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Introduction
Many authors have investigated the mixed problem for the wave equation:
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(for the reference, see [5] p.424). Yosida (in [4]) has attempted to integrate
the equation, using Milgram-Lax theorem and the semi-group theory (cf. [2]).
In this note we are going to demonstrate that the perturbation theory for
semi-groups is applicable to prove the existence of the strong solution. All
discussions will be given within the framework of Hilbert space theory.

1. Existence of the strong solution

Let © be a Hilbert space, its scalar product and norm are denoted by
(,) and ||, respectively. For a linear operator 7', we denote its domain (or
range) by ®D(T) (or WT)). Consider a positive definite self adjoint operator
A in 9, and its positive root AY2. Let D=D(A) and Di/p=D(AY?). We can
regard ®,,2 as a Hilbert space with the scalar product (z, v)-+(AY*u, A'/*v) for
u, V€ Diya.

Now we consider a following $-valued homogeneous 2nd order ordinary
differential equation:

d*u du C.W-m +Aw- Bu=

(L ae T dt

with the initial condition:
(2) #(0) =1 €D, u(0)=u26Dyys .

In the equation (1), C is a bounded operator on § with its norm denoted by
IC|, and B is a linear operator such that the domain ®(B)>®u/ and that

|Blije= sup |Bul is finite.
141720 =1

We say that a §-valued function u(f) is a solution of (1) and (2) if it is twice
strongly differentiable in 9, satisfying (1) and (2) (this implies especially that
u(t)e® for any f). First the solution will be found in the slightly different
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sense. We note that (1) and (2) can be written in the matrix form by putting
w H=u(t) and wu={f)=0wu,(1),

) ()= (s 2o,
(4) (241(0), %2(0) €DK Duyz

where I is the identity operator from ®iz: to ®uje. For u, v€Dis2, we define
(#, vg=(A"*u, AY*). The quantity |ulsz=(u, u)l/2 becomes a norm on Diy
since the positivity of A implies that 0 is not an elgenvalue of A. Let € be
the completion of D2 by the norm | le. Naturally € is a Hilbert space with
the scalar product (, )s. We remark that if A is strictly positive i.e. there
exists a positive constant a such that (Aw, z)>a(u, «) for all €D, then € is
homeomorphic to Dy..

Since A'/* is closed in $, A is closable as an operator from € to . We
denote by A the smallest closed extension of A in this sense. The set D(A)
coincides with the completion of ® by the norm |AY2yu|+|Aul. Obviously
‘“c@(ﬁ)c@ and Au=Au for ue®. If A is strictly positive then @(A) =D
and A=A. Similarly I is the smallest closed extension of I from $ into G.
But in this case D()=D(I)=Dis: and [=I by the closedness of A2

Let ¥=Ex%. Its scalar product is naturally given by

((u, 0)) = (201, V1) + (U2, V2) ,
for u=<u, usy, v={v1,v:>€X. We denote the norm of ¥ by | |I.

Consider linear operators in ¥:

%oz(igl —OZI ) with D(SF0) =D %Dy ,
and
o = (Z y o with D) =D(A) x Dy .

LEMMA. B#° is self adjoint in X.

Proof. Since € coincides with the completion of ® by | |s, D(S#%) is dense
in X. Definitions of scalar products (,)z and (()) assure the symmetricity
of S#. Definitions of A4 and [ imply that 57 is the smallest closed exten-
sion of S#%. This means that % is symmetric. Therefore 27 is self adjoint
if R(Z#” i) is dense in X. Notice R(SF +i)DR(SF=+1). In order to get this
lemma, we have only to show that R(S#o+:) is dense in ¥. Now we put

=FiA-+D)"ntus) and v"=i(A+1)"(AusFu2) for wm €D, u2€9. Since
RA+DH=D(A)=D, we have u*, 1:*eD. By a direct calculation, we see

that (£00)(2) =() holds. This shows that R(SF+)>DxH. AsDxp
2 2
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dense in ¥, the assertion is proved.

By the assumption on B, B is a densely defined bounded operator from
€ to . Therefore we can regard B as a bounded operator from € to 9.

The operator %E( OB 0 C) is bounded in ¥, and its norm is estimated by

| | <~ 2 max (B, IC]) .

Taking account of the above argument we can rewrite (3), (4) as the following:

d
(5) Eu—z%w%u,
(6) w(0)=ue D) .
THEOREM 1.

For any ueD(27), there exists a unique solution u(f) (—oo<i<oo) of (5),
(6) such that
1° u(t) is once continuously differentiable in X;
2° u(Q)=u;
3°  ull) e D(EZ) satisfies (5);
4° [u®| <D w(O)]| for any t.

