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ABSTRACT

Three-dimensional (3-D) models created by computer vision and computer graphics
are widely used in many important applications and for a variety of purposes. How-
ever, creating 3-D models manually involves significant costs. Therefore, automatic
generation of such models is attracting considerable interest, and this process in turn
requires efficient 3-D scanning.

Numerous systems exist for 3-D scanning using a laser range sensor and image-
based methods such as multi-view stereo, structured light, and photometric stereo.
These are classified into two approaches: a photometric approach and a geometric
approach. Generally, the photometric approach, as typified by photometric stereo,
estimates surface normals to be suitable for representing fine details of the surfaces. On
the other hand, the geometric approach recovers a depth of the target object to acquire
a rough shape.

This dissertation proposes efficient 3-D modeling methods that combine photometric
and geometric approaches. Combining photometric stereo with a laser range sensor or
multi-view stereo allows us to introduce practical constraints for 3-D modeling. Also,
we propose practical methods of photometric stereo for handling object with various
reflection properties.

The first method fuses a laser range sensor and a camera with an attached camera
flash for 3-D modeling. The laser range sensor captures the basic shape of the target
object. Meanwhile, photometric stereo estimates surface normals as a bump map
for detailed surfaces. Then accurate reflection parameters are estimated by using the
surface normals.

The second method combines photometric stereo and multi-view stereo to simulta-
neously estimate shape and surface normals. The method uses a simple configuration
with a camera and a camera flash. Furthermore, by using color information, the method
is extended to robustly handle specularities and occlusions.

Generally, photometric stereo assumes that the target object has only diffuse reflec-
tion. However, many materials have specular reflection components, which cause an
estimation error in photometric stereo. To overcome this problem, a real-time specular
removal method is proposed. With a known light source color, the method enables the
removal of specular reflection components faster than conventional methods by using
a defined color space.

In addition, a new photometric stereo method is proposed to handle a wide range of
surface reflectances. The method avoids imposing restricting assumptions on surface
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reflectances and expands the applicability of photometric stereo using three reflection
properties. Moreover, our method eliminates the necessity of radiometric calibration
and any dependency on ambient illumination.

In this dissertation, the theory of these methods is presented, and qualitative and
quantitative experiments are performed to demonstrate the effectiveness of each method.
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論文要旨

近年コンピュータビジョンやコンピュータグラフィックスの技術を駆使した 3次元モデル
は，「3D元年」という言葉にも代表されるように，多くのアプリケーションや様々な目的
のために幅広く利用されてきている．しかし 3次元モデルを人手で作るコストや手間は膨
大であるため，3次元モデルを自動で生成しようとする試みに関心が高まってきていると
ともに，効果的な 3次元計測手法が必要とされてきている．

3次元モデルを計測する方法には，レーザーレンジセンサを用いたり，画像ベースで推
定をおこなう多視点ステレオ，光切断法，照度差ステレオなどの様々な手法が存在する．

これらの手法は大きく分けて光学的手法と幾何学的手法に分けることができる．一般的に

光学的手法は，照度差ステレオに代表されるように，物体表面の法線を推定する手法であ

り，細かな凹凸や滑らかな面を推定するのに適している．一方で幾何学的手法は対象物体

の奥行きを計測する手法であり，物体の外形を推定するのに適している．

本論文ではこれらの相反する光学的手法と幾何学的手法を組合せることで，より効果的

な 3次元モデル化手法の提案をおこなう．具体的には，光学的手法である照度差ステレオ
と、レーザーレンジセンサや、多視点ステレオとを組み合わせることで，新たな拘束を導

いて 3次元モデル化をおこなう．さらに，様々な反射特性の物体に対して照度差ステレオ
を扱えるようにするための手法を提案する．

1つ目の手法はレンジセンサとフラッシュ付きのカメラを融合した 3次元モデル化手法
である。大まかな形状をレーザレンジセンサで取得し，細かな凹凸などは照度差ステレオ

によって法線を求め，バンプマップとして表現する．さらに得られた法線を用いて正確な

反射パラメータを推定する．

2つ目の手法は照度差ステレオと多視点ステレオを組合せることで，法線と形状を同時
に推定する手法である．本手法はレーザーレンジセンサを使わず，カメラとフラッシュだ

けの簡易なセットアップで 3次元モデルを推定することができる．さらに色情報を利用す
ることによって本手法を拡張し，鏡面反射や遮蔽にロバストな手法を提案する．

一般的に照度差ステレオを用いる場合は，対象物体が拡散反射であることを仮定する．

しかし物体の中には鏡面反射成分が含まれる物体も数多く存在し，これが推定に悪影響を

与えてしまう，そこでリアルタイムに鏡面反射成分を除去する手法を提案する．本手法は

光源色を既知として独自の色空間を用いることで，従来手法よりも高速に鏡面反射成分を

除去することができる．

さらに，鏡面反射成分だけでなく，幅広い反射特性の物体の法線を推定するための手法

を提案する．特定の反射モデルを仮定せず，基本的な反射特性から導いた拘束を用いて法

線を推定する．本手法はカメラの特性や環境光の影響に対してもロバストである．

本論文では，これらの手法の原理を示し，定性的及び定量的な実験を通してそれぞれの

手法の実用性を示す．
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Chapter 1

Introduction

1.1 Background
Three-dimensional (3-D) models created by computer vision and computer graphics
are widely used in many important applications in archeology, medicine, and in the film
and video game industries. These models allow visualization in the fields of research,
education, and entertainment and thus present many possibilities for progress. Cur-
rently, most 3-D models are reconstructed by manual operation [Aut, Goo]. However,
manual creation of 3-D models involves significant cost, and therefore more sophis-
ticated techniques for modeling a target object are needed for supplying 3-D data at
lower cost. Thus, automation for creating 3-D models has attracted considerable inter-
est as the need for such models has increased, and the creation of these models requires
efficient systems for 3-D scanning.

Numerous systems exist for 3-D scanning using a laser range sensor and image-
based methods such as multi-view stereo, structured light, and photometric stereo.
These are classified into two approaches: a photometric approach and a geometric
approach. Generally, the photometric approach estimates surface normals, while the
geometric approach recovers a depth of the target object.

As a photometric approach for 3-D modeling, photometric stereo is well known
as a means of estimating surface normal from an image sequence taken from a fixed
viewpoint under varied directional lighting. Estimated surface normals are useful in
representing fine details of the target object, such as a bumpy surface vs. a smooth
surface. Photometric stereo has a long history. After the early work of Woodham
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[Woo80] and Silver [Sil80], many researchers studied the approach to make it work
under more generalized conditions, such as with specularity [Ike81, CJ82, SW93, SI96,
BP03, WTTW06, VVG08, TLQ08], and with shadows [CAK07, HVC08b, OSS09]. Other
research included example-based approaches for general reflectance [HI84, Ike87, HS05,
AZK08], and approaches under such conditions as uncalibrated lighting [Hay94, Geo03,
SOYS07, SMW∗10, SZP10], a near light source [IWTI94, CP99], and color lighting [BP01,
HVB∗07, KWBE10].

The geometric approach also has a long history. Many methods for depth acquisi-
tion have been proposed. The use of a laser range sensor [BM92, CL96, LPC∗00, HH03,
INHO03, IHN∗04, MKH∗06] allows us to directly acquire a depth map, but this ap-
proach has some drawbacks. The laser range sensor is a time-of-flight scanning sensor;
therefore, it requires more measurement time than image-based methods. Its accu-
racy is limited since range sensors depend on step intervals of mechanical scanning.
Moreover, its cost is high; in the $100K range. One of the most popular image-based
methods is multi-view stereo [OK93, SD99, KS00, PVGV∗04]. Multi-view stereo esti-
mates positions of feature points by using a triangulation method. Most early works in
multi-view stereo tended to reconstruct all scene points independently. In recent years,
various approaches typically cast this as a variation problem: depth map merging based
methods [GCS06, BBBH08, LCDX09, LLC∗10], featured-region growing and expansion
based methods [LQ05, FP07, GSC∗07, LPK07, BBBH08], 3-D volumetric based meth-
ods [HK06, SMP07, VHTC07], graph based approaches [HK06, VHTC07], methods
for large-scale reconstruction [SSS06, SSS07, WCL∗08, MK09, FCSS10], real-time meth-
ods [PNF∗08, ND10], anisotropic metric [KPC10], and closed-form solution [WYJT10].
An excellent survey of most of these approaches can be found in Seitz [SCD∗06, Mid].
Another image-based method is structured light [BK87, SBM98, HHR02, DNRR05,
KVG06, YBD∗07, AX08, KFSY08, YX10]. Structured light methods actively generate ge-
ometric correspondences between projectors and cameras. These geometric approaches
are good for position estimation but not good at characterizing fine details of the surface
(such as smooth vs. bumpy) because neighboring points pose no constraints regarding
surface continuity.

This dissertation attempts to generalize photometric stereo especially for estimat-
ing accurately and efficiently a 3-D model with fusion of photometric and geometric
approaches. The photometric approach estimates surface normals, while the geometric
approach estimates the position or depth of the target object. Moreover, we introduce
physics-based reflection models to estimate reflection properties of the target object as
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well as the shape. Obtaining both shape and reflection properties could be very useful
for the realistic rendering in movies and video games and for use in a digital museum,
because the proposed process can reconstruct an appearance of the target object from
any viewpoint under any illumination conditions.

To obtain these properties, our approach fuses photometric stereo with a geometric
approach. This is useful because in standard photometric stereo, input images taken
from a fixed viewpoint by definition contain feature correspondence, but multi-view
images are a challenge because of the difficulty in finding these correspondences. On
the other hand, geometric approaches usually begin with multi-view images, so this
information can be used to determine the needed image correspondence so that varying
illumination conditions can be handled; i.e., so that photometric stereo can be used to
satisfactorily process images from different viewpoints under different illuminations.
Moreover, since photometric stereo often assumes a very simple model and an ideal
case, we have to provide a more robust solution that will apply in real-world cases.

1.2 Research Objective
This dissertation describes two research objectives: one is to estimate accurate 3-D
models with fine details of the target object and the other is to overcome various
limitations of photometric stereo. Estimating accurate 3-D models is important for
visualization in the fields of research, education, and entertainment. Automation for
creating 3-D models has attracted much interest since manual operation for 3-D models
involves significant cost. Generally, to make a 3-D model, a laser range sensor is used
to acquire shape information, and a textured image taken with a camera is mapped
onto the surface. However, in such a process, the problems are that using a laser range
sensor makes it difficult to measure fine details such as a bumpy surface, and that
texture mapping with a particular image only visualizes an appearance under the same
illumination condition in which the image was taken. To solve these problems, this
dissertation proposes the careful combination of photometric stereo and the geometric
approach.

First we propose a method that fuses a laser range sensor and a camera with an
attached camera flash to estimate the 3-D shape and reflection parameters. The fusion
of these sensors gives us new constraints for efficient estimation. In this method, we
use the laser range sensor to acquire the basic shape of the target object, and use multi-
view photometric stereo to estimate surface normals as a ”bump map” for real-world
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surfaces. Accurate reflection properties are robustly estimated with the normal map
and clustering.

The second method we propose only uses a camera and an attached light source
without any range sensors. It is a very simple configuration for 3-D modeling. This
method simultaneously estimates depth and surface normals by combining multi-
view stereo and photometric stereo. Furthermore, by using color information and a
view constraint, we extend this method for robust estimation despite specularities and
occlusions.

For handling specular reflection in the above methods, we propose a real-time
method for specular removal. Based on the dichromatic reflection model and the
neutral interface reflection assumption, we define our color space and quickly remove
specular components from one image with known illumination color. Moreover, we
can quickly generate a specular-free image that is appropriate for input to photometric
stereo.

Thus, by fusing photometric stereo and geometric information, this dissertation
proposes methods to extend photometric stereo not only for estimation of surface
normals but also for estimation of shape and for handling specularities.

The assumption of diffuse Lambertian reflection and specularity is, however, not
appropriate for all materials. Therefore, we propose a photometric stereo method that
works with a wide range of surface reflectances using an image sequence taken from
a fixed viewpoint under different directional lighting. Instead of assuming a specific
parametric reflectance model, such as Lambertian, we assume only three reflectance
properties that are often observed in real-world scenes: monotonicity, visibility, and
isotropy. Each of these three properties independently gives a possible solution space
of the surface orientation. By taking the intersection of the solution spaces, our method
determines the surface normal in the form of a consensus. In addition, our method elim-
inates the necessity of radiometric calibration and has no dependency on the ambient
illumination.

1.3 Thesis overview
Chapter 2 describes a method that estimates shape and reflection parameters of the
target object by fusing a laser range sensor and a camera. The chapter shows that the
sensor fusion provides efficient constraints for 3-D modeling. Estimation of surface
normal on the surface of an object can be used to represent fine details of the object’s
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appearance and to obtain accurate reflectance properties. After briefly reviewing the
previous works and the setup of our proposed method, the chapter explains estima-
tion for geometric data, such as a basic shape and normal map. Surface normals are
estimated with multi-view photometric stereo using near light source. Then, robust es-
timation for reflection property is presented, and experimental results on both synthetic
and real data are provided. Finally, we summarize our proposed method.

Chapter 3 proposes a simple configuration method that estimates shape and re-
flectance of the target object by combining photometric stereo and multi-view stereo.
After reviewing previous work, we first describe near-light photometric stereo, spec-
ular removal, both an intensity-based method and a color-based method, and a more
efficient formulation of the algorithms. We show that using color information extends
the method to be more efficient and robust. We explain simultaneous estimation of
depth and surface normals as well as refinement of the surface shape. We then describe
an implementation of our whole system and full 3-D reconstruction. Experimental re-
sults using simulation and real-world scenes are provided. Finally, the chapter provides
discussion and a summary.

Chapter 4 describes a real-time method to remove specular components from an
input image taken under uniform illumination. We first describe color properties and
our color space, and then explain white balance correction. The color space is based on
the dichromatic reflection model and the neutral interface reflection assumption. We
present and prove the theory of our proposed method for specular removal from the
color space. After that, we describe the algorithm of our real-time specular removal
system and provide experimental results. We discuss the limitations of our method,
and summarize.

Chapter 5 proposes a photometric stereo method that works with a wide range of
surface reflectances by assuming three reflectance properties – monotonicity, visibil-
ity, and isotropy – instead of assuming a specific parametric reflectance model. After
reviewing previous work, we explain our proposed consensus approach to limit the
solution space for a surface normal. We then describe its implementation using a vot-
ing method and describe how the consensus approach can be turned into an energy
minimization scheme for an especially efficient implementation. After the implemen-
tation details, we describe the theoretical relationship between the number of lighting
directions and the accuracy of surface normals. We also describe experimental valida-
tions using simulation and real-world images. Finally, we provide discussion and a
summary.
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Chapter 6 concludes this dissertation by summarizing the research and discussing
possible future research directions.
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Chapter 2

Efficient Estimation and Representation
of 3-D model with Sensor Fusion

Estimation of surface normal on the surface of an object can be used to represent
fine details of the object’s appearance and to obtain accurate reflectance properties.
This chapter provides an efficient 3-D modeling method with sensor fusion of a laser
range sensor and a camera. The novelty of the method is efficient estimation and
representation of the 3-D model. Detailed surfaces can be estimated as a normal map
using multi-view photometric stereo on the basic shape measured with the laser range
sensor. Accurate reflection properties are robustly estimated with the normal map and
clustering.

Experimental results show that realistic 3-D models are obtained. From thorough
verification of a normal map and robust estimation, our method can represent the fine
appearance and estimate accurate reflection parameters with a small number of input
images.

2.1 Introduction
Three-dimensional models created by computer vision and graphics techniques are
used in a wide variety of areas, such as mechanical, medical, and architectural in-
dustries, and for a variety of purposes, such as visualization in the fields of research,
entertainment, and education. Automation for creating 3-D models has also attracted
considerable interest as the need for such models has increased. Currently, most 3-D
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models are reconstructed by manual operation [Aut, Goo], causing a significant in-
crease in cost, and therefore more sophisticated techniques for modeling a target object
are needed for supplying 3-D data at lower cost. For this purpose, a number of methods
that reconstruct 3-D shapes with sensors have been developed, such as a laser range
sensor. In general, however, it is difficult to measure surface details with a laser range
sensor. A small interval between scan acquisitions is costly. Furthermore, it is still diffi-
cult to measure surface details with a small scan interval. Meanwhile, for the accurate
appearance of the target object, we have to know not only the object’s shape but also its
surface reflectance properties. Once we get the reflectance properties, we can simulate
the appearance of the object under any illumination. For estimating surface reflectance
properties, we require object appearances with known shape and known illumination
conditions. As shape information, surface orientation is especially important for the
estimation.

In this chapter, we propose a new method for 3-D modeling with sensor fusion.
Combination of a laser range sensor and a camera provides efficient constraints for 3-D
modeling. Basic shape is measured by a laser range sensor and detailed surface is rep-
resented as a normal map estimated with multi-view photometric stereo. The normal
map also achieves an accurate estimation of surface reflectance. Moreover, clustering
and robust estimation are used for estimation of specular reflection parameters.

2.2 Related Work
Many methods that estimate 3-D models have been proposed. Here, we address three
related works that use both a laser range sensor and a camera.

