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Introduction. Recently M. Hukuhara®’ has treated the theory of endomor-
phisms of vector spaces in view of applications to Analysis. The purpose
of this paper is to show that some of his vesults can be regarded as theorems
on modular lattices. It is a well-known fact, that subspaces of the vector
space form a modular lattice; also normal subsystems of certain algebraic
systems? (e.g. groups) form modular Iattices; thus our results generalize
theorems of Hukuhara, and our proofs are also simpler than his. The author
wishes to express his gratitude to Prof. M. Hukuhara for his kind criticism.

1. All the lattices which we shall consider in the following are supposed
to be modular and have the least element 0 and the largest element 1; we
shall no more refer to these conditions explicitly.

Let L and L’ te such lattices. Then the set Hom {L, L'} is defined as the
set of all the pairs of mappings @={p, ¢'; @: L-L', ¢': L'-L} which
s :tisfy following axioms:

L @plaUB)=p(adUpB) . T. @' (@NBY=¢a)Np/(B')

I g p()=alUe/(0) , II. g/ (a)=a'N@(l) i
where o, Be L, &/, B’ e L/, and 0/, I denote the least and the largest elements
of L' to distinguish them with 0, Le L.

Tusorem 1. I @={q, ¢'} is an element of Hom{L, L'}, then we have

1 plaNBIZpONP(B) , 1L @'\ UBNZg (S (B)
(2) @O=0, @ @' (1) =L1.
Proofs are evident, because ¢ and ¢’ preserve the semi-order of lattices,

as is easily seen.

Tuworewm 2. (Transitivity) If @={p, ¢/} e Hom {L, L'} and V={p, ¢'}
e Hom{L!, L'} then we have V-@={yr-p, ¢'"'} € Hom{L, L'},

1) M. Hukuhara: Théorie dzs endomorphismes de I'espace vectoriel, Jour. Fac. Sci.,
Univ, Tokyo, I, 7, 129-192 (1954).
2) Cf. G. Birknoff: Lattice theory, Second edition, New York, 1948,
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Proof: It suffices to prove that %-@ satisfies I and II, then I’ and I
follows automatically because of the duality. It is clear from the definition
of Hom {L, L'} that ¥-@ satisfies . On the other hand, we have

@'l rp()y=a/(p(a )\ P (0))=¢' (@) P (0 NP
=@ (@(a)\ S (OHN PN =@! (p(ad\J @@/ (0'7)) =g plat\ S @ Yr{0/1))
=a\J@/ (0" U @' 0 =aNg/y'(0"),
which shows that 7@ satisfies II (0’ denotes the least element of L//).

2. If L==L', Hom{L, L'} is denoted by FEndo{L}, to which we shall
restrict our considerations hereafter. Let us put ox(@)=¢@"(1) and (D)
=g/m(0) for n=0, 1, 2,...... 3 Then we can define two functions p(@). v(@)
on Endo{L} by
) #(@)zznf{”, Un(@):0n+1(¢)}§+m:
v(Qy=inf{n; e (P)=c"UP)}=<+cc,

For a fixed @ € Endo{L?}, au(@), a(@), p(@) and »(P) will be simply written
as ou, o*, p and v, respectively, if no confusion is to fear.

THEOREM 3.2 For @ e Endo{L} we have

(1) if ot=on*l, then o®*Now=0, (1) if on=ay+1, then o?\Jo,=1,
(2) if a*Noen=0, then ot=c"*l, (2) if c™Jou=1, then cn=0cu+1,
(3 if o®"N\on=0, then ocn=0cp+; or p=cc,
B if o\ Jon=1, then or=c""1 gy v==cc,
@) if v<ee and o*Non=0, then " Jon=1,
4) if p<co and o™\ Jou=1, then c*N\on=0,
B I p, r<o, then the relations on=ocps1, o®=0c"*l ¥ N\oyw=0
and o™ Jon=1 are equivalent with each other and therefore
B=D.

Proof is evident in case #=0. On the other hand, it is sufficient to prove
the theorem in case n=1, in order to obtain it for »=>1, because of the fact
that @r={@”, @'*} e Endo{ L}, and cr=cm(c?=024) is equivalent'to op=o"*!
(om=cn*1l), as is easily seen. As the duality dominates over our theory, we
have only to prove (1), (2), (3), (4) and (5) in case =15

Proof of (1): We haue @(cl)=@(c?) from ol=c¢?. By II' it takes the
form: olN\oy=0, which proves (1) in case n=1.

