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Let % be a field which is complete with respect to a discrete valuation and
its residue class field f be perfect. E. Witt proved? that any central division
algebra D over k is similar to the direct product of an unramified central
division algebra D, and a cyclic division algebra (m, Z, S), where Z is un-
ramified over k& and 7 is a prime element in %, and that this decomposition is
unique if we take a fixed prime element 7. This result has been generalized
by T. Nakayama? to the case where the residue class field f is not necessarily
perfect, under the condition that the residue class algebra D of D is separable

_over §. In this case, all algebra classes of such central division algebras D
form a s-bgroup °B of the Brauer group B (k) of k, which coincides with
B (k) in case  is perfect. The. structure of SB is then easily determined.
Namely, *B is the direct product of two subgroups By and B, the former is
isomorphic to the Brauer group B() of I and the latter is dual to the Galois ‘
group G(14/f) of the maximal abelian extension 2 of . In the following rote,
we shall give a direct method to define the character-formula expressing this
duality bstween B, and G({%/t) and then reproduce the result mentioned above.

1. Let k be a field which is complete with respect to a discrete (exponential)
valuation », and o, p,  be its valuation ring, prime ideal and residue class field,

- respectively.3 " b is a principal ideal #r5, 7 bzing an arbitrary prime element.‘
Let % be an algebraic closure_of k.. Then the valuation » can be uniqﬁely
extended to a valuation # of %, which is also non-archimedean but no longer
discrete, nor % complete with respect to ». The valuation ring and the prime
ideal of 7 being denoted by § and 7, the residue class field §/p is obviously an

1) E. Witt, Schiefkorper iiber diskret bewerteten Korpern, Crelles J., 176 (1937).

2) - T. Nakayama, Divisionsalgebren {iber diskret. bewerteten pﬂrfekten Korpern Crelles
J., 178 (1937).

3)  For the fundamental notions such as field-extension, valuatlon normal simple algebra
etc, sze van der Waerden, Moderne Algebra, 2nd ed,, Berlin, v. 1 (1937), v. 2 (1940).
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algebraic closure f of £ In general, the residue class field of an extension K
of % contained in % can be jdentified with a certain extension of f contained
in . We shall express this correspondence by the symbol K — &. Any algebraic
extension K (&) of % (f) which we consider in the following is supposed to be
contained in % (), whenever the contrary is not explicitly mentioned.

Now let § be a separable extension of . We shall assert that there exists
uniquely a separable unramified extension K of %k such that X— ®.  (In this
case, we shall denote as K «— &.) Suppose first that [® : {}= be finite. Then
we can find w; €0 such that &=t (w,), W; denoting the residue class of w; mod
P, and a polynomial f (x) of degree # with coefficients in o such that f (w,)=0
mod p. f(x) is separable and irreducible in % since it is so mod p. Applying
Hensel's lemma to f(x) in & (w;), we have w in k(w;) such that f (w)=0 and
w=w; mod §. Then K=Fk(w) is a separable extansion of degrée nof k. As
the residue class field of K contains &, it follows that K is unramified over
kand K— R If K/ be another field such that. K/ is ‘unramified over % and
that K/ — &, then by Hensel’s lemma applied in K/ we should have F(w)=0
and w=w' mod p with a suitable w’ in X’. But since f(x) is separable mod
p, we have w=w' and thus K=k (w)=Fk (w')=XK'. From the argument used
above, we also see that if the residue class field of K, contains &, the field
K corresponding to &  is contained in K. In the general case where [(f:8
is infinjte, & is a union of an increasing series of finite separable extensions
Rof I:J =, 5%‘:1@1 ;. Let Ky be the fields such that K;«—> fi. Then

by the above remark we have K & K, & . If we put K;UlKi, it is clear
P

that K is separable unramified over % and that K— ®. Let K be another
field satisfying the same conditions. «/ being any element of K/, we have
k() «—t(w') S ®. Hence B (w) T K and so XX K. As we have also
K K, it follows that K=K, which proves our assertion.

