.21: IO Throughput of Mixed Sequential Access Pattern: Intel
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Figure 4.22: IO Throughput of Mixed Sequential Access Pattern: OCZ
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Figure 4.23: IO Response Time of Mixed Sequential Access Pattern: Mtron
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Figure 4.24: IO Response Time of Mixed Sequential Access Pattern: Intel
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Figure 4.26: IO Throughput of Mixed Random Access Pattern: Mtron
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Figure 4.28: IO Throughput of Mixed Random Access Pattern: OCZ

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  20  40  60  80  100

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e 

(u
s)

Read Percentage (%)

read
write

read+write

Figure 4.29: IO Response Time of Mixed Random Access Pattern: Mtron
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Figure 4.30: IO Response Time of Mixed Random Access Pattern: Intel
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Figure 4.32: Micro benchmark results of Mtron SSD and the fitting lines

read performance also gets worse in the mixed access pattern, and the write per-
formance gets better when increasing the read percentage.

4.3.4 Performance Equations

I will discuss the naive performance equations generated bymicro benchmark
results, similar work can be seen in [43]. There are several advanced flash SSD
simulators, such as [38][3].

The request size and response time can be plotted into the x-yplane, as shown
in Figure 4.32, which shows the response time is increasing proportionally with
the increase of request size. I designed a naive fitting line equation,y = ax+ b, to
approximately represent the relation between the request size (x) and the response
time (y). The coefficienta can be explained as some transmission overhead which
is proportionally to the request size, and the constantb is explained as some innate
overhead which is constant with the specific SSD. The fitting line equations were
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calculated and given by the equation (4.1)(4.2)(4.3)(4.4), then the equations were
plotted on Figure 4.32. As shown in Figure 4.32, it is clear that the fitting equation
lines fit well for sequential read, sequential write, and random read. The random
write is hard to fit. These equations were used for the estimation of writes flushing
time required by checkpoint flushing overhead in the online scheduling discussed
in chapter 6.

SequentialRead : y = 4.0247x + 41.3µs, x ≥ 1sector (4.1)

RandomRead : y = 4.0160x + 58.0µs, x ≥ 1sector (4.2)

SequentialWrite : y = 4.2495x + 26.4µs, x ≥ 1sector (4.3)

RandomWrite : y =











7298.8µs, 0 < x ≤ 128sector

4.6076x + 7043.9µs, 128 < x ≤ 1024sector

4.4768x + 7083.6µs, x > 1024sector

(4.4)

4.4 Summary

In order to have further optimization based on the characteristics of flash SSD, I
developed a micro benchmark system. The performance is discussed by the results
of my micro benchmark system. A naive performance model is generated based
on the micro benchmark results, which will be used for the scheduling system in
chapter 6.



Chapter 5

Performance Analysis of Flash SSDs
Using TPC-C Benchmark



5.1 Introduction

The speed gap between the CPU and hard disk-based storage system is a bot-
tleneck of the performance of the disk-based high performance database system.
Using the new storage media such as flash SSD may be a good attempt to reduce
the gap. However, direct deployment of flash SSD may not maximize the perfor-
mance benefit, because the current system has been optimizedbased on hard disks
for a long time. That is, the stack of the current storage systems have been well
tuned for decades based on the characteristics of the hard disks. With the opposite
characteristics such as no moving parts, “erase-before-write”, flash SSDs may not
be fully exploited in the existing storage systems by directdeployment.

To better utilize the flash SSD within the current system, we need to have a
comprehensive understanding of the IO behaviors along the IO path for the cur-
rent systems on flash SSD. The IO path has been designed chronically along the
development of hard disks for decades, to hide the seek latency and utilize the se-
quential bandwidth. The softwares at different layers of the OS kernel, controllers
and devices, separate the IO path into many passages. At eachpassage, the IO
requests will be processed by the software layer in its own way. The whole sys-
tem has been studied and adjusted by the researchers and developers for a long
time to provide a good performance with a large number of harddisks. On the
use of the flash SSD, the study of the IO activities at different locations is also
very necessary to provide the optimizations by the characteristics of flash SSD, or
balance some hard disk-based design.

In this chapter, I will try to evaluate the performance of flash SSDs in the
database system with TPC-C benchmark, providing the IO analysis along the IO
path.

5.2 Transaction Processing and TPC-C Benchmark

The high performance database systems are usually composedof the the simul-
taneous execution of multiple types of transactions that span a breadth of com-
plexity. In such a database system, the disk input and outputis significant with
the contention on data access and update. The complex OLTP application envi-
ronments can be viewed as the representative of such database systems. Multiple
on-line terminal sessions of OLTP application will generate intensive and non-
uniform data access. The response time is critical, which posing the challenging
to the application execution time, in which the IO time of theunderneath storage
system is usually the main part.

The design of storage system is usually elaborate for high performance
database system such as OLTP application. The high performance OLTP appli-
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Figure 5.1: TPC-C System Architecture

cations can adopt the Direct Attached Storage (DAS) to shorten the IO path and
utilize the high throughput of the bus between the server andstorage systems.
With the great improvement on the throughput of the network,the Network At-
tached Storage (NAS) and Storage Area Network (SAN) appear in the market.
In either DAS or network-based NAS and SAN, the storage resources are often
virtualized through the IO path and then presented to database systems. Vari-
ous functions are incorporated into the IO path and they are managed far from
database systems. This approach is widely accepted in the industry for mitigate
the system complexity.

In order to simplify the system for analysis, I will simply separate the system
into several layers, in a top-down manner: OLTP application, database applica-
tion, operating system (OS), and storage devices.

I adopted the three-tier implementation of the TPC-C benchmark, as shown in
Figure 5.1. The virtual users connect to the database clients via the network, and
the database clients connect to the database server by the network. The storage
system connects to the database server directly.

The virtual users will pick up one of the five transactions randomly and issue
the selected transactions to the DBMS, as shown in Figure 5.2. Various transac-
tions are issued to the DBMS in parallel, and these transactions are processed by
DBMS concurrently with intensive data access to the storagesystem, and hereby
having a big challenge to the performance of the storage system.

