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Introduction

The purpose of this note is to generalize the ramification theory of Hilbert
([5]; completed by Herbrand [3]) of finite normal extensions of discretélly‘:
valued fields. The theory will be extended here to some type of infinite
normal -extensions over the ground fields with valuations not necessarily
discrete, which we shall call (H;)-extensions over semi-discretely valued fields.
In 21 we shall give a summary of Hilbert-Herbrand’s theory on ramification
as well as its generalization to the infinite case. ¢ 2 contains the definition and
the propositions on (H)-extensions over discretely valued fields.  In 43 we
shall give the definition of semi-discretely valued fields and then discuss the
ramification theory of normal extensions (especially (Hy)-extensions) over
these fields. As an application of our theory we shall consider in 24 abelian
extensions of finite algebraic number fields and give a- new proof for ‘norm
residue theorem’ of Hasse ([2]). In this last section our considerations are
connected with a recent investigation of Tamagawa ([7]) on Artin conductor
of Weil’s L-function ([8]).

The author owes much to Prof. Kawada and Mr. Tamagawa for their
kind discussions and suggestions on these toplcs So he wishes to express
heére his hearty thanks to them.
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Notations :—Let ky be a field with a discrete valuation, 5 and p be its
valuation ring and prime ideal, respectively. We shall assume that the residue
class field f{=0y/py be perfect. Let Zo be a maximal separable extension of
kg, and §; be some fixed extension of ; to %. In the following we shall ex-
clusively consider intermediate fields % of % and Z: kS k< By, with valua-
tions p induced there by Py:p=Tp ~ %, 0=0p ~ k. The residue class field f=o/p
of k can be considered as an intermediate field of f) and T)=%,/F and so it
is always perfect. If p is discrete, we shall say simply that k is discrete. If
~ k, ¥ are discrete, the composite field Ek' and subfields of % are discrete, too.

Let K/F be a (finite or infinite) normal extension. We shall denote its
galois group considered as a compact ﬁopological group by ‘gzg(K/k). As is
known (Herbrand [4], II), we can define as usual the splitting group ¢z and
the inertia group gr of the valuation of K which is determined uniquely by
the above conventions. They are closed subgroups of ¢ and gr is a normal
subgroup of gz. The factor group gz/gr is isomorphic to the galois group. of
- the residue class extension &/f, which is also a normal extension. If KD ¥ DE,
o'=g(K/E"), we have

) ey ! Cal ’
gz=gz "G, dr=ar g,
and if B'/k is also normal, §=q(k'/k), we have

8 =pz0'/d', g:r:cxm’/g’ .

¢1. Summary of known resultsl’

Let k be a discrete field, K/k its finite normal extension With galois group
a=0(K/k). Let O, P be the valuation ring and its prime ideal in K. For
o egr we define the ramification fuﬂctz'on (or v-function) v(o)=vg (o) by

Q) - We)=Max{{; a”=a (mod 213“‘1) for all ac—:D}

 The.values v(s) (c€gr) are called the mmzﬁcatzon numbars (or v values)
The v-function satisfies the following conditions: : o
(1) v(s) (o ='1) are non-negative integers and v(1)=co,

1)) v(a') is continuous at o == 1 and if lim o»=1 then 11m v(on)="co,
12-%90 21900 )

1) Cf. Hﬂbert [5] and Herbrand 3], or Artin [1] For the treatment of. mﬁmte case,
see Herbrand [4] 11, and Kawada [6].
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(iil) v(e7) = Min{v(c), v(v)}, ~where  the “equality sign holds when
v(a) + v(7),
(v) v(rlor)=v(c) for Teqgz
These 1mply of course the possibility of definition of ram1ﬁcatxon ‘groups.
Namely we define the ramification groups (or v-groups) by

2) ' ﬂy(v)""{a- o € QT ‘U(G’) v}’

for any non-negative integer (or real number) ». They are normal subgroups
of gz. v, being the first ramification number, i.e. that which is positive and
the smallest, we call 8y=6pen the first ramification group. It reduces to the

unity group or is an p-group according as the characteristic of the residue class
field is 0 or p==0.