We shall' denote by &%, k2 (1%, 1) the maximal separable and maximal
abelian extension of £ (f) contained in % (), respectively. We denote also by
Sk and “k the saparable unramified extension of k corresponding in the above
sense to ® and %, respectively. Then it can be proved easily that % is a
Galois extension of 2 and that the Galois group G (°k/k) is by the natural
correspondence, isomorphic to the Galois group G (¥/£).*> The lattice isomor-

*) We can define a homomorphism of G (45/k) onto G (¥/¥) in a natural manner.
Sk is the subfield corresponding to the kernel of this homomorphism in the sense of Galois
theory. o ‘
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phism between the subextensions of *&/% and those of {*/f, which we established
above, is in accordance with the Galois theory. Namely, if K+«— & in the
above sense, the closed subgroups® H of G (°k/k) and $ of G (5/f) which
correspond to K and ® respectively correspond by the isomorphism G (Ck/k)2x
G (f5/0). In particular, 2%k is the maximal abelian extension of % contained in
Sh:ep=Sk~Fk?%, and G (%k/k) 2= G (1¢/%).

2. We shall denote by A4, B, central simple algebras over & and especially
by D, central division algebras over k. Their classes of similarity form an
abelian group with respect to direct product. This group is called Brauer
group of k: we denote it by B=B (k).

Let D be of degree m. The valuation » can be extenbed uniquely to a
discrete valuation rp of D as follows$? ,

vp (@)= 7}2 v (Npss(@)) for aeD,

Npsr denoting the principal norm. The unique maximal order of D and
its unique two-sided prime ideal are given by

={a; ae D, vp (a) >0},
DD~{a aeD, vp (a) >0}.

Then pp is a principal ideal [Jop, Il being a prime element in D of vp, and the
residue class algebra ®=pp/pp is a division algebra over I, whose order we
denote by f. If p-0p=pp?, we have ef=m? as in the commutative cass. ¢ is
called the ramification exponent of D (or of its algebra class) and if e=1, D
is called unramified. Since evp (@) is the normalized valuation whenever v is
so, we have e¢|m and thus m|f® .

Generally, A is considered as a matrix ring Ds of degree s over a suitable
D. Then ng=(0p)s is a maximal order of A, with which every maximal orders
are conjugate, and py=(hp)s=1Ilo4 is the unique two-sided prime ideal in o4,
The residue class algebra W=o04/p4 is therefore considered as a matrix ring
Ds of degree s over D. : > :

We shall give here a criterion of maximal orders, .adapted for later con-
siderations. Namely, if O is an order and P its two-sided ideal in A, they are

4) Galois groups of infinite Galois extensions are always considered in the topology of
Krull. Cf. W. Krull, Galoissche Theorie der unendlichen algebraischen E);weiterungen, Math.
Ann, 100 (1928). . , , ‘

5) Cf. van der Waerden, 1. c. 3), or N. Jacobson, The theory of rings (1943).

6) CI H. Hasse, Ubsr '§.adischie Schiefkérper und ihre Bedeutung fiir die Anfhmet:k
hyparkomplexer Zahlsyateme, Math: Ann., 104 (1931). :

*) eim-reads as ‘e is a divisor of m.
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a maximal order and its two-sided prime ideal if and only if the following
conditions are satisfied :

iy A———,Dl'n"i 9,

2) P is principal, i.e. P=11 O, and Pe=7 O for some positive integer ¢,

3) O/ is simple. .

For, if £/ is an order containing £, we have by 1) #* O/ £ O for sufficiently
large k. Then Pr=nr O S 7k O'=11% ' for h=ke. Since it follows from 2),
3) that every two-sided ideal of /3% is a power of J/P%, we have [/ O/ =L/
=1I"Q, where B' < k. If W' < h, we would have [/-le and so w~le{/,
This would imply by 1) ©'=A4, what is impossible. - Hence it follows that
RW=hn and /=0, ‘ ’

Let-A be as above and B be another central simple algebra over P, which
is unramified, i. e, pg=m 05, and has the residue class algebra B central over
f. Then n4-0z is a maximal order of AxB, 14 -0p is its two-sided prime ideal
and the residue class algebra o,-05/Da-0p is the direct product of A and B,
First it is clear that O=py4-0g and P=py -0p are an order and its two-sided
ideal in A x B satisfying the conditions 1) and 2). We shall show that B~o04=0a4,
P~op=pg. If these were not the case, we would have, say, P~0q=04 since
P~y is a two-sided ideal in b4 containing pa. Then 04=04% & Pe=7n O and
therefore 77-1e D, which is impossible by 1). It follows that (B+o4)/ BN,
(B+op)/P B and so that O/P is a homomorphic image of the direct product
Ax V.. But since both A and B are simple and B is central over I, AxPB is
also simple. "Hence £/ is isomorphic to Ax B, whence follows 3) and our
assertion. ‘ :

