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In the study of specializations of Albanese or Picard varieties as well as
in the arithmetic of automorphic functions, there arises a problem which is
stated as follows: Let A and B be abelian vavieties defined over a field k with
a prime divisor Y. Suppose that there exists a homomorphism of A onto B, de-
fined over k. If A is without defect for b, then is there an abelian variety which
is isomorphic to B over k and is without defect for p ? Here we say that an
abelian variety A is without defect for p, if the specialization of A with re-
spect to p is an abelian variety A and the specialization of the graph of com-
position-law on A gives that on A. The main purpose of the present paper
is to solve this problem; an affirmative answer is stated in Theorem 4 (§6).
Besides this, we shall give, in the first part of the paper, some results which
belong to foundations of specialization-theory. We now give a summary of
the contents. ‘

Among the fundamental results on abelian varieties, it is known that a
rational mapping f of a variety V into an abelian variety A is defined at any
simple point on V. In §1, we shall give a generalization of this result as
Theorem 1, which asserts that, if A is without defect for p and if the special-
ization of ¥V with respect to p has only one component V of multiplicity 1,
then f.is defined at any simple point & of ¥. Though this result is not need- .
ed for the rest of the paper, we have included it in view of future appli-
cations. In §2, we study the expansion of a function f on a variety ¥, which
is defined and finite at a simple point & of the specialization V of V, by
power-series in local parameters at &; every coefficient of the power-series is
p-integral and the expansion of the specialization f of f is obtained by the
specialization of coefficients of the series:for . = This result is used for the
specialization-theory of a function-module on V, which is the object of §3,
where we prove that a function-module on V. and its specialization are of
the same dimension. §4 is devoted to the study of a problem concerning
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projective embeddings of an abelian variety without defect for p and its field
of definition. Problems of this kind are considered for any p-variety; and one
can have a solution generalizing Weil’s theory [13], with a certain condition
of unramifiedness of p; in the present paper, however, we have restricted
ourselves within the case of abelian varieties. The concept of abstract varieties
enables us to construct a group-variety from a pre-group (Weil [10, 117). In
§ 5, we shall give a construction of a group p-variety without defect from a
pre-group p-variety without defect, following the idea of [107; here is one
of the reasons why we have preferred in our treatment abstract and p-varie-
ties in the sense of [7] to projective varieties. § 6 contains the main theorem,
which we have already explained above. In Appendix, it is proved that the
specialization ring in the field of functions on V at a simple point & of ¥ is
a regular local ring. o

Throughout the paper, we shall freely use the terminologies and results
of [7]. ‘

§1. Specialization of rational mappings

Let % be afield with a discrete valuation of rank 1 {o,p, ls} where o, p and
7 denote respectively the valuation-ring, the maximal ideal of o and the re-
sidue-field o/p. We shall consider two kinds of algebraic geometry: the one
is the geometry under a universal domain K containing %, and the other is
the geometry under another universal domain K containing 2. Throughout
the paper, by letters with bars such as V, %, @, ---, we mean geometric objects
in the geometry under K, and by V, @, -, those under K. On the other
hand, we shall always denote by V, % &, ---, specializations of V, @, -+, with
respect to o, where ¥, 1, ¢, --- may be or may not be defined over k; and we
shall write V—V ref.o, etc. If F(X) is a polynomial in o[ X, we denote by
F(X) the polynomial in E[X] obtained from F taking the coefficients of ¥
modulo p. Let a be an ideal of k[ X7]; we shall write

q=ano[X], &= {ﬁ(X)IP(X)E o} -
Let V be ap-variety?, x a point of V and £ a specialization of x with respect
to p; take affine representatives x,, ¥, of x, ¥ and consider the set of elements
Fi%.)/G(x,) such that 5(@) # 0, where F(X) and G(X) are polynomials in o[ X.
This set forms a local ring and is independent of the choice of representa~
tives x,, %,; we denote this local ring by [x— %;0]. '

1) Any affine or projective variety defined over % can be regarded as a p-variety
in a natural way; so we shall identify an affine or a projective variety with the p-
varity in this sense. i
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Now let us consider specialization of rational mappings. Let V and T be
p-varieties and f a rational mapping of V into W defined over k.. Let x be a
generic point of ¥V over %2 and y= f(x) We say that £ is defined at a pomt
@ on Vif there exists a point 5 on W such that.

[y—b;o]Clz—a;o].

We can easily verify that 5 is determined only by F and @; so we write
F(@ =b. Suppose that V and W are p-simple. If A is a subvariety in ¥, and
if 7 is defined at a point in A, we say that f is defined along A. If ¥ is a
generic point of ¥ over £ [x—%;0] is a discrete valuation ring of rank 1
(Prop. 5 of [7]). Hence s is defined along V whenever W is p-complete. -
Assuming f to be defined along ¥, put f(%) =7 for a generic point % of ¥ over
£. Then we obtain a rational mapping 7 of ¥ into W defined by f(%) = 7 with
respect to .. We call f the specialization of f with respect fo 0. We see easily
that if f is defined at a point @ of V, 7 is also defined at & -and f(@) = =fa).

Now we begin with the study of behaviour of a rational mapping F of V
at a simple point & on V.

ProrosiTion 1. Let V be a p-simple p-variety and f a rational mapping, de-
fined over k, of V into an affine space S, such that f is‘deﬁned along V. Put

S={ala e V,fisnot defined at a}, S= {@alas I'/V“,fz's not defined af 3} .

Then the Sollowing assertions hold.

i) S (resp. S)is a k-normal (vesp. E-normal) bunch of subvamez‘zes en V (resp
17), and 5§D 3.

ily A simple point @ of Vis contained in S if and only if @ is contained
in 8. In particular, if V is non-singular, we have S= 5. .

iii) There exists a k-normal bunch F of subvarieties on V such that FDS,
GO and F+ V.

~ Proof. It is not difficult to reduce our proposition to the case where V'
is an affine variety and f is a numerical function, i.e., a rational mapping of
V into the affine 1-space; so we shall deal only with such a case. Let x be
a generic point of V over k. Define two ideals in o[ X] or in A X by

a; = {P(X)| P(X) € o[ X, P()f(x) € o[x]} ,
a,= {P(X)| P(X) € k[ X7, Px)f(x) € kLx]} .

‘We have then ao o and g,Da,. We see easily that

S=the set of zero points of o,
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&'=the set of zero points of a,,
S=the set of zero points of q,.

This proves the assertion i). Let % be a generic point of ¥ over £. Since
S does not contain %, there exists a polynomial P(X) e a, such that P(%) # 0.
If we denote by & the set of points on V where P(X) vanishes, T satisfies
our requirements in iii). The numerical function f defines naturally a ration-
al mapping f, of V into the projective 1l-space P!. Let T be the graph of f;:
let S® and 5* be the ambient spaces for V and V. As f is defined along ¥,
any component of 7°is not contained in S« oG, so that the intersection-pro-
duct T (§*:: 55} is defined ; and T~ (5" x =) is a specialization of T\ (5" % o)
with respect to 0. Let & be a simple point on V. If @x 3 is not contained
in 7'~ (5" % 5), every specialization of JFlx) over x— g ref.o is finite; since
[x—&;0] is integrally closed by Theorem of Appendix, f(x) is contained in
[z~ &;0], so that i is defined at 4. Therefore, if f is not defined at &, then
_@x % must be contained in 7'~ (5":%5); and we can find a point « in
TN (Sxoo) such that ¢— & ref.o. We see that f is not defined at « since
a x oo is a specialization of xx flx) over bk Hence we have ¢S, so that
@e S This proves ii).

