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We consider a Riemann manifold M with a differentiable map p of M onto
a manifold L with constant rank=dim L; the Riemannian metric on M shall be
bundle-like (in Reinhart’s sense) so that p induces a Riemannian metric on L.
The study was preceded by Y. Muté [1] and K. Yano [7] and others. If M is
complete, M becomes a fibred space in Ehresmann’s sense and admits a connec-
tion (Section 5). When the fibres are totally geodesic, M admits a structure of
differentiable fibre bundles. But the existence of a bundle-like metric hardly
influence the topology (Section 1). The fibres are totally geodesic in important
examples (Section 6). When an isometry group N leaves the fibres invariant and
acts transitively on them, M becomes a fibre bundle over L with the structure
group N(X)/K where N(K) is the isotropy subgroup K (Section 7). From this
fact it follows that if N is semisimple and N/K is a symmetric space, then the
connection is unique for all N-invariant bundle-like metrics.  All these are derived
from the fundamental formulas analogous to Weingarten’s formula for submani-
folds (Section 3). It is to be noted that the tensor analogous to-the second
fundamental form is skew-symmetric,

1. The postulates (P. 1-2)
The following postulate will be preserved throughout the paper.

(P. ‘1k) D is a differentiable map of a connected paracompact differentiable manifold
M onto a differentiable mamfald L, with costant rank, ©differentiable” meaning
C=-differentiable. ,

The rank of p then equals the dimension # of L ([5]). The inverse image
p7'(=x) of any point 2 of L will be called a flbre, though M is not necessarily
a fibred space even in the sense of Serre. The fibres are closed’w s%fg%l?nifolds
of M and of constant dimension m—n, m=dim M. Let M’ denote the disjoint
union of all fibres. M’ is a regularly imbedded submanifold of M. A connected
component of M’ is contained in a fibre as a connected component. A vector
tangent to M is called vertical if it is tangent to M’. A vertical (vector) field
assigns a vertical vector to each point of M by definition.

Now we shall prove the existence of a Riemannian metric ¢ on M such that

(P. 2) For any two vectors X and 'Y both normal to M’ with the same dp-image,
the length || Xl|¢ of X eguals || Y. .
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Let  and § be arbitrary Riemannian metrics on M and L respectively. If
X is vertical, | X]s shall be the length of X with respect to #. If Y is normal
to M’ with respect to /4, then || Y], shall be the length of dp(Y) with respect to
&. A Riemannian metric ¢ on M is clearly defined in this way.

Under the hypothesis (P. 2), a vector normal to M’ shall be called horizontal.
Then ¢ induces a Riemannian metric § on L such that, restricted to horizontal
vectors, dp is an isometry.

Example 1. Let M be a differentiable fibre bundle over L with projection
p. Since L is paracompact, there exists a connection of M. Let % and ¢ be
Riemannian metrics: on M and L respectively. The length of a vertical vector
is defined by means of A as above. The horizontal vectors shall be horizontal
with respect to the connection. Thus a Riemannian metric ¢ is defined and
satisfies (P. 2). .

Example 2. Assume that a connected Riemann manifold M admits a con-
nected transitive isometry group G and that the isotropy subgroup H of G at
a point of M is compact. This is the case when G is the maximal connected
isometry group. Provided that G has a closed normal subgroup N, the orbit space
L=M]|N, a space whose points are N-orbits N(z), & M, is naturally a differenti-
able manifold. In fact the subgroup NVH is closed in G, and L is identified with
the homogeneous space G/NH. Let p be the canonical projection of M=G/H
onto. L. (P. 1) is clearly satisfied. M is a differentiable fibre bundle over L with
each N-orbit as fibre and associated with the principal bundle G—G/NH. N leaves
each fibre invariant and acts transitively on it. It follows that the Riemannian
metric on M has the property (P. 2). ‘

Remark. In this example 2, G carries fibres onto fibres. Conversely, for
a Riemann -homogeneous manifold M=G/H with the map p satisfying (P. 1), the
elements of G which leave all fibres invariant constitute a closed normal sub-
group N. But N is not transitive on the fibre in general.

