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Introduction

Let (¥, U,) be a irreducible unitary representation of class 1 of G,=SL(2, C),
that is,
X=L%C)
- —amiop ( AZFD. f —(¢ ¢ =X
U,f(2)=cz+d| = i d for g=(, d) and feX
where o is a real number parametrising the representation. (Here we consider
only the principal series).
By restricting this to G,=SL(2, R), we obtain a unitary representation of
G,, which is also denoted by (¥, U,).
In order to decompose this representation into irreducible factors, we

define an isometry of X onto H={F(z); ”IF(z)!z--%g]'—y»<oo} by
UAE)=y"2"fz)  (z=x-+iy).
Then, if we put
_ - N/ AZA-D
T=IUJ",  TRa=r( 5.

Obviously, (7', H) is the direct sum of two representations, each of \vhich
is equivalent to the quasi-regular representation of G,.

On the other hand, the quasi-regular representation is decomposed into
irreducible representation of class 1 (with multiplicity 1) by the well known
method. Thus the problem is completely solved. (For more general case, see
Romm [4].)

In this paper we shall show that for the Lorentz group of n-th order, the
similar result can be obtained (see §4).

We shall also disciiss the application to special functions (see §4 (5), (6)
().
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§1. Irreducible representations of class 1

Let G=G, be the Lorentz group, that is, the connected component of the
orthogonal group with respect to the quadratic form —xi+xi+ - -x3,.

As is known, irreducible unitary representations of class 1 are parametrised
by positive real numbers.

These representations are constructed in the following way.

1) X=[*S" dw) (S"=n-dimensional sphere dw=uniform measure on S

o () - "
U, flwy=e‘? flw,) (o is a positive real number)

where w, and/(w, g) are defined as follows.

A is known, any semi-simple Lie group (with finite center) is (topologi-
cally) the product of its three subgroups:

G=NAK  (Iwasawa decomposition)

where K is a maximal compact subgroup, N (or A) is a simply connected
nilpotent {or abelian) subgroup.

In our case K is conjugate to the subgroup {(1 k)’ /eeSO(;H—l)} and A is
oac-dimensional.

Therefore, for any geG and ke K, kg can be expressed in the following

form:
kg=na,k (neN, q,€A, keK).

We put k=k, t=tk, g). ,
Then, it is easy to see that k—Fk, induces a transformation of S$*: w—w,
and #(k, g) is a function on S*XG. (for details, see [2]).

2) Another realization (see [17)
X=L¥R"

Upfxy=Fx,)4d(x, g)
where

d(x, g‘)'—'%(gu,nﬁgo, ) (] XlL}*l)—{-i;l xj(§j,u’“§o,n~!-1)

‘1“‘.12(gn+l, Owgn.v!-l, 71.-*-1)( I X I B 1)
and

(xp=180,( —Y|2+1)+j§; X8t Gl X121 /4(x, ) (1=k=n)

{d4(x,g) is positive for any x=R" and geG).

§2. Quasi-regular representation
We define a unitary representation of G in H=L*K/G) by
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Tyf(x)=f(xg) .
This representation is called the quasi-regular representation of G. As X=K/C
is homomorphic to AXN,
1+4, x, - x, 4

X Xy

N,= : -
¥ i=1
'xﬂ 'xn ,

~d, —xy o —xy 1—4

we can express the operation of G on X in terms of the coordinates (x, --- x,,1).

cht shi
1 ]\
s N=
1

A::‘[ a,= J
sht cht

From the relation, an.g=ka,ny, k:(l k)’ keS0(n+1) we have

(chi+et4) go,k+e“"j§ X@ et (sht4-e~'d) gpa, i

chtte='4 (b=
=107, (I<k<n)
sht-tet4 (k=n+1)

(Compare the first row of the matrices on both sides).
Therefore we obtain the following:

Y=
; S N -
“%"(go,o“'go,n-a-l)(|x12+312+1)"|‘j§ 185,084, ne)+ 2 (gnu o= 8Gnr1,ne) (| X[*43*—1)

xlk:

2 gu k I»ll "FV*4'1)+EizaJIv'}"'2 gnu i\ lil +V0

; (go,(} go,n '}‘-]l"{ y '{‘ )’}‘zxj(z(z), éj,n'l-l‘)‘l—‘ (gnll 0 gu}l,nl-l} ;;"| "".yz"'l)

where we put y==¢' and y’=e".
Next, we determine the invariant measure on X. We put

v 'xl:: =, =0, y=1.
Then, it is easy to see that J(g)=/(kg) (therefore J is a function on X. We
put J(x, y)=/)an,) and 7('~§~~j)~dxl/\~~/\dxn/\dyy is a G-invariant differential

form on X.
As J(x, v)=y"*!, we see that the measure p defined by

o . oo ' l
(1) § 5 fdete n={ [ fe ) s dr diedy
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is a invariant measure on X. Consequently, the quasi-regular representation
can be described as follows.