Following Hasse [2]] we associate with the extension K/ a real- valued func-
tion vch(u) =@grr () of non-negative real variable » such that @(0)=0 and

3 D~ (u}"“EQT Qv(ﬂ)])

where v=@(#) and D-@(x) denotes the left derivative of @(x). The Hasse's
function is continuous, convex and strictly increasing, and its inverse function
u=@-1(v) is given by

@ P=/lor: 1D 2 Min{v, v(a)}.
o efp

We have @) > u for any # and the équality sign holds for all # if -and only
if K/k is unramified. For convenience we shall set in the following

(5} _ ()= 0, @~ Y(o0)=00

By means of Hasse’s function we can deﬁne another sort of ramification
function (u-function) u(d):—“uK/k (}or)‘_ by ,

(6) v(o-)-—gocu(o-) - for oEqT. ,
It satisfies also the conditions (ii), (ni), (1v), but now (1) should be replaced
by the following : :

@) u(e) (o ==1) are non-negative real numbers and  #(1)=oco.
Definitions of u-values and #-groups are given in a similar way as above.
u-values (v-values) are nothing other than the w#-coordinates (v-coordinates).
of the vertices of the graph of the Hasse’s function. " (The origin is counted
in the vertices if and only if D+@(0) +=1, i.e. gp ==g.)

Now let KD ¥ 2k, g'=9(K/%k'). Then we have

< : g m(o)=vg (o)  for. oegy,

and, if #7/k is normal, F=a(K/B=0/y,
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@ - Pr/ie o Vs (F)=Max{vgp (o) ; €47},
where G e denotes the coset of o &gy mod ¢/. (Hilbert-Herbrand’s theorem)

It follows immediately that the corresponding Hasse’s functions satisfy the
following important formula: '

&) @rir(W=@ri © Prrpe) -
By means of this formula we can readily extend the definition of Hasse’s

function @jg/,z uniquely for non-normal extensions X¥/k. Then the Hilbert-
Herbrand’s theorem can be formulated in terms of #-functions as follows:

ay ugip(o)=gppoug(o) ~ for ocegr,
@ uprp(@)=Max{ug; (c1); Tegy} for Gegr.
We shall now extend these considerations to the case where K/k is an
infinite normal exténsion. Let {£} be the set of all finite norma} extensiqn
fields of k which are contained in K. The set of indices A={\} is considered
as a directed system, the order being defined such that A >>u is equivalent

to BxD k.. Let g=¢(K/E), gn =¢(k. /B) and denote by o, the element of g
induced by o eg. It follows from (8) that if A > u

vepy 1k (on ) <ty i (ow)

and the set of all #-values of k. /k contains that of ku./k. Hence we can
define ugsp (o) as a limit of ug, /4 (oa) (A eAd) as follows:

10) o wgp(ed=limuy, (o).

It satisfies (i), (iii), (iv), so that we can define two kinds of #z-groups as
follows:

an C Syw=1{0; o eqr, s (o) >u},
dyasn={c; cear ugp(o) >u}.

These are normé.l subgroups of gz and g, o are closed subgroups. Oy and
the closures of QU‘(“F"‘D are limit groups of those corresponding for k. /k (Aed).
Therefore the closure of g;;(+q), which is called the first ramification group,
reduces to the unity group or is a topological p-group according as the
characteristic of the residue class field is 0 or p==0. Tt follows also that the
.set_of all #-values of K/k - contains the union of thoseA of ky/kE (Med), and
conversely.the former is contained in the left closure of the latter, i.e: in the
set of all limit values of decreasing sequences contained in the latter. g, c+0
coincides with ;¢ if and only if # is not an u-value of K/k, while the
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closure of g, a0 coincides with Gy if and only if 22 is not an #-value of k. /k
for any M eA. Furthermore, the Hilbert-Herbrand's theorem (7)/, (8) remains
true in this case also (%' .is assumed to be discrete in (7,/).22 :

As we have from (9)

P k,\/k(v) 7) Fulk ('U) ’ q)k)\/k(u) > q)k“/k(u>

for A > u, we can define the Hasse’s function of K/k by
12 g, @=lm ey ) . ?@/k (@)=L g () ,

in which latter case the function value @(#) (u¢< ) may take co. Let us
put '
a3 um::¢'1(oo)-ﬁSup{¢‘1(v) 0<v < o},
Then we can prove easily that cp(u) < o0 for u< e and @p(u)= 0 for U Ues,
and that v—-¢(u) O< <) IS contmuous, convex and strictly 1ncreasmg.