Sato et al. [SWI97] used surface normal to estimate reflection parameters. They
calculated an eigenvector of nearby sampling 3-D points from a range image taken
with the laser range sensor, and used it as surface normal to estimate reflection pa-
rameters. This method is very effective to obtain a smooth surface normal; however,
difficulties occur when representing the details of a bumpy surface. Many input images
are required to separate diffuse and specular components for estimation of reflection
parameters.

Nehab et al. [NRDR05] proposed a method that refines shape data from a laser range
sensor with estimated surface normal by using photometric stereo. Their acquisition
was from a fixed viewpoint for photometric stereo, so only one aspect could be refined.
Moreover, they did not estimate any reflection properties.
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Lensch et al. [LKG∗03] obtained surface normal by estimating reflection proper-
ties of the target object using a non-linear optimization algorithm and refined shape
measured with a laser range sensor. They clustered regions that have similar reflec-
tion properties using a tree structure, and then estimated reflection parameters on the
clustered regions. However, this method had various constraints for measurement;
for example, they required very accurate initial shape and some mirror spheres for
light direction estimation. Since they simultaneously estimated surface normal and
reflection parameters, non-linear optimization might converge to the local minimum.

In our method, we fuse the laser range sensor and the camera with the camera flash.
These are relatively fixed to each other, and this helps to get light source positions
and to achieve near light photometric stereo for accurate estimation of the surface
normal. Unlike previous approaches, we can handle a near light source as well as
reflection with specularities. Since calibration of the laser range sensor and the camera
provides correspondence among multi-view images through shape, the number of
required input images is only one for each viewpoint for multi-view photometric
stereo. Using bump mapping with estimated surface normals represents details of
the target geometric model. Therefore, acquired low-resolution shape data e.g., basic
shape, with the laser range sensor is acceptable. We can then effectively acquire input
data. Furthermore, using our estimated geometric model, we can estimate reflection
parameters accurately and robustly.

The rest of this chapter is structured as follows. We first describe the setup of our
proposed method in Section 2.3. We present robust estimation for the shape and the
reflection parameters in Section 2.4 and Section 2.5. Then we present results in Section
2.6 followed by discussion and conclusions.

2.3 Setup of Our Proposed Method
For data acquisition, we use a laser range sensor, a camera, and a camera flash. The laser
range sensor and the camera are relatively fixed. Using a reference object whose shape
is known, we first calculate camera intrinsic and extrinsic parameters that represent
projection from 3-D world coordinates to 2-D image coordinates. We also measure
relative position between the camera and the camera flash. Moreover, we acquire light
intensity EC (C =R,G,B) of the camera flash by capturing white reference under only
the flash light. These calibrations are done before data acquisition.

We measure a target object by moving the target object or the entire setup for multi-
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Figure 2.1: Flowchart of our proposed method.

view acquisition. We capture an image sequence with the camera and measure range
data with the laser range sensor. In case ambient lighting exists, we capture the target
object under both flash light on and flash light off, and then we extract the difference
for acquiring an image sequence affected from only flash lighting.

In our method, we remove shadow pixels from the estimation by simple thresh-
olding. Since the camera flash illuminates a target object near the camera viewpoint,
shadows are observed in few areas.

Fig. 2.1 shows a flowchart of our estimation for shape and reflection properties.
First, (A) our setup captures a 2-D image sequence and corresponding range images.
Then a basic shape is made from the range images as shown in subsection 2.4.1. Sec-
ond, (B) multi-view photometric stereo is applied to estimate the normal map that is
mapped onto the surface of the basic shape from subsection 2.4.2 to 2.4.4. Third, (C)
using estimated geometric information, diffuse reflection parameters are estimated in
subsection 2.5.1. Then, (D) clustering is applied in subsection 2.5.2. Finally, (E) specular
reflection parameters are estimated in each clustered segment in subsection 2.5.3.
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2.4 Estimation for Geometric Data

2.4.1 Acquision for Basic Shape with Laser Range Sensor

Data acquired with a laser range sensor is a range image that discretely represents
surface depth. We first align several range images measured from different viewpoints,
and then merge them to get surface shape as a polygon mesh. Then we reduce the
number of polygon faces as appropriate to make it a basic shape. A smaller size of
data for the basic shape improves computational costs for 3-D rendering and other 3-D
contents.

As an advantage, the smaller the number of polygon faces for the basic shape is, the
smaller the computational cost becomes. However, since too small number of polygon
faces loses details of the shape, especially surface edges, the number of polygon faces
should be adjusted corresponding to the target object. In experimental results, we use
QSlim made by Garland et al. [GH97] to reduce the number of polygon faces for a basic
shape.

2.4.2 Normal Map

We use a normal map to represent high frequency components of the target shape.
Here, each triangle mesh of the basic shape is divided into micro regions as shown
Fig. 2.2. Then, we apply surface orientation in each micro region and call it a normal
map. The number of divisions is defined depending on the size of the triangle mesh
and the resolution of input images. It would be most effective to have one micro
region correspond to one pixel of the input image. The normal map is mapped onto
the polygon mesh of the basic shape as bump mapping. In our method, we estimate
surface normals in each micro region using multi-view photometric stereo assumed
near light sources as shown in Section 2.4.3.

2.4.3 Surface Normal Estimation with Multi-view Photometric Stereo

using Near Light Source

Photometric stereo is a surface normal estimation method with an image sequence
taken under different illuminations [Woo80]. The image sequences are taken from a
fixed viewpoint, which makes it possible to have correspondences among input images.
It is difficult to handle near light condition and specular reflections with conventional
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(a) (b)

Figure 2.2: Normal map: (a) triangle mesh and its normal, (b) applying a normal map.

photometric stereo, but our proposed multi-view photometric stereo can effectively
solve near light conditions and reflections with specularities in the same framework
as conventional photometric stereo, The calibrated laser range sensor and the camera
make it possible to have correspondences among multi-view images by alignment of
the range images. Therefore, even if a target object has no texture and no characteristic
shape, it is still easy to have correspondences among them.

Handling Near Light Source Most photometric stereo methods assume a distant light
source. This assumption works out in cases where a target is relatively small enough
and there is distance between the target object and the light source. However, if the
assumption does not hold, a planar surface is wrongly estimated to be a curved surface
using photometric stereo.

To solve this problem, a photometric stereo with near light source has been proposed
in the past [IWTI94, OD97, CP99]. Without knowing the shape of the target object,
these methods need to simultaneously estimate surface normal and shape. Therefore,
[IWTI94] assumes unit reflectance of the target object, [OD97] assumes that a light is
located on the optical center, and [CP99] uses a special light source. In this way, these
methods are not practical because of various limitations.

By using a basic shape acquired by the laser range sensor, we achieve simple
photometric stereo with a near light source. In our method, since the position of the
light source is known, it is easy to estimate the light source vector from a micro region on
the surface of the basic shape to the light source. Moreover, we can consider attenuation
of light intensity against the distance between the light source and the object surface.
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Handling specular reflection Generally, most photometric stereo methods estimate
surface normal by removing specular pixels. However it is difficult to detect areas
that specular components affect, especially in case specularity with low intensity is
observed across a wide area. Unfortunately, using the camera flash mounted on the
camera, specularity is often observed in many areas because of the similar direction of
both the camera view and the light. In our method, we use specular-free images as
shown in Fig. 2.3, which preserve shading information and are based on Lambertian
low, as input images for photometric stereo. Converting to specular-free images, we
effectively use specular pixels as well as diffuse pixels as input for photometric stereo.

With known light color intensities (Er,Eg,Eb), a specular-free image can be inde-
pendently calculated for each pixel from only one image as follows. Suppose a pixel
observation is (ir, ig, ib). First, observation is normalized with light color intensities as
i′ = (i′r, i′g, i′b) = (ir/Er, ig/Eg, ib/Eb). Here, assuming that the color of the specular com-
ponents is the same as the color of the light source, a specular component is (1, 1, 1)
direction in the normalized color space. Then, specular-free image î = (îr, îg, îb) repre-
sents the following equation:

î = i′ − (i′r + i′g + i′b)/3 + a
√

(i′r − i′g)2 + (i′g − i′b)
2 + (i′b − i′r)2, (2.1)

where a is a constant value. In our experiments, we use a = 1. Mallick et al. [MZKB05]
also remove specular components to handle them with photometric stereo. But our
method is faster than their process because the specular-free image can be simply
calculated at the expense of diffuse reflectances that are different from ground truth.
However, the difference is no problem for surface normal estimation.

Surface Normal Estimation Suppose n denotes surface normal in micro region A,
where |n| = 1, ρ is the diffuse reflection parameter, s = ρn is scaled normal, and l is
a light vector from micro region A to a point light source, where |l| = 1, then pixel
intensity i of an input image is described as

i =
E
d2 s · l, (2.2)

where d is distance between micro region A and the light source, and E is intensity
of the camera flash. Irradiance at micro region A from the flash light is based on the
inverse square low attenuation as E

d2 . For surface normal estimation, we use mean
intensity among R, G, and B components. Using three input images that can observe
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(a) (b)

Figure 2.3: Example of specular-free image: (a) input image, (b) specular-free image.

micro region A, we can get the following equations from Eq. (2.2):

i j =
E j

d2
j

s · l j ( j = 1, 2, 3). (2.3)

Here, Eq. (2.3) means
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 , (2.4)

where l jx, l jy, l jz are respectively x, y, z components of light vector in image j. Then,
Eq. (2.4) is simplified as

i = sL. (2.5)

Now i and L are known, we calculate L−1 to get s. Since n is unit vector, we can finally
get surface normal as n = s

|s| .

2.4.4 Determination of Surface Normal

As we mentioned before, since three input images give one estimated surface normal
on each micro region, k input images can provide kC3 candidates for surface normal. To
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determine one plausible surface normal from multiple candidates, we remove outliers
and estimate it robustly.

We use a voting method based on similarity evaluation to determine surface normal
from k̃ (= kC3) candidates on micro region A. The similarity between two vectors is
calculated as an angle between the two; the smaller the angle, the more similar the two
vectors are. Given that k̃ normal vectors n j ( j = 1, 2, · · · , k̃) are candidates and V(b)
is a vector group that consists of similar vectors to a vector b, where b is one of the
candidates. V(b) is provided as

V(b) = {n j |
b · n j

|b||n j|
> T1}, (2.6)

where T1 is a threshold that defines how similar they are. Let V(b̃) denote a vector group
that maximizes the number of vectors in V(b) with regard to b. Then we determine
surface normal ñ as follows;

ñ =
1
|V(b̃)|

∑
n j∈V(b̃)

n j, (2.7)

where |V(b̃)| is the number of vectors in V(b̃). In our experiments in Section 2.6, we use
T1 = 0.99.

In case the number of input images is very large, it is inefficient to choose b from
all kC3 candidates and it would appear that the RANSAC algorithm should be used in
order to evaluate whether the sampled surface normal satisfies input images. In our
method, however, since the number of input images is at most 20, we calculated with
all k̃ (= kC3) candidates of surface normal.

Theoretically, all k̃ (= kC3) candidates of surface normal should be the same vector,
because a specular-free image is also based on the Lambertian model. Practically,
however, various errors cause candidate normal vectors to be widely distributed, for
example, image noises, shadow pixels, occlusion, and discrepancy as shown Fig. 2.4.
Since this kind of candidate vectors affected by a large error would be outliers and be
removed, our method can robustly estimate the accurate surface normal.

2.5 Robust Estimation for Reflection Property
To estimate reflection parameters robustly and accurately, first we estimate diffuse
reflection parameters in the same manner as the surface normal estimation. Second we
cluster micro regions based on the estimated diffuse reflection parameters. Finally we
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View 1

View 2
Actual shape

Surface of the basic shape

P1
P2

A

Figure 2.4: The discrepancy between a real shape and a basic shape: micro region A

corresponds to pixel P1 with view 1, while it corresponds to P2 with view 2.

estimate specular reflection parameters on each clustered segment. In our method, the
clusters help to estimate specular reflection parameters effectively and accurately.

2.5.1 Estimation of Diffuse Reflection Parameters

Diffuse reflection parameters KD,C (C =R,G,B) are calculated based on the Lambertian
model as follows:

KD,C =
ID,C

n · l, (2.8)

where ID,C is an input intensity normalized with a light intensity, n is the estimated
surface normal, and l is a light vector that is known.

KD,C is calculated on each micro region in the same manner as the normal map.
When we have k input images that observe micro region A, k candidates of KD are
provided from Eq. (2.8). Therefore we use robust estimation for KD color vectors with
similarity evaluation that is the same as the surface normal estimation.

Here, similarity is defined with an angle between two vectors and scales of these
vectors; the smaller the angle and the more similar the scale of the vectors, the more
similar the two vectors are. Given that k color vectors KD j ( j = 1, 2, · · · , k) are candidates
of diffuse reflection parameters and V(b) is a vector group that consists of similar vectors
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to a vector b, where b is one of the candidates. V(b) is provided as

V(b)=
{
KD j|

b · KD j

|b||KD j|
>T2,T3<

|KD j|
|b| <T4

}
, (2.9)

where T2,T3,T4 are thresholds. Let V(b̃) denote a vector group that maximizes the
number of vectors in V(b) with regard to b. Then we determine a diffuse reflection
parameter K̃D as follows:

K̃D =
1
|V(b̃)|

∑
KD j∈V(b̃)

KD j, (2.10)

where we use T2 = 0.99，T3 = 0.9，T4 = 1.1 in our experiments.
The main reasons for estimation errors are the discrepancy as shown in Fig. 2.4,

measurement error, shadow pixels, and specularities. However since these errors are
in the minority, our method can remove these outliers with the voting algorithm.

2.5.2 Clustering

Since specular reflection is observed in few areas, many input images are required in
order to estimate specular reflection parameters for each micro region. Instead of using
many input images, we cluster micro regions and assume that each clustered segment
has unit parameters of specular reflection to estimate them effectively and robustly.

As definitions of the clustered segment, in case each micro region satisfies the two
following rules, they belong to the same clustered segment if

• 3-D positions are near each other

• Diffuse reflection parameters are similar to each other

In other words, neighboring micro regions whose object colors, i.e., diffuse reflection
parameters, are similar to each other, could be made of the same material, so these
two rules are appropriate for various objects to assume unit parameters of specular
reflection.

Based on the two rules, we use K-means clustering in six-dimensional feature
space; three dimensions are for 3-D position of micro regions and the other three are 3-
D color vector KD. Distance in the six-dimensional feature space is defined as standard
squared Euclidean distance. Let v = (v1, v2, v3, v4, v5, v6) be a six-dimensional vector of
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the feature space, then distance Dpq between vp and vq is represented as

Dpq =

6∑
j=1

(vp, j − vq, j)2

s2
j

, (2.11)

where s2
j is a variance of v j.

Size of the clustered segment is defined as at least more than one specular observa-
tions are given in each clustered segment. Suppose N is the number of micro regions,
M is the number of pixels of the target object in the input image sequence, and k is the
number of pixels of specular observation, we iteratively merge micro regions until the
number of micro regions in each clustered segment is over 2k

MN.

2.5.3 Estimation of Specular Reflection Parameters

We use the Torrance-Sparrow model [TS67] as follows for representation of specular
reflection and estimate KS and σ in each clustered segment.

IS =
KS

cosθr
exp

(
− α

2

2σ2

)
, (2.12)

where θr is an angle between a viewing vector and a normal vector and α is an angle
between the normal vector and a half vector that equally divides an angle between a
viewing angle and a light angle.

For estimation of specular reflection parameters, we use some parts of specular
pixels IS,C that are calculated by subtracting diffuse pixels ID,C from normalized input
pixels IC. The specular pixels should satisfy the following constraints for the estimation.

• IS,C > TS,C, where TS,C is a threshold.

• cos−1(E · IS/|E||IS|) < θT, where E is light color vector and θT is threshold angle.

• α < αT, where αT is a threshold angle.

Suppose k is the number of specular observations in the clustered segment, A j

( j = 1, 2, · · · , k) is a micro region where specularity is observed, and IS,A j is intensity of
specularity observed in micro region A j. Then error function Err(KS, σ) is calculated as
the following equation based on the Torrance-Sparrow model;

Err(KS, σ)=
k∑

j=1

1
2

(
IS,A j−

KS exp(−α2
A j
/2σ2)

cosθr,A j

)2
. (2.13)
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Figure 2.5: 3 of 13 input images in verification experiments.

By minimizing this error function, we can estimate KS and σ.
We solve this non-linear optimization problem with the Levenberg-Marquardt al-

gorithm. Since this algorithm quickly converges but possibly to local minimum de-
pending on initial parameters, we iteratively optimize to change initial parameters with
simulated annealing.

In order to robustly estimate the parameters, we also use M-estimation with the
Levenberg-Marquardt algorithm. Since some of the input data include estimate error
of KD and the discrepancy as shown Fig. 2.4, a simple fitting approach would come
to harm from these outliers. Therefore, these outliers are given low weight with M-
estimation to be fitted again. In our method, iterative fitting and M-estimation provide
robust estimation against noise.

In our experiments, we use a weighted function that gives zero weight to ten
percent of the data most distant from the fitting line. Then we process the remaining 90
percent of the data iteratively using the Levenberg-Marquardt algorithm fitting until
convergence occurs.