H=L*R"x (0, 00), pt)
where x’ and y’ are given by
Tof(x, y)=f(x",¥') .
Remark. By the transformation:
Ey=chi+e'd, &=e"'x;, (1ZkZn), &ppy=sht+e"4
X is mapped homomorphically onto

E={&=(lo ) Eun); Ei—E1—, - —EL=1, &>0}.

As
e”0--- 0, ¢ "x, et
. () gt 0
Oy Enn) 0c 0 e = o0
a(xlx sy Xps t) 0. e—" _..e*'x” p
e7lxy e etay, cht—et Al [F e *  chifetd

=e""(cht-t+e )= —yln* &

we see that the measure u defined above corresponds to the invariant mea-
sure v on 5 defined by

dy(&)= g, - d€usy

&

§3. Decomposition of the guasi-regular representation
For feC(X), we put

Fatky={ ~ fnak)e CE 0 gpn
NV —c0
Then,

Tehtr={ [ finarge sV aan
:fNJ. oo‘ f(na,na’ukg)e—:(g ) dndt
=j‘;vj' ) f(nat_‘_ukg)e"(g“ 'l’w)'dtdn

_ e._(’; 5 fp)t(k.g)fp(kg) = ngfn(k) .

It is known ([2], [3]) that the map: f—»f can be extended to an isometry of
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H=[2X)
onto
=] %wlodp
where
Xp=X=L*S"™)
and

()
ongtt ”“ <71+1

oshp .

Hence we have

(2) T,,,:‘fo ’ Ufw(p)dp .

Remark. 1f f is K-invariant (i.e. f(xk)=f(x)), there exist a function F
such that

Flay, - s X V)= <A.|)_‘[ff_£‘_;’ii}:l_
In this case, f,(k)=f, (independent of k) and
atL
3 o= flo)pig)dg= F-fm—f-l- [ Fiehtgsarshr dt
where
2”?*[’(,1932&1_ it
plka)=eu(a)=———z——P_, _ (chi)

(zonal spherical function).

(Here we normalise the Haar measure of G by L’dkzl and (1)).

§4. Decomposition of U,

We put ¢'={g€G; Zu=8n=0m} (2G,-,). For fe¥, we define fPeH
(i=1,2) by
‘ f(l)(x’ y):ysf(xlr ey Xp-1s y)

f(Z)(x, y):ysf(xl! ey Xp—1s 3’) (SZ ‘%"’i‘i0> .
Then, I:f—(f®,f®) is an isometry of X onto H'@H’ and
U I =T DT,

where (T, H') is the quasi-regular representation of G’ (see §2).
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To see this we have only to note that if geG,

(x8)y= .
xn

é (80,0 g“’“'“) [x[* +)“"'L +1+ E X/ Gj0— g;,nuH 2 (Gur1,0—Lutrnr) (| P+ 17— 1)

(xg)=
- ““:ao,lu |\| +xn +1)+ Exfb)l_l 2 én-!ll i‘l +x 2 1)

‘%” (bﬂ(l g(},n!l (lxi +xnb+1)+ E X (-blﬂ binll) i" 2 (QW'!‘I 0_g7l41n+!)(|’\'I +’1n )

(Igksn—1. xt= Zxﬁ).
i
Hence, combining with (2) we can complete the decomposition of U,.
Thus, for f=¥, there correspond f,e¥’ (i=1,2) such that

4) WS 1)= 2 [ W00 Fotp)dp.

In particular, if f is Af-invariant (M=GK)

Rn—1

o (nol 1 v
f‘”—f s U ")f w’*fxl,---,xu-l,y)A-yAdxl,v--,dxnwldy-fo

v ea _fn-1 . 1 -
fp(n:f y ( 2 Hﬂ).“ J’Sf(xl: sy Xy y)Af’ d-xly ydxn—ldy ‘fo
0 RR—1 y
where f, is a M-invariant vector in ¥’ with norm 1. (We denote by (U’ ¥’)
the representation of class 1 of G’ parametrised by p).