(In case q)(u,,)——oo the left contlnul'cy of qo at #. means Iim D(p(u)'-“oo
LU~

Here again we put @(co)==co.,) We can also prove that
(14 - D=p(w)=[gr: gyl s

D*@p(u)=[gr: closure of Qu(,¢+0)],

where D*@(u) denotes the right derivative of @(u) and we put D~ zp(u)..oo
for # > tte, DY p(n)=00 for 7 It follows that the set of u- -values of
'K/k such that 2 < #.. is either finite or countably infinite and that any such
u-value is an #-value of ky/k for some Aed. Assume it be finite; then if
#.=co we have [gr:1]< oo, which case is essentially the same as the case
of a finite normal extension, and if #. <o we have @(#e) < 00 and . is
also an #-value of kx/k for some Med. Assume, on the contrary, the ‘set'be
countably infinite, then it makes a convergent Cor - dlvergent) sequence with
limit' #.. and @(#.)=co.

Now we define the »-function of K/k by (6). The conditions (111), (w)
are sat1sﬁed again but it should be noted that »(c) (a- s=1) may be o and
(o) is continuous only at o such that () < co. Any v-value of K/k is an
v-value of kh /k for some red. The w-values < u,.) and the v-values (some-
times except o) are in a one- “to-one correspondence and g1v’e the %-coordiriates
and- v-coordinates of the vertices of the graph of the Hasse’s function] réspec-

2) This  generalization by means of ‘%’ is due to Kawada, who called 8z and the
closure of QU(’”O) the ramlﬁcatloh groups of the first and the second kind, respectively.

The detailed treatments on these groups will be found in his paper 61
2a)  In (7) the Hasse’s function 9z is a generalized one. But its meaning is “clear,
since it is easily reduced to the case [k : k] < oo,
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tively. gp (= coincides with the closure of g7 Guee+0) OF Grr(u.y according as the
set of all v-values is finite and #. < o or not. Except for the case of
[ar:1] < oo it is not an open subgroup of g7, while all the other v-groups (or’
the corresponding #-groups with # < #.) are all open subgroups of gr. We
have also (3) and the following generalization of (4):

(15) P (D= SGT Min{v, v(e)}do 3

Finally, it can be easily seen that (7), (8) and (9) are still valid (' : discrete).

22, (H)-extensions of discretely valued fields.

Let k be a discrete field, K/k its normal extension and g=g(X/k). In the
preceding section we have remarked that gy does not reduce in general’
to the unity group and z#.=¢@~1(c0) is not always equal to co. These difficulties
show that the consideration of the w»-function alone is not sufficient for the
- general theory of ramification. Hence we shall study here the range of in-
finite extensions where the ramifications are determined completely only by
the v-functions. _

Drrinition.  We shall call K/k an (H)-extension if gy ) 5 equal to the
um'ty group. It is called an (H))-exiension if Ppph(c)=co and an (Hp)-exten-
sion if not. ,

Thus K/k is an (Hl) extensxon if and only if @x »(u) < oo for all 0L < oo,
andu is an (H)-extension if and only if @g (%) < oo for all u-values (< co)
of K/k. If we use the z-functions, the above definition is equivalent to the
following '

Derivition. K/Ek is called an (H)- extenszon if wgp(o) satzsﬁes the first
part of (ii). It is called an (Hy)-extension if ugu(c) satisfies also the second
part of (i) and an (H;)-extension if not, :

F or instance, all finite normal extensions are ()- extensmns The v-function
for an (H)~extensmn satisfies the conditions (i), (i), (iv) and the first part
of (ii); of which the second part is satisfied if and only if the v-groups (in-
cluding gy when [g7:1] <o) make a system of ne1ghbourhoods of the
unity in gg. - This last is surely the case for an (H))-extension.