2.6 Experiment

2.6.1 Simulation Results

To evaluate the effectiveness of the proposed method, we first show quantitative evalu-
ation using the simulation data Fig. 2.5. We use six different resolutions of basic shape
data for verification evaluation of estimate accuracy in the difference among them. The
numbers of polygonal faces for a basic shape are 300, 500, 1000, 2000, 12000, and 20000
as shown in Fig. 2.6. The number of input images is 13 as shown in Fig. 2.5.
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(a) (b) (c)

(d) (e) (f)

Figure 2.6: Basic shapes in verification: (a) 300, (b) 500, (c) 1000, (d) 2000, (e) 12000, (f)
20000 [faces].

Fig. 2.7 shows the error ratio of the estimated diffuse reflection parameter in the
different resolutions of basic shapes with or without normal map. Here, error ratio =
1
N

∑ |difference between ground truth and estimate value|
ground truth , where N is the number of sampling points.

With the estimated normal map, the errors of the estimated diffuse reflection parameter
are around 1 ∼ 2% even if the resolution of the basic shape is low. Similarly, Fig. 2.8
shows the error ratio of the estimated specular reflection parameter with or without
normal map and also M-estimation. With the estimated normal map, the errors of
the estimated diffuse reflection parameter are quite low. It is difficult to accurately
estimate the reflection parameter only with normal map because of the adverse effect of
outliers. By iteratively using M-estimation and curved line fitting with the Levenberg-
Marquardt method, the errors of the specular reflection parameter are extremely low,
less than 0.5%.

Fig. 2.9 shows synthesized images using estimated normal map and reflection
parameters. Fig. 2.9 (a) is the ground truth image. Fig. 2.9 (b) is the synthesized
image with 2000 faces. Fig. 2.9 (c) is the synthesized image with 500 faces. Even if the
resolution of basic shape is low, the synthesized image is as good as the high resolution
one. However, when the resolution of the edge part is low, the outline of the shape
becomes different from the ground truth, and the appearance of the result become
degraded. From these results, we see that the resolution of the basic shape should be
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Figure 2.7: Relationship between the resolution of basic shapes and error ratio of
estimated diffuse reflection parameters.

determined with accuracy of the edge part.

2.6.2 Real-world Results

We applied our method to various objects for 3-D modeling. We captured basic shape
using two different laser range sensors: VIVID made by Konica Minolta that is for
small objects, and HDS-3000 made by Leica that is for large objects. We recorded the
scenes using a D1x camera made by Nikon. The scenes were illuminated only by a
Nikon SPEEDLIGHT SB-80DX camera flash that is mounted on the camera.

Table. 2.1 shows details of target objects. Fig. 2.10 and Fig. 2.11 show the results
of the diffuse statue and the diffuse textured tube scene, respectively. (a) is one of the
input images, (b) is basic shape, (c) and (d) are synthesized images. Fig. 2.12 shows
a magnified part of Fig. 2.11. Our method can handle not only simple diffuse objects
but also dense textured objects because of estimated dense normal map with reflection
parameters.

Fig. 2.13 shows the result of the dinosaur with specularity. Fig. 2.13 (a) is basic
shape, (b) is the clustering result, (c) (e) (g) are three of the input images, and (d) (f) (h)
are synthesized images rendered from the same viewpoints. Fig. 2.14 shows magnified
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Figure 2.8: Relationship between the resolution of basic shapes and error ratio of
estimated specular reflection parameters.

parts of the geometric appearance. Even if the resolution of range image captured by
the laser range sensor is quite high as shown (d), its appearance looks noisy. On the
other hand, appearance with estimated normal map shown (b) shows fine details from
a low-resolution basic shape. Moreover, our method can reconstruct low-intensity and
widely distributed specular reflection such as Fig. 2.13 (g).

Fig. 2.15 shows the result of a replica of the Takamatsu tomb as a large object whose
scale is 1.6m×2.0m×4.5m. Takamatsu tomb is an ancient tomb built in the 8th century.
Fig. 2.15 (a) is one of input images, (b) is basic shape, (c) (d) are synthesized images.
Generally, when a target object is large, parallel light can not be assumed. However,
since our method obtains the position of the light source, light directions are accurately
defined each surface point, then our method estimates surface normal and reflection
parameters.

We applied our method for digital 3-D contents. The target is an ancient tomb
named Segonko (千金甲) as shown in Fig. 2.16 (a). It was built at Oshimashimomatchi,
Kumamoto-shi, Kumamoto-ken (熊本県熊本市小島下町) in the late 5th century. In the
stone chamber, we recorded geometric data with a laser range sensor as shown Fig. 2.16
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(a) (b) (c)

Figure 2.9: Synthesized images in the simulation results: (a) ground truth, (b) 2000
faces, (c) 500 faces.

(a) (b) (c) (d)

Figure 2.10: Diffuse object: (a) one of the input images, (b) basic shape, (c)(d) synthe-
sized images.

(b). There are sculptured concentric circles and diagonal lines on the inside stone
wall. We represented their appearance with an estimated normal map and estimated
reflection parameters. We made a 3-D model from these estimated results, and made
a 3-D content that allows us to see inside of the stone chamber from a free viewpoint.
Fig. 2.17 (a) shows an example of our content. Fig. 2.17 (b) (c) (d) (e) show magnified
parts of the sculptured concentric circle pattern. (b) is estimated normal map, (c) is
estimated diffuse reflectance, (d) is the synthesized image with normal map, and (e) is
the synthesized image without normal map. Using estimation with normal map, we
can effectively reconstruct the appearance of the concentric circle pattern.
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Table 2.1: Details of the target objects in experiments.

target object
# of input

size
distance

# of faces
division number

images from camera of micro regions

diffuse statue 18 20cm 80cm 5000 121

textured tube 15 10cm 1.0m 1000 900

specular dinosaur 18 20cm 80cm 5000 121

big tomb 18 1.6m 4.5m 3500 1600

Segonko 24 1.2×2.6m 1.0m 30000 529

(a) (b) (c) (d)

Figure 2.11: Textured diffuse tube: (a) one of the input images, (b) basic shape, (c)(d)
synthesized images.

2.7 Conclusion
We proposed a novel method for 3-D modeling using a fusion of a laser range sensor,
a camera, and a camera flash. This combination provides dense normals and surface
colors that can be mapped on a 3-D model, whereas conventional sensors only output
point clouds of the 3-D geometry. Furthermore, the fusion enables formulations to be
made simply and practically. Multi-view photometric stereo was used for estimating
the fine normal distribution with a basic shape measured by the laser range sensor. Our
photometric stereo can easily handle near-light formulation and specularity. Detailed
surfaces can be shown by applying the normal map as bump mapping to the basic
shape. Robust estimation and clustering were used for estimating reflection parame-
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(a) (b)

Figure 2.12: A magnified part of the synthesized image in Fig. 2.11: (a) ground truth,
(b) synthesized image.

ters. Results demonstrated that our method could estimate highly accurate reflection
parameters and provide fine surface appearances using only a small amount of data.
The effectiveness and the practicality of our method was shown by an application that
displayed 3-D contents.
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(a) (c) (e) (g)

(b) (d) (f) (h)

Figure 2.13: Dinosaur scene with specularity: (a) basic shape, (b) clustering result,
(c)(e)(g) three of the input images, (d)(f)(h) synthesized images.
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(a) (b) (c) (d)

Figure 2.14: Magnified parts of the dinosaur’s geometric appearance: (a) input images,
(b) our geometric appearance using a normal map, (c) basic shape, (d) 10 times denser
range data than basic shape.

(a) (b)

(c) (d)

Figure 2.15: Large object (Takamatsu tomb): (a) one of the input images, (b) basic shape,
(c)(d) synthesized images.
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(a) (b)

Figure 2.16: Segonko: (a) photograph, (b) basic shape.

(b) (c)

(d) (e)(a)

Figure 2.17: An example of 3-D contents: (a) synthesized image from a viewpoint, (b)
estimated normal map, (c) estimated diffuse albedo, (d) with normal map, (e) without
normal map.
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Chapter 3

A Hand-held Photometric Stereo
Approach for Full 3-D Modeling

A photometric constraint achieves simultaneous estimation of shape, surface normal,
and reflectance from a set of images taken from different viewpoints under various
directional lighting. This chapter presents a simple yet practical 3-D modeling method
using a hand-held camera with an attached point light source. Unlike prior approaches,
we formulate the problem using realistic assumptions of a near light source, non-
Lambertian surfaces, perspective camera model, and the presence of ambient lighting.

Our simultaneous estimation works well but requires high computational cost, so
we propose another extended method that uses color information and efficient for-
mulation to remove outliers and to reduce the computational cost. Removing outliers
help to robustly estimate a full 3-D model of the target object. The effectiveness of the
proposed method and the comparison between the proposed method and the extended
method are verified using simulated and real-world scenes.

3.1 Introduction
Three-dimensional (3-D) shape acquisition and reconstruction is a challenging problem
with many important applications in archeology, medical, and film and video game
industries. Numerous systems exist for 3-D scanning using methods such as multi-
view stereo, structured light, and photometric stereo; however, the use of 3-D modeling
is limited by the need of large, expensive, and costly hardware setups that require
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extensive calibration procedures. As a result, 3-D modeling is often neither a practical
nor accessible option for many application scenarios. In this chapter we present a
simple, low-cost method for object shape and reflectance acquisition using a hand-held
camera with an attached point light source.

When an object is filmed with our camera setup, its appearance changes both geo-
metrically and photometrically. These changes provide clues to the shape of an object;
however, their simultaneous variation prohibits the use of traditional methods for 3-D
reconstruction. Standard multi-view stereo and photometric stereo assumptions fail
when considered independently; however, when considered jointly their complemen-
tary information enables high-quality shape reconstruction.

The particular concept of jointly using multi-view and photometric clues for shape
acquisition is not new to this work and has become somewhat popular in recent
years [ZCHS03, LHYK05, JK07]; however, these previous works have several limi-
tations that keep them from being used in practice: the need for fixed or known camera
and light positions, a dark room, an orthographic camera model, and a Lambertian
reflectance model. It is often difficult to fit all these constraints in real world situations,
e.g., to adhere to an orthographic camera and distant point light source model, one has
to film the object at a distance from the camera and light, which makes hand-held acqui-
sition impossible. Furthermore, most real-world objects are not Lambertian. Our work
improves upon previous work by removing all of these constraints. The proposed
method extends our previous work [HMJI09] by efficiently removing outliers using
color information and view constraint and by reducing computational cost using effi-
cient computation. This leads to robust estimation and achieves full 3-D reconstruction
that was not feasible with previous approach.

The primary contributions of the present work include:

1. Development of an auto-calibrated, hand-held multi-view photometric stereo
camera,

2. A new shape estimation algorithm that considers perspective effect of the camera,
near light configuration, ambient illumination, and specular surfaces.

3. A method for simultaneous estimation of depth and surface normal.

4. An efficient outlier rejection method that uses color information and view con-
straint.
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Figure 3.1: Overview of the proposed approach.

In the next section, we discuss the previous work of shape estimation methods.
In Section 3.2, we describe the framework of our method, and Section 3.5 describes
implementation details. We present results in Section 3.6 followed by a discussion and
our conclusions.

3.1.1 Previous work

Shape reconstruction has a long, storied history in computer vision, and, unfortunately,
cannot be fully addressed within the scope of this dissertation. At a high-level, typical
approaches use either multi-view information or photometric information separately.
Multi-view stereo methods often require elaborate setups [ZKU∗04, SCD∗06] and, while
they can excel at recovering large-scale structures, they often fail to capture high-
frequency details [NRDR05]. Photometric stereo setups can be more modest, but they
still require known or calibrated light positions [MWGA06] and often have inaccuracies
in the low-frequencies components of the shape reconstruction [NRDR05].

Recent work has merged the benefit of these to methods using either two separate
datasets [NRDR05, WMP∗06] or jointly using one dataset. Maki et al. [MWW02] use a
linear subspace constraint with several known correspondences to estimate light source
directions up to an arbitrary invertible linear transform, but they do not recover surface
normals. Simakov et al. [SFB03] merge multi-view stereo and photometric constraints
by assuming that the relative motion between the object and the illumination source is
known. While this motion is recoverable in certain situations, there can be ambiguities.
Additionally, their process can only recover normals up to an ambiguity along a plane.
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In contrast, our method automatically finds correspondences to recover camera pa-
rameters, with a known relative light position, and solves depth and normals without
any remaining ambiguity. More recently, Birkbeck et al. [BCSJ06] and Hernández et
al. [HVC08a] show impressive surface reconstruction results by exploiting silhouette
and shading cues using a turntable setup.

Our work is similar in spirit to that of Pollefeys et al. [PVGV∗04] who perform 3-D
modeling with a perspective camera model, but use standard multi-view clues and
no photometric clues, thus they do not recover normals as we do. Our work also is
closely related to the work by Zhang et al. [ZCHS03], Lim et al. [LHYK05], and Joshi
and Kriegman [JK07]. Zhang et al. present an optical flow technique that handles
illuminations changes, which requires numerous images from a dense video sequence.
Lim et al. start with very sparse initial estimate of the shape computed from the 3-D
locations for a sparse set of features and refine this shape using iterative procedure.
Joshi and Kriegman extend a sparse multi-view stereo algorithm with a cost-function
that uses a rank-constraint to fit the photometric variations. Our work shares some
similarity with Joshi and Kriegman’s approach for simultaneous estimation of depth
and normals. In contrast with these three previous works, we use a known, near light
position and can handle using a perspective camera and non-Lambertian objects.

3.2 Proposed method
Our method uses a simple configuration, i.e., one LED point light source attached to a
camera. Fig. 3.2 shows a prototype of the hand-held photometric stereo camera. This
configuration has two major advantages. First, it gives a photometric constraint that
allows us to efficiently determine surface normals. Second, it enables a completely
hand-held system that is free from heavy rigs.

Fig. 3.3 illustrates the flow of the proposed method. After calibrating camera
intrinsics and vignetting (step 1), we take images of a scene from different view points
using the camera with the LED light always turned on. Given such input images, our
method first determines camera extrinsics and light source position in steps 2 and 3. In
step 4, our method performs simultaneous estimation of shape, normals, and albedos.
We use an efficient discrete optimization to make the problem tractable. Step 5 refines
the estimated surface shape by a simple optimization method. We first describe the
photometric stereo formulation for our configuration in Section 3.2.1, and then describe
the algorithmic details of our two major stages (steps 4 and 5) in Sections 3.3 and 3.4.
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Figure 3.2: Left: Our prototype implementation of the hand-held photometric stereo
camera. Right: Commercially available camera of Nikon D1 with a camera flash. Our
method can be handled with each camera.

3.2.1 Photometric stereo under a near-light source

This section formulates the photometric stereo for Lambertian objects under a near-
light source with ambient illumination. Our method handles specular reflection and
shadows as outliers that deviates from this formulation.

Suppose s is a light position vector that is known and fixed in the camera coordinate.
Let us consider a point x on the scene surface with a surface normal n in the world
coordinate. In the i-th image, the light vector li from the surface point x to the light
source is written as

li = s − (Rix + ti), (3.1)

where Ri and ti are, respectively, the rotation matrix and translation vector from the
world coordinate to the camera coordinate. With the near light source assumption,
intensity observation oi is computed with accounting the inverse-square law as

oi = Eρ
li · (Rin)
|li|3

+ a, (3.2)

where E is the light source intensity at a unit distance, ρ is surface albedo, and a
is the magnitude of ambient illumination. Defining a scaled normal vector b = ρn,
normalized pixel intensity o′i = oi/E, and normalized ambient effect a′ = a/E, Eq. (3.2)
becomes

o′i =
li · (Rib)
|li|3

+ a′ =
(RT

i li) · b
|li|3

+ a′. (3.3)

According to Eq. (3.3), we can compute n, ρ, and a′ from at least 4 observations.
Given the rotation matrix Ri, translation vector ti, and position vector x, we can easily
compute the light vector li from Eq. (3.1). Once we know the light vector li, we can
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1. Calibrate the Camera (Section 3.5.1)

Calibrate camera intrinsics and estimate vignetting.

2. Estimate Camera Projection Matrices (Section 3.5.2)

Using Structure from Motion/Bundle adjustment, recover the camera projection
matrices for each frame.

3. Estimate light source position (Section 3.5.2)

Resolve the scale ambiguity by using our photo consistency on feature points
from the structure from motion process.

4. Compute Dense Depth and Normal Map (Section 3.3)

Find the dense depth map and normals by minimizing our near light-source,
multi-view photometric constraint using a graph cut.

5. Compute Final Surface (Section 3.4)

Recover the final surface by fusing the recovered dense depth map and normal
field.

Figure 3.3: Our shape reconstruction algorithm.

estimate the scaled normal vector b on each surface point with photometric stereo.
According to Eq. (3.3), we can compute n, ρ, and a′ in straightforward way from at least
4 observations as 

o′1
o′2
o′3
o′4

 =


l′1
T 1

l′2
T 1

l′3
T 1

l′4
T 1


 b

a′

 , (3.4)

where we define the near light vector l′i = RT
i li/|li|3. By solving the linear system, we

can estimate b and a′.
The above derivation shows how to recover normals using near-light source pho-

tometric stereo once image correspondence is known; however, for our setup where
we want to leverage multi-view clues, correspondence is unknown and must be es-
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timated. Estimating the unknown correspondence is one of the key concerns of this
work. To efficiently achieve this goal, we propose a method to utilize color information
to effectively remove outliers.

3.2.2 Color based approach

This section describes a color based approach for removing erroneous matches. With
the color information, our method effectively removes outliers that are due to incorrect
matches or specular reflections. Moreover, we remove the ambient lighting effect by
subtraction only using inliers. We show that this changes the formulation above and
leads to an efficient computation.