Proof of (2): From ¢!/N\o1=0, we have ¢/(o!\o1)=0], the left member
of which becomes ¢/(a!N\a)=¢' (DN (c1)=c2N(1Ucl)=0? Then we have

3) For n=0 we put ¢ (a)=0a, ¢/0 (a)=a.
4) Cf. M. Hukuhara (loc. cit.), Chap. II, 1.
5) The same reason allows us to abridge our proofs in the rest of the paper.
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ol==g2,

Proof of (3): Assume that co>u>1, then o,=ou+1. Operating ¢/ to
the both members of the last relation, we have @/(o,)=¢/(ou+1), from which
follows o,-1\Jol=0o,\/ol. Then we get (ou-1\VoDN=(a.\Jo) A1, from
which it follows that ou-1=¢, . This relation contradicts with the definition
of p. Therefore, p must :orcibly be <1 or =co,

Thus, the proof of the theorem is completed.

TurorEM 4. If @={@,¢'} e Endo{L} is such that ¢=q¢2, i.e.
A pl@y=¢), A'. @'(a)=@?(a)
for every c«ce L, then ) is of the form:
@M plad=(aUcHNor, (1! @ {ad=(aNoD\ /o
and p=v=<1. Especially, if o1 or ol s a central element of L, then
@) gplay=aNor, (2) @ ()=a\lJs.

Proof: From A’ we have @/-p(a)=g'%@(), which is rewritten as a\/ol
=¢@/(a\Jol). Operating ¢ to the both members of the last relation, we
finally obtain (1I). The rest of the theorem is evident from the definition.

3. Now, let us define the commutability of @={p, ¢’} and ¥={y, '}
2z Endo { L} by the following conditions B, B’:

B. gy (a)y=y-pla), B. @V ()=v'¢(a).

TuroreMm b5, If @={p, @'}, V={, '} are commutable with each other
and p(@Y=v(P)=h, wW(P)=v(¥>=Fk are both finite, then

¢)) 7)’”"1’"(1')§0mf\7n, 1y ,/,/m.\],/n(());;g;dm\/q«n’
(2) q)m,\[,\-n(()‘)gﬁ-mnq-n’ 2y q)’"‘-\p"(l);%am\./'rﬂ y
(3) 0'm=:(O'm/\'Tk)U(’Tmf\Tla): (3)/ a'm:‘_"((T-m\./'Tk)[\C(fmUTk)y
@) o=\ JrIN(e"™\J7}), (W om=(aa\TH\S(emNTi),
() ghap(D=ou\7,, (5 /IOy =Mk
(6) @hypit(0)=on/\rt, (6)  phprk(L)=a"Jry,
D wT-P)=v(VQ)=pl @-F)=v(Q-V)sup{h, k}
where om, o™, v and " are @(1), @'™(0), (1) and P'*(0), respectively,
Proof of (1): a'm[\'m2?)”"7)””(711)-':(]Jm'g')””'\!’"( 1);;¢7iz.q)/m.\!pn.¢m(1)
=q,m.¢lm.¢mqun(1):,__gﬁm.\[,-n(l>_ '
(2) can be proved in a similar manner as (1).
Proof of (3): We have (a”N\t*o)\J/(a™N\7) =cN\ (v J(c™\7)) by the
modular low, On the other hand, =;\/(e™N\1p)=Ar'kalpkalrkr'kgp!m(0)
= Rafr 2l (kY= B2l ! 10 (20 ) =l Eelp2hee ! i1 200 e o2l 28 1))
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=R (o oY= k(o ) = ko Al () == g Q) == o 1 () 2> ol 12 0)

=a-”l_
Then we have (3).

Proof of (4): Evidently, (a"\Utk)N(e™\JLp) = ((e™\J7F)N1)\Jo™. On
the other hand, (a™\Jr%)/ N\rp==Arkalr bl kb m(0)Zarhlr 2kl ninlr k( 0)
:—-._\lp.k.\[plﬁk.\yk\!,»/k.g)l?lz(O):\yk.\}p/ngp/nz(o) =\l,k(])/m(72k)=1r'pk.¢l m(,rk) :\],k.\lplk.¢lm(0)
=g \7y,.

It is evident that the reversed inequality holds. Thus (4) is obtained.

Proof of (5): ouN\1p =@ (DNTp=p" (¥ ) Nrp=(@hfr (0D phfrk(1))
NTReSCptdr k(PO @A k(1)) Nrg= (@l B RO\ S php (AN N\, KPR (0)
@Al (LN @lfre (D (kN1 r)= ek (1),

From (1) we have the reversed inequality and (5) is proved.

Proof Of (6): g]’ﬂTkijll.q)’]l.\p’k(O):¢’l.q)/h.\;/*k’.¢2h(0>=¢)Il.\b~/k.q)”l.¢2h(0)
=g/ f'k(0). This proves (6)-
(7) 1is clear from (5).




