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Abstract

Public key encryption (PKE) is a fundamental cryptographic primitive with which we can
communicate securely over possibly insecure network without shared secret information in ad-
vance. For PKE schemes, security against chosen ciphertext attacks (CCA security) is nowa-
days considered as a standard security notion needed in most practical applications/situations
where PKE schemes are used. Roughly, CCA security captures security against “active” ad-
versaries that can access to an imaginary machine called decryption oracle which on input a
ciphertext returns a decryption result of it, and has been shown to imply important strong
security notions such as non-malleability and universal composability. Therefore, studies on
constructing and understanding CCA secure PKE schemes are important research topics in
the area of cryptography. In this thesis, we focus on “generic constructions” of CCA secure
PKE schemes from other cryptographic primitives, and make several contributions both from
practical and theoretical points of view.

Firstly, aiming at generic constructions that lead to CCA secure PKE schemes with prac-
tical efficiency, we focus on the so-called “IBE-to-PKE” transformation paradigm, where IBE
stands for identity-based encryption and is a kind of PKE scheme where any string can be
used as a public key. This is a methodology that transforms an IBE scheme which only
satisfies security against chosen plaintext attacks (CPA security), the least requirement as an
encryption scheme, into a CCA secure PKE scheme, and is the only known generic method-
ology with which we can construct CCA secure PKE schemes with practical efficiency. The
biggest problem of this methodology is that the constructed PKE scheme has large ciphertext
size, even if we use a practical IBE scheme as a building block. We propose two approaches
to overcome this problem. The first approach is to require non-malleability, slightly stronger
security than CPA security, for the underlying IBE scheme, and develop a new very simple
IBE-to-PKE transformation where we only use one-way function, the weakest primitive used
in the area of cryptography, as an additional building block. The second approach is to de-
velop a new efficient encapsulation scheme, which is a special kind of commitment scheme and
is a primitive used in one of the previous IBE-to-PKE transformations, from a special kind
of pseudorandom generator. Both approaches do not need strong cryptographic primitives
as additional building blocks, and lead to CCA secure PKE schemes with smaller ciphertext
size than the previous IBE-to-PKE transformations.

Secondly, we focus on the problem of whether it is possible to construct a CCA secure
PKE scheme only from a CPA secure one. This is an important fundamental open problem
that leads to clarifying a necessary and sufficient condition to realize a CCA secure PKE
scheme. Regarding this problem, the best known positive results are the constructions of
so-called bounded CCA secure schemes from any CPA secure PKE scheme, where bounded
CCA security is security against adversaries that make at most the predetermined number
of decryption queries, and thus is weaker than ordinary CCA security. Since we can achieve
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the best possible security in the bounded CCA security notions, in order to further tackle
the fundamental problem, we need new security notions that capture intermediate security
notions that lie between CPA and CCA security in a different sense from bounded CCA
security. Motivated by this situation, in order to provide a theoretical foundation for fur-
ther tackling the above problem, we focus on parallel decryption queries for an extension of
bounded CCA security, and introduce a new security notion which we call "mixed CCA”
security. It captures security against adversaries that make single and parallel decryption
queries in a predetermined order, where each parallel query can contain unboundedly many
ciphertexts. Moreover, how the decryption oracle is available before and after the challenge
is also taken into account in this new security definition, which enables us to capture existing
major security notions that lie between CPA and CCA security, including a complex notion
like non-malleability against bounded CCA, in a unified security notion. We investigate the
relations among mixed CCA security notions, and show a necessary and sufficient condition
regarding implications/separations between any two notions in mixed CCA security. We then
show two black-box constructions of PKE schemes from CPA secure ones, one of which sat-
isfies a strictly stronger security notion than the security notions achieved by the existing
constructions of PKE schemes constructed only from a CPA secure one. We also discuss
the consequences of our results regarding security with parallel decryption queries and give
several observations.
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Chapter 1

Introduction

Contents

1.1 Overview and Motivation . ... .. .. ... eneene.. 1

1.2 Outline and Summary of Contributions . . ... ... ... ....

1.1 Overview and Motivation

Public key encryption (PKE) is a fundamental cryptographic primitive with which we can
communicate securely over possibly insecure network without shared secret information in
advance. The most fundamental security requirement, which is nowadays considered as a least
security requirement as a PKE scheme, is semantic security [60], also called IND-CPA security
(or just CPA security), which guarantees that a ciphertext does not leak any information
(even one-bit) of the corresponding plaintext. However, nowadays, security against chosen
ciphertext attacks (CCA security) [84, 93] is considered as a “standard” security notion that
is required in most practical applications/situations where PKE schemes are used. Roughly,
CCA security captures security against “active” adversaries that can access to an imaginary
machine called decryption oracle which on input a ciphertext returns a decryption result of it,
and has been shown to imply important strong security notions such as non-malleability [47, 7]
and universal composability [30, 35]. Therefore, studies on constructing and understanding
CCA secure PKE schemes are important research topics in the area of cryptography.

We can roughly categorize the approaches for constructing CCA secure PKE schemes into
two types: Constructions from specific number-theoretic assumptions and constructions from
general assumptions. (From now on, we write IND-CCA1 to denote non-adaptive CCA secu-
rity [84] and IND-CCA2 to denote adaptive CCA security [93])

The approaches of the first type have been successful so far from both theoretical and
practical points of view. After the first novel practical scheme based on the decisional Diffie-
Hellman (DDH) assumption by Cramer and Shoup [43], many practical IND-CCA2 secure
PKE schemes that pursue smaller ciphertext size, have small computation costs, and/or base
security on weaker assumptions have been constructed so far, e.g. [75, 27, 70, 98, 65, 37, 61,
67, 73, 66, 41, 62]. Especially, the scheme by Cash et al. [37] (and the schemes in recent
papers [61, 41, 62]) is based on the computational DH (CDH) assumption, while the scheme
by Hofheinz and Kiltz [67] is based on the factoring assumption, and both assumptions are
very fundamental in the area of cryptography.



The approaches of the second type, which we call generic constructions, have also been
successful, mainly from a theoretical point of view. Naor and Yung [84] proposed a generic con-
struction of IND-CCA1 secure PKE schemes from semantically secure (IND-CPA) PKE schemes,
using non-interactive zero-knowledge (NIZK) proofs [17]. It is known that if enhanced trap-
door permutations exist, then NIZK proofs for any N P language is possible [15, 56]!. Based
on the Naor-Yung paradigm, several constructions of IND-CCA2 secure PKE schemes were
also proposed [47, 96, 77]. Since the existence of enhanced trapdoor permutations implies
the existence of IND-CPA secure PKE schemes, these results suggest that we can construct
IND-CCA2 secure PKE schemes from any enhanced trapdoor permutation. (We review other
generic constructions of IND-CCA2 secure PKE schemes in Appendix 4.1.3.)

However, to the best of our knowledge, the following two questions have not been solved
before:

o [s there a generic construction that lead to CCA secure PKE scheme with practical
efficiency?

e [s it possible to generically construct a CCA (IND-CCA1 or IND-CCA2) secure PKE
scheme from any IND-CPA secure one?

The first question is impotant, (of course as it indicates) from the practical point of
view, while the second question is a famous fundamental problem that lead to clarifying a
necessary and sufficient condition of a CCA secure PKE scheme. In this thesis, we make
progress towards these problems.

1.2 Outline and Summary of Contributions

In this thesis, we make contributions to the generic constructions of CCA secure PKE schemes.
Roughly, our contributions can be classified into two parts: practical aspects and theoretical
aspects. The contruction for each of aspects are summarized below. (All the technical terms
that appear below will either be defined in Chapter 2 or in the chapter where the results are
presented.)

e In Chapter 3, aiming at generic constructions that lead to CCA secure PKE schemes
with practical efficiency, we focus on the so-called IBE-to-PKE transformation paradigm
[34, 26], which is the only known generic methodology with which we can construct CCA
secure PKE schemes with practical efficiency. As the name indicates, this methodology
transforms an identity-based encryption scheme [99, 24|, a kind of PKE scheme in which
we can use any string as a public key, into a CCA secure PKE scheme, possibly using
some other cryptographic primitives as additional building blocks. To improve the large
ciphertext size that all the previous methods sufferred from, we propose two approaches.
The first approach is to require non-malleability [47, 13, 14], slightly stronger security
than CPA security, for the underlying IBE scheme, and develop a new very simple IBE-
to-PKE transformation where we only use one-way function, the weakest primitive used
in the area of cryptography, as an additional building block. The second approach is to
develop a new efficient encapsulation scheme [26], which is a special kind of commitment
scheme and is a primitive used in one of the previous IBE-to-PKE transformations,

Tt was shown in [57] that we actually need the so-called doubly-enhanced trapdoor permutations.



from a special kind of pseudorandom generator. Both approaches do not need strong
cryptographic primitives as additional building blocks, and lead to CCA secure PKE
schemes with smaller ciphertext size than the previous IBE-to-PKE transformations.

In Chapter 4, We focused on the problem of whether it is possible to construct a CCA
secure PKE scheme only from a CPA secure one is one of the most important funda-
mental open problems, which leads to clarifying a necessary and sufficient condition to
realize a CCA secure PKE scheme. Regarding this problem, the best known positive
results are the constructions of so-called bounded CCA secure schemes from any CPA
secure PKE scheme [40, 38], where bounded CCA security is security against adversaries
that make at most the predetermined number of decryption queries, and thus is weaker
than ordinary CCA security. Since we can achieve the best possible security in the
bounded CCA security notions, in order to further tackle the fundamental problem, we
need new security notions that capture intermediate security notions that lie between
CPA and CCA security in a different sense from bounded CCA security. Motivated
by this situation, in order to provide a theoretical foundation for further tackling the
above problem, we focused on parallel decryption queries for the extension of bounded
CCA security, and introduce a new security notion which we call mized CCA secu-
rity. It captures security against adversaries that make single and parallel decryption
queries in a predetermined order, where each parallel query can contain unboundedly
many ciphertexts. Moreover, how the decryption oracle is available before and after
the challenge is also taken into account in this new security definition, which enables
us to capture existing major security notions that lie between CPA and CCA security,
including complex notion like non-malleability against bounded CCA, in a unified se-
curity notion. We investigated the relations among mixed CCA security notions, and
show a necessary and sufficient condition regarding implications/separations between
any two notions in mixed CCA security. We then showed two black-box constructions
of PKE schemes from CPA secure ones. The first scheme satisfies a strictly stronger
security notion than the security notions achieved by the existing constructions of PKE
schemes constructed only from a CPA secure one, while the second one achieves yet
another security notion that has not been achieved by the previous constructions. We
also discussed the consequences of our results regarding security with parallel decryption
queries, and give several observations as well as some open problems.
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In this Chapter, we review the basic terminology, notation, and definitions of primitives
that appear throughout the thesis.

2.1 Basic Notations

We use the following notations: N denotes the set of all integers, and if ¢ € N then [¢] =
{1,...,q}. “z <+ y” denotes that x is chosen uniformly at random from y if y is a finite set,
x is output from y if y is a function or an algorithm, or y is assigned to x otherwise. “z||y”
denotes a concatenation of x and y. “|x|” denotes the size of the set if = is a finite set or
bit length of z if z is an element of some set. “PPTA” denotes a probabilistic polynomial
time algorithm. Unless otherwise stated, algorithms considered in this thesis are PPTAs. If
A is a probabilistic algorithm then y < A(z;r) denotes that A computes y as output by
taking « as input and using r as randomness. A® denotes an algorithm A with oracle access
to O. A function f(k) is said to be negligible if for any positive polynomial p(k) and for all
sufficiently large k, we have f(k) < ﬁ. A function g(k) is said to be overwhelming if 1 —g(k)
is negligible.



Exptlgf:f{m(k) :
(pk, sk) + PKG(1%);
(mo,my,sta) < A?l (pk);

Exptr 4" (k) : . b+ {0,1}; Available oracles
(pk, sk) < PKG(1 ()951 c* < PEnc(pk, ms); ATK ‘ O1(+) ‘ Oa()
P TR () e ax (e sta) cex I +
c* < PEnc(pk, my); where ¢ = (c},c,...); CCAL PDec(sk, )
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2 »StA) = ! q-CCA2 | PDec(sk,-) | PDec(sk,-)
If O’ = b then return 1 m’ (m/u m/2, s m;:}‘); (L means the oracle is unavailable.)

else return 0 —

b As(m/,st/y);

If o = b then return 1
else return 0

Figure 2.1: Experiments for defining security notions of PKE schemes

2.2 Public Key Encryption
A public key encryption (PKE) scheme II consists of the following three PPTAs:

PKG: A key generation algorithm that takes 1* (security parameter k) as input, and outputs
a public/secret key pair (pk, sk). We write: (pk, sk) < PKG(1¥).

PEnc: An encryption algorithm that takes pk and a plaintext m € My as input, and outputs
a ciphertext c. We write: ¢ < PEnc(pk, m).

PDec: A deterministic decryption algorithm that takes sk and ¢ as input, and outputs a
plaintext m or an error symbol L. We write: m «— PDec(sk,c).

where M is a plaintext space of II.
We require PDec(sk, PEnc(pk, m)) = m for all (pk, sk) output from PKG and all m € M.

Security Notions for PKE Schemes. The security notions for PKE schemes are ex-
pressed by a combination of a goal and an attack type of an adversary. As conventional secu-
rity notions for PKE schemes, here we recall indistinguishability (IND) and non-malleability
(NM) for security goals and chosen plaintext attacks (CPA), non-adaptive chosen ciphertext
attacks (CCA1), adaptive chosen ciphertext attacks (CCA2), and g-bounded chosen ciphertext
attacks (g-CCA2) [40] for attack types of an adversary. Non-malleability for PKE schemes we
use in this thesis is the so-called parallel chosen-ciphertext attack based definition [13, 14],
which is equivalent to the indistinguishability based definition used in [89, 90]'.

Formally, we define the security notions IND-ATK and NM-ATK of a PKE scheme II =
(PKG, PEnc, PDec) for ATK € {CPA,CCA1,CCA2,¢-CCA2} (with ¢ > 0) via the experiments
Exptﬁ\f&_“m and Exptbﬂ’f:fTK in Figure 2.1 that an adversary A = (A1, A2(,.A3)) runs in, respec-

tively. We refer to the vector ? of ciphertexts that the NM-ATK adversary of the second stage

outputs as the final parallel query (though it is not a query to an oracle), and the vector m/
as its answer.

1Pass et al. [90] prove that many-message (indistinguishability-based) non-malleability, which considers
multiple challenge messages, and single-message non-malleability, adopted in this thesis, are equivalent.



We make several restrictions: If ATK = ¢-CCA2, then the total number of A’s queries to
the oracles @1 and O3 must be less than or equal to ¢. In both types of experiments, As is
not allowed to issue ¢* to Oy if ATK € {CCA2, g-CCA2}. Besides, in the NM-ATK experiments,

Ay is not allowed to include ¢* into ¢ .
We define the advantage of an adversary A in the GOAL-ATK experiment by the following

function of the security parameter k: Advcno’ﬁ{“_ATK(k) = \Pr[ExptGH%{“_ATK(k) =1] -1

Definition 1. Let GOAL € {IND,NM} and ATK € {CPA,CCA1,CCA2,q-CCA2}. We say that a
PKE scheme 11 is (t,€)-GOAL-ATK secure if we have Adv%?ﬂ“'ATK(k) < € for any algorithm
A running in time less than t. Furthermore, we simply say that II is GOAL-ATK secure if
Adv%ﬁﬂ““x(k) is negligible for any PPTA A.

Implications and Separations of Security Notions. In this thesis, we will show several
implications and separations of security notions. We follow the methodology used in several
papers [7, 92, 64, 40, 82]. Though we write only the definition for PKE schemes, the same is
defined for any primitive.

Definition 2. Let X and Y be security notions for PKE schemes. We say that X security
implies Y security for PKE schemes if any X secure PKE scheme is also Y secure. We say
that X security does mot imply Y security for PKE schemes if, under the assumption that X
secure PKFE schemes exist, there exists a PKE scheme which is X secure but is not Y secure.

Smoothness. The notion of smoothness of PKE schemes was recently formalized by Bellare
et al. [8]. The smoothness of a PKE scheme II = (PKG, PEnc, PDec) with plaintext space M,
is defined as follows:

Smthyr (k) = E max Pr [ = (]
(pk,sk)«PKG(1¥) | (m,c)eMmx{0,1}* ¢/<PEnc(pk,m)
Definition 3. We say that a PKE scheme 11 is e-smooth if we have Smthyi(k) < e. Further-
more, we simply say that I1 is smooth if Smthr(k) is negligible.

Shielding Black-Box Constructions. We briefly recall the definition of a shielding black-
box construction of a PKE scheme that is secure in the sense of X from a PKE scheme that
is secure in the sense of Y. The notion of black-box constructions we mention in this thesis
is classified as fully-black-box ones [94], but specified for PKE-to-PKE constructions. (for
details, see [94]). The notion of the shielding constructions is from [55].

Definition 4. Let X and Y be security notions for PKE schemes. We say that there exists a
shielding black-box construction of an X secure PKE scheme from a Y secure PKFE scheme, if
there exist oracle PPTAs 11 = (PKG, PEnc, PDec) and B with the following properties: For all
algorithms m = (pkg, penc, pdec) and A (each algorithm can be of arbitrary complexity),

Correctness: If satisfies correctness as a PKE scheme, so does TIPKePenc,pdec — (pKGPke,penc,pdec
kg,penc,pdec kg,pdec
PEncP & Penc.paec - PRecPréPAec),

Security: If A breaks X security of [IPk&Penc,pdec — (PKkag’pe"C’pdec, PEncPke-penc,pdec. PDecpkg’pdec)
then BAPkepencpdec proqks Y security of .

(Note that PDec does not have access to penc.)
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Figure 2.2: Experiments for defining security notions KEMs

2.3 Key Encapsulation Mechanism

A key encapsulation mechanism (KEM) I consists of the following three PPTAs:

KKG: A key generation algorithm that takes 1% (security parameter x) as input, and outputs
a public/secret key pair (pk, sk). We write: (pk, sk) < KKG(1%).

KEnc: An encapsulation algorithm that takes pk as input, and outputs a ciphertext ¢ and a
session-key K € K. We write: (¢, K) < KEnc(pk, m).

KDec: A deterministic decapsulation algorithm that takes sk and ¢ as input, and outputs a
session-key K or an error symbol L. We write: K < KDec(sk,c).

where K is a session-key space of T'.
We require KDec(sk,c) = K for all (pk, sk) output from KKG and all (¢, K') output from
KEnc(pk).

Security Notions for KEMs. In an analogous way to the security definitions for PKE
schemes, the security notions for KEMs are expressed by the combination of a goal and an
adversary’s attack type. We recall IND and NM for security goals and CPA, CCA1, CCA2, and
q—CCA2 for attack types of an adversary. Like the definition for PKE schemes, non-malleability
for KEMs we use in this thesis is the parallel chosen-ciphertext attack based definition [82, 64].

Formally, we define the security notions IND-ATK and NM-ATK of a KEM I' = (KKG, KEnc, KDec)

(with the session-key space K) for ATK € {CPA, CCA1,CCA2, g-CCA2} (with ¢ > 0) via the exper-
iments Expf'y *™ and Expl"{™ in Figure 2.2 (bottom) that an adversary A = (A1, As(, As3))
runs in, respectively. The restrictions we need to make are exactly the same as those for PKE
schemes.

We define the advantage of an adversary A in the GOAL-ATK experiment by the following
function of the security parameter k: AdviY ™™ (k) = | Pr[Exptf2f ™ (k) = 1] — 3.

Definition 5. Let GOAL € {IND,NM} and ATK € {CPA,CCA1,CCA2,q-CCA2}. We say that a
KEMT is (t,€)-GOAL-ATK secure if we have Adv%?ﬁL'ATK(k) < € for any algorithm A running
in time less than t. Furthermore, we simply say that I' is GOAL-ATK secure if Advlcﬂ?ﬁ\L_ATK(k)

s negligible for any PPTA A.



Smoothness. The notion of smoothness of KEMs was recently formalized by Bellare et
al. [8]. The smoothness of a KEM I' = (KKG, KEnc, KDec), denoted by Smthr, is defined as
follows:

Smthr (k) = E max Pr [ =]
(pk,sk)<KKG(1%) |c€{0,1}* (¢/,K)«KEnc(pk)

Definition 6. We say that a KEM I" is e-smooth if we have Smthr(k) < e. Furthermore, we
simply say that T' is smooth if Smthr(k) is negligible.

For our results, we will utilize the following result shown by Bellare et al. [8]2.

Lemma 1. [8] If a KEM T is IND-CPA secure, then I' is smooth.

2.4 Data Encapsulation Mechanism

A data encapsulation mechanism (DEM) D consists of the following two PPTAs:

DEnc: An encryption algorithm that takes a session-key K € K and a plaintext m € M as
input, and outputs a ciphertext c¢. We write: ¢ - DEnc(K,m).

DDec: A deterministic decryption algorithm that takes K and c¢ as input, and outputs a
plaintext m or an error symbol L. We write: m < DDec(K,c).

where K and M are a session-key space and a plaintext space of D, respectively.

We require DDec(K, DEnc(K,m)) = m for all K € K and all m € M.

We define the IND-CCA2 advantage of an adversary A = (A1, A2) against a DEM D =
(DEnc, DDec) as follows:

Adv%‘&[cuz = | Pr[K + K;(mg, m1,sta) < A?l; b+ {0,1};
1
¢* « DEnc(K,my); b+ AS2(c*,sty) : b = b] — 5
where O;(-) = Oy(+-) = DDec(K, ) is the decryption oracle, and Az is not allowed to issue the
challenge ciphertext ¢* to Os.

Definition 7. We say that « DEM D is (t,¢)-IND-CCA2 secure if we have Advpy"*** < ¢ for
any algorithm A running in time less than t. Furthermore, we simply say that D is IND-CCA2

secure if AdeIBiCC“ is negligible for any PPTA A.

2.5 Identity-Based Encryption

An identity-based encryption (IBE) scheme II consists of the following four (probabilistic)
algorithms.

ISetup: A setup algorithm that takes 1* (security parameter k) as input, and outputs a pair of
global parameters prm and a master secret key msk. We write: (prm, msk) < ISetup(17).

2Strictly speaking, the authors of [8] show that if a KEM satisfies IND-CCA2 security, then the KEM is
smooth. However, in the proof they do not use any decryption query and thus their proof carries over to the
case of IND-CPA secure KEMs.



[Ext: A key extraction algorithm that takes prm, msk, and an identity ID € Zy; as input, and
outputs a decryption key dkjp corresponding to ID. We write: dkip < IExt(prm, msk, ID).

[Enc: An encryption algorithm that takes prm, ID € Zpy, and a plaintext m € My as input,
and outputs a ciphertext x. We write: x < IEnc(prm,ID, m).

IDec: A (deterministic) decryption algorithm that takes dkjp and x as input, and outputs a
plaintext m or an error symbol L. We write: m < |Dec(dkp, X)-

where Z11 and M1 are an identity space and a plaintext space of 11, respectively.
We require IDec(IExt(prm, msk, ID), [Enc(prm, 1D, m)) = m hold for all (prm, msk) output
from ISetup, all ID € Zy, and all m € M.

NM-sID-CPA Security. Non-malleability against selective identity, chosen plaintext at-
tacks (NM-sID-CPA) of an IBE scheme II is defined using the following NM-sID-CPA game
between an adversary A and the NM-sID-CPA challenger C:3

Init. Given 1*, A commits the target identity ID*.
Setup. C runs (prm, msk) < ISetup(1*). Then C gives prm to A and keeps msk to itself.

Phase 1. A can adaptively issue extraction queries ID to A, except that A is not allowed
to issue the target identity ID*. C responds to each query ID by running dkp <
[Ext(prm, msk, ID;) and returning dkip to A.

Challenge. A specifies a probabilistic algorithm M7, that outputs some element in the
plaintext space My where all the possible values output by My, are of equal length,
and sends the description of Mj; to C. C obtains m* and m* by running Mj; twice,
computes a challenge ciphertext x* < IEnc(prm, ID*, m*), sends x* to A, and keeps m*
to itself.

Phase 2. A can issue extraction queries in the same way as Phase 1.

Output. A outputs a vector of ciphertexts X' = (x4, X, - - -, Xy), and a description of a
relation R(-,-) of arity (¢4 1), where the first input is a scalar and the second input is
a vector of length /.

C runs dkpp+ < |Ext(prm, msk,ID*), decrypts all elements in Y’ by running mj <
IDec(dkip+, x;) for 1 < i < ¢, and obtains 7' = (m},mb, ..., m)).

We define R* as an event that [y* ¢ X' A L ¢ m' A R(m*, mi’) = true]. We also define R* in
the same way as R* except that m* is replaced with m*. We then define the NM-sID-CPA
advantage of A attacking II as follows:

Adviy 1P CPA = Pr[R*] — Pr[R7).

3Here, we choose to write this security via a game between an adversary and a challenger, and not in the
“experiment” style that we did for PKE schemes, for readability of the proof in Section 3.3.
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Definition 8. We say that an IBE scheme 11 is (t,4,qg, €)-NM-sID-CPA secure if we have
Ade%'SID'CPA < e for any algorithm A that outputs at most £ ciphertexts and makes at most
qE extraction queries, and such that the total of A’s running time, the running time of M,
and the time needed to evaluate the relation R output by A is less than t. Furthermore, we
simply say that 11 is £-NM-sID-CPA secure if Ade}\f{SID'CPA is negligible for any PPTA A
that outputs at most £ ciphertexts.

Remark. NM-sID-CPA security of an IBE scheme we use in this thesis is from [50, 5]. This
type of non-malleability is called comparison-based non-malleability [13, 14], which was first
introduced in [7] for PKE schemes. Note that in our definition of the NM-sID-CPA game, an
adversary cannot gain the advantage if it outputs invalid ciphertexts (i.e., ciphertexts that
decrypt to L). It was shown in [14, 90] that this type of non-malleability is, depending on
attacks, equivalent to or weaker than the one where the adversary may gain the advantage
even if it outputs invalid ciphertexts. In the original definition, the number [ of ciphertexts
need not be predetermined and can be dependent only on the adversary. (Asymtotically, ¢ can
be any polynomial in the security parameter k.) If ¢ is bounded to be some predetermined
value independently of an adversary, then it is weaker than the original definition. Myers
and shelat [81] recently defined this weaker form of non-malleability for PKE schemes and
call it /-wise non-malleability. The relation between this ¢-wise definition and the original
definition is similar to the relation between the bounded CCA security [40] and the ordinary
(unbounded) CCA security. In this thesis, we will need an IBE scheme non-malleability for
¢ =1 (i.e. 1-wise non-malleability). Moreover, it was shown in [50] that the selective identity
security is strictly weaker than adaptive identity security for IBE schemes. Therefore, in
summary, what we actually need is a very weak form of non-malleability for IBE schemes.