Figure 5.3 illustrates the software stacks of the TPC-C benchmark system. In
Figure 5.3, I use the TPC-C [58] to represent the OLTP application. TPC Bench-
mark C(TPC-C) is an OLTP workload. Although TPC-C cannot reflect the entire
range of OLTP requirements[28], the performance results ofTPC-C can provide
important reference for the design of database system, thusit is accepted by main
hardware and software venders of the database systems. The workload of TPC-C
is composed of read-only and update-intensive transactions that simulate the ac-
tivities in OLTP application environments. Therefore, thedisk input and output is
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very significant, and hereby the TPC-C can be used to exploit the potentials of the
new storage media, such as the flash SSDs.

Beneath the TPC-C benchmark, specific database applications, such as
MySQL and some commercial database application, are installed on host OS.
In the OS kernel, special file system modules can be loaded, aswell as the de-
vice driver. The transaction processing applications willissue the requests to the
database systems, then the database system will process therequests and issue IOs
to the storage devices (e.g. flash SSDs) via the device driverin the OS kernel.

5.3 Experimental Environment

I built a database server on the same system described in Figure 4.1 in Chapter 4.
The software stacks can be illustrated in Figure 5.3.

In my TPC-C benchmark application, I started 30 threads to simulate 30 vir-
tual users with 30 warehouses. The initial database size was2.7GB. TheKey and
Thinkingtime was set to zero in order to measure the maximum performance. The
mix of the transaction types is shown in thenormalcolumn of Table 5.1. Unless
specially stated, I used this mix for the experiment. Besides the normal mix in
Table 5.1, I also configured another two types of workloads:read intensiveand
write intensive, in which theread-onlyandread-writetransactions are dominant
respectively.
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DBMS serves the requests from TPC-C benchmark. In the experiment, I set
up a commercial DBMS and an open-source DBMS MySQL. The detailed con-
figuration of these DBMSs is shown in Table 5.2.

Generally, there are two update strategies for the data, in-place update and
non-in-place update (NIPU). For the in-place update strategy, the original data
was searched firstly and replaced with the new data. As a comparison, the non-
in-place update strategy, as shown in Figure 5.4, will writethe new data into an
new place, leaving the old data obsolete. The obsolete data will be cleaned by the
background process called Garbage Collection or Segment Cleaning.

The NIPU techniques convert the logical in-place updates into physical non-
in-place updates, using special address table to manage thetranslation between
logical address and physical address. An additional process called garbage col-
lection is required to claw back the obsolete data blocks. A good example of
the NIPU technique is the log-structured file system described in [53]. Though
the write performance is optimized by some detriment of scanperformance [23],
this feature is greatly helpful on flash memory to make up for the inefficient ran-
dom write performance since the random read performance is about two orders of
magnitude higher than that of erase operations. The overallwrite performance is
hereby improved.

I selected two file systems as the representatives of two update stratiges for
evaluation, the traditional EXT2 file system (ext2fs) and a recent implementation
of log-structured file system, nilfs2 [40]. The block size was default to 4KB for
both of them. The garbage collection (GC) was disabled by default in nilfs2 for
the simplicity of analysis. I will also show the influence of GC in Section 5.4.1.

I also used several IO schedulers in this Linux server. By default, the An-
ticipatory was used in the experiment because it is the default one in my Linux
distribution.
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Table 5.1: Transaction types in TPC-C benchmark

Transaction
Type

IO Property
% of mix

normal
read write

intensive intensive
New-Order read-write 43.48 4.35 96.00
Payment read-write 43.48 4.35 1.00
Delivery read-write 4.35 4.35 1.00
Stock-Level read-only 4.35 43.48 1.00
Order-Status read-only 4.35 43.48 1.00

Table 5.2: Configuration of DBMS

Commercial DBMS MySQL(InnoDB)
Data buffer size 8MB 4MB
Log buffer size 5MB 2MB
Data block size 4KB 16KB
Data file fixed, 5.5GB, database size is 2.7GB
Synchronous IO Yes Yes
Log flushing method flushing log at transaction commit
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5.4 Experimental Results

5.4.1 Transaction Throughput

Transaction Throughput

Figure 5.5 shows the transaction throughput in terms of transactions-per-minute
(tpm).

The advantage of flash SSDs over hard disk is clear; the transaction throughput
on the SSDs was higher than that on HGST in either DBMS.

For Mtron SSD, a noticeable improvement of nilfs2 over ext2fs on commer-
cial DBMS was observed. This stemmed from the log-structured design that nilfs2
holds. That is, in nilfs2, every time a write is requested, the file system allocates
a new space for that request. This helps to avoid the time-consuming erase oper-
ation on flash SSDs. Even if DBMS requests a sequence of randomwrites to the
file system, it can give a converted sequence of virtually sequential writes. See
again Section 4.3.1, where I confirmed that Mtron’s SSD has higher throughput
of sequential writes rather than random writes. Nilfs2 successfully exploited this
characteristic to derive improved performance. However, contrary to expectation,
the advantage of log-structured file system is not clear in Intel’s and OCZ’s SSDs.
I gives analysis on this point in later sections.
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IO Throughput

So as to understand the system behavior more, I traced in-kernel IO events by
using SystemTap[56]. Figure 5.6 shows the throughput of filesystem access given
by DBMS under the TPC-C execution. For reference, let us callthese file system
accesseslogical IOs, which is also illustrated in Figure 5.3. The workload nature
of TPC-C is IO intensive. The overall transaction throughput is mainly determined
by the available IO power. Seeing Figure 5.5 and Figure 5.6, Icould verified that
the transaction throughputs actually followed the logicalIO throughputs. Note
that the logical IOs may not directly go to the storage device, but rather be split,
merged or buffered by the file system. Further analysis is required on the IOs in
the underlying layers.

In order to understand the IO path thoroughly, I also analyzed how these log-
ical IOs are processed in the underlying layers. Figure 5.7 presents the through-
puts of storage device accesses in the same execution. Let uscall these accesses
physical IOs, which is also illustrated in Figure 5.3. The physical IO rate is the
consequence fueled by the file system capabilities and the device power. Read
throughputs were always higher than write throughputs in Figure 5.6, whereas
write throughputs were higher in Figure 5.7. This means thatthe file system ab-
sorbed many read requests in its buffer.

When ext2fs is used, write throughputs are almost the same between logical
throughput and physical throughput. It is probably becausethat write requests are
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temporarily stored in the file system buffer, but most are directly flushed out to the
storage device.

