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1. Introduction

In Weinstein-Aronszajn’s method* of obtaining lower bounds for eigen-
values, it is important to investigate the mutual relation between the spectra
of two self-adjoint operators A and A4’ in the following two cases: (I) A’—A
is a - degenerate operator; (II) A’ is the part of A in a subspace with finite
codimension. (The first case is often referred to as degenerate perturbation.)
In each case the mutual relation is established by the. Weinstein-Aronszain
Jormula, which states that the change of the location and the multiplicity of
eigenvalues is determined by the location and the order of zeros and poles of
a certain meromorphic function called the Weinstein determinant. In the
present paper the Weinstein-Aronszajn formula for the case (I) (resp. (II)) is
provisionally called the first (resp. the second) W-A formula. Heretofore these
two cases seem to have been treated separately by analogous methods. ~So
far as the W-A formula is concerned, however, it may be said that the first
case is more important than the second. For, on the one hand, the second
W-A formula can be deduced from the first and, on the other, the first W-A
formula admits of a generalization to the perturbation of closed operator by
a wider class of operators than the degenerate operators. (In this paper
“operator ¥ always means “ linear operator *.)

One of the purposes of the present paper is to prove the first W-A formula
in such a generalized form (3.2), by replacing Weinstein determinant by a sort
of infinite determinant. Contrary to the original proof, which reduces the
problem to the one-dimensional perturbation, we shall prove directly the gen-
eralized formula. An essential step of our proof lies in the verification of the
formula (3.4), which is done by making use of Dunford’s theory of operational
calculus.” Even in the original case of degenerate perturbation, our method
provides a new and, possibly, simple proof of the W-A formula.” The second
W-A formula is deduced from the first in a slightly generalized form.

Another purpose of the present paper is to make a study of the infinite
determinant in a Hilbert space in connection with the above mentioned gener-
alization of the W-A formula. The infinite determinant has been treated by

* Aronszajn [1]; [2]. See also Fujita [3]. The writer wishes to express his thanks
to Dr. H. Fujita, who brought author’s attention to this problem.
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several authors in various ways (e. g., [4], [8], [9] and [11]). Most of them
concern themselves with the Fredholm theory of linear equations for some
(not necessarily integral) operators in a Hilbert or a Banach space, and define
the infinite determinant of 1—z7 by a power series of z as the generalized
Fredholm determinant. In this paper we shall make a different approach. In
2, confining ourselves to the case of Hilbert space, we shall consider an operator
of the form 17 with T belonging to the trace class, and define the infinite
determinant of 1—T directly (not by a power series) as exp {tr (log (1—~T))}.
Some properties of it will be examined also in 2 with special emphasis on its
regularity with respect to 7. Though our definition is shown to be equivalent
to that of Smithies [11], our expression seems more convenient for the apph-
cation to problems considered.

It should be remarked that Ruston considered in [9] and the subsequent
papers the trace class in a Banach space. Nevertheless, it appears that the
question is still open whether the trace in a Banach space is a uniquely deter-
mined functional on the trace class (see also [4]). Since this situation is quite
inconvenient for our purpose, we confine our study to operators in a Hilbert
space. But we shall return to this point at the end of the paper.

Here, we shall enumerate those tools and notations which are used through-
out the present paper.

We shall consider the problem in a fixed Hilbert space . Let A be
a densely - defined closed operator in §. We denote by p(A), o(A) and o,(A)
the resolvent set, the spectrum and the point spectrum, respectively. Further-
more, we put R(z; A)=(—A), z€p(A4). The union of p(A) and the set of
all isolated singularities of R(z; A) is denoted by p(A). Let zep(A) and I

a sufficiently small circle about z. Then the operator P(z; )—-————S R(E; A)E
is a projection whose range we denote by N(z; A).

For each complex number z, the number v(z; A) is now defined by
dimN(z; A), if  ze p(4),
oo, if z&p(A) .
If ze p(A), then v=0 and if z€ p(A)—p(A4), then v is the algebraic multiplicity
of the eigenvalue z.