Now we shall show that D splits in % if and only if ® is separable over
{2, Suppose first D splits in Sk Then it splits also in a finite extension K of
k contained in Sk. [ K :k] is then a multiple ms of #2, the degree of D, and
K can be embedded in A=Ds so that 1 of K coincides with that of A%, If
KR, § is embedded in A=Ds in a similar fashion. It follows that & is a
maximal subfield of ¥, since [&:f]=ms and the principal degree of A over {is
not greater than that of A over k, i.e.than ms. This proves the separability
of %, and therefore that of ®. Conversely, let © bz separable over % - Then
D has a maximal separable subfield & of degree equal to the principal degree
of ®. Applying the similar method as in ¢ 1 we can find a subfield XK of D
such that K <«—&. Then K is maximal. For if not, the commutator sub-
algebra D’ of K in D has the residue class algebra ©' whose center contains
®. The degree m' of D’ over its center K being greater than 1, the order f/

of ® over & must be also greater than 1, since ! | f/, which contradicts to the
maximality of & Hence D splits in K%k We have proved at the same
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time that if D has the mentioned property the principal degree of ® over t
is equal to the degree m of D. It follows that the degree of the center of D
over t is equal to m2/f=e and that if in particular D is unramified D is
central over §. We shall denote by *B the subgroup of B formed of all the
algebra classes that split in *%&.

3. Let A be an algebra in SB. A has an absolutely irreducible represen-
tation®’
' A2 a——Xae (sk)m ’

m being the degree of A. * Given an element o of G(°k/k), a---XC is also an
irreducible representation of A, which js therefore equivalent to {X.}. Hence
we can choose Ugse (5k)m such that
Xe=U1X.U, for ae A.
The matrix U, is determined by ¢ up to scalar multiple, whence we have
) U, Ui=ao, s Uss
{«q,,} forms a factor set of G (°k/k) in °k, namely it holds
Qb r Uy =g rp Uy (o7, pE G CR/E) ).
As is easily verified the associated class of {as .} is not changed when we
replace {Xa}, {U,} by any other systems and is determined uniquely by the
algebra class of A. If {¥s} is an irreducible representation in °% of B and if
Y=V, Y5 Vo, Vo Vi=Les + Vor, then {Xs2® ¥} gives an irreducible repre- '
sentation of AXB in %k and (Xa ® Y5)* = (Ue® Vo)L (Xa ® V) (Ue® V5 ),
U:® Ve) (Us® Vo) =«o,z Bo,r (Usr ® Vor ). Thus the factor set -corres-
ponding to AX B is the product of those corresponding to A and B.
‘ Now. let K be a splitting field of A which is a finite Galois extension of %
_and contained in 5k Then taking the irreducible representation {Xa} in X,
the above considerations are carried out with equal U, for o in one and the -
same class S mod G (°k/K). In this way we can define Us for SeG (K/k)
and so ag, r for S,TeG (K/k). We shall prove that A is similar to the

crossed product (s, 7, K)P. For the purpose let” A=(c's, 7, K) and show
that as, 7~ a's, 7. We define {Xa}, {Us} as follows: »

2) A= %us K, usur=usrd's v, aus=usa® (xeK),
(aul, anp, “"‘“):(%1, U, )Xa for aGA,
(wihs, wits, ) =(t, ug, ) Us for SeG (KJE).

*) Xa & Y denotes Kronecker product of Xz and Y.
7) Cf: van der Waerden, Gruppen von lincaren Transformationen, Berlin, 1935,
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Then {X.} is an irreducible representation of A in K and we have X5=
Uzl X2Us. On the other hand as Us= %‘ «'r, sEgs, ™, we have by easy

computations Uzp ngals' 7Ust.  This proves the above statement. In the
following we assume that {U,} and {«, .} are adjusted for some K in the
above sense. ‘

Let R be the additive group of real numbers, I the subgroup of integers,

T the factor group of R by I. We consider them as groups with operators
in G (°k/k) in the trivial manner. Assume now that » is normalized; then
the extension. 7 of v to Sk is also discrete and normalized. By (1) and the

