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1. Introduction

Recently, L. Hérmander [2], [3] gave an interesting investigation upon the
uniqueness of solutions for the Cauchy problem of elliptic partial  differential
equations. = His argument is based upon the inequalities which he drives from
those due to Tréves.

In this paper we shall extend Hormander’s results to some classes of
elliptic systems of partial differential equations. Our method is quite similar
to that of Hormander. Firstly we extend the inequalities of Hormander [3] to
a system of elliptic differential operators (Theorem 2). We reduce the system
of differential equations to a system of differential equations of the following
type;

N
(1) Lu(w, D)= 121 ’ lZ an, si,0(w) D%k h=1,2, .-+,
= w|<m
where {Lu(w, D)} is a system of differential operators of order m. By virtue

of our inequalities we can apply to (1) the arguments as in Hormander [3],
and obtain the uniqueness of solutions for the system of differential equations.

2. Notations and Main Results

Let £=(&y, -+, &) be a sequence of indeterminates and a=(ay, ---, @) he
a sequence of integers, we write

la|=ai+ -+ Fay, [EIE=]Ed]2 4 &2,

al=a! !, Er=F%1-Ex®2 o0 By,
Let &=(k., ---, £v) be another sequence of integers. «=& means that ay=
k; for every index j, and az=e=(aszk1, + -, avzkry). If o=k, then we define

(=) () (%)
K K1 K2 Ky ’

If P(E) is a polynomial of indeterminates £=(&i, ---, &) with constant
coefficients, then we set

Poe=(35 E) (ag) PE, - B,
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According to definition, if P&)=3, a.£*, then we have

PeE)=3)

a K-
M(Ig )v £

Let £ be a domain in v-dimensional Euclidean space. For a polynomial
PE) =3 a&* we define a differential operator P(D)=X a.Dx,

ol

L ] P A —
D@1 - - Dy®y

where s=(x1, ---, @) 18 a point in £ and { denotes a square root of —1. If
P(x, ) is a polynomial of £ with variable coefficients, that is, Pz, £)=X ax(@)*
where a.(z) is a function of » in £, then we employ the following notations.

Pz, D)=3 axs)D* ,

P (g, D)= E (lx(’b)[)“ o
(f» )

Pledg, D)= 2 {D%a()}D* 5

Let ¢(z) be a function of  in .Q We employ the following inner products
and norms.

(u, ‘v)wzg ww)v(@ecdys
Q

leello® = (at, )o
ﬂ:x(ﬂ)(ozz E i7‘{'!'”Dw””’é’z'
fool=m 0&!

We state our main results, their proofs will be given in §4. and §5.

TuroreM 1. (Hormander [31) Let P(w, D) be a homogeneous differential
operator coefficients of which are uniformly bounded and wuniformly Lipschitz
continuous in 2. Then there exists a constant C depending only on the dimension
v of 2, the order m of P(z, D) and the bounds for the coefficients adx) and
their first derivatives such that the inequalities

(2) hﬂﬁ“P‘B’(m, Dyl 2 =C{| Plw, DYl o* + Tont8) o+ Tm-—l(u)(p}y
ol@)=3 hie'—a)
i=1

hold for every function u€ Co(2) and for every sequence B of integers.

Treorem 2. Let U be a neighbourhood of the origin in R”, and let Px(x, £)
(k=1,2, -++,n) be homogeneous polynomials of degree m whose coefficients are
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Lipschitz continuwous in U. Moreover, we assume that
(a) the simultancous algebraic cquations with v-unknowns &, -+ -, Ev

(3) P0; £)=0, k=1,2,---,n

have no real roots except £=0.
(b) the simultancous equations with single unknown &

&4) : PK(O; CI,EQ,"';EV}ZO, /\331,2,"',}5
have no complex double roots for fixed real (&, - -, Ev)#0.

Then there exist constants M, 8., @ and C such that the inequalities
(5) (L reayetot-rm-tal] Do 2<C 3 | Pato, Dlielo?

hold for every we Cy(Us) provided that v0>M and 0<3<dv where ¢(x)=tps(v),

(6) oy(0)= ' —ap-+0{ 3 (00 |
J=1

and
UB:{QJ'; IfUli<3: b‘lmj|<afml_a[9 ]:2) 3) ] U}n U.
Turorem 3. Let {Pslx, D)}y j=1,2,---,N’, k=1,2,---,N be a N XN-
matrix of differential operators such that the following hypotheses hold.
(A) There exists a sequence of integers (si, --+,Swv': b1, -+, tw) such that
N
Pix(w, D) is of order ss+itx. We set n=73. t;, m(n)=3 Sum, where n is a one to
J=1

one mapping from {1,» o, NYto{l, -+, N} and m=max m(n). We may assume
te=0.