ProrositioN 1. Let k be a discrete field and K/k its normal extension.

3) The intégrations extended over the inertia group 97 are alWays assumed to be
normahzed i.e. they are based on the Haar measure of 87 such that S de=1. Itis also

~ noted that the v-function #(s) is a measurable function on 87.
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Let k' be an mtermedzate Jfield, whick is also discrete, and a=0(K/k), o' =o(K/E).
Then we have .
@ oz=0z~¢, or=ur 9.
(i) If K/k is an (H)-extension then K/F' is also an (H)-extension. K/k
is an (Hy)-extension if and only if K/F is an (H,)-extension.

(i) v (o)=vgy(c) for o € g

Proof. We know already (i) and (iii), whence follows immediately the
first half of (ii). To prove the rest part of (ii), we first assume that K/E is
completely ramified. Then we have [k : k] <<co. As we have by (9)

Pr=Pin® Prow
and as @;},(0)=co, it follows that @z},(c0)=-co is equivalent to Pty (0)=00,
This proves our statement in this special case. Now in the general case, let

k¢ be the inertia field of K/k. Then by (i) krk' is that of K/E and we have
obviously

-1 -l -1 — =l
PR PRIk Prin = PKikyt -

Hence we obtain the same result as in the above case, q.e.d.

Remark. If K/k is an (Hy)-extension then K/ is also an ( Hy)-extension.
The converse of this, however, is not always true. When %//% is normal, it is
true if and only if @gp(v(E/k)) < oo, where v(%'/k) denotes the last v-value
of k'/k, i.e. that which is < - and the largest. This follows from the fact
that the set of all x-values of K/k isthe union of that of %/ and the set of
all v-values of K/E. R

Prorosition 2. Let k be a discrete ﬁeld and K/k its normal extension.
Lel K' be an intermediate field, which is normal over k, and g“g(K/k),
g "‘(K(K/K’ ) §=¢(&'/R)=¢/y/. Then we have

@ §z=020'/¢', Gr=010'/4. ' :
(i) If K/k is an (H)-extension K'/k is also an (H)-extenszon If K/
is an (H,)-extension K’/k is also an (Hl)extenszon. o
(iii) If K/k is an (H)- extenszon, we kave

16)  vea@=], vkaler dr  for iraF 1.
: T

If K/k is an (Hy)-extension, this formula is vahd also for oc=1inthe
sense that S

an - wga=w=| v dr.
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~ For the proof we use the following lemma., :
Lemma 1. Under the same assumption as in Prop. 2, we hcwe

sy - ‘P;Wk ol (v)= S , Min{v, v?r)}d*r,
R ‘r
a9 PropoPip(e)=| w=)dr.

S

Proof. Let us put
WO =pgmop (v, \Ifz(v)sff, Min{v, »(7)}dr .
; a
They are both continuous and strictly increésing functions of real variable
o<y < e and it is obvmus that

‘!’1(0)—0"‘?2(0)
Therefore to prove Vn(v)=v(v) it is sufficient to show Dn(w)=D- \]rg(v)
We have by (3), (14) and Hilbert-Herbrand's theorem (8)/
D (=D P P (o)) - D Prh(v)

=[G 1 8 al/Tgps GV(V)]

?EQTgi/ﬁl : U7, {;t)gl/ﬁ’ ]/EQT : Qv(v)j

: =EGTQI e V8 gyl

““[QT ~ gy eI,

here u= %{/k(”) and SO QU(u)“gvaJ On the other hand, it is clear that

. . D- ‘1’2(0) EQT Gy(v)"\!}’] 1
‘Thus (18) is- proved (19) follows immediately from (18) by the 11m1tmg
process v — co,

- Pyoof of Prop, 2. (i) is known already. Assume that I( /k be an (H)-
‘extensmn and let 725+ 1. Then vg(om)=Px o hxulor) (Tegy) are <o
and we have #g/(cT)=@gl, o vgrr(oT). Smce the function @zl (v) is strictly
inéreasing for v-values (<< ), we have by (8)

VK EY=P 18 © U B = Poerrp Max{uga(ar); e (3
=Prrn° Pty Max{vguor) s redz)) .