invariance of ¥, we have

F(1UN+5 (U )=m5 (a0,)+ 5 (| Use ]
We put ‘

fal)=L5(0.)  for ceGlHE),

Fqlo,r)=7 (cx(,, ) for o, e G(k/k),

and consider them as cochains of G (Sk/k) in B. These cochains are continuous
in the sense that they are induced from those of a finite group G (K/k), where
K is a sufficiently large finite Galois extension of % such that Ax~ 1. In
applying the cohomology theory® we restrict ourselves only to consider con-
tinuous cochains. Thus we mean by coboundaries only the coboundaries of
continuous cochains. Now Fy (e, ) is a 2-cocycle in I, which is coboundary
in R, i.e. Fg=08fu, and f4 (o) is a l-cocycle, i.e. homomorphism, in T, fa(o)
denoting the coset of 4 (o) mod I. The cohomology classes of Fy (o, ) and
fa (o) are uniquely determined by the algebra class of 4. Moreover as the
operation of G (&/k) on T is trivial, every l-coboundaries being also trivial,
the 1-cocycle fa (o) itself is detérmined uniquely. It should be also noted that
every cohomology class in R is trivial since the divisions are uniquely possible
in R, In particular if Fa=38f with l-cochain f in' R then we have f=f4. - For
since Fa=8fa. we have 8§ (f—f4)=0. Therefore f—fa4 isa 1-coboundary, which -
is always trivial.. Hence we have f=f4. ,

The image of the homomorphism fy4 (¢) being abelian, its values depend
only on the coset of o mod G (°k/2k). Therefore we can define (4, o)e T for

*) Eg, 7 is a matrix unit whose (S, T )-component is 1, but all the other comporents
are zero. : :

8) . S. Eilenberg and S. MacLane, Cohomology theory in abstract groups, Ann. of
Math., 48 (1947).



On the Structure of Brauer Group of a Discretely-valued Complete Field. 7

Ae’B and oe G (“k/k) by the value of f4, on the coset o. We have by what
precede

(A, or)=(4, o)+ (A, 1),

(AxB,a)=(A,0)+(B, o),
and that (4,0) is continuous for ¢ according to the topology of the Galois
group G (%k/E).

4. Let X be a (continuous) character of G (k%/k). We shall denote by

Z, the subfield of k“ corresponding to the annihilator of X in G (k%/k) in the
sense of Galois theory, and by S» the generator of the cyclic group G (Zy /k)

such that (X,Syx)=1/m mod 1, where m is the order of X. We denote the
cyclic algebra (@, Zy, Sx) by (a, X). Then it is easily proved that '

(a, %) x (a,X') ~ (a, XX').
Hence the classes of cyclic algebras of type (m, X), where X is a character of
G (%k/Ek), form a subgroup B, of *B. We shall prove that
((m,X), o)=(X,0) for ceG(?k/k).
Let ‘
1~] i
(7, X) = u' Zyy ut=q, cu=uaSi(aeZ).
If we define Xa and Us as in (2), we have
O.- ~eoar
st-'-”—“Xuz 1 =T, E
10
Hence if o induces S% in Zy, we have

(7, %), cr)==——1;;v(lX l)*m =(X,0) (mod 1).

This proves that B, is isomorphic to the charactor. group of G(“k/k), or,
what is the same, to that of G (1%/t), and that if we put
By={A4; Ae*B, (A,¢) =0 for all o e G(°k/R)},
- B is the direct product of By and B;.
As. the degree m of (i, X) coincides with its e"scponent, (m,X)1s a central

division algebra, and as 7==u" we have m | e and thus e=f=m. Its maximal
order op, two-sided prime ideal pp and the residue class algebra SSJ are glven‘

© as follows

pp = oy,

i=0
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m=1
Pp = Px 2] 2t 0y,
i=1
D = 0p/pp = 0 /= B,

where 0y, px are the valuation ring and the prime ideal in Zy and Zy < 3.

If AeByg, we have fa4(o) el and therefore F4 (o, 7) is a coboundary in 1.
Conversely if F4q(e,7) is a coboundary in /, we have by a remark in 23
fa(eyel It follows that A€ B, if and only if A~ (as,r, K) with K< 5k,
¥ (ets, 7)=0. Let A=(ag, v, K) with K<k, ¥ (s, 7)==0, and ox, bx be the
valuation ring and the prime ideal in & and K «— 8= %/ DK Then a maximal
order g, its two-sided prime ideal pg and the residue class algebra Aof A
are given as follows:

0q =3 Us 0y,

ha=Zushx,
S

A :\:{‘S ®= (aS,T: Q):
s

where  7g, Ts, o represent their classes mod P4 orpe® Thus A is unramified
and % is central over f. Conversely it is known that, given a central simple
algebra N over i, there exists an unramified central simple algebra A over &
such that 4 — %2, The classes of these unramified algebras with residue class
algebras central over & form a subgroup of *B containing B, and the inter-
“section of this subgroup with B, is {1}. Therefore this subgroup is identical
with Bg. As the algebra class of U is uniquely determined by that of A, we
have a homomorphism of By onto B (¥) by the correspondence A — % It is in
fact an isomorphism since this correspondence preserves the degree. (We shall
denote A «—> ).