Incidentally, we remark that, if »(e; A) is finite and positive, a is a pole

of order u<y(a; A) of R(z; A). In such a case, Laurent’s expansion of R(z; A)
at z=a has the form

w(z; ’A)::{

. N#-to o N P(a A)
(1.}) | R(z; A)"(zva)“ +eeed e—aF -+
where A(z) is regular at z=¢ and N is a nilpotent with the range contained
in R=N(a; A). Since N is finite-dimensional, it follows from Jordan’s canonical
form that’

12  t®H=0, k=12 .-, and tr(P(a; A)=wa; A).

+A(z),
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On the other hand, for a function f{(z) meromorphic in a domain U of the
complex plane, the order of f at a point ¢€ U is denoted by »(«; f). In other

words, if f(2) =k§‘, alz—a), an#0, —o<n< o, is Laurent’s expansion of f(z)

at z=q, then wa; f)=n. Furthermore, we put »(a; f)=o0, if f is identically
Zero.

Qther notations and conventions are as follows. B is the set of all bounded
operators on § to 9 and T the trace class; |7 and tr (T') denote the trace
norm and the trace of 7€ T, respectively. The trace is a bounded functional
on T which satisfies

(1.3) tr (AT)=tr (TA), TeT, AeB.
S is the Schmidt class; || | and | [l= denote the usual and the Schmidt norm,
respectively. :

If an operator-valued function T(z)€ T of a complex variable z is continu-
ous (resp. regular) in the sense of || |l;, we say that T(z) is f-continuous (resp.
t-regular). The word “t-convergent ” has a similar meaning. (When we say,
e. g., that T(z) is continuous, 7'(z) is continuous in the sense of || |I.)

D(A) and R(A) are the domain and the range of an operator A, respec-
tively; Cla; 7) is a circle in the complex plane ‘with center a and radius 7.
For a square matrix A=(a;) the usual determinant of A is always denoted
by det (A)=det (as;).

2. Infinite determinant

- When 1—T is a positive definite symmetric matrix with eigenvalues ax,
we have det(1—T)=II(1—a)=exp{Xlog(1—ar)} =exp{trlog(1—-T)}. In
accordance with this formula we
shall define in $ the infinite deter-
minant d(1—~7T) of 1-7, TeT,
with the suitable definition of
log (1—-T).

Let TeT. For the moment we
further assume that 1€ po(7) and
denote the finite set o(T)N(1, o)
by {ai, @z, -, an}, @:<@:<:--<an.
Let I" be the closed contour shown
in the figure. (The radius of the
circle about zero is greater than || T
and o(7T") is entirely inside I'.) In
conformity with Dunford's theory
of operational calculus, the operator
Log (1—7T) is defined by

@1 | Log(-Ti=p | e A-pRE T,




4 S. T. KUuroDA

where log (1—&) is taken to be real for real £<1. Since g(E)=log(1—E&)/E is
regular on and inside I', we have ¢g(7T)e B and hence Log(1—T1T)=T¢(T)e T.
Let now T€T be arbitrary. Then d(1—7) will be defined by the formula

exp {tr (Log 1—-TY)}, if lepo(T),

(2.2 d (l—T)={ .
' 0, if leo(T).

In the remainder of this section we shall examine some properties of
d(1—7T) thus defined. For brevity we shall tacitly assume that T e T.

Lemma 2.1, Let I'y be a closed contour such that i) I'y is contained in o(T),
ii) Iy is entirely inside C(0,1) and iii) 0 is inside I'o; let {as, -+, au} be the set
of all points in o(T) which are outside I'y and put vi=v(ax; T). Then we have

2.3  d(1- T);:{ kl;ilu-‘ak)m} exp{ tr <2—Hro log (1—E)R(E; T)dg)} :

(We agree that, when {ax} is empty, the factor 11 is replaced by 1.)

Proof. If 1ed(T), (2.3) is obvious. If 1€ p(T), we replace I" in (2.1, by
the union of /7y and sufficiently small circles I’z about ax and then _substitute
for R(E; T) under L Laurent’s expansion (1.1) of R at ax. By virtue of (2.2)
. . n
and (1.2) we now obtain (2.3) at once.