Remark. 1) By the above discussion, we see that every simple component
of §,8, 8 is of codimension 1. :

2) The assumption that the image of f is embedded in an affine variety
is not necessary for i) and iii); but the assertion ii) requires the assumption.

3) In the proof of ii), we have only needed that [x— ;0] is integrally
closed. Since [x~+a;0] is integrally closed if & is £-normal, (Hironaka [2]), we
can replace, in the assertion ii), the simplicity of & by the k-normality of .

4) By ii) and 3), we know that, ¥ being a %-normal affine variety, we.
have fi%)ek[¥] if fix)=k[x] is finite on ¥, This means that the defining
ideal of V' is the specialization of that of ¥ with respect to 0. When ¥V and
V are projective varieties, the defining ideal of ¥ is the intersection of the
specialization of the defining ideal of V and an irrelevant ideal in E[XT.
This is a natural way to the equality of arithmetic genera of V and ¥
(Igusa [3]).

Let G be a group (resp. an abelian) variety defined over %, having a struc-
ture of a p-variety. Then the notion of group (resp. abelian) p-variety, denoted
by the same letter G, is defined by the combination of.the structure of group
{resp. abelian) variety and the structure of p-variety.

Derixition 1. Let G be a grOup‘p-variety'; let ¢:G%xG—G and ¥: GG
be respectively the group-composition function and the rational mapping
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which corresponds a point of G to its inverse.” We' say that G is a group p-
variety without defect if the following conditions are satisfied:
1) G is p-simple, i e., Gisa varietyv;
) @ is everywhere defined on G+ G,
3) A is everywhere defined on G.
Moreover, if G is p-complete, we say that G is an abelian b-variety without defect.

From the definition we can easily see that if G isa group (resp. an abelian)
p-variety without defect, G is considered in a natural way to be a group
(resp. an abelian) variety defined over £ and the specialization of @ and 'gb
give the corresponding mappings of G. ‘

Let G and G’ be group p-varieties, both without defect, and 1 a homo-
morphism of G into G’ defined over & If 2 is defined along é, A is everywhere
defined on G and J induces a homomorphism G—G’.- We shall say that G and
G’ are isomorphic to each other (with respect to the structure of group p-
varieties) if there exists a surjective isomorphism 1 of G onto G’ such that
A is defined along G and that I is also an isomorphism of G onto G, We

note that if both G and G’ are abelian p-varieties without defect, any group-
isomorphism  between G and G’ in a usual sensé is always an isomorphism
between abelian p-varieties G and G'. :

Prorosition 2. Let f be a rational mapping, defined over k, of a Y-simple
Yvariety V into a growp b-variety G without defect, and let, Fbea rational map-
bing of Vi Vinto G defined by F(x,v)=fx)f(3)"". . Let @ be a simple point of V.
Then f is defined at @ if and only if F is defined at (@, @) and K@, d) =&, where
@ 185 the identity element of G. -

We omit the proof because it is easy and is quite similar to the d1scus-
sion in »° 15 of Well [10]; we shall make use of the idea given there in the
followmg treatment.

Notations ‘being as in Prop. 2, let G be an atﬁne representatwe of G such
that the correspondlng representative G, of G has the representative of 2.
Let @ be a simple point of 7. If we denote by F, the rational mapping
Vx V=G, induced by F, I is defined at (@, &) and F(&, &) =2 if and only if
every, coordinate-function of F, is defined at (&, @). Suppose that F, is nof
defined-at (7, @). By ii) of Prop. 1, there exists a point (a;,a,) on Vx ¥ such
that F, is not defined at (¢, @,) and (@,, @)~ (@, &) ref. 0. By Remark 1) below
Prop. 1, there exists a simple subvariety X of V.V, of codimension 1, con-
tammg (@1, a5), where F, is not defined. Let X be a spec1allzat10n of X over
(al,cz )——»(a, a) 1ef o Let 4 and A denote respectwely the dlagonals on Vx VW
and on Vx ¥ Then the support- of X does not contain 4 because F, is defined
along 4. Hence, both the intersection-products X.4 and X 4 are defired -and
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(@, @) is contained in a component of X.7; so there exists a point (g, @) in
X N4 such that (¢,a}—(a, &) ref. 0. As (g, &) is simple on Vx V, (a,4) is simple
on Vx V. F, is not defined at (@, ) since (@,a) is contained in X. Thus we
have shown that if 7 is not defined at a simple point @ of ¥, there exists a
simple point ¢ of V where s is not defined. In view of the results in »° 15
of Weil [10], we have: '

"Turorem 1. Let A be an abelian p-variety and f a vational mapping, defined
over k, of a b-simple Y-variety V into A. Suppose that A is without defect as_

group Y-variety and that f is defined alon‘, V. Then fis defined at any simple
point on V

Remark. 1) A is not necessarily without defect as abelian p-\?ariety even
if it is without defect as group p-variety. .
2) f is defined along ¥ whenever A is without defect as abelian p-variety.

§ 2. Specialization-ring at a simple point

Let V be a p-variety, x a generic point of ¥ over % and & a point of V
which is simple on V.- We can prove that [x—a&;0] is a regular local ring
{(Theorem in Appendix); it is not so easy, however, to prove this result. If
g is kE-rational, the situation becomes. easier and we can consider expansion
by power- series in local parameters; so in this section we shall concern our-
selves only with such a case. First we give a definition of local parameters
at &, generalizing a definition in Koizumi [4]. Let # be the dimension of V.
We say that a set of » rational functions {z,---,7,} on V is. a set of local
parameters on V at &, if the following conditions are satisfied :

1) the ©; are defined and ﬁmte at a. ~

i) Let Vi %4 3o be vespectively representatives of V,x,d and S" the ambient
space for V,. Then there exists a set of N polynomials Fy( X, -+, Xu, T, -, Th) in
o[ X, T'] such that Fyx,t(x))=0 for 1<i<N and

det(aX, 7, 1)) # 0.

We say that {z;, -, 7,} is defined over & if the r; are all defined over k. We
can verify that the condition ii) is independent of the choice of ‘representa-
tives V,, x,, @, The existence of a set of local parameters on V at a is a
-dlrect consequence of the deﬁnltlon of simple point?.

ProrosiTion 3. With the same notations and assumptzans as above, if d@ is
Je-mtzonal the speciekization-ring R=[x— @ ;0] is a regular local rmg of dimen-

© 2) TFor a more detailed treatment, see [8].
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sion n-t+1. More precisely, if {z;,+-, 7.} is @ set of local parameters on V at &,
defined over R, such that ©(@)=0 fori=1, -, n, and © is a generator of the maxi-
mal ideal b of v, then the maximal ideal WM of R is genervated by {z, v(%), «-, 7o (2)}.

Proof. It is almost obvious that [x—a;0] is a local ring of dimension
=#n-+1 and that there exists a set of local parameters {r,, ---, 7,} at @, defined
.over &, such that 7,(8) =0 for i=1,.--,n. Hence our proposition is proved if
‘we show that M is generated by {=, 7,(x), -+, u(2)}.. We may assume that 7
is an affine variety in the affine space S¥ and that # is the origin 0. Then
‘we have clearly M = Rx,-+--- Ry + Nz, where the x; are the coordinates of x;
50 we have only to prove that every x; is contained in R¢, +--- +Rt,+ R, where
#;=14(x). Let the Fy(X, T) be polynomials in the condition ii), If we express
Fy(X, T) in the form ‘

FlX, T)=Fu(X, TYX -+ FoyX, T Xy +FolT),
‘where Fi(X, T)eo[X,T] for 1<i< N, 0=j7=< N, then we have

aﬁ{i N D NN
ox, ©0=F,0.0,

and hence det (F;;(0,0)) #0. As we have Fy0,0)=0, F(T) is e'zipfesséd in
the form ‘ '

Fu(T) *'“:é‘al TFEO( D) +may,

‘where Fy,*(T)so[7T] and a; €n. We have then

F;,(x,‘z)xl-.L--~+EN(x,zf)xN=——_"S:lmenz)tpmi  1=is=N).
. y=

Solving these equations with respect to x,--, xy, we see that the x; are con-
tained in R -+Riy+ - +NeE,+Rr; this completes our proof.