2.6 Tag-Based Encryption

A tag-based encryption (TBE) [78, 69] is an extension of a PKE scheme so that the encryption
and decryption algorithms take an arbitrary string called tag as an additional input. TBE
has also been called “PKE with labels” in several previous papers e.g. [45]. A TBE scheme
IT consists of the following three (probabilistic) algorithms:

TKG: A key generation algorithm that takes 17 (security parameter k) as input, and outputs
a pair of a public key pk and a secret key sk. We write: (pk, sk) <+ TKG(1"%).

TEnc: An encryption algorithm that takes pk, a tag tag € Ty1, and a plaintext m € My as
input, and outputs a ciphertext x. We write: y < TEnc(pk, tag, m).

TDec: A (deterministic) decryption algorithm that takes sk, tag, and x as input, and outputs
a plaintext m or an error symbol L. We write: m <« TDec(sk, tag, x).

where 711 and M1y are a tag space and a plaintext space of 11, respectively.
We require TDec(sk, tag, TEnc(pk, tag, m)) = m hold for all (pk, sk) output from TKG, all
tag € i1, and all m € My.

NM-stag-wCCA Security. Here, we define non-malleability for TBE scheme. We note

that non-malleability defined here is slightly different from and stronger than the one defined
in [79]. For more details, see Section 3.3.3.
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Non-malleability against selective tag, weak chosen ciphertext attacks (NM-stag-wCCA)
of a TBE scheme II is defined using the following NM-stag-wCCA game between an adversary
A and the NM-stag-wCCA challenger C:

Init. Given 1*, A commits the target tag tag*.
Setup. C runs (pk, sk) < TKG(1%). Then C gives pk to A and keeps sk to itself.

Phase 1. A can adaptively issue decryption queries of the form (tag, x), except that A is
not allowed to issue the tag-ciphertext pair with tag = tag®. C responds to each query
(tag, x) by running m < TDec(sk, tag, x) and returning m to A.

Challenge. A specifies a probabilistic algorithm Myj; that outputs some element in the
plaintext space My where all the possible values output by M* are of equal length,
and sends the description of M* to C. C chooses m* and m* by running M* twice,
computes a challenge ciphertext x* <— TEnc(pk, tag*, m*), sends x* to A, and keeps m*
to itself.

Phase 2. A can issue decryption queries in the same way as Phase 1.

Output. A outputs a vector of ciphertexts X' = (x4, X, - - -, Xy), and a description of a
relation R(-,-) of arity (¢4 1), where the first input is a scalar and the second input is
a vector of length /.

C decrypts all elements in ' by running m,, < TDec(sk,tag*, x}) for 1 < ¢ < ¢, and
obtains 7’ = (m/, mb, .. L, my).

We define the NM-stag-wCCA advantage of A attacking II as follows:

Advyy "8 OO = Pr[R*] — Pr[R],
where R* and R* are defined in the same way as the NM-sID-CPA game (see Section 2.5).

Definition 9. We say that a TBE scheme 11 is (t, 4, qp, €)-NM-stag-wCCA secure if we have
Advgﬁ_Stag_CCA < e for any algorithm A that outputs at most £ ciphertexts and makes at most
gp decryption queries, and such that the total of A’s running time, the running time of My,
and the time needed to evaluate the relation R output by A is less than t. Furthermore, we
simply say 11 is £-NM-stag-wCCA secure if Advgf\ﬁ_Stag_CCA is negligible for any PPTA A that

outputs at most £ ciphertexts.

Remark. It is trivial to see that an NM-sID-CPA secure IBE scheme can be seen as a
NM-stag-wCCA secure TBE scheme if we regard an identity for the IBE scheme as a tag
for the TBE scheme, and as a decryption algorithm of the TBE scheme, an extraction and a
decryption algorithms of the IBE scheme are combined in a natural way.

2.7 Encapsulation Scheme

Boneh and Katz [26] introduced the notion of an encapsulation scheme, which works as the
main building block in the BK transformation. Roughly speaking, an encapsulation scheme is
a kind of commitment scheme that commits a random value, so that it can be later recovered
by using a decommitment. Formally, an encapsulation scheme E consists of the following
three (probabilistic) algorithms:
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ESetup: A setup algorithm that takes 1° (security parameter x) as input, and outputs a
public parameter prm. We write: prm < ESetup(1¥).

ECom: A commitment algorithm that takes a public parameter prm as input, and outputs a
committed value r € V, a commitment ¢ € C, and a decommitment d € D. We write:
(r,c,d) < ECom(prm).

ERec: A deterministic recovery algorithm that takes a public parameter prm, a commitment
¢ € C, and a decommitment d € D as input, and outputs a committed value r € VU{ L},
We write: r <— ERec(prm, ¢, d).

where V, C, and D are a committed value space, a commitment space, and a decommitment
space of F, respectively. We require that ERec(prm,c,d) = r hold for all prm output from
ESetup and all (r,¢,d) € V x C x D output from ECom(prm).

Hiding Property. We define the advantage of an adversary A against hiding property of
an encapsulation scheme E = (ESetup, ECom, ERec) as follows:

(ry,c*,d*) < ECom(prm);
rg Vi b A(prm, 1, ¢¥)

s b < {0,1}; prm < ESetup(1¥); 1
AdvElﬂing(k) =|Pr M =b 5|

Definition 10. We say that an encapsulation scheme E is (t, €)-hiding if we have Adv%i%ng(k) <
€ for any algorithm A running in time less than t. Furthermore, we simply say that E is hiding
if Adv%"i{“"g(k) is negligible for any PPTA A.

Binding Property. We define the advantage of an adversary A against binding property
of an encapsulation scheme F = (ESetup, ECom, ERec) as follows:

o prm < ESetup(1%);
Advp i "8(k) = Pr | (r*,c*,d*) < ECom(prm); : ERec(prm,c*,d') ¢ {L,r*} Ad # d*|.
d « A(prm,r*,c*, d*)

Definition 11. We say that an encapsulation scheme E is (t, €)-binding if we have Adv?’ji"g(k) <
€ for any algorithm A running in time less than t. Furthermore, we simply say that E is bind-
ing if Adv%”xmg(k) is negligible for any PPTA A.

2.8 Pseudorandom Generator

Let G : Dy — Ry be a function with |Dg| < |Rk|. We define the advantage of an adversary
A against pseudorandomness of G as follows:

1
Advlgﬁ(k) = |Pr[b < {0,1}; 2" < Dy;yi + G(x¥); 95 + Ri; b A(lk,yl’f) b =] — 5]
Definition 12. We say that a function G is a (t,€)-pseudorandom generator (PRG) if we

have Adv}gﬁ(k) < € for any algorithm A running in time less than t. Furthermore, we simply
say that G is a PRG if Advlgfi\(k:) is negligible for any PPTA A.
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Near Collision Resistance (for Predetermined Parts of Output). Boldyreva and
Fischlin [19] introduced the notion of near collision resistance (NCR) for predetermined parts
of output of a PRG. Roughly speaking, NCR property ensures that given a randomly chosen
input x € D, no adversary can efficiently find another input 2/(# x) € D such that the
predetermined parts of output becomes identical. Since an adversary cannot have a control
over one of the inputs, it is more related to target collision resistance [83, 12] than ordinary
(any) collision resistance [44]. According to the authors of [19] “near collision resistance” is
named after [16].

In this thesis, we will only use k-least significant bits of output of G as the predetermined
parts for NCR property, where & is the security parameter. Formally, we define the advantage
of an adversary A against NCR for k-least significant bits of output of G as follows:

Advhgglj‘{k_LSB(k) = Pr[z* + D;a’ + A(lk,x*) : k-LSB(G(2')) = k-LSB(G(z*)) A 2’ # 2.

Definition 13. We say that a function (or PRG) G is (t,€)-near collision resistant for
k-least significant bits of output (NCR-k-LSB) if we have Advﬁéfﬁk'LSB(k) < ¢ for any algo-
rithm A running in time less than t. Furthermore, we simply say that G is NCR-k-LSB if
Advgfﬁ{k'LSB(k) s negligible for any PPTA A.

2.9 Target Collision Resistant Hash Function

Let H : Dy, — Ry be a hash function with |Dg| > |Rg|. We define the advantage of an
adversary A against target collision resistance of H as follows:

Adviiy (k) = Pr[z* < Dyia’ « A(z*) : H(2') = H(z*) Ao # 2¥].

Definition 14. We say that H is a (t,€)-target collision resistant hash function (TCRHF)
if we have Adv}}‘i&(k) < € for any algorithm A running in time less than t. Furthermore, we

simply say that H is a TCRHF if Adv}?&(k) is negligible for any PPTA A.

2.10 Pseudorandom Function

Let F : {0,1}* x D, — R4 be an efficiently computable keyed-function, where the first
argument of F is regarded as a key (also called a seed or an “index”). We write Fi(-) to
mean F(K,-). We define the advantage of an adversary 4 against the pseudorandomness of
F' as follows:

AdVEE (k) = | Pr[K « {0,1}% : 1 « AP0 (17)]|—Pr[RF < FUNKp, %, : 1 « ARFO(1F)]|,

where FUNKp, _,z, is a set of all functions whose domain and range are Dy, and Ry, respec-
tively.

Definition 15. We say that F is (t, €)-pseudorandom function (PRF) if we have Adv?i(k) <
e for any algorithm A running in time less than t. Furthermore, we simply say that F is a
PRF if Adv?}i(k} is negligible for any PPTA A.
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2.11 Signature

A signature scheme Y consists of the following three PPTAs:

SKG: A key generation algorithm that takes 1% (security parameter k) as input, and outputs
a verification /signing key pair (vk, sigk). We write: (vk, sigk) < SKG(1¥).

Sign: A signing algorithm that takes sigk and a message m € M as input, and outputs a
signature 0. We write: o < Sign(sigk,m).

SVrfy: A deterministic verification algorithm that takes vk, m, and ¢ as input, and outputs
T if o is a valid message on m under the verification key vk, or L otherwise. We write:
T/L < SVrfy(vk,m, o).

where M is a message space of X.

We require SVrfy(vk, m, Sign(sigk,m)) = T for all (vk,sigk) output from SKG and all
m € M.

We define the advantage of an adversary A = (A;, A2) against strong one-time (SOT)
security of a signature scheme ¥ = (SKG, Sign, SVrfy) as follows:

AdvsY (k) = Pr[(vk, sigk) < SKG(1%); (m, st4) + A1 (vk); o « Sign(sigk,m);
(m/,0") < As(o,sta) : SVrfy(vk,m',0’) = T A (m/, ") # (m,0)]
Definition 16. We say that a signature scheme X is (t, €)-strongly one-time secure if we have

Adv%c&(k) < e for any algorithm A running in time less than t. Furthermore, we simply say
that 3 is strongly one-time secure if Adv%o’};\(k:) is negligible for any PPTA A.

2.12 Message Authentication Code

A message authentication code (MAC) scheme M consists of the following two algorithms:

Mac: A MAC tag generation algorithm that takes a key K € {0,1}* and a message m € M
as input, and outputs a MAC tag 7. We write: 7 <— Mac(K,m).

MVrfy: A deterministic verification algorithm that takes a key K € {0,1}*, m and 7 as input,
and outputs T if o is a valid message on m under the verification key K, or L otherwise.
We write: T/L « MVrfy(K, m, o).

where M is a message space of M.

We require MVrfy(K, m, Mac(K,m)) = T for all K € {0,1}* and all m € M.

We define the advantage of an adversary A = (Aj,.A2) against strong one-time (SOT)
security of a MAC M = (Mac, MVrfy) as follows:

AdV3T"4 (k) = Pr[K + {0,1}"; (m,st4) < A1 (1%); 7 < Mac(K,m);
(m/,7") = Aa(T,st4) : MVrfy(Km/, 7') = T A (m/, 1) # (m, T)]

Definition 17. We say that a MAC scheme M is (t,€)-strongly one-time secure if we have
Advﬁg’TA(k) < € for any algorithm A running in time less than t. Furthermore, we simply say
that M is strongly one-time secure if Advﬁ%A(l{) is negligible for any PPTA A.
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2.13 One-Way Function

Let f: Dy — Ry be a function where we can efficiently sample a uniformly random element
from Dy. We define the advantage of an adversary A against one-wayness of f as follows:

Advy (k) = Prlz < Dy;y  f(x);2’ — A(1%,y) : f(2') = 9.

Definition 18. We say that f is a (t,€)-one-way function (OWF) if we have Adv?c‘:’A(k) <e
for any algorithm A running in time less than t. Furthermore, we simply say that f is a
OWF if Adv?c‘:’A(k) is negligible for any PPTA A.
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3.1 Introduction

3.1.1 Background and Motivation

Studies on constructing and understanding efficient public key encryption (PKE) schemes
secure against chosen ciphertext attacks (CCA) [93, 47] are important research topics in the
area of cryptography. Among several approaches towards CCA secure PKE schemes, one
of the promising approaches is the “IBE-to-PKE” transformation paradigm [34], which is a
method to obtain CCA secure PKE schemes from identity-based encryption (IBE) schemes.
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In [34], Canetti, Halevi, and Katz showed a generic construction of CCA secure PKE
schemes from any semantically secure IBE scheme and one-time signature scheme (we call
this IBE-to-PKE transformation the CHK transformation). This construction is fairly simple,
and specifically, its ciphertext consists of (x, vk, o) where x is a ciphertext of the underlying
IBE scheme (under identity “vk”), vk is a verification key of a one-time signature scheme,
and o is a valid signature of x (under verification key vk). However, due to the use of a
one-time signature, ciphertext length of the resulting scheme becomes longer than that of the
underlying IBE scheme for |vk| and |o|, which might result in significantly large ciphertexts.

This method was later improved by Boneh and Katz [26] (we call the BK transformation)
by replacing a one-time signature in the CHK transformation with an encapsulation scheme
and a message authentication code (MAC) scheme, where an encapsulation scheme (the notion
of which is introduced in the same paper [26]) is a special kind of commitment scheme that
commits a random value. This method has a possibility of drastically reducing computation
costs for encryption and decryption algorithms and ciphertext size of the transformed PKE
scheme, compared to the CHK transformation. However, its ciphertext size directly depends
on the size of parameters (commitment, decommitment, and the committed value) of the
underlying encapsulation scheme, and thus an encapsulation scheme with large parameters
still yields a large ciphertext for a transformed PKE scheme. Since the concrete encapsulation
scheme that Boneh and Katz presented in [26] (we call the BK encapsulation scheme) had
somewhat large parameters, PKE schemes transformed via the BK transformation could not
be as size-efficient as existing practical CCA secure PKE schemes, e.g. [42, 75].

There are some IBE-to-PKE transformations which can be applied to IBE schemes with
specific properties or structures [3, 106]. Although these transformations achieve PKE schemes
with shorter ciphertext than those obtained from CHK and BK transformations, these trans-
formations sacrifice the generality of IBE schemes.

Hence, it is still desired to further achieve IBE-to-PKE transformations that achieve PKE
with shorter ciphertext length, without loosing generality. Moreover, there is still a room for
further improvement for the BK transformation in terms of ciphertext size, by designing an
encapsulation scheme with small parameter sizes.

3.1.2 Our Contribution
We have developed two appoaches regarding this topic, each of them are explained in detail
in the following subsections.

New IBE-to-PKE Transformation using Non-malleable IBE

We present a very simple IBE-to-PKE transformation which is fairly generic and practical.
In contrast to the previous transformations [34, 26] which require semantic security [60] for
the underlying IBE scheme, our proposed method requires non-malleability [47].

Informally, for a given IBE scheme IBE, we generate a ciphertext x of a PKE scheme
which is converted from IBE via our method as follows:

x = ( f(r),IBE.Enc(prm, “f(r)”, (m]|r)) ),

where m is a plaintext to be encrypted, r is a randomness, the second component of x is
an encryption of (m||r) with the encryption algorithm of a given IBE scheme IBE under
the identity “f(r)”, and f is a one-way function (OWF). It should be noticed that only a
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OWEF is directly used as an additional building block and thus fairly simple while in [34, 26]
more complicated tools, e.g. one-time signatures, are required (though these tools can be
obtained from OWFs in theory). As seen in the above construction, ciphertext overhead of
our construction is that of IBE plus |r| + |f(r)| = (256-bit) for 128-bit security, and this is
fairly efficient compared to the Boneh-Katz (BK) construction [26].

An obvious and crucial disadvantage of our proposed transformation is that it requires a
stronger assumption for the underlying IBE scheme, non-malleability. It is well known that
non-malleability is a significantly stronger notion of security than semantic security, and in
fact, except for CCA secure IBE schemes, no practical non-malleable IBE scheme is currently
known. ! Thus, we have to honestly remark that our proposal cannot be seen as a direct
improvement of the previous generic IBE-to-PKE transformations [34, 26]. However, once we
have an IBE scheme which is proved (or can be assumed) to be non-malleable, an efficient
CCA secure PKE scheme can be immediately obtained via our transformation. Also, we
believe that the simpleness of our transformation itself is theoretically interesting.

Our proof technique for the proposed method will be of another theoretical interest. Since
in the security proof, there exists a non-trivial issue which cannot be treated by straightfor-
ward application of known techniques, we have to concurrently carry out a totally different
proof strategy. Hence, we develop a dedicated proof technique for handling two different
strategies simultaneously.

Though there are several definitions for non-malleability so far [47, 7, 13, 89, 5], the non-
malleability for IBE our transformation requires is a very weak one. See the remark in the
Section 2.5 that is given after the formal definition of the non-malleability for IBE scheme.

Improving Boneh-Katz Transformation with Efficient Encapsualtion Scheme

Focusing on the size-efficiency of the BK transformation, we present an efficient encapsu-
lation scheme. Specifically, for 128-bit security, the ciphertext overhead (the difference of
size between the whole ciphertext and its plaintext) of a PKE scheme obtained via the BK
transformation with our encapsulation scheme can be that of the underlying IBE scheme plus
384-bit, while that of a PKE scheme via the BK transformation with their encapsulation
scheme needs to be that of the underlying IBE scheme plus at least 704-bit.

The main building block used in the proposed encapsulation scheme is a pseudorandom
generator (PRG) with a special property called near collision resistance for predetermined
parts of output (NCR for short), which was first introduced and used by Boldyreva and
Fischlin in [19]. Roughly speaking, NCR property is target collision resistance [83, 12] for
some part of output. We only consider x-least significant bits of output as the predetermined
parts of NCR property, where s is the security parameter. See Section 2.8 for more details.

We also show concrete instantiations of a PRG with NCR property. One construction is
a slight modification of a practical PRG [1] used in practice which is based on cryptographic
hash functions such as SHA-1. If we can assume that the hash functions used in the PRG
satisfy target collision resistance, we immediately obtain a PRG with NCR property. Though
we can provide only a heuristic analysis for this construction, we believe that it is fairly
reasonable to assume that this practical PRG satisfies NCR property and we can use it in
practical scenarios.

'In theory, it is possible to construct non-malleable IBE schemes generically from any semantically secure
IBE schemes using the techniques shown by Pass et al. [89] and Choi et al. [38] (while it is not known how to
generically construct CCA secure IBE schemes).
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In order to confirm that a PRG with NCR property, though seemingly strong, is actually
a fairly weak primitive, we also address how to generically construct such a PRG from any
one-way permutation. Interestingly, the construction is the well-known one by Blum and
Micali [18] and Yao [105] itself. Namely, the Blum-Micali-Yao PRG has NCR property as it
is.

3.1.3 Related Works

Identity-Based Encryption. Here, we briefly review IBE schemes. The concept of the
identity-based encryption was introduced by Shamir [99]. Roughly speaking, an IBE scheme
is a PKE scheme where one can use an arbitrary string (e.g., an email address) as one’s
public key. Boneh and Franklin [24] proposed a first efficient scheme (in the random oracle
model [10]) under the computational bilinear Diffie-Hellman (CBDH) assumption. They also
defined the security models for IBE schemes. Sakai, Ohgishi, and Kasahara [97] independently
proposed an IBE scheme with basically the same structure as the Boneh-Franklin IBE scheme
(without proper security discussions). In the same year, Cocks [39] also proposed an IBE
scheme secure in the random oracle model based on the decisional quadratic residuosity (QR)
assumption. Horwitz and Lynn [68] introduced a notion of the hierarchical IBE (HIBE)
which supports hierarchical structure of identities and Gentry and Silverberg [54] achieved
the first scheme secure in the random oracle model under the CBDH assumption. Canetti,
Halevi, and Katz [33] introduced a weaker security model called selective identity security, and
proposed an IBE scheme with this security without using random oracles under the decisional
bilinear Diffie-Hellman (DBDH) assumption. Boneh and Boyen [20] proposed two efficient IBE
schemes which are selective identity secure in the standard model, and in the following this
works, Boneh and Boyen [21] and Waters [102] proposed fully secure (H)IBE schemes (under
the DBDH assumption). Boneh, Boyen, and Goh [22] proposed an HIBE scheme with constant
ciphertext size, but was only selective identity secure in the standard model (can be fully
secure in the randon oracle model) under a relatively complex g-type assumption. Gentry [51]
proposed a practical IBE scheme which has short parameters, tight security reduction, and
anonymity of identities, but required a g-type assumption. Boneh, Gentry, and Hamberg [25]
constructed efficient variants of the Cocks scheme [39] which can be proven to be fully secure
in the random oracle model based on the QR assumption, or in the standard model based
on the “interactive” QR assumption. Gentry and Halevi [52] constructed a first fully secure
HIBE scheme which allows a polynomially-many level hierarchy of identities under a ¢-type
assumption. Waters [103] proposed a first (H)IBE scheme with short parameters under simple
assumptions (the decisional Linear and the DBDH assumptions), using a new concept called
dual system encryption. Using the same technique, Lewko and Waters [76] constructed an
HIBE scheme with shorter parameters. Gentry, Peikert, and Vaikuntanathan [53] constructed
an IBE scheme which is based on the worst case hardness of standard lattice problems.

Other IBE-to-PKE Transformations and Tag-Based Encryption. As mentioned
above, one promising approach for constructing CCA secure PKE schemes is to transform an
IBE scheme via the IBE-to-PKE transformation paradigm. We review them here. Canetti,
Halevi, and Katz [34] proposed a generic method for obtaining CCA secure PKE schemes. Fol-
lowing [34], there have been some attempts to construct practical CCA secure PKE schemes
by using specific algebraic properties of underlying IBE schemes, and especially, based on
this approach Boyen, Mei, and Waters [27] proposed the currently best known CCA secure

20



PKE schemes in terms of ciphertext length by using certain specific IBE schemes [20, 102].
Boneh and Katz [26] improved the efficiency of [34] by replacing a one-time signature with a
combined use of MAC and a new primitive called an encapsulation scheme, which is essen-
tially a (non-interactive) commitment scheme where we can only commit to random messages
and can be realized by a combination of a pairwise-independent hash function and a target
collision resistant hash function. In order to further improve the efficiency of [26], Matsuda
et al. [80] showed efficient constructions of encapsulation schemes, which require either a
one-way permutation or a hash function which satisfies some practical assumptions.

Using chameleon hash functions [74], Abe et al. [3] proposed several IBE-to-PKE transfor-
mations for partitioned identity-based key encapsulation mechanisms and constructed several
CCA secure PKE schemes via the Tag-KEM/DEM paradigm [4]. Zhang [106] independently
proposed two transformations that also use chameleon hash functions, where the first trans-
formation is applicable to schemes with separable property which are similar to the partitioned
property [3] and the second transformation is applicable generically but requires stronger se-
curity for the used chameleon hash function. In this thesis, we do not aim at a size-efficient
IBE-to-PKE transformation at the cost of “generality” for the underlying IBE, so that the
transformation is widely applicable. Moreover, a chameleon hash function usually yields a
computation of exponentiations, which is heavier compared to computation of “symmetric-
key” primitives such as block ciphers.

Kiltz [69] showed that the IBE-to-PKE transformation paradigm can be generically ap-
plied to tag-based encryption (TBE) schemes [78] of appropriate security, which are weaker
primitives than IBE schemes. Similar results can be obtained from our result (see Section
3.3.3).

3.1.4 Organization of This Chapter

In Section 3.2, we review the BK transformation [26] and its mechanism, as well as the
encapsulation scheme presented in [26], and discuss the efficiency.

In Section 3.3, we show our first approach regarding the IBE-to-PKE transformation
paradigm. In particular, we propose a new generic IBE-to-PKE transformation which can be
applied to any non-malleable IBE schemes, and discuss its security. There, we also discuss non-
malleability for TBE schemes and apply our transformation to non-malleable TBE schemes.

In Section 3.4, we present our proposed encapsulation scheme from a PRG with NCR
property and prove its security. We also show a practical instantiation of such PRG from a
cryptographic hash function, as well as how to construct it from any one-way permutation.

Then in Section 3.5, we compare our result with previous generic IBE-to-PKE trans-
formations. Finally in Section 3.5, we compare our result with other generic IBE-to-PKE
transformations. Section 3.6 is the conclusion of this chapter.

Publication Information. The results shown in this chapter were presented as [b] and [c]

(see Appendix A). In particular, the results in Section 3.3 were shown in [c], and those in
Section 3.4 were shown in [b].

3.2 The Boneh-Katz Transformation

In this section, we briefly review the IBE-to-PKE transformation by Boneh and Katz [26].
Let IT = (ISetup, IExt, IEnc,|Dec) be an IBE scheme, EF = (ESetup, ECom, ERec) be an
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PKG(1%) : PEnc(PK,m) :
(msk, prm;) < ISetup(1¥) (r,c,d) <+ ECom(prmp)
prmp < ESetup(1¥) y < lEnc(prmy, ¢, (m||d))
SK < msk; PK <« (prm;,prmg) tag «+ Mac(r,y)
Output (SK, PK). X < (¢, y,tag)
Output y.
PDec(SK, x) :

Parse x as (c,y,tag).; dkc < IExt(prm;, msk,c)

(m||d) < IDec(dke,y) (if this returns L then output L and stop.)
r < ERec(prmp, ¢, d) (if this returns L then output L and stop.)
Output m if MVrfy(r,y,tag) = T. Otherwise output L.

Figure 3.1: The Boneh-Katz Transformation

encapsulation scheme, and ¥ = (Mac, MVrfy) be a MAC scheme. Then, a PKE scheme
IT" = (PKG, PEnc, PDec) obtained via the BK transformation is as shown in Fig. 3.1.
The following states the security of the PKE scheme obtained via the BK transformation.

Theorem 1. ([26, 23]) If the underlying IBE scheme 11 is (t,q, €pe)-IND-sID-CPA secure,
the encapsulation scheme E is (t, €pige)-hiding and (t, €ping)-binding, and the MAC scheme %
is (t, €mac)-strongly one-time secure, then the PKE scheme Il in Fig. 3.1 is (t —o(t), q, 4€;pe +
2€hide + €bind + Q€mac)-IND-CCA2 secure.