Remark. It may seem somewhat artificial that we used in (2.2) the oper-
ator Log(1-T), which should be called the “principal value” of log (1—T).
More naturally, 7" in (2.1) should be the union of I, k=0,1, ---, n, defined
above and on each I'x, k=1, ---,n, log(1—§) should be taken to be on an
arbitrary branch depending on 4. (On 7", the same branch as before must be
taken in order that the operator log (1—7") should belong to 7.) Nevertheless,
we can see as ahove that exp {tr log (1— 7))} also satisfies (2.3) and hence
coincides with d (1—7).

TaeoreM 2.1. Let T(z)e T be t-regular (vesp. t-continuous) in a domain U.
Then the function d(1—T(z)) is vegular (vesp. continuous) in U.

Proof. Let T(z) be t-regular in U. Let « be an arbitrary point of U and
I'y the contour given in Lemma 2.1 with 7T replaced by 7(a). Then there
exists an open disque V containing ¢ such that I'ycp(7(z)) for each ze V.
Then (2.3) holds true with T replaced by 7%(z), ze V, I', being independent of
z. On the other hand, if z2—zeV, ('—z)"{R(&; T(z")—R(E; T(z))} is t-con-
vergent to R(&; T(@)T(z)R(E; T(z)) uniformly on I',. Hence, it follows that

X log (1—-£)R(E; T(2))dE is t-regular in .V. This implies that the factor
- ,

0
exp{ } of (2.3) is regular in V, because the trace is a bounded functional on
T. According to the theory of regular perturbation of eigenvalues (Kato' [5]),
however, the factor IT in (2.3) is also regular in V. Thus d(1—7Y(2)) is regular
in ¥V and consequently in U. The other part of the theorem can be proved
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in a similar way.

From the above theorem it follows that d(z)=d (1—z7T), is an entire func-
tion of z. Actually, d(z) coincides with the Fredholm determinant introduced
by Smithies [11]. To show this, we assume for the moment that |z|<|[ 7~
Since o(z7). is then entirely inside a circle C=C(0,#), 0<r<1, d(z) is given
by (2.1) and (2.2) with T and I" replaced by z7 and C, respectively. On C,

however, we can expand log (1—&) in a power series log(l1—&)=— };}—%E“ and

perform the integration along C term by term. Hence, noting the relation

(2m‘)~1§ ERE; T)E=T" we have log(1—2T)=—3 %;z"T“, the series being
1) s

convergent in the sence of || ||l. Since this series is also f-convergent by virtue
of T[T Tt and |z|< || T}, it follows that

2.4 d@=exp (=5 ek, lA<ITI,

ne=

‘ where Tn=tl;( T#). By differentiating both sides of this formula, we see.that
the coefficients d» of the expansion d(z):idnz" are determined by the recursion
nl

formulas

{ln =1 y
(2.5) i

12 |
tn=—— > txdn-r , n=1.
n En

On the other hand, the Fredholm determinant ;Z(z) of 7€ T is defined by

. A > ) » . A > .
a power series d(z)=23 dnz® and it is shown that dn» satisfy the same recursion
n==0

formulas (2.5) as dn ([11]; (3.7.3)). Hence we have d(z)=d(z).
Here it should be noted that, if we ‘define d(1—7") as the value of the

power series Zdnz" at z=1, we can also prove Theorem 2.1 using an est11na~

tion of |dal ancl the whole argument of this paper would be carried ont W1thout
referring to the theory of operational calculus.  Nevertheless, we prefer the
form (2.2) for our purpose, because it not only exhibits the regularity of
d(1—T(z)) in a clearer way, but also reduces the calculation in 8 to a simpler
form.

We shall next examine the relations between d(1—7) and the usual
determinant of the part of d (1—7) in a finite-dimensional subspace. We begin
with ‘a preliminary lemma. :

Lemma 2.2. Let Pn and Qn, n=1,2, +-+, belong to B and let s-lim P,=P
and s-im @u=Q. Then |PrAQx*~— PAQ*IIz—»O Jor each A€S and |PnAQw*
—PAQ¥|:—0 for each AeT.