Example 3. Let G be a connected isometry group of a connected Riemann
manifold M. Assume that all G-orbits are regular in Palais’ sense [3]. Then
the orbit space M/G={G(z)lxe M} is a differentiable manifold ([3]). (P. 1) is
clearly satisfied. p denoting the projection of M onto L=M/G, we define the
length of a vector X tangent to L by the length of a horizontal vector Y with
dp(Y)=X. (P. 2) is satisfied, as is easily seen.

2. The mapé B and C

Let V(M; M’) be the totality of the vector fields # on M with dpox constant
on each fibre. For any differentiable manifold A, we denote by V(A) the totality
of ‘the vector fields on A. V(A) is a Lie algebra. Assigning to # the vector
field dpouop= on L, we obtain a homomorphism B’ of the vector space V(M; M")
into’ V(L).

Prorosirion 2.1. - V(M; M) is a subalgebra of V(M), and B’ is a homomor-
DPhism of -the Lie algebra V(M; M’y onto V(L), whose kernel is the totality V(M)
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of all vertical vector fields.
Proof. A vector field » on M belongs to V(M; M’) if and only if the func-
tion #f with f:fop is constant on each fibre for any function f on L. Since

(B’u)f:uf for each » in V(M; M) and each function f on L, we have u(uvf),
hence [#, v1f, is constant on each fibre for any # and v in V(M; M), and more-
over [B'u, B'v] F=ulwf)p~t—vuf)p~=BTu, v] f Hence V(M; M) is a subalgebra,
and B’ is a homomorphism of a Lie algebra. V‘(M) is obviously the kernel of
B’. (Hence V/(M) is an ideal of V{(M; M').)

Let ¢ be a Riemannian metric on M having the property (P. 2). By defini-
tion B is an isomorphism of the vector space V(L) into V(M; M’) which assigns
to # in V(L) the horizontal vector field # with dpou=id#. Then B'B is clearly
an identity; in particular B’ is onto.

Remark. The proposition 2.1 gives the meaning of (1.14) in [7].

Prorosition 2.2.  If each fibre is connecz‘ed,k then V(M; M) is characterized as
the normalizer of V(M) in V(M). (See [7].

Proof. Let u and v be in V(M; M’y and V(M) respectively. For a function ..
f on M with f=fp~'p, we have [u, v]f=uyf—vuf=—vuf. Since uf=(uf)p~p, we
obtain [#, v]f=0, whence [#, v] belongs to V/(M). Conversely let » belong to
the normalizer of V(M) in V(M) and v be in V/(M). Then we have —wvuf=0,
which implies that # belongs to V(M; M’) on account of the connectedness of
the fibres.

Now any vertical field can be regarded as a vector field on M’. Thus we
get an isomorphism C’ of the Lie algebra V'(M) into V(M’). The inverse of C’
defined on the C’-image V’(M") of V/(M) will be denoted by C. ' Thus we have

C B
the exact sequence: 0—> V(M )——V(M; M)——V(L)—>0. €’ composed
with the restriction to a fibre F is onto V(F). We shall confound Bu (resp. Cv)
with # (resp. ») when no confusion is to fear. : ’

3. Fundamental formulas

Hereafter we shall always assume (P. 1-2). We shall prove the following
fundamental formulas (3.1-4) which are analogous to Weingarten’s formula for
a submanifold of a Riemann manifold.

Any vector fleld # on M is the sum of a horizontal vector field 2 and a verti-
cal vector field ». The unique decomposition u=h+z will be called canonical.
u is inducible if and only if % belongs to the B-image of V(L).