In contrast, when nilfs2 is used, write requests are more eagerly optimized. As
is mentioned before, nilfs2 has employed the log-structured design. Each time a
write is requested, a new storage block is allocated and the write request is routed
to the block. This helps avoiding slow erase operations in the flash SSDs. It is
clear in Figure 5.8 that the write size of nilfs2 is larger than that of ext2fs because
nilfs2 has coalesced the random writes into large sequential writes. Large sequen-
tial request is beneficial on hard disks and some SSDs. Actually, I could improve
the transaction throughput by using nilfs2 in Mtron’s SSD. However, my obser-
vation also suggests that I cannot ignore two possible drawbacks of this strategy.
First, log-structured strategy has the possibilities of producing more writes. This
was confirmed by Figure 5.6 and Figure 5.7. More writes were issued at the phys-
ical layer than the logical layer1. Even if nilfs2 can improve the IO throughput
by converting random writes into sequential writes, additional writes may finally
degrade the overall application performance. Second, too large IO sizes have the
possibilities of degrading the throughput. In Intel’s and OCZ’s SSDs, sequential
performance decreases when the request size is larger than 32KB, as discussed
in Section 4.3.1. This explains why the physical write rate of nilfs2 on Intel and
OCZ’s SSD in Figure 5.7 is much better than that of ext2fs for the commercial
DBMS because the average write size is smaller. For MySQL, since the request
size is very large (100KB+), the physical write rate of nilfs2 on Intel’s SSD is not
so much better than that of ext2fs, on OCZ’s SSD it is even worse than that of
ext2fs. Note that although the write IO rate of nilfs2 is always higher than that
of ext2fs for Intel’s SSD, the transaction throughput of nilfs2 is lower than that of
ext2fs.

Garbage Collection

The log-structured file system tries to allocate a new data block for writing a
data, even if it overwrites the existing data. This strategyproduces lots of invalid
blocks when write-intensive workload runs for a long time. Garbage collection
(GC), a.k.a. segment cleaning, is an essential function, which collects such invalid
blocks and makes them reusable for future writes.

So far, I have done the experiments with garbage collection disabled. This
was intended for me to measure the potential performance of the system. In real
systems, peak workloads may not continue so long and disabling garbage collec-
tions can be an acceptable solution in such limited time. Butgarbage collection

1I performed an indirect analysis on the data written by nilfs2, which shows that the additional
writes might be caused by the copy-on-write nature on the B-tree used by the nilfs2. This problem
is described as “Wandering tree” in [6]. Further analysis onnilfs2 may be necessary.
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is also an inevitable topic when I think about long-time operation. I also studied
the influence of garbage collection. I got the transaction throughput with differ-
ent cleaning interval as shown in Figure 5.9. Monotonic performance degradation
was observed in all the experimental cases. As garbage collection occurred more
frequently, the transaction throughput decreased more. The degradation ratios
were varied around0.77% − 10.44% with a moderate configuration (10 seconds)
and17.51% − 38.83% even with a severe configuration (1 second). Mtron’s SSD
for both DBMSs and OCZ’s SSD for commercial DBMS were relatively sensitive
to garbage collection, while Intel’s SSD for commercial DBMS and MySQL and
OCZ’s SSD for MySQL were less sensitive.

5.4.2 Transaction Throughput by Various Configurations

Buffer Size

The database buffer plays a vital role to the cache hit rate, the write merging and
re-ordering. The buffer size is influential to the performance. The complexity is
that DBMS reserves some portion of the available main memoryfor the database
buffer, but the remaining memory space is also used as the buffer cache for the
file system, where some optimizations may be tried too. Figure 5.10 shows the
transaction throughputs that I measured by varying the buffer size on Mtron’s
SSD. The absolute performance increased as I increased the buffer size of two
DBMSs on both file systems. However, the performance speedupof nilfs2 to
ext2fs decreased. With large database buffer size, a lot of random writes can
be cached in the database buffer, the amount of random writesreaching the file
system was greatly reduced. The advantage of log-structured file system is then
reduced.

Workload Type

In the experiments presented so far, I have only employed a standard mix of trans-
actions. Here I present another two types of workloads, readintensive and write
intensive, as indicated in Table 5.1. As shown in Figure 5.11, absolute transaction
throughputs were higher for read-intensive workloads. Thespeedups from ext2fs
to nilfs2 were conversely higher for write-intensive workloads.

IO Scheduler

The IO strategies can also be implemented by different IO schedulers. Four IO
schedulers are selected for comparison, as simply described below:
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Figure 5.9: Transaction Throughput with Garbage Collection Enabled
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• Noop scheduler is the simplest one, which only merges the requests, and
serves them in FIFO order.

• Anticipatory scheduler will do the requests merging and ordering, arrange
the requests in the one-way elevator and delay some time to anticipate the
next request, to reduce the movement of disk head.

• Deadline scheduler will impose the deadline for each request.

• CFQ (abbreviated for Completely Fair Queuing) scheduler will balance the
service time of IOs among processes.

The Noop scheduler is believed to be the best choice for the flash SSDs since
there is no mechanical moving parts. Figure 5.12 shows the transaction throughput
with four schedulers. The Noop scheduler is not consistently better than other
schedulers in all the cases. That is, IO scheduling by the schedulers does not
affect the transaction throughput largely.

5.5 Discussion on SSD-Specific Features

One innate characteristic of flash chips is the limited programming cycles, which
leads to limited lifespan of SSD. If a particular flash page iswritten in many
times, that page will be worn out (i.e. coming to be unable to hold a written
data safely) soon even though other pages are healthy. It would shorten the life
time of flash SSDs. Balancing the write count among all the flash pages, often
called wear-leveling, is an essential solution. One typical technique is to redis-
tribute hot (frequently written) pages to other places [8][22]. If TPC-C is run-
ning on a conventional in-place-update file system such as ext2fs, writes are often
skewed on particular pages. This technique seems essentialto prolong the life
span. When I use a log-structured file system such as nilfs2, the file system itself
is self-balancing. That is, it can automatically distribute most of pages over the
whole address space in a copy-on-write manner. Potentiallywear-leveling could
be mostly relieved. But wear-leveling is an internal function that is mainly im-
plemented in SSD controller. Real algorithms are not disclosed by any vendors
at present. I would like to study the effect of wear-levelingon the choice of file
systems in the future.