Proof. Since [PyAQu* — PAQ*|x < || Pull H(Qn——Q}A*Ilk + [[(Pa—P)Alel Q*ﬂ,
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k=1, 2, we may assume that P=0 and Q»=Q=1. Let now A€S and let {p«}
be a c.o.n.s. (complete orthonormal set) of the orthogonal complement M of
the null space of A. (Note that I is separable.) Then we have

1PaAlE= 5 [P A PSS [Padoult+M S | Aerl?,
=1 k=1 k=N-+1

where M=sup ||Pxl| and N is an arbitrary positive integer. From this [|PxAl2
-»0 follows by a standard argument. If A€ 7, A is expressible in the form
A=8:S., SxeS. Hence we obtain ||Padl:<| PaSi]a]|Ssl=—0.

Lemma 2.3. 1) Let P be a (not necessarily orthogonal) projection such that
RPYSR(T). Then, if we put T'=PTP, we have d(1—T)=d(1-T").

i) Let T be of rank r, 0<r<co, and {¢1, --+,ory a base of R(T). Then,
if we put tiy=(Te; e, 11, 7<r, we have d(1—T)=det (8i;—tiy).

Proof. 1) Since PT=P, we have tr (T"*)=tr (T'*) in virtue of P?=P and (1.3).
Hence, it follows from (2.4) that d(1—zT)=d(1—=zT"), if |z|<| TS| T
Then the result follows by analytic continuation. ii) By virtue of i) we may
assume that 9 itself is r-dimensional and R(T)=9H. Then u(z, T) is also
finite at z=0. Hence in the same way as we got (2.3) we obtain

(2.6) o da-D)=la-ag,

where {ai, ---, ay} is the set of all eigenvalues of 7 and w: the algebraic
- multiplicity of ax. From this the result follows.

Turorem 2.2. Let ©° be a separable closed subspace of © containing R(T),
{oer @ c.o.n.5. of D and ti;=(Te;, ¢i). Furthermore, let T and 1 be the
square matvix of degree n defined by To=(tis), 10, j<n, and 1.=(0).. Then
we have
(2.7) ‘ d(1—T)=limdet (1o—T%).

Proof. Let P and Pn, n=1,2, ---, be the orthogonal projections on §’ and
the subspace determined by {ei, - -, ¢n}, respectively. Then by Lemma 2.2
we have ||PnTPu—PTP)1—0, n—oo. By referring to Theorem 2.1 and Lemma 2.3,
we therefore obtain lim det (ln-Tn)=limd(l-—PnTPn):d(l——PTP)zd(lf T).

CororLary. 1) d(1—T*=dQ—-T). i) If 1—-T=Q—-T)(1—T=), we have
(2.8) AdA-T)=d(1~-T)d(1—-T2).

Proof. We first prove ii). Let R be the closed subspace determined by
RTHUR(T:). Since Tre T, k=1, 2, implies that R(T%) is separable, N is also
separahle. Let now P, be constructed as above with R’ replaced by R. Then,
by Lemma 2.3 and the formula (2.8) for the usual determinants we have
d ((1“"P7LT1P71,X1—‘P73T2P7¢))=d (1""PnT1Pn) d (1‘_PnT2Pn). Therefore, bY 1etting
oo on both sides and referring to Lemma 2.2 and Theorems 2.1 and 2.2, we
obtain (2.8). i) is proved in a similar way.
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As we saw above, the fregularity of 7(z) implies the regularity of
dz)=d(1—T(z)). If T(z) has a pole at z=q, however, d(z) may have an es-
sential singularity at «. Nevertheless, if a pole-like singularity of T(z) occurs
in a fixed finite-dimensional subspace, the possible singularity of 4 is pole-like.
Namely, we have the following

Tarorem 2.3. Let U be a domain in the complex plane and let a€U. Let
T2y and T«z) be t-regular in U and put

T;(Z)
(z—a)?