Inaddition to the assumptions in Prop. 3, assume that there exists a k-rational
point @ on V such that a—da ref.o. We can choose a set of local parameters
7y, T, at 4 in such a way that r(a)=0 for 1=i=#xn Put Ri=[x—a;k]
and call M, the maximal ideal of %,. Then, since 7,,-, 7, is a set of local
parameters on V at ¢, we have M, = R,¢,+---+Rit,. Put t= Rt A+ Re,. Then,
by the same argument as the above proof, we see that x—a,, -, xy—ay are
-contained in 1; and the ring of quotients of % with respect to the prime ideal
1, coincides with %,. Hence the residue class ring %/t is canonically isomor-
phic to 4 subring of ®,/M,; the ring R,/M, admits k as a complete set of
representatives, and o is contained in a complete-set of representatives for
“R/t. Since R/t is not a field and o is a maximal ring in %, we conclude that
0 is @ complete set of represeniatives of R/L.
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ProprosiTion 4. Notations and assumptions béi’ng as above, let z be an ele-
ment of K. Then theve exist hamogeneous formis Hy(T\,--+, T,,) of degree i=0,1,2, --.
in o[ T such that

z= Hy+-H (D -+ Hlt) (mod. {771} .

Such forms H{T) are uniguely determined by z.

Proof. The existence of H(T) is due to that o is a complete set of re-
presentatives of R/t and the uniqueness follows from the fact that we have
in &, » ; D

2= Hy-+ H\(£) -+ Hpl?) {mod. M,*+1).

&3, Specialization of function-modules®

Let V be a variety defined over 2. We call a subset L of the field of
rational functions on V a funmction-module on V if L is a vector space of finite
dimension over the field of constant functions on V. L is said to be defined
over k if L has a base over K consisting of the functions defined over k. If
L is a function-module defined over &, we denote by L, the subset of L com-
posed of the elements in L defined over k. Let {fj, -, fu} be a base of L.
such that the f; are defined over %2 Then we see that Ly==Ekfi+-+kfn.
Now assume that V has a structure of p- snnple p-variety. L being a function-
module on V defined over %, we denote by Lk the set of rational functions f
on ¥ such that there exists an element f of L having f as a specialization
with respect to 0. Then I, is clearly a vector space over £,-and dim;l, is
not greater than dimgL,; in fact, the spec1ahzatlons Fi»sr Jr of functions

f1,- f» can not be linearly independent over % unless the f; are so over k
We obtain, more precisely,

Prorosition 5. dimjl, = dim,Ly.

Pyoof. Denote by @ the totality of bases of L, over k, consisting of func-
tions defined and finite along V. Let eV and g& ¥ be points, both simple-
on ¥, such that g-— & ref.s and that every function in L, is defined and ﬁhité
“at 4. Let {F,v,)} be a prolongation of {k o, p} such that ¢— g ref.o’ and
that @ is rational over &’. Take a set of local parameters {r,:-,7,} on V at
@, defined over %/, such that (@) =0 for 1<i<n. For every {f}={f, " fu}
in 8, by virtue of Prop. 4 we get an expansion of f, by power-series: '

fy—:‘%f(i)( Iz fe 1=y <m),

3) Another approach to the same subject will be found in [8].
4) The field of constant functions on ¥ may .be identified with the universal
domain K. . S
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where the f(;® are elements of o/, Since fj, -, f, are linearly independent
Qver &/, there exists a set of m indices among {(i}, -+, 4,)}, briefly denoted by
1,2, -, m, such that :

A R0 g
CF@ A® e £
fl f’ fm ;__’_,_0.
| |

H
|

i fl( ) fz(m) o fam m)

If {g}={gy, ,bm} is another element of &, there exists a non- smgular matnx
Mg, jy of degree m with coefficients in % such that

‘ . {= M(g, f)i : i .
L Em r S

We observe that ‘
det(g;®) = det Mg, n(F;*) #0,

‘where g, is the corresponding coefficient of the expansion for g;. Let »’ be -
the normalized exponential valuation of 2’ defined by.p. Put u{fi, -, fn) =
v’(det(f,)). Then we have u(fy, -, /) 20 because every f;*) is contained
in o’.  Now put : ‘ :

= Min v Tm)s
Ho {f}EQﬂ(ﬁ Ta)

and let {&; -, h,} be an element of @ such that

sy = p(lyy ++5 I -
Then, hy, -, ﬁmy are linearly independent over 2. In fact, if there can be found
m elements ¢y, -, ¢, in 0, not all non-units of o, such that &A; 4+ +&uha =0,
then g=xz"Ych+++cnhy) is defined and finite along ¥, where = is a prime
element of o. If & #0, {g ks, -+, k) is contained in % and we have

:u(.hly ttty hm) > ,U(g’, /25-” Tt hm) -
‘This contradicts the definition of (A, -+, 4y); SO our proposition is proved_.t}x

- We shall say that a rational function f on V, defined over &, is p-finite if
f is defined and finite along V; p-finite functions f;, -, 7, are said to be lnearly
p-independent if fy, -+, f, are linearly independent over #. L and L, being as
above, let {f, -, fn} be a base of L;, consisting of p-finite functions. Then,
Jis S are linearly p-independent if and only if for every p-finite function
h=c fi++cnfms L, with ¢; =k, we have ¢; 0. On the other hand, when
J1s -, fm are linearly p-independent, a function z=c,fi++cufm With =k
is p-finite if and only if ¢; €0 for every i. Now we shall define the speciali-
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zation of .a function-module. Let L.be as before a function-module on a p-
simple p-variety V, defined over 2 We denote byfj the set of functions F
on ¥ such that there exists an element f of L having f as a specialization
with respect to o; we call £ the specialization of L with respect to n. We see
that [ is a function-module on ¥, defined over E, whose dimension is equal
to that of L. ' ‘

We shall apply our result to linear systems on a variety. Let 7 be a p-
simple p-complete p-variety and X a k-rational divisor on V. If both ¥V and
¥ are non-singular in codimension 1, we can define two function-modules L(X)
on V and L(X) on V, defined over % and £, respectively, such that

L(X)={f|f is a function on V,(f)>—X},

LX) ={F|F is a function on V,(7)>—X}.

We denote by L(X) the specialization of L(X) with respect to 0. In view of
Theorem 20 of [7], we see that Z(X) is contained in L(X). If we denote by
{X) (resp. [{X)) the dimension of L(X) (resp. (X)), the above discussion leads
us to the inequality #X) </ X).