Although the wear-leveling can prolong the lifespan of the whole disk, the
overall write operation count is still limited. The limitation of write operation
counts is directly related to the reliability of the SSD. I collected the reliability
information of each SSD, as shown in Table 5.3. Given the information in Ta-
ble 5.3, I try to roughly calculate the endurance of the SSDs in the transaction
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Figure 5.10: Transaction throughput on Mtron SSD with different buffer size of
database system



5.5 Discussion on SSD-Specific Features 52

 0

 5000

 10000

 15000

 20000

 25000

read normal write read normal write
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

T
ra

ns
ac

tio
n 

T
hr

ou
gh

pu
t (

tp
m

)

S
pe

ed
up

intensive intensive intensive intensive
Commercial DBMS MySQL

ext2fs nilfs2 speedup

Figure 5.11: Transaction throughput of commercial database with different work-
load on Mtron SSD

 0

 5000

 10000

 15000

 20000

 25000

ext2fs nilfs2 ext2fs nilfs2 ext2fs nilfs2 ext2fs nilfs2 ext2fs nilfs2 ext2fs nilfs2

T
ra

ns
ac

tio
n 

T
hr

ou
gh

pu
t (

tp
m

)

Mtron Intel OCZ Mtron Intel OCZ
Commercial DBMS MySQL

Noop
Anticipatory

Deadline
CFQ

Figure 5.12: Transaction Throughput by different IO schedulers



5.5 Discussion on SSD-Specific Features 53

Table 5.3: Reliability Information of SSDs

Manufacture & Model Reliability Information
Mtron PRO 7500 [45] MTBF1: 1,000,000 hours, write endurance is

greater than140 years at 50GB write/day at
32GB SSD2.

Intel X25-E[30] MTBF1: 2,000,000 hours, 64 GB drive sup-
ports 2 petabyte of lifetime random writes.

OCZ VERTEX EX[49] MTBF1: 1,500,000 hours
1 MTBF: Mean Time between Failures.
2 The above calculation is based on the guaranteed 100,000 program

and erase cycles of type of SLC type flash memory from vendors and
the assumption that the write is performed in sequential manner.[45]

processing system by the IO throughput at the driver level inmy experiment. In-
tel discloses in the specification that the SSD I used is guaranteed two petabytes
of lifetime random writes. Random write produces the largest write counts in
general. I obtained an expected minimum lifetime by dividing this guaranteed
lifetime write amount (in bytes) by average throughput (MB/s) shown in Figure
5.7. Mtron also discloses its guaranteed lifetime write amount, but it is measured
only for sequential writes. OCZ does not disclose any guaranteed lifetime write
amount. I could not obtain an expected lifetime for Mtron’s SSD or OCZ’s SSD.
The result is shown in Table 5.4. It shows that Intel’s 64GB SSD could only last
1.43 years in the shortest case. Note that, in my experiments, TPC-C ran at top
speed, namely without any keying or thinking time, in order to measure the po-
tential performance of SSDs for transaction processing. Inreal systems, most of
SSDs may be running at moderate workloads in most of time, andthus they possi-
bly can survive much longer time. Further investigation is necessary on this point.
Boboilaet al.[8] had shown that the endurance of tested flash chips is far longer
than the nominal values by manufactures. More solutions such as the redundancy
of SSD or fat provision of flash chips could be also consideredto improve the
reliability.

Another feature specific to SSDs is the TRIM command [29]. When trying to
delete a page in a file volume and/or a database, many file systems and/or database
systems do not physically erase content of the concerned page, but merely drop
a pointer to the page in the volume meta data (such as inode, directory or cata-
log). This logical deletion strategy is beneficial in terms of performance, but it
would abandon a chance of SSDs to know which page has been deleted by the
file systems or the database systems. TRIM, a new storage command, has been
proposed as a solution to this. It can inform flash SSDs of which page has been
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Table 5.4: SSDs endurance in years by the phys-
ical IO throughput shown in Figure 5.7

Intel (years)
Commercial DBMS with ext2fs 5.47
MySQL with ext2fs 2.19
Commercial DBMS with nilfs2 2.32
MySQL with nilfs2 1.43

logically deleted, so that the notified SSDs can preemptively erase and release the
concerned page. This often helps the performance improvement by hiding slow
erase operations. Unfortunately this new command has not been supported in my
experimental system, so I could not experiment this. I wouldlike to investigate
the effect in the future work.

5.6 Summary

I presented performance evaluation of three major flash SSDswith TPC-C bench-
mark. First, I have clarified the transaction throughput on three flash SSDs, two
file systems and two DBMSs. Next, I measured and analyzed the in-kernel IO
behavior. Finally, I studied the performance with a varietyof configurations for
TPC-C. These measurements have provided some practical experiences for build-
ing flash-based database systems. The performance benefits of log-structured de-
sign were confirmed only in limited cases. It was against my early expectation.
The necessity of careful design was verified.



Chapter 6

IO Management Methods for Flash
SSD



6.1 Introduction

In chapter 4, I have learned that the performance characteristics of flash SSDs
are quite different from that of the traditional hard disk, such as the asymmet-
ric read and write performance, asymmetric sequential write and random write
performance, and the bathtub effect for the mixed access patterns.

In chapter 5, I showed the transaction throughput of the database systems by
the TPC-C benchmark. A file system with non-in-place update strategy, the log-
structured file system, is examined. The IO behaviors along the IO path is ana-
lyzed. Although the log-structured file system converted the random writes into
sequential writes, I found that the physical IO throughput (Figure 5.7) was still
much lower than the available bandwidth of the device (Figure 4.4 to 4.6), as
studied in chapter 4.

In order to reach the potential performance, more comprehensive IO schedul-
ing is necessary to process the IOs in a favorable way of SSDs.The IO path is
the place for the IO scheduling and hereby the in-depth studyof IO path is very
necessary. The IO path is the way through which all the IOs will go to the device.
If there is a proper and efficient scheduling on the IOs along IO path, the IOs can
be well arranged before they reach the device. Therefore, the consideration of the
IO management along IO path is important.

In this chapter, I will introduce the IO management methods of the storage
subsystem for the database system, discuss the SSD-oriented IO management
methods for such a system.

6.2 IO Path in Database Systems

IO path indicates the software or hardware layers through which the application
data puts to or gets from the persistent storage devices. In the database systems,
the IOs are served by the storage subsystem, so the IO path started from the system
call by the database applications, and ended by the storage devices. As shown in
the Figure 6.1, the IOs flow through many layers in the OS kernel1, finally reach
the devices. At each layer, there are special optimization techniques with some
assumptions, to make sure that the IOs are well organized in the favorable way of
the devices when the IOs reach the end of this path.