Notice that the overhead of ciphertext size from that of the underlying IBE scheme is
caused by a commitment ¢, a decommitment d, and a MAC tag tag. Since the size of a MAC
tag can be k-bit for k-bit security and is optimal, designing an encapsulation scheme such
that the sizes of parameters (c,d) are small is desirable for obtaining a PKE scheme with a
small ciphertext overhead.

In [26], the authors also showed a concrete construction of an encapsulation scheme. Here,
we briefly review their encapsulation scheme. ESetu p(lk ) picks a target collision resistant hash
function (TCRHF) TCR and a pairwise-independent hash function (PIHF) h, and outputs
prm < (TCR, h). ECom(prm) picks a decommitment d randomly, computes ¢ - TCR(d) and
r < h(d), then outputs (r,c,d). ERec(prm,c,d) checks whether TCR(d) = ¢ or not, and
outputs r < h(d) if this holds or L otherwise.

Their scheme only uses a TCRHF and a PTHF for both the commitment and the recovery
algorithms and thus is fairly efficient in terms of computation cost. However, due to the
leftover hash lemma [63] used to show hiding property, we need to set d to be at least
448-bit for 128-bit security (it achieves hiding property in a statistical sense). Thus, even
though we use an efficient IBE scheme such as [20] as the underlying IBE scheme in the BK
transformation, it results in a PKE scheme with somewhat large ciphertext because of the size
of d. However, as the authors of [26] pointed out, it is important to note that we do not need
“statistical security” for neither hiding nor binding properties. We only need “computational
security” for both. (Our proposed encapsulation scheme in the next section actually achieves
them in computational sense.)

As we have seen in this section, designing a size-efficient encapsulation scheme directly
leads to the improvement for ciphertext overhead of a PKE scheme obtained via the BK
transformation. Thus, in the next section we present a new efficient encapsulation scheme.
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PKG(1"%) : PEnc(PK,m) :
(prm, msk) <« ISetup(1%) r < {0,1}7; ID < f(r)
Pick a OWF f. y < |Enc(prm, ID, (m]|r))
PK « (prm, f); SK <« msk x < (ID,y)
Output (PK, SK). Output x.

PDec(SK, x) :

Parse x as (ID,y).;  dkpp < IExt(prm, msk, D)
(m||r) / L < IDec(dkip,y) (if L then output L and stop.)
Output m if f(r) = ID. Otherwise output L.

Figure 3.2: The Proposed IBE-to-PKE Transformation

3.3 Proposed Transformation using Non-malleable IBE

In this section, we give the details of the construction of our simple IBE-to-PKE transforma-
tion from any NM-sID-CPA secure IBE scheme.

The idea behind the construction is as follows. Suppose f is a OWEF. In our construction,
a randomness r is encrypted as a part of a plaintext of the underlying non-malleable IBE
scheme using f(r) as an identity. In the decryption, the relation between r and f(r) is then
used to check the validity of the ciphertext. Constructed like this, it seems hard to make a
valid ciphertext without knowing the exact value of r. Moreover, due to non-malleability of
the IBE scheme and one-wayness of f, an adversary given a target ciphertext cannot make
any alternation on it with keeping the consistency of r and f(r).

3.3.1 Construction

Let II = (ISetup, IExt,|Enc,|Dec) be a non-malleable IBE scheme and f : {0,1}Y — Zp
be a OWF, where Zyj is the identity space of II. Then we construct a PKE scheme II' =
(PKG, PEnc, PDec) as in Fig. 3.4. Suppose the plaintext space of II' is My, then we require
that the plaintext space My of the underlying IBE scheme II satisfy My x {0,1}7 C M.
We also require that length of all elements in Z17, the output space of f as well as the identity
space of 11, be of equal length and fixed. Typically, length v of the randomness will be the
security parameter s.

In terms of the construction of the transformation, ours is fairly simpler compared to other
generic IBE-to-PKE transformations [34, 26|, since only a OWF f, the weakest primitive, is
directly used as an additional building block.

3.3.2 Security

Before going into a formal security proof, we give an intuitive explanation on how CCA
security is proved. In the security proof, we construct an adversary B which breaks NM-sID-
CPA security using an IND-CCA adversary A attacking the proposed PKE scheme IT'. The
adversary B’s task is to output a ciphertext 3’ and a relation R such that R holds between
the plaintext of ¥’ and that of B’s challenge ciphertext y*.

Roughly, the proof strategy of the previous generic IBE-to-PKE transformations [34, 26]
is that A’s decryption queries encrypted under identities different from the target identity of
the adversary B are responded perfectly using B’s own extraction queries, and the probability
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that A issues a valid ciphertext under the target identity as a decryption query is bounded
due to the properties of the underlying building blocks.

This “previous strategy” seems to work in our proof. But it is not sufficient because
there seems to be a chance for the adversary A to confuse the NM-sID-CPA adversary B by
submitting a decryption query of the form (f(r*),y) where f is a OWF, f(r*) is submitted
as a simulator’s target identity, and y # y*. Seeing such a query, B cannot tell whether it is
a valid ciphertext or not and only it can do is to return “1” to A. If this query is a valid
ciphertext, then B’s simulation for .4 becomes imperfect by the improper response L (if this
is not the case, then the simulation is still perfect). However, notice that if the ciphertext of
the form (f(r*),y) where y # y* is valid, then B can use it to gain NM-sID-CPA advantage by
outputting y with a relation such that “the |r*|-significant bits are mapped to the same value
by f.” Namely, suppose y is an encryption of (m4||r4) under the target identity “f(r*)”,
then a valid ciphertext satisfies f(r4) = f(r*), which can be used for the relation R. (We call
this “new strategy”.)

The difficult point is that the NM-sID-CPA adversary B cannot know whether A’s de-
cryption query under the target identity is a valid ciphertext or not when A issues such a
query. Therefore, we further show how to handle both the “previous” and “new” strategies so
that the NM-sID-CPA adversary B can always gain the advantage of breaking NM-sID-CPA
security from A’s IND-CCA advantage.

Theorem 2. If the underlying IBE scheme 11 is (tym, 1, q, €nm)-NM-sID-CPA secure and f
is a (tow,€ow)-OWF, then the proposed PKE scheme I is (t,q,4qenm + 2q€pw)-IND-CCA
secure, where t = min{tum, tow} — O(q).

Proof.  Suppose A is an adversary that breaks (t4,q, €ccq)-IND-CCA security of II', which
means that A with running time ¢ makes at most ¢ decryption queries and wins the IND-
CCA game with probability % ~+ €ccq- Then we construct another adversary B who can break
(ta+0O(q), 1, q, iecca — %eow)—NM—sID—CPA security of the underlying IBE scheme II using
A and the (t4 + O(q), €0w)-OWF f. Note that we use the weakest case of NM-sID-CPA
security where an attacker outputs a binary relation R and only a single ciphertext ¢y’ in
Output phase (i.e. I =1 in Defnition 8), because it is sufficient for our proof. Without loss
of generality, we assume g > 0. The adversary B, simulating the IND-CCA game for A, plays
the NM-sID-CPA game with the NM-sID-CPA challenger C as follows.

Setup. B generates a public key for A as follows. Pick a OWF f. Choose r* € {0,1}7
uniformly at random and compute ID* < f(r*). Commit ID* as B’s target identity in
the NM-sID-CPA game and obtain prm from C. Give PK = (prm, f) to A.

Phase 1. B responds to A’s decryption queries x = (ID,y) by returning m to A, where m is
generated as follows.

If ID =ID*: Set m = L.

Otherwise: Issue ID as an extraction query to C and obtain dkjp. Compute IDec(dkp, y)
and set m = L if the decryption result is L. Otherwise, check whether f(r) = ID
holds or not for the decryption result (m||r). If this is the case, then this m is used
as a response to A, otherwise, set m = L.

Challenge. When A submits (mg,m;) to B, B returns the challenge ciphertext x* to A
where x* is generated as follows. Flip a coin § € {0,1} uniformly at random. Choose
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a random message m’ € My (equal length to mg). Choose r’ € {0,1}” uniformly at
random. Set My = (mgl||r*) and M; = (m/||r") € M. Define a probabilistic machine
M that outputs one of { My, M;} uniformly at random. Submit the description of Mj;
to C as B’s challenge and obtain y* from C. Give x* = (ID*,y*) to A.

Phase 2. B responds to A’s decryption queries in the same way as Phase 1.

Guess. A outputs S4. B outputs a ciphertext 3’ and a description of a relation R which are
generated as follows.

If 54 = B: Set a binary relation R(-,-) as “R(a,b) = true iff 7-LSB(a) = ~+-LSB(b).”
Pick m"” € M (equal length to mg) randomly. Choose " € {0,1}” uniformly
at random. Flip a biased coin b, € {0,1} where b, = 1 holds with probability
a. If by, = 1, compute y < IEnc(prm,ID*, (m”||r*)), otherwise compute 3’ <
[Enc(prm, ID*, (m”||"")).

Otherwise: Set a binary relation R(-,-) as “R(a,b) = trueiff f(-LSB(a)) = f(7-LSB(b)).”
Pick uniformly one ciphertext x; = (ID;,y;) from A’s decryption queries {x; =
(IDi, yi) biequ,....qp and set ¥’ = y;.

Note that B makes at most the same number of extraction queries as A’ decryption queries,
i.e. ¢ times. Note also that B needs to run IDec at most once for each decryption query
from A, as well as other computations of constant steps, which causes additional running
time O(gq). (In particular, the computation of Mj; and the evaluation of R can be done in
constant steps.)

We remain probability ov unknown here, and discuss later in this proof. Note that Pr[b, =
1] = o and Pr[by = 0] = 1 — a, according to our definition. Note also that the description of
the relation R that B uses is different depending on whether A’s guess bit 84 is equal to the
bit 8 chosen by B.

Next, we estimate B’s NM-sID-CPA advantage Ade%’SID‘CPA. In our construction of B,
The plaintext chooser M7, submitted by B is always a uniform distribution over two messages
{My, M;}. Thus, for convenience, we assume that the NM-sID-CPA challenger C flips two
coins ¢* € {0,1} and ¢* € {0,1} uniformly at random and sets M.+ as a challenge message
M* and M as M* in Challenge phase. Note that B’s simulation for A becomes imperfect if
¢* = 1 occurs, since with overwhelming probability the challenge ciphertext given to A is not
an encryption of either of (mg, m1) submitted by .A.

We say that a ciphertext x = (ID,y) is valid if x decrypts to an element in the plaintext
space My (i.e., not L) according to the decryption process of II'. Let Valid be an event that
A issues at least one decryption query of the form x = (ID*,y) that is valid. Note that B’s
simulation for A becomes imperfect if Valid occurs, because in this case B cannot return an
appropriate plaintext to A.

We also note that throughout the simulation B cannot explicitly know whether ¢* = 1
and Valid have occurred or not.

In the following, we consider the following seven cases depending on c*, c¢*, 3, B4, and
Valid:

e Case 1: ¢* =¢*

o Case 2: ¢*=0Ac* =1ABs=pAVald
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Case 3: c*=0Ac* =1A B4 =S AValid

Case 4: ¢* =0ACc* =1A B4 # B A Valid

e Case 5: ¢* =0ACc* =1A B4 # B A Valid
e Case 6: c* =1AcF=0ABa=pf
e Case 7: c* =1AC*=0ABs#B

Note that these cases cover all possibilities. Let @] denotes an event that Case i occurs. We
denote B’s advantage in Case ¢ by Adv; and define it as:

Adv; = Pr[R* A @] — Pr[R* A @] = (Pr[R*|®] — Pr[R*|®@)]) - Pr[®)],

where R* and R* are defined in Section 2.5. Accordlng to the definition of the NM-sID-CPA
advantage, we obviously have AvaM sID-CPA Zz 1 Adv;.

Now, we introduce the following lemmas.2 In the following, just for notational convenience,
we define two conditional probabilities P, = Pr[Valid|c* = 0 A ¢* = 1] and Pj, = Pr[84 =
Blc* = 0 A c* =1 A Valid], and use them for describing the lemmas.

Lemma 2. Adv; = 0.

Lemma 3. Advy > %a(% + €cca)(1 — Py) — 2% Pr[®)].

Lemma 4. Advs %aPka — 2% Pr[®)].

Y]

Lemma 5. Advy > —¢y, Pr[@)].
_7(1 Pr)Py — €0 Pr[®)].
—1a— 5 Pr[®)].

Lemma 8. Adv; > —¢,y, Pr[@)].

Lemma 6. Advs

v

A\

Lemma 7. Advg

Then, before proving the lemmas, we first calculate /—\vaM sID-CPA

Ad NM sID-CPA Z AdVZ

i (1 + )1 P)+ PPy + 1 (1= PP, = za
- 27(131"[@] + Pr(@] + Pr(®)]) — €ow(Pr{@] + Pr(®] + Pr(@])
> ia(% )1 = Py) + iaPkP + 41 (1— PP, éa - %eow,

where, in order to sum up the terms regarding Pr[(®)] into one term %eow in the last inequality,
we used the fact that 21‘7:2 Pr(®] = 1—Pr[@] = 1 —Pr[c* = ¢*] = 1 and the following claim.

Claim 1. 55 < €.

*Here, we purposely remain each Pr[@)] as it is for the later calculation of Advyy P-4,
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Proof of Claim 1. Consider the adversary A’ against one-wayness of f who on input f(r),
where 7 is chosen uniformly from {0,1}7, runs as follows. Choose 7’ uniformly at random
from {0,1}” and output ' as the solution of the one-way experiment. Since r and 7’ are
independent, we have

AdQY, = Prlf(r) = f(')] > Prfr =] = 217

According to the definition of ¢,,,, we have Adv%YX < €oy for any adversary A (including A’).
Thus, we have 2% < €ow- O

Now, focusing on the second and the third terms of the right side member of the above
inequality, we can define o = %, which will cancel out all the terms regarding Pj. Using this
a, we have

1 1 1 1 1
Advg%_SID_CPA > Zq(ﬁcca + PU(§ — ecca)) — 56011; > qucca - Eeouh

where the right side inequality is obtained due to 0 < €ceq < % (see Definition 1) and the fact
that P, > 0.

Consequently, assuming 4 has advantage €.., in breaking IND-CCA security of the pro-
posed PKE scheme IT' and f is a (t4 + O(q), €ow)-OWF, B can break NM-sID-CPA security
of the underlying IBE scheme II with the above advantage, using above «.

To complete the proof of Theorem 2, we prove Lemmas 2 to 8 in order.

Proof of Lemma 2: In Case 1, ¢* = ¢* occurs. This means M* = M*, and thus, the events
R* and R* become identical. Therefore, B’s advantage in Case 1 is

Adv; = (Pr[R*|@] — Pr[R*|D)) - Pr[@] = 0,
which completes the proof of Lemma 2. O

Proof of Lemma 3: In Case 2, an event [Q] = [¢* = 0A ¢* = 1 A 84 = B A Valid] occurs.
In this case, we have M* = (mgl||r*) and M* = (m/||r’), and since B4 = S, the relation R
output by B tests the equality of the v-least significant bits.

First, we estimate Pr[R*|@)].

Pr[R*|@] > Pr[R* A by = 1|®)] = Prlbs = 1] - Pr[R*|@ A by = 1] = a,

where we used the following.
Claim 2. Pr[R*|@Q A b, =1] = 1.

Proof of Claim 2. ¢* = 0 implies that the plaintext of B’s challenge ciphertext y* is M* =
(mgl|r*), and thus 7-least significant bits of M* is 7*. And when [f4 = 8 A by = 1] occurs, B
outputs y" which is an encryption of (m”||r*). Thus, conditioned on [@ A b, = 1], B always
outputs a ciphertext ¢’ such that R* occurs and we have Pr[R*|@ A b, = 1] = 1. O

Next, we estimate Pr[R*|@)].
Claim 3. Pr[R*|Q)] = & .
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Proof of Claim 3. Recall that y-LSB(M*) = 7. Recall also that y-least significant bits of the
plaintext of 3’ is either r* or r”, depending on the value b,. Since each of 7/, r* and r” is
uniformly and independently chosen by B, we have

. . 1 1 1
Pr[R*|@] =Pr[r' =1 /\bazl]—i—Pr[r':r"/\ba:O]:2—7-044—2—7-(1—04):2—7.

Finally, we estimate Pr[@)]. We have

Pr[@] = Pr[c* =0Ac* = 1A Ba = B AValid|

1 _ _
= ZPr[ﬂA = Blc* =0 A" =1AValid] - Pr[Valid|c* =0 A ¢" = 1]

1.1

= 1(5 + 6cca)(l - Pv)a

where we used Pr[c* = 0 A ¢* = 1] = 1 and the following.

Claim 4. Pr[Ba = B|c* =0Ac* = 1A Valid] = % + €cca-

Proof of Claim 4. Note that when Valid does not occur, then B’s response to each of A’s
decryption queries is perfect. Concretely, if the decryption query is of the form y = (ID,y)
with ID # ID*, then B can correctly decrypt x because it can obtain the decryption keys dkip
by the use of extraction queries to B’s challenger. And if the decryption query is of the form
x = (ID*,y), then this x is not a valid ciphertext unless Valid occurs, and thus B’s response
L for this type of query is also a correct answer. Moreover, note also that if ¢* = 0 occurs,
then the challenge ciphertext given from B to A is a correct encryption of mg. Therefore, B
perfectly simulates the IND-CCA game for A, and the view of A is identical to that when
it is attacking the proposed scheme II" where the challenge bit for A is 8. Then, the event
B4 = [ corresponds to the event that A succeeds in guessing in the IND-CCA game, which

occurs with probability % + €cca- ]
Consequently, B’s advantage in Case 2 is estimated as:
* * 1 1 1
Advy = (Pr[R*|@)] — Pr[R*|@)]) - Pr[@)] > Za(i + €cca)(1 = Py) — et Pr[®],
which completes the proof of Lemma 3. O

Proof of Lemma 4: In Case 3, an event [@] = [¢* = 0A c¢* = 1 A 84 = 8 A Valid] occurs.
In this case, we have M* = (mgl||r*) and M* = (m’||r’), and since B4 = S, the relation R
output by B tests the equality of the v-least significant bits. With the same discussion in the
proof of Lemma 3, we have Pr[R*|@)] > o and Pr[R*|@] = 5. As for Pr[®)], we have

Pr[@)] = Prlc* =0A c* = 1A Ba =B AValid]

1 _ _
= —Pr[Ba = Blc* = 0 A c* =1 A Valid] - Pr[Valid|c* = 0 A ¢* = 1]

4
1
= -PyP,.
4 k
Consequently, B’s advantage in Case 3 is estimated as:
. 1 1
Advs = (Pr[R*|®)] — Pr[R*|Q)]) - Pr[Q)] > ZOZPka 5 Pr[@)],
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which completes the proof of Lemma 4. O

Proof of Lemma 5: In Case 4, an event [@] = [¢* = 0Ac* = 1 A B4 # B A Valid] occurs. In
this case, we have M* = (mg||r*) and M* = (m/||r'), and since 84 # 3, the relation R output
by B tests the equality of “f of” the v-least significant bits. According to the description of
B, when 34 # [ occurs, the ciphertext ¢y which is finally output by B is chosen uniformly
from A’s decryption queries.

We estimate Pr[R*|@)] in the following.

Claim 5. Pr[R*|@)] < €.

Proof of Claim 5. Since in this case 7’ is information-theoretically hidden from A, the value
f(r") is also information-theoretically hidden from A. Thus, the probability that A, without
seeing f(r’), happens to issue some decryption query such that the image with f of y-least
significant bits of the plaintext becomes identical to f(r’) is at most €,y,, because f is assumed
to be a (ta + O(q), €ow)-OWF. O

Consequently, B’s advantage in Case 4 is estimated as:
Advy > — Pr[R*|@)] - Pr[@)] > —e,, Pr[@)],
which completes the proof of Lemma 5. O

Proof of Lemma 6: In Case 5, an event [®)] = [¢* = 0Ac¢* = 1 A B4 # B A Valid] occurs. In
this case, we have M* = (mgl||r*) and M* = (m/||r’). Since 84 # B, the relation R output
by B tests the equality of “f of” the 7-least significant bits, and the ciphertext 3’ output by
B is chosen uniformly from A’s decryption queries.

First, we estimate Pr[R*|®)].

Claim 6. Pr[R*|®)] > .

Proof of Claim 6. Since Valid occurs, in this case A issues at least one walid ciphertext of
the form y = (ID*,y). But B returns L as an answer to this query, which is not a correct
response. Therefore B’s simulation for A becomes imperfect from the point A receives the
response. However, a valid ciphertext x = (ID*,y) satisfies |Dec(dkip=,y) = (mal|ra) # L
and f(ra) = ID* = f(r*), where dkp- is a decryption key corresponding to ID*. Since B
picks one ciphertext 3’ from A’s decryption queries uniformly and outputs it, if B’s choice is
a ciphertext that causes the event Valid, R* occurs. Since the number of A’s query is at most
q > 0, the probability that B picks a valid ciphertext that causes the event Valid is at least
T D
With the same discussion in the proof of Lemma 5, we have Pr[Rﬂ@] < €ow- With a similar
calculation to Pr[@)], we also have

Pr[®] = Pr[c* =0Ac* = 1A Ba # B AValid] = 3(1 — P})P,.
Consequently, B’s advantage in Case 5 is estimated as:
Advs = (Pr[R*|®)] - Pr(R*|®)]) - Pr[®)] > 41q(1 — PPy — o PH[®)],
which completes the proof of Lemma 6. O
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Proof of Lemma 7: In Case 6, an event [©] = [¢* = 1 Ac* = 0A 84 = 8] occurs. In this
case, we have M* = (m/||r’) and M* = (mg||r*), and since 84 = 3, the relation R output by
B tests the equality of the v-least significant bits.

We first estimate Pr[R*|®).

Pr[R*|®)] = Pr[R* A by = 1|®)] + Pr[R* A by = 0|®)]
= Pr[by = 1] - Pr[R*|® A by = 1] + Pr[by = 0] - Pr[R*|® A by, = 0]

- 1
< Pr[by = 1] + Pr[R*|@® A by = 0] = a + 7

where we used the following.
Claim 7. Pr[R*|® A by = 0] = .

Proof of Claim 7. When [b, = 0] occurs, the ciphertext 3’ output by B is an encryption
of (m”||r") where r” is chosen uniformly from {0,1}”, independently of r*. Therefore, the
probability that R* occurs in this case is identical to the probability that r” = r* occurs,
which is exactly 2% O

As for Pr[®)], we have
Pr[@®] =Pr[c* =1Ac :0/\6,4:[3}:1Pr[ﬂ,4:ﬁ\c =1Ac :O]:§,

where we used the following.

Claim 8. Pr[Bs = Blc* = 1A =0] = 1.

Proof of Claim 8. If ¢* = 1, then the challenge ciphertext given to A is of the form x* =
(ID*,y*) = (f(r*),IEnc(prm, ID*, (m/||7")). This x* is, with overwhelming probability, not a
legitimate challenge ciphertext for A and thus B’s simulation for A becomes imperfect very
likely. However, since in this case f is information-theoretically hidden from A’s view (A
cannot see M* = (mg||r*)) and 8 € {0,1} is chosen uniformly, the probability that 84 = j3
occurs is exactly % O

Consequently, B’s advantage in Case 6 is estimated as:

Advg > ~ Pr{R|G) - Pr[®) > o — o Pr(B],

which completes the proof of Lemma 7. O

Proof of Lemma 8: In Case 7, an event (D] = [¢* = 1 Ac* = 0A 84 # 3] occurs. In this
case, we have M* = (m/||r') and M* = (mg]||r*). Since B4 # 3, the relation R output by B
tests the equality of “f of” the 7-least significant bits, and the ciphertext 3’ output by B is
chosen uniformly from A’s decryption queries.

We estimate Pr[R*|©)].
Claim 9. Pr[R*|®)] < €ow-
Proof of Claim 9. Recall that, when [S4 # ] occurs, B outputs the relation R such that
R(a,b) tests whether f(v-LSB(a)) = f(7-LSB(b)) holds. Thus, the event R* in this case
consists of the following two events: (1) A issues at least one decryption query (ID*,y) which
satisfies the conditions IDec(dkip+,y) = (m||r) # L and ID* = f(r*) = f(r), and (2) B
chooses such a query. Note that the first event above is exactly the same event as Valid. For
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notational convenience, we denote by Choice the second event above. Moreover, according to
our construction of B, when ¢* = 1 occurs, the challenge ciphertext given to A is a “garbage”
ciphertext which is of the form x* = (ID*,y*) = (f(r*), |[Enc(prm, f(r*), (m/||r))) where r*
and " are chosen independently and uniformly from {0, 1} and m’ is also chosen randomly.
Also for notational convenience, we denote by Garbage an event that A is given a garbage
challenge ciphertext of the above form. Suppose that, as B’s final output, one ciphertext
(ID,y) is chosen from A’s decryption queries. Using these notations, we have

Pr[R*|@] = Pr[Choice A IDec(dkip,y) = (m||r) # L A R((mg||r*), (m]|r)) |
F=1Ac"=0ABs#f]
= Pr[Choice A IDec(dkip+,y) = (ml|r) # L A f(r*) = f(r)|Garbage]
= Pr[Choice A Valid|Garbage]
Pr[Valid|Garbage].

A

Thus, all we have to do is to show Pr[Valid|Garbage] < €.

Towards a contradiction, we assume Pr[Valid|Garbage] > €,,. We construct another ad-
versary BB’ which, using A, breaks one-wayness of f with the OWF advantage greater than
€ow and runs in time t4 + O(q). The description of B’ is as follows.

Given f(r*) (where r* is uniformly chosen from {0,1}” and unknown to B’), B’ first
sets ID* = f(r*), then runs (prm, msk) < ISetup and dkjp+ < IExt(prm, msk,ID*). It gives
PK = (prm, f) to A. Since B’ possesses SK = msk, it can perfectly respond to the decryption
queries. When A submits two plaintexts as a challenge, B’ ignores them and generates a
“garbage” challenge ciphertext x* = (ID*,y*) = (f(r*), |Enc(prm, f(r*), (m/||r"))) where 1’
is uniformly chosen from {0,1}” and m' is also chosen randomly. Then B’ gives x* to A.
After A outputs a guess bit and terminates, from A’s decryption queries {Xi}ie{l,...,q} B’
finds a ciphertext (ID,y) whose second component y satisfies IDec(dkip=,y) = (m||r) # L
and f(r*) = f(r), and outputs such r (if no such query is found then B’ simply gives up and
aborts).

Note that B’ needs to run IExt and IDec for each of decryption query from A, needs to run
IDec at most ¢ times for finding a valid ciphertext after A terminates, and needs to run other
computations of constant steps, which canses addtional running time O(q). It is easy to see
that B’ perfectly simulates the scenario Garbage for \A. Moreover, whenever Valid occurs, B’
can find a preimage of f(r*) and thus breaks the one-wayness of f. Therefore, we have

Adv?) = Pr[Valid|Garbage] > €ou,

which contradicts that f is a (t4+0(q), €ow)-OWF, and thus we must have Pr[Valid|Garbage] <
€ow- This completes the proof of Claim 9. O

Consequently, B’s advantage in Case 7 is estimated as:
Adv; > — Pr[R*|@D] - Pr[@)] > —eow Pr[@],
which completes the proof of Lemma 8. O
Above completes the proof of Theorem 2. O

31



Extensions As is the same with the previous generic IBE-to-PKE transformations [34, 26],
our transformation can be applied to TBE schemes if we appropriately define non-malleability
for TBE schemes. We discuss this in Section 3.3.3.