§4. Projective embedding of an abelian p-variety without defect

Let A be an abelian p-variety without defect. If X, is a positive k-
rational and non-degenerate divisor on 4, the specialization X, of X, with re-
spect to-o is also.non-degenerate on 4 and by a result of Nishi [5], we have
(x)=IX). From Weil [12], we know that for a sufficiently large integer
s, the divisors sX, = X and sX, = X are ample on A and A respectively; and
we have [ X)=1[X). Hence, if {f,fi, - fn} is a linearly y-independent base
of L(X), then {f, 7, -~} is a base of [(X)=[(X). Take a generic point x
of A over k and consider the locus A; of (fy(x), -, fm(x)) over %k in the pro-
jective space P™; then we obtain a birational mapping r of A onto A, defined
by (x) = (Flx), -, f,,;(x)) with respect to &. We can put into A, a structure of
abelian variety so that ¢ is an isomorphism of A onto A,. As A, is a pro-
Jective vafie‘ty, A, is naturally endowed with a structure of p-variety. We
shall now prove that A, is an abelian p-variety without defect. Since X is
ample on A, and since {7, -+, fm} is a base of L(X), for any point & of A,
there is a function. among fj, -, m Say 7y such that & is not contained in
the support of (f;)4+X. Then we see easily that the functions f;/f, are all
defined and finite at &; so z is defined at Z. Call T the graph of ¢; then, as
o is everywhere definéd on A, the specialization of 7" with respect to o is a
variety and. coincides with the locus of Z. - Let A, be the image of A by .

-~

“Recalling that X is ample on A and {f}, ---,/a} is a base of L{X), we see that
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# gives a birational biregular mapping of A onto A,. It follows from this
that A, is an abelian p-variety without defect and A, =A4,. This solves the
problem about a projective embedding of an abelian p-variety without defect.
We shall now consider the problem concerning the field of definition for A,.

Tureorem 2. Let A be an abelian variety defined over k; suppose the follow-
ing conditions are satisfied.

D1) There are a prolongation {k',v,0'} of {k,0,0}, an abelian v-variety A*
without defect, defined over k', and an isomorphism 0 of A onto A*, defined
over k.

D2y There are a 9-simple pvariety V and ¢ surjective rational mapping ¢
of V to A, both defined over k, such that the specialization 6?;9 of 8- with
respect to o induces a surjective rational mapping of V to Ax.

" Then there exists a projective abelian variety A,, defined over k, without defect
with respect to a natural structure of p-variety, which is k-isomorphic to A.

Proof. Let X be a positive k-rational divisor on A such that the divisor
X*=0(X) on A* and its specialization X* with respect to o on A* are both
ample on A* and A, respectively. Then L(X*) is a function-module on A%,
defined over.k/, whose specialization is L(X). Now consider a function-module
L? on ¥ composed of all functions g of the form g=f*-8o@ for some f* & L(X*);,
then, L" coincides with the set of all functions fe¢ for fe LX), because 6
is an isomorphism; this implies that L° is defined over k. Let {gy -, 2u} be
a linearly p-independent base of I,'; for every i, there exists a function f7*
in Lg{X*) such that g; = f;*-8-@. Since 6)’520 is surjective, we have g, = ﬁ*o(ﬁ%)..
As g, -, &, are linearly independent over the constant field, we see that
Fo¥, oy I are also linearly independent over the constant field. It follows
that {fy* -, fn*} is a linearly p’-independent base of L{X*). Using this base
{fo*%, -+, fu¥}, we obtain a projective abelian variety A, defined over %/, without
defect as an abelian p’-variety. On the other hand, we see that {fo¥el, s Fn¥ol}
is a base of Ly(X). Hence A, is a projective embedding of A defined over
k. This concludes that A, satisfies our requirements.

Reamark, The assumption D2) in Theorem 2 is indispensable. For in-
stance: for a prime number p>2, the elliptic curve »*=4x*—~px—p defined
over the field @ of rational numbers does not admit any model, without de-
fect for p, defined over Q, while it is birationally equivalent to the elliptic
curve y=4x*—px—1, which is without defect for the prime divisor (p'%?).

§ 5. Construction of group p-varieties without defect

In this section we shall translate a part of »° 32-33 of ‘Weil [10] to the
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case of p-varieties. We first restate the definition of pre-group given in Weil
[11]. A pre-group is a pair (V,f) of two geometnc objects such that:

P1l) Vis avariety;

P2) fis a rational mapping of V=V into V which defines a normal law
Of composition on V, namely, if x,9,2 are z'ndependem‘ genevic points of V over
a common field k of a’eﬁmz‘zon for V and f, we have 1) k(x, y)—k(x,f(’c,

k(3 fl,9) and i) fix, Fy, 2) = f( (%, ¥)2)

In these c1rcumstances we say that k is a field of definition for a pre-
group (V,f) or that (V, ) is defined over &. Two pre-groups (V,f) and ( V7, f')
are said to be isomorphic to each other if there exists a birational correspon-
dence between V and ¥/ by which f corresponds to f”. o

Let (V,f) be a pre-group. If V has a structure of p-variety, the pair
(V,f) of the p-variety V and £ is called a pre-group v-variety. In particular,
when V is an affine variety with the natural structure of p-variety, (V,7) is
called an affine pre-group b-variety.

- Dermrion 2. A pre-group Y-variety (V,f) is said to be without defect if the
Jollowing twe conditions are satisfied.

PD1) V is p-simple;

PD2) fis defined along Vx V and F induces & normal law of composition
on V.

Hence, if (V,f) is without defect, (¥, 7) is a pre-group defined over £.

Two pre-group p-varieties (V, ) and (V,, f,), both without defect, are said
to be (k-lisomorphic to each other if there exists a birational mappmg a,
defined over &, of V outo 'V, such that:

PDI 1) f, is the trenslation of f by o;

PDI 2) o is defined along V and & induces a birational mapping of V onto”V,.

From the conditions PDI 1-2), we can seé that f; is the translation of f
by &, so that (¥, 7) is isomorphic to (¥, 7). It is not difficult to show that,
for any pre-group p-variety (V, /) without defect, there is an’ affine pre-group
‘p-variety  without defect, isomorphic to (V,f). The purpose in this section
is to prove that for any pre-group p-variety (V,f) without defect, we can
cors'ruct a group p-variety without defect, which is isomorphic to (¥, f).
Since the method is quite similar to Weil's construction of group variety in
[10], we shall only state two preliminary propositions and the main theorem
without proof. Let (V,f) be a pre-group defined over & and x,y two indepen-
«dent generic points of V' over k. Put z=j(x,3). We obtain then two rational
mapiings ¢ and Y: V= V-1V, defined by

y=0x2), £=Y(z3)
with. respect . to 2.



On Specializations of ‘Abelian Varieties ’ 19y

Proposition 6. Let {V,f) be a pre-group b-variety without defect. Then.there
exist a prolongation {k',0',p'} of {k,0,9} and a frontier I on 'V, normally alge-
braic over k', having the following properties:

1)y for any point a of V—F and any. generic point x of 'V over k(a), f(x, a)
and Yr(x,d) are defined; ®(x, f(x, @) is defined and equal to a; and w,b(f(;é, a), a)
and f(W(x, @), a) are defined and equal to x;

ii) for any point @ of V— and any genervic point % of V over Ba), all
assertions, replaced x,a by X, cz, n 1) are lrue. ‘

- Prorosttion 7. Let (V f y be a pre~rfroup p—vaneﬁv without defect; let
{k,0,9'} and ¥ be a prolongatzon of {k,0,b} and a frontier on V, having the
Droperties in Prop. 6. Let x be a generic point of V over k' and ¥ a generic
point of V over £ s put oy =[x—X;0"]. Let y be a generic point of V over k'(x)
and Ty the locus of yxf(x,y) on Vx V over k'(%); and let Ty be the specializa-
tion of Ty with vespect to o,. Then, T is a birational correspondence of V onto
“itself, and:

1) if (@, b) is a point of T,y such that both a and b are pazm‘s n V-—,f the
ﬁomts a and b are regularly correspondzng points of V by Te;

il) if (@, b) is a point of the support of Ty, such that both @ and b are
points in V=3, @ and b are regularly corresponding points of V by T,

The above two propositions are translations of the Lemmas 6, 7 in [10, p.
52-53].  After these, we are now in a position of stating the censtructlon
theorem. : :

Tueorem 3. Let (V,f) be a pre-group p-variety without defect. T4 hen . there
exist a prolongation {K,D, ¥} of {k 0,0} and a group Pvariety &, defined over
K, without defect, which is K-isomorphic to (V,f). G is uniquely determined by
(V,f) up to an isomorphism.