The IO path has been studied for the storage system for a long time. The
IOs are mainly managed and scheduled by the characteristicsof the hard disks
which have been the main storage devices for several decades. Since the current
IO management is specially designed for hard disks, especially to fully utilize

1Here I removed many layers for the brevity, more details about the OS kernel can be seen in
[10].
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the sequential access performance of hard disks, there willbe a mismatch when
this IO path is used for flash SSD. Therefore, the SSD-oriented IO management
methods along the IO path are essential to reach the potential performance of flash
SSDs.

By the knowledge of the basic performance study of flash SSD inchapter 4,
the following points should be stressed for the design of theIO path management:

• Since there is no mechanical parts in SSD, the random reads are as fast as
the sequential reads for flash SSD.

• The performance of random writes on flash SSDs is poor, and hereby the
compensation of poor performance of random writes must be considered.

In the following sections, the SSD-oriented IO management methods will be dis-
cussed with above points.

6.3 SSD-oriented IO Management Methods

As described in the previous chapter, the TPC-C experiment showed that poor
performance of random writes is dominant in flash-based database systems. Re-
ducing large cost of random writes is a promising direction to try to achieve the
potential performance of flash-based database systems. In current IT systems, IO
path can be decoupled from database systems and storage devices. Implementing
IO management method within IO path is a natural option. In this dissertation, I
would like to focus on scheduling writes along IO path in order to improve SSD
performance.

Many database systems allow write requests to secondary storage to be de-
ferred and then flushed to the storage in a batch. Such write deferring has benefits
of providing scheduling opportunities for reducing IO costof the writes at run
time. As writes are deferred longer, scheduling benefits could be larger, giving
higher performance. However, database systems need to guarantee that writes
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older than a checkpoint are reflected onto the secondary storage. The available
deferring is strictly limited by database checkpointing. Checkpoint is crucial in-
formation for write scheduling when we try to improve the IO performance along
IO path.

In this dissertation, available write deferring window is called IO management
window as illustrated in Figure 6.2. Each window starts whena checkpoint fin-
ishes and the window ends when next checkpoint starts. Writes within a window
can be scheduled at run time and then reflected in a batch manner to improve the
performance. Scheduling techniques are introduced in the next section.

6.3.1 IO Management Techniques

I will start the discussion on the IO management by a simple example in Figure
6.3 called “Direct” IO. There is no IO scheduling for SSDs in this figure, and the
IOs are directly issued to the devices. In Figure 6.3, the upper half illustrates the
reads and writes issued by the DBMS and these reads and writesare sent to device
directly. DBMS applications are waiting for the IO completion. The below half
of Figure 6.3 shows the address space accessed along timeline by the reads and
writes issued by the DBMS. The orange arrows denote the writerequests and the
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orange rectangles denote the blocks in SSD written by the DBMS. Similarly, the
blue arrows and blue rectangles denote the read requests andthe read blocks in
SSD.

Figure 6.4 illustrates the IO management by the checkpoint information cap-
tured from the application. The reads within the current IO path management
window will be issued directly to the device since the read performance of flash
SSD is very fast. The writes will be deferred, as shown in the upper half of Figure
6.4, the writes denoted by the orange arrows are not issued immediately to the
device, but deferred to be flushed to device in batch until receiving the checkpoint
information denoted by the red arrow. The write deferring technique is denoted as
“Deferring” hereafter. By deferring, the reads and writes are separated automati-
cally, and the scattered random writes are gathered together and can be scheduled
with various techniques before being flushed to the device onreceiving the check-
point information. The scheduling techniques (include Deferring) are described
as following:

• Deferring Defer the writes until the checkpoint notification, as shownin
Figure 6.4. Deferring is the basis of the afterward scheduling techniques.

• CoalescingMerge the IOs as shown in Figure 6.5, the overlapped writes de-
noted by orange-color-filled rectangles are merged and concatenated within
the IO management window, and hereby the total amount of writes in bytes
and write operations are minimized.

• Converting Convert the address of IO blocks in a LFS manner. As shown
in Figure 6.6, the IO blocks denoted by orange-color-filled rectangles are
mapped to the new address space continuously. Therefore, the random
writes are converted into sequential writes, and written tocomparatively
“clean” area which could minimize the IO time spent on the erase opera-
tions. The converting technique is more effective on SSD than hard disk.
Because converting the random writes into sequenital writes may also con-
verting the sequential reads into random reads. However, the random reads
are as fast as sequential reads on SSD, therefore, this side-effect can be well
mitigated. The converted random writes can fully enjoy the sequential write
performance of SSD because the block erasing time is well mitigated. More
details can be found in [60].

• Aligning Combine and align IO requests along the erase blocks, as shown
in Figure 6.7, the scheduled writes denoted by orange-color-filled rectangles
are aligned by the block boundary.

The aligning is a SSD-oriented technique, because SSD has slow erase op-
erations. The slow erase operations are performed based on the unit of
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erase blocks. If a write request is across the boundary of twoadjacent erase
blocks, both of the erase blocks may possibly need to performthe slow pro-
cess of “copy data, apply changes, erase block, and write back”. The cost
is not justified for a small write request. By aligning, the cost of erase op-
erations will be amortized or reduced. In section 7.3.2, it can be seen that
another benefit of the aligning is that the device bandwidth is fully utilized
with large request size in our implementation.

6.3.2 SSD-oriented Scheduling

DBMS

SSD

(Virtually, this is an I/O trace file)

write buffer

(write scheduling)

IO management layer

(eg. file system)

checkpoint 
end

write read

cache hit

Figure 6.8: SSD-oriented Scheduling

I introduce the SSD-oriented scheduling, which is a scheduling system imple-
mented with the IO management technques described in previous section 6.3.1.
As shown in Figure 6.8, the write requests from DBMS will be captured and
buffered (Deferring), while the reads will directly go to the device if there is no
buffered data for that reads. The buffered data will be applied the scheduling
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techniques, such as the Coalescing, Converting, and Aligning. Once the database
issued the checkpoint ending information which is capturedby the scheduling
system, the scheduling system will flush the well managed writes to device in
batch.

6.4 Summary

I described the IO path in the current database system, pointed out the design mis-
match for flash SSD. Then I described the SSD-oriented IO management methods,
introduced the scheduling techniques designed for the flashSSDs, and presented
the SSD-oriented scheduling system.



