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1. The purpose of this paper is to give a simple proof of the well-known
Tannaka duality theorem?.

Let Gaa,b..., %, ... be a compact group, C(G) the ring of all continuous
functions on G. The Fourier polynomials on G, i.e. the elements f(x) of C(G)
expressible in the form:

f= S a0 (finite sum)

a,i,j

where c{}’s are complex numbers and d{)(x)’s are the components of some
continuous irreducible representation x—D“(x)=(d¥)(x)) of G by matrices
of a finite degree, form a subring R(G) of C(G).

For an element ¢ in G, left (right) translation L,(R.) is defined as a
linear operator on C(G) as follows:

(Lo X()=f(a %), (Ruf)()=f(xa) (x2G, feC(G)).
Let 7 be a linear mapping from R(G) into R(G). We shall call T left-admis-
sible if TL,=L,T for every aeG.

Now we shall prove the following theorem, which we shall show after-
wards to be equivalent with Tannaka duality theorem:

Turorem. Let T be a left-admissible linear operalor of R(G) such thot
(@) T1=1, ) TF=TF, () TCfe)=TfTg (for every f,g in R(G)). Then T
coincides with a right translation R, for some aeG.

In the following proof, an essential point is to deduce the continuity of
T with respect to the uniform norm from the given algebraic conditions on
7. It is to be noticed that this deduction constituted one of the difficulities
in the proofs hitherto given of Tannaka duality theorem.
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Proor. First, we have

@ [ (= s
for every f(x) in R(G) where dx is the Haar measure on G such that
{ dx=1. In fact, (1) is valid for every component d;;(x) of an irreducible
fc%reserxtation D which is not equivalent to the unit respresentation. To prove
this, let (TD)(x) mean the matrix ((7d;;)(x)) for D(x)=(d;;(x)), then we
have by (L.-1D) x)=D(ax)=D(a)-D(x), (TL.-1D)x)=D(a)-(TD)(x). More-
over, by (L,-1TD)(x)=(TD)(ax), we have (TD)(ax)=D(a)-(TD)(x) for every
@, ¥e(G. Putting x=e¢ and e==x, we have (e is the unit element of G)

(TDY(x)=D(x)-(TD)(e), for every xeG.

Thus, (7d;;)(x) is a linear combination of d;,;(x)’s and ‘gad,‘ ;(0dx=0 by or-
thogonality relations. Hence both sides of (1) become zero. Moreover (1) is
valid for f=1 by («). Thus (1) is proved.

Then we have for p=1,2,...,

(2 [Tl p=l1] m for every 7(x) in R(G).

In fact, | 77|22 =(T7-TH)?=(Tf THP*=CT(fF) )”:T(Cff)”) by virtue of (b),
(c). Then, we have (2) by (1). Now, since | fi]m:}ircl;lll e Cll f””:fﬁ;ax 17(x0) D,

we have

(3) |Tfl=l1l for every f(x) in R(G).

Thus, T is continuous with respect to the uniform norm. Now by Peter-
Weyl's theorem, R(G) is dense in C(G) with respect to the uniform norm,
and T can be extended uniquely to a continuous linear operator T of C(Gj.
We have obviously 7L,=L,T for every ae.

Now, let us show that 7" is a one-to-one linear mapping from R(G) onto
R(G). To show this, it is clearly sufficient to show that (TD)(e¢) is a non-
singular matrix for every representation D(x). Now, the contragredient re-
presentation *D-!(x)=(d;;(x)) of D(x) satisfies *D-!-!D=1] so we have
TtD-' {(TD)=I by (a) and (c), then (T*'D-')(e)-*((TD)e))=I Thus
(TD)(e) is non-singular.

Hence 7T has the inverse 7! which is also clearly left-admissible and
satisfies the conditions (a), (h), (¢). Consequently 7! can be extended to a
continuous linear operator T-1 of C(G), which is the inverse of 7. Since T
is an automorphism of the ring R(G), T is also an automorphism of the ring
C(G). Now, to complete our proof it is sufficient to show:

Let T be an automorphism of the ring C(G) such t/zatT‘LazLuT for every
aeG. Then T is a yight translation.
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Let us now prove this. For aeG, the subset S,={feC(G); fa)=0} is a
maximal ideal of C(G). Conversely, as is well-known, every maximal ideal of
C(G) is ot this form. Now for any feC(G), aeG we have f(x)—f(a)eJ,. Hence,
putting g=77, we have g(x)—f(a’)ef‘(i‘(*u). Since we have J,=L.(J.) (e: the
unit element of G), ¢ (x)——f(a)eYN“L(,,CSC)——-L,,,T‘(SC"). Now, 7' being an automor-
phism of C(G), '7‘(3‘0) is a maximal ideal of C(G). So there is an element beG
such that (3=, Then g(x)—/ (el (3s)=Z 1, hence we have g(ab)=/(a)
or (TH)(ab)=f(a) for any geG. In other words we have Tr(x)=f(xb~1) for
any xeG, ie, T:R,,q, ge.d.

2. Now we shall show that our theorem means indeed the classical
Tannaka duality theorem. For a representation D(x)=(d;;(x)) of G and a
left-admissible operator T we shall denote the constant matrix (7D)(e) by
#p(TY or simply by pp. We note the following equality :

(TDY x)=D(x)-pp. (for every x in G).
Thus 7T is determined by {u,}. We have easily

(4)  ppipy/=Hp,+ip. (+ means the direct sum)

(5) pppp-1=Ppuy P~! (P: any constant non-singular matrix).

Conversely let D—pu, be a mapping which associates for every representa-
tion D of G a constant matrix g, with the same degree as D satisfying (4),
(5). Then we have:

There exists one Cand only one) left-admissible operator T such that pp=
(TD)(e) for every representation D of G.

Indeed, let {D@(x)} be a complete set of mutually inequivalent, continu-
ous, irreducible representations of G. Then {d{}(x)}’s form a base of R(G)
as a vector space over the complex number field.

Then we may define a linear operator T' of R(G) by TD®=D®u,w for
everyre presentative irreducible representation D®. Then since every reducible
representation D is expressible in the form D=P(D®; ... ;D)P-1, we have
TD=D-u, Then it is easily seen that 7' is left-admissible and (7D)(e)=up.

Thus we can formulate the properties of a left-admissible operator 7" by
means of the properties of w,=pwp,(7T). In particular we have immediately the
following :

(6) T1=1if and only if pz=7I, (£ is the unit representation of degreel
and [; is the unit matrix of degree 1).

(7) TF=Tf (for every f in R(G)) if and only if pz=F, (for every re-
presentation D).
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(8) T(fe)=Tf-Tg (for every f,g in R(G)) if and only if spep=ip@up,
(for every representation D;, D,), where & means the Kronecker product.

(9) T=R, if and only if xp=D(e) for every representation D.

Now, the classical Tannaka duality theorem is expressed in terms of gp.
It asserts that g, satisfying the conditions (4)~(5) for u; isin fact D(a) for
some ¢eG. Translating this in terms of 7" by the above results, we see that
the classical theorem is equivalent with ours.