‘We have thus reached to the theorem of Witt-Nakayama: If we denole
by By the subgroup of °B formed of all unramified algebra classes and by B,
that of all algebra classes containing cyclic algebras of type (m,X), X being
characiers of G (%k/E), B is the direct product of By and B.. By is isomorphic
io the Brauer group B(Y) of t and B, dual to the Galois group G (¥¢/t) of the
maximal abelian extension 12 of f. The structure of B is thus completely
determined and it depends only on the residue class field .

. The determination of the structure of B itself (or B/B) is a problem
remained still open. ‘

*) These statements on maximal orders follow 1mmed1atv,ly from the criterion ngen
in ¢ 2. .
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5. We shall give here some supplementary considerations concerning with
the isomorphisms and the scalar extensions of & ;

Let T be a continuous isomorphism of k& onto another discretely-valued
complete field &' with the residue class field . Then 7induces in the residue
class field an isomorphism of t onto ¥, which we denote by . 7 (7) can be
extended uniquely to an isomorphism of B (k) (B () onto B(k) (B (¥))and
that of G (k%/E) (G (19/t)) onto G (E'%/k') (G (F'4/t)), or that. between their
character groups. All of these isomorphisms we denote again by = (7). Then
we have obviously ‘

a) if AeSB(k), o&G (°k/k), then we have ATe’B(k), o7eG (°k/k)

and
(A, )= (47, o7),
b) (@, X)7=(a7, X7)
for aek, X character of G (k% k). If X is a character of G (%k/ k),
~then X7 is a character of G (%k'/F'),
c) If AeBy(k)and A«— N with e B (1), then A7e By (¥) and A7 «— AT
with %7e B (¥).
It follows in particular
SB(R)T=°B(k), By(kY =DBy(k), Bk =Bz (k).

Let K be a completion of an algebraic extension of & with a finite ramifica-
tion exponent ¢ and & be its residue class field. The unique extension of # to
A being discrete and complete, our considerations can be also applied to K.
We may assume that the algebraic ‘closure K of K contains the algebraic .
closure % of % Then each element & of G (K¢%/K) induces in k% an element
o of G(k%/k). Taking the dual of this correspondence we can define for any
character X .of G (k%/k) a character Xx of G(K%/K) by the relation (X, a) =
(XK,‘ ) for ceG(K?%K). Then we have by the criterionbgiven inég?2

a) if Ae®B(k), 0e G(eK/K), then we have AgesB (K), ¢ induces oin

G (%k/k) and ‘

(Ago)=e(4,0),
b) (@ X =(a,Xg)
for aek, X character of G (k%/k). If X is a character of G (2%k/k),
then Xx is a character of G (*K/K), '
c) if AeBy(k) and A« U with AeB (L), then AKCBO (K) and
- Ag > Up with Ag e B ().
It follows in part1cula.r

5-1’3(13).&"*w SB(K). By(E)xZ By(K),
B, (xS B, (K). (m case K unramified over k)
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6. Finally we shall consider the classical case where f is a finite field
GF (q), q=pf with a prime number p, as a special case of the above con-
siderations. As is well-known f is perfect and there is no essential central
division algebra over f. We have thus B=B=B,. On the other hand, ¥={¢
and so Sk=¢k is the maximal unramified extension of % contained in % = The
automorphism of % over f which corresponds every element @ of 1?2 to a?
generates a free cyclic group which is everywhere dense in G (1%/f). The cor-
responding aatomorphism of “k over k is called the Frobenius  automorphism

of 2k/k, which we dencte by (%&) . Every algebra class of 4 in B=B, is

therefore determined uniquely by ( gl—) =(A4, (»%/—@-) ). This is nothing other
than the Hasse’s invariant of the algebra class of A%9. It should be also noted
that the invariant (ﬁi—}{—) of the cyclic algebra (a, X) is the morm residue

symbol of Chevalley.l®

9) Cf H. Hasse, 1. c. 6), or Die Struktur der R. Brauerschen Algebrenklassengruppe
iiber einem algebraischen Zahlkorper, Math. Ann, 107 (1933).
10) C. Chevalley, La théorie du corps de classes, Ann. of Math., 41 (1940).



