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Introduction

Let G be a compact connected Lie transformation group operating on a
differentiable manifold S which is homeomorphic to the n-dimensional sphere.
We assume that there exists an (z—1)-dimensional orbit G(p), p=S, and we
shall study the homology groups of the orbits (Theorem 3.5). As an example
we shall determine the known homology groups of the Stiefel manifold Vy,,.
The case where the dimension of S is 1 or 2 can be treated very easily, and
will be excluded in the sequel. Results in [5] will be frequently used in
this paper.

Notations. n=dim S>2. F,, a=1, 2, is a singular orbit (See Section 1 ,
for the definition). f,=dimF,. e,=n—1—f,. F is a regular orhit. In a
sentence or formula containing the letters « and g, they will always denote
lor2and a#p (lLe. at-f=3). Z is the additive group of the integers. Z,
is the group of order 2. R is the real field.

1. Singular orbits

Throughout this paper we assume the following conditions (A) and (B):
(A) G is a compact connected Lie transformation group of a differentiable
manifold S which is a homological sphere, i.e. a compact simply connected
manifold with the same homology group as an n-sphere, 2< 7.

{(BY There exists an (n—1)-dimensional G-orbit on S.

There exist two-sided and therefore orientable (n--1)-dimensional orbits
[5], which we shall call regular orbits.. The other orbits will be said singular.
There exists a singular orbit, because otherwise S would admit a fibre bundle
structure with a G-orbit as fibre [5], the base space being a one-dimensional
manifold by Palais’ theorem [7], which is necessarily a circle, and this would
lead oviously to a contradiction by observing the fundamental groups. Let
F; be a singular orbit. Then the set F,in § of the farthest points from F,
is of dimension <n—1 or one-sided and so nonorientable. F, is thus another
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singular orbit. There are no other singular orbits [5]. Hence we get
Prorosition 1.1, Under (A) and (B), there exist exactly two singular orbits.
All orbits are connected, for G is connected. '

2. Homotopy groups of singular oribits
Let f, denote the dimension of F(a=1,2). We put ¢,=n—1—f,
Lemma 21, If v<e,, then the rth homotopy group m(Fp) of Fy is trivial.
Proof. We then have =, (S—F,)==(5)=0. Since Fz is a deformation
retract of S—F, ({[5]), we see that =.(Fp) is isomorphic to =(S—F,). Lemma

2 is thus proved.
In case f,=0, fz necessarily vanishes and the other orbits are homeomor-

phic to the (n—1)-sphere [6]. So we assume that
© Sfi-fa#0.
Prorosition 2.2. Under (A), (B), and (C), we have the inequality

n—1Zfitfy le e, Zfp.

Proof. Assume the contrary. For any »=f,, we have fp<n—r—1. By
Lemma 2.1. we find that z(F,) is trivial. Tt follows that f, equals zero, con-
trary to (C).

3. The homology groups of the orbits

All regular orbits are homeomorphic to each other ([5]). Let F he one
of them. H,(X) shall denote the g-th homology group over Z of a compact
space X, unless otherwise stated.

Lemma 3.1, There exists an onto iSomorphism
Aot Hy(F)—= Hy(Fy)+H(F:) for 0<g< n—1.

Proof. The subspace S—F has two connected components. Let X, be
the closure of the component which contains F,. Then we have S=X,UX,
and F=X, N X,. The Mayer-Vietoris sequence

s Hyao(S) > Hy(F) = By H) Ho X)— Hi(S) = -+

is exact [1]. By the assumption we have H, . (S)=H(S)=0 for 0 <g<n—L
Since F, is a deformation retract of X, ([5]), we conclude the lemma from
the above sequence.

Remark. We have f,=<#»n—2. This inequality is due to Montgomery,
Samelson and Yang [4]. But in our case the proof is simple. In fact the
above Mayer-Vietoris sequence is exact for the homology groups over any
coefficient group A. Putting A=2,, we get 0—Z,—Z;— H, (F)-+H,—(F3)
~0. Hence H,.,(F,) =10, and so f, cannot be z—1.