Moreover, if we consider non-malleability for HIBE schemes in the same way as in Sec-
tion 2.5, then our transformation can be used to obtain adaptive (resp., selective) identity
CCA-secure t-level HIBE from (t+1)-level HIBE that is non-malleable against adaptive (resp.,
selective) identity, chosen plaintext attacks.

A Generic Construction of NM-sID-CPA Secure IBE Schemes So far, no concrete
construction of NM-sID-CPA secure IBE scheme (other than CCA secure ones) is known. In
theory, however, it is possible to construct an NM-sID-CPA secure IBE scheme from any IND-
sID-CPA secure IBE scheme by adopting the methodology by Choi et al. [38]. They showed
a construction of a NM-CPA secure PKE scheme from any IND-CPA secure PKE scheme. It
is straightforward to see that the IBE analogue construction of [38] trivially works. We note
that if we use an adaptive-ID secure (i.e. IND-ID-CPA secure) IBE scheme as a building block
scheme of the IBE analogue of the Choi et al. construction [38], then an adaptive-ID, non-
malleable (i.e. NM-ID-CPA secure) IBE scheme can be obtained. Moreover, non-malleability
for IBE schemes achieved by their construction is a stronger than the one treated in this
chapter, in the sense that it captures an adversary who may output invalid ciphertexts.

However, the IBE scheme obtained via their methodology will not be a practical scheme.
(To encrypt with the resulting IBE scheme, we have to run the encryption algorithm of the
building block IBE scheme O(x?) times, where r is the security parameter.)

3.3.3 Applying the Transformation to Tag-Based Encryption

In this subsection, we refer to the paradigm to obtain IND-CCA secure PKE schemes from
TBE schemes [78, 79]. A TBE scheme is a PKE scheme whose encryption and decryption
algorithms take an arbitrary string called “tag” as an addiotional input (see Section 2.6 for
definition). It is well-known that every IBE scheme can be viewed as a TBE scheme if an
extraction algorithm of the IBE scheme is combined with a decryption algorithm and identities
in the IBE scheme are used as tags of the TBE scheme.

Kiltz [69] showed that the CHK transformation [34] can be applied to TBE schemes.
More specifically, if the underlying TBE scheme is indistinguishable against selective tag,
weak chosen ciphertext attacks (IND-stag-wCCA) [69], then the resulting PKE transformed
by the CHK transformation is IND-CCA secure. This paradigm also applies to our IBE-to-
PKE transformation if non-malleability for TBE schemes is appropriately defined.

NM-stag-wCCA security and Other Security Notions for TBE We define NM-stag-
wCCA security, which is required for TBE schemes when applying our transformation, as in
Section 2.6. In this subsection, we refer to the relation between our non-malleability for TBE
and other security notions for TBE.

When we consider the security notions of TBE schemes, we should care about when the
target tag is chosen by adversaries (i.e., selective tag attacks or adaptive tag attacks), how
the decryption queries are allowed to adversaries, and what the goals of adversaries are.

Shoup [100] first implicitly introduced indistinguishability against adaptive tag, CCA
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adversaries for TBE.? In his definition, the target tag tag* is chosen in Challenge phase
(adaptive tag attack), and adversaries are allowed to issue decryption queries of the form
(tag, x) as long as (tag, x) # (tag*, x*), where x* is the challenge ciphertext. (In particular,
a query of the form (tag*, x) with x # x* and a query of the form (tag, x*) with tag # tag*
are allowed.) It was discussed by Kiltz [69] that a TBE scheme with this security notion is
equivalent to an IND-CCA secure PKE scheme, if we see a PKE scheme as an instant TBE
scheme (e.g., encrypting a tag concatenated with a plaintext) and vice versa (e.g., including
one fixed tag in a public key and using it always).

MacKenzie, Reiter, and Yang [79] defined indistinguishability and non-malleability against
adaptive tag, CPA and CCA adversaries. Especially, for CCA adversaries, the decryption
queries are somewhat restricted compared to Shoup’s definition [100], where adversaries are
allowed to issue decryption queries (tag, x) such that tag # tag*. We refer to this restricted
type of CCA attacks as “weak CCA”, in order not to mix up with Shoup’s definition. This
name weak CCA is due to Kiltz [69]. As for non-malleability defined by MacKenzie et al.
[79] (which we call MRY non-malleability), the goal of adversaries and the definition of the
advantage of adversaries are slightly different from ours (and [7]).4 In [79], in Output phase,

an adve_)rsary outputs a description of a relation R and a pair of [-length vectors (tag’, 7’ )
where tag’ = (tag],...,tag)) and X =0 , X)), and each x/ is regarded as an encryption

of some plaintext m; under tag, (may not be tag*). Then the event R’ is defined such that
[tag® ¢ ’§g>’ A R(m*,m")] occurs. R’ is similarly defined by replacing m* with m* in R'*.
The advantage is defined as the difference between Pr[R’*] and Pr[R’*]. Informally, MRY
non-malleability captures the property that given a ciphertext of the target tag tag*, it is
difficult to make meaningfully related ciphertexts encrypted under another tags tag’ # tag*.
But this definition does not rule out the possibility of making meaningfully related ciphertexts
encrypted under tag*. It was shown in [79] that this non-malleability and indistinguishability
are equivalent under the adaptive tag, weak CCA.

Kiltz [69] defined indistinguishability against selective tag, CCA adversaries, which is the
selective tag version of MacKenzie et al.’s indistinguishability definition, where adversaries
must choose the target tag tag® before a public key is given. It is easy to see that an
IND-sID-CPA secure IBE scheme can immediately be seen as a TBE scheme satisfying this
Kiltz’ definition by combining an extraction and a decryption algorithms of IBE schemes
appropriately.

We can consider the selective tag version of MRY non-malleability (we call it selective
MRY non-malleability) and prove that selective MRY non-malleability is equivalent to Kiltz’
indistinguishability under weak CCA in the same way as in [79]. However, our definition of
non-malleability for TBE schemes (NM-stag-CCA security) in Section 2.6 is stronger than
selective MRY non-malleability. Informally, our non-malleability for TBE schemes provides
NM-CPA security for the target tag tag*, and IND-CCA security for tags other than the
target tag. Selective MRY non-malleability only ensures IND-CPA security for the target
tag.

Galindo [50] showed for IBE schemes that the selective identity security is strictly weaker
than adaptive identity security. This relation applies to TBE schemes with a similar discussion
in [50]. Namely, selective tag security is strictly weaker than adaptive tag security.

In summary, if restricted to security notions against selective tag, CCA adversaries, Kiltz’

3The author refer to tags as “labels”.
“Here, we only consider the comparison-based non-malleability [7, 13, 14].
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PKG(1%) : PEnc(PK,m) :
(pk, sk) + TKG(1") r <« {0,1}7; tag <« f(r)
Pick a OWF f. y < TEnc(pk, tag, (m||r))
PK <« (pk, f); SK « sk X < (tag,y)
Output (PK, SK). Output x.

PDec(SK, x) :

Parse x as (tag,y)
(m||r) / L < TDec(sk,tag,y) (if L then output L and stop.)
Output m if f(r) = tag. Otherwise output L.

Figure 3.3: The Transformation from TBE to PKE

indistinguishability [69] and selective MRY non-malleability [79] are equivalently the weakest.
Our definition of NM-stag-wCCA security is stronger than them, and yet weaker than the
selective tag version of Shoup’s definition of indistinguishability under CCA [100].

Construction Let IT = (TKG, TEnc, TDec) be a NM-stag-wCCA secure TBE scheme and
f:40,1}7 — 71 be a OWF, where Ty is the tag space of II. Then we construct a PKE scheme
II" = (PKG, PEnc, PDec) as in Fig. 3.3. Suppose the plaintext space of II' is My, then we
require that the plaintext space My of the underlying TBE scheme II satisfy My x {0,1}7 C
M. We also require that length of all elements of 7r1, the output space of f as well as the
tag space of II, be of equal length and fixed. Typically, length v of the randomness will be
the security parameter k.

Security The security of the PKE scheme obtained via the “TBE-to-PKE” transformation
in Fig. 3.3 is guaranteed by the following theorem.

Theorem 3. If the underlying TBE scheme 11 is (tpm, 1, q, €nm)-NM-stag-wCCA secure and
I is a (tow, €ow)-OWF, then the PKE scheme II' in Fig. 3.3 is (t, q, 4q€pm + 2q€ow)-IND-CCA
secure, where t = min{tum,tow} — O(q).

We omit the proof of this theorem, because it is almost the same as the proof of Theorem 2.

Note that our transformation cannot be applied if the underlying TBE scheme satisfies
only selective MRY non-malleability [79]. The non-malleability adversary (that uses the IND-
CCA adversary internally) essentially uses the ability of being the NM-stag-wCCA adversary
in the definition in Section 2.6: the final output can be (a relation and) a ciphertext which is
encrypted under the target tag. If selective MRY non-malleability is used, the non-malleability
adversary with our strategy cannot appropriately provide a ciphertext encrypted under tags
that are different from the target tag.

3.4 Proposed Encapsulation Scheme

As we have seen in Section 3.2, designing an encapsulation scheme with small parameter size
is important for the size-efficiency of the BK transformation. In this section, we present an
efficient encapsulation scheme using a PRG with NCR property and prove its security. We
also show a concrete instantiation of the PRG with NCR property.

34



ESetup(1%) : ECom(prm) :
Pick a (NCR-k-LSB) PRG G. d < {0,1}"
prm + G (rlle) + G(d) (s.t. |r| =|c| =k)
Output prm Output (r,c,d).

ERec(prm, ¢, d) :
(rllc') <= G(d) (st. |r] =[] =k)
Output r if ¢ = ¢. Otherwise output L.

Figure 3.4: Proposed Encapsulation Scheme

3.4.1 Construction

Let G : {0,1}* — {0,1}?* be a PRG (with NCR-k-LSB property). Then we construct an
encapsulation scheme E = (ESetup, ECom, ERec) as in Fig. 3.4.

3.4.2 Security

In this subsection, we prove hiding and binding properties of the proposed scheme. The proofs
for both properties are fairly intuitive and easy to understand. Specifically, pseudorandomness
of G provides hiding property and NCR-k-LSB of G provides binding property of the proposed
encapsulation scheme E.

Theorem 4. If G is a (t,€prg)-PRG, then the proposed encapsulation scheme E is (t,2€prg)-
hiding.

Proof. Suppose A is an adversary that breaks (¢, ¢, €pqe)-hiding property of E, which means
that A with running time ¢ wins the hiding game with probability %—i—ehide. Then we construct
a simulator S who can break (t, %ehide)—pseudorandomness of G. Our simulator §, simulating
the hiding game for A, plays the PRG game with the PRG challenger C as follows.

Given a 2k-bit string y;_, first S sets prm < G and (r{||c*) < y;, such that |r]| = [c*| =k,
and then picks bg € {0,1} and rj € {0,1}" uniformly at random. S gives (prm,r;_, c*) to A.
After A outputs his guess ba, S sets by <= 1 if by = bg or by - 0 otherwise. Then S outputs
by as its guess.

Next, we estimate the advantage of S. We have
B = Pty 1] )
= %\ Pr(by = 1|bo = 1] — Pr[bly = 1|bc = 0|
= %\ Prlbs = bs|bc = 1] — Pr[ba = bg|bc = 0]).
To complete the proof, we prove the following claims.

Claim 1. Pr[bs = bs|bc = 1] = 3 + €niae

Proof of Clatm 1. In the case bo = 1, ¢* and r] are computed with G with a uniformly
chosen input d* € {0,1}* (ie. (rf|lc*) = yf = G(d*)). On the other hand, 7§ is chosen
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uniformly by S. Thus, the view of A is exactly the same as that in the hiding game (with
the challenger’s bit is bg). Therefore, the probability that by = bg occurs is exactly the same
as the probability that A succeeds in guessing in the hiding game, i.e., % ~+ €hide- O

Claim 2. Prby = bglbc = 0] = &

Proof of Claim 2. In the case bc = 0, since y; given to S is a uniformly chosen 2x-bit string,
¢* and 77 are both uniformly and independently distributed in {0, 1}*. Therefore, ¢* may not
necessarily be in the range of G and thus S’s simulation for A may be imperfect. Thus, A
may notice that he is in the simulated game and act unfavorably for §. However, r{ is also
uniformly chosen from {0, 1}" by S. Since the distribution of the uniformly distributed value
r] and the distribution of a uniformly chosen value 7 are perfectly indistinguishable, it is
information-theoretically impossible for A to distinguish ] and r§. Therefore, the probability
that by = bg occurs is exactly % O

Above shows that if A wins the hiding game of E' with advantage greater than €p;4e, then
S breaks pseudorandomness of G with advantage greater than %ehide, which completes the
proof of Theorem 4. O

Theorem 5. If G is (t,€ener)-NCR-k-LSB, then the proposed encapsulation scheme E is
(t, €ner)-binding.

Proof. Suppose A is an adversary that breaks (¢, €ping)-binding property of E, which means
that A with running time ¢ wins the binding game with probability ep;,q. Then we construct
a simulator S who can break (¢, eying)-NCR-£-LSB property of G. The description of S is as
follows.

Given d* € {0,1}" which is chosen uniformly, first S sets prm <« G and computes
(r*||c*) < G(d*) such that |r*| = |¢*| = k. Then S gives (prm,r*, c*,d*) to A. After A
outputs d’, S simply outputs it as its output.

Note that S’s simulation for A is perfect. Next, we estimate the advantage of S. Let 7’/
and ¢ be defined as (r'||c') = G(d’) such that |r| = |/| = k. We have

Advg g tSE = SB(G(d')) = k-LSB(G(d*)) Ad' # d¥]

Prlx-
= Pr[/-; B (r'||c') = k-LSB (r*||c*) A d’ # d]
=Pr[d =c" Nd # d¥
= Pr[ERec(prm,c*,d') # L Ad # d*]
> Pr[ERec(prm,c*,d') ¢ {r*, L} Ad' # d*]

= €bind,

where the transition from the third to the fourth equalities is due to the definition of the
recovery algorithm ERec of our encapsulation scheme E in this section. Above means that
if A succeeds in breaking binding property of E with advantage greater than €p;,q, S also
succeeds in breaking NCR-k-LSB property with advantage greater than €p;,,4, which completes
the proof of Theorem 5. O
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3.4.3 Concrete Instantiation of PRG with NCR Property

In this subsection, we show a concrete construction of a PRG that has NCR property for
practical scenarios. Specifically, we discuss that it is reasonable to assume that (a slight
modification of) the PRG currently described in FIPS 186-2, Revised Appendix 3.1 [1] satisfies
NCR property. Here, we briefly review the essential construction of the PRG in [1].

Let H : {0,1}* — {0,1}™ be a cryptographic hash function. The construction of a PRG
FIPSPRG : {0,1}™ — {0,1}°™ for ¢ > 1 is as follows:

Step 1. On input = € {0,1}™, set zg + =.
Step 2. Compute w; < H(z;—1) and z; < (1 +x;-1 + w;) mod 2™ for 1 <i < c.
Step 3. Output (w1 ||wa|...||we).

Then, we define our PRG G by interchanging the first and the second m-bit blocks of
FIPSPRGY, i.e.,
G (@) = (H( (142 + H(z)) mod 2 ) || H(x) ).

Note that G is a PRG as long as FIPSPRG? is. Moreover, since m-least significant bits
of GH(x) is H(z) itself, if we can assume that H satisfies target collision resistance [83, 12],
then we will obviously obtain a PRG with NCR-m-LSB.

Below, we address the above in a more formal manner.

Definition 19. (FIPS186-2-PRG Assumption) We say that the (t,€)-FIPS186-2-PRG as-
sumption with regard to FIPSPRGf holds if we can assume that the PRG FIPSPRG(I:{ con-
structed using a hash function H as above is a (t,€)-PRG.

Theorem 6. If the (t,¢ips)-FIPS186-2-PRG assumption with regard to FIPSPRGY holds,
then G constructed as above is a (t,€ips)-PRG.

Proof. Suppose A is an adversary that breaks the (, €, )-pseudorandomness of GH. Then
we construct a simulator S who can break (¢, €, )-FIPS186-2-PRG assumption with regard to
FIPSPRGZ , which means that S can break the (¢, €pr)-pseudorandomness of FIPSPRGY . The
description of S is as follows.

Given a 2m-bit string y; , S sets z* as a 2m-bit string such that the first and the second
m-bit blocks of y; , are interchanged. Then S gives z* to A. After A outputs its guess ba, S
sets bg < by and output bg as its guess.

Notice that S simulates the experiment of attacking pseudorandomness of G¥ perfectly
for A. Namely, if bo = 1, ie., 45, = FIPSPRGY (x) where x € {0,1}™ is chosen uniformly at
random, then z* given to A is a 2m-bit string that is G (x) for the uniformly random value
z. On the other hand, if bc = 0, i.e., y;_ is a uniformly chosen 2m-bit string, then z* given
to A is also a uniformly random 2m-bit string. Therefore, we have

PR 1 1
AdvFIPSPRG?’S = | Pr[bs = bc] — 5] = |Pr[bs = bc] — §| = €pr-
Above shows that if A breaks pseudorandomness of G with advantage greater than €pr, then
S breaks pseudorandomness of FIPSPRG? with advantage greater than ¢,,.. This completes
the proof of Theorem 6. 0

Theorem 7. If a hash function H that is a building block of G is a (t,€er)-TCRHF, then
G is (t, €ter)-NCR-m-LSB.
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Proof. Suppose A is an adversary that breaks the (t, €, )-NCR-m-LSB of G!. Then we con-
struct a simulator S who can break (t, €,,.-)-target collision resistance of H. The description
of S is as follows.

Given z* € {0, 1}"™ which is chosen uniformly at random, S gives z* to A. After A outputs
z', S outputs 2’ as its own output.

It is easy to see that the S’s simulation of the experiment attacking NCR-m-LSB of G#
for A is perfect. S’s advantage is estimated as

AdvE%R = Pr[H(2') = H(z")A\x' # 2*] = Prim-LSB(GH (2')) = m-LSB(G (%)) A2’ # 2*] = €ner-

Above shows that if A breaks NCR-m-LSB property of G¥ with advantage greater than
€ncr, then S breaks target collision resistance of H with advantage greater than €,... This
completes the proof of Theorem 7. O

As shown above, since we do not need full power of collision resistance [44] but target
collision resistance, we can set m = k for k-bit security. In practice, (an appropriate mod-
ification of) SHA-1 may be used as H. (Though SHA-1 is known to be already broken as
a collision resistant hash function [101], it is still reasonable to assume that SHA-1 is target
collision resistant.)

Although the FIPS186-2-PRG assumption with regard to FIPSPRGIQLI is somewhat heuristic
(note that the FIPS186-2-PRG assumption with regard to FIPSPRG{{ is the same assumption
that H with m-bit input space is a PRG), we note that the PRG FIPSPRGH we introduced
here is used (recommended) for generating randomness for Digital Signature Standard (DSS)
and is also listed in Recommended techniques of CRYPTREC [2], and thus, using the PRG
G we presented above as a PRG with NCR-+-LSB in our encapsulation scheme is fairly
reasonable.

One might still think that a PRG with NCR-x-LSB is a somewhat strong primitive.
However, we can actually show that a PRG with NCR~x-LSB can be constructed from a
fairly weak assumption. As addressed in the next section, existence of a PRG with NCR
property is generically implied by existence of a one-way permutation which is one of the
most fundamental cryptographic primitives. This fact means that a PRG with NCR property
is also considered as a sufficiently weak primitive, and therefore, it is not very unreasonable
to assume that a carefully designed PRG (like the above example) has NCR property as well.

3.4.4 PRG with Near Collision Resistance from Any One-Way Permuta-
tion

The security of the PRG we show in Section 3.4.3 is somewhat heuristic (though we believe it
to be fairly reasonable to use in practical scenarios). Here, we show an evidence that a PRG
with NCR-k-LSB is actually a very weak primitive. Specifically, we address that a PRG with
NCR-k-LSB can be generically constructed based on any one-way permutation, which is a
fundamental and weak assumption in the area of cryptography. Actually, the construction
we show here is the well-known and well-studied PRG by Blum and Micali [18] and Yao [105]
(we call the BMY-PRG) itself. Namely, the BMY-PRG construction satisfies NCR-+-LSB
property as it is. We briefly review the construction below.

Let g : {0,1}* — {0,1}" be a one-way permutation and & : {0,1}* — {0, 1} be a hardcore
bit function of g (e.g. the Goldreich-Levin bit [58]). Then the BMY-PRG G : {0,1}" —
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{0,1}"*! for I > 0 is defined as follows:
G(@) = ( @) || hlg@) | A (@) || ... || Ale®Da) || 90) ).

where ¢ (z) = g(¢g¥ Y (zx)) and g™ () = g(z). Pseudorandomness of G constructed as above
was proved assuming the one-wayness of the permutation g. See [18, 105] for details.

As for NCR-k-LSB property, it was already mentioned by Boldyreva and Fischlin in [19]
that the BMY-PRG has the property. Here, however, we prove for completeness. The fol-
lowing shows that a PRG with NCR~x-LSB can be actually constructed only from a one-way
permutation.

Theorem 8. ([19]) If G is constructed as above, then G is (t,0)-NCR-k-LSB for any t.

Proof. According to the definition of the NCR-x-LSB advantage, for an adversary A, we have
Advg B = Pra* « {0,1}%2" «+ A(G,2%) : -LSB(G(2')) = k-LSB(G(z*)) A2’ # 2]
= Prz* « {0,1}";2' « A(G,z*) : g0 (') = gO(a*) A 2! # 2.

Since g is a permutation, for any z, 2/ (# x) € {0,1}* and any 7 > 1, we have g\ (x) # ¢ (2/).
Therefore, of course we have g(¥)(z) # g()(2/) for any z,2'(# ) € {0,1}* and any [ > 0, and
thus the above probability equals to zero for any adversary A with any running time. O

3.5 Comparison

Table 3.1 compares IBE-to-PKE transformations. Our transformation in Section 3.3 is de-
noted by “Ours (§3.3)”. The CHK transformation [34] is denoted by “CHK”), and the original
BK transformation [26] is denoted by “BK”) [26]. The BK transformation where the encap-
sulation scheme is instantiated with the original encapsulation scheme by Boneh and Katz (as
reviewed in Section 3.2) is denoted by “BK w. BK-encap.”, and the BK transformation where
the encapsulation scheme used in BK is instantiated by our encapsulation scheme proposed
in Section 3.4 is denoted by “BK w. Our-encap.(§3.4)”. In Table 3.1, the column “IBE” de-
notes the security requirement for the underlying IBE schemes (“-sID-CPA” is omitted), the
column “Overhead by Transformation” denotes how much the ciphertext size increases from
that of the underlying IBE scheme (typical sizes for 128-bit security are given as numerical
examples), the column “Required Size for M;pgp” denotes how much size is necessary for
the plaintext space of the underlying IBE scheme, and the column “Reduction” denotes the
ratios of the advantage of breaking the transformed PKE schemes and that of the underlying
IBE schemes (i.e. reduction cost)

Ciphertext Overhead by Transformations. In “BK w. BK-encap.” scheme, the over-
head is caused by a TCRHF (TCR), a MAC, and a large randomness r’ (because of the use
of the Leftover Hash Lemma [63] with the use of a PTHF in order to get an almost uniformly
distributed value for a MAC key). Because of r/, though size of TCR(r’') and the tag from
MAC can be 128-bit, we need at least 448-bit for the randomness r’, and the overhead in
total needs to be 704-bit.

In “Ours(§3.3)”, the size overhead from the ciphertext of the underlying IBE scheme is
caused by a randomness r and its image f(r) with a OWF f. If we require 128-bit security,
we can set each to be 128-bit, and thus we have 256-bit overhead in total.
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Table 3.1: Comparison among Generic IBE-to-PKE Transformations

IBE | Overhead by Transformation § | Required Size * | Reduc-
(Numerical Example (bit) ) for MrBE tion
CHK IND | |vk| + |sig]| (—) | ImpkEl| tight
BK IND | |com| + |dec| + |[MAC]| (—) | |mpxEg|+ |dec| | tight
BK w. BK-encap. IND | |[TCR(#)| + || + IMAC| (704) | |mprr|+ || tight
BK w. Our-encap.(§3.4) | IND | 2x + |MAC] (384) | |mprp|+ || | tight
Ours(§3.3) NM | |f(r)]+ |r] (256) | ImprE|+ || 1/4q

1 vk and sig denote a verification key and a signature of the one-time signature in the CHK transfor-
mation, com and dec denote a commitment and a decommitment of the encapsulation scheme [26], 7’
denotes a randomness used in the BK transformation when the encapsulation proposed in [26] is used,
k denotes the security parameter, and r denotes a randomness used in our proposed transformation.
I We consider 128-bit security for the numerical examples. We used k = |TCR(r')| = IMAC| = |f(r)| =
|r] = 128 and |r'| = 448. We do not consider the cases of the CHK and the BK transformations,
because we need to specify the instantiations of one-time signature in CHK and the encapsulation
scheme in BK for the size comparison.

* |mp | denotes a plaintext size of a PKE scheme obtained via each transformation.

In “BK w. Our-encap.(§3.4)”, the overhead is caused by a MAC and an output of a
pseudorandom generator (PRG) which has a special security property called near collision
resistance, which will in total be at least 384-bits. Moreover, unlike the building blocks (e.g.
one-time signatures, TCRHFs, and MACs) used in the other transformations including ours,
whether a PRG with near collision resistance required in “BK w. Our-encap.(§3.4)”, is implied
by the existence of IND-sID-CPA secure IBE schemes is not known so far, which means that
we have to additionally assume the existence of it. To instantiate a PRG with near collision
resistance, we need either a one-way permutation, or a cryptographic hash function that has
target collision resistance as well as some pseudorandomness property.

Computation Overhead. We see that, for “Ours (§3.3)” and “BK w. BK-encap.”, the
overhead of computation costs caused by additional building blocks in the transformations
can be considered to be practically the same, because the computation of hash functions are
far cheap compared to the computation costs for encryption and decryption algorithms of the
used IBE schemes that usually include computations of exponentiations and pairings.