(B) The coefficients of Pulw, D) have bounded derivatives up to order m—+n
+ k.

(C) Let Luln, E) be the determinant of the matvix (Pegpilz, E)), and let
Lz, E) be the {n+m(z)}-homogeneous part of Lu, E). Then, polynomials
{L:w, E)} have properties (a) and (b) in Theorem 2.

Let u(w) be a solution of a system of differential equations

(7 §k] Pji(w, D=0 .

such that w is identically zero in the intersection of a meighbourhood of the
origin and the domain ‘

(8) o< ()
Then u=0 in a neighbourhood of the origin.

3. Tréves’ inequalities

In this section we shall prove Tréves' inequalities, Our proof are slightly
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different from that of Tréves and the author hopes that his proof might be
a little more natural than that of Tréves.

We shall begin with some algebraic lemmas. Let % be a algebra over
complex number field C with unite I. We set [A:, Bil=A41Bi—BiA: where
Ay, By are elements of %. Let P{E) be a polynomial of £=(&i, ---, &) and
A=(A: --+, Ay) be a vector of elements in A, Then we denote by P(A) an
. element of % obtained by substituting 4 for & in P(&).

The following two lemmas are easily checked by mathematical induction.

Lemma 1. Suppose that [A:, Bil=¢.l.  Then

9 LR M (/1 l! WI" 3, =k 4 1=k
(9) ABM= 2 R =R i DA

Lemma 2. Suppose that [Aj, Bx]l =0mgsl (j=1, -+, v), [4;, Ax]l=[Bj;, Bx]=0.
Then ‘

, - g al B! Bk A @k
(10) A*B a,ﬂ%xgﬂfc‘ (@—g)! (B— ”)'B 4

holds, where A=(A4,, ---, 4y) and B=(By, - --,"Bv).

Lemma 3. If A and B have same properties as in Lemma 2, then

Q(a})(B)P(m)(A)

(11 P(A)RAB)= Z

holds, where P(&) and Q(B) are arbitrary polynomials.
Proof. Suppose that P(E)=3, axf* and Q(€)=3 b.£*. Then we have

P(AQB)= z; an % buANB>

g* A ul Br-o Jr-0
"Z%mgﬂ“" ac! (2—a)! (,;-a)v 4
_~ ! A m)
= E al (EL (,u—a:)' 0B )(éﬂ (z~a)v““’4
mgo a'

Now let H be a pre-Hilbert space whose elements are infinitely differenti-
able functions with compact carriers in RB* and whose inner product is (#, v)e
where ¢(v) is a continuous function of z in R”.

We denote by D; the formal adjoint of D;=i-18/0z’ in H. ;

Let PE)=3 arE* be a polynomial. Then the formal adjoint of P(D) is
P(D) where P(g)=3aF*.

If ¢(2) is differentiable in 2’ then we have, by partial integration,

5=, 4L 00
DJ"—Dj+ Z_ aa;j . ’
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If ¢(z) is twice differentiable, it follows from this formula that

0%p
[DJ, Dk] a ja ko

Hence, the assumptions in Lemma 2 with A;=D;, B;=D; hold if and
only if

0% 0
@l B0
where ¢; (j=1,2,--+,v) are constants. Integrating this system of partial

differential equations, we have
1 v
pl)= -52'_. g —a?)+c
where a; (j=1,2,---,v) and ¢ are constants. A constant multiplier in the

inner product of H is irrelevant, so we may assume that ¢=0.
We obtain from Lemma 3 that

(Q(Dyu, P(D)v)o=(P(D)-Q(D)ut, v)o
= 5 -L(QW(D)P (D, v)y
@zl )
=3 L (BB, G (D),
@ =0 ﬂ!'
holds for u,ve H. Setting v=u, Q&)=P(), we have

(12) : I P(Dyue]|o*= -——HP“‘“ (Dyulle* -

Applying this formula to P¥(D), we have

" ! a+r\ gote i
1Dt =2 3 (VT L P Dl

Remark that if |a| is greater than the degree of P(E), then P(E)=0 and that

( )<2)nﬂ
K

Setting ¢;=2h;*, we have the following:
Lemma 4. (Tréves [1])

(13) 1Pl z 2 ,

IIP""’(D)uH¢

holds for every ue Ce(R”) where ¢(x)=3 hi(x'—a’)® and &, h; are constants.
In the following we denote by ¢(w) the function of # defined above.
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By virtue of (12), we have
I Daello? = | Dseel) o + 20 ell o> Z 205 ) o*
Hence, we have
Ti(w)e* =2 | Dstel * Z 2121 |l o*

where |A]*=h+ - +/?, so that

| 221
Tunlw)= 3 2251000z 3 225k Doully?
fwl=m c¢l 3 lot=m o]