On Some Compact Transformation Groups on Spheres 215

Lemva 3.2.  When F, is simply ‘comzectea’, we have
Hyo (Fo) = HyFp) for 0<g<n—2.

Pmaf. F is an em—éphere bundle over F, ([51). The Gysin sequence [8]
reads

Mg R lqm/ )
g q%-l(Fw>“"-’H1—em<Fw)—""’Hﬂ(«F)_-_)]:]q(Fm‘)"""”’"' .

Age’ 18 induced from the projection of Fonto F,. The composition A,/ : H(F)
— Hy(F,) of 2, and the canonical homomorphism of H,(F\)+Hy F.) onto Hy(F,)
is induced from the injection of F into X, and the deformation of X, onto-
F,. Hence 2’ coincides with 2./ for 0 <g<n—1, as is easily seen from
the definition [5] of the deformation. Thus A4’ is surjective. Since 2544
is surjective, for 0 < g+1< n—1, we find that ga, is injective. Furthermore
there exists an isomorphism ve, of Hy(F,) into H(F') such that the composi-
tion Aq,/vV4q is the identity. Therefore we get an isomorphism

Hy(F)=Hy(F,)+Hy_.(F,) for 0<g<n—2.
Combined with Lemma 3.1, this gives the Lemma 3.2.
Levmma 3.3, If both Fy, and F, are simply connected, then there exists the
isomorphism
]Z;(Fa,) = ffa—‘e;—c;(.Fos) Jor e <g< n—2.
Proof. From Lemma 3.2, follows
-H(I(Fm) = F[{I—-PQ(.FB) = H;l—elgﬂzm(Fm) .

Levma 34. When F, and F, are ovieniable, we have the isomorphisms in
lemmas 3.2 and 3.3 for the homology groups over R.

This fact can be proved by means of Alexander’s duality theorem [3].
The details are omitted.

Turorem 3.5. Under the hypotheses (A), (B) and (C), assume that fy, f2 <
#n—2. Then the Poincaré polynomials with respect to any field of F and F, are
of the forms; ‘

P(F,; t)=(1+8)Q(t) ,
P(F; #) = (1+)(1+2Q() ,
where Qf) = 141412 +1™, ¢= ¢, ey, (m~l—1)é== n—1,
ov else e, =e, and
P(Fy; 8) =141 4104 45 = (1— 00 (1~}
P(F;t) = P(F,; H(1+¢%),

where ¢ =e, and ke+te' = (2k-+F1)e’ =n—1.
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Proof. On account of Lemma 2.1, the spaces F, and F, are simply con-
nected. By Lemma 3.2 we obtain

HiF,) =0 for 0<g<eg,
and
Hy(F)y=Z.

It follows from Lemma 3.2 that Hy(F,)=0 for e3<g<e. On the other hand
we have Hy, ((F,)=H,(F,). Therefore Lemma 3.3 gives the above forms of
P{F,;t). Finally one finds that of P(F;{) by virtue of Lemma 3.1.

Reaark. Under the hypotheses (A), (B)and (C), H(F,) can be determined
if F, is simply connected and H(F,) is known. (See Example 4 in Section 4).

H{Fy and H(F,) are determined by the dimensions of F and F,.

Cororrary 3.6. Preserve the assumptions of Theorem 3.5. If e, is odd, then
the Euler characteristics x(F) and x(F,) of F and F, vawnish, and x(Fg)=0 or
1+~ according as eg is odd or not; or else e =e, y(F)=0 and x(F)=
x(Fyi=1. If both e, and e, are even, then we have y(F,)= y(Fy)=2(m-+1)=2
(n—1)/e and y(F)=23F,); or else ¢,=¢., x(F,)=(n—1)/e and x(F)=2y{F,).

Proeosirion 3.7, Under the assumption of (A) and (B), we have

)+ Fyy= y(F)+1-+H(=1D".

Proof. This follows from Lemma 3.1, orientability of F and the remark
below Lemma 3.1.