Specular removal

We use color information to remove specularity based on the dichromatic reflection
model in the RGB color space. For color representation, we use 3-D color vector, e.g.,
o = (oR, oG, oB) instead of intensity o = oR+oG+oB. We assume that our inlier observation
consists diffuse lambertian reflection component and ambient effect. However, some
observations o contain specular reflection component as

o = Idi f + Isp + a, (3.5)

where Idi f is diffuse reflection component, Isp is specular reflection component, and
a is ambient effect. In case an observation o contains specular reflection component,
it becomes outlier from our assumption. To reduce ratio of the outliers, we remove
specular reflection component and use the observation as an inlier.

At first, we show descriptions of specular reflection and diffuse reflection. The
color of specular reflection component is known to be the same with the light source
color E = (ER,EG,EB). This is known as neutral interface reflection assumption. Then
the color vector of specular reflection Isp is as follows:

Isp = mspE, (3.6)

where msp is scaling factor of the specularity and E is a unit vector (|E| = 1). On the other
hand, the color of diffuse reflection component is defined with both the light source
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in RGB space

Distribution of projected observations
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light source color direction

Figure 3.4: Left: In RGB space diffuse reflection observations are distributed on a
straight line. Right: When observations are projected to a plane that is perpendic-
ular to light source color direction, specular pixels only depend on diffuse reflection
component.

color and the surface color. Let D denote a color vector of diffuse reflection. Then the
diffuse reflection Idi f is as follows:

Idi f = mdi f D, (3.7)

where mdi f is scaling factor of diffuse reflection and D is a unit vector.
Before the specular removal, we first pick up observations that has the same

diffuse color independent of specular reflection. In 3-D RGB space, distributions of
diffuse reflection and specular reflection are based on respective manners. The left
figure of Fig. 3.4 shows observation distribution in RGB space. Diffuse reflection is
distributed on a straight line whose directional vector is D. The diffuse line deviates
from the origin because of the ambient effect. Specular reflection is distributed on the
light source color direction E from the diffuse line. Suppose we know the light source
color E, we project observations to the plane that is perpendicular to light source color
direction E, then the projected observations are specular-invariant and distributed on
the one straight line. The projected observation ô is calculated as

ô = o − (o · S)S

= mdi f

(
D − (D · S)S

)
− (a · S)S. (3.8)
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This equation is independent of msp, i.e., independent of specular reflection. According
to Eq. (3.8), projected observations ôi form a straight line distribution on the 2-D plane
that is perpendicular to S as shown the right figure of Fig. 3.4 if the observations have
correct correspondences and the same diffuse color. We use RANSAC algorithm to fit
the straight line and to remove outliers deviated from the straight line.

After removing the outliers, we detect the straight line of the diffuse reflection in
3-D RGB color space. Again, we use RANSAC algorithm to fit the straight line and
estimate the color vector of diffuse reflection D̃ and ambient effect ã. Here, specularities
are outliers. In order to remove specular reflection, we should estimate a diffuse scale
factor mdi f as follows:

mdi f =

[
1

1 − (S · D̃)2
D̃ − S · D̃

1 − (S · D̃)2
S
]
· (o − ã). (3.9)

Once we get mdi f , we can calculate specular removal observation odi f as follows:

odi f = mdi f D̃ + ã. (3.10)

In this way, specularities are removed and the observation gets to be consist of only
diffuse reflection and ambient effect, that is an inlier in our observation assumption. In
case S · D̃ ≈ 1, i.e., surface color of the target object is white, our method of specular
removal does not work and we handle specularities as outliers to be removed.

3.2.3 Efficient formulation

According to Eq. (3.4), we need to calculate a 4×4 inverse matrix to solve for the scaled
normal b and ambient effect a′. Here, we cancel out ambient effect a′; then we can
estimate scaled normal b by calculating a 3 × 3 inverse matrix. To do this we first pick
up one inlier observation o′0 that is on the diffuse reflection line in RGB space and then
subtract from the other inliers o′i as

Oi0 = o′i − o′0 = (l′i − l′0) · b. (3.11)

Then we can solve the following linear system with 3× 3 matrix instead of 4× 4 matrix
as 

O1

O2

O3

 =


l′1
T − l′0

T

l′2
T − l′0

T

l′3
T − l′0

T


[

b
]
. (3.12)
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The computational cost of calculating a 3 × 3 inverse matrix is much less than the cost
of calculating 4 × 4 inverse matrix.

3.3 Simultaneous estimation of depth and normal
Our method simultaneously estimates depth, normal, and surface albedo. To do this
we estimate correspondence to get position information and use photometric clues to
get normals – these two are fused to get the final depth. To compute correspondence,
we run a stereo algorithm, where we replace the traditional match function that uses
brightness constancy with one that uses the photometric clues, normal consistency, and
surface smoothness. We formulate the problem in a discrete optimization framework.

Let us first assume the camera positions and light position are known – the estima-
tion of these parameters is discussed in detail in Section 3.5.2. Suppose that we have m
images taken from different view points with our camera. We recover correspondence
by performing plane-sweep stereo. For each depth in the plane-sweep, we warp the
set of images from different view points to align to one reference view. In this reference
camera coordinate frame, the depth planes are assumed in the z direction parallel to
the xy plane at a regular interval ∆z as shown in Fig. 3.6.

Specifically, we warp each image to the reference camera coordinate for depth
z j = z0 + j∆z using a 2-D projective transform Hi j that converts pixel location from a
view i to the reference view. Hi j is calculated as

Hi j = Ai

(
R +

tνT

−z j

)
A−1

0 , (3.13)

where Ai and A0 are intrinsic matrices in the view i and the reference view respectively,
R, t, and ν are described as follows:

R = RiRT
0 , (3.14)

t = ti − Rt0, (3.15)

ν =


0
0
−1

 , (3.16)

where Ri and R0 are rotation matrices in the view i and the reference view respectively,
ti and t0 are translation vectors in the view i and the reference view, and ν is a unit
vector from a depth plane to the origin of the reference camera coordinate. Using the
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Inputs
z0, zn, △z: depth range , C: camera parameters , I: an image sequence , L: light
direction
Outputs
D: depth map, N: normal map, R: reflectance map
Parameters
z: depth, m: the number of input images, H: homography matrix, p: the number of
pixels, o: intensity of the observation, S: observation group

for z = z0 to zn with a step △z do
for i = 0 to m with a step 1 do

Hi = CalcHomography(C)
end for
for k = 0 to p with a step 1 do

for i = 0 to m with a step 1 do
S = {oi | oi =Warping(Hi, Ii, z)}
(D, N, R) = SimulEstimation(S, L)

end for
end for

end for

Figure 3.5: Algorithm of simultaneous estimation for depth, surface normal, and re-
flectance.

2-D projective transform Hi j, we warp each image to the reference camera coordinate
as

pw = Hi jpo, (3.17)

where pw and po represent the warped pixel location and the original pixel location,
respectively, described by p = [u v 1]T in the image coordinate system. Then we perform
an optimization over this set of warped images to find the optimal per-pixel depth z j

that gives the best agreement among the registered pixels (given pixel p in the reference
view and corresponding pixels in the warped images Ii j(p) (i = 1, 2, . . . ,m)). This is
done according to three criteria: photo consistency, a surface normal constraint, and a
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Figure 3.6: Performing plane-sweep stereo in the reference camera coordinate.

smoothness measure.

Photo consistency

Intensity based approach

Our photo consistency measure is defined to account for varying lighting, since the
light source is attached to the moving camera. To explicitly handle shadows, specular
reflections, and occlusions, we use a RANSAC [FB81] approach to obtain the initial
guess of surface normal np, surface albedo ρp, and ambient ap using the near-light
photometric stereo assumption described in Section 3.2.1. The vector form of surface
albedo ρp and ambient ap contain elements of three color channels. Using the initial
guess, the photo consistency g is checked with each of other m − 4 images at a given
pixel p as

gi(np,ρp,ap) =
∑

c={R,G,B}
|Oc

i (p) − Ecρc
pl′ · np − ac

p|. (3.18)

We also compute the number of images that satisfy the photo consistency N as

N = |{i | gi(np,ρp,ap) < τ}|, (3.19)
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Input
z0, zn, △z: depth range , C: camera parameters , I: an image sequence , L: light
direction
Output
D: depth map , N: normal map , R: reflectance map
Parameter
z: depth , m: the number of input images , H: homography matrix , p: the number
of pixels , o: intensity of the observation , V : viewing vector for subtraction , S:
observation group , SD: diffuse observation group , S′: subtracted observation group
, L′: subtracted light direction

for z = z0 to zn step △z do
for i = 0 to m step 1 do

Hi = CalcHomography(C)
end for
for k = 0 to p step 1 do

for i = 0 to m step 1 do
S = {oi | oi =Warping(Hi, Ii, z)}
S = ViewConstraint(S)
S = EstimateDiffuseLine(S)
(SD, V) = SpecularRemoval(S)
(S′, L′) = Subtraction(SD, V , L)
(D, N, R) = SimulEstimation(S′, L′)

end for
end for

end for

Figure 3.7: Algorithm of simultaneous estimation with the color based approach.
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where τ is a threshold for photo consistency. The RANSAC process above computation
is repeated to find the best estimates of np, ρp, and ap that maximizes N at each p and
depth label j. Finally, the photo consistency cost Ep is evaluated as

Ep(p, j) = η
1
N

∑
i∈N

gi(np,ρp,ap) −N, (3.20)

where η is a scaling constant. The first term in the cost function assesses the overall
photo consistency, and the second term evaluates the reliability of the photo consistency,
i.e., when it is supported by many views (number of N), it is more reliable. These two
criteria are combined together using a scaling constant term η. In our implementation,
we fixed η as η = 1/τ.

Color based approach

Our photo consistency measure is modified slightly for the color based approach.
To explicitly handle outliers, we select three subtracted observations Oi(p) and use a
RANSAC approach to obtain an initial guess of scaled normal bp using the near-light
photometric stereo assumption described in Section 3.2.1. Using this initial guess, in-
stead of Eq. (3.18),the photo consistency g is checked against each of the other subtracted
observations at a given pixel p as

gi(bp) = |Oi(p) − (l′i
T − l′0

T)bp|. (3.21)

Similar to Eq. (3.19), we also compute the number of images that satisfy the photo
consistency N as

N = |{i | gi(bp) < τ}|, (3.22)

where τ is a threshold for photo consistency. The RANSAC process above computation
is repeated to find the best estimates of bp that maximizes N at each p and depth label
j. Finally, similar to Eq. (3.20), the photo consistency cost Ep is evaluated as

Ep(p, j) = η
1
N

∑
i∈N

gi(bp) −N. (3.23)
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Surface normal constraint

Preferred depth estimates are those which are consistent with the surface normal es-
timates. We use a surface normal cost function En(p, j) to enforce this criterion. Let j′

be the depth label of the neighboring pixel p′ that is located nearest in 3-D coordinates
to the plane specified by the site (p, j) and its surface normal as explained in details
in Appendix 3.A. Sometimes, the site (p′, j′) does not have a valid surface normal due
to unsuccessful fitting of a surface normal by RANSAC. In that case, we take the next
nearest site as (p′, j′). Once the appropriate j′ is found within | j− j′| < T j, a vector d(p′, j′)

(p, j)

that connects (p, j) and (p′, j′) in the 3-D coordinate is defined on the assumed plane.
We then compute the agreement of the surface normal at (p′, j′) with the depth estimate
by evaluating if these two vectors are perpendicular to each other. The surface normal
cost function is defined as

En(p, j)=


∑

p′(| j − j′| + 1)np′ j′ · d(p′, j′)
(p, j) if | j − j′| < T j

C0 (= const.) otherwise.
, (3.24)

Smoothness constraint

We use a smoothness constraint on depth to penalize large discontinuities. Suppose
p and p′ are neighboring pixels whose depth labels are j and j′ respectively. The
smoothness cost function Es is defined as

Es( j, j′) = |z j − z j′ | = ∆z| j − j′|. (3.25)

Energy function

Finally, the energy function E is defined by combining above three constraints as

E(p, j, j′) = Ep(p, j) + λnEn(p, j) + λsEs( j, j′). (3.26)

We use a 2-D grid graph cut framework to optimize the energy function. The 2-D
grid corresponds to the pixel grid, i.e., we define each pixel p as a site and the depth label
j is associated. We use Boykov et al. [BVZ01, KZ04, BK04]’s graph cut implementation
to solve the problem. By solving Eq. (3.26), we obtain the estimates of depth, surface
normal, surface albedo, and ambient lighting.
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3.4 Shape Refinement
The depth estimate obtained by the solution method described in the previous section
is discretized, and therefore it is not completely accurate due to the quantization error.
To refine the depth estimate, we perform a regularized minimization of a position
error, normal constraint, and smoothness penalty, to derive the optimal surface Z. The
optimization method is based on Nehab et.al. [NRDR05], and we define the error
function following the work of Joshi and Kriegman [JK07]:

J(Z) = EP + EN + ES. (3.27)

The position error EP is the sum of squared distances between the optimized posi-
tions Sp and original positions S′p in the 3-D coordinate:

EP = λ1

∑
p

||Sp − S′p||2, (3.28)

where λ1 is the relative weighting of the position constraint versus the normal con-
straint. To evaluate the position error, depth values are transformed to distances from
the center of the perspective projection:

||Sp − S′p||2 = µ2
p(zp − z′p)2, (3.29)

µ2
p =

(
x
fx

)2

+

(
y
fy

)2

+ 1,

where fx and fy are the camera focal lengths in pixels, and z′p is the depth value of the
original position p′.

The normal error constrains the tangents of the final surface to be perpendicular to
the input normals:

EN = (1 − λ1)
∑

p

((
np · Tx

p

)2
+

(
np · Ty

p

)2)
, (3.30)

where Tx
p and Ty

p represent the tangent vectors:

Tx
p =

[
− 1

fx

(
x
∂Zp

∂x
+ Zp

)
,− 1

fy
y
∂Zp

∂x
,
∂Zp

∂x

]T
, (3.31)

Ty
p =

[
− 1

fx
x
∂Zp

∂y
,− 1

fy

(
y
∂Zp

∂y
+ Zp

)
,
∂Zp

∂y

]T
. (3.32)

The smoothness constraint penalizes high second-derivatives by penalizing the
Laplacian of the surface:

ES = λ2

∑
p

∇2Zp. (3.33)
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λ2 is a regularization parameter to control the amount of smoothing.
Each pixel generates at most 4 equations: one for the position error, one for the

normal error in each of x and y directions, and one for the smoothness. Therefore, the
minimization can be formulated as a large, sparse over-constrained system to be solved
by least squares: 

λ1I
(1 − λ1)N · T x

(1 − λ1)N · T y

λ2∇2

 [Z] =


λ1z
0
0
0

 , (3.34)

where I is an identity matrix andN ·T x andN ·T y are matrices that, when multiplied
by the unknown vector Z, evaluate the normal constraints (1−λ1)n ·Tx and (1−λ1)n ·Ty.
We solve this system using a conjugate gradient method for sparse linear least squares
problems [PS82].

3.5 Implementation

3.5.1 Calibration

Before data acquisition, we calibrate the intrinsic parameters of the camera and vi-
gnetting. We use Camera Calibration Toolbox for Matlab [Bou07] to estimate the cam-
era intrinsics. For vignetting correction, we take images under a uniform illumination
environment with a diffuser to create a vignetting mask. During the data acquisition,
we move the camera system with the LED light on, without changing the intrinsic
parameters of the camera.

3.5.2 Structure from motion

From the image sequence, we use the state-of-the-art structure from motion implemen-
tation Bundler [SSS06] to estimate camera extrinsics and 3-D positions of feature points.
Here, all we need is camera extrinsics with absolute scale: the scale of camera position

should be the same as the scale of the measured distance between the camera and
the attached LED light source. You can use any structure from motion or any SLAM
method instead of Bundler.

Unfortunately, the estimated 3-D positions of feature points have a scaling ambi-
guity because of the fundamental ambiguity of structure from motion. We solve the
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ambiguity with the following two ways: one uses photo consistency and the other uses
measured distance. The scale k can affect the light vector estimation in Eq. (3.1) as

li = s − k(Rix + ti). (3.35)

We resolve this ambiguity using our photo consistency measure on feature points F .
The photo consistency cost Ep of Eq. (3.20) varies with the scaling parameter k. We find
the optimal k that minimizes the score of Ep(k) using the feature points F as

Ep(k) =
∑
p∈F

[
η

1
N

∑
i

gi(np,ρp,ap) −N
]
. (3.36)

We minimize Ep(k) by simply sweeping the parameter space of k to obtain the solution.
On the other hand, if distance between two feature points is known as absolute

value, we can solve the scaling parameter with normalization of the known distance.

3.5.3 Coarse-to-fine implementation

The simultaneous estimation method described in Section 3.3 gives good estimates;
however, the computational cost becomes high when the image resolution is large and
also when many depth labels are considered. We adopt a coarse-to-fine approach to
avoid this issue.

First, image pyramids are created for the registered images after image warping by
Eq. (3.17). At the coarsest level, the simultaneous estimation method is applied using
full depth labels. In the finer level of the pyramid, we expand the depth labels from
the earlier level and use them as the initial guess. From this level, we prepare only a
small range of depth labels around the initial guess for each site p. Using the minimum
and maximum depth labels, jmin and jmax, of the site and its neighboring sites, the new
range is defined as [ jmin − 1, jmax + 1]. We also use a finer ∆z in the finer level of the
pyramid. We set ∆z ← ∆z/2 when moving to the finer level of the pyramid.