=212 Tm(t6)e® .
Repeated application of this formula gives the following lemma.
Lemma 5.
(14) T)*Z2m 4| )20 Th(u0)r  (R=m)
holds for every ue Cy“(R”).
4. Tréves’ inequalities in the case of variable coefficients

Firstly we state

LeMMA 6.
(15) D, Dyl < Do)l S Tai(t)e?

holds for every u€ Cy~(R¥), where (D, D)*=(D1, Di)*(Ds, Da)*s- - -(Dy, Dy)*, and
(Dj, Dy)%s5 is any product of the form

Dj“lﬁjlejaﬁﬁj”z' . 'Dj“]’ﬁj”l’; a+bita+bet - taptby=ay.
This lemma is easily checked by using the inequality
I Dsusllo*= || Dsusll o +2h 52l 2= | Dsaello* .

Let a(x) be a function of » in £ which has bounded first derivatives.
Denote a¥'=Dja(z). We denote by Umn=WUnm (m=<n) the C-module generated
by operators of the form

9"(D, Dy*a"(w)(D, Dy;
27|+ lal +1BISm+n, |rISm, n+|BIZlal+m, nt+lalZ|8l+m
and denote by Wm,+ m,-) the C-modﬁle generated by operators of the form
(D, DYa?(@)(D, DF; 2lr|+lal+I8IS2m~1, lal=I8l+1 (lal=|B-1).

By wvirtue of definition, we have
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(1) W1 Moy Wonet, £ C W s

(i1) DMy Yonn e N (12m)

(i) WY, Di y Do, 2Wnm

(1) Do Yot Wonn Do Monyr,—

(V) DuwDeC s, nity Do, e Do Mg -
We set

- Al sl £
DM DM = A Pk A-K
Draby= 3, Gl a2

Since the coefficients of {D*aD*} are equal to those of [D*, D], we obtain
(16) {D*aD*}=[Dj, D¥laDN+{D*a[D;, D]} +{D"aD*}D;,
(17 {D*aD*y=D**a[ D*, Di)+{[D*, DelaD*}+Di{D*aD*}

where A*=(Ag, «--, 3—1, -+, A) and w¥=(p1, -+, =1, <+, ).
By virtue of (i)~(v), (16) and (17), we can prove
LemMma 7.

(18) DN)‘(JD”'—DHUE)‘:—:{DW)\[ZD”'} mod. QIl)q,“qH(slImLi)

holds if [A]<|zl (1A]=]sl).
Proof. Consider the identities
D*aD¥— Dt D>
=D*a[ D*, D] +([D*, DiJaD™~ D[ DV, Dy))
+ Dy(Dra D" — D DN+ DMaDy— Dra) D
=[Dy, D¥|aD* +(Da[ Dy, D*]~[D;, DHlaD™)
+(DaD*— D*a DM Dj+ DM(Dsa—aDs)D* .
Then, it is obvious that this lemma is proved inductively.
By virtue of Lemma 5, Lemma 6 and the Schwarz’ inequality, we have

Lemma 8. If A is an operator in Wwm s, then there exists a constant C
depending on A such that

(19) |(Au, )| SC{Tn(1)e Tua-1(0)o+ Tin-1(16)¢+ Tra(0)o}

holds for every u, » in Co(£2).
Using above two lemmas, we can prove

Lemma 9. If P(w, D), Q(x, D) are homogeneous differential operators of
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order m whose coefficients have bounded first derivatives in £, then

(20) (P(w, Dyu, Q(, D)v)e

Qol e )
o (Q®\(w, Dyu, P™(z, D)v)p+remainder

=2
such that
lremainder| < C{ Tm(t6)o Trn—1(0)o+ Ton—1(tt)o Ton(0)0}
holds for every ueCo(2) where C is a constant depending only on P, @ and

the dimention v of 2.
Now take Plw, D)=Q(x, D), u=v in (20). Then we have

. 214 pre | — .
(21) | Pz, Dyulle*=3 THP @55, D)t o2 +remainder
where Iremai_nder] SCTwm(t)eTr-1(16)e .

Proof of Theorem 1. From (21) and the corresponding formula obtained
by replacing P by P®, it follows that

(22) 12| P, Dyull* < C{| P(w, D)ulls*
+ Tl 26)o T s (1)t 3% Toney oy (1) Ton i -1 (8
Using Lemma 5 we complete the proof of Theorem 1.
Another proof of (21) can be found in Hoérmander [2].

The proof of Theorem 2 is quite similar to that of Theorem 4 in Hormander
[3]. Therefore we omit it.