Tueoresm 3.8 Under the assumptions (A) and (B), assume that fi=1. Then
Fi, Fy and F are « 1-sphere, an (n—2)-sphere and the dirvect product of these two
Spheres vespectively. ,

Proof. Since F is an orientable (n—2)-sphere bundle over a l-sphere F,
the well known classification theorem vields that F is a product bundle. It
remains to show that F, is an (»—2)-sphere in case 3<%n. Then f, is #—2
and F, is simply connected by Lemma 2.1. Lemma 3.1 gives that F, is a
homological sphere. On the other hand it is a homogeneous space.. Hence
it is a sphere [6].

Remarkg. It can be proved that more generally, under the assumptions (A),
(B) and f,-+fy=n—1, F, is a sphere and F is the direct product F, = F,. (See
Example 1 in Section 4.)

Tueorem 3.9. Under the hypotheses (A), (B) and (C), if F, and F, are
orientable, the analogous conclusion as Theovem 3.6 is valid if the Poincaré
polynomials are considered to be over the real field R.

This follows from Lemma 3.4.
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4. Examples

Exaomple 1. Let us assume that a connected subgroup H,, a=1, 2, of
the orthogonal group O(f,+1) is transitive on the f,-sphere. Denote by G the
direct product of H,and H,. Then G operates on an n-sphere with n—1=
fi+f. through the direct sum of the natural representations of H, and H,,
and has an (z—1)-dimensional orbit F. Then the singular orbit F, is an f,-
sphere, and F is the direct product of these two singular orbits.

Professor H.C. Wang suggested the author to investigate the following
three examples.

Example 2. Let G be the adjoint group of the compact exceptional
simple Lie group G,, G operating naturally on the Lie algebra of itself as
an orthogonal group. Hence G operates on a 13-sphere, admitting 12-dimen-
sional orbits. The regular orbit is a simply connected homogeneous space
G,/T,, T, being a 2-torus. The singular orbits are both simply connected
and homeomorphic to the homogeneous space G./(Ty» A,). Thus we have

P(F, 1) = (1+2(1+#42%, and P(F; ) = (L+)P(F,; ), over any field.

In particular F (A. Borel: Ann. of Math. 57, 115-207, 1953 and £, are without
torsion. .

Example 3. Let G be a compact simply connected exceptional simple
Lie group F, which operates irreducibly on a 26-dimensional vector space
over R. (See [2], especially paragraphs 4.11, 4.12 and 5.1). The regular orbits
are the homogeneous space F,/D,, and each singular orbit is F,/B,. We have

P(Fy;t)=1+8+15, P(F; ) = (L-+5 (142411, over any field.

Example 4. Let G be the direct product of SO(2) and SON), 3<N. G
operates on the 2N-dimensional real vector space through the Kronecker pro-
duct of the natural representations of SO(2) and SO(N). The unit (2N—1)-
sphere S is left invariant by G. G admits (2N—2)-dimensional orbits on S.
Let H and H, be the isotropy subgroups of G at points on F and F, respec-
tively. Assume f; <f.. Then we have H, =SO(N—1)or SO(N—1)Z, according
as N is even or odd. Hence F, is clearly an (N—1)-sphere bundle over a .1-
sphere, which is trivial or not according as the parity of N. If N is odd, it
follows that HyF\)=Z, Hy_(F)) =2, and H,(F,)=0 for other ¢’s. Since H,=
S0(2) = SO(N~—2), F, is the Stiefel manifold Vy,,=SON)/SOIN—2) whose
dimension is 2N—3. F, is simply connected by Lemma 2.1 or as is well
known. Now Lemma 3.2 applies to F,=Fs, and one can easily determine the
homology groups of Fy= Vy,. ([9]) and F.

When N is even, P(Fy;f)=P(Vy,;8) =1+ 1+,
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each over any field.

When N is odd, Hy(Fy)= Hay_y(Fy)=Z, Hy_o(Fy)=Z,,
HyF)=0(g+0,2N—-3, N—2);
H{(F)=H,(F)= Hyy (F)= Hoy /=2,
Hy o F)=Zy+Zy Hy_|(F)=Hy(F)=Z,,
and H;(F)=0 for other i’s. '

Since we have //*(F,) =0, the 1-sphere bundle F over F, is trivial.
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