Chapter 7

Performance Evaluation of IO
Management Methods for Flash SSD



7.1 Introduction

In this chapter I evaluated the performance of the IO management methods de-
scribed in chapter 6. First, I evaluated the scheduling withstatic ordering and
merging of IO trace. Next, I evaluated the SSD-oriented scheduling without or
with the IO waiting time respectively.

7.2 Experimental Environment

7.2.1 Experiment Configuration

The experimental system was built on the system described inFigure 4.1 in Chap-
ter 4. The software stacks of the TPC-C system are shown in Figure 6.1. The
transaction mix is shown in Table 5.1. 30 user threads are started for the TPC-C
benchmark. The keying and thinking time is set to 0. I used theMtron SSD and
the commercial DBMS for the evaluation. The configuration ofthe commercial
DBMS is shown in Table 7.1. The buffer size was set to 80MB, which may be a
typical setting corresponding to the data size. In order to exclude the effect of the
page cache by OS or file system, I chose to use theraw deviceto host the data.

Table 7.1: Configuration of Commercial DBMS

Configuration of Commercial DBMS
Data buffer size 80MB
Log buffer size 5MB
Data block size 4KB
Data file fixed, 5.5GB, database size is 2.7GB
Synchronous IO Yes
Log flushing method flushing log at transaction commit
Data table space is created on raw device, log files and systemfiles are located in
a separated device.

7.2.2 IO Management Window in TPC-C benchmark

In my TPC-C benchmark system, I developed a script to triggerthe full database
checkpoint periodically. The interval can be configured as required. The interval
of checkpoint determines the IO management window as described in chapter 6.
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Figure 7.1: SSD-oriented scheduler for TPC-C

Within the checkpoint interval, the writes can be deferred in the buffer to be sched-
uled by the scheduling techniques described in previous chapter. The checkpoint
interval varied from 30 seconds to 600 seconds in the evaluation.

At the end of the checkpoint, the database checkpoint process will write a
mark to the data file, and this activity will be captured by my scheduling system,
and at this time the defferred writes start to be flushed.

7.2.3 SSD-oriented IO Scheduling for TPC-C

Figure 7.1 illustrates the SSD-oriented scheduling systemfor my TPC-C bench-
mark system. In my experimental system, there will be some limitations required
by this real TPC-C system, such as the buffer size limitationor the write flushing
overhead constraint, as shown in Figure 7.1. So I defined another two constrains
for the scheduling system; the buffer size thresholdθn and the checkpoint over-
head thresholdθt. θn ensures the buffer size limitation is not exceeded, andθt

ensures the write flushing overhead constraint, and hereby ensures the checkpoint
flushing overhead is not too long.
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7.2.4 Combination of the Scheduling Techniques

I configured several combinations of the scheduling techniques, as shown in Table
7.2. Their effectiveness will be examined one by one in the following sections.

Table 7.2: Combinations of Scheduling Techniques

Notation Deferring Coalescing Converting Aligning
drt
dfr

√

dfr cls
√ √

dfr cnv
√ √

dfr cls cnv
√ √ √

dfr cnv aln
√ √ √

dfr cls cnv aln
√ √ √ √

7.3 Evaluation

In this section, I firstly presented the baseline, the directreplay results as a refer-
ence for the subsequent measurement results, then the results with static ordering
and merging of IO trace will be provided one by one. Next is theresults of online
scheduling without or with IO waiting.

7.3.1 Baseline

In order to clarify the influence of the IO response time in thetotal transaction
processing time, I studied the response time of IO requests.Since the OS and file
system buffer is excluded in the raw device case, the IOs are consistent between
the system call layer and the device driver layer. The IOs canbe queued deeply
by multiple threads submitting the IOs simultaneously, andhereby the response
time values of IO requests are overlapped one another. So theresponse time may
not exactly reflect the IO time of individual request. If the IOs are replayedone-
by-one(queue depth is one) on raw device with the same configuration, the exact
response time of individual request can be obtained. The sumof response time
of all requests is the total time spent on the IO in the execution. If this sum of
response time is reduced, that is, the IO time is reduced, then the overall perfor-
mance of the system (IO-bound) may be improved.
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In order to get the total IO time, I did the TPC-C experiment with IO traces.
First, I did the experiment with TPC-C benchmark with the configurations de-
cribed in section 7.2.1. In addition to the case of hosting the data with raw device,
I also added another two cases: hosting the data with device formated by ext2
file system and nilfs2 file system. I obtained the transactionthroughput as shown
in Figure 7.2. The IO throughput is shown in Figure 7.3. It is clear that the IO
throughput of nilfs2 (sequential write throughput) is still far from that shown in
the micro benchmark results in Figure 4.4. Next, in order to get the total IO time,
I traced the IOs at the system call and device driver level for600 seconds, then
I replayed the IOs at the different layer. The system call trace is replayed in the
raw dev case, while the traces at the device driver level are replayed in the rest file
systems cases. The IO time of one-by-one raw IO replay is shown in Figure 7.4.
It shows that the summary of the total IO time reflects the transaction throughput
in Figure 7.2 to some extent. The sum of IO time in the raw dev case is very close
to the overall execution (trace) time (600 seconds), which implies that this sys-
tem was “IO bound”. If the IO time is reduced greatly, especially the write time
which is the major part as shown in Figure 7.4, the overall performance (trans-
action throughput) may also be improved accordingly. Therefore, I take the raw
device case as a baseline.

In order to get the baseline cases, I started the TPC-C experiments again with
the configuration in section 7.2, and captured the read and write requests on data
in a period of 600 seconds in the raw device case with different checkpoint in-
tervals. Afterward, I replayed these requests one-by-one with the same config-
uration. Figure 7.5 shows the summary of the IO response timewith different
checkpoint intervals (30 to 600 seconds), which is very close to the total execu-
tion time (600s). This confirms again that the experiment system is “IO Bound”.
In the following sections, I will investigate the potentiality of each IO scheduling
technique with these baseline cases.

7.3.2 Potentiality of IO Scheduling

In this section, I examined the performance benefit of each scheduling technique
step by step with static ordering and merging of IO trace, then I provided the
overall improvement with analysis.

Deferring

The purpose of theDeferring is to postpone writes to be flushed later in batch.
From Figure 7.6, it can be seen that the response time of deferred random writes
(bars with the legend of “Deferring”) increased compared tothe write time in
the baseline cases (bars with the legend of “Direct”). This is due to the bathtub
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Figure 7.10: Write Time by Deferring, Converting and Aligning
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effect, which is shown in chapter 4. The deferred writes willbe managed by the
scheduling methods and hereby the performance can be improved considerably,
as shown in the following sections.