For any » and v in V(L), consider the vecter field

J(u, v)=p suBv—Bpuw,

where the covariant differentiation p in the first term is _with respect to g on:
M, while p in the second is with respect to the induced § on L from ¢. For

a function f on L and f=fop, we have j(fu, v)=fj(u, v) and j(u,fv)z?buB(fv)
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~Bpu(fv) = Puu( fBv)— Byu(F0) = (Bu)f YBo+17 5uBv—B((f o+Fpuv) = f-j(u, v), be-
cause (Bu)f )va((uf)op)Bv=B((uf )v). Thus there exists uniquely a (1, 2)-type
tensor field J on M such that f(u, v)=j(B'u, B'v) for horizontal vector fields on
M and Sz, v)=0 if at least one of » and v is vertical.
(31) VBuBUzBV'uU'{'](u, 7))
is the canonical decomposition of pzuBv. [u,v) is vertical, because of

(Bu)y(Bv, Bw)=u{)(v, w)op, 9([Bu, Bv], Bw)=g(B'[Bu, Bv], B'Bw)=§([u, v], w)op
and

29(puv, w)=ug(v, w)+vg(w, u)—wg(u, v)+9(u, v], w)+9(w, ul, v)—y(v, wl, u) .
Let '

FoaBu=h(a, u)+v(a, u) , ae VM), ueV(L),

be the canonical decomposition. Since pea( fp):O for any function # on L, there
exist uniquely (1, 2)-type tensor fields H and V with H(a, »)=A(a, v), V(a, v)=v(a, v)
for a vertical ¢ and horizontal », and with H(a, v)= V(a, v)=0 for a horizontal a
or a vertical ». Thus ‘
(3.2) FPeaBv=H(a, v)+ V(a, v) ,

for a vertical ¢ and a horizontal v. Since V'(M)=Ker B’ is an ideal of V(M; M)
we find that

(3.3) 7 8uCb=H(b, u)+(V(b, u)+1b, u])
is the canonical decomposition. Analogously we obtain the canonical decomposition
(3.4) PeaCb=Kla, b)+Cpab .

The tensor fields J, H, V and K may be considered to be generalized ©second
fundamental forms”.
J (resp. K) is intimately related to H (resp. V) with the formulas

(3.5) g(Ha, w), v)=—gla, [, v)),
(3.6) g(V(b, v), @)=—g(K(b, @), v) .

These are proved as follows. The identity g(a, v)=0 gives (3.5) and (3.6) if
it is covariantly differentiated with respect to a horizontal # and a vertical b re-
spectively with (3.1-4) applied.

The vertical fields forming a subalgebra V’(M), K is symmetric;

3.7 o Kla, b)=K(b, a) .
J is, however, skew-symmetric;
(38) ](us 7))= "'](’I), u) .

- Proof. For a vertical vector field 4 and a horizontal vector field #, we get
0=pug(u, w)=29(Fsut, w)=—2g(b, Ju, u)), which implies [z, 1)=0.
Remark. From the fundamental formulas, one can deduce formulas which
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are analogous to the Gauss-Codazzi equation for submanifolds; for instance,

(3.9) R(Bu, Bv)Bw={H(J(v, w), w)—H(J(s, w), u)—2H( Ju, v), W)
+BR(u, v), w}+{V([(v, w), ) — V{Ju, w), v)
— Vlw, w), ©)=2V(Ju, v), w)—[(u, v], w)} ,
where the first four terms in {---} at the right hand side are horizontal and the

rest are vertical, while R is the curvature tensor; R(X, V) Z=Fxs, pr)Z—Vx.nZ,
for any vector fields X, Y and Z.

4. Geodesics

A piecewise differentiable curve y in M is called a lift of the curve prin L
when each tangent vector to it is horizontal.

Prorosition 4.1. The Iifts of geodesics in L are geodesics.

The proof is immediate by Ju, #)=0 (See (3.8)). This was proved by Mutd
[11 and by Yano [6] for Example 3.