3.5.4 Full 3-D reconstruction

Our method estimates one depth image and normal map from one reference view, as
discussed above. By making depth and normal maps from several different reference
views, we can get a full set of surface points with surface orientations. Then we use the
Poisson surface reconstruction method [KBH06] to reconstruct a full 3-D shape.
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However, simultaneous estimation using input images for full 3-D reconstruction
has another problem in that a lot of occlusions occur and many outliers are therefore
created, so it is difficult to apply our method as it is. For reducing the number of
outliers resulting from occlusions, a simple view constraint is applied. For full 3-D
reconstruction, we capture images on rings around the target object from different
elevation angles. Since we do not know whether a point on the surface is visible or not
from a particular view point, we simply assume that a similar view from the reference
view is less likely to have occlusion. Suppose θi is an angle between a particular view
direction i and the reference view direction, the view constraint is defined that we only
use image i satisfying θi < Tθ for simultaneous estimation. In our experiments, we use
Tθ = 45 [deg.].

3.6 Experiments
We use a Point Grey DragonFly camera (640 × 480) with an attached point light source
as our prototype system. The camera can sequentially capture images, and we use this
capability for ease of data acquisition. During the capturing process, the point light
source is always turned on. We also use a commercially available Nikon D1 camera
(1024 × 672 resized) with a camera flash. The camera records images from different
view points with the camera flash on.

In this section, we show the effectiveness of our both the intensity based method
and the color based method with the efficient algorithm formulation as shown in
Section 3.2.3. We first show quantitative evaluation using synthetic data in Section 3.6.1.
We use three real-world scenes that have different properties to verify the applicability
of the proposed method in Section 3.6.2. We further show comparisons with other state-
of-the-art 3-D modeling methods using the real-world scenes. Finally we show a full
3-D reconstruction result. Throughout the experiments, we use τ = [6.0, 8.0], λn = 7.5
and λs = [1.5, 3.0], λ1 = [0.01, 0.1], λ2 = [0.5, 1.5], C0 = 5, and initial ∆z = 8.0[mm].

3.6.1 Simulation results

In the simulation experiments, we render synthetic scenes by simulating the configura-
tion of our photometric stereo camera. We created a baseline scene which is textured,
Lambertian, and has no ambient lighting. By changing the settings so that the objects
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Approach Condition
Depth [%] Normal [deg.] Albedo [%]

mean med mean med mean med

Intensity based

Baseline 1.73 0.42 10.5 4.27 9.14 4.95
Textureless 3.05 0.46 11.2 4.74 9.23 4.99
Specular 1.77 0.42 10.0 4.63 9.43 5.38
Ambient 2.68 0.47 10.0 4.44 9.44 5.09

Color based

Baseline 1.20 0.46 8.71 4.30 8.51 4.44
Textureless 1.05 0.45 8.96 4.39 8.79 4.77
Specular 1.07 0.45 9.02 4.51 9.38 4.91
Ambient 1.28 0.66 11.0 5.49 11.7 6.92

Table 3.1: Quantitative evaluation using synthetic scenes. “mean” and “med” indicate
mean and median errors, respectively. The upper group is estimated with the intensity
based method, the lower group is estimated with the color based method.

were (1) textured, (2) have specular reflectance, and (3) the scene has ambient lighting,
we are able to assess the performance variation in comparison with the baseline case.

Table. 3.1 shows the summary of the evaluation. The upper side is the intensity
based approach, while the lower side is the color based approach. In each side, from
top to bottom, the results of the baseline, textureless, specular, and ambient cases are
shown. The errors are evaluated using the ground truth depth map, normal map, and
albedo map by looking at the mean and median errors. The depth error is represented
by percentage, using [maximum depth - minimum depth] as 100%. The surface normal
error is evaluated by the angular error in degrees, and albedo error is computed by
taking the average of the percentage difference in R, G, and B channels, using the
ground truth of the reflectance as 100%. The mean error is sensitive to outliers, while
the median error is not. Looking at the median error, the estimation accuracy is quite
stable across the table. The ambient case in the color based approach produces slightly
larger errors, and this indicates that the process of canceling ambient effect described
in Section 3.2.3 tends to affect errors. Fig. 3.8 shows the result on the simulated scene
with specularity. The upper side is the intensity based result, while the lower side is
the color based result.
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Input
images

Depth map Normal map Albedo Rendering

Figure 3.8: Simulation result using the bunny scene. The left images are input images
(reference view in the top). The top images are results of the intensity based method, the
bottom images are results of the color based method. From left to right, the estimated
depth map, normal map, albedo, and a final rendering of the surface are shown. In
the depth map, brighter is nearer and darker is further from the camera. In the normal
map, a reference sphere is placed for better visualization. 62 images are used as input.

3.6.2 Real-world results

We applied our method to various different real-world scenes. We show three scenes:
(1) a statue scene (textureless, roughly Lambertian), (2) a bag scene (textured, glossy
surfaces), and (3) a toy scene (various reflectance properties, complex geometry).

Fig. 3.9 shows the result of the statue scene. The left images are input images, the
upper side is the intensity based method, and the lower side is the color based method.
To produce the result, we manually masked out the background portion of the statue
in the reference image. Our method can recover the surface and normal map as well
as surface albedo from a textureless scene. Fig. 3.10 and Fig. 3.11 show the results of
the bag scene and toy scene, respectively. These scenes contain textured surfaces as
well as specularities. Our method can handle these cases as well because of our robust
estimation scheme to handle specularities. Our handheld camera is particularly useful
for measuring scenes like the toy scene that are difficult to move to a controlled setup.

To demonstrate the effectiveness of our photometric constraint, we have performed
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Input images Depth map Normal map Albedo Rendering

Figure 3.9: Result of the statue scene. The left images are input images (reference
view in the top). The top images are results of the intensity based method, the bottom
images are results of the color based method. From left to right, the estimated depth
map, normal map, albedo, and a final rendering of the surface are shown. 93 images
are used as input.

a comparison with a state-of-the-art multi-view stereo method [GCS06] that does not
use a photometric constraint. The input data is obtained by fixing a camera at each
view point and capturing two images with the attached point light source on and off.
The images without the point light source but under environment lighting are used as
input for the multi-view stereo method. Fig. 3.12 shows the rendering of three surfaces
recovered by both our intensity based and color based method and the multi-view
stereo method. Typical multi-view stereo algorithms can only establish a match in
areas with some features (texture, geometric structure, or shadows), and this example
is particularly difficult for them as it lacks such features in the most of the areas. On
the other hand, our method works well because of the photometric constraint.

We also compare our normal method to a result from Joshi and Kriegman’s method [JK07]
using a gray-scale image sequence. In their method, far-distant lighting and ortho-
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Input
images

Depth map Normal map Albedo Rendering

Figure 3.10: Result of the bag scene. The left images are input images (reference view in
the top). The top images are results of the intensity based method, the bottom images
are results of the color based method. From left to right, the estimated depth map,
normal map, albedo, and a final rendering of the surface are shown. 65 images are
used as input.

graphic projection are assumed. We use the same dataset from their experiment and
approximate their assumptions by diminishing light-fall off term (1/|li|2) in Eq. (3.2) and
using large focal lengths fx and fy. The side-by-side comparison is shown in Fig. 3.13.
Our intensity based method can produce a result with equal quality to their method.

Fig. 3.14 shows the result of the dinosaur scene for full 3-D reconstruction with
the commercial camera attached the camera flash. To get this result, we merge eight
reference views. Although this scene contains specularities, our method can handle
this well, achieving specular removal. In the synthetic images, we mapped estimated
albedo on the surface and use manually adjusted reflection parameters of specularity.
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Depth map

Normal map

Albedo

Renderings of the surfaceInput images

Figure 3.11: Result of the toy scene. The scene contains various color and reflectance
properties. The left images are input images (reference view in the top). The middle
column is the intensity based method, the right column is the color based method.
From top to bottom, estimated depth map, and normal map, the estimated albedo
map, and renderings of the final surface. 84 images are used as input.
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Our method
intensity based

Our method
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multi-view stereo
method [GCS06]

Figure 3.12: Comparison with a multi-view stereo method without a photometric
constraint [GCS06] using the statue scene. 93 images are used as input for both methods.

3.7 Discussion and Future Work
We presented a simple, low-cost method for high-quality object shape and reflectance
acquisition using a hand-held camera with an attached point light source. Our system is
more practical than those in previous work and can handle hand-held filming scenarios
with a broad range of objects under realistic filming conditions. Moreover, we extend
our method to make it robust and accurate using color information and to reduce
computational cost using the efficient computation. Nevertheless, there are some
limitations and several avenues for future work.

One current limitation is that we only implicitly account for self-occlusions, shad-
owing, and inter-reflections. Our robust fitting method addresses these properties
by treating them all as outliers from a Lambertian shading model. The view con-
straint also handles occlusions by simply removing inappropriate views against the
reference view. While this works well in practice, it is very likely that explicitly ac-
counting for these factors would improve our results. We are investigating methods
that could be used to explicitly model outlier pixels as self-occlusions, shadows, and
inter-reflections [BP03, CKK05, CAK07]. Not only would this help refine the 3-D shape
and reflectance model, but it should also enable higher quality rendering of scanned
objects.
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Input image JK [JK07]
Our method

intensity based

Figure 3.13: Comparison with Joshi and Kriegman’s method (JK) using the cat scene.
Eight images are used as input for both methods. Note that rendering parameters are
different as the original parameters are not available.

3.A How to find the depth label j′ for the surface normal

constraint
In this appendix, we present how to find the depth label j′ for the surface normal
constraint described in Section 3.3. As we mentioned in the section, we use a 2-D grid
graph cut framework for energy minimization problem. The 2-D grid corresponds to
the pixel grid: we define each pixel p as a site and the depth label j is associated. Here,
j′ is the depth label of the neighboring pixel p′ that is located nearest in 3-D coordinates
to the plane specified by the site (p, j) and its surface normal n as shown in Fig. 3.15.

Consider the horizontal neighboring pixel p′. The origin of the image plane is the
center of the image for p and p′. Suppose z j is depth corresponding to the depth label j,
f is a focal length of the reference camera, a line lp and lp′ represent rays, and a dashed
line ln is an orthogonal line to the surface normal n. We can calculate depth z̃ of an
intersection between lp′ and ln as

z̃ =
(nz/nx) f + p
(nz/nx) f + p′

z j, (3.37)

where nx and nz are respectively x and z component of the surface normal n. Here,
p′ = p± = p ± 1 because p′ is neighboring pixel of p. Using z j = z0 + j∆z, then, z̃ is
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Figure 3.14: Results of the full 3-D reconstruction. The scene is captured with a
commercially available Nikon D1 camera with a camera flash. The scene contains
specularities. Top figures show input images and the 3-D model with no textured
rendering. Bottom figures show the 3-D model mapped with estimated diffuse albedo.
In the 3-D model, specular reflection parameters are manually adjusted. 86 images are
used as input.

described as

z̃ =
(
1 ∓ 1

(nz/nx) f + p±

)
(z0 + j∆z)

= z0 +

{
j ∓

( z0

∆z
+ j

) 1
(nz/nx) f + p±

}
∆z. (3.38)

Suppose ⌊α⌋ represents maximum integer not greater than α, we can calculate the
integer depth label j′ as follows:

j′ = j +
⌊
∓
( z0

∆z
+ j

) 1
(nz/nx) f + p±

+ 0.5
⌋
. (3.39)
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Figure 3.15: Find the depth label j′ for the surface normal constraint. Top figure shows
an overview and the bottom figure shows the close up around the site (p, j).
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Chapter 4

Real-time Specular Removal

From one input image taken under uniform illumination, the specular reflection com-
ponent can be removed while preserving shading information. This chapter proposes
a method for specular removal using a color space based on a dichromatic reflection
model and a neutral interface reflection assumption. The novelty of the method is
that it uses the color space to remove the specular component very quickly to generate
a specular-free image. A specular-free image has no specularity and has a different
diffuse albedo from the original. Since it also preserves shading information based on
the Lambertian low, it is appropriate for an input image of photometric stereo.

The handling of a specular-free image and specular reflection component in other
chapters is based on this chapter.

4.1 Introduction
In inhomogeneous objects, reflections are linear combinations of diffuse and specular
reflection components. We call this the dichromatic reflection model. Diffuse reflection
represents object color and is scattered in all directions with the same intensity. On the
other hand, specular reflection is a mirror-like reflection, and the color of it is the same as
the color of the light source. This is known as a neutral interface reflection assumption.
Since the appearance of specular reflection is different in both view direction and light
source direction, specular reflections often cause error or outliers in various methods
based on diffuse reflections, e.g., object recognition, photometric stereo, and stereo
matching. Therefore, a number of methods have been proposed to separate or remove
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(a)

(b)

(c)

Figure 4.1: Color components. (a): Hue, (b): Saturation, (c): Brightness

specular reflection: using a polarizer [Wol89, NFB97, MTHI03], using more than one
image [SI94, LS01, SKS∗02], and using only one image [Sha85, KSK88, BLL96, TLQS03,
TI05, MZKB05].

In this chapter, we propose a fast specular removal method using our color space.
Moreover, we show how to generate a specular-free image which is appropriate for
input of photometric stereo. The specular-free image is a specular removal image
but has a different diffuse color from the original image while preserving shading
information.

The rest of this chapter is as follows. We first describe our color space in Section
4.2. We formulate the specular removal method in Section 4.3 and present results in
Section 4.4 followed by discussions and conclusions.

4.2 Color Space

4.2.1 Hue, Saturation, and Brightness

When we try to understand a color intuitively, three components of color are generally
used as shown Fig. 4.1; hue, saturation, and brightness. Hue is one of the main
properties of color that is described as red, green, blue, and yellow. Saturation is a
colorfulness of color relative to its own intensity. Brightness is an intensity of color.
These three properties are easily and intuitively understood for color representation.
Based on these three color components of hue, saturation, and brightness, we define
our own color space to easily remove specular components in real time.
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Figure 4.2: Proposed color space

4.2.2 Proposed Color Space

Fig. 4.2 shows our color space. In this color space, hue represents the azimuthal angle
from m1 axis on the m1 −m2 plane. Saturation is defined as the distance from the origin
on the m1 −m2 plane. Brightness represents the m3 component.

Similar to the S space proposed by Bajcsy [BLL96], this color space is good for
handling hue, saturation, and brightness. Unlike the S space, our color space is easy
to convert to from RGB color space. Moreover, since the color space has a symmet-
ric property, it is easily and intuitively understood and analyzed. Though our color
space is also similar to HSI color space, the definition of saturation is different. Be-
cause of the difference, our method can remove specular components with first-order
approximation, as described in Section 4.3.1.

Our color space whose axes are (m1,m2,m3) is described with RGB color space as
m1

m2

m3

 =

1 − 1

2 − 1
2

0
√

3
2 −

√
3

2
1
3

1
3

1
3




r
g
b

 . (4.1)

Then hue, saturation, and brightness are calculated as follows:

hue = arctan
m2

m1
(4.2)

saturation =
√

m2
1 +m2

2 (4.3)

brightness = m3 (4.4)
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4.2.3 Correcting White Balance

Our method of specular removal assumes a white light source. Therefore, in case the
color of the light source is not white, we need to correct the white balance as the light
source should theoretically be dealt as white. As discussed below, since correcting
the white balance is a linear and invertible operation, it does not interfere at all with
converting observations from the RGB color space to our color space and vice versa.

First we capture the image of the white reference under the color light source. Then
the mean values of each RGB component on the white reference region are normalized
as (lr, lg, lb). Given an observation of the target input image (Lr,Lg,Lb) taken under the
color light source, correcting RGB value (L̂r, L̂g, L̂b) is calculated as follows:

L̂r

L̂g

L̂b

 =


Lr/lr

Lg/lg

Lb/lb

 . (4.5)

4.3 Real-time Specular Removal
In this section, we describe and prove the theory of our proposed method for specular
removal from the color space. After that we describe the algorithm of our real-time
specular removal system.

4.3.1 Theory

For specular removal, we assume the following three assumptions:

Assumption 1. The target scene is illuminated with uniform color light source.

Assumption 2. The color of the specular components is the same as the color of the
light source, i.e., the neutral interface reflection assumption.

Assumption 3. Each hue has only one surface color.

Based on these assumptions, we explain how to remove specular components and
prove that they have been removed.

First we project the RGB value of the target image to our color space. Let us focus
on a plane defined with a particular hue value as shown in the left figure of Fig. 4.2.
According to assumption 3, each plane represents surface color; we call the plane a
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Figure 4.3: (a): plots on the surface color plane, (b): specular removal, (c): plots for the
apple scene, (d): plots after the process of specular removal, (e): input image of (c), (f):
result of the specular removal

surface color plane. Since the hue is a continuous value, an infinite number of the surface
color planes may exist. Practically, we separate hue angle into finite regions and each
region provides one surface color plane. So in each region, we define one surface
color plane. On a surface color plane, the horizontal axis denotes saturation and the
vertical axis denotes brightness. According to the property of our color space, plots of
diffuse reflection components exist in a directly proportional line between saturation
and brightness as shown Fig. 4.3 (a). Using this property, we remove the specular
reflection components as follows. When the color of the light source is white, the color
of specularity is also white and the color vector of specular reflection components is
parallel to the brightness axis based on assumption 1 and assumption 2. Therefore, if
two observations have the same saturation, their diffuse reflection components are also
the same independent of the specular reflection components. In other words, we can
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calculate the brightness of diffuse reflection components by fitting the line as shown in
Fig. 4.3 (b), which means specular removal. If the color of the light source is not white,
we should first correct the white balance using the procedure described in Section 4.2.3

For removing specular reflection based on the above theory, we have to prove the
following three propositions.