TNz)= +Tu(2) , zeU~{a},

where. p is a positive integer. Then, if WTY) is contained in a v-dimensional
(0=7< o) subspace R independent of z€ U, d(z)=d (1~T(z)) is meromorphic in
U and we have v(a; d)=—pr.

To prove this theorem we need the following estimate of [d 1—7")|.
Lemma 2.4.% For each T'€ T' we have
(2.9) d(1—T)=exp ([T .
Proof. We first assume that T is of finite rank, Then (2.6) implies
|4 (A=T)1= [ (1+|axly*<exp (S mlasl).  Let now {by, -, b} be the set of all

eigenvalues of |7TI=(T*7T)/* and px the multiplicity of bx. Then it is known
that (see Weyl [12])

S oilanl < 3 obr=I T .

=1 k=1 :
Hence we see that (2.9) holds for each 7" of finite rank., The general result
follows from this by virtue of (2.7) and the relation [ 7ll:<|| 7.

Proof of Theorem 2.3. Since it is easily seen that R(7T(z)) is contained in
a separable closed subspace independent of z, we may assume that 9 itself is
separable. Let now {P.} be an increasing sequence of finite-dimensional or-
thogonal projections such that Pi=R and s-lim Pn=1. Furthermore we put
dn(2)=d (1—=PaT(2)Pn). By Lemma 2.3 du(z) is equal to the determinant of
a matrix representing 1—7"(2) in P»P. We choose a base {gis} of PuD in such
a way that {¢1, ---,¢,} determines i and construct the above mentioned matrix
(dif(z)) with respect to this base. Then by the assumption of the theorem
dif(2) is meromorphic in U and

—-p, if 1=isr,
0, if - <.
Since du(z)=det (dif(z)), this implies ¥(a; dn)=~—pr. The general result is ob-

tained by the limiting procedure based upon the fact that |du(z)| is uniformly
bounded on a closed contour contained in U—{«} (Lemma 2.4) and dn(2)—d(2).

* The writer is indebted to Prof. T. Kato for this lemma.

P((I; (l'u(z))g{
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3. Generalization of the Weinstein-Aronszajn formula

Let A be a densely defined colsed operator in § with non-empty resolvent
set and B an operator which satisfies the following condition:

(3.1) { B(B)DD(A) and
‘ T(z)=BR(z; A)e T for some (or equivalently for all) z€ p(A4).

Since BR(z; A) is then completely continuous, A’=A+B is a closed operator
with the domain D(A")=D(A) (Kato [6], Theorem 2a). Furthermore, the func-
tion d(1—7(2), z€ p(A), is denoted in this section by w(z), namely

w(z)=d(1—BR(z; A)),
for the reason that it corresponds to the Weinstein determinant in the case (I).

TreoreM 3.1. Let A, B and w(z) be as above. We further assume that
R(z; A) is meromorphic in a domain U of the complex plane and viz; A) is
Jfinite for all zeU. Then w(z) is meromorphic in U and we have

(3.2) vz, w)=wvl(z; A)—v(z; A), zelU, A'=A+B.
(Both sides of (3.2) may be +o.)

Before proceeding to the proof, we shall make some remarks related to
this theorem.

Remark 1. Special cases. If B is of finite rank, tha{ is, Bzéjlck(-, or)dr,

(@i, @1)=(¢i, p5)=013, then we have by Lemma 2.3 w(z)=det (Ji;—c R(z; A)ds, o).
If in particular B is self-adjoint (@:=¢,), w(z) coincides with the Weinstein
determinant defined for the case (I) and (3.2) reduces itself to the first W-A
formula. .

In the next place, if A=0 and Be T, (3.2) implies a well-known relation
between the eigenvalues of B and the zeros of the Fredholm determinant.

Remark 2. Returning to the general case, we see that the nature of the
spectrum of A’ in U is classified into two different types according as w(z) is
identically zero or not, If w(z)=0, (3.2) implies v(z; A")=co everywhere in U.
Hence Uco(A’). If, on the contrary, w(z)2g0, then Theorem 3.1 shows that
U is contained in p(A’) except for an at most denumerable number of eigen-
values of A’ whose algebraic multiplicity are finite and whose accumulation
point (if any) lies on the boundary of U. Here we remark that this classifi-
cation was obtained by Kato [6] by a different method under weaker conditions
than (3.1).