Assigning to each point » in M the horizontal vectors at 2, we obtain a dis-
tribution, which we call the horizontal distribution. It is integrable if and only
if B is a homomorphism of a Lie algebra. Then the integral manifolds are called
the horizontal submanifolds.

Prorosition 4.2. - If B is a homomorphism of a Lie algebra, then the integral
submanifolds are totally geodesic.
In fact J in (3.1) is then symmetric, and therefore J vanishes by (3.8).

Example 2. Let G be a connected Lie group with the radical group R and
the maximal semisimple group S. Assume that ¢ is any G-left-invariant Rie-
mannian metric such that R is orthogonal to S at the neutral element of G. Then
S is totally geodesic with respect to g.

Proof. Put G=M and S=G/R=L. Then S is imbedded as a horizontal sub-
manifold (Proposition 4.2).
Since M and L are connected Riemann manifolds, they are metrlc spaces.

Let d and d denote the distance functions. One can define another metric d’ on

L by d@, 9)=d(p~*@), p~(§))=inf {d(w, 1) plw)=%), pH)=1}.

Prorosrrion 4.3.  We have 1) d'(%, @)gd@, 9) for any two point & and § in L,
2) the equality holds in 1) if & and 4 ave sufficiently near, and 3) the same holds
if M is complete.

This follows from Proposition 4.1. (The equality does not holds in general
if M is not complete but the fibres are complete.)

5. Complete M ;
Prorostrion 5.1. If M is complete, M is a differentiable fibved space in
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Ehresmann’s sence with the projection p. The horizontal distribution defines an
(infinitesimal) connection.
This follows from the Lemmas 5.2-3 below.

LemMa 5.2. Assume that M is complete. Then for any piecewise differentiable
curve v on L starting at & in L, there exists a lift of 1 starting alt an arbitrary
point © with ple)=%.

Remark. Without the condition that M is complete, the conclusions in Propo-
sition 5.1 and Lemma 5.2 hold good if all fibres are compact but not in general
if all fibres are complete.

LemMmaA 5.3. If the conclusion of Lemma 5.2 is valid, then M is a fibred space.

Proof. By Lemma 5.2, all fibres are diffeomorphic to each other. Let F be
one of them. Let U,, #€ L, be the neighborhood of » on which the normal coor-
dinate system is valid. There exists a diffeomorphism p. of FXU. onto p~(Uz)
such that p.(f,y) is the end point of the lift from p.(f, z) of the geodesic joining
2z to y in U, Given two points » and z, there exists a map a of U, U. into
the diffeomorphism group of F such that we have o.(f, ¥)=pax(9)f,y) for any ¥
in U:rn Uz.

Remark on the universal covering. Let pw» (resp. pr) be the projection of
the universal covering M (resp. L) onto M (resp. L). Then there exists a map
p of M into L with ppu=prp. When M is complete, p is onto and a fibre of M

is mapped by px onto a connected component of a fibre of M. If moreover: the
horizontal distribution is integrable, then M is the direct product of the manifolds

F (a fibre) and L.
Remark. It is probable that to a conjugate point along a geodesic ¢ on L
corresponds a focal point of the lift of 7.

6. Transformations of the metric

The Lie derivative of the metric tensor g with respect to a vertical vector field
Ca is given by

6.1) (Baq)(By, By)=0 ,
(6.2) . (8ea9)( By, Ch)=—¢([Ca, Bv], Cb)-, and
(6.3) (0ag)(CB, CBYi=(Cag")b, B)

for vector fields @ and & on M’, where ¢ is the metric tensor induced on M’ and
i is the injection of M’ into M.