We shall only give an outline of the proof. At first we may assume that
{V,f) is an affine pre-group p-variety because we can always find an affine
model isomorphic to (V,7). {&% 0,9’} and & having the same meanings-as'in
Prop. 6, let x,¢,,+, £y be independent generic points of Vover &/ and f;, -+, fy
be independent generic points of V over £, for a sufficiently large N. Put,
for IS a =N\, G,,{r- V, F,=F and x,=f(t,, x). We define {K, DO, R} by
. K= k/(zlr”ﬁ tN); D"‘"’[(t‘li"',tN)"’(f’b"': fN);["J'

‘Then, O is a discrete valuation ring of rank 1 and {K, O, B} is a prolongation
of {k,0,p}. If we denote by Tp,, the locus of (%, %) on G, Gy with respect’

to K, we know that [G,, F,, ¥, Tp,] defines a P-variety, and that this is just
the one which we want to construct. The uniqueness is a conseqitence of
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the fact that any two group p-varieties, both without defect, which are iso-
morphic -to each other with respect to the structure of pre-group p-variety,
are also isomorphic with respec: to the structure of group p-variety.

Q)RQLLARY. (Vo) and G being‘ds in Theorem 3, suppose that G is an abelian
P-variety without defect. Then there exists a projective abelian p-variety A, defined
over k, without defect, k-isomorphic to (V,f).

Proof. By Weil [11], we know that there exists an abelian variety,
defined over %, which is derived from (V,f) by a birational transformation
defined over k. Applying then Theorem 2 to the present case we obtain our
result. '

§6. Specialization of homomorphic images of an abelian p-variety without
defect |, ,

In this section we want to prove:

Tueorem 4. Let A be an abelian p-vaviety without defect, and let X be a
suvjective homomorphism of A onto another abelian variety B, where both A and
B are defined over k. Then there exists an abelian p-variety B, without defect,
w/zzc/z is bzmz‘zmza[ly equivalent to B over k.

Let A, and A, be_abelian varieties and 1.a homomorphlsm of Al onto Ay
We shall call 2 a solid homomorphism, if, for a common field %, of definition
for A,;, A, and 1, and for a generic point x of A, over k&, k&,(x) is a regular
extension of k,(i(x)). Now any surjective homomorphism 1 of 4 onto B is
decomposed into two surjective homomorphisms, 1,:A— B¥, 1,: B*— B and
A=2,°4, where B* is an abelian variety, 1, is an isogeny and 1, is a solid
homomorphism. Hence, if the problem concerning the common field of defini+
tion for B, and the birational correspondence between B and B,, is left out
of consideration, it is sufficient to prove Theorem 4 in two special cases where
1) 2.is an isogeny or 2) 1 is a solid homomorphlsm. If this is done, the
theorem would be a conseduence of Theorem 2.

At first we shall make some preliminary considerations. X and # being
a cycle on an abelian variety A and a point on A, we denote by X, the trans-
form of X by the translation x—x+# on A. Now let A be an abelian variety
embedded in‘a projective space and C an abelian subvariety of A, both de-
fined over k. . Then {C,|u = A} forms an algebraic system of positive cycles
on A. ~Let B and I' be the Chow variety associated with the algebraic system
{Cy} and the corresponding  graph of {C,} to.B. Then B is a model of the
factor group variety of A by C, I’ is the graph of the natural homomorphism
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of A onto B; and ‘both B and I' are ‘defined over % (Chow [17).  Moreover, if
A4 is an abelian p-variety without defect, we can easily see that the speciali-
zation € of C with'respect to p is a multiple of an abelian subvariety C of A,
i.e, C=sC for a positive integer s. Let B and I' (resp. B’ and I'") be the
Chow variety associated with the algebraic system {C; |7 & A} (resp. {Caliz e A}
and the corresponding graph of {€;} to B (resp. {Ca} to B’). Denote by p the
characteristic of £. In the following discussion, the case p# 0 is essential;
in fact, Theorem 4 itself is rather trivial if p is equal to 0. The following
proposition is concerned with the case p=0; it is also true, however; in the
case p=0, if we put 1 in place of anyrexponent of p. -

Prorosrrion 8. With t/ze above notafzons, zf ? zs posztzve we have

iy I'=r;

ii) z‘izere exists an integer ¢ such that s= pe .e., ‘CI =pC;

iiiy B is an abelian variety and is the zmage ‘of B’ by z‘/ze rational mappm,,
P wheve p is a rational mapping deﬁned by

plag, ) Kp) = - (x5 -+, xn?))’:

j‘or every pomz‘ (%g, *++y Xp) in the projective spdce‘ i :
iv) B= D™ DB where m is the dimension of B, and ‘the specialization of
the gmph of the composition-law in B is a multzple of that of B.

Proof. The assertion i) and the. fact that the support of B c01nc1des
with B, are directly derived from our deﬁmtlon. Put B -1B,, s =s'p%, where
s’ is prime to p, deg B =5, deg C=¢, deg B=deg B =5 and deg C=degC=c.
Then we have b=7b and ¢=s¢. Let P, P’, P, P’ be respectively the ambient
projective spaces for A, B, A, B; and let L, M, L, M be respectlvely independent
generic linear varieties of dual dimension to C, B,C, B in P, P/, P,P’. Then
("L, M) is a specialization of (I', L, M) with respect to v; and the intersec-
tions I'-<(LM) in P« P/ and (L« M) in P« P’ are defined. Comparing the
degrees of both O-cycles I'-(L= M) and ['-(L: M), we have the equality
bc = s¥be = s'rp®hc = p™ebe, and hence s’ =1, r=p™ ¢, The remaining part of
the proposition can be shown immediately.

In order toapply Theorem 3 to the proof of Theorem 4, we shall first
prove the existence of a pre-group p-variety without defect, k-isomorphic to B.

ProrosiTion 9. Besides ilze assumptions in. Theorem 4, suppose that X is an
- isogeny or a solid homomorphism. Then there exzsts a pre-group b-variety without
defect, whzc/z is k-isomorphic to B

Proof. On account of Theorem 2, we may..assume that A is ‘a.projective
variety. In the following, under the titles I) or §), 1 will be considered an
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isogeny or a solid. homomorphlsm We first fix a generic pom’c x of _A over
% and a generic point ¥ of. A over £.

iy 1) There is a positive integer » and an isogeny A’: B—A such that
n0,4=A"eA, where 3§, is the identity mapping of A onto itself. Put Ax) =
nx=z and n¥=2 ,

S) . Denote by C the kernel of i and by B* the canomcal model of the
factor group wvariety of A by C, defined above .Prop. 8. B¥ is an ahelian
variety, defined over &, embedded in a projective space ; and there is a k-isomor-
phism x: B— B* Applying Prop. 8 to our case, we. have

= p°C, where C is an abelian subvariety of A,

B*— plm=he e where B* is an abehan variety and m =dim B.