Remark 3. In referrence to the above remark it is desirable to have some
criteria which ensure w(2)2£0 without explicit calculation of w. w(z)3g0 is
equivalent to the following condition:

(Cy) Unp(A”) is not empty. ; :
We shall enumerate some sufficient conditions (C:)~(C:) which imply (C:). The
proof is not difficult and will be omitted.
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(C2) ||BR(z; A)l|<1 holds for a ze Un p(A).

(Cs) There exists a sequence {z.} in UnNp(A) such that |zu|-»o and
|zn—2:| | R(za; A)| is bounded.

(Cs) AeR and there exists a ze U such that |z|=]A].

We now proceed to the proof of Theorem 3.1. We first prove that w(z)
is meromorphic in U.

Let {ax} be the set of all poles of R(z; A) in U and put U'=U—{a:}.
Then, as in the proof of Theorem 2.1, we see that, 7(z) is f-regular in U".
Hence we have only to prove that each ax is not an essential singularity of
w. By (1.1) we see that, in a neighbourhood V of ar, T(z) is expressible in
the form

Tl(Z)
(z—an)*

where Tiy(z) and Te(z) are regular in V and R(TWz)cBRax; A). Since
BR(ax; A) is finite-dimensional and independent of z, Theorem 2.3 is applicable
with the desired result.

In order to prove (3.2) we need the following lemma, which is partly given
in Kleinecke [7].

Lemma 3.1. Let zeU’. Then z€0,(A’) or z€ p(A’) according as w(z)=0
or w(z)+0.

Proof. (2.2) implies that 1€0,(T(z)) or 1€ p(T(2)) according as w(z)=0 or
w(z)#0. Hence, the result follows directly from the relation 1—-7(z)=(z—A")-
R(z; A).

Let now w(z)==0 in U. Then from Lemma 3.1 it follows that U coey(A”)
and hence Uco(A’). Namely »(z; A)=-co for each ze€U. Therefore (3.2)
holds in the sense co=o0.

Next let w(z)20 and put U”={z¢€ U’Iw(z)aﬁO}. Then U p(A)Np(A") and
for each ze€ U” we have

(3.3) R(z; A))—R(z; A)=R(z; A’)BR(z; AeT

T(@)=——"-+Tx2),

hy (3.1). Now the following lemma is fundamental to the proof of (3.2).

Lemma 3.2. For each ze U we have

(3.4) G >~“’((z)) ={tr (R(z; A")~R(z; A)} .

Proof. Let a€ U” be arbitrarily fixed and I' a fixed contour defined as in
(2.1) with T replaced by T(a). - (Note that 1€ p(T(a)) by the definition of U”’.)
Since T(z) is t-regular at g, there exists an open disque VU’ containing @
such that I'c p(7T(z))) and 1€ p(T(z)) for each z€ V. Then we see, as in the

proof of Theorem 2.1, that the integral (Zm')"S log (1—E)R(E; T(2))dE is sig-
o

nificant for each z€ V and f-regular in 'V with respect to z.  We temporarily
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denote this integral by log(1—7(z)). Though it may be different from
Log (1—T(z)), we have w(z)=exp {tr (log 1—T(z)))} as is stated in the remark
after Lemma 2.1. Hence it follows that .

FlR)=-2 tr (log (1— T(2)))
dz

1 d - :
=t (gl log (1—E)R(E: T(z))d&) . zeV.

Since log (1—T(z)) is f¢-regular, the differentiation can bhe performed before
calculating the trace. Furthermore, since I'cp(T(z)), we can carry out the
differentiation under the integral sign with the result (we write 7 instead of

T(z))
f(z)=—72~17;1—. tr (X log (1—E)R(E; T)BR(z; APR(E; T>a'f) .