Proposition I When two pixels have the same surface color but one has only diffuse
reflection and the other has specular reflection, they have the same specified hue
value independent of their shading.

Proposition II When two pixels have the same diffuse components but have different
specular components, their saturation values are the same independent of the
specular components.

Proposition III Plots of diffuse observations form a direct proportional line on the
surface color plane.

According to assumption 3, each hue has only one surface color, so we have only to
prove proposition II and III with regard to one particular hue value.

Let us begin with our image formation based on the dichromatic reflection model
[Sha85]. Suppose IS is a specular reflection three-dimensional vector, each component
denotes red, green, and blue intensity respectively. Since the color of the light source
becomes white by correcting the white balance and the color of the specular component
is the same as the color as the light source based on the neutral interface reflection
assumption, normalized IS is described as

IS = s


1
1
1

 ,
where s is a scalar value that represents specular reflectance. Based on the Lambertian
model, normalized diffuse reflection vector ID is provided as

ID =


αr

αg

αb

 cosθ,

where θ is an angle between surface normal and the light direction vector, and cosθ
represents shading of the Lambertian model. (αr, αg, αb)T is respectively red, green,
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and blue diffuse reflectance that defines surface color. Then normalized observation
(r, g, b)T is calculated with dichromatic reflection model as

r
g
b

 = s


1
1
1

 +

αr

αg

αb

 cosθ. (4.6)

in case s = 0, Eq. (4.6) denotes diffuse reflection, on the other hand, in case s > 0,
Eq. (4.6) contains specularity.

Proof of proposition I

From Eq. (4.6) and Eq. (4.1), m1 and m2 are calculated as

m1 =
(
αr − 1

2αg − 1
2αb

)
cosθ

m2 =
( √

3
2 αg −

√
3

2 αb

)
cosθ

 . (4.7)

Then we can calculate its hue value from Eq. (4.2) as

hue = arctan
m2

m1
= arctan


√

3
2 αg −

√
3

2 αb

αr − 1
2αg − 1

2αb

 . (4.8)

According to this equation, we can find that the hue value is specified with (αr, αg, αb)
independent of shading, i.e., cosθ. Moreover, we can also find that Eq. (4.8) is indepen-
dent of s, in other words, specular reflection components do not affect the hue value at
all. Q.E.D.

Proof of proposition II

We can calculate saturation from Eq. (4.3) and Eq. (4.7) as

saturation =
√

m2
1 +m2

2

=
cosθ√

2

√
(αr − αg)2 + (αg − αb)2 + (αb − αr)2. (4.9)

According to this equation, saturation is defined independent of s. In other words, the
saturation of diffuse reflection is the same as the saturation of the specular reflection.
Q.E.D.
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Proof of proposition III

For a particular hue, the relationship between saturation and brightness of the diffuse
reflection is provided as follows. First we can calculate the brightness of the diffuse
reflection as

brightness = m3 =
αr + αg + αb

3
cosθ. (4.10)

According to Eq. (4.9) and Eq. (4.10), the relationship between saturation and brightness
is directly proportion as shown

brightness = A × saturation, (4.11)

where A is as follows:

A =
√

2
3

αr + αg + αb√
(αr − αg)2 + (αg − αb)2 + (αb − αr)2

. (4.12)

Therefore we can find that the relationship between saturation and brightness for a
particular hue is directly proportion, and that its gradient A is specified with only
(αr, αg, αb). Q.E.D.

The proofs of proposition I, II , and III show that we can remove specular reflection
components by the method shown above. Moreover, we can find that specular removal
preserves shading information cosθ.

After calculating gradient A, we can get diffuse brightness m′3 as

m′3 = A × saturation. (4.13)

Then we convert estimated values from our color space to the RGB color space as
r
g
b

 =


2
3 0 1
−1

3
1√
3

1

−1
3 − 1√

3
1



m1

m2

m′3

 . (4.14)

Meanwhile, a specular-free image is calculated in using any positive value as gra-
dient A. Since it does not require any calculation about computing A, the specular-free
image is generated faster than the specular removal image.

One limitation of our method is that it cannot handle grayscale pixels such as white,
gray, and black. The reason is that grayscale pixels are not on the straight line shown
in Fig. 4.3 (a), since grayscale pixels are r ≈ g ≈ b and then saturation ≈ 0 from Eq. (4.3).
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Of course our method cannot handle saturated pixels because saturated pixels
do not follow any optical rules about the observations. Therefore we require careful
attention not to exceed camera sensitivity against irradiance, so we have to adjust
exposure time and lens diaphragm.

4.3.2 Algorithm

The algorithm of the specular removal system is as follows:

Step 1: convert pixel observations from RGB color space to our color space and calcu-
late hue, saturation, and brightness.

Step 2: plot the observations on the surface color plane in each divided hue and then
fit the direct straight line with diffuse pixels to get the gradient A.

Step 3: recalculate brightness of all pixels by using the gradient A.

Step 4: convert recalculated pixels from our color space to the RGB color space.

Concretely, first (Step 1) we convert pixel observations from RGB color space to
our color space. Then we calculate hue, saturation, and brightness based on Eq. (4.2),
Eq. (4.3), and Eq. (4.4). Second, (Step 2) we separate hue to create the surface color
plane in each clustered hue. Then we plot the observations on the plane as shown in
Fig. 4.3 (b). Here we only plot minimum brightness pixels in each saturation value in
order to easily detect diffuse reflection. These plots form a direct proportional line as
mentioned in proof of proposition III. Therefore by fitting the straight line, we calculate
a gradient A in each hue. Since specular reflection and diffuse reflection have same
saturation but have different brightness (Step 3), we can recover diffuse brightness for
all pixels by using the gradient A. Finally, (Step 4) converting calculated observations
from our color space to the RGB color space provides the specular removal image.

The computational cost of fitting the straight line involves linear order, so our
specular removal achieves real-time performance.

4.3.3 Speed-up technique

The computational cost of our method is proportional to the size of the input image
because our process is done with all pixels. However, one of the four steps, Step 2,
which is a process for estimation of gradient A, can be speeded up. Not all plotted
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Figure 4.4: Specular removal under white light source.

observations are required for the estimation of gradient A. For example, when we
choose every two pixels to plot for straight line fitting, compared to using all pixels,
we can reduce the cost of the fitting process by half. However, although using fewer
sampled pixels for the line fitting achieve faster estimation, it could possibly have less
accuracy. We should consider the trade-off between speed and accuracy.

Furthermore, if the user can confine regions for specular removal instead of all
pixels, we can reduce the cost of all four steps.

4.4 Experiments
We captured the scenes using a camera (512 × 384): a Sony color digital camera XCD-
X710CR that has a linear response function. The experiments were run on a laptop with
2.0GHz Intel Core 2 CPU. Our process of specular removal is as follows: first, Step 1 to
Step 4 are done in numbered order. Then the output image is displayed, and after that
a frame image taken at the same time is captured as an input image and returned back
to Step 1. In case grayscale pixels are observed, it is left as it is to return the same color
as the input. Since we tried to capture the image without a saturation of the camera,
the image looked totally dark. Therefore, we used Photoshop to adjust the brightness
with level correction for better visualization. We found that our method of specular
removal can achieve real-time rendering at 8.8 fps.

Fig. 4.4 shows the result of the scene under white light source. The left figure
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shows the input image and the right figure shows the result of specular removal with
our proposed method. The bottom right figures are close-up results of the side surface
of the cup. Our method can remove specular components while preserving shading
information.

Fig. 4.5, Fig. 4.6, and Fig. 4.7 show the results under different color light sources.
We correct white balance using a white reference. Output images are already corrected
for white balance. Results under red light source and under green light source are
somewhat noisy. The reason why is that input images are recorded with a short
exposure time and are very dark and noisy because the scene under a red or green light
source tends to be too bright for camera sensitivity. Fig. 4.5, Fig. 4.6, and Fig. 4.7 have
also been adjusted with level correction for better visualization.

4.5 Discussion
We presented a real-time method for specular removal using our color space while
fitting a straight line. Our method is practical because it is very fast and uses only one
image with known color of illumination.

Our current limitation is that some target objects do not satisfy one of the three
assumptions described in Subsection 4.3.1; each hue has only one surface color. In
this case, we can still remove specular reflection components, but the color of diffuse
reflections is different from the original input image.

For example, Fig. 4.8 shows an input image of the Macbeth color checker (left) and
an output image processed by our method (right). Looking at the flesh color and brown
patches at the bottom right in each image, these two colors have a different surface color
but have the same hue. Therefore, we estimate a wrong gradient A and then the output
image has a different surface color from the original one as shown in Fig. 4.9.
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Figure 4.5: Specular removal under red light source.

Figure 4.6: Specular removal under green light source.

Figure 4.7: Specular removal under blue light source.
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Figure 4.8: Example of two surface colors in one hue.
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Figure 4.9: Estimation of gradient A for the case of two surface colors in one hue.
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Chapter 5

Consensus Photometric Stereo for
Non-Lambertian Surfaces

Reflection properties of monotonicity, visibility, and isotropy can be useful clues to
estimate surface normal of a variety of surface reflectance conditions. This chapter
describes a photometric stereo method that works with a wide range of surface re-
flectances. The novelty of the method is not only in handling various kinds of surface
reflectance, but also in avoiding radiometric calibration and alteration of the ambient
lighting. We derive a theoretical relationship between the number of input images and
the expected accuracy of surface normal estimates. The effectiveness of the proposed
method is demonstrated using simulated and real-world scenes that contain a variety
of diffuse and specular surfaces.

5.1 Introduction
Photometric stereo estimates surface orientation from a set of images taken from a fixed
viewpoint under different lighting directions. The original work of photometric stereo
by Woodham [Woo80] and Silver [Sil80] assume a Lambertian surface illuminated by
a distant point light source. Given three or more images, the Lambertian photometric
stereo method recovers surface orientations of the scene. After this early work, many
researchers have studied the approach to make it work under more general conditions.
Still, many photometric stereo methods are built upon specific parametric reflectance
models, so are naturally restricted to limited classes of reflectances. One of the most im-
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portant milestones in making photometric stereo practical would be to handle various
surface reflectances.

In this work, we present a new computational approach for solving photometric
stereo’s problem in handling a wide range of surface reflectances. Instead of assuming
a specific parametric reflectance model, such as Lambertian, we assume only three
reflectance properties that are often observed in real-world scenes, i.e., monotonicity,
visibility, and isotropy of reflectance with respect to the cosine of the surface normal
and light direction. In fact, these reflectance properties are observed in many common
materials such as plastics, ceramics, rubber, opaque glasses, and smooth glossy paints.

Our method uses input images of a static scene, possibly composed of spatially vary-
ing reflectances, taken from a fixed viewpoint under varying and known directional
lightings. From the intensity observations per pixel, we establish a set of inequalities
derived from the monotonicity, visibility, and isotropy properties. These inequalities
specify convex cones in the solution space of surface orientations. By taking the in-
tersection of the convex cones, our method obtains a smaller solution space for the
surface orientation. As more input images are given, the solution space becomes more
restricted. We show, in this chapter, the relationship between the number of input
images (lighting directions) and the estimation accuracy. To that end, we show that
given about 50 images our method can achieve an accuracy of less than one degree.

Our consensus approach avoids imposing restricting assumptions on surface re-
flectances and expands the applicability of photometric stereo. We show that the
method can also deal with surfaces with only specular reflections using the same
scheme by assuming the monotonicity and isotropy properties with respect to the co-
sine of the surface normal and the bisector between the lighting direction and viewing
direction. In addition, our method is naturally free from radiometric calibration. Be-
cause radiometric response functions are monotonic, the monotonicity, visibility, and
isotropy properties are maintained in the observation even with any non-linear ra-
diometric response functions. This allows our method to work without knowing the
camera response function.

The rest of the chapter is organized as follows. After briefly discussing previous
approaches in Section 5.1.1, Section 5.2 describes the theory of the proposed method. We
then describe an implementation using a voting method for illustrating the consensus
approach in Section 5.3. In Section 5.4, we describe how the consensus approach
can be turned into an energy minimization scheme for an efficient implementation.
After the implementation details, we describe the theoretical relationship between
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the number of lighting directions and the accuracy of surface normal estimates in
Section 5.6. Section 5.7 shows the experimental validations using simulation and real-
world images. Finally, Section 5.8 concludes the chapter with discussions on future
research directions.

5.1.1 Previous work

Photometric stereo has a long history since the pioneering works by Woodham [Woo80]
and Silver [Sil80]. Early methods made strong assumptions on the surface reflectance,
often the Lambertian model. There have been many studies to weaken the constraints
on the reflectance model.

For handling specularity, Coleman and Jain [CJ82] use four images and discard one
observation that is most likely a highlight for each pixel. Barsky and Petrou [BP03]
extend the method to handle highlights as well as shadows by using four color images.
These methods treat non-Lambertian effects as outliers. Solomon and Ikeuchi [SI96]
recover surface roughness using the similar four-light setup. Provided there are
enough images, non-Lambertian reflectance parameters can be estimated with their
method. Nayer et al. [NIK90] apply photometric stereo using a hybrid reflectance
model that is a linear combination of Lambertian and specular components. Tagare
and de Figueiredo [TdF91] consider diffuse non-Lambertian surfaces and solve the
problem using an m-lobed reflectance map. Georghiades [Geo03] considers both diffuse
and specular reflections and estimates surface normals as well as reflectance parameters
based on the Torrance-Sparrow model with unknown light directions.

Some early works [HI84][Ike87] use a reference object for photometric stereo. Re-
cently, Hertzmann and Seitz [HS05] proposed an example-based surface reconstruction
method with arbitrary bidirectional reflectance distribution functions (BRDFs). Gold-
man et al. [GCHS05] consider object surfaces modeled by a linear combination of two
fundamental materials and remove the need for a reference object by iteratively esti-
mating the basis BRDFs and surface normals.

There are other approaches for the generalization of reflectance properties that are
based on isotropy [LL99], Helmholtz stereopsis [ZBK02], bilateral symmetry [AK07],
isotropic reflectance [AZK08], reflective symmetry of the halfway vector [HLHZ08], and
monotonicity [SH10]. Lu and Little [LL99] proposed a hybrid method with controlled
lightings and object poses to estimate both the surface and a non-parametric reflectance
map. The method requires that the BRDF is both isotropic and uniform across the
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Figure 5.1: Measured reflectance of a diffuse yellow sphere painted with a poster color
containing gum Arabic (blue line) and Lambertian fitting (red line).

surface. Zickler et al. [ZBK02] use Helmholtz reciprocity to recover both depth and
surface normals independent of reflectance. Alldrin and Kriegman [AK07] estimate
surface normals using symmetries along intensity profiles from view-centered circles of
light directions. Alldrin et al. [AZK08] represent the class of isotropic reflectances using
a linear basis of general non-parametric bivariate functions to simultaneously estimate
shape and reflectance. Holroyd et al. [HLHZ08] use a dense sampling to resolve
both the normal direction as well as tangent vectors using the symmetry property
of reflectance. These symmetries are very general and apply to both isotropic and
anisotropic materials. Smith et al. [SH10] estimate facial surface reflectance properties
by fitting a curve with a monotonicity constraint.

There have been some diffuse reflection models for dielectric materials. Reich-
man [Rei73] derives diffuse reflection and transmission from the media of arbitrary
optical thickness. Wolff et al. [Wol94] provide an azimuth-independent diffuse re-
flection model with accounting isotropic subsurface scattering and Fresnel boundary
effects. Oren and Nayar [ON95] propose a generalized diffuse reflectance model by
taking surface roughness into account. Once the surface roughness is known, it is
reported that it works well for estimating surface orientations. However, in practice, it
is difficult to know the surface roughness beforehand. While our model theoretically
does not entirely cover the Oren-Nayer model because of forward and backward scat-
tering effects, as shown later in our experimental results, our method is still able to
handle rough surfaces such as the one shown in Fig. 5.1.

Our approach is close to Chen et al.’s work [CGS06] in that both methods do not use
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Figure 5.2: Monotonicity, visibility, and isotropy properties of reflectances. Left: The
reflectance r monotonically increases with n · l. Middle: The reflectance becomes zero
when n · l ≤ 0. Right: The reflectance r gives the same value when n · li = n · l j.

a specific parametric reflectance model. Their method determines surface orientations
by taking the bisector of view and lighting directions using specular highlight. Unlike
Chen et al.’s approach, our method can handle diffuse surfaces as well as specular
surfaces using monotonicity, visibility, and isotropy properties.