We can easﬂy see that the spec1allzatlon £oa of £ol is a homomorphism A~> B*.
Put Ax)=y, £(y)=2z and. /coxgx)——z

i) If we denote by o* and p* the spec1a11zat10n ring [x— %;0] and the
maximal ideal of o* o* is a discrete valuation ring of rank 1 in E(x) and.
{k(x), 0%, b*} is a prolongation of {&,0,p}. Put furthermore o, =0* ~\k(); and
denote by p, the maximal ideal of p;. Then, o, is a discrete valuation ring
of rank 1 in k(»); and {&(x), o*,p*} is a prolongation of {k{(), 0, b/}

Assertion (I). 0, s z‘ke integral closure of the specialization ring [2—Z; n]
in kiy). ‘ Co :

- Proof of (I). Since o, is integrally closed in %(y) and contains [z—+Z;0],
o; contains the integral closure of [z—%;0] in k(y). Now we shall prove that
every element ¢ in 0; is integral with respect to [z~+%; 0], namely, that co is
not a speciaylizationkof t over z—Z with respect to 0. Let  be a specializa-
tion of ¢ over z— % with respect to o; let # be an isolated specialization of
x over the specialization (2, £)—(Z, ) ref.p. Then, by Th. 6 of [7], we have

dimye () = dimz s, H(F) 2 dimge, o(@) = dimy (2]

On the other hand, we have k(x) D k(z), 2(¥') D k(%) and dim,(z) = dimyz). There-
fore we must have dimi(#)=dimlx). This shows that &’ is a generic point
of A over£. Hence [x— X" ;0] coincides with o* which contains #; so f is not
co; this proves the assertion.

iii). I) Let A, be an affine representative of A and z° the representative
of z on A,.

S) Let By* be an affine representative of B* and 2z’ the representative
of z on By*.

I S) Denote by K and K the field k(3) and the residue field 0,/

Assertion (II).  There exists a set (£) = (¢, -, &,) of quantities in K such that
every 1; is integral over o[2"] and that k(2°, t) —K k(z”" i) =K, where tilde means
the specialization with respect to . - o :
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Proof of (II).. From the assertion (I) we know that there is a set (#)==
(2, ---, %) Of quant1t1es in K such that every u; is integral with respect to
[2°—2°;0] and that k(i“ i) =K, k(z’,u)=K. For each u;, we can find a poly-
nomial 7;(U) in A" U] such that

Fiud =0, (0= BE) g G0
where the P; and @ are polynomials with coefficients in o and Qg #0. If
we put #;= Q(z%u, (f) is a set of quantities which we wanted to ﬁnd '

iv) Let V be the locus of (2% over 2 in an affine space. Since V is
blratlonally equivalent to B, V itself can be considered to be a pre- group
(V,f) in a natural way. We shall now prove that (V,f) is a pre-group p-
variety without defect.

AsserTion (IID  The support of Vis a variety.

Proof of (III). Let ()—(&) be a specialization over any finite specializa-
tion (z")—(b) ref.n, Since the quantities #; are integral over o[2"], (a) is finite
and we have dimy(a, b) = dimg(h). - In particular this implies that the support
of ¥ is not empty. Let (f,2%) and (f,;2°,) be generic points of any two (same
or different) components of ¥ over the algebraic closure of E. In order to
conclude our assertion it -is sufficient to show that (f;, 2°,) is a generic speciali-
zation of (,2") over 7 and that £, 3% is a regular extension of £. From the
fact tha’t dimg(f, 2" = dimg(3"), dimz(F,, 2°,) = dimg(2°,), we know that both drmk(z“)
and dimg(z%;) are equal to m=dim B. Consider isolated specializations X and
X of x respectively over (f, 2%)— (f, 2%) ref. o0 and (£,2°)— (f;, #*) ref.0.  We see
then, as in the proof of (I), that both % and X, are generic on Aover k. From
this it follows that every coordinate of the point (2 2% is contained in the
specialization-ring [x— X; 0] = [x— &, ;0]; So we have 5(x) D E(F, 2% ; this shows
- that £(7, 2" is regular over E. At the same time, we observe that (f,,2",) is
a 'generic specialization of (f, 2% over 2 ; so the assertion is proved.

AS"-ER’I‘ION" (IVYy "V is p-simple.

Proof of (IV). Using the notations (7, 2%, (f,z") in the above proof it is
suﬁicxent on account of Theorem 12 of [7], to show the equalities:

) [EG 20 Byl =Lk, 2" k("]

S)- [k, 2% : k(z%)] = pm-ve,

1) By Assertion (II) and by a property of specialization, we have

- [E(x): Al 212 [0 EE2Y], LR 2Y): k2] 2 LREZ): BEY].

On the other hand, we have [&(x): k(z%)] = v(nd ) = v(ndy) = [E(T) : k! “)] Hence
we have the above equality. o v

:S) From the fact that the specialization B* of B* is equal to pm-Dep¥

follows the inequality [A(;2%):E(Z)]<p™ D¢ On the other hand since the
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specialization (C); = p°(C); of C, is rational over £(f, 2"), the opposite inequality
must hold. L

AsserTion (V) (V,f).is a pre-group p-varviety without defect.

Proof of (V). We shall only prove the case S) as the other case will be
obtained by substituting B* for A in the following proof.

Let (#;,2%) % (%, 2%) « (¢, 2%) be a generic point of the graph of the com-
position-law in V over .. Then, 2, x2%x 2% is a generic point of the graph
of the composition-law in B;* over .. We know that By* is a pre-group de-
fined over the algebraic closure £, of £, and By* =pm=DeBy* Let 79, :3% x 5%
be a generic point of the graph of the composition-law in By* over £,; then
(2%, 2%,%%) is a specialization of (2%, 2%, 2%) with respect to o, If we extend
this to a specialization

(21, 2%), (L5, 2%, (E3, 2%)) = ((F 1, BY), (F2'), (F5, 2%)) Tef. o,
then, for every i, f; is finite and algebraic over £(2%). It is not difficult to
see that the locus of ((f,,2°), (., 2%), (F5,2%)) over £, is a simple component of
the specialization of the composition-law on V, and that it defines a normal
law of composition on V; so the assertion is proved.

Proof of Theoremr 4. If ) is an isogeny or a solid homomorphism, we can
obtain, by Prop. 9, a pre-group p-variety (V,f) without defect, which is k-
isomorphic to B. Then, by Theorem 3, there exist a prolongation {X, O, P}
of {&,0,p} and a group P-variety B,, without defect, which is K-isomorphic
to {V,f). By the uniqueness of group variety isomorphic to a given pre-
group, B, is isomorphic to B; so there exists a homomorphism A, of A onto
B,. Since both A and B, are without defect as group P-variety, i, is every-
where defined on A. It follows from this and the fact that A is p-complete,
that B, is P-complete; so 4Bl is an abelian P-variety without defect.  In the
general case, we decompose 2 into two homomorphisms, one of which is an
isogeny and the other is'a solid homomorphism. Applying our result in spe-
cial cases to these two homomorphisms, we can find a prolongation {%&’, ¢, '}
of {k 0, p} and an abelian p-variety B, without defect, isomorphic to B. Now
apply Theorem 2 to the present case, considering {B, B’, A} to be {4, A%, V}
in that theorem; then we obtain a projective abelian p-variety, which is with-
out defect and birationally equivalent to B over . Thus Theorem 4 is com-
pletely proved. ‘ .