Proof. Since &7 isself adjoint, for non zero real A it holds [|[(A—i 227)t| < 2],
Formally we have

(—iSF — )= go (=i ) B (—i ) .

This identity shows that (1—i 57— <F )~ exists for 1 with |A]<||&#F ), and
that it satisfies ||(2—i5F — &) <(|2l—|| & |)-t. Therefore we conclude that
IS + <# with the domain D(S5#7) generates a unique strongly continuous
group .9 : satisfying | .9 :|<e"®Blll by the well-known Hille-Yosida theorem
([11, [8]). Set u(f)==_7 s, then the assertion of the theorem follows.

(The above argument is a special case of the result concerning the bounded
perturbation of the infinitesimal generator of a strongly continuous semi-group
([1] Chapt. XIII).)

Remembering that € coincides with D/ topologically when A is strictly
positive, we have:

COROLLARY.

If A is strictly positive, then for any {ui, us> € DX Dy, there exists a unique
solution u(t) (—oo<t< ) of (1), (2) such that
I° u(t) is once continuously dzﬁ‘erentzable in iy and twice continuously dif-
Sferentiable in 9; o
2° ul®=us and ui(0)=usz,



158 T. USHIJIMA
3% @), ul(D)>EDX Dy (—eo< i< o), and ul(l) satisfies (1);
4° an energy inequality holds for any t, that is,

{l A2 ()12 + (D212 L eV ] A 220(0) |2+ |02 (0) 122
where w=~/2 max (|Bliz, |C]).

2. Example

Let 2 be an open domain in R*. Unless 2=R™", we assume the boundary
S of 2 consists of a Ci-closed surface. Let @ be the closure of 2. Consider
the following equation with the Dirichlet condition:

(7) %—“_ +e(®) a—”—-— znz au(x)—--——F E a;(x)-~+a(x)u 0,
lfz %.7=1 ax,

(8) #(0, ¥)=us(x), u:(0, x)=us(x) ,

(9) u(t, x)=0 for xeS.

Assume that real valued functions ai; are continuously differentiable on
2 and symmetric with respect to 7 and j, and that they satisfy the uniform

ellipticity, namely there exists a constant a>0 such that 2 aij(X)EE > a? 2

for any x€ £ and £€ R*. Functions a;, @ and ¢ are bounded measurable func

tions on 2, where f*= sup |aix), r= sup la(x)—1| and 6= sup|c(x)| are
1€5€n,2€0 z€0

all finite. We Wﬂl take X- derwatlves in (7) in the sense of distribution.

Let A= 21 64, @ J~a—— -1 with the Dirichlet dondition. " It is well known
i, d= i X

that A is a self adjoint operator in §=L*%) satisfying A>1. Let &) (or
Z' () be the totality of C=-function on 2 (or C=-function which has compact
support). We denote by & 7:(2) (or Z7(2)) a completion of & (2) (or (D))
by the norm of llsollm—{ E | Deo||*L2} /% Since (%, v)g = Z ( w@az: gz ) @
+(%,2)120) in our case, we know that E=.=Z}:(Q) (equahues hold topo-
logically), and that D= & 32(2)nZ1:(2) (see [3] Chapt III).

Let (Cu) (x)=c(x)u(x) and (Bu)(x)= ﬁ a;-(x)%(x)«k(a(x)—l)u(x). We have
=1 J

1IC1<8 and |B|y2< ~§- +7. Applying Corollary of Theorem 1, we readily obtain

the result.

THEOREM 2.

For any ui(x)€ £ 32(Q)n 2 12(2) and ux(x)e i), there exists a unique
strong solution u(t, x) (—oo<t< o) of (7), ) and (9) such that
1° u(t, x) is twice strongly differentiable in L*2) with respect to t;
2° u(0, x)=wu(x), u:0, x)=us(x);
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for any t, u(t, x)€ &30 2 12(Q) and wi(t, x) € 1K),
an energy inequality holds for any t,

{i ji:l <ﬂw -u(t, ), lt(t )> + et ) 20 4 laee(t, |32 (m} &
( au; 5u1
aij

/e
i >L -+ 2o+ llue ”LZ(.O)} )
axj 0%

n
<ew|t|{ E

4, f=1

where o=+'2 max (_/3_ 7, 0>
o

If we assume sufficient smoothness on the boundary and coefficients, we

can show that u(f, x) is a genuine solution (see e.g., [3], [4]). The Neumann
or Robin boundary condition can be treated analogously, for A is a semi-
bounded self adjoint operator in this case.
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