If we use the PRG in Section 3.4.3 for the encapsulation scheme in “BK w. Our-
encap.(§3.4)”, then the essential efficiency of computations (two computations of a cryp-
tographic hash function) of the encapsulation scheme is comparable to the BK encapsulation
scheme (one computation of a cryptographic hash function and one computation of a PIHF,
the latter of which is usually a cheap arithmetic computation over some finite field). If we
use the PRG in Section 3.4.4 for our encapsulation scheme, then, because of the computation
of the BMY-PRG, our encapsulation scheme requires heavier computations for both commit-
ment and recovery algorithms compared to the BK encapsulation scheme. Specifically, for
obtaining a 2k-bit pseudorandom string from k-bit string with the BMY-PRG, we have to
compute a one-way permutation k times (though this can be reduced to x/(log k) times by
taking not just one bit but log x bits of hardcore bits in each iteration of the computation of
a one-way permutation in the BMY-PRG, this is still far worse than the BK encapsulation
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scheme). However, since the computations in these encapsulation schemes are all “symmetric-
key” computations, we believe that in most cases they are not so significant compared to the
computations done in encryption and decryption algorithms of the used IBE scheme.

Observation: IND vs. NM. As we can see, there exists a trade-off between assumptions
on security of the underlying IBE schemes and ciphertext overhead. Roughly speaking, if
we see the OWF in our transformation as a hash function, then “Ours (§3.3)” is obtained
by getting rid of the PIHF and the MAC from “BK w. BK-encap.”. And the lost power
is supplied by the property of non-malleability of the underlying IBE scheme. But it is not
easy with a brief consideration to come up with an efficient NM-sID-CPA secure IBE scheme
from a combination of an IND-sID-CPA secure IBE scheme, a PIHF, and a MAC. Thus,
this relation between “Ours (§3.3)” and “BK w. BK-encap.”. could be seen as a concrete
(but qualitative) evidence that shows a huge gap between what indistinguishability (semantic
security) provides and what non-malleability provides (at least, for selective identity, chosen
plaintext attacks for IBE schemes).

3.6 Conclusion

We have described a new simple and generic IBE-to-PKE transformation that transforms any
NM-sID-CPA secure IBE scheme into a CCA secure PKE scheme. Our proof technique for
security of the proposed method is not a straightforward application of previous techniques
for the security proof of generic IBE-to-PKE transformations [34, 26], and we believe that
our technique, together with the simpleness of our transformation itself, is theoretically inter-
esting. Though non-malleability is somewhat a strong requirement and we have no concrete
practical non-malleable IBE scheme (other than CCA secure ones) so far, once we in the fu-
ture have an efficient IBE scheme which are proved (or can be assumed) to be non-malleable,
we will immediately have an efficient PKE scheme via our simple and generic transformation.

Moreover, we have also described how to construct an efficient encapsulation scheme from
a PRG with near collision resistance, with which we can drastically improve the ciphertext
size of PKE schemes obtained from the Boneh-Katz transfomation [26]. From this result, we
can construct a more size efficient PKE scheme from any CPA secure IBE scheme.

41






Chapter 4

Towards CCA Security from CPA
Security

Contents
4.1 Introduction . ... ... ... i e 43
4.1.1 Background . . . . ..o o 43
4.1.2 Our Contribution . . . . . . . . ... .. 45
4.1.3 Related Works . . . . .. ... 46
4.1.4 Organization of This Chapter . . . . . . ... ... ... ... .... 47
4.2 Extending Bounded CCA Security: Mixed CCA Security . . . . 47
4.2.1 Mixed CCA Security . . . . . . . .. o 48
4.2.2  General Properties of Mixed CCA Security . . .. ... .. ... .. 50
4.3 Relations among Security Notions for Mixed CCA Security . . . 54
4.3.1 “is-Simulatable-by” Relation for Query Sequences . . ... .. ... 55
4.3.2  Useful Tool for Separation: Backdoor-Sequence Scheme . . . . . .. 56
4.3.3 Separation Results . . . . . ... ... o oL 62
4.3.4 Implication Results . . . . . . ... ... ... ... . ... ..., 78
4.3.5 Necessary and Sufficient Conditions for Implications/Separations . . 81
4.4 Black-box Feasibility Results from IND-CPA Secure PKE Schemes 82
4.5 OpenProblems. ... ... ... ... ... 86
4.6 Conclusion . . ... . ... ittt e e e e e e e e e e 87

4.1 Introduction

4.1.1 Background

Studies on constructing and understanding public key encryption (PKE) schemes secure
against chosen ciphertext attacks (CCA) [84, 93], which is nowadays considered as a stan-
dard security notion needed in most practical applications/situations where PKE schemes are
used, are important research topics in the area of cryptography. We can roughly categorize
the approaches for constructing CCA secure PKE schemes into two types: Constructions from
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specific number-theoretic assumptions and constructions from general assumptions. (From
now on, we write IND-CCA1 to denote non-adaptive CCA security [84] and IND-CCA2 to denote
adaptive CCA security [93])

The approaches of the first type have been successful so far from both a theoretical and
practical point of view. After the first novel practical scheme based on the decisional Diffie-
Hellman (DDH) assumption by Cramer and Shoup [43], many practical IND-CCA2 secure PKE
schemes that pursue smaller ciphertext size and/or base security on weaker assumptions have
been constructed so far, e.g. [75, 27, 70, 98, 65, 37, 61, 67, 73, 66, 41, 62]. Especially, the
scheme by Cash et al. [37] (and the schemes in recent papers [61, 41, 62]) is based on the
computational DH (CDH) assumption, while the scheme by Hotheinz and Kiltz [67] is based
on the factoring assumption, and both assumptions are very fundamental in the area of
cryptography.

The approaches of the second type have also been successful, mainly from a theoretical
point of view. Naor and Yung [84] proposed a generic construction of IND-CCA1 secure
PKE schemes from semantically secure (IND-CPA) PKE schemes, using non-interactive zero-
knowledge (NIZK) proofs [17]. It is known that if enhanced trapdoor permutations exist, then
NIZK proofs for any NP language is possible [15, 56]'. Based on the Naor-Yung paradigm,
several constructions of IND-CCA2 secure PKE schemes were also proposed [47, 96, 77]. Since
the existence of enhanced trapdoor permutations implies the existence of IND-CPA secure PKE
schemes, these results suggest that we can construct IND-CCA2 secure PKE schemes from any
enhanced trapdoor permutation. (We review other generic constructions of IND-CCA2 secure
PKE schemes in Section 4.1.3.)

However, one of the most fundamental problems still remains open: Is it possible to
generically construct a CCA (IND-CCA1 or IND-CCA2) secure PKE scheme from any IND-CPA
secure one?

So far, there are several negative and positive results related to this problem. Gertner et
al. [55] showed that constructing an IND-CCA1 secure PKE scheme only from IND-CPA secure
PKE schemes in a black-box manner is impossible, if the construction satisfies the property
called shielding, where a construction of a PKE scheme from another PKE scheme is said
to be shielding if the decryption algorithm of the construction does not call the encryption
algorithm of the underlying PKE scheme.

Pass et al. [89] showed how to construct a PKE scheme that is non-malleable against
chosen plaintext attacks (NM-CPA) from any IND-CPA secure PKE scheme. Their construction
uses a certain class of NIZK proofs and thus was non-black-box.

Cramer et al. [40] introduced the notion of bounded CCA security which is defined in
exactly the same way as ordinary IND-CCA2 security, except that the number of decryption
oracle queries that an adversary can ask is bounded by some predetermined value (say, ¢) that
is known a priori (we denote this notion by ¢-CCA2). Then they showed that for any polyno-
mial ¢ it is possible to construct an IND-¢g-CCA2 secure PKFE scheme from any IND-CPA secure
one in a black-box and shielding manner. They furthermore showed that for any polynomial
q it is possible to construct a PKE scheme that satisfies non-malleability against ¢g-bounded
CCA (NM-¢-CCA2) in a non-black-box manner.

Recently, Choi et al. [38] showed the constructions of PKE schemes from any IND-CPA se-
cure scheme both in a black-box and shielding manner. Their first construction achieves
NM-CPA security, and their second construction, which is essentially the same as the first

Tt was shown in [57] that we actually need the so-called doubly-enhanced trapdoor permutations.
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construction but needs larger parameters, can achieve NM-¢g-CCA2 security.

These previous results show that we can achieve the best possible security notion (NM-¢g-CCA2)
in the bounded CCA framework. This suggests that in order to proceed from the current
situation, we would need new security notions which are intermediate between CPA and CCA
security in a different sense from bounded CCA security. The motivation of this chapter is to
introduce and study such intermediate security notions as an extension of the bounded CCA
security as a foundation for tackling the above fundamental problem.

Extending Bounded CCA Security with Parallel Decryption Queries. As we men-
tioned, we would need intermediate security notions that can capture the notions between
CPA and CCA security, in order to make further progress on the fundamental problem. For
this purpose, we focus on and use the concept of the parallel chosen ciphertext attacks which
is originally introduced by Bellare and Sahai [13, 14] in the context of non-malleability [47] for
PKE schemes?, and considers the parallel queries in the bounded CCA security framework.
More specifically, as an extension of bounded CCA security, we introduce a new security
notion, which we call mired CCA security, that captures security against adversaries that
make single (i.e. ordinary) decryption queries and parallel decryption queries in a prede-
termined order, where each parallel query can contain unboundedly many ciphertexts. (The
name “mixed” is because we consider a mix of single and parallel queries.) Moreover, the
difference among decryption queries that are only allowed to make before/after the challenge
and those that are allowed to make both before and after the challenge (an adversary can
decide “flexibly” how to issue queries as long as it follows the predetermined order of queries
and types) is also taken into account in this security definition, which enables us to capture
existing major security notions that lie between CPA and CCA security, including slightly
complex notions such as non-malleability against bounded CCA (NM-¢-CCA2) that considers
“stage-specific” decryption queries, in a unified security notion. As a natural and interesting
special class of mixed CCA security, we also introduce the notion of bounded parallel CCA
security. For more details, see Section 4.2. We believe that the mixed CCA security notions
provides a theoretical foundation for discussion of the problem of whether constructing (un-
bounded) CCA secure PKE schemes from any CPA secure PKE schemes is possible or not,
and for intermediate results towards the problem.

4.1.2 Owur Contribution

Our contributions are summarized as follows:

Relations among Mixed CCA Security Notions. We investigate the relations among
mixed CCA security notions for PKE schemes and for key encapsulation mechanisms (KEMs),
and show a necessary and sufficient condition for implications/separations between any given
two notions in mixed CCA security (which includes major existing security notions that lie
between CPA and CCA security). Interestingly and perhaps somewhat surprisingly, the re-
lations for PKE schemes differ depending on its plaintext space size. More specifically, the
relations among security notions for PKE schemes with superpolynomially large plaintext

2They used the notion of parallel CCA (in which a “parallel decryption query” is available only after all
decryption queries are done in the second stage) in order to show the equivalence of among several type of
non-malleability definitions.
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space size and those with polynomially bounded plaintext space size are different. There-
fore, this difference suggests that when we consider the relations among security notions for
PKE schemes, we have to be also careful about the plaintext space size, though seemingly
unrelated. The relations for KEMs are the same as those of PKE schemes with polynomi-
ally bounded plaintext space size. See Section 4.3 for details. There, as a corollary of the
above general result of a necessary and sufficient condition, we also fully clarifies the relations
among bounded parallel CCA security and other existing security notions. We believe that
the relations among security notions clarified here will be useful for further studying mixed
CCA security.

Black-Box Feasibility Results from CPA-Security. Using the notion of mixed CCA
security, in Section 4.4, we will show two new black-box constructions of PKE scheme (which
can encrypt plaintexts of polynomial length) from an IND-CPA secure PKE scheme. The first
one is constructed based on the construction by Choi et al. [38] which is NM-¢g-CCA2 secure,
and achieves slightly but strictly stronger security notion than NM-¢-CCA2. Our approach for
the first construction is to use the Choi et al. scheme as a KEM and combine it with an
IND-CCA2 secure data encapsulation mechanism (DEM), and thus is a very simple extension.
In order for this simple approach to work, we show some implication result for mixed CCA
security of KEMs (and PKE schemes with polynomially bounded plaintext space size). The
second one is constructed based on the above result and the construction of PKE scheme by
Cramer et al. [40], and achieves yet another security notion which cannot be directly compared
with the security notion achieved by our other constructions and with NM-g-CCA2 security.
See Section 4.4 for details.

As will be explained later, one of the important and interesting observations that our
results suggest, combined with previously known results, is that the difficulty of constructing
an IND-CCA1 secure PKFE scheme only from IND-CPA secure one lies not in whether the number
of decryption results that the adversary can see is bounded or not, but in whether the number
of an adversary’s “adaptive” decryption queries is bounded. To the best of our knowledge,
this observation has not been explicitly stated before.

4.1.3 Related Works

Here, we review several generic constructions of IND-CCA2 secure PKE schemes that are not
mentioned in Section 4.1.1. We note that assuming the existence of the building blocks for
the constructions below is strictly stronger than assuming the existence of IND-CPA secure
PKE schemes.

Canetti et al. [34] proposed a novel methodology for achieving IND-CCA2 security from
any semantically secure identity-based encryption (IBE) scheme [99]. Kiltz [69] showed that
the IBE-to-PKE transformation paradigm is applicable to tag-based encryption [78] of ap-
propriate security, the existence of which is implied by the existence of semantically secure
IBE schemes.

Peikert and Waters [91] proposed a methodology to obtain IND-CCA2 secure PKE schemes
using a primitive called lossy trapdoor function. Rosen and Segev [95] proposed a generic
paradigm for obtaining IND-CCA2 secure PKE schemes from an injective trapdoor function
that is one-way under correlated products, which is a strictly weaker primitive than a lossy
trapdoor function. Kiltz et al. [71] showed that an adaptive trapdoor function, which is
a strictly weaker primitive than the above two special trapdoor functions, is sufficient to
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construct IND-CCA2 secure PKE schemes. Very recently, Wee [104] further relaxed the re-
quirement of adaptive trapdoor functions and showed that adaptive trapdoor relations is
sufficient.

Hanaoka and Kurosawa [61] proposed yet another paradigm to achieve IND-CCA2 secure
PKE schemes from any semantically secure broadcast encryption with verifiability. Dowsley et
al. [48] proposed the generic construction of IND-CCA2 secure PKE schemes from IND-CPA se-
cure PKE schemes that are verifiable under k-repetition which is currently only known to be
achieved by some schemes such as the randomized McEliece encryption scheme [86].

Pandey et al. [88] introduced the notion of adaptive security for one-way functions and
related primitives, and showed that if there exist an adaptively secure perfectly one-way
hash function [29, 36] and a trapdoor permutation of a special kind, then the PKE scheme
by Bellare and Rogaway [10] can be shown to be IND-CCA2 secure in the standard model,
although the original scheme requires random oracles in order to show its CCA security.
However, the relations among existence of such adaptively secure cryptographic primitives
and those with non-adaptive property are not known well.

Canetti and Dakdouk [31] introduced a new primitive called an eztractable perfectly one-
way function. They showed that using a trapdoor permutation and an extractable perfectly
one-way function with dependent auziliary information and public randomness, then the PKE
scheme by Bellare and Rogaway [10] can be shown to be IND-CCA2 secure in the standard
model. However, how to construct an extractable perfectly one-way function with such prop-
erties is not known yet.

In the random oracle methodology [10], several generic methodologies (e.g., [11, 49, 87])
are known. However, since the results from several papers [32, 85, 59, 6, 46, 72] have shown
that this methodology has some problems, in this thesis we focus only on the constructions
in the standard model.

Myers and Shelat [81] recently showed that we can construct IND-CCA2 secure PKE scheme
which can encrypt multi-bit messages from IND-CCA2 secure PKE schemes which can encrypt
only 1-bit in a black-box manner.

4.1.4 Organization of This Chapter

In Section 4.2, we define the notion of mixed CCA security, and show some important proper-
ties of mixed CCA security notions. Then, in Section 4.3 we investigate the relations among
mixed CCA security notions. We show the results on black-box constructions of PKE schemes
from CPA secure ones in Section 4.4. We leave several open problems regarding mixed CCA
security in Section 4.5. Section 4.6 is the conclusion of this chapter.

Publication Information. The results shown in this chapter will be presented as [a] (see
Appendix A).

4.2 Extending Bounded CCA Security: Mixed CCA Security

In order to deal with and discuss existing security notions for PKE schemes and KEMs that
lie between IND-CPA and IND-CCA2 security in a unified way, in this section we introduce
an extension of conventional bounded CCA security, which we call security against mized
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chosen ciphertext attacks (mixed CCA security), where the decryption oracle in the secu-
rity experiment accepts both single decryption queries and parallel decryption queries in a
predetermined order, and “how” the decryption oracle is available is also predetermined.

Preliminary Definitions. We first formally define the notion of a parallel query to an
oracle.

Definition 20. Let O : {0,1}* — {0,1}* be an oracle which on input x outputs y = O(z).
A parallel query to O is a vector 7 = (x1,2,...) of inputs for O, where the size of the

vector @ is not predetermined, and a response to the parallel query T is a vector of outputs
T = (y1,y2,...) where y; = O(x;) for every 1 <i < |Z|.

Here, we stress that we make no restriction on the size of each parallel query. That is,
the number of inputs in each parallel query 7 is unbounded and can be dependent only on
an algorithm that uses the oracle.

To define mixed CCA security, we need to introduce several notations.

The symbols “s” and “p” denote one single query and one parallel query, respectively. Let
q > 0 be an integer. “s?” and “p?” denote ¢ single queries and ¢ parallel queries, respectively.
We define s = p? = (.

If we write “(s?p? ...)” with some integers ¢, g2, - - - > 0, then it denotes a query sequence.
This query sequence will define how the decryption oracle in the mixed CCA experiment
accepts the queries. For example, (s?p?) denotes two single decryption queries followed by
three parallel decryption queries. We denote by “unbound” a special sequence that indicates
“unboundedly” many single queries, i.e. unbound = s*°.

“QS8” denotes a set consisting of all possible query sequences with the restriction that
the total number of queries in each sequence is bounded to be polynomial (in the security
parameter). We furthermore define QS8* = QS U {unbound}. We refer to queries following
the query sequence seq € QS™ as “seq-queries”.

If seq € QS, then we denote by “|seq|” the length of the query sequence. For example, if
seq = (s?p) then |seq| = 3. We define |unbound| = cc.

We define a concatenation operation “||” for query sequences naturally. For example, if
seq, = (s?p) and seq, = (p?s?), then (seq||seqs) = (s?pp?s?) = (s?p3s?). For any seq € QS*,
we define (seq||0)) = (()]|seq) = seq and (seq||unbound) = (unbound||seq) = unbound.

4.2.1 Mixed CCA Security

Now we define mixed CCA security as a special type of IND-ATK security parameterized by
three query sequences B, F, A € QS™*, denoted by (B : F : A)-mCCA security, via the “(B : F : A)-
mCCA experiment”. In the (B : F : A)-mCCA experiment, an adversary A = (A;,.A2) can issue
the queries following the sequences firstly B, secondly F, and lastly A, in exactly this order
with the following restriction: B-queries are available only before the challenge (“B” is used
to denote “before” the challenge). F-queries are available only after all the B-queries are
completed. However, as long as the order and the number of queries are maintained, the
queries can be issued before and after the challenge (“F” is used to denote “flexible” in the
sense that A can “flexibly” decide how it issues queries before and after the challenge). A-
queries are available only after the challenge and only after all the F-queries are completed
(“A” is used to denote “after” the challenge). In other words, an adversary in the (B : F : A)-
mCCA experiment can issue (B||F;)-queries before the challenge and (Fz||A)-queries after the

48



Table 4.1: Compatibility with Existing Security Notions.
Existing Notions ‘ Notation in Mixed CCA Security

IND-CPA (0 :: 0)-mCCA
NM-CPA (0 :: p)-mCCA
IND-¢-CCA2 (E sq ()-mCCA
NM-¢-CCA2 (0 :s9: p)-mCCA
IND-g-pCCA1 (p? :: ®> -mCCA
NM-¢-pCCA1 (p? :: p)-mCCA
IND-g-pCCA2 (0 : p?: ()-mCCA
NM-¢-pCCA2 (0 : p?: p)-mCCA
IND-CCA1 (unbound :: #)-mCCA
NM-CCA1 (unbound :: p)-mCCA
IND-CCA2 (unbound :: unbound)-mCCA

challenge, for any pair of query sequences (Fy, Fy) satisfying (F1||[F2) = F, and how F is split
into F; and F2 can be decided adaptively by an adversary in the experiment.

We refer to B, F, and A as “before-challenge” queries, “flexible” queries, and “after-
challenge” queries, respectively. Just for notational convenience, if F = () then we write
(B :: A)-mCCA, instead of (B : () : A)-mCCA. (We do not omit if B=0 or A =10.)

The advantage of an adversary A in the (B : F : A)-mCCA experiment regarding a PKE

scheme II, denoted by Adv I%Bj A>_mCCA(k), is defined similarly to the other security notions

(which are defined in Section 2.2).

Definition 21. Let B,F,A € QS*. We say that a PKE scheme Il is (B : F : A)-mCCA secure
if Adv HBj A) mCCA(k:) is negligible for any PPTA A.

We define mixed CCA security for KEMs in exactly the same way as above.

With the mixed CCA security notation, we can express all the existing security notions
reviewed in Section 2.2. These are summarized in Table 4.1. For non-malleability, we adopt
the characterization using a parallel query by Bellare and Sahai [13, 14]. We also include the
bounded parallel CCA security notions defined in the following paragraph.

We also included bounded parallel CCA security notions defined in Section 4.2.1 in the
table.

We remark that we can also define a parallel decryption query in mixed CCA security
experiment (i.e. the (B : F : A)-mCCA experiment) so that the number of ciphertexts contained
in each parallel query is also bounded to be some predetermined value (say, t). However,
such security definition is implied by (|(B||F||A)]| - t)-Bounded CCA security, which is already
achieved by the existing PKE schemes that are constructed only from IND-CPA secure schemes
by the previous results [40, 38]. Therefore, we think that studying security with such “bounded
parallel” queries is less interesting than studying mixed CCA security defined in this section,
and is not treated in this thesis.

Previously to our work, Phan and Pointcheval [92] defined a similar notion which they
call (i,7)-IND security and (i, j)-NM security, which are equivalent to (s’ :: s/)-mCCA security
and (s :: s/p)-mCCA security in our definition, respectively (for NM, we interpret it with parallel
CCA-based characterization in [13]). They did not consider the “flexible” F-queries.
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Bounded Parallel CCA Security. Here, we define a natural and interesting special class
of mixed CCA security which we call bounded parallel CCA security. This is the security
against adversaries whose decryption queries are always parallel, and is also a natural exten-
sion from the bounded CCA security defined by Cramer et al. [40].

Depending on how the oracle is available for an adversary, we define pCCA1 and pCCA2 as
natural bounded parallel CCA analogue of CCA1 and CCA2. Moreover, as is similar to the
existing security notions, we define indistinguishability (IND) and non-malleability (NM) as
well.

Definition 22. Let ¢ > 0 be an integer. We say that a PKE scheme is IND-g-pCCA1 (resp.
IND-g-pCCA2, NM-q-pCCA1, and NM-q-pCCA2) secure if it is (p? :: 0)-mCCA (resp. (0 : p? :
()-mCCA, (p? :: p)-mCCA, and (() : p? : p)-mCCA) secure.

We define the bounded parallel CCA security notions for KEMs in the same way.

We remark that the above definition is interesting only if the number of the adversary’s
oracle queries is predetermined as in the conventional bounded CCA security [40]. This is
because if it is unbounded, then such security is implied by the ordinary CCA security which
allows unbounded queries for the adversary. That is, for GOAL € {IND, NM}, “GOAL-g-pCCA2 se-
curity for any polynomial ¢” (resp. “GOAL-g-pCCA1 security for any polynomial ¢”) implies
GOAL-CCA2 (resp. GOAL-CCA1) security. (This is also true for ordinary (i.e. not parallel)
bounded CCA case.)

4.2.2 General Properties of Mixed CCA Security

Here, we show two general implication results about the mixed CCA security notions. (In the
following, we always assume B,F, A € QS™, and do not write it explicitly.)
Firstly, by noticing the property of the “flexible” queries F, we show the following.

Theorem 9. For both PKE schemes and KEMs, a combination of all security notions
((B||F1) :: (F2||A))-mCCA satisfying (F1||F2) = F implies (B : F : A)-mCCA security.

Since this theorem is almost trivial, we omit the proof and only mention the intuition
using the simplest case F =s. It is easy to see that (B :s: A)-mCCA adversary can be divided
into two types: The first type adversary who makes (B||s)-queries before the challenge, and
A-queries after the challenge, and the second type who makes B-queries before, and (s||A)-
queries after the challenge. Then, the experiment for the first type can be simulated by a
((B]|s) :: A)-mCCA adversary while the experiment for the second type can be simulated by
a (B :: (s||A))-mCCA adversary. This is easily extended to any F € QS case. Note that if
F = unbound, then the statement is again trivial because we can have F; = Fo = unbound
(since unbound = (unbound||unbound)), and thus in this case ((B||F1) :: (F2||A))-mCCA security
is (unbound :: unbound)-mCCA security, which is equivalent to IND-CCA2 security that implies
all the mixed CCA security notions.

Next, we show that for PKE schemes with polynomially bounded plaintext space size and
for KEMs, the A-queries in the (B : F : A)-mCCA experiment, which is intended to be only
available after the challenge, can be actually issued “flexibly”, i.e., can be combined into the
“flexible” F-queries with maintaining its order.

Theorem 10. For PKE schemes with polynomially bounded plaintext space size and for
KEMs, (B : F: A)-mCCA security implies (B : (F||A) : 0)-mCCA security.

50



Intuitively, showing this theorem is possible because the challenge ciphertext can be made
“in advance” for PKE schemes with polynomially bounded plaintext space size and for KEMs.
Proof. Since the proof for the KEM case is easily inferred from that of the PKE case, here
we only show the PKE case (which we think is more interesting). Firstly, we have use the
following results on PKE schemes with polynomially bounded plaintext space size:

Lemma 9. If a PKE scheme 11 whose plaintext space size | M| is polynomially bounded is
IND-CPA secure, then II is smooth.

The proof is given after the proof of this theorem, The KEM-analogue of this lemma was
shown in [8].

Let II = (PKG, PEnc,PDec) be a (B : F : A)-mCCA secure PKE scheme whose plaintext
space size | M| is polynomially bounded. First of all, since (B : F : A)-mCCA security implies
IND-CPA security, and the size of the plaintext space My of Il is polynomially bounded, II is
smooth by Lemma 9. (Recall the definition of smoothness for PKE schemes in Definition 3
in Section 2.2.) Therefore, Smthyy is negligible.

Now, assume towards a contradiction that there exists a PPTA adversary A = (A;,.A2)
that succeeds in guessing the challenge bit, in the (B : (F||A) : #)-mCCA experiment regarding
II, with probability % + Advg:ﬁFHA):m_mCCA = % + 6 and 9§ is not negligible. Then we show that
we can construct another adversary B = (Bj, Bz) that has non-negligible advantage in the
(B : F: A)-mCCA experiment regarding the same II. The description of B is as follows.