Rimark. Let B be an abelian subvariety of an abelian p-variety A; and
suppose that A is without defect. Then the specialization B of Bisa multiple
of an abelian subvariety B of A: we have 5= p°B, where p is the characteristic
of E (we put 1 in place of p* if p=0).. The multipilicity p* is independent
of the choice of .models' of A4, which are of course assumed to be without



o
=
(53}

On Specializations of Abelian Varieties

defect. On the other hand, since there is a homomorphism of A onto B, by
Theorem 4, we know that B is birationally equivalent to an abelian p-variety
without defect. Thus a question arises whether B itself is always an abelian
variety without defect. The following example will show that this is not so,
namely, B is not necessarily without defect, '

Example. Let E be an elliptic curve, embedded in a projective space, over
a field of characteristic 0, such that the specialization E of E with respect to
1 is an elliptic curve over £, having no point of order p, where p is the
characteristic of £. Assume that every point ¢ on E of order p is rational
over 2 Let T, and T, be two distinct subgroups of E, of order p; and let E;
be the canonical model (by the Chow variety) of the factor group variety of
E by T;; and denote by A; the natural homomorphism 'Qf E onto E;. Then, E,
and E, are abelian p-varieties without defect; and they have the same speciali-
zation F®. Take a point x generic on E over &, and put x, = A,(x), % = 25(x).
Call E, the locus of x, xx, over 2 on Eyx E,. We see then that the speciali-
zation of E, is p/j”’), where 4® is the diagonal on E® x E®) so that E, is
not without defect, while ;% E, is without defect. '

ApPENDIX

First we recall some terminologies and elementary results on local rings.
We shall call a commutative ring %t with an identity element a local ring if
R is Noetherian and has a unique maximal ideal. A local ring having no
zero-divisor is called a local domain. Let R be a local ring and m the maxi-
mal ideal of R, We call a set of generators {#;, -, #,} of m a minimal base
of m if no proper subset of {u,,--, %} generates m. A set of elements {z,,---, %}
in R is a minimal base of m if and only if {#,,--,%,} gives a base of the
module m/m? over ®/m. Hence the number of elements in any minimal base
of m is determined by R. A local ring ® is said to be regular if this number
is equal to the dimension of f. If % is regular, every minimal base {z,,--, #,}
of m satisfies the following condition:

(R If F(Xy, X)) is a homogeneous polynomial in (X, -+, X,) of degree v
with coefficients in N and if -
Fluy, sty € m°H1,

then every coefficient of F is contained in m.

Conversely, if a set of generators {u;, -, %,} of the maximal ideal m of a
local ring %t satisfies this condition, then R is regular and {#, -, %} is a
minimal base of m. Every regular local ring has no zero-divisor and is inte-
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grally closed. If % is a local ring and m is the maximal ideal of &, then the
powers. of m define a topology on . With respect to this topology, & has a
completion R* which is a local ring containing N as subring and subspace,
and in which R is dense. R is regular if and only if its completion R* is
regular; and every minimal base of m gives a minimal base of the max1maI
ideal m* of R*.

Qur main purpose is to prove the followmg theorem

: Turorem. Notations being as in § 1, let V be a p-variety and x a generic point
Cof V oover k. If a point & of V is simple on V, then the local ring [x—a; D:|
©is regular. :

To prove this we need several lemmas. First we generalize the concept
of specialization (cf. Northcott [6], Shimura [7]). Let R be a local domain
and m the maximal ideal; let K be the quotient field of R and K the residue-
field M/m. Let (x;,--, %) be a set of » elements in an extension field of K
and (&, -+, £,) a set of z elemenfs in an extension field of K. We say that
(&) is a specialization of (%) over %, if the natural homomorphism of R onto
K =%/m can be extended to a homomorphism of R[x] onto K[&] which maps
(x) on (&). For any polynomial F(X) with coefficients in %, we denote by F(X)
the polynomial with coefficients in K obtained from F considering the coeffi-
cients of Zmodulo m. (&) being a specialization of (x) over %, we denote by

[(x)— (£); R

the set of elements F(x)/G(x) such that 5(E}$O,‘Where F(X) and G(X) are
polynomials in [ X]. This set is also a local domain.

Levmma 1. Let R be a regular local ving and K the quotient field of R. Let
a be an element in an algebraic- extension of K and « a specialization of a over
R. If there exists a polynomial F(X) in R{X] such that F(a)=0 and F'(a)#0,
then [a— «;R] is a regular local ving, where F' denotes the derivative of F.

'Pfdof. Put &=[ag—a;R]. Let m and M denote respectively the maxi-
mal ideals of R and &; and let K be the residue field St/m. Let Fy(X)=0
be an irreducible equation for ¢ over K. As we have Fla)=0, F{X) is di-
visible by FyX); so there exists a polynomial F,(X) in R[X] such that
FiX)=F,(X)F,(X). By the assumption F(a) # 0, we must have F(a)#0. Let
b be an element of M; then we can find two polynomials P(X) and RX) in
R[X7, such that b= P(a)/Q(a), Pla)=0, O(a)#0. There exists a polynomial
GIX)-in RLX] such that ﬁ('X) F(X)G(X). Let {s,, -, u,} be a minimal base
of m.- Since we have Bx) F,(X3~F(X)G(X} there exists 7 polynomlals

H{X), -, H(X) in RLX] such that
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L PXOVF(X) = F(X)G(X)—i—é w I X) .

We have then b =Y, u:H{a)1/[Q@)F\(a)]). We observe J(a)F (a) #0, so that
7 elements H;(a)/[Q(a)F\(a)] are all contained in ®. Hence b is contained in
&+ +©@u,. This shows that M is generated by {z,, ---,#-}. Let R* be the
completion of M| and K* the quotient field of ®*. Then, by Theorem 1 of
Northcott [6], there exists an isomorphism of Kl@) into the algebraic closure
of K*, such that, if ¢’ is the image of @, « is a specialization of ¢’ over H*.
For our purpose, we may put a=a’, so that « is a specialization of & over
¥, We can easily verify that « is a proper specialization of ¢ over R*, in the
sense of [6], [7]. Then, by Theorem 3 of [6], « is integral over *. Hence
we can find an irreducible polynomial M(X) in R*[ X7 with the leading coeffi-
cient 1 such that M(a)=0. Now we shall show that {«,,--,%,} has the pro-
perty (R) for M. Let ¢ X 'i---X, % be a homogeneous polynomial of degree
vy with ¢ in & such that

% ceytereatr € PETL,
Then there exists a homogeneous polynomial %d(j)lew-Xﬂ'r of degree v+-1
with di; in & such that ' .
) Cous't st = b3 dipuii-ur .

We can find a polynomial @(X) in R[X] such that D(a) =0 and the elements
D(@)cw, Pla)dy) are contained in R[], Since « satisfies the equation M{X)=10
with the leading coefficient 1, there exist elements ¢y, diy, in R* such that

§=1 §—1
Dla)ecw :/’?30 capa”, Pla)dy :,120 d(ﬁﬂ“ﬂ‘: :
where s is the degree of M(X). We have then
s=1 i -
>z Clypth ety — 3 d(ﬁﬂul‘h"'urj’]au =0,
2=0Q@) 10)]
so that we get, for every g,
% o) byt oty = % dp) uthy’ve e & (WP,
) :

As {uy, -+, u,} satisfies the condition (R) for m*, we have ¢y, < w*, so that the
¢ are contained in the maximal ideal of [ea— a; R*]. Since the ¢ are ele-
ments of &, we have ¢¢) € M for every (7). Thus we have shown that {ux,, -, #,}
satisfies the condition (R) for M. This proves our lemma,

Lemma 2. Let R be a local domain and m the maximal ideal of R, Let K
be the quotient field of % and K the residue-field ®/m. Let t be a variable over
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K and t a variable over K. If the local domain [t—t;R] is vegular, so is N.