Choosing the representatlve o of the coset & such that vIQk(o)—Max{vK/k(w) ;
Teg7}, we have Min{vg (o), vr:{7)}=vxm(cr). This together with the above
lemma proves the first half of (iii). It follows, in particular, vg/i(c) < o for
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gr3o +1 and thus the first half of (ii): ~If K/E is" an (H,)-extension, i e.
@p(ce)=co, we have also by the lemma - B oo

S“, o) dr=9 010 Pi( )= pron()=c5,
T

and as we have @l (v) < PR 10, 97, k(oo)—oo The remainder of the pro-
position is proved. '

The following lemma gives a partial converse of the proposition. -

LemMa 2. Let k be a discrete field, K2 K' 2 k, K/k normal, K/K' finite
and K'/k an (Hy)-extension. Then K/E is also an (Hy)-extension.

Proof. Let g,¢',3 be as above. We have by the Hilbert-Herbrand’s
theorem (8) : ' ‘ o ‘

D~ Pr(ut) :EQT; gy‘(u)j:[ng, 52 (u)ﬂl:l : EQT ~g': gU(ﬂ)vA gl

<[ Gpal- [:G' :1] '
=D‘¢K;/k(u) . EK: K/:] < o

for any 0 <C#u < w0, which proves the lemma. : :

Remark. This lemma does not hold for an (Hz) extensmn In fact if we
replace the words (H;) by (H,) the lemma is true if and only if none of the
u-values of K/k is greater than all of the u-values of K’/k. When K=K'(a)
and qJK,/k(u(k(a)/k)i < co, uw(k(a)/k) being the last #-value of k(x)/k, it can
be proved that this condition is fulfilled.. -

ProrositioN 3. Let k, k' be discretfe fields.. A

() If K/k be an (Hy) extension then K'=KFk is an (H)- extenszon ﬁeld of

kkl . . B
(i) If K2 K, K/k be a mormal extension and K’/k’ an (Hl) extenszon,
then K/k is an (Hy)-extension, ‘

Pyoof. By Prop: 1, 2 we can assume without loss of generality that K'=K¥,
k=K ~ F/. Furthermore, as in the proof of Prop. 1, it is sufficient to consider
the completely ramified case. Hence we suppose that K'/k is completely -
ramified. - Then [&/: k] < oo, [k*: k] < co, where F* is the smallest normal
extension field of % containing %'. By Prop. 2 and Lem. 2 K/k and K*/F -are
(H)-extensions if and only if Kk*/k and K k*/F  are (Hp)-extensions, re-
spectively. But by Prop. 1 Kk*/k 1s an (Hl) extension if and only if Kk*/k’
is an (H;)-extension, g.e.d.

23. (Hl)-extensmns of semi-discretely valued flelds‘

In this section we shaII extend the above cons1derat1ons to the case where
the ground field K is not discrete but an intermediate field of an (Hl) exten-
sion of a discrete field k. - o
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DeriviTioN. -We call K semi-discrete if there exist two fields k, 2% such
that k< K< 2%, kis discrete and 2%/k is an (H))-extension.

It follows from Prop. 3 that if KX is semi-discrete and %’ discrete then Kk’
is also semi-discrete. But when K and K are semi-discrete KK’ and subfields
of K are not always semi-discrete. _

DgrinitioN. Let K be semi-discrete, /K a normal extension. L2/K is
called an (Hy)-extension if there exist two fields k, 2% such that k= K S 2& O,

k is discrete and 2*/k an (Hy)-extension.

Clearly this gives a. generalization of the definition of an (Hi)-extension
of a discrete field.