Bi: On input pk, B; runs A; with input pk. By answers to Ay’s B-queries by the access to
B’s own decryption oracle in the (B : F : A)-mCCA experiment. Then B; picks my, and
m/ uniformly at random from the plaintext space M, sets the state information st
that consists of all the values known to B;, and terminates with output (mg, m/,stg).

Bay: On input (c*,stg) where ¢* is the challenge ciphertext for B, By waits until A; makes
further decryption queries. At this point, A; is allowed to make decryption queries
following the query sequence F, and By is allowed to make decryption queries following
the query sequence (F||A). Here, we suppose that after this point A4; will issue F;-
queries before A’s challenge and Az will issue (Fa||A)-queries after A’s challenge, such
that (F1||F2) = F holds. We stress that this is just for notational convenience for the
description of B. How F; and Fs are split is dependent only on A and need not be
known to B in advance. By answers to A;’s Fi-queries by using B’s own decryption
oracle access, except that if some query from A4; contains ¢*, then By gives up and
aborts. When A; terminates with output (mg,m1,sta), B2 checks if both mg = my
and m1 = m/ hold. If this is not the case, then By picks a bit b’ < {0,1} uniformly at
random and terminates with output &'. Otherwise (i.e. mg = m{, and m; = m} both
hold), B runs Az with input (c*,st4). Ba answers to Asg’s (Fa||A)-queries again by using
B’s own decryption oracle access. When Ay terminates with output ', By outputs this
b’ as its guess and terminates.

Note that according to our description of B, the challenge ciphertext ¢* for B is never
submitted to the decryption oracle in the second stage of B’s own (B : F : A)-mCCA experiment.
Let Succ be the event that B succeeds in guessing the challenge bit b, and let Coll be
the event that A; issues a (single or parallel) decryption query that makes By abort, i.e.
some of A;’s decryption queries contain the challenge ciphertext ¢* of B. In other words,
Coll corresponds to the event that 4; makes a collision of the challenge ciphertext ¢* without

o1



seeing ¢*. Moreover, let MsgOK be the event that both mo = m{, and m; = m} hold. If
MsgOK occurs, then B2 does not terminates when By receives the challenge plaintexts from

Aj.
We have the following:

Pr[Succ]

> Pr[Succ A Coll]

= Pr[Succ|Coll] - (1 — Pr[Coll])

> Pr[Succ|Coll] — Pr[Coll]

= Pr[Succ A MsgOK|Coll] + Pr[Succ A MsgOK|Coll] — Pr[Coll]
[

= Pr[Succ|MsgOK A Coll] - Pr[MsgOK|Coll] + Pr[Succ|MsgOK A Coll] - Pr[MsgOK|Coll] — Pr[Coll]

Here, note that Pr[MsgOK|Coll] = Pr[MsgOK] = W (and thus Pr[MsgOK|Coll] = I—W).
This is because my, and m/) are chosen uniformly at random from My and therefore for any
massage pair (mg,my), the probability that (m(, m}) = (mo, m1) occurs is exactly W

Note also that we have Pr[Succ|MsgOK A Coll] = 3, because if MsgOK occurs, By outputs
a random bit .

On the other hand, we have Pr[Succ|MsgOKAColl] = 3 +4§. This is because if both Coll and
MsgOK occur, B perfectly simulates the (B : (F||A) : 0)-mCCA experiment for A. Specifically,
unless Coll occurs, the answers to all the decryption queries from A are also perfect due to
the use of B’s own decryption oracle. (Recall that the order of the queries (i.e., the order
of B, F, and A) for B and A are exactly the same.) Moreover, if MsgOK occurs, then the
challenge ciphertext ¢* given to A is a “correct” challenge ciphertext for A’s own experiment.
Therefore, if both Coll and MsgOK occur, B succeeds with exactly the same probability as A
succeeds in the real (B : (F||A) : 0)-mCCA experiment.

Let @ be a total number of ciphertexts contained in A;’s Fi-queries. Since A is a PPTA
adversary, () is a polynomial. Then by the definition of the smoothness and considering the
union bound over all the ciphertext in A;’s Fi-queries, we have Pr[Coll] < @ - Smthr;. Hence,
since Smthyy is negligible, Pr[Coll] is upperbounded to be negligible.

Using the above, we now have,

1 1 1 1

Pr[Sucd > (= +48) —— + ~-(1— ——)— Q- Smth
I‘[ UCC]—(2+ ) ‘MH’2+2 ( ‘MHP) Q mtngg
1 1
=—+-—— 90— Q- -Smth
2 T Mg 0T @S
Therefore, Advﬂ%?Mmcu = | Pr[Succ] — 3| = |W -0 — @ - Smthyy|, which is not negli-

gible due to the facts that |[My| and @ are polynomial and Smthyy is negligible, and by the
assumption we made at the beginning of the proof of this theorem that § is not negligible.
Since this contradicts the (B : F : A)-mCCA security of II, AdvﬁBﬁFHA):m_mCCA must be negligible

for any PPTA adversary A. This completes the proof of Theorem 10. O
Now, we prove Lemma 9 in the following.

Lemma 9 (Restated). If a PKE 11 whose plaintext space size | M| is polynomially bounded
is IND-CPA secure, then II is smooth.
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Proof.  The proof of this lemma is almost the same as the proof in [8] that shows that an
IND-CCA2 secure KEM is smooth. Some notations are borrowed from [8].

Assume towards a contradiction that there exists an IND-CPA secure PKE scheme II =
(PKG, PEnc, PDec) whose plaintext space size | M| is polynomially bounded, and the smooth-
ness Smthyy (as defined in Definition 3 in Section 2.2) is not negligible. Then we show that
we can construct a PPTA adversary B = (Bi,B2) that breaks IND-CPA security of II with
non-negligible advantage. The description of B is as follows.

Bi: On input pk, By picks m; € My uniformly at random and also picks some myq satisfying
mgy # m1. Then By sets stg that consists of all the values known to Bi, and terminates
with output (mg, mq,stg).

By: On input (c*,stg), By computes ¢ < PEnc(pk,m1). If ¢ = ¢* then By sets b’ + 1,
otherwise By sets b’ <— {0,1} uniformly at random. Then By terminates with output &
as its guess.

Let b be the challenge bit of the IND-CPA experiment that B has to guess. According to
our description of B, it is easy to see that Pr[t/ = 1|¢’ = ¢* Ab = 1] =1 and Pr[t/ = 1|/ #
¢*Ab=1] =Pr[t =0|c’ # c*Ab=0]=3. Moreover, Prl[¢ = c¢*|[b = 0] = 0 (and hence
Pr[¢’ # ¢*|b = 0] = 1) also holds. This is because if b = 0 then ¢* is an encryption of mg while
c is always an encryption of my, and thus ¢’ and ¢* never collides due to correctness of the
PKE scheme II.

Using the above, we estimate the IND-CPA advantage of the adversary B.
IND-CPA / 1

Advip g = | Pr[b’ = b] — 5\
1

= §| Pr[t/ = 1|b = 1] + Pr[t) = 0]b = 0] — 1]

1
= §|Pr[b' =1l =c*Ab=1]-Pr[d =c*|b=1]+Pr]t) = 1| #c* Ab=1]-Pr[c # *|b=1]
+Pr[t =0l =c*Ab=0]-Pr[d =c*|b=0] +Pr[t) =0|c #c*Ab=0]-Pr[c #c*|b=0] 1]
1 1 1
:§|1-Pr[c':c*|b:1]+§-Pr[c'7£c*|b:1]+0+§-171|

1
= ZPr[c’ =c'lb=1]

In order to proceed, we now need some notation. For any pk, and any pair (m,c) where
m € My and ¢ € {0,1}*, let

k _ P ,: .
v(pk,m, c) C/&pEnf(pk,m)[C ‘

Let (mmax (Pk), cmax(pk)) € Mmx{0,1}* be an arbitrary pair such that v(pk, mmax(pk), Cmax(Pk)) >
v(pk, m,c) for any pair (m,c) € My x {0,1}*.
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Using the above, we can proceed as follows.

1
Adv%f{%‘cm =1 Pr[d = c*|b=1]
1
> 1 Pr[d = ¢ Amy = mupax(pk)|b = 1]
1
=1 Pr[d = c*|m1 = mumax(pk) A b = 1] - Pr[my = mumax(pk)|b = 1]
1
= Pr[d =c* = Mmax(pk) Nb =1
4‘MH| I’[C c |m1 m (p ) ]
1
-P = max k/\*:max k = Mmax ]{/\1)21,
Z ] r[d = cmax(Pk) A ¢ = cmax(Pk)|[m1 = Mumax(pk) ]
where we used Pr[mi = mmax(pk)|b = 1] = Pr[m1 = mmax(pk)] = |/V1ln|’ which is because B

picks mq uniformly at random from M.

Here, recall that due to our description of B, Pr[¢/ = cmax(pk) A ¢* = cmax(pk)|lm1 =
Mmax(Pk) A b = 1] in the IND-CPA experiment is equivalent to Pr[(pk,sk) < PKG;c* «
PEnc(pk, mmax(pk)); ¢ < PEnc(pk, mmax(pk)) : ¢ = cmax(pk) A ¢* = cmax(pk)].

Moreover, let

X(pk) N cePEnc(pll::,l;nmax(pk))[c N Cmax(pk)}-
We will regard X as a random variable over the choice of pk, which is given by (pk, sk) +
PKG(1%). By definition, we have E ok sk)—Prc#) [ X (Pk)] > Smthp(k). (Below, we omit the
security parameter k.)
Using these, we have

(pk, sk) < PKG;
Pr c* <+ PEnC(pk,mmax(Pk)); = Cmax(pk) Net = Cmax(pk)
cd PEnC(pk,mmax(pk»

c* — PEnC(pk,mmax(Pk))? R * =
(Pk,sk])?—PKG [ ' [ ¢ < PEnc(pk, muax(pk)) CoPE) 167 = s )

_ - ,
B (pk,sk])E%PKG [ ( PI‘[C < PEnC(pk’mmaX(pk)) 1= Cmax(pk)] ) ]

= E  [X(pk)?] >

2
E X(pk)] ) > (Smthp)?
(pk,sk)+PKG <(pk7sk)<_pKG[ (» )]> > (Smthy)?,

where in the first inequality we used the Jensen’s inequality.

In summary, we have Advﬁl\f[}g—("PA > q Al/ln\ -(Smthyr)?, which is non-negligible because | M
is polynomial and we made an assumption at the beginning of the proof of this lemma that
Smthy is non-negligible. Since this contradicts the IND-CPA security of II, Smthyy must be

negligible. This completes the proof of Lemma 9. O

4.3 Relations among Security Notions for Mixed CCA Secu-
rity

In this section, we investigate the relations among mixed CCA security notions.
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Due to its generality (i.e. choices of the three query sequences B, F, A € QS*, the difference
between single and parallel queries), given two mixed CCA security notions, it is not always
easy to tell if one mixed CCA security notion implies the other. Therefore, a natural and
yet non-trivial question is: given two mized CCA security notions (B : F : A)-mCCA and
(B : F: A)-mCCA, under what conditions on B,F,A,B,F, A are there implications/separations?

We fully answer this question and show a necessary and sufficient condition for implica-
tions/separations between any two mixed CCA security notions. Interestingly, it turns out
that for PKE schemes, the relations among security notions are different depending on its
plaintext space size. The relations among mixed CCA security notions for PKE schemes with
polynomially bounded plaintext space size and those for the KEMs are always the same.

The rest of this section is organized as follows. In Section 4.3.1 we first introduce a relation
over query sequences which plays a key role for our results. Then in Sections 4.3.3 and 4.3.4
we show separation results and implication results, resprctively, that lead to the necessary
and sufficient condition, which will be shown in Section 4.3.5. For notational convenience, in
the following we always assume B,F,A,B,F,A € @S*, and do not write it explicitly.

4.3.1 “is-Simulatable-by” Relation for Query Sequences

In order to state our results on relations among mixed CCA security notions, we need to
introduce the “is-simulatable-by” relation for query sequences. But before defining it, we
introduce the following relation over the symbols s and p.

Definition 23. We define the partial order “C1” over symbols {s,p} bys Ci's, s Cy p, and
pC1p.

Intuitively, the meaning of “C;” is that the former type oracle query “is-simulatable-by”
the latter type of oracle query. For example, in the mixed CCA security experiment a single
decryption query is simulatable if a single or parallel query can be made, and a parallel query
is simulatable by a parallel query. The subscript “1” of “C;” denotes that it is a relation for
one symbol, and it should not be mixed up with the relation for query sequences below.

Now, we extend the “is-simulatable-by” relation to query sequences QS*, which we denote
by “C4s” (the subscript “gs” stands for query sequence).

Definition 24. Let seq,seq € QS*. We define the binary relation “Cgs” over QS™ as follows.
‘seq Cgs seq” if and only if one of the following is satisfied:

e seq = unbound or seq = ()

e seq = (aj...am),seq = (b1...b,) € QS\{0} where a;,b; € {s,p} for each i € [m],
j € [n], and there exists a strictly increasing function f : [n] — [m] such that b; C1 ay( )
holds for all j € [n].

If seq and seq do not satisfy the above, we write “seq Zqs seq”.

? 113

It is easy to see that the above relation “C,;” is a natural extension from C; ie. “is-
simulatable-by” relation over {s,p}. Suppose seq C,, seq. Consider two adversaries A and B
attacking a same PKE scheme, where A makes seq-queries and B makes seq-queries, and a
situation in which A simulates the experiment for B. If seq = ), then B makes no query. If
seq = unbound, then A can use unbounded oracle access, and thus B’s decryption oracle can
be simulated. Otherwise, (i.e. seq,seq € QS\{0}), then i-th query from B can be simulated by
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A’s f(i)-th query (where f is a strictly increasing function guaranteed to exist by definition)
for all i € [n].

Now, given any two query sequences seq,seq € QS™ we can tell if seq Cys seq or seq s
seq.> For example, if seq = s? and seq = s”, then seq Cys seq if and only if ¢ > r. If
seq = (psps) and seq = (ssp) then seq C,s seq, while if seq = (sspss) and seq = (spp) then
seq Zgs seq.

We stress that our definition of “C,s” (and “Z,s”) is different from the notion of “subset”
(“C”), because the “ordering” in sequences matters.

4.3.2 Useful Tool for Separation: Backdoor-Sequence Scheme

A common approach for showing a separation of a security notion X from a security notion Y
for PKE schemes is to implement some “backdoor” mechanism, which leads to some “critical
information” v for breaking Y security, into a decryption algorithm (and possibly into other
algorithms) of an X-secure PKE scheme, so that Y-adversary can, by using a decryption oracle,
reach for v and break Y-security of the scheme, while an X-adversary cannot reach for v or
simply v is useless for breaking X-security of the scheme. We also follow this approach.

We wish to implement a backdoor mechanism so that given two sequences seq, seq sat-
isfying seq ¢4s seq, the mechanism exploits the essential difference between the information
available for an adversary making seq-queries and that for an adversary making seq-queries.
Basically, we implement such backdoor mechanism as a sequence of backdoor information
(u1,...,uszql+1) and a strategy for “how to release next backdoor information”, based on
seq,seq € QS and the critical information v. Specifically, let seq = (by...b,) such that
b; € {s,p} for i € [n].

e The sequence of backdoor information (u1,...,uns1) is set up so that u; = 1% (any
publicly known value will do), ug,...,u, are random values, and wu,1 is the critical
information v.

e The strategy for “how to release next backdoor information”, depending on seq =
(by...by), is set up so that: If b; = s, then this “release” strategy on input u; outputs
uiy1 itself; If b; = p, then this “release” strategy on input u; outputs a “secret-share”
of u; 11, so that if we collect the shares more than a threshold which is set to be a value
greater than |seq|, we can reconstruct ;1.

Constructed like this, an adversary making seq-queries to the release strategy can finally
obtain wu,4+1 which is the critical information v. In particular, if b; = p then an adversary can
make a parallel query to the release strategy to obtain all the share of u; 41 at once, and thus
can reconstruct u; 1. A key point is that if seq Z4s seq, then we can show that no adversary
who is only allowed to make seq-queries can reach for u,y; = v, and thus we can make a
difference in the information available for an adversary making seg-queries and that making
seq-queries.

In order to make it easier to analyze PKE schemes used to show separations, we formalize
this “backdoor mechanism” as a “stand alone” primitive, independently of decryption algo-
rithms of PKE schemes. We name it a backdoor-sequence scheme, and use it as a key tool for
establishing the separations.

3Note that “C,,” forms a partial order over QS*. However, it is not a total order. For example, if
seq; = (sp) and seq, = (ps), then we have both seq; Zqs seq, and seq, Zqs seq;.
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Algorithms of Backdoor-Sequence Schemes

Formally, a backdoor-sequence scheme consists of the following three PPTA algorithms (BSGen,
Release, Recon). As a common input, these algorithms take a public parameter pub consisting
of 1%, a query sequence seq € QS\{0, unbound}, and an integer ¢ € N. Let seq = (b;...b,)
where b; € {s,p} for each i € [n].

BSGen: A “backdoor-sequence generation” algorithm which takes pub and a secret value

v as input. It then internally generates a sequence of backdoors (ui,...,upt+1) €
({0,1}%)"+1 and auxiliary information aux. Finally it outputs a private parameter
pri = (u1,...,Upt1,aux).

Release: A deterministic “release” algorithm which takes pub, pri, two indices a € [n] and
B € [q], and a string w € {0, 1}* as input, and outputs some value y € {0, 1}¥ U {L}.

Recon: A deterministic “reconstruction” algorithm which pub and a set of strings (y1,...,y,) €
({0,1}*)7 as input, and outputs some value z € {0, 1}* U { L}.

As a correctness requirement for a backdoor-sequence algorithm BS = (BSGen, Release, Recon),
for all k& € N, all query sequences seq = (by...b,) € QS\{0} (where each b; € {s,p}), all
integers ¢ € N, all values v € {0,1}*, and all pri +~ BSGen(pub = (1*,seq, q),v), we require
the following:

1. u; = 1¥ and Upyl =V
2. Foralll <i<n:

e If b; = s, then Release(pub, pri, i, 1,u;) = w41

e If b; = p and Release(pub, pri, 7, j, u;) = y; for all j € [q],
then Recon(1%,seq, q, (y1,---,Yq)) = Uit1

3. If a ¢ [n] or B ¢ [q], then Release(pub, pri, o, 8, w) = L for any w € {0,1}*

Security Requirement of Backdoor-Sequence Scheme

We consider the security of a backdoor-sequence scheme. We would like the security property
of a backdoor-sequence scheme to ensure that if seq Z,s seq, then no PPTA adversary who
issues “release” queries following the sequence seq can reach for the secret value v, while
any adversary who can issue “release” queries following the sequence seq can reach for v.
To capture this, we consider the following (seq, seq)-backdoor-sequence experiment that an
adversary A = (Aj, A2) runs in. Let seq = (by...b,) € QS\{0} where b; € {s,p} for each
i € [n], and let ¢ = |seq| + 1.

Exptias® (k) : pub « (1*,58, ); (v, v}, sta) « A (pub); b « {0, 1};
pri <— BSGen(pub, v;); b’ < A9 (st4); If ¥ =b then return 1 else return 0
Here, we define the oracle O which is given to Ay by O(a, 8, w) = Release(pub, pri, «, 5, w),
where a € [n], B € [q], and w € {0,1}*. However, this oracle is available according to the

query sequence seq = (b ...by). That is, if b; = s then A3 can issue a single query of the form
(v, Bi, w;) as i-th query and is given Release(pub, pri, o, 3;, w;) as an answer, and if b; = p then
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Common Input: pub = (1%, seq, q¢) where
seq = (by...b,) € QS\{0} (i.e., each b; € {s,p}), and g € N.
BSGen(pub, v) where v € {0, 1}*:
Set uy + 1% and wu, 41 < v.
If n > 2 then pick us, ..., u, € {0,1}* uniformly at random.
For 1 <i <n Do:
If b; = s then
Set pm(x) — Uit+1 and Dij < 1 for 2 < _] < q.
Else (b; = p)
Pick randomly p; 1,...,piq € {0,1}* such that u; 41 = @?:1 Dij-
End For
Set aux < {pi; }ien),jelq)-
Return pri = (uq,. .., Uy, v,aux).
Release(pub, pri, o, 3, w) where a € [n], B € [q], and w € {0, 1}*:
(If ¢ [n] or B ¢ [g] then return L)
Parse pri as (u1,...,Un41,aux) and then parse aux as {p; ; }icin],jelq]-
If u, = w then return y < pq g, else return L.
Recon(pub, (y1, . . .,4,)) where each y; € {0,1}F
Return 2 + @j_, yi-

Figure 4.1: A concrete instantiation of a backdoor-sequence scheme BS.

Aj can issue a parallel query of the form ((ay 1, Bi1,wi 1), (42, Bi2, wi2), ..., (g, Bie, wip),...)
as i-th query and is given (y1,vy2,...,9s,...), where y, = Release(pub, pri, cv; ¢, Bi ¢, w; ¢) for
every { € N, as an answer. In the parallel query, the number of inputs to the oracle is
unbounded and thus can be dependent only on the adversary A.

We define the advantage of an adversary A in the (seq, seq)-backdoor-sequence experiment
as:

S 6 1
AV (k) = | Pr{ExptiE T (k) = 1] -

Definition 25. Let seq € QS and seq € QS\{0}. We say that a backdoor-sequence scheme
is (seq, seq)-secure if Advggqjeq)(k) is negligible for any PPTA A. Furthermore, we say that

a backdoor sequence scheme BS is secure if it is (seq,seq)-secure for any seq,seq € QS
satisfying seq € 45 seq.

Concrete Instantiation

We concretely instantiate a backdoor-sequence scheme BS = (BSGen, Release, Recon) as in
Fig. 4.1, which is based on a secrete sharing. It is straightforward to see that our scheme BS
satisfies the correctness requirement.

Now, we prove the security of BS.

Lemma 10. The backdoor-sequence scheme BS in Fig. 4.1 is secure.

Proof. Fix seq € QS and seq € QS\{0} satisfying seq Z,s seq. Let seq = (b1bs ..., b,) where
b; € {s,p} for each 7 € [n], and let ¢ = |seq| + 1. (Here, seq # () guarantees that such n > 1
exists.)

Let A = (A, A3) be any PPTA adversary which runs in the (seq, seq)-backdoor-sequence
experiment regarding BS.
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The key observation for proving this lemma is that due to our design of the backdoor
sequence scheme, the only way that the adversary A can learn the information on b is limited
to the following cases (which differ depending on by, ):

e If b, =s, then As has to make a query of the form (o, 5,w) = (n, 1, uy,).

e If b, = p, then since u,41 = v; is divided into ¢ shares with a g-out-of-q secret sharing
with perfect secrecy, Az has to make a query of the form («, 5, w) = (n, j, u,) for every
1 < j < g, and reconstruct u,1 from the shares returned from the oracle. (This can be
done in one parallel query or in the combination of some single and/or parallel queries.)

If A fails the above, the information on b is information-theoretically hidden from A’s view
point. We will use this observation later.

Let us introduce some notation. For a while, we assume n > 2. We consider the “splitting”
of seq according to seq so that seq = (seqy||. .. |[seq;«_;|[seq;«) for some integer j* > 2, and

o (1) for 1 <i¢ < j*—1,if b; =s then seq; € {s,p}, and if b; = p then seq; = (s%p) for
some 0 < ¢; < ¢, and

e (2) if bj« = s then seq;. = ), and if bj» = p then seq;« = (s%*) for some 0 < g;= < q.

We call j* the separating index.

For example, if seq = (pssps) and seq = (spps), then we have seq; = p, seq, = (ssp), and
seqs = s. Note that (seq||seqs||seqs) = seq. Therefore, in this example, j* = 3.

If we split seq as above, we have b; Cys seq; for 1 <4 <j* —1 and bj« Zs seq;«. We note
that if seq’ Z4s seq and n > 2, then there must exist such a position j* € {2,...,n}. This
is because if no such j* exists, i.e., if we have b; Cys seq; for all i € [n], then we must have
seq Cgs Seq.

We refer to the queries following seq, as seq;-queries. By the definition of (seq,seq)-
backdoor-sequence experiment, an adversary can make seq;-queries in the game only after it
has completed (seq,||...||seq;_;)-queries.

For convenience, we define the separating index j* for the case n = 1 by 5% = 1. This
guarantees that bj» = by = seq Zy, seq = seq;.4

Let Succ denote the event that A succeeds in guessing the bit b (i.e. ¥’ = b occurs). For
i € {1,...,7%}, let Jump, denote the event that until the point .4 completes seq;-queries,
A has made at least one query that contains an input (o, 3, w) such that w = wu, holds
for some a € {i + 1,...,n}. For convenience, we define the event Jump; also for i = 0
and i > j* as follows: Jump, is set to be always false (and thus Jump, is set to be always
true).; the truth-value of Jump; for ¢ > j* to be that of Jump,., and thus for ¢ > j* and for
any event E defined in the (seq, seq)-backdoor-sequence experiment, Pr[Jump;] = Pr[Jump,.],
Pr[E[Jump;] = Pr[E[Jump,.], and Pr[E[Jump;] = Pr[E[Jump,.].

We will use the above notations to analyze the advantage of the adversary A in the
(seq, seq)-backdoor-sequence experiment. In order to upperbound the advantage of A, we use
the following two claims, which will be proven later:

Claim 3. Pr[Succ|Jump,_,] =1

“Note that if séq Z4s seq and |seq| = n = 1 then séq = b1 € {s,p}. If séq = s then seq must be (. If seq = p
then seq must be of the form s? for some integer ¢ > 0.
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Claim 4. Pr[Jump,,_,] is negligible.

Using these, the advantage is shown to be negligible as follows:

seq,seq 1
AdvSE Y = | Pr[Succ] — 5|

= | Pr[Succ|Jump,,_;]| - Pr[Jump,,_] + Pr[Succ|Jump,,_;]| - Pr[Jump,,_;] — %|
= | Pr[Succ|Jump,,_;] - Pr[Jump,,_;] + %Pr[m] - %]

= | Pr[Succ[Jump,,_;] - Pr[Jump,,_;] — %Pr[Jumpn_l]\

— | Pr[Succ|Jump,, ] — %|
< %Pr[Jumpn,l] (4.1)

- PrlJump,,_,]

Therefore, it remains to prove Claims 3 and 4.

Proof of Claim 3. Recall that A can make seg-queries in the (seq, seq)-backdoor sequence
experiment, and we have split seq as seq = (seq||...[[seq;-). We consider two cases sepa-
rately: Case (i) j* < n and Case (ii) j* = n:

Case (i) j* <n: j* <n implies j* <n — 1, and thus Pr[Succ[Jump,,_,] = Pr[Succ|Jump;.].

Note that if Jump;. occurs, then A has not made any query that contains an input
(o, B, w) satisfying w = u, for some o € {j*+1,...,n}. Under this situation, since after
seq--queries A can issue no further query, by our key observation, the information on b
is information-theoretically hidden from .A’s view point. This implies Pr[Succ[Jump;.| =
Pr[Succ|Jump,,_] = 3.