Deferring + Coalescing

The purpose ofCoalescingis to reduce the amount of writes. Figure 7.7 shows the
performance improvement by applying IO optimization techniques to the deferred
writes. In Figure 7.7, compared to the “Deferring” case, theresponse time is
reduced in the “Deferring+Coalescing” case, simply due to the reducing of the
writes amount. The amount of merged writes by Coalescing methods is affected
by the length of checkpoint interval. With the longer checkpoint interval, the
more writes can be coalesced, and thus, more improvement canbe obtained. So
the improvement is increasing with the increase of checkpoint interval, as shown
in Figure 7.7. In our observation, the speedup is from 1.05x to 1.25x.

Deferring + Converting

The purpose ofConvertingis to convert the random writes into sequential writes,
like that in the LFS, reducing the cost of erase operations soas to improve the
throughput. Figure 7.8 shows that the improvement of converting is significant,
from 64.75x to 76.88x. The improvement origins from the asymmetric perfor-
mance between sequential write and random write.

Deferring + Coalescing + Converting

Combining the Coalescing with the Converting, the IO time can be further re-
duced. The improvement is 1.07x to 1.27x, as shown in Figure 7.9. This improve-
ment simply comes from the merged amount of writes.

Deferring + Converting + Aligning

The purpose of theAligning is to reduce the cost of erase operations caused by
the requests across the erase block boundary. The Aligning is performed on the
basis of the Converting. I configured the DBMS with 4KB block size, so that
most of the request size is 4KB. I implemented the Aligning byassemble the
4KB requests to 64KB. A typical erase block size, 256KB as shown in Table 2.1,
can be dividable by 64KB. Another benefit is that 64KB is the size where SSD
bandwidth is beginning to get saturated, as shown in micro benchmark results
in Figure 4.4. So I can maximize the utilization of bandwidth, while keeping
the request size as smaller as possible. With 64KB alignment, the further im-
provement on Converting is showing in Figure 7.10, in which the improvement
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of “Deferring+Converting+Aligning” over “Deferring+Converting” is 1.84x to
1.87x, which mainly comes from the throughput difference ofthe 4KB request
and 64KB request shown in the Figure 4.4.

Deferring + Coalescing + Converting + Aligning

Before applying the Converting and Aligning technique, theCoalescing technique
can be applied on the deferred writes. Figure 7.11 shows the effectiveness with
Coalescing. The improvement of “Deferring + Coalescing + Converting + Align-
ing” over “Deferring + Converting + Aligning” is 1.08x to 1.31x.

Total Improvement

With all the scheduling methods combined together, the overall improvement is
shown in Figure 7.12, which shows the write response time of the baseline (“Di-
rect”) and the replay with all the scheduling methods (“Deferring + Coalescing
+ Converting + Aligning”). The improvement is significant, from 110.30x to
156.39x. Note that the y axix is logarithmic.

An additional benefit by the deferring technique is that the read performance is
also improved, due to the bathtub effect studied in chapter 4, as shown in Figure
7.13, in which the “Direct” and “Deferring” denote the read response time of
baseline case and writes-deferred case respectively. The read response time is
reduced due to the separation from the writes. The speedup isfrom 2.71x to
3.63x.

Findings

The findings of the experiment described above can be summarized as follow:

1. Performance dominants are confirmed: random writes are the main part of
the IO as for the response time.

2. Existing LFSs (which can follow the case of “Deferring+Converting”) do
not reach best performance. In the above experiments, the “Deferring
+ Converting” can gain more than 60x on the response time of writes.
But the “Deferring+Coalescing+Converting+Aligning” gives more perfor-
mance improvement. This confirms that there is a room of further perfor-
mance improvement.

3. Effectiveness of “Deferring + Coalescing + Converting + Aligning” is con-
firmed. This combination contributes to significant improvement in the
evaluation.
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4. Write-optimized deferring technique can also improve read performance
due to SSD’s bathtub effects.

With above findings, I designed the SSD-oriented scheduler which can perform
the online scheduling as described in next section.

7.3.3 SSD-oriented Scheduler

I implemented the SSD-oriented scheduler and showed the online scheduling re-
sults in this chapter. I studied the influence of the two configuration parameters,
the checkpoint overhead limitθt and the buffer size limitθn.

Scheduling without IO Waiting

Firstly, the IOs were replayed one by one without consider the time interval be-
tween two consective IOs. I want to make sure that more IOs canbe processed
in a fixed time interval, and hereby the IO throughput and transaction throughput
can be improved greatly.

Figure 7.14 shows the results with the checkpoint overhead limit θt. θt was
changed with 1 second, 3 seconds, 10 seconds, and∞(No checkpoint limit). The
response time of “Deferring” and “Deferring + Coalescing” is increasing when
enlarging the checkpoint limit, this may due to the bathtub effect since the writes
in “Deferring” and “Deferring + Coalescing” are random writes. The results by
the Converting method in Figure 7.14 is zoomed in and shown inFigure 7.15. As
increasing the checkpoint interval, the Coalescing may work better by coalesc-
ing more writes, but this is not clear shown in Figure 7.15 with checkpoint limit
changed from 1 seconds to 10 seconds.

An evaluation with varied buffer size limitθn is shown in Figure 7.16. For
random writes, denoted by “Deferring” and “Deferring + Coalescing”, the situa-
tion is quite similar to the evaluation with varied checkpoint limit in Figure 7.14.
The sequential writes cases by the Converting methods in Figure 7.16 is zoomed
in and shown in Figure 7.17, it can be seen that the response time of “Deferring +
Coalescing + Converting + Aligning” is slightly decreasingwhen increasing the
buffer limit, which means my scheduler can have further performance improve-
ment with more buffer.