We put

+ 1 1.
s (=gte).

Then, f is a K-invariant vector in (|f||=1) (see [1]).
In this case, f,"=/,=c(p)f, where

Fo) \d e~ i) d y ,
clp)= (['< 11)) j ("3 f‘)”’fm ) lM-HX| et ~dx .

As we have

v ? - — w-m~41 tg—1 n—1-2s
d”):(*[;‘]:fﬂ)“iia)2"‘7}‘( I(s=" 1)[ Ty ) gy T g
N
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f(n ) B A € ff’ )r( gL __fg__)

On the other hand, by (3)

S 2" F
c(p)= I;l(n)ﬂ ‘33‘,_,,2,]?_7,*_{ (2eht)=® e ,,,( ) (c/zl Ysh™1dt .
P3| et T
Hence we have
® e T
28_“{;,_4 [‘(Mz,,__ E:“_}_ ______ )[‘( - TL—L._..,_M!i

v I'(s)

From (4) we obtain
ed@)=2[ "lc(p)*es (doladp  (g=CY)

where ¢’,(g) is the zonal spherical function of G’.
Therefore we have

_nl o
<6) S‘L 3‘ Chf)——.” »l 5 f (Shj)‘1
e w(2m) "0
S ip n 'i,,. _IpNE
i r(5="7 (-
W, (cht)|- P

l l~'<~~7~7¥7£~«~+ip> ) pshopdp .

Remark. 1t is known that a irreducible representation of class of SO(n-+1)
is decomposed into representations of class 1, if it is restricted to SO(n). In
connection with this, we can obtain a formula concerning Gegenbauer poly-
nomial, which is analogous to (6) (see [3]).

So far we excluded the case where n=1. Here we consider this case.
Irreducible unitary representations of class 1 of G’=SL(2, R) are given as
follows.

Upw=lerrdl (L), g=(§ DeG,  relr—oo =¥,
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For feX, we put
Jeoiy={ " foxt-ie-dx
0

Yo ioy=( {—x)xs-iP-1gyx .
7 ) fo Ji—x)
[hen, it is easy to see that

(OS2 =" 0 a=("" -4)

and

= [ L@ 170 T do

L TEERI()
N3 re

If

Ve (14ax)s
Therefore we have

P_1 leht=(Usf, 1= g [ L0017 e) 1D dp

+ -
1 F(s jp)p( 22/)) oo,
47® I'(s)

flay= J=(o)=

Similarly, if
f("'}"‘ (l—x2)‘i *

| PCHER(50) sn e

18—.”’ 1

Jolp)= f dx: 2 AG) © sinzs
Therefore
(t>0) Q % i (Cht) =(Us ,f;f)
(t<0) Q. i (cht)
s+ip s——zp
_ 1 F( >F< ] ch7r(0+p)
4z I'(s) chine

Remark. In the case of G,, we put

Flo, w)= j Cpeiifr, )driweS*Y),  for feX.
0
Then we have

(Us,1)(p, 0)="F(p, w)
and
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1= {__ f1Ftp o) %dpdo,
For

Fl)= I'(n) )} 1
‘1 l+ Y 2)3 !
1-.( 7 ) (1+x|

rm  \b r($fm)p(wzmw

. . 1
f(P, CU):f(p :-«2,. (
F

@) - / B a (cht)

=wwm:%-ﬁmwf e f(p)1dp

Sl W " F(%ﬁp)réf?ﬁp,dp

4z T( n ) I'(s)

References

L17] Orihara, A, On some integral formulae containing Bessel functions, Publ. of
Research Institute for Mathematical Science, Kyoito University, 1, 1 (1965).

[27 Takahashi, R, Sur les représentations unitaires des groupes de Lorentz géné.
ralisés, Bull. Sci. Math. France, 91 (1963).

[ 3] Bunenxun, H. 5., Creunansusie QyHKUME ¥ TeopHs npeicTaBieHHi rpymn. Mocksa
(1965).

[4] Pomwm, B. ., PasnoxenHe Ha HEIPUBOAHMBIE TIPEICTABJCHHS CYKEHHS IPELCTABAECHHA

OCHOBHOW cepHH coGCTBeHHON rpynmnsl JIopeHna Ha BeleCTBEHHYIO Ipynny Jlopenua.
II. A. H, CCCP, 152 (1) (1963).