Case (ii) j* = n: Recall that if Jump,,_; has occurred, then, after the point Ay has com-
pleted the seq,,_;-queries, A has issued no query which contains the input of the form
(o, B,w) = (n, j,uy). If b, =s, then, according to our splitting of seq, seq,, = (). Thus,
if b, = s then Ay cannot make any further query to the oracle O. In this case, the
information on b is information-theoretically hidden from A’s view point. On the other
hand, if b, = p, then we have seq,, = (s?*) for some 0 < ¢, < ¢. That is, A can make
single queries to O less than ¢ times. By our key observation above, even if 45 makes
further single queries less than ¢ times after the point A has completed seq,,_;-queries,
the information on b is again information-theoretically hidden from A. Therefore, re-
gardless of whether b, = s or b, = p, the information of b is information-theoretically
hidden from A, which implies Pr[Succ|Jump,,_;] = 3.

The above completes the proof of Claim 3. O

Proof of Claim 4. The following holds for 1 <i <mn —1,

Pr[Jump;] = Pr[Jump; A Jump,_;] + Pr[Jump; A Jump;_]

= Pr[Jump,;|Jump,_;]| - Pr[Jump,_;] + Pr[Jump;|Jump,_;] - Pr[Jump,_,]
< Pr[Jump;_4] + Pr[Jump;[Jump;_, |
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Thus we have S
Pr[Jump;] — Pr[Jump,_;] < Pr[Jump,[Jump,_,]

Then, taking the summation regarding ¢, we have

n—1 n—1
Z(Pr[Jumpi] — Pr[Jump;_,]) = Pr[Jump, ;] < ZPT[JU"‘PZ’UU”‘PZ‘—J
i=1 i=1

where we used Pr[Jumpy] = 0. Therefore,

n—1

Pr[Jump,,_;] < ZPr[JumpiUumpi_l] (4.2)
i=1

It remains to show the upperbound of each Pr[Jump;|[Jump,_;]. Let Qpqz be the maximum
number of inputs in a parallel query. Since A is a PPTA, Qnqs is some polynomial (this value
can be dependent only on the adversary A). Without loss of generality we assume Qnqaz > g.
Let (u1,...,un+1) be the sequence of backdoors generated from BSGen algorithm in the
(seq, seq)-backdoor-sequence experiment. For 0 < i < n we define U; = {ujt1,...,u,}. (For
example, Uy = {ua,...,u,}, and U,—1 = {u,}.)

Recall that [Jump;|Jump,_;] is the event that, given that none of As’s queries previous
to seq;_;-queries contains an input («, 5, w) (for O) satisfying w € U;_1, none of the inputs
(o, B,w) contained in Ay’s seq;-queries satisfies w € U;. Recall that seq; € {s,p} if b; = s,
or seq; = (s%p) with some ¢; < ¢ if b; = p, and we are assuming Qmqz > ¢. Therefore,
seq,-queries may contain at most ¢ + Qmaz < 2Qmasz inputs for O. At the point when A
receives the answer to seq,_;-queries, A may know at most (i — 1) - 2Qnqs k-bit strings w that
does not satisfy w € U;. Since the size of U; (i.e. the number of u,’s unknown to Ay except
Un+1) 18 n — i, we have

- 2Qma1 n _z n _7, 2Qmaz
Pr|J |J 4] > 1-— > 1l—-
r[ umpz| umpz—l] = ]1;[1 < ok _ 2(i — 1)Qm(m —j+ 1) = < 2k _ QiQmaz>
51 =) 2Cmar o 20Qmar
zk_Qszax 2k

where the last inequality is obtained by considering sufficiently large security parameter k.
Therefore we have

2anax

Pr[Jump;|Jump;_y] = 1 — Pr[Jump;|Jump;_,] < ==,

for sufficiently large k.
Using the above in inequality 4.2, for sufficiently large &k, we have:

(2anam> _ Qn(n - 1)Qmaz

Pr[Jump,,_] <ZP1" [Jump;|Jump,_] <Z

=1

92k
which is negligible. This completes the proof of Claim 4. O

The inequation (4.1) and Claims 3 and 4 imply that the backdoor-sequence scheme BS'is
(seq, seq)-secure. Note that the above proof works for any seq,seq € QS satisfying seq 45 seq.
This completes the proof of Lemma 10. O
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PKGsepl(lk) . PEncsepl(PK, m) :

(pk, sk) < PKG(1F) Parse PK as (pk, pub).
q < [(B[[F[[A)] +1 ¢ < PEnc(pk,m)
pub « (1%, (BJ|F||A), q) Return C' « (0%][0%||c).

pri < BSGen(pub, sk)

PK « (pk, pub)

SK < (sk,pri)

Return (PK, SK).
PDecgep1 (SK, C) :

Parse SK as (sk,pri) and C as («||5]|c) such that |a| = || = k.

If (a||B) = (0%||0%) then return PDec(sk, c).

Return Release(pub, pri, o, 3, ¢)

(If ¢ is longer than k-bit, then use the k-most significant bits of c.)

Figure 4.2: The PKE scheme Il that separates (B : F : A)-mCCA from (B : F : A)-mCCA in case
(BI[FIIA) Zqs (BI[F[|A).

4.3.3 Separation Results

Here, we show the separations among mixed CCA security notions.
Firstly, by focusing on the difference in the total query sequences, we show the following
separation.

Theorem 11. For both PKE schemes and KEMs, if (B||F||A) Zqs (B||F||A), then (B : F: A)-
mCCA security does not imply (B F: A)—mCCA security.

Intuition. The idea for building the separating PKE scheme is straightforward. We use
the secret key sk for the underlying PKE as a critical information together with a backdoor-
sequence scheme. Then, a (B : F : A)-mCCA adversary who can (in total) make (B||F||A)-queries
can reach for sk and decrypt the challenge ciphertext, while since (B||F||A) Zqs (Bl|F[|A), a
(B : F: A)-mCCA adversary who is only allowed to make (B||F||A)-queries in total cannot reach
for it.

Proof. Since the proof is essentially the same for both PKE schemes and KEMs, we only
show the PKE case below.

In order to show the statement, we will show that if there exists a (B : F : A)-mCCA secure
PKE scheme II = (PKG, PEnc,PDec), then there exists a PKE scheme Igeps = (PKGgept,
PEncsep1,PDecgept) which is (B : F : A)-mCCA secure but is not <B F: A> mCCA secure.

Specifically, let ¢ = |(B]|F||A)| + 1. We use the backdoor-sequence scheme BS = (BSGen,
Release, Recon) as a building block and construct the separating PKE scheme Ilgep; as in
Fig. 4.2. Recall that a backdoor-sequence scheme can be constructed without any computa-
tional intractability assumption.

Without loss of generality, we assume that all the integers that appear in this proof have
k-bit representation. In order to clarify that we are treating an integer as a k-bit string, we
will use “hat”. For example, Tis a k-bit representation of 1.

In the following, we show two lemmas that imply Theorem 11.

Lemma 11. The PKE scheme llgepy is not (é F: A)—mCCA secure.

62



Proof of Lemma 11.  We construct a PPTA adversary A = (A;, A2) as follows:

Ay: Let (B||F) = (b1 ...bs) such that b; € {s,p} for i € [s]. On input PK = (pk, pub), A,
sets u1 < 1% and then repeats the following for 1 < i < s:

e if b; =s, then A; issues C = (i|[1]|u;) as i-th (single) decryption query and is given
u;+1 = Release(pub, pri, i, 1,u;) as an answer.

e if b; = p, then A, issues, as its i-th query, a parallel query (Cy,Co,...,Cy) such
that C; = (i|[7||u;) for each 1 < j < ¢, and is given (y1,...,Yq) as an answer,
where y; = Release(pub, pri, 4, j,u;) for every 1 < j < ¢q. Then A; runs uj41 <
Recon(pub, (y1,...,9q))-

Note that in both cases, the returned value(s) from the oracle is always the output of
Release, due to the design of the PKE scheme Ilgep1. Moreover, since u; 41 can be always
obtained from the response to i-th query, .A; can continue the above.

When the above repetition is completed, A; picks two plaintexts mg, m; € My such
that mg # mq, and sets st 4 that consists of all the values known to A;. Finally, Ay
terminates with output (mg,m,st4).

Az: On input (C*,sty) where C* = (0%]|0%||c*), A3 makes queries in the same as A; does
(but this time A9 follows the query sequence A). When all the queries are completed,
according to the definition of PDecgeps (and the definition of the backdoor-sequence
scheme), As finally obtains u,4+1 = sk as an answer to As’s final query if the final query
was a single query or as an output from Recon if the final query was a parallel query.
As can now tell the challenge bit by decrypting c¢* by itself.

It is clear that A succeeds in guessing the challenge bit b with probability 1, and thus always
has (B : F : A)-mCCA advantage %, which is non-negligible. This completes the proof of
Lemma 11. O

Lemma 12. If the underlying PKE scheme II is (B : F : A)-mCCA secure and the backdoor-
sequence scheme BS is secure, then the PKE scheme Ilgepy is (B : F : A)-mCCA secure.

Proof of Lemma 12. Let A = (A1, As) be any PPTA adversary that attacks the PKE scheme
IIgeps in the sense of (B : F : A)-mCCA security. Consider the following sequence of games.

Game 1 This is the ordinary (B : F : A)-mCCA experiment that A runs in.

Game 2 Same as Game 1, except that the input sk to the BSGen algorithm of the backdoor-
sequence scheme run in PKGgep is replaced with (0

Let Succ; denote the event that A succeeds in guessing the challenge bit in Game i. Then,
the advantage of an adversary A is calculated as:

FAVm 1 1
Advip TR | PrSuce] - 5| < | PriSucci] - Pr[Succy]| + | Pr[Suces] - 5| (4.3)
To upperbound the above advantage, we prove the following claims.

Claim 5. | Pr[Succi] — Pr[Succs]| is negligible.
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Proof of Claim 5.  Assume towards a contradiction that |Pr[Succi] — Pr[Succs]| is not
negligible. Then we show that we can construct another PPTA adversary B = (Bi,B2)
that has non-negligible advantage in the ((B||F||A), (B||F||A))-backdoor-sequence experiment
regarding BS = (BSGen, Release, Recon).

The description of B is as follows.

By: On input pub = (1¥, (B||F||A),q), Bi runs (pk,sk) < PKG(1¥), and sets vi = 0% and
v] = sk. Then B; sets st that consists of all the values known to B, and terminates
with output (v(, v}, stg).

Ba: On input stg, By runs 4; with input PK = (pk, pub). When A, issues decryption queries,
By responds as follows.

o If A;’s query is a single query C = («||f||c), B2 first runs m < PDec(sk, ¢). Next,
Bs issues a single query (o, 3,¢) to B’s own oracle and receives the result y. By
sets m < y if (a||8) # (0%]|0%). Finally, B; sends m back to Aj.

e If A;’s query is a parallel query 8 = (C1,Cy,...), where C; = (oy]|5i]|c;) for each
1 <€ |C|, By first computes m; < PDec(sk, ¢;) for every 1 < i < |C'|. Then By
also issues ((«y, f1,c1), (o, B2, c2),...) as a parallel query to B’s own oracle and

receives the result (y1,¥2,...). Then for each 1 < i < |8|, By sets m; < y; if
(a||B) # (0%]|0%). Finally, By sends (mq,ma,...) back to Aj.

When A; terminates with output two plaintexts (mg, m1) of equal length and state
information st4, By picks a bit v € {0,1} uniformly at random (which will play a role
of the challenge bit for .A), computes c¢* < PEnc(pk,m.,), and sets C* < (0¥||0¥||c*).
Then By runs Ag with input (C*, st 4). The queries from A are answered in exactly the
same way as the queries from A;. When Ay terminates with output v/, By sets b/ < 1
if v/ =~ or t/ < 0 otherwise. Finally, By terminates with output ¥'.

Let b be a bit that the adversary B has to guess in the ((B||F||A), (B||F||A))-backdoor-sequence
experiment.

Note that B makes exactly the same type of sequence of queries as A, which is (B||F||A).
The advantage of B is calculated as:

BIFIA 1
AdVBIFIREIFIR) _ | pypy — 4 — o
1
= SIPrlt = 1Jb=1] — Prlp/ = 1]b = 0]
1
= 5 Prly’ =1lb = 1] = Pr[y’ = 7]b = 0]]

It is easy to see that when b = 1, B perfectly simulates Game 1 for 4 in which the challenge bit
for A is . In particular, the secret value input to BSGen in B’s experiment is v = v} = sk,
which is exactly the procedure done in PKGgeps in Game 1. Under this situation, the event
+' =~ corresponds to the event Succy, i.e. Pr[y = ~|b = 1] = Pr[Succy].

When b = 0, on the other hand, the secret value input to BSGen in B’s experiment is
vy = vy = 0%. It is again easy to see that B does the perfect simulation of Game 2 for A
in which the challenge bit for A is -, and with a similar argument to the above, we have
Pr[y' = 4]b = 0] = Pr[Succs].
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In summary, we have Advgg!gHA)’(BHF”A)) = 1| Pr[Succi] — Pr[Succy]|, which is not neg-
ligible by the assumption we made at the beginning of the proof of this claim. However,
since (BJ||F||A) Z4s (BJ|F||A), the existence of such B contradicts the security of the backdoor-
sequence scheme BS. Therefore, | Pr[Succi] — Pr[Succy]| must be negligible. This completes
the proof of Claim 5. O

Claim 6. | Pr[Succy] — 3| is negligible.

Proof of Claim 6.  Assume towards a contradiction that | Pr[Succy] — 3| is not negligible.
Then we show that we can construct another PPTA adversary B = (B1,B2) that can break
the (B : F : A)-mCCA security of the underlying PKE scheme II with non-negligible advantage.
The description of B is as follows.

Bi: On input pk, By sets pub = (1%, (B||F||A),¢), and runs pri < BSGen(pub,0F). Then B,
runs A; with input PK = (pk, pub).

When A; issues decryption queries, 1 responds as follows.

e If A;’s query is a single query C' = («|5]|c), then B; issues ¢ to its decryption oracle
and obtains m. Then if (a||8) # (0F||0%), By sets m < Release(pub, pri, o, 3, c).
Finally By sends m back to Aj;.

o If A;’s query is a parallel query C = (C1,Cq,...), where C; = (a4]|Bi||ci), B1 makes
a parallel query 7= (c1,¢2,...) to B’s decryption oracle and receives the answer
(m1,ma,...). Then for each 1 < i < |C'|, By sets m; < Release(pub, pri, i, 5;, ¢;)
if (oy||Bi) # (0F]|0%). Finally By sends (my,ma,...) back to Aj.

When A; terminates with output two plaintexts (mg, m1) of equal length and state
information sty, Bp sets its own state information stz that consists of all the values
known to B; and terminates with output (mg, mq,stg).

By: On input (c*,stg), By sets C* « (0¥||0¥||c*) and runs Ay with input (C* st4). The
queries from As are answered in exactly the same way as the queries from A;, except
that if As’s query contains a ciphertext of the form C' = («l|S]|c*), B2 does not submit
it to the decryption oracle and By directly computes m <— Release(pub, pri, o, 5, ¢*) as
a decryption result of this C. Note that such ciphertext C' = («|3||c*) cannot satisfy
(a]|B) = (0%]|0%) by the definition of the (B : F : A)-mCCA experiment, and setting
Release(pub, pri, «, 3, ¢*) as a decryption result for this C' is a legitimate response for A.
When A, terminates with output o/, By outputs this &’ and terminates.

Note that B makes exactly the same type of the query sequence as A, and thus B is a
legitimate (B : F : A)-mCCA adversary regarding II. Moreover, it is easy to see that B does
the perfect simulation of Game 2 for A4, and in particular, the challenge bit for B is that for
A. Therefore, B succeeds in guessing the challenge bit whenever A does so, and we have
Adv1<TB7:BF:A> mecA _ | Pr[Succe] — %|, but this is not negligible by the assumption we made at the
beginning of the proof of this claim. Since this contradicts the (B : F : A)-mCCA security of

the underlying PKE scheme II, | Pr[Succy] — %| must be negligible. This completes the proof

of Claim 6. ]

. . . . (B:F:A)-mCCA
According to the inequality (4.3) and Claims 5 and 6, we can upperbound AdVHsep1 A

to be negligible for any PPTA adversary A. This completes the proof of Lemma 12. O
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Lemmas 11 and 12 imply Theorem 11. O

Next, by focusing on the “after-challenge” queries, we show the following separation.

Theorem 12. For both PKE schemes and KEMs, if A Zqs A, then (unbound :: A)-mCCA
security does not imply (0 :: A)-mCCA security.

Intuition. Note that a (unbound :: A)-mCCA adversary can make unbounded single queries
before the challenge while a (0 :: A)-mCCA adversary can make no query. Therefore, the
critical information for breaking ({) :: A)-mCCA security must be something that is useful and
available only after the challenge. We set the critical information to be the decryption of the
challenge ciphertext itself. This means that the backdoor mechanism cannot be set up in the
key generation algorithm (because the sequence of backdoors are determined only after the
critical information v is determined), and must be set up in a decryption algorithm, while
keeping the decryption algorithm stateless and deterministic.

We use a pseudorandom function to realize the separating PKE scheme that has a “ciphertext-
specific” backdoor mechanism, meaning that the backdoor mechanism is not the same for all
ciphertext, but is set up differently depending on the input ciphertext each time the decryp-
tion (by the decryption oracle) is performed. More specifically, a seed K for a pseudorandom
function F' is picked as a part of a secret key of the separating PKE scheme. The decryption
algorithm of the separating scheme, on input a ciphertext ¢ togather with backdoor and some
information that indicates “backdoor mode”, derives a pseudorandom value R = F(c) and
use this R as a randomness for deriving the sequence of backdoors, and then outputs a “next
backdoor” or “reject” depending on the backdoor that is input with c. If the separating PKE
scheme is constructed as above, unbounded single queries before the challenge is meaningless
because the challenge ciphertext is not available before the challange.

To use a pseudorandom function as above is the idea first used by Bellare et al. [7]
who used it to show the separation between NM-CCA1 security and NM-CCA2 security (i.e.
IND-CCA2 security).

Proof.  Since the proof is essentially the same for both PKE schemes and KEMs, we only
show the PKE case below.

In order to show the statement, we will show that if there exists a (unbound :: A)-
mCCA secure PKE scheme II = (PKG, PEnc, PDec), then there exists a PKE scheme Ilgep0 =
(PKGgep2; PEnCgep2, PDecgepz) which is (unbound :: A)-mCCA secure but is not (0 :: Z\>—mCCA se-
cure.

Specifically, let ¢ = |A| 4+ 1. We use the backdoor-sequence scheme BS = (BSGen, Release,
Recon) and a PRF Fi (where K € {0,1}* is a seed for F) as building blocks to construct the
separating PKE scheme Ilgep as in Fig. 4.3. We assume that the length of ciphertext in the
underlying PKE scheme II is ¢ = (k) if generated under a correctly generated public key pk
that is output from PKG(1*). Let Rpg be the randomness space of BSGen. We also require
that for any K € {0,1}* PRF Fy is of the form Fg : {0,1}* — Rpg, and such PRF can
be constructed by only assuming the existence of a (unbound :: A)-mCCA secure PKE scheme.
We note that a backdoor-sequence scheme can be constructed without any computational
intractability assumption.

Without loss of generality, we assume that all the integers that appear in this proof have
k-bit representation. In order to clarify that we are treating an integer as a k-bit string, we
will use “hat”. For example, Tis a k-bit representation of 1.
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PR Goepa (1F) PEnCoup2 (PK,m) -
(pk, sk) < PKG(1%) Parse PK as (pk, pub).
g+ |Al+1 ¢ + PEnc(pk, m)
pub < (1% A, q) Return C « (0%[|0%||0%||c).
K + {0,1}*
PK + (pk, pub)
SK + (sk,K)
Return (PK, SK).

PDecgsep2(SK, C) :
Parse SK as (sk, K) and C as («|S||w||c) such that |a] = |8] = |w| = k.
m < PDec(sk, ¢)
If («||B]|w) = (0%]|0%]|0¥) then return m.
R+ FK(C)
pri < BSGen(pub, m; R)
Return Release(pub, pri, «, 5, w).

Figure 4.3: The PKE scheme Ilspo that separates () :: A)-mCCA from (unbound :: A)-mCCA in case
AZys A

In the following, we show two lemmas that imply Theorem 12.

Lemma 13. The PKE scheme Ilgepy is not () :: A)-mCCA secure.
Proof of Lemma 13. We construct a PPTA adversary A = (A;,.A3) as follows:

Aj: On input PK = (pk,pub), A; picks two plaintexts mg, m; such that my # m; and
st 4 that consists of all the values known to A;. Then A; terminates with output
(mo,ml,StA).

Ag: Let A = (by...b,) such that b; € {s,p} for i € [n]. On input (C*,sty) where C* =
(0F||0%||0%||c*), Az sets uj < 1¥ and then repeats the following for 1 < i < n:

e if b; = s, then Ay issues C = (i]|T||ui||c*) as i-th (single) decryption query and is
given wu; 1 = Release(pub, pri, i, 1,u;) as an answer.

e if b; = p, then A, issues, as its i-th query, a parallel query (C1,Co,...,Cy) such
that C; = (i|[7|Jus]|c*) for each 1 < j < ¢, and is given (yy, ... ,Yg) aS an answer,
where y; = Release(pub, pri, 4, j,u;) for every 1 < j < ¢q. Then Ay runs w1 <
Recon(pub, (y1, -, ¥q))-

Note that in both cases, the returned value(s) from the oracle is always the output
of Release(pub, pri, -, -, ), where pri = BSGen(pub, PDec(c*); Fx(c*)), due to the design
of the PKE scheme Ilgepo. In particular, pri is always the same as long as ¢* is used.
Moreover, since u;11 can be always obtained from the response to i-th query, As can
continue the above.

When all the queries are completed, according to the definition of PDecgep2 (and the
definition of the backdoor-sequence scheme), Aj finally obtains u,y; = PDec(sk,c¢*) =
mp as an answer to As’s final query if the final query was a single query or as an output
from Recon if the final query was a parallel query. Since As has now obtained the
decryption result of the challenge ciphertext ¢*, As can now outputs b and terminates.
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It is clear that A succeeds in guessing the challenge bit b with probability 1, and thus always
has (() :: A)-mCCA advantage %, which is non-negligible. This completes the proof of Lemma 13.
O

Lemma 14. If the underlying PKE scheme 11 is (unbound :: A)-mCCA secure, the backdoor-
sequence scheme BS is secure, and F' is a PRF, then the PKE scheme Ilgepo is (unbound :: A)-
mCCA secure.

Proof of Lemma 1. Let A = (A1, Az) be any PPTA adversary that attacks the PKE
scheme Ilgeps in the sense of (unbound :: A)-mCCA security. Consider the following sequence of
games. (The values with asterisk (*) are the ones that appear when generating the challenge
ciphertext C* = (0¥]|0%||0%||c*).)

Game 1 This is the ordinary (unbound :: A)-mCCA experiment that A4 runs in.

Game 2 Same as Game 1, except that after the challenge ciphertext C* = (0%||0%||0%||c*) is
generated, if A; has submitted at least one ciphertext of the form C = («||5||w||c*),
then all the decryption queries from Ay (i.e. queries after the challenge) are answered
with L.

Game 3 Same as Game 2, except that the PRF Fx used in the decryption oracle is replaced
with a truly random function RF : {0,1}* — Rps.

Game 4 Same as Game 3, except that if the decryption oracle receives a ciphertext (via a
single query or a parallel query) of the form C' = (af|f||w||c*) from A3, when running
BSGen, the secret value mj;, = PDec(sk, c*) input into BSGen is replaced with 0F. That
is, the decryption of C' = («||S||w]||c*) by the decryption oracle is replaced with m <«
Release(pub, pri, o, 3, w) where pri <— BSGen(pub, 0%; RF(c*)).

Let Succ; denote the event that A succeeds in guessing the challenge bit in Game ¢, and
let Coll; be the event that after the challenge ciphertext C* = (0¥||0¥]|0¥||c*) is generated, A;
has submitted at least one ciphertext C' = («|5]|w||c*) to the decryption oracle.

Then, the advantage of an adversary A is calculated as:

unbouna:: —m! 1
Adv%se}i’Ad A)7mCCA _ | Pr[Succy] — §|
1
< Z | Pr[Succ;] — Pr[Succiti1]| + | Pr[Succy] — 5\ (4.4)
i€{1,2,3}

To upperbound the above advantage, we show the following claims.

Claim 7. | Pr[Succ;] — Pr[Succs]| is negligible.

Proof of Claim 7. Note that the Game 1 and Game 2 proceed identically until the event
Coll; = Colly happens, and thus we have

| Pr[Succq] — Pr[Succsy]| < Pr[Coll;] = Pr[Coll;]

Therefore, we show that the upperbound of Pr[Coll;] is negligible. Assume towards a contra-
diction that Pr[Coll;] is not negligible. Then we show that we can construct another PPTA
adversary B = (B1,B2) that has non-negligible advantage in the IND-CCA1 experiment re-
garding the underlying PKE scheme II. The description of B is as follows.
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Bi: On input pk, By sets pub = (1’“,/&,(1), and picks a PRF key K « {0,1}*. and then
runs A; with input PK = (pk, pub). All the (single) decryption queries C' from A; are
answered by faithfully following the procedure of PDecgep2, except that if By needs to
run PDec(sk,c), By uses its own decryption oracle. When A4; terminates with output
two plaintexts (mg, m1) of equal length and state information st4, B; sets its own state
information stg that consists of all the values known to By. Finally, B; terminates with
output (mg,m1,stg).

Ba: On input (c*,stp), By checks if A; has submitted a decryption query of the form C' =
(a||B]|w]||c*). If no such query has been made, Bs picks a random bit b’ < {0,1} and
terminates with output o’. If such query has been made, then, according to our design
of B, ¢* has been also submitted to B’s own decryption oracle. Let m be the response
of B’s decryption oracle for the query c*. Bg sets ' < 0 if m = myg, or sets v/ + 1
otherwise. (Here, m = PDec(sk, c*) must be either mg or mq, due to correctness of the
PKE scheme II.) Finally, By outputs this & and terminates.

Let Succp be the event that B succeeds in guessing the challenge bit, and Findg be the event
that in B’s experiment, By finds a ciphertext C = (a|S||w]||c¢*) from A;’s decryption oracle
query. Due to the description of B, we have Pr[Succp|Findg] = 1 and Pr[Succg|Findg] = 1.
Moreover, it is clear that B perfectly simulates Game 1 for A;. Under this situation, the
event Findg occurs if and only if Coll; occurs, i.e., Pr[Findg] = Pr[Coll;].