Now, the order of the two operations, the integration and the calculation of
the trace, can be freely inverted, as long as the integrand is f-continuous
along I". Therefore, using (1.3) we obtain by means of partial integration

f@y=—5=tr (S log (1—E)R(E; T)dE-BR(z; A) )

1 1
==t ——R(E; T)dE- AR,

57 o ((, TogRE T BRG: A7)
Since o(T) is entirely inside I', the integral on the right-hand side multiplied
by (2zi)! is equal to (1—~T)“1=(z’——A)R(z; A’). Hence, noting (3.3) we have

flz)=tr ((z—A)R(z; A)BR(z; Ay)=tr (R(z; A")BR(z; A))
. =tr(R(z; A)—R(z; A)), zeV.
Since V is a neighbourhood of an arbitrarily fixed ae U”’, this proves (3.4).

Let now ze U be arbitrary. Then there exists a circle C about z such
that i) Cc U and ii) there exists no points of U—U*" on and inside C except for,

possibly, z. - Since w(z) is meromorphic in U, it then follows that (2zi )"E S22’
(2}

=y(z; w). Therefore, by integrating both sides of (3.4) along C and noting
(1.2) we obtain (3.2).
Thus Theorem 3.1 is completely proved.

We shall next deduce the second W-A formula in a slightly generalized
form.

Toeorem 3.2. Let A and U be as in Theorem 3.1. Let N be a r-dimensional
(0sr< ) subspace of D(A), P the orthogonal projection onto M=PON and
A’=PAP. Then A’ is a closed operator with the domain DA Y=D(A). Let
{grlk=1, .-+, 7} be a c.o.n.s. of N and put

W2)=det (dif2)), - difz)=(R(z; A)s, i), — zelU.
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Then we have
(3.5) wz; W)=wu(z; A)—v(z; A), zelU, z#0.

Remark. - When A is self-adjoint #i(z) coincides with the Weinstein deter-
minant defined for the case (II) and (3.5) reduces itself to the second W-A
formula.

Proof of Theovem 3.2. It is easily verified that
(3.6) A'=A+B, B=—PAQ—QA .

Since @ is of finite rank and A(A—z)te B, z€p(A), it follows that B(A—z)!
is of finite rank and hence belongs to T. Therefore the first assertion of the
theorem follows as before. Moreover, Theorem 3.1 is applicable to this
problem. Now, by virtue of (3.6) and the corollary to Theorem 2.2 we obtain
for each ze U, 20, (U’ is the same as before)

(3.7) w(z)=d (1—BR(z; A))=d(1+(1/2)PAQ)-d (1—Q+2Q(z— A)*) .

Since tr (PAQ))=0, k=1, 2, ---, a simple consideration using (2.4) shows that
d(1+(1/2)PAQ)=1. Hence, by applying Theorem 2.2 to the second factor on
the right-hand side of (3.7) we get w(z)=z"w(z), z€ U, z#0. From this and
(3.2), (3.5) follows at once. .

Remark. In the above deduction of (3.5) from (3.2) the condition (3.1) of
Theorem 3.1 is essentially utilized, because in general B defined by (3.6) is
not of finite rank. If A is self-adjoint (or more generally if RCD(A*)), how-
ever, it follows easily that QA and hence B are of finite rank. Then the
ahove proof is performable without any change and without any reference to
the generalized formula (3.2). We can therefore say that the original second
W-A formula can be deduced from the original first W-A formula.

Finally, we remark that most of the arguments in this paper can he
applied to the case of a Banach space X, if we replace the trace class T' by
the class F of all degenerate operators on X to ¥. The trace norm and the
trace of T'€F are taken in the sense of Schatten (Schatten [10], Ruston [9]).
In particular, we can also prove a theorem similar to Theorem 3.1. In the
proof the incompleteness of F provides no difficulty. The only point to be
noted is that in the proof of Theorem 2.3 we used essentially the unitary
character of 9. In the present case of degenerate perturbation, however, we
need Theorem 2.3 only T7:(2)=0. In this case the theorem is trivial and
requires no such proof as before. Further details of slight changes in the
arguments need not be stated.
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