Proof. Since a Lie derivative is a derivation: of the algebra of all tensor
fields and commutes with the contraction, we have

Rxg)Y, 2)=8x(Y, Z)—98zY, Z)—y(Y, 8x2Z)
' =8x9(Y, Z)—9((X, Y], Z)—9(Y, [X, Z)) .
(6.1) follows from
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(Re¢ag)(Bv, Bv)=S20cag(Bv, Bv)—29([Ca, Bv], Bv)=0—0
by (P. 2) and Proposition 2.1. (6.2) follows from
(Leag)(Bv, Cby=R¢ay(Bv, Cb)—g([Ca, Bv], Cb)—y(Bv, [Ca, Cb})
=0~—g([Ca, Bv], Cb)+0
owing to g(Bv, Cb)=0 and Proposition 2.1. (6.3) is trivial.
These formulas {6.1-3) give

ProrositioN 6.1. A vertical vector field Ca on M is a Killing vector field if
and only if it commutes with any horizontal vector fields and a is a Killing vector
field. A wvertical Killing vector field vanishes on M if it vanishes on a fibre.

The Lie derivative of ¢ with respect to.a hovizontal vector field is given by
the following:

(6.4) (8sug)(Bv, Bu)=Eud)(v, v)p ,
(6.5) &aug)(Bv, Ca)=—29(J(u, v), Ca), and
(6.6) Euug)(Ca, Ca)=—2¢9(u, Kla, a)) ,

where ¢ is the induced metric on L from g.

Proof. We deduce (6.4) from ¢([Bu, Bv], Bv)=9(Blu«, v], Bv) obtained from
(3.1). Proposition 2.1 and (3.1) give (6.5). Finally (6.6) follows from (3.2) and
(3.6) combined with the well known formula: ®xo) Y, Y)=20prX, Y).

If a is a vertical Killing vector field and 4 is a Killing vector field such that
h(z), x€ M, is horizontal, then we have

6.7) 9(Kla, a), W=¢(a, [a, h]) at w .

Proof. Since £ is a Killing field, we have 2¢([%, al, 2)=%.9(a, @). There ex-
ists a horizontal vector field # with u(z)=h(z). At the point 'z, ¥ugla, @) equals
Lugla, a)=ruya, @)=29(Pua, a)=29({u, al+ Via, u), @) (See (3.3)). « being a vertical
Killing field, [«, a] vanishes by (6.2). Now (6.7) follows from the above and (3.6).

ProrositioN 6.2. 1) A Killing vecfor field k on M nalurally gives rise to
a Killing field B'k on L if it is inducible ([7]). 2) Conversely for a Killing vector
field u on K, the vector field Bu--Ca is a Killing field if a satisfies the differ-
ential equations

[Ca, Bul=2](u,v) for any v in V(L),
Rag’ (b, b)=29(u, K(b, b)) for any b in V'(M’).

Easy to prove by the above formula (6.1-6).

CoroLLARY 6.3. When a connected isometry group G is transitive on L, the
Sfollowing two conditions are equivalent:

1) The Lie algebra o(M; M’) consisting of all Killing vector ﬁelds n VIM; M)
contains the B-image of the Lie algebra o(L) of G, or in other words, for any
killing field u in o(L), the vector field Bu on M is a killing vector field.
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2) M is a fibve bundle with fibre F=p—o), o€ L, and associated with the
principal bundle G—G/H, where H is the isotropy subgroup of G at o. Moreover
M is locally the Riemann product of F and L in the sense that L is covered with
open subsets {Ux} such that p~ Us) is isomelric fo the Riemann product Fx Us.

ProrosiTioN 6.4. Assume that p:M—N defines a struclure of a fibred space
and the horizontal distribution defines an infinitesimal connection. Then in order
that paraliel displacements give vise to isometries of fibves it is necessary and
sufficient that all the fibres are totally geodesic. (See [1]).

This ia an immediate consequence of (6.6).

CoroLLarY 6.5. Under the hypotheses of the preceding proposition, in order
that M is locally the Riemann product of F and L, it is necessary and sufficient
that the connection defined with the horizontal distvibution is locally flat and the
 parallel displacements preserve the metric of fibres.