ProrosiTioN 4. Let K be semi-discrete, Q/K an (Hy)-extension. If K< K/
C Q then K is semi-discrete and £/K' an (Hy)-extension. If moreover K'/K
be normal then K'/K is an (H))-extension.

Proposition 5. Let k be discrete, K semi-discrete. If K/k is a normal
extension then it is an (Hy)-extension.

Prop. 4 is an immediate consequence of the definitions. Prop. 5 follows
from the deﬁnitions and Prop. 3 (ii).

ProrosiTioN 6. Let K be semi-discrete, 2/K a finite normal extension.

Then 2/K is an (Hy)-extension. ‘
: Proof. Let k, £* be such that k< K< 2% k is discrete and £%/k an
(Hp-extension. Let £=K(x). Then k* being the smallest normal extension
field of k containing k(a), we have FE K 2 2%F* and £%k*/k is an
(Hy)-extension by Lem. 2, g.e.d.

Now:we shall define »-function and Hasse’s function of an (H)-extension
/K. Let kS K& 2 < 2%, k be discrete and £%/k an (Hp)-extension. Put
G=0(2*/B), §*=g(2*/K), n=¢(L£*/2) and g=¢(L/K)=g"/n.

Assume first that £=0% i.e. g=¢*. In this case we define vg/x for cegr
=@, ~g as follows: ‘ —

0) : ox (0)=Vax/p(0) .

It is obvious by Prop 1 that this definition is independent of the choice of k.
It is also obvious that vg/x (o) satisfies the cond1t10ns (D—(iv) of v-functlons
Deﬁnmg Hasse's funct:on of &/K by

e Pl D)= ngMin{v, Vo (o) Yo,

we have by Lem, 1 .
(22) : Pt =P rrePsl®)
and by (17)
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@3) Polre)=Sup{Pgl(v); 0<v < co}=co.

Now in the general case we have ar=gn/n, ¢3=03~¢*. Denoting a
representative of o egr by o*eq}, we define v-function by

20 vQ;K(o-)::S“ vg*/;;‘(a*'r*) dr*.
T

The independence of this definition of the choice of %, £2%is proved as follows.
Denote for a time by o[k, £*71 the function defined above and by o[k, £%]
that defined similarly for the other choice %, £%. If kT R, Q%*=0% we
have o[k, 2¥)=o[k/, 2*'1 by Prop. 1. If k=Ek, 2%*2 0%, let 3=q(2%/Q%),
®'=6/3, ¢*'=¢*/3, ”'=n/3 and denote by ¢*/ g}’ the coset of o*egf mod 3.
Making use of Prop. 2 and a Weil's formula® we have ‘

ok, 2% ()= j] vaxa*T*) dr*
[T_

= ( dr®! (3 ﬁg-){-/k(o‘*'r*p*_) dp*

N u} S
— S vaxr,p (a® Ty d
7 o

= o[k, 2% (c).
Thus o[k, £2¥)=u[#, 2%, In the general case we have by what we have
proved vk, ¥ =v[kk', ¥ |=0[kE, &% ~ £*/]. Similarly we have o[k, 2%
=ov[ kR, 2% ~ L% and so o[k E¥)=o[k, 2%, which proves our assertion.
We have by the arguments used in thg proof of Prop. 2 ‘

(25) vorg(o)=@5k o Max{vax/g(a®7*); v®enr}).
This implies that the Hilbert-Herbrand’s theorem holds for 2*/K and 2/K,

by which we can conclude that vox(o) satisfies also the conditions (i)—(iv).
On the other hand, if we define the Hasse’\’s\ function by (21) we have

(26>  Pal=P5kk © Paxia (V)

and (23). ; .
These considerations show that the v-function and the Hasse's function thus

defined for an (Hy)-extension 2/K of a semi-discrete field K possess the same

properties as those of an (F;)-extension of a discrete field.  Since, in particular,
all finite normal extensions of a - semi-discrete field are (Hj)-extensions, we

4) See Weil, Lintégration dans les groupes ‘topologiques et ses epplications, Paris, 1939,
p. 45. : T TR
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can define by a sixhilar method ‘as in %1 the ramification function (u-function)
for any normal extension of a semi-discrete field. In this way, replacing the
words * discrete’ by ‘semi-discrete’, almost all the results in 41 can be trans-
ferred literally to our generalized case. Above all, the following generaliza-
tions of the Hilbert-Herbrand’s theorem are obtained without any difficulties.