5.2 Consensus approach
Let us begin with our image formation model. An intensity observation oi is described
using the light source intensity E, scalar ambient lighting a, surface normal n, incident
light direction li, reflectance function r and radiometric response function f as

oi = f
(
E r(n · li) + a

)
, (5.1)

where n · li is the dot product of n and li.
In this work, we assume three properties about the surface reflectance r: mono-

tonicity, visibility, and isotropy (Fig. 5.2). These reflectance properties are observed
in a wide range of diffuse reflectances. In fact, it is pointed out that many existing
diffuse materials deviate from the Lambertian model in prior studies [Wol94][ON95].
Fig. 5.1 shows an actual measurement that deviates from the Lambertian model. Our
reflectance model covers such diffuse reflections as well as the Lambertian model as a
special case where r(n · l) = ρn · l, where ρ is surface albedo.

Using these properties of monotonicity, visibility, and isotropy, we derive three
constraints in the form of inequalities that specify possible solution spaces of the surface



76 Chapter 5 Consensus Photometric Stereo for Non-Lambertian Surfaces

Intersection

IsotropyVisibilityMonotonicity

Figure 5.3: Monotonicity, visibility, and isotropy constraints. Each of these three con-
straints gives a solution space of the surface orientation. By taking the intersection of
the solution spaces, our method obtains a smaller solution space of the surface orien-
tation. The narrow arrows represent the solution space, and the bold ones correspond
to the true surface orientation. The two rows show how the solution space becomes
smaller as the number of observations increases.

orientation. Each of these three constraints independently gives a solution space.
Our method estimates surface orientations by taking the intersection of these solution
spaces. We only use illuminated pixels for these constraints. The solution space of
surface normal n is initialized on a Gaussian sphere because the surface normal n is a
unit vector.

5.2.1 Monotonicity constraint

We assume the following monotonicity of the reflectance function r:

n · li > n · l j ⇔ r(n · li) > r(n · l j). (5.2)

This monotonicity says that as the dot product of surface normal n and lighting direction
l increases, the reflectance r increases.

These constraints hold even for unknown radiometric response functions. In
Eq. (5.1), the radiometric response function f is also monotonically increasing, and
E and ρ are non-negative. Therefore, f (r(x)) is also monotonically increasing, so the
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intensity observation o monotonically increases as n · l increases. This property elimi-
nates the necessity of radiometric calibration for our method and allows us to directly
use the following relationship regardless of the shape of the response function f :

n · li > n · l j ⇔ oi > o j. (5.3)

Using inequalities (5.3) obtained from multiple observation pairs (oi, o j), the solution
space N1 of the surface orientation n can be determined by taking the intersection of
multiple observations as

N1 =
{
n ∈ R3 |

∩
i, j

(
(li − l j) · n > 0

)}
, (5.4)

for pairs of li and l j that satisfy r(n · li) > r(n · l j). The pair of (li, l j) makes the solution
space specified on the north hemisphere whose pole is (li − l j) as illustrated in Fig. 5.3
(Left).

5.2.2 Visibility constraint

When a scene point is illuminated by a light source l, the surface normal n should lie
in the hemisphere n · l > 0. When n · l ≤ 0, the scene point is in the attached shadow,
i.e., the scene point is not visible from the light source. The visibility is defined as

N2 =
{
n |

∩
i

(n · li > 0)
}
, (5.5)

for all lighting directions li that illuminate the scene point. A similar constraint is used
by Belhumeur and Kriegman [BK98] for describing possible light source directions.
Because our method only uses illuminated pixels, it is not necessary to identify whether
the pixel is in an attached or cast shadow.

5.2.3 Isotropy constraint

In addition to the above two constraints, we use the isotropy constraint when multiple
similar intensity observations are obtained. Suppose an ideal case where more than
two observations under different lighting directions show the same intensity value. In
this case, given the different lighting directions li, l j, and lk, the surface normal n should
fall on the direction that is perpendicular to the plane spanned by the lighting vectors.
It can be determined up to a sign ambiguity by taking the cross-product:

±(li − l j) × (li − lk). (5.6)
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Such ideal situations are rare in practice, so we use a relaxed near-equality constraint:

n · li ≃ n · l j ⇔ oi ≃ o j. (5.7)

The constraint says that when similar intensity observations o are obtained, the cosines
of incident lighting direction and surface normal are also similar.

When we have similar observations oi, (i = 1, 2, . . . , k) under different lighting
directions li, we can expect that the surface normal n lies near to the direction where
the variance of n · l is minimized:

n = ±min
n

k∑
i=1

(
n · li − n · l

)2
, (5.8)

where n · l is the mean of the dot products. Using m such normal directions nm obtained
from m-sets of lighting directions, our method determines the solution spaceN3 that is
represented by a convex cone spanned by nm as

N3 =
{
n | n =

∑
m

amnm, am ≥ 0
}
. (5.9)

5.2.4 Consensus solution

Each of the monotonicity, visibility, and isotropy constraints independently gives a
solution space (Fig. 5.3). Our method takes the intersection of these to form a smaller
solution spaceNas

N = N1 ∩N2 ∩N3. (5.10)

As the number of images increases, it is expected that the solution space N becomes
smaller.

5.2.5 Extension to specular surfaces

Our method can be extended naturally to handle specular reflections by assuming
monotonicity and isotropy for specular lobes. Here, we assume only specular reflection
and no diffuse reflection, like for metallic surfaces. In this case, as shown in Fig. 5.4, the
monotonicity and isotropy are assumed with respect to the cosine of surface orientation
n and the bisector h (= (l+v)/||l+v||) between the light direction l and the view direction
v. The right-hand side of the figure depicts the diffuse case for reference. In this way,
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Figure 5.4: Monotonicity and isotropy constraints for the case of specular reflection.
Left: The case of specular reflection. The reflectance r monotonically increases with
n · h and gives the same value when n · hi = n · h j. We use the bisector h replacing the
light vector l in Eq. (5.1) for the specular lobes. Right: The case of diffuse reflection.

by replacing the light vector li with the bisector hi in Eq. (5.1), the previous discussion
holds for the specular lobes. For the visibility constraint, since we do not know the
width of specular lobes, we still use n · l > 0 as the constraint.

5.3 Consensus Photometric Stereo by Voting
To illustrate an intuitive implementation, we show a voting method to find the solution
space as an intersection segment. We use a geodesic sphere for defining the entire
solution space of the surface orientation per pixel. In this representation, the vector
from the geodesic sphere center to a vertex represents a surface orientation. As shown
in Fig. 5.3, the voting approach gives a score to vertices of the geodesic sphere when
the vertices are inside the region of the solution space. This process is regarded as
a histogram-based approach. As more images under different lighting conditions are
used, the smaller number of vertices would have the highest score. Finally, the surface
normal is estimated by taking the direction from the geodesic sphere center to the vertex
with the highest score. When more than one vertices have the highest score, we take the
mean vector to produce the surface normal estimate. As shown in Fig. 5.3, monotonicity
and visibility constraints give a vote to a hemispherically distributed region. On the
other hand, the isotropy constraint defined by a group of similar intensity observations
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Figure 5.5: Voting results with regard to the number of input images. A black arrow
represents the ground truth of the surface normal. A gray arrow represents the es-
timated surface normal. The brighter area has the higher score, which indicates the
solution space.

gives a convex cone region when voting. The size of the cone is defined by the variance
of surface normals given by Eq. (5.6) with all the combinations from the group. The
smaller the variance is, the smaller the size of the cone region becomes for limiting the
solution space.

Fig. 5.5 shows voting results with respect to the number of input images, i.e., lighting
directions. A black arrow represents the ground truth of the surface normal. A gray
arrow represents the estimated surface normal. Brighter areas have high scores, while
darker ones have low scores. We can see that more input images give a smaller solution
space for surface normal in each constraint. Table. 5.1 shows the accuracy of the surface
normal. In the only isotropy constraint test, with 6 images, isotropy constraint with
6 images, there is no group of similar intensity observations, therefore we cannot get
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Table 5.1: The table shows the accuracy of the estimated surface normals [deg.] with
regard to the number of input images with an intuitive voting method. Data 1 shows
the result of the images on the left in Fig. 5.5, and Data 2 shows the result of the images
on the right in Fig. 5.5. Mean error and median error of all estimated pixels are shown
below.

6 images 12 images 50 images

Data 1

All the three constraints 11.772 2.558 1.019
Only monotonicity 11.024 4.429 1.019

Only visibility 50.187 48.633 36.323
Only isotropy - 11.686 18.506

Data 2

All the three constraints 8.265 6.304 1.024
Only monotonicity 4.376 7.008 1.342

Only visibility 36.293 26.538 22.160
Only isotropy - 3.499 1.498

Mean error

All the three constraints 21.208 6.831 1.158
Only monotonicity 36.487 9.363 1.172

Only visibility 42.329 39.779 38.160
Only isotropy - 10.035 6.708

Median error

All the three constraints 14.953 3.510 1.140
Only monotonicity 33.858 3.951 1.159

Only visibility 42.806 39.786 37.084
Only isotropy - 4.588 2.707

results.
From these results, we can see that monotonicity and isotropy are very power-

ful constraints for limiting the solution space. In addition, these two constraints are
complementary to each other. When many groups of similar intensities are observed,
the isotropy constraint effectively works. On the other hand, when various intensities
are observed, the monotonicity constraint becomes more effective to estimate the sur-
face normal. Compared with these two constraints, the visibility constraint does not
produce a small solution space. Nevertheless, it steadily limits the solution space. Ac-
tually, when we only use monotonicity and isotropy constraints in data 2 with 50 input
images, the accuracy is 1.342 [deg.]; however, a combination of all three constraints



82 Chapter 5 Consensus Photometric Stereo for Non-Lambertian Surfaces

give a more accurate surface normal estimate (1.024 [deg.]).
The voting method described in this section can produce good results with simple

implementation. However, the accuracy of surface normal estimates is limited by the
resolution of the geodesic sphere. The number of vertices of the geodesic sphere that
we used in Fig. 5.5 and Table. 5.1 is 10242, where the angle between two neighboring
vertices is about 2 [deg.]. It indicates that even if we use much more input images, the
accuracy of surface normal estimates is limited to an average error of about 1 [deg.] in
the best case. Therefore, with this implementation, there is a trade-off between the
resolution of the geodesic sphere and the estimation accuracy.

5.4 Efficient Implementation with Energy Minimization
The previous section describes a straightforward implementation of consensus pho-
tometric stereo. To efficiently estimate surface orientation n, we cast the consensus
approach to an energy minimization problem. For this purpose, we develop energy
terms for monotonicity, visibility, and isotropy constraints, respectively. These energy
terms are computed at each pixel.

Monotonicity term From Eq. (5.4), we develop an energy term that favors n·(li−l j) > 0
being satisfied for observations oi > o j. Using a sigmoid-like function, we formulate
this constraint as

E1(n) =
1

N1

∑
i, j

1 − kn · (li − l j)

1 + exp
(
tn · (li − l j)

) , (5.11)

for all pairs of (i, j) where oi > o j. We use the sigmoid-like function to equally give a
small cost when n · (li − l j) > 0. In the energy term, t is a gain, and N1 is the number
of pairs (i, j) that are used for the computations. The numerator is designed to form
a slope that is determined by the factor k so that more deviations from the constraint
are penalized. With such a slope, the optimization becomes more efficient and quickly
converges. Fig. 5.6 shows the form of the function s(x) = (1 − kx)/(1 + etx) that is used
for E1.

For efficient computation, we re-sample all possible combinations (i, j) to reduce
the number of pairs. We select NM observations o j that are close to oi while satisfying
oi > o j, because the similar intensity observation pairs (oi, o j) tend to give smaller
solution spaces. However, the combinations that are used for the isotropy constraint
are excluded because of the condition oi > o j.
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Figure 5.6: Plot of a function s(x) = (1 − kx)/(1 + etx) used to design energy terms.
(k, t) = (5, 50) is used for the plot.
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Visibility term We formulate the visibility constraint of Eq. (5.5) in a similar manner
with the monotonicity constraint Eq. (5.11). Using a sigmoid-like function, the visibility
term E2 is formulated as

E2(n) =
1

N2

∑
i

1 − kn · li

1 + exp(tn · li)
, (5.12)

where N2 is the number of observations that are illuminated, i.e., the number of obser-
vations used for the estimation.

Isotropy term The isotropy constraint Eq. (5.9) gives a solution space from a set of
lighting directions that produce similar intensity observations. The more similar the
intensity observations are, the smaller the solution space becomes. We formulate this
as an energy function E3 that favors smaller variances of the dot product n · l in each
set of similar observations. Given m sets of similar observations S, the energy term is
defined as

E3(n) =
1∑m

i |Si|

m∑
i

∑
j∈Si

(
n · l j − (n · l)i

)2
, (5.13)

where Si is the i-th set of observation indices, |Si| represents the number of elements in
the set, and (n · l)i is the mean of the dot product n · l in Si.
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Energy function The energy function E is defined by combining the above three
constraints and an additional constraint of a unit normal length as

E(n) = λ1E1(n) + λ2E2(n) + λ3E3(n) + (1 − ||n||2)2, (5.14)

whereλi represents a weighting factor. We use the Levenberg-Marquardt method [BW88]
to minimize the multivariate function to estimate a surface normal vector per pixel.
For initialization, we use the lighting direction vector that shows the highest intensity
(without saturation) as the initial guess of the normal vector. Before the optimiza-
tion, we exclude low intensity observations as shadow pixels and use only illuminated
observations oi.

5.5 Comparison between voting and energy minimiza-

tion approaches
We compared estimation error and convergence with respect to the number of light
directions between the voting and energy minimization approaches. The comparison
is performed using a simulation environment, where a planar patch is illuminated by
random lighting directions. To obtain the statistical result, the ground truth surface
normal is also randomly generated, and the procedure is repeated 5000 times. In this
simulation, we avoid considering cast shadowing effects. For the voting approach, the
number of vertices of the geodesic sphere is set to 10242.

Fig. 5.7 shows a graph of the comparison. When the number of light directions is
small, the solution space remains to be large due to the small number of constraints.
In such cases, the energy minimization approach converges at the edge of the solution
space; therefore, it becomes less accurate than the voting approach, which takes the
center of the solution space. On the other hand, when a sufficiently large number of
observations are given, the energy minimization approach can produce a more accurate
result than the voting approach. As mentioned in Section 5.3, the accuracy of the voting
approach is limited to at most 1 [deg.] in this setting, even when more observations are
provided.

In terms of computational cost, the energy minimization approach works signifi-
cantly faster than the voting approach. For this experiment, the voting approach takes
86.27 [sec.] while the energy minimization approach takes 8.67 [sec.] in estimating
5000 different normals. The energy minimization approach runs about 10 times faster
than the voting approach.
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Figure 5.7: Estimation error of the surface normal by the voting and energy minimiza-
tion approach. In the voting approach, the number of vertices of the geodesic sphere is
set to 10242. In the plots, mean and median errors of each method are shown.

5.6 How many lighting directions are required?
As mentioned in Section 5.2, as the number of light directions increases, the solution
space becomes smaller. In this section, we analyze the statistical relationship between
the error of the estimated surface normal △θ and the number of light directions Nl, by
taking the monotonicity property as an example.

First, we develop an expression for the number of regions S(k) on the hemisphere
divided by k great circles derived from light directions. Here the hemisphere represents
the entire solution space of the surface normal, because the camera can be placed at
a fixed viewpoint. The problem of obtaining the number of distinct aspects S(k) is
equivalent to obtaining the number of regions into which k lines divide a 2-D plane.
Therefore, S(k) also denotes the number of regions that k lines divide a 2-D plane
into. We can derive the formula of the number of regions S(k) in an inductive manner.
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Suppose we add the k + 1-th line after k lines have already been drawn. This new line
intersects the existing k lines at k points in the maximal case, which divide the new line
into k+ 1 segments. Each segment on the new line divides one old region into two new
regions. Therefore, this operation adds k + 1 new regions:

S(k + 1) = S(k) + k + 1. (5.15)

By solving this, we obtain

S(k) =
1
2

(k2 + k + 2). (5.16)

Let us now count the number of great circles K(t) given by t light directions by taking
the monotonicity property as an example. Every pair of light directions provides one
great circle as a perpendicular bisector plane between the two light directions. In other
words, every pair of two light direction provides a perpendicular line in the 2-D plane
between the two points, which represent light directions. We call these light-direction
points. Therefore,

Lemma 1. t light directions provide tC2 lines.

Since all lines are perpendicular bisectors, three lines of them have one intersection
as a circumcenter of the three light-direction points. One intersection among three
lines reduce one segment. In other words, every three light-direction points reduce the
number of segments by one. It leads to the following lemma:

Lemma 2. t light directions reduce the number of segments by tC3.

From Eq. (5.16) and the above lemmas, we can calculate the number of regions
R(t) divided by great circles computed from the monotonicity property with t light
directions as the following:

R(t) =
1
2

[
(tC2)2 +t C2 + 2

]
−t C3

=
1

24
(3t4 − 10t3 + 21t2 − 14t + 24). (5.17)

Theoretically, the monotonicity property gives the number of division segments
described by Eq. (5.17), however, not all the pairs of light directions are useful for
limiting the solution space. For example, a selected pair may not be informative when
it does not shrink the solution space. Therefore, we use the following selection strategy
in our implementation for computational efficiency.
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For each lighting direction, our method chooses not all combinations but NM pairs
of light directions. When a pair of observations has a similar intensity to each other,
they tend to efficiently restrict the solution space. However, when the pair has almost
the same intensity, there may be an observation error. Therefore, in that case, our
method does not use such pairs. Taking these into account, our method chooses pairs
using the following simple strategy. First, we sort light directions by the observed
intensity magnitudes of the target pixel. Then, light directions with the minimum
or close to minimum intensity are removed as a shadow pixel. The light directions
associated with saturated or very high intensity observations are also removed as
specular pixels. Second, we remove the light directions with almost the same intensity
observations. These are instead used for the isotropy constraint. After removing
these light directions, our method finally chooses the top NM light directions that have
similar intensity observations. These pairs finally give the perpendicular bisectors as
the monotonicity constraint.