5. Uniqueness theorem for a system

Let P(z, D) be a N’ x N-matrix of differential operators, that is, Pz, D)=
Pulz, D), j=1, -+, N’; k=1, ---, N, where Pz, D)=23, as; o(a)D*. We rewrite
this operator as P(w, D)=1 a.{x)D®, where aulz)=(ame), j=1, ---, N'; k=1, -+,
N.

Let Q(w, D)=3 ba(w)DP be another such operator. We define

(23) Ple, D)oQ(w, D)= 2 aa()bp(w) D*+P

After simple calculations, we easily see the following:

Lemma 10. If the coefficients of Q(x, D) are differentiable up to the order
of P(x, D), then

@) Pla, D)-Qla, D)=, 77 P*(e, D)o@z, D)

holds. ,
Remark that the order of the x-th term in the right hand is equal to the
order of the left hand minus |«}.  This fact plays an essential role in the
following. :
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Lemma 11. Let 2 be a bounded domain in R¥, Pz, D) be a matrix of
differential operators such that the hypotheses (A) and (B) in Theorem 3 are
satisfied. Let » be a solution of a system of equations (7), which is m+n
times differentiable.

Then we have

N
(25) L&, D)DPuwd=3 3 Cepiske(®)Du"

k=1 |e|>mtatiy
where cr.pina(®) is a linear combination of the coefficients of P(x, D) and its
derivatives, and B is an arbitrary vector of non negative integers such that
1B =t;+m—m(x).

Proof. Let Qulz, £) be the (k, j) cofactor of the determinant of the matrix
P(x, EY=(Puz), j, k=1, ---,N. Then we have

Lz, D) -0
Qw, D)ePdlr, D)= 1 . )
0.+ Lz, D)
Accoording to Lemma 10 we have
QoPr—Q -Pr=— 3} __....1’ R o Plal
tefz1 &

The (4, k) component of the #-th operator in the right hand is at most of order
n+m(n)—t;+t—]al. It follows from this that

N
(26) [DHQoPe—Q-PulP=2% 3 ¢l ., (@)D"
=1 [ <mntty 0T
In the same way, we obtain
(27) DPLx%, Diui—Low, D)DPuwd= 5 ¢ (x)D% .
i lg|<mtntt; "

Now that L.(x, D)u'=L.%(x, D)u/+the lower order terms, we have‘

(28) L., D)DPy? — L (2, D)D‘:’uf”——l >3 W (2)Dul .

sl <t B
The formulae (QoPau)=La(x, D)u!, (26), (27) and (28) imply that
L2, D)DPyd ={L"(%, D)DPu’ — La(2, D)DPu?}
—{DPL (%, D) — Ly(, D)DPy?}
+{DBLAx, D)w? — DF(Q- Prat)’}

N
— . @y k
k‘S;:z |m|<;n:+n+t,,c”"3”"’“(m)D k.
Proof of Theorem 3. By virtue of the hypothesis (C), the hypotheses of
Theorem 2 hold for a system {L.%z, D)DP} ., \pi=m-mm+t;. Hence, we can apply
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Theorem 2. We may assume that M, and C do not depend on j=1,2,---, N.
and that a=<3d/2.
It is easily seen that there exists a constant p smaller than ¢s(0)=62 such

v
that Mpz{m; 2123 (xh)?, (oa(x)zp} is contained in Us. Moreover there exists
J=2

a neighbourhood U, of the origin such that Us>U.2>UiD>M, where U; is the
closure of ‘U, Set U:=U:N{x; ¢s(x)>p}. Then U. is a neighbourhood of
the origin. :

Let X(z) be a C=-function which is identically equal to 1 on U, and has
compact carrier in Us. Set v=Xu.. Applying Theorem 2 for v* and ¢(2)=r1%ps(x)
we have

n

2 5 T, SCrtRS S JLaDE,

I<mtntiy =17 |Bl=tp-t-m—miw)

-2 07)Byk
+Cr El%lﬁl%k+m-m(],Lﬂ DFo, Ts=U2
where || [lo,0 means L.-norm on U with the weight function e?®. The fact
#=v on U, and (25) imply that

N
/2 k)2 <2 S 0 DByk|12
(1-Cr )El l>m§t:n) ,Tl(u )‘P'Uﬂzcr lg‘l ;im:tk%m_m(ll)lw Do H"ﬂ'Us"UZ ’

Take r>1/v/3C7. Remarking that inf{e(®); x€UsNcaru} is equal to
sup {¢(x); z€(Us—U:)Ncar v}, we get

(29) EN‘, o —lﬂg | D% |2l
Ug

Fel el <mintty, al

<202y 3 X LS, D)DFot 2z |
5~Ug

k=1 |Bl=tgtm-—m(x) Jys—

When r tends to infinity, the right hand tends to zero, so that w is identically
equal to zero on U, This completes the proof of Theorem 3.
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