TuroreM 1. Let K be a semi-discrete field and 2/K its (Hp)-extension.
If K! is an intermediate field of 2/K, then K' is also semi-discrete, 2/K' an
(Hl) -extension and we have ~

@0 - vwrlod=var(e)  for ceqr(L2/KN).
If moreover K'/K be normal, then K'/K is also an (H))-extension and we
have ‘ ‘

28 Z)K//I;(E)—_—-Sq vor(or) dr
A e Y S .

=¢5}K’ (MaX{vQ/K(UT) s TE gT(*Q/K,>})
for cegqK'/K),

where o is a representative of o in g7 (2/K).

TuroreM 2. Let K be a semi-discrete field and 2/K its normal extension.
If K' is an intermediate field of £2/K, which is contained in some (Hy)-extension
of K and thus semi-discrete, then we have. -

29) #ok(0)=@xgy K ° torg (o) for cegr(2/K").

On the other hand, if K' is an intermediate field of 2/K, which is mnormal
over K, we have '

30)  ugug(e)=Max{uox(or); Tegr(£/K")} for ceg(K'/K).
In (29) @xx () is the Hasse's function defined for non-normal extension

QK{/K., &' being an (Hl)-gxtension ﬁeld of K containing K, it is defined by
the following formula

L : Porr(W)=Poirr© Pryr(w) for 0<u <o,

" which surely holds in case K!/K is normal.

It might seem more natural to extend the definition of (H))-extensions
so that £/K is an (Hj)-extension if and only if ¢@gl(co)==co. Then the
‘notion of semi-discreteness should be extended by a similar method as above.
f\Thusy‘thi,s‘ same process would be repeated again and again. But on the way
of this process we must need Prop. 1, 2, 3 in 2 2, in which the words ‘ discrete’
are now replaced by ‘semi-discrete’. Unfortunately we could not prove them
- (except Prop. 2) in general and for the proofs some further assumption seems
to be unavoidable. -
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- We conclude this section with some remarks on (H,)-extensions. Namely,
let us consider whether it is possible or not to replace the words (Hy) by (Hp)
in the above considerations. Some of the results will remain true, but naturally
with suitable modifications. On the other hand, as is seen from the remarks
in ¢ 2, Prop. 5, 6 do not hold in this case. Hence the whole theory, including
the Hilbert-Herbrand’s theorem, would become a complicated one. It should
be noted that the case treated in Herbrand [4] I will be contained in th1s
case and give its special (and the simplest) example.

34. The case of algebraic number fields.

We shall consider in this sectioﬁ the case where %, is the field of rational
numbers R, or its p-adic completion R; When we want to apply the above
theory a fundamental fact is contained in the following

TuroreM 35 Let k be a finite algebraic number field (or its p-adic com-
pletion) and K /k its abelian extemsion. Then K[k is an (Hp)-extension with
respect lo every discrete valualion b in k..

As the theorem is easily reduced to the local case, it is sufficient to prove
it for an padic field k=ky. Assume namely Ey=Ryp, [k k] < o0, 8=Ay (the
greatest abelian extension of %) and let us prove that 2/k is an (Hp)-exten-
sion. Then the theorem will follow from Prop. 2. Let g be the absolute norm
of p, B* the multiplicative group of %k, U, the group of units-of £ and "

(32) - Up={a; aely, a=1 (mod ")},
Let«further (Sj—g(Q/k) and G=G be the Weil’s group of k. The inertia group
Gz of G is identified with &4.8
The local class field theory yields a cononical isomorphism

and thus a one-to-one correspondence between the finite abelian extension fields
k' of k and the closed subgroups N of %* with finite indeces. Then by the
¢ conductor theorem’ we have Ny =2 UP if and only if =(k'/k) <1, uw(k'/k)
being the last #-value of k'/k. It followe that the canonical 1somorphlsm (33)
induces the following 1somorphlsm S