Scheduling with IO Waiting

In previous experiments, the keying and thinking time of endusers was ignored. In
the real system, the end users may require the time to typing the data and thinking
the next step. So I inserted the IO waiting time to evaluate the scheduling methods.
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Figure 7.14: Online Scheduling with varied checkpoint limits
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Figure 7.18: Online Scheduling with IO waiting and varied checkpoint limits
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Figure 7.19: Online Scheduling with IO waiting and varied checkpoint limits
(Converting Cases)



7.3 Evaluation 86

 0

 100

 200

 300

 400

 500

 600

 700

30 120 300 30 120 300 30 120 300 30 120 300

S
um

 o
f R

es
po

ns
e 

T
im

e 
(s

)

Checkpoint Interval (s)
Buf lmt 8MB Buf lmt 80MB Buf lmt 800MB No Buf lmt

Direct
Deferring

Deferring+Coalescing
Deferring+Converting

Deferring+Coalescing+Converting
Deferring+Converting+Aligning

Deferring+Coalescing+Converting+Aligning

Figure 7.20: Online Scheduling with IO waiting and varied buffer size limits
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Figure 7.21: Online Scheduling with IO waiting and varied buffer size limits
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The IO waiting interval is calculated by the timestamps in the original IO trace.
The results is shown in Figure 7.18, 7.19, 7.20, and 7.21. It is similar to the results
without IO waiting. Therefore, the online scheduling system is confirmed to be
effective in this case.

Findings

The findings with the online scheduling methods can be summarized as follow:

1. LFS (Converting) can reduce IO time significantly with small resources (lit-
tle buffer requirement and little computing requirement).

2. SSD-aware alignment can further reduce IO time with smallresources
(buffer size requirement is small)

3. Coalescing can further reduce IO time, but its effect is not so large even
with large resources (increasing the buffer size limit). The Coalescing needs
large buffer to calculate and merge the requests.

4. Performance is not so sensitive to checkpoint interval. The varying of
checkpoint overhead limit is not influential to the overall performance.

Discussion

Let me discuss performance improvement that we confirmed in an actual LFS im-
plementation, NILFS2 and potential performance improvement that I verified in
my IO replaying experiment. For TPC-C IO sequence, my IO replaying experi-
ment showed more than x60 performance improvement for writes as depicted in
Figure 7.8, in contrast, NILFS2 could present only about x5 improvement as de-
picted in Figure 7.4. Further analysis is necessary for this, but I am considering
a possible explanation. The proposed IO scheduling mechanism eagerly defers
write requests by using database checkpointing information to flush writes in a
batch manner. This can be effective for successfully generating almost pure se-
quential write accesses, and thus present significant performance improvement. In
contrast, NILFS2 needs to flush every write since it has no information of avail-
able IO scheduling window. Random writes were actually converted in a LFS
manner, but those writes were not issued separately from reads. Consequent IO
sequence could be a mixture of reads and writes and the file system may fail to
achieve the potential performance of the SSD. This result encourages me to build
a new IO scheduling mechanism.
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7.4 Summary

In this chapter, I evaluated the SSD-oriented scheduling methods. Significant per-
formance improvement is confirmed. Some valuable findings are listed, which is
helpful to design the SSD-oriented scheduler. As for the SSD-oriented scheduler,
I summarized the following points for the positioning of thescheduler:

1. The use of checkpoint information enables to bring many opportunities of
write scheduling.

• Checkpoint conscious is a must.

2. The scheduler should be SSD-oriented, hereby it can maximize the perfor-
mance benefit. Techniques to be considered:

• Deferring (benefit from bathtub effect)

• Converting (benefit from the sequential performance)

• Aligning (benefit from the amortization of erase operationsand the
bandwidth)

3. The scheduler should be light-weight, because

• The DBMS usually uses large resources, therefore, the scheduler
should be light-weight so as not to compete for the resource with
DBMS and process the requests efficiently for DBMS.

• Simple design and easy implementation is important to applyit into
the current database systems.



Chapter 8

Conclusion



8.1 Conclusions

In this dissertation, I had a research on high performance database management
systems with flash SSDs. Firstly I studied the basic performance of flash SSDs,
which validated the different characteristics of flash SSDs. On the basis of the
basic performance study, I continued the evaluation of highperformance database
systems built on the SSDs, and analyzed the IO behaviors along the IO path. With
the knowledge of the basic performance of the SSDs and the analysis of the IO
path of the database systems, I designed the SSD-oriented IOscheduling system,
which can obtain the application information such as the checkpoint, and then
schedule the IOs with SSD-oriented techniques. Four techniques were adopted in
this scheduling system according to the characteristics ofthe flash SSD. I eval-
uated the potentiality of SSD performance by static scheduling of IO trace. The
SSD-oriented scheduling with TPC-C was also implemented and evaluated.

With the research results shown in this dissertation, I drawa conclusion with
the following points:

1. The random writes are dominating the IOs due to the innate characteristics
of flash SSDs. To improve the performance of database systemson SSDs,
random write performance should be considered carefully.

2. Log-structured IO optimization, such as LFS, is effective to solve the prob-
lem of slow random writes with little resource. However, it is clearly shown
in my scheduling system that the existing LFS failed to reachthe optimal
performance.

3. The effectiveness of deferring and aligning the writes isconfirmed. The
combination of “Deferring + Coalescing + Converting + Aligning” almost
reaches the optimal performance in the evaluation.

4. Write-optimized deferring technique can also improve read performance
due to SSD’s bathtub effect.

With the evaluation of the SSD-oriented scheduling system,I believe that a
light-weight, checkpoint-conscious, and SSD-oriented scheduler can maximize
the performance benefit of SSDs for the high performance database systems.

8.2 Future Work

The research in this dissertation can be taken as a referenceto design and imple-
ment a SSD-oriented scheduler for the high performance database system. Spe-
cially, as I have shown in the online SSD-oriented scheduling, the buffer size limit
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Figure 8.1: Implementation Options

and the checkpoint overhead limit can be a flexible tuning knob for the scheduler.
Therefore, making such a scheduler can be a promising work inthe future and
applicable to many database systems.

Here I simply describe some implementation options. There are various op-
tions to implement the SSD-oriented scheduling techniquesdescribed in section
6.3.1. The IO path along the kernel shows that there are different optimizations for
IOs at different layers, such as Virtual File System (VFS) layer, Block IO (BIO)
layer and Device Driver layer[10], as shown in Figure 8.1. When considered for
the SSD-oriented scheduler, it should be powerful and flexible to support different
DBMSs’ configurations. For instance, some DBMS supports rawdevice; the IO
at the system call level is consistent with that at the devicedriver level, therefore,
the SSD-oriented IO schedulering can be started from the system call level. Some
DBMS requires support of file system, the scheduling can be enabled either in the
file system layer when it is possible, or at the below device driver level in order to
keep the file system layer untouched. In practice, the scheduler can be assembled
in a kernel module, then loaded into a running kernel, and hereby the existing
system keeps untouched.
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