Now we describe how many segments are needed to achieve the expected accuracy
of the estimation based on the above discussion. The number of segments Nsgm on a
hemisphere divided by Ngc great circles is the same as that of a 2-D plane divided up
by Ngc lines. It becomes

Nsgm =
1
2

(N2
gc +Ngc + 2). (5.18)

In an ideal case, assuming that Nsgm equal-size disks with the area π(△θ)2 cover the
entire solid angle of a hemisphere (2π), we obtain an optimistic estimate of the accuracy
as follows:

△θ =
√

2/Nsgm. (5.19)

Let Nv be the number of illuminated observations. The monotonicity property
provides NM constraints for each observation oi (i = 1, 2, . . . ,Nv) without duplication,
therefore, the total number of the great circles obtained from the monotonicity prop-
erty becomes Ngc = (Nv −NM)NM. Hence, from Equations (5.18)(5.19), the estimation
accuracy becomes:

△θ =
√

4
N2

vN2
M−2Nv(N3

M+NM)+N4
M−N2

M+2
. (5.20)

Assuming that half the number of light directions illuminate the patch of interest
among the entire Nl light directions, i.e., Nv =

1
2Nl, and by setting NM = 8, this analysis
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from Eq. (5.20) indicates that given about 45 input images, our method can achieve an
accuracy of less than one degree. Therefore, in our experiments Section 5.7, we use
about 45 input images for various target objects.

Simulation. To verify the theory described above, we conduct a simulation of the
estimation error and compare the result of the energy minimization approach with the
theoretical error. In this simulation, a surface is rendered synthetically under various
lighting directions that are randomly generated. From the input data, we estimate
the surface normal from the observations with the known lighting directions using
the energy minimization approach. The procedure is repeated using various surface
orientations and lighting directions. Finally, the errors are computed from the ground
truth normals, and the median error is computed. In this simulation, we assume there
are no cast shadow while the attached shadows exist.

Fig. 5.8 shows the plot of the result. The horizontal axis represents the number of
light directions, i.e., the number of input images, and the vertical axis is the estimation
error [deg.]. Since this simulation assumes no occlusion, the energy minimization
approach achieves a better result than the theoretical error (“Theory1”) described above.
On the other hand, “Theory2” represents a theoretical error that assumes no occlusion,
i.e., Nv = Nl. Because our energy minimization approach does not take the self-occluded
observations, i.e., n · l < 0, the estimation error becomes greater than that of “Theory2”.
Therefore, “Theory1” and “Theory2” can be regarded as the upper and lower bounds
of the actual error, respectively.

5.7 Experiments
To evaluate the effectiveness of the proposed method, we performed experiments using
both simulation and real-world scenes. We first show a quantitative evaluation using
the simulation data in Section 5.7.1. Second, we evaluate our method using five real-
world scenes in Section 5.7.2. Throughout the experiments, we used parameters k = 5,
t = 50, NM = 8, λ1 = 8, λ2 = 1, and λ3 = 300 for diffuse objects. For specular objects, we
only changed the weighting factor of the isotropy term to λ3 = 30.
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Figure 5.8: Estimation error of the surface normal based on the monotonicity constraint
using the energy minimization approach and the theoretical errors. “Theory1” repre-
sents the theoretical error with occlusions, and “Theory2” assumes no occlusion, i.e.,
Nv = Nl.

5.7.1 Simulation results

The simulation experiment is designed to quantitatively examine the performance of
the proposed method. We use combinations of different settings;

1. Linear/non-linear camera response functions.

2. Lambertian/non-Lambertian reflectances.

3. With/without ambient lighting.

We represent these settings by Yes or No for {linear response function, Lambertian
surface, ambient lighting}. For example {Y, N, Y} indicates the combination of linear
response function, non-Lambertian surface, and with ambient illumination. A syn-
thetic scene is rendered using these settings, and our method is applied to each of these
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Figure 5.9: Simulation setup and results. Left shows the reference spheres rendered
with the combinations of {(1) linear response function Yes/No, (2) Lambertian: Yes/No,
(3) ambient illumination: Yes/No }. In the right, the shapes of the non-linear response
function and non-Lambertian reflectance that are used in this simulation are shown.

datasets. Fig. 5.9 (left) shows the reference spheres rendered under these settings. On
the right hand-side of the figure, the shapes of the non-linear response function and
non-Lambertian diffuse reflectance used for this experiment are shown. The numerical
results are summarized in Table. 5.2. As shown in the table, our method is not suscep-
tible to ambient lighting, non-Lambertian diffuse reflection, or the non-linear response
function, while the standard photometric stereo method suffers from these non-ideal
conditions. The estimation error becomes consistently small with our method except
for the completely ideal situation.

5.7.2 Real-world results

We applied our method to various diffuse objects and specular objects and compared
them with the standard photometric stereo method. We used five different scenes under
various conditions: (1) Yellow sphere scene (Fig. 5.1, non-Lambertian), (2) Terracotta
scene (non-linear response function), (3) Statue scene (with ambient illumination), (4)
Relief scene (non-linear response function with ambient illumination), and (5) Clip
scene (specular lobes).

We recorded the scenes using two different cameras; a Sony color digital camera
XCD-X710CR that has a linear response function, and a Nikon D1x camera with a non-
linear response function. The scenes were illuminated by a moving LED point light
source and recorded from a fixed viewpoint. To obtain the light source directions, we
used a mirror sphere placed in the scene. We compare our method with the standard
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Table 5.2: Mean and median RMSE [deg.] evaluation of the estimated surface normals
under corresponding rendering settings described in Fig. 5.9.

Our method Standard PS
mean med mean med

{Y, Y, N} 0.708 0.617 0.000 0.000

{Y, N, N} 0.740 0.651 8.479 7.999

{N, Y, N} 0.719 0.634 3.866 3.640

{N, N, N} 0.737 0.647 8.541 7.855

{Y, Y, Y} 0.705 0.622 5.320 4.920

{Y, N, Y} 0.741 0.658 8.412 7.793

{N, Y, Y} 0.721 0.633 7.105 6.576

{N, N, Y} 0.723 0.627 8.709 8.020

photometric stereo method based on the Lambertian model (referred to as ‘standard
PS’ in the following). To use the same input to both methods, shadowed pixels were
excluded when the standard PS was applied.

Fig. 5.10 shows the result of the yellow sphere scene recorded by a Sony XCD-
X710CR. Our method recovers surface normals from a non-Lambertian diffuse re-
flectance scene more accurately than the standard PS. The error maps in the fourth and
fifth figures in Fig. 5.10 clearly show the difference. With the standard PS, the error
tends to become greater especially around the boundary of the sphere where surface
normals are off from the viewing direction.

In Fig. 5.11, we show the result of the Terracotta scene taken with the Nikon D1x
camera with a non-linear response function. The results of our method and the standard
PS appear to be similar, but our method results in more vivid surface orientations, e.g.,
on the top of the left hand of the terracotta soldier. Similar to the case of the yellow
sphere scene, the standard PS results in a rather flat surface normal field.

Fig. 5.12 shows the result of the statue scene under ambient illumination taken by
a Sony XCD-X710CR. Our method produces faithful surface orientations, while the
standard photometric stereo produces overly smooth surface normals.

The relief scene of Fig. 5.13 was taken with a Nikon D1x camera with a non-linear
response function, under ambient lightings. Our method faithfully recovers surface
orientations even when the imaging condition significantly deviates from classical
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Figure 5.10: Result of our method applied to the yellow sphere with a non-Lambertian
surface. From left to right, one of the input images, the estimated normal map with our
method, that with standard photometric stereo method, the corresponding errors from
the ground truth, and the sampled light directions are shown. The higher intensity in
the error maps indicates the greater errors. 43 images are used as input.

assumptions, i.e., Lambertian reflectance, no ambient illumination, and a linear camera
response.

To assess the significance of the three properties individually, we show the ef-
fect of these in Fig. 5.14. The monotonicity and isotropy properties are the strongest
constraints, however large errors are found in places. For the isotropy constraint, in-
accurate surface normal estimates are observed at locations where the zenith angle of
surface normals is large, i.e., outward-looking surface normals. The visibility constraint
prevents large errors, especially for the outward-looking surface normals. These three
constraints work in a complementary manner, and the combination of all the three
constraints gives the best result.

Fig. 5.15 shows the result of the clip scene that is made of specular surfaces. The
result shows that our method can estimate surface normals from the specular lobes as
well.

Finally, Fig. 5.16 shows the rendering of 3D surfaces and relighting. The relief
scene (Top) is the reconstructed 3D, and the others are relighting results. The reference
spheres depict the lighting directions.

5.8 Discussion
We present a consensus approach for photometric stereo for a generalized reflectance
model that holds three properties: Monotonicity, visibility, and isotropy. These proper-
ties are naturally observed in a wide variety of diffuse reflections as well as in specular
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Figure 5.11: Result of the terracotta scene taken with a Nikon D1x camera with a
non-linear response function without ambient illumination. From left to right, one of
the input images, the estimated normal map with our method, that with the standard
photometric stereo method, the measured response function, and lighting directions
are shown. 46 images are used as input.

lobes. In addition, our method eliminates the necessity of radiometric calibration and
any dependency on the ambient illumination.

Currently, our method is limited to work with surfaces that show either diffuse or
specular reflection. To handle surfaces that have both diffuse and specular reflections,
we are interested in applying a color subspace method [ZMKB08] for separating these
reflections. We are also interested in using shadowed pixels. In our current method, we
only use illuminated pixels for estimation; however, it has been shown in the previous
work [OSS09] that shadow can be used as a cue for estimation.
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Input Our method Standard PS
Light

directions

Figure 5.12: Result of the statue scene recorded by a Sony XCD-X710CR camera with
a linear response function under ambient illumination. From left to right, one of the
input images, the estimated normal map with our method, and that of the standard
photometric stereo method are shown. The reference sphere is overlaid in the middle
of the second and third figures. The light source directions are shown on the right. 47
images are used as input.

Input

Our method

Standard PS

Input Our method Standard PS Close up Light
directions

Figure 5.13: Result of the relief scene taken with a Nikon D1x camera with a non-linear
response function under ambient illumination. From left to right, one of the input
images, the estimated normal map with our method, that with standard photometric
stereo method, and the light directions. 47 images are used as input.
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Figure 5.14: Results with all the three and individual constraints. Captions below the
figures indicate the constraints that are used.

Input Normal map Light directions

Figure 5.15: Result of the clip scene captured with a Sony XCD-X710CR camera. From
left to right, one of the input images, the estimated normal map, and the light directions
are shown. 50 images are used as input.
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Figure 5.16: 3D reconstruction and relighting results. Top figures show 3D reconstruc-
tion of the relief scene from top view and close-up side view. Bottom figures show
relighting results of terracotta, statue, and clip scenes. The reference spheres show
rendering parameters.
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Chapter 6

Conclusion

6.1 Summary
The ultimate purpose of this dissertation is to provide efficient 3-D modeling ap-
proaches based on photometric stereo. To accomplish this, we have proposed two new
methods for 3-D modeling by combining photometric and geometric approaches: a
method that fuses a laser range sensor and a camera with attached camera flash, and
a method based on a simple lighting configuration, i.e., one LED point light source
attached to a camera. Both methods estimate surface normals to efficiently recover
3-D models, especially fine details of the object surfaces. Moreover, for the purpose of
handling specularities in these two methods, a real-time method that removes spec-
ular reflection components has been proposed. Furthermore, we have proposed a
photometric stereo method that works with a wide range of surface reflectances.

6.1.1 Efficient Estimation and Representation of 3D model with Sen-

sor Fusion

In Chapter 2, we proposed a method for 3-D modeling using a fusion of a laser range
sensor, a camera, and a camera flash. The fusion provides dense normals and surface
colors that can be mapped on a 3-D model and enables formulations to be made simply
and practically. Multi-view photometric stereo was used for estimating the fine normal
distribution with a basic shape measured by the laser range sensor. Our photometric
stereo can easily handle near-light formulation and specularity. Detailed surfaces can
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be shown by applying the normal map as ”bump mapping” to the basic shape. Robust
estimation and clustering were used for estimating reflection parameters. Our results
show that our method could estimate highly accurate reflection parameters and provide
fine surface appearances using only a small amount of data. The effectiveness and the
practicality of our method were shown by an application that displayed 3-D contents.

6.1.2 A Hand-held Photometric Stereo Approach for Full 3-D Model-

ing

In Chapter 3, we presented a simple and practical 3-D modeling method that simul-
taneously estimates depth, surface normals, and reflectance from a set of images. We
used a hand-held camera with an attached point light source to combine photometric
stereo and multi-view stereo. We used photometric clues to get surface normals, which
make it possible to find correspondences among multi-view images.

Moreover, using color information extended the method to be more efficient and
robust for handling input images for full 3-D modeling. Efficient formulation is also
applied to reduce the computational cost. Both simulation and real-world experiments
showed the effectiveness and robustness of our method.

6.1.3 Real-time Specular Removal

In Chapter 4, we proposed a real-time method for specular removal using our color
space while fitting a straight line. Our method was fast and practical with only one
image taken under uniform illumination whose color was known. We also presented a
process for making a specular-free image appropriate for an input image of photometric
stereo. Theoretical propositions were proved, and experimental results showed the
effectiveness of our method amidst changes of illumination color.

The current limitation of our method is that when more than one surface color is
present in one hue, our method provides unexpected behavior. In such a case, we
can still remove specular reflection components, but the color of diffuse reflections is
different from the original input image.
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6.1.4 Consensus Photometric Stereo for Non-Lambertian Surfaces

In Chapter 5, we presented a consensus approach for photometric stereo for a gen-
eralized reflectance model that satisfies three properties: monotonicity, visibility, and
isotropy. These properties are naturally observed in a wide variety of diffuse reflec-
tions as well as in specular lobes. In addition, our method eliminates the necessity of
radiometric calibration and any dependency on ambient illumination.

We implemented both voting and energy minimization approaches, and from the
synthetic evaluation we showed that the energy minimization approach was faster and
more accurate than the voting approach. Experimental evaluation was done, and it
showed the effectiveness of our method.

6.2 Contributions
The main contributions of this dissertation are as follows:

• Development of an efficient method for 3-D modeling using effective constraints from
sensor fusion.

The advantage of the method is that the calibration among a laser range sensor,
a camera, and a camera flash provides effective constraints for finding corre-
spondences among multi-view images and for solving near light conditions in
photometric stereo.

• Accurate and robust estimation of reflection parameters and good appearance by using
normal map.

Detailed surfaces are estimated as a normal map even if the resolution of the
basic shape is quite low. Using the estimated normal map, reflection properties
are accurately and robustly estimated with specular removal, clustering, and
M-estimation.

• Development of a simple and practical 3-D modeling method.

Our simple configuration is a camera and an attached point light source for 3-D
modeling. Experimental results also showed that a commercial camera and an
attached camera flash could work well in our method.

• Full 3-D modeling with a hand-held camera.
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Input images for full 3-D reconstruction present the problem of many occlusions.
We use color information and view constraints to overcome the problem.

• Development of a real-time method for specular removal with a single image.

Using our color space lets us remove the specular reflection component very
quickly and also generate a specular-free image from a single image taken under
uniform illumination when the illumination color is known.

• A new photometric stereo framework to work with a wide range of surface reflectances.

We introduced three basic reflection properties to derive constraints that specify
solution spaces of the surface normal. Moreover, the method naturally avoids
radiometric calibration and does not disturb ambient lighting.

• Theoretical relationship between the number of input images and the expected accuracy
of surface normal estimates.

We theoretically showed how many lighting directions are required with the
monotonicity constraint, and conducted a simulation comparison between the
estimation result and the theoretical error to verify the theory.

6.3 Future Directions
We conclude our discussion by mentioning several open problems and future improve-
ments that we believe are important to pursue.

Interactive 3-D modeling with photometric stereo camera

A method for extending the hand-held photometric stereo camera so that it could
reconstruct a target object in real-time. Owing to recent advances in Structure from
Motion, such as PTAM [KM07], we are able to estimate a live camera pose and a sparse
point cloud for 3-D reconstruction [ND10]. Adding a photometric constraint to the live
reconstruction would achieve more dense and accurate results – ideally in real-time.
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Surface normal estimation of both diffuse and specular surface using

consensus approach

The consensus photometric stereo method described in Chapter 5 is limited to sur-
faces that show either diffuse or specular reflection. To handle surfaces that have
both diffuse and specular reflections, we are interested in applying a color subspace
method [ZMKB08] or our specular removal method described in Chapter 4.

Multi-view photometric stereo with a wide range of surface reflectance

Combining a hand-held photometric stereo camera described in Chapter 3 with the
consensus photometric stereo algorithm presented in Chapter 5 should achieve robust
and dense 3-D reconstructions for an object which displays varied surface reflectances.
At this point, simultaneous estimation in order to find correspondences among multi-
view images and for defining surface normals would be a challenging task to solve, but
a task we believe to be important for further machine-vision technology innovation.
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