CoroLLarY 6.6. Under the hypotheses of Proposition 6.4, assume that the fibres
are totally geodesic. A Killing vector field o'’ on a fibre F can be extended to
a vertical Killing wvector field a on M if and only if o’ is invariant under the
holonomy group of the conmnection defined with the horizontal distribution; if
@ exists, it is unique.

ProrositioN 6.7. In order that J and K vanish it is necessary and sufficient
that every geodesics on M are mapped to geodesics on L by p.

Proof. The necessity is obvious. Assume that for any geodesic y on M the
curve pr is a geodesic on L. If at a point v the geodesic 7, is tangent to the
fibre F containing =, then pr has the tangent vector vanishing at p(z). It follows
that r is contained in F. Hence F is totally geodesic; i.e. K=0. Take any
short geodesic y on M. There exists on M an inducible vector field #=Bo+Ca
which gives rise to tangent vectors to 7, i.e. uwor=dy. Along r and pr we
have puu=0 and pw=0 respectively. From K=0 (hence V=0), we deduce

O=puu=2H(a, v)+2V(a, v)+[Bv, Ca]l+ Cpa.a .
Hence the horizontal part 2H(a, v) vanishes, whence J=0.

ProposiTioN 6.8. If every fibres are complete and totally geodesic, then the map
b:M—L gives a fibre-bundle structure on M, with an isometry group of a fibre
as the structure groubd.

In fact any piecewise differentiable curve on L starting at an arbitrary pomt
z in L admits a lift starting at any point in jJ“‘(x), as is easily seen by com-
pleteness assumption and propositon 6.4. For the proof it is sufficient to note
that, given a map 4 of a differentiable manifold U into an isometry group G of
a Riemann manifold F, if the map (z, ¥) € Ux F—A(9)(y) € F is differentiable, then
A is dlfferentlable '

Example 1 ’. Let M be the tangent bundle of a connected Riemann manifold
L, and p be the projection. (P. 1) is satisfied. Consider a connection I" of the
bundle M. I' gives rise to a Riemannian metric on M satisfying (P. 2) (Example
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1). Assume that I" is without torsion. Then in order that each fibre is totally
geodesic it is necessary and sufficient that the affine homogeneous connection is
metric, i.e. it is the Levi-Civita connection. (See [4]).

Example 3. Assume that L is a Riemann homogeneous space. Let G be
the maximal connected isometry group of L, and H be the isotropy subgroup at
apoint oin L. H is compact. Put M=G. p denoting the projection of M onto
L, one finds (P. 1) satisfied. G operates on M to the left, At the same time
we make H operate on M to the right, so that G'=G X H operates on M. Since
H is compact, there exists a G'-invariant Riemannian metric which satisfies (P. 2)
and the metric induced on L coincides with the original one. (See Example 1
and note that operation of H on the tangent space to L at o can be regarded as
the operation of ad H on an orthogonal complement of the Lie algebra § of H
in the Lie algebra g of G with respect to an arbitrary metric of g which is in-
variant under ad H.) Now all fibres are totally geodesic in M. This fact follows
from (6.7), since every elements in &G commutes with the elements of A operating
on M to the right and H is transitive on each fibre. The restricted homogeneous
holonomy group of the Levi-Civita connection on L can be determined (see (3.9))
by BR(u, v)w=R(Bu, Bv)Bw—H(J(v, w), w)+HJ(u, w), v)+2HJ(u, v), w), if the cur-
vature tensor of the metric on M is known and J (and so H) can be calculated
with the first formula in Proposition 6.2.

7. Isometry groups transitive on fibres

Propostrion 7.1 Let F be a homogeneous space NJ/K of a Lie group N which
operates on F effectively. Then the centralizer C of N in the group of all dif-
Jfeomorphisms of F is a Lie group and isomorphic to N(K)/K, where N(K) is the
normalizer of K in N.