P

¢y Gy UP for —1<u<i.
Hence we 'hav‘e for the Hasse’s function f/)k(u),:gvgg,%(u)
(35) D Pw=[Up: Uid=gi-(g—1) for i—1<u<i

5) This. theorem is due to Tamagawa [7]. i R
6) For the construction and the properties of the Weil’s group, see Wexl [8]..'; Lol
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and thus
(36) Pr(f)=gi—1.
Our theorem is therefore proved.
~ Now let K/k a finite normal extension, K=Ky Let G=q(Ax/k), G'=

a(Ax/K), g=0( K/k) and G=Gg, , be the Weil's group. Then we can consider
G as an extension group of Gxg=K?%*, the multiplicutive group of X, by g:

(37) G2 K*, G/K*xg.
Gr being the inertia group of G, we have
(38) Gr~K*=Uy, Gr/Up=gr-

By Prop. 1 Ag/k is an (Hj)-extension. We have by the Hilbert-Herbrand’s
theorem ((8) or (28)) for Px(i—1) <j<Px (i)

(39 @ =8LxH=8,;H &, A =6,;,8/8".

This implies that &, ¢; for Px(i—1) <j<Px(i) are all equal. Denoting by
Gy, '

; the corresponding subgroup of Gz, we have

(40) Gy; ~nE*=UP, Gy/UPaya-

If we put for se Go=8, ’

(41 , wg, i(s)=Max{i; se Gy},

we have - ‘ |

(42 DA )=Prowi, 1(), Wik (=Priko tagi(s) .

The following theorem gives an analogy of the Hilbert-Herbrand’s theofem
for the Weil's groups.

TueoreM 4.0 Let 'k be an Y-adic number field and K/ its finite normal
extension. Let K=k S K, G=Gg 1, G'=Gg . Then we have

43 G =G, G=Gr~ G
and : . ;
(44) . wg, p (S)=wg, x(s) for seGy.

" If moreover K/k is normal, G=Gp, s, we have

(45) G=G/G's, Gr=G1G'*/G",
where G'c denotes the closure of the commutator subgroup of G, and
(46) ¢jgk/ o W, ‘k('s')=Ma'X.{wK, wWst); teGe~ Glc} R

7) This theorem is due to Tamagawa [7]. His original proof.is based on ‘the norm
residue theorem of Hasse. , . ;
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where se Gy denotes the coset of se Gy mod G'. , ‘
Proof. (43) and (45) are known ([8]). (44) follows immediately from
(27) (or (7)) and (42). (46) follows from (28), (31) and (42) as follows®
PagrapeVagn (=Max{vazm(s8); 1eqr(Ax/Ap)} .
Hence :
Pro Prip© Wer, }(8)=P Ay 144 © Prr © Whr, 1 (8)
=Max{Pxo wg w(st); teGp ~G'c}.
As the function Pg is strictly increasing, we have (46), q.e.d.
It follows from (46) that for P p(i—1) <j< Prwp (i)

(46)’ Gy;=Gy; G*/G',
and, in particular, if k'=Fk, we have for P, (7—1) <j<Prm (%)
47) U{,"):-_ij Ge/Ge.

Since this identification is given by the transference (Verlagerung), we have
by (40)

(48) Ny U SUP, LUP s Ny U1 <Lay55: 1.

This is of course equivalent to the ‘norm residue theorem’ of Hasse ([2]).

In this way the ‘norm residue theorem’ for arbitrary finite normal ex-
tensions is proved as a corollary of Th. 5. But it should be noted that for
the proof of the latter we have assumed the former theorem in its abelian
case, i. e. the ‘conductor theorem ’ of the class field theory.

8) It can be proved also from (8), (9) and (42), and thus for the proofs of Th. 3,
4 we need not use the results of § 3. This remark is due to Kawada [6].