Proof. Put &=[¢t—1;R]; let M be the maximal ideal of &. We can
‘easily verify that M=Em and m=M~RN. Let {a, -, %} be a minimal base
of m.  We shall prove that {w,, -, %} gives a base of M/M?* over &/P. Sup-
pose that 3 au, = Y for » elements #; of € Then we can find a polynomial
F() in R[] such that f(r) =0, fNa; = R[£] and

S ; Qi = EJ gij(\l‘)uiuj »
where the g;,#) are elements of R[7]. Put
fay =X ant’, &,t)=2 bijutv )
v v

where the a;, and the b;;, are elements of 8. Then we have 3 a;u; = 3 bipteate;

7 %7

for every v; since {u, -, u,} is a base of m/m? over R/m, we have a,, €m, so
that the @; are contained in M. Thus we have proved that {w,--, u,} is a
minimal base of I, so that {#, -, #,} satisfies the condition (R) for the ideal
M. Then it is obvious that {ux,,---,u,} satisfies (R) for the ideal m. This
proves our lemma.

Lemma 3. Notations being as in Lemma 2, let « be an element which is alge-
braic over K. If W is vegular, so is [t—a ;N

Proof. Put &= [f—a;N]; let M be the maximal ideal of & We can
find a polynomial F{X) in R[X], such that EX)=0 is an irreducible equation
for a over K; we may assume that F and F have the same degree d. Let
{#, -, #,} be a minimal base of m; put w,=F(f). We shall'prove' that {e, 2%, -+,
#,} satisfies the condition (R) for M. Let x be an element of M ; then we can
find two polynomials P{#), Q(#) in R[] such that x= P(f)/Q(£), Piay=0 and
O(e) £ 0. There exists a polynomial G(#) in R[#] such that P(X)= FX)G(X).
We see that P(f)—FG(t) is contained in m[#]. This shows that u, u;, -+, u,
generate M. Let 3 ap X o---X,» be a homogeneous polynomial of degree v
with @; in € such that

‘?‘;;" ayueion, e, r & MWL,

Then there exists 2 homogeneous polynomial 3 by Xy0X, 1 X r of degree
v+1 with by in & such that ,

% amton, e a,'r = ;A;: bepyugouy 't -ar
4

We can find a polynomial f(#) in R[#] such that fla)#0 and the elements
faw, ft)bey are contained in R[£]. Since wu,= F(¢) is a polynomial in # of
dégree d, there exist polynomials gy (8), bw,(f) in R[z], all of degree less
than d, such that ‘
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ft)a = i‘:oam,,muoﬂ, 7ty = 3 beputud
. ou= =
‘We have then

- m Py m - 3
% Aoty -, r = E‘)% b(j),,,ugjO'Hluljl"'Zt,]"*’ by Z; a(i)/ﬂtolﬁ‘,.ﬂz"lil'“Z{T‘% .
#=0 (]

7 p=1{

We can rewrite this equation in the form
2\ ' 2 ‘
X}—' “OZ(D/IU: Uy *y ”r) =AZO uﬂxqfl(.t’ Uy, =y ur) ’
=0 =

where @, is a polynomial with coefficients in R of degree {d in # and homo-
geneous in (#,,---u#,) of degree v—2 and ¥, is a polynomial with coefficients
in 9 of degree <din¢ and of degree =v—aA-+1 in (#y, -, %,). We have then,
for every 2,
d)d(ty Uy >ty %-r) = w«l(t; Uyy =ty ur) .

We see that the right hand side is contained in w’~**1#]. Since {u, -, %}
satisfies (R) for m, the coefficients of the polynomial ®T, U,, -, U,) are con-
tained in m. It follows from this that the () are contained in M. Hence
{2y, 2y, -+, u,} satisfies (R) for M.

Lemma 4. The notations o, 9, k, & being as in §1, let ty, o Ly be n indepen-
dent variables over k and &, -, &, be n elements in an extension of k. Then,
[(#)— (@) ;0] is a regular local ving.

Proof. Let s be the dimension of () over £; if s is not 0, we may, after
reordering the &, if necessary, assume that &, -+, @, are independent variables
over £ and (7) is algebraic over £(dy, -+, @). Put o/ =[(f,, -, t)— (&, -, @) ; 0.
Then o’ is a discrete valuation ring of rank 1; and we have

L= (@) ;0] = [(Lspr, =5 ta) = (Tsgas =+ @n) ;0]
Hence by lemma 3, [(#—(Z);0] is a regular local ring.

We shall now prove Theorem 1. We may assume that V is an affine
variety. Let » and # be respectively the dimensions of ¥ and the ambient space
for V. Let #;, for 05i<r, 1 <7< n, be (r+1Lz independent variables over
k(x); and let f,;, for 0<Si<y, 1=7<n, be (r+1)n independent variables over
E ([l—). Put Y= 2 fijx]', 5.,; = E lrijd_-; and

J 7
o = [(t;;)— (fij) ;0]1,
gt = [(yu ""yr)—")(zglr A Er) ;0]
&= [y—by; N].

‘Then, o’ is a discrete valuation ring. Since jzl, ---,y, are independent variables
over k(ty;), R is a regular local ring by virtue of Lemma 4. By the proof of
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Theorem 15 of [7], b, is a proper specialization of 3, over %t of multiplicity
1. Let
F(Y,, Y, Y)=0

be an irreducible equation for (y,;, -, ¥, over kit;;). We may assume that
al]l coefficients of F are contained in o/ and at least one of them is equal to
1. Then, we have FY,, by, -, b,) #0; for otherwise, ¢ being a variable over
E(t}j, b), & would be a specialization of y, over %; this contradicts the fact
that b, is a proper specialization of y, over %. Since b, is of multiplicity 1,
b, is a simple root of the equation

Yy, by, ) =0;
so we have 0F/8Y (b, by, -+, b,) 0. By Lemma 1, this proves that & is a re-
gular local ring; in particular, & is integrally closed in its quotient field
k¢, ). By Proposition 16 of [7], we have k{f, x)=Fk(f,y) and x is finite over
&. Since & is integrally closed, the coordinates of x must be contained in
&. This shows -
G=[x—a;0].
Put & =[x~ &;0]; then it is easy to see & =[(#;;) »({;;); T]. Hence, by Lemma
2, ¥ is a regular local ring; so our theorem is proved.

We profit by this opportunity to revise some points in [7].

(1) The proof of Proposition 17 is omitted by reason of that it is a
translation of Proposition 19 of [9] Chap. V. The first part which asserts
8?/62(77,{)#:0 is proved in fact in the same way as in Weil’s book. It is
hardly possible, however, to prove the remaining part by the same argument
as in [9]. The above Theorem 1, or Lemma 1, with their proofs, will supply
this gap.

(2) p. 150, the lowest line. “Obviously, (7) is” should be read “Obvi-
ously, (§) is”.

(3) p. 151, the first line. {7y 7;) should be read (3, ¢;).

" (4) p. 155. Corollary of Theorem 10 should be as follows:

CorovLrary. Let V be a variety defined over k and B a component of V.
If B is simple on 'V, then we have o(V,B)=1 and [B:«];=1. ‘
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