Proof. To each element ¢ in N(K) we assign a transformation a(g) of F
defined by a(¢)(h(0))=hg-'(0), where 0 is a point left fixed by K and % is an
arbitrary element 4 in N; a(¢)(h(0)) depends on A(0) but not on 4. Let C’ be
the totality of all a(p)’s; C'=a(N(K)). C’ is a transformation group of F and
« is a homomorphism. Clearly C’ is contained in C. - Moreover C’=C. In fact
for any 2'in C there exists an element ¢ in NN such that ¢g-1(0)=21(0) and it is not
hard to see that g belongs to NMK) and a(g)=4. Finally the kernel of « is K.

Remark. - MK)/K can be regarded as a subset of . For points » and v in
N(K)/K, the following (7.1-2) are evident; ‘
(7.1) An element g in N belongs to N(K) if and only if g= belongs to N(K)/K,
(7.2) There exists a unique coset gX such that gz=y.

Remark. The proposition 7.1 considerably shortens the proof of Theorem 2
in [2]. ‘

Lemma 7.2. Assume that
(7.3) A comnnected isometry group N of M leaves invariant all fibres and is transi-
tive on them. ’

Then any piecewise differentiable curve vy on L admits a lift. Every two lifts
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of v are carried to each other by some transformations in N,
Proof. Obvious.

Tueorem 7.3. Under the assumption (P. 3), the totality P of the fixed points
of the isotropy subgroup K of N at a point 0, P={we M|K(z)=x}, is a differenti-
able principal bundle over L with structure group C=N(K)/K. Moreover M is
a differentiable fibve bundle with fibre F=p-'p(0) associated with P, where N(K)
is the normalizer of K in N.

Proof. P is a closed submanifold of M, for K is an isometry group of
a Riemann manifold M. N(K)/K=FQOP is a closed submanifold and it is a Lie
group. Any horizontal curve intersecting with NM(K)/K is contained in P by virtue
of Proposition 6.1.  Conversely an arbitrary point of P is on some of such curves
by the same proposition and Lemma 7.2, P satisfies (P. 1) and (P. 2) with M
replaced by P. Now P is a differentiable principal C-bundie over L with the
right operation of C: wa(g)==¢g-*(») for € P and g€ N(K). Now we define a map
& of PxF into M by u(w, y)=g(z) where ¢ is any element in N with g(0)=y. 2«
is onto and can be regarded as the canonical projection of PxF onto the factor
manifold defined by the equivalence relation (g, F)=(g, hf) where % is an arhi-
trary element of N(K) (see (7.2)).

Prorosition 7.4.  If NK)/K in the preceding theorem is discrete, then the
horizonial distribution is infegrable (J=0) and independent of the N-invariant
Riemannian metrics on M having the property (P. 2).

Proof. P is then an integral manifold of the horizontal distribution, which
is thus integrable. Let g’ be another metric mentioned in the theorem. Then
P which was defined by means of K and was independent of the metric, gives
integral manifolds of the distribution with respect to ¢”.

Remark. N(K)/K is discrete if N is semisimple and F=N/K is a symmetric
space. More precisely N(K)/K is discrete if and only if K does not leave fixed
any nonzero tangent vector F at 0.

The metric ¢ gives rise to Riemannian metrics ¢ on M and § on L in
a natural way. ¢ and § fixed, a Riemannian metric ¢: is not unique even if ¢,
is under an isometry group G leaving ¢ invariant. If G is abelian and simply
transitive on M, there exists, however, a fibre-preserving transformation ¢ of M
* which carries ¢ to 9i. - In general, if there exists a fibre-preserving transformation
A of M which carries ¢ to ¢, then A is contained in the normalizer of the
isometry group of M in the diffeomorphism group of M. Hence A induces an
automorphism of G.

Added in proof. The author has found that Proposition 5.1 and Proposition
6.8 were proved by Robert Hermann in. his recent paper: A sufficient condition
that a mapping of Riemannian manifolds be a fibre bundle Proc. Amer. Math.
Soc. 11, 236-242 (1960).
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