Using the above, B’s IND-CCA1 advantage is estimated as:

1
Advi g “* = | Pr[Succg] — 5\

= | Pr[Succg|Findg] - Pr[Findg] + Pr[Succp|Findg] - Pr[Findg] — %]
1 1
= | Pr[Coll;] + 5(1 — Pr[Colly]) — 5\
1
= §Pr[COII1]

which is non-negligible by the assumption we made above. Therefore, B breaks an IND-CCA1 se-
curity of the underlying PKE scheme II. However, the existence of such B is a contradiction
because II is (unbound :: A)-mCCA secure, which is trivially IND-CCA1 secure. Therefore,
Pr[Coll;] must be negligible, which also upperbounds | Pr[Succ;] — Pr[Succs]| to be negligible.
This completes the proof of Claim 7. 0

Claim 8. | Pr[Succs] — Pr[Succy]| is negligible.

We omit the proof of this claim, since it is almost trivial to see due to the security of the
PRF F. Note that F' is only used in the decryption algorithm. If | Pr[Succ;] — Pr[Succy]| is
not negligible, we can use A to distinguish a PRF Fg (where K is randomly chosen) from a
truly random function RF.

Claim 9. | Pr[Succs] — Pr[Succy]| is negligible.

Proof of Claim 9.  Assume towards a contradiction that |Pr[Succs] — Pr[Succy]| is not
negligible. Then we show that we can construct another PPTA adversary B = (B, Bz) that
has non-negligible advantage in the (A, A)-backdoor-sequence experiment regarding BS =
(BSGen, Release, Recon).

The description of B is as follows.
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Bi: On input pub = (1’“,/&,(]), Bi runs (pk, sk) < PKG(1%). B; then generates an empty list
L into which pairs of the form (c, R) € {0,1}* x Rps will be stored for simulating a
truly random function RF in a lazy sampling manner.

Then B; runs A; with input PK = (pk,pub). All the (single) queries C' from A, are
answered by following the decryption procedure in Game 3 (and in Game 4), except that
when B; has to compute a random function RF(c), By simulates it by a lazy sampling®
using the list L. When A; terminates with output two plaintexts (mg,m;) of equal
length and state information st4, B; flips a random coin v € {0, 1}, and sets v] < my
and v < 0%. B, then sets its own state information stz that consists of all the values
known to Bj. Finally, B; terminates with output (v, vy, stg).

Bs: On input stg, By runs ¢* < PEnc(pk, m.), sets C* « (0%]|0%||0%||c*), and runs Ay with
input PK = (C*,sty4). If A; has made at least one (single) decryption query of the
form C = (al|B||w||c*), then By responds to all the decryption queries from Ay with L.
Otherwise, B responds to the decryption queries from A5 as follows.

o If Ao’s query is a single query C' = («||8]|w||c), Be first runs m <« PDec(sk, c).
If (a||B]|w) = (0F||0¥]|0¥), then By returns m to A. If ¢ # c*, then By simulates
R < RF(c) using L as above, computes pri < BSGen(pub,m; R) and returns
y < Release(pub, pri, o, 8, w) to Ag. Otherwise (i.e. ¢ = ¢*), By issues a single
query (o, 8, w) to B’s own oracle, receives the result y from the oracle, and returns
y to Az. (In this process, if By has not used its own oracle, B2 makes some query
to its own oracle to ensure that the query sequence of A and that of B remain the
same.)

e If Ay’s query is a parallel query = (C1,Cy,...), where C; = («y||Bil|wil|c;) for
each 1 < i < |C/|, By first computes m; <— PDec(sk, ¢;) for every 1 < i < |C'|. Then
Bs also issues ((a, f1,w1), (g, B2, ws),...) as a parallel query to B’s own oracle
and receives the result (y1,y2,...). Then for each 1 < i < |C|, Bg sets m; < y; if
(il Billw:) # (0F||0¥]|0F) and ¢; = ¢*. Next, for each 1 <4 < |8|, Bs sets m; < v,
if (oyl|Billwi) # (0F]|0%]|0%) and ¢; # c*, where y, = Release(pub, pri;, o, 3, w;),
pri; <— BSGen(pub, m;; R;), and R; <— RF'(c;) (this is simulated by a lazy sampling
using L as above). Finally, By sends (mq, mo,...) back to A;.

When As terminates with output +/, By sets b/ «— 1 if v/ = v or b’ + 0 otherwise.
Finally, B> terminates with output '.

Let b be a bit that the adversary B has to guess in the (A, :&)—backdoor—sequence experiment.
Note that B makes exactly the same type of sequence of queries as A, which is A. The
advantage of B is calculated as:

AA 1
Advi) = | Prt = 0] - 5
1
= S Prlt = 1jp = 1] — Prft/ = 1]b = 0]

1
= §|Pr[fy’ =q|b=1] — Pr[y/ = ~|b = 0]|

5That is, when c is input, if there exists an entry of the form (c, R) in the list L, this R is used as RF(c).
Otherwise, a uniformly random value R € Rps is picked and (¢, R) is added into L for a future reference, and
this R is returned as RF(c).
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It is easy to see that when b = 1 (i.e. v = v] = my) B perfectly simulates Game 3 for
A in which the challenge bit for A is 7. Specifically, B is simulating so that the decryption
of a ciphertext of the form C = («||8||w||c*) is answered with Release(pub, pri, v, 3) where
pri = BSGen(pub, m~; RF(c*)), which is an legitimate response in Game 3. The queries with
other types are also answered perfectly by appropriately using sk and the list L. Under this
situation, the event 7/ =+ corresponds to the event Succg, i.e. Pr[y’ = v|b = 1] = Pr[Succs].

When b = 0 (ie. v} =vj = 0F), on the other hand, B perfectly simulates Game 4 for
A in which the challenge bit for A is . With a similar argument to the above, we have
Pr[y' = 74]b = 0] = Pr[Succy].

In summary, we have AdvgéAlg = 1| Pr[Succs] — Pr[Succy]|, which is not negligible by the

assumption we made at the beginning of the proof of this claim. However, since A Zgs A, the
existence of such B contradicts the security of the backdoor-sequence scheme BS. Therefore,
| Pr[Succs] — Pr[Succy]| must be negligible. This completes the proof of Claim 9. O

Claim 10. |Pr[Succy] — 3| is negligible.

Proof of Claim 10. Assume towards a contradiction that | Pr[Succs] — 3| is not negligible.
Then we show that we can construct another PPTA adversary B = (B, B2) that can break the
(unbound :: A)-mCCA security of the underlying PKE scheme II with non-negligible advantage.
The description of B is as follows.

Bi: On input pk, By sets pub = (1%, K, q). Bj then generates an empty list L into which pairs
of the form (¢, R.) € {0, 1}* x Rpg will be stored for simulating a truly random function
RF in a lazy sampling manner. Then B runs A; with input PK = (pk, pub). All the
(single) queries C from A; are answered by following the decryption procedure in Game
3 (which is identical to that in Game 4), except that when B; has to run PDec(sk, ¢),
B use its own (single) decryption oracle, and to compute a random function RF'(c), B;
simulates it by a lazy sampling using the list L (as is done in the proof of Claim 9).

When A; terminates with output two plaintexts (mg, m;) of equal length and state
information sty, By sets its own state information stg that consists of all the values
known to Bj, and terminates with output (mg,m1,stg).

Bs: On input (c¢*,stg), By sets C* < (0%||0%]|0%||c*) and runs Ag with input (C*,st4). If Ay
has made at least one (single) decryption query of the form C = (al|g||w||c*), then By
responds to all the decryption queries from As with L.

Otherwise, Bs responds to the decryption queries from A5 as follows.

o If Ay’s query is a single query C = («a|8||w||¢), B2 submits ¢ to its own decryption
oracle and receives an answer m from the oracle only if ¢ # ¢*. If (¢||f||lw) =
(0F||0%||0%), then By returns m to A. If ¢ = c*, then set m < 0F. Finally, By
simulates R <— RF'(c) as above, computes pri <— BSGen(pub,m; R) and returns
y < Release(pub, pri, o, 8, w) to Asz. (In this process, if B2 has not used its own
oracle, Bs makes some query to its own oracle to ensure that the query sequence
of A and that of B remain the same.)

o If Ay’s query is a parallel query = (C1,C4,...), where C; = (ay]|5;||wil|c;) for
each 1 < i < |C|, Bs sets 7 (c1,c2,...) where if ¢; = ¢* for some i € [n], ¢
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is replaced with 1. Next, By submits a parallel query 7 to its decryption oracle
and receives an answer m = (my,ma,...). Here, if ¢; = ¢* for some ¢ € [n], the
corresponding plaintext m; in s replaced with 0F. Then, for each 1 <i < |C|, Ba
sets m; <y} if (ou|Bil|w:) # (0F]|0%||0%), where : + Release(pub, pri;, o, B, w;),
pri; <— BSGen(pub, m;; R;), and R; <~ RF(c;) (this is simulated by a lazy sampling
using L as above). Finally, By sends (mi,mo,...) back to As.

When A terminates with output v/, By outputs this &’ and terminates.

Note that B makes exactly the same type of the query sequence as A, and thus B is a
legitimate (unbound :: A)-mCCA adversary regarding II. Moreover, it is easy to see that B
does the perfect simulation of Game 4 for A, and in particular, the challenge bit for B is
that for A. Therefore, B succeeds in guessing the challenge bit whenever A does so, and we
have Advg’%bound"A>_mCCA = | Pr[Succq] — 3|, but this is not negligible by the assumption we
made at the beginning of the proof of this claim. Since this contradicts the (unbound :: A)-
mCCA security of the underlying PKE scheme II, | Pr[Succy] — %| must be negligible. This
completes the proof of Claim 10. O

According to the inequality (4.4) and Claims 7 to 10, we can upperbound Advﬁ's'l:;ljd::A>_mCCA
to be negligible for any PPTA adversary A. This completes the proof of Lemma 14. O

Lemmas 13 and 14 imply Theorem 12. O

An important corollary of Theorem 12 is the following.

Corollary 1. For both PKE schemes and KEMs, if (F||A) Zqs (F||A), then (B : F : A)-mCCA
security does not imply (B : F : A)-mCCA security.

Proof.  Let seq = (F||A) and séq = (F||A), and consider (unbound :: seq)-mCCA security and
(0 :: seq)-mCCA security. By Theorem 12 and the given condition seq Z4s seq, (unbound :: seq)-
mCCA security does not imply ({) :: seq)-mCCA security. However, (unbound :: seq)-mCCA security
implies (B : F : A)-mCCA security while (B : F : A)-mCCA security implies () :: seq)-mCCA security.
Since an implication of a security notion from another is a transitive relation, (B : F : A)-
mCCA security cannot imply (B : F : A)-mCCA security. O

Finally, by noticing the difference in the “before-challenge” queries, we show the following
separation which is true only for PKE schemes with superpolynomially large plaintext space
size.

Theorem 13. For PKFE schemes with superpolynomially large plaintext space size, if§ Zqs B,
then (B :: unbound)-mCCA security does not imply (B :: 0)-mCCA security.

Intuition. This time, the critical information that can be used to break <§ :: 0)-mCCA security
must be something that is useful only before the challenge, because <§ :: (0)-mCCA adversary
can make no query after the challenge. We design the separating PKE scheme so that it has
“weak” plaintexts, which are not encrypted at all by the encryption algorithm of the sepa-
rating PKE scheme. Then, we set the critical information to be one of these weak plaintexts,
which can be used as one of two challenge plaintexts. However, such weak plaintexts must
be hard to find, because otherwise (B :: unbound)-mCCA adversary can also find such a weak
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PKGseps(lk) : PEI’]Csepg,(,P,K—7 m) :

(pk, sk) < PKG(1%) Parse PK as (pk, pub, V).

g+ |B|+1 If f(m) =V then return C « (1]|0%||0%||m).
pub « (1%, B, q) ¢ < PEnc(pk, m)

v My Return C « (0]|0%||0%||c).

Ve f(v)

pri «<— BSGen(pub, v)

PK <« (pk,pub,V)

SK « (sk,pri)

Return (PK, SK).
PDecgeps(SK, C) :

Parse SK as (sk,pri) and C as (v||a||8]|c) such that |y| =1 and |a| = |8| = k.

If (v||a||8) = (0]|0%||0F) then return PDec(sk, c).

If (7]|a||B) = (1]|0]|0%) and f(c) = V then return c.

Return Release(pub, pri, a, 3, ¢)

(If ¢ is longer than k-bit, then use the k-most significant bits of ¢.)

Figure 4.4: The PKE scheme I3 that separates (B :: 0)-mCCA from (B :: unbound)-mCCA in case
B 45 B and a plaintext space size is superpolynomially large.

plaintext before the challenge. Moreover, such weak plaintexts must be easy to recognize
without any secret information so that the encryption algorithm of the separating scheme can
tell if a given plaintext is a weak plaintext or not.

In order to deal with such a situation, we use a one-way function f. A public key of the
separating PKE scheme contains V' = f(m*) for some random element m in the plaintext
space of the underlying PKE scheme, and weak plaintexts m are the ones satisfying f(m) = V.
We set the critical information to be m™ itself, and implement a backdoor mechanism so that
m* is accessible before the challenge only by a (B :: ())-mCCA adversary. Then, this weak
plaintext m* cannot be found by a (B :: unbound)-mCCA adversary before the challenge, and

is a useless value even if it is found after the challenge.

Proof.  In order to show the statement, we will show that if there exists a (B :: unbound)-
mCCA secure PKE scheme II = (PKG, PEnc, PDec), then there exists a PKE scheme Ilgep3 =
(PKGgeps, PEncgeps, PDecgeps) which is (B :: unbound)-mCCA secure but is not <§ :: ())-mCCA se-
cure.

Specifically, let M1y be the plaintext space of I, and let ¢ = |B|+ 1. We use the backdoor-
sequence scheme BS = (BSGen, Release, Recon) and a one-way function f : Mg — {0,1}*
as building blocks and construct the separating PKE scheme Ilgeps as in Fig. 4.4. We
note that a backdoor-sequence scheme can be constructed without any computational in-
tractability assumption, the existence of a one-way function is implied by the existence of a
(B :: unbound)-mCCA secure PKE scheme.

Without loss of generality, we assume that all the integers that appear in this proof have
k-bit representation. In order to clarify that we are treating an integer as a k-bit string, we
will use “hat”. For example, 1 is a k-bit representation of 1.

In the following, we show two lemmas that imply Theorem 13.

Lemma 15. The PKE scheme Ilgep3 is not <§> :: )-mCCA secure.
Proof of Lemma 15. We construct a PPTA adversary A = (A, .As) as follows:
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A Let B = (b1 ...b,) where b; € {s,p} for each i € [n]. On input PK = (pk,pub, V), A,
sets u1 < 1% and then repeats the following for 1 < i < n:

e if b; = s, then A; issues C' = (0|[i||1]|u;) as i-th (single) decryption query and is
given wu; 1 = Release(pub, pri, i, 1,u;) as an answer.

e if b; = p, then A; issues, as its i-th query, a parallel query (Ci,Cq,...,Cy) such
that C; = (0[[2][7]u;) for each 1 < j < ¢, and is given (Y1,-..,Yq) @s an answer,
where y; = Release(pub, pri, i, j,u;) for every 1 < j < ¢. Then A; runs uj;i <
Recon(pub, (y1,...,yq))-

Note that in both cases, the returned value(s) from the oracle is always the output
of Release, due to the design of the PKE scheme Ilgep3. Moreover, since u;q1 can be
always obtained from the response to i-th query, A; can continue the above. Therefore,
after A; completes all the queries following B as above, .4; obtains (or can compute)
Up+1 = v. Then, Ay sets mg = v and pick some value my € My such that m; # v, and
sets st 4 that consists of all the values known to A;. Finally, A; terminates with output

(mg, my,sta).

Az: On input (C*, st 4) where C* = (7]|0¥||0||c*) and v € {0,1}, Ay sets b/ < 0if v = 1 and
c* = v hold, or sets b’ + 1 otherwise. Then Ay outputs b’ as its guess and terminates.

It is clear that A succeeds in guessing the challenge bit b with probability 1, and thus always
has (B :: 0)-mCCA advantage %, which is non-negligible. This completes the proof of Lemma 15.
O

Lemma 16. If the underlying PKE scheme 11 is (B :: unbound)-mCCA secure, the backdoor-
sequence scheme BS is secure, and f is a one-way function, then the PKE scheme Ilgeps is
(B :: unbound)-mCCA secure.

Proof of Lemma 16. Let A = (A1, A3) be any PPTA adversary that attacks the PKE scheme
IIsep3 in the sense of (B :: unbound)-mCCA security. Consider the following sequence of games.

Game 1 This is the ordinary (B :: unbound)-mCCA experiment that A runs in.

Game 2 Same as Game 1, except that the input v to the BSGen algorithm of the backdoor-
sequence scheme run in PKGgepa is replaced with 0k,

Let Succ; denote the event that A succeeds in guessing the challenge bit in Game ¢, and
let Invert; be the event that .4; outputs two plaintexts (mg,m1) such that f(mg) = V or
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f(mq1) = V. Then, the advantage of an adversary A is calculated as:

. -m 1
Advip 2 — | PriSucei] -

= | Pr[Succy A Invert;] + Pr[Succy [Invert;] - Pr[Invert;] — %|

= | Pr[Succy A Invert;] + Pr[Succy |Invert;] - Pr[Invert;] — % + %Pr[lnvertl] - %Pr[lnvertl]\
= | Pr[Succy A Invert;] + %Pr[lnvertl] - % + (Pr[Succy|Invert; ] — %) - Pr[lnverty]|

< | Pr[Succy A Inverty] + %Pr[lnvertl] - %| + | Pr[Succy [Invert;]| — %| - Pr[Invert]

< | Pr[Succy A lnverty] + %Pr[lnvertl] — %\ + %Pr[lnvertl]

— 1 1 1 1
< | Pr[Succy A Invert; ] + 3 Pr{Invert;| — §| + §| Pr[Invert;] — Pr[Inverty]| + 3 Pr{Invert;]
(4.5)

To upperbound the above advantage, we show the following claims.

Claim 11. |Pr[Succy A Inverty] +  Pr[lnvert;] — ]| is negligible.

Proof of Claim 11. Assume towards a contradiction that | Pr[Succi Alnvert;]+ 3 Pr{Invert;] —
%H is not negligible. Then we show that we can construct another PPTA adversary B =
(B, B2) that can break the (B :: unbound)-mCCA security of the underlying PKE scheme II
with non-negligible advantage. The description of B is as follows.

Bi: On input pk, By picks v € My uniformly at random and computes f(v) = V. By next
sets pub = (1¥,B,q), and runs pri <~ BSGen(pub,v). Then B; runs A; with input
PK = (pk,pub,V).

When A; issues decryption queries, B responds as follows.

e If A;’s query is a single query C' = (v||«||8]|c), then B issues ¢ to its decryption
oracle and obtains m. Next, if (y||a|8) = (1]|0¥]|0¥) and f(c) = V, then B sets
m < c. Furthermore, if (a||8) # (0F||0F), By sets m < Release(pub, pri, a, 3, ¢).
Finally B; sends m back to Aj;.

o If A;’s query is a parallel query = (C1,Cy,...), where C; = (vil|cul|Bil|ci) for
each 1 < i < |C'|, By makes a parallel query 7 = (c1,c2,...) to B’s decryption
oracle and receives the answer (mj,me,...). Then for each 1 < i < \8\, B
sets m; < ¢; if (yilloy||Bi) = (1]|0%||0%) and f(c;) = V. Furthermore, for each
1<i< |8\, Bi sets m; + Release(pub, pri, oy, 8i, ¢;) if (cy|8;) # (0%[|0F). Finally
Bs sends (mq,ma,...) back to A;.

When A; terminates with output two plaintexts (mg, m;) of equal length and state
information stya, If f(mg) =V or f(my) =V, then B; sets a state information stz that
will tell By that By has given up. Otherwise B; sets its own state information stg that
consists of all the values known to B;. Finally, B; terminates with output (mg, m1,stg).
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Ba: On input (c*,stg), Ba first checks if B has given up by looking at stg. If this is the case,
By picks a random coin b’ < {0,1} and terminates with output b'. Otherwise, By sets
C* «+ (0[|0%||0%||c*) and runs As with input (C*,st4). By definition, As’s queries are
always single queries, and are answered in exactly the same way as the queries from A,
except that if Ay’s query contains a ciphertext of the form C' = (vy||«||8||c*), Bz does not
submit it to the decryption oracle. Note that such ciphertext C' = (v||«||8]|c*) cannot
satisfy (7||a||8) = (0]|0%||0%) by the definition of the (B :: unbound)-mCCA experiment,
and thus to decrypt C as a ciphertext of Ilgep3, PDec(sk, ¢*) need not be run, and thus
By can appropriately compute the decryption of C' with the knowledge about pri. When
As terminates with output ¥, By outputs this &’ and terminates.

Let Succp be the event that B succeeds in guessing the challenge bit, and Abortg be the
event that in B’s experiment, B; gives up and By outputs a random bit.

Note that B makes exactly the same type of the query sequence as A, and thus B is a
legitimate (B :: unbound)-mCCA adversary regarding II. Moreover, it is easy to see that B
does the perfect simulation of Game 1 for A in which the challenge bit for A is that of B
unless A;’s challenge plaintexts (mg,m1) satisfies f(mg) = V or f(mq) = V. This implies
Pr[Succp A Abortg] = Pr[Succ; A Invert;] and Pr[Aborts] = Prllnvert;]. Furthermore, if A;
outputs such challenge plaintexts, then Invertg occurs, and thus B gives up and outputs a
random bit, which implies Pr[Succs|Aborts] = 5.

Using the above, we can now estimate B’s advantage as:

.. - 1
Adv%B.[;nbound) mCCA — ’PF[SUCCB} _ 5‘

1
= | Pr[Succg A Abortg] 4+ Pr[Succg|Abortg] - Pr[Aborts] — 5\

1 1
= | Pr[Succy A Invert;| + 3 PrInvert;] — §|

This means that /A\dvﬂ&gmbound>_mcCA is non-negligible by the assumption we made at the be-

ginning of the proof of this claim. Since this contradicts the (B :: unbound)-mCCA security of
the underlying PKE scheme II, | Pr[Succy A Invert;] + 3 Pr[lnvert;] — | must be negligible.
This completes the proof of Claim 11. O

Claim 12. |Pr[Invert;] — Pr[Inverts]| is negligible.

Proof of Claim 12.  Assume towards a contradiction that |Pr[Invert;] — Pr[Inverts]| is not
negligible. Then we show that we can construct another PPTA adversary B = (B, Bz) that
has non-negligible advantage in the (B, B)-backdoor-sequence experiment regarding BS =

(BSGen, Release, Recon).
The description of B is as follows.

Bi: On input pub = (lk,g,q), Bi runs (pk,sk) < PKG(1¥). Next, By next picks v < My
uniformly at random and computes V + f(v). Then, By sets v} = 0¥, v} = v, and state
information st that consists of all the values known to B, and terminates with output
(v5,v7,stB).

Bs: On input stp, By runs A; with input PK = (pk,pub, V). When A; issues decryption
queries, By responds as follows.
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o If A;’s query is a single query C = (v||a]|8]|¢), Ba first runs m < PDec(sk, c).
Next, By issues a single query («, 3, ¢) to B’s own oracle and receives the result y.
Then, By sets m « c if (v||a||3) = (1||0%||0%) and f(c) = V. Furthermore, B; sets
m < y if (a||B) # (0¥||0%). Finally, B; sends m back to Aj.

o If A;’s query is a parallel query = (C1,Cy,...), where C; = (vil|aul|Bil|ci) for
each 1 <i < |C/|, By first computes m; <— PDec(sk, ¢;) for every 1 < i < |C'|. Then
By also issues ((a1, 81, ¢1), (a2, B2,¢2), . ..) as a parallel query to B’s own oracle and
receives the result (y1,y2,...). Then, for each 1 < i < |C|, By sets m; < ¢; if
(villews||B;) = (1]]0%]|0%) and f(c;) = V. Furthermore, for each 1 < i < |8|, Ba sets
m; < y; if (a||B) # (0¥]|0F). Finally, By sends (mq,ma,...) back to A;.

When A; terminates with output two plaintexts (mg, m;) of equal length and state
information st 4, By checks if f(mg) = V or f(m1) = V holds. If this is the case, Bo
sets b’ < 1 or sets b < 0 otherwise. Finally, B2 terminates with output &'.

Let b be a bit that the adversary B has to guess in the (B, g)—backdoor—sequence experiment.

Note that B makes exactly the same type of sequence of queries as A, which is B. The
advantage of B is calculated as:

Ad<B’§)* ’_ _171 ;_ a1 ;o _
vpsp = | Pr[b’ = b] 2\ = 2\Pr[b =1|b=1] — Pr[t' = 1|b = 0]|

It is easy to see that when b = 1, B perfectly simulates Game 1 for A; (i.e. before the
challenge). In particular, the secret value input to BSGen in B’s experiment is v; = vj = v
such that f(v) = V, which is exactly the procedure done in PKGgepz in Game 1. Under
this situation, the event that A; outputs two plaintexts (mg,m1) satisfying f(mg) = V or
f(m1) =V exactly corresponds to the event Invert;, i.e. Pr[t) = 1|b = 1] = Pr[Invert;].

When b = 0, on the other hand, the secret value input to BSGen in B’s experiment is
vy = vy = 0%, and B perfectly simulates Game 2 for A;. With a similar argument to the

above, we have Pr[t/ = 1]|b = 0] = Pr[Succs].

In summary, we have Advggé% = 1| Pr[Invert;] — Pr[Inverts]|, which is not negligible by the

assumption we made at the beginning of the proof of this claim. However, since B Z4s B, the
existence of such B contradicts the security of the backdoor-sequence scheme BS. Therefore,
| Pr[Invert;] — Pr[Inverts]| must be negligible. This completes the proof of Claim 12. O

Claim 13. Pr[lnverty] is negligible.

Proof of Claim 13. Assume towards a contradiction that Pr[Inverts] is not negligible. Then
we show that we can construct another PPTA adversary B that can break one-wayness of f
with non-negligible advantage. The description of B is as follows.

B: On input 1% and V = f(v) where v € My is a randomly chosen value and unknown
to B, B runs (pk,sk) < PKG(1¥). Moreover, B sets pub < (1¥,B,¢) and runs pri <
BSGen(pub, 0¥). Then B runs A; with input PK = (pk,pub, V). Since B owns sk and
pri, all the decryption queries from A; can be answered perfectly as in Game 2. When
A; terminates with two plaintexts (mg, m1) of equal length and state information stp, B
checks if f(my) =V for some b € {0,1}. If such b exists, B outputs my and terminates.
Otherwise, B simply gives up and aborts.
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It is easy to see that B perfectly simulates Game 2 for A; and can output the preimage of V'
under f whenever Inverty occurs. Therefore, the advantage of B is exactly Pr[Inverty], which
is non-negligible by the assumption we made at the beginning of the proof of this claim. Since
this contradicts one-wayness of f, Pr[Inverts] must be negligible. This completes the proof of
Claim 13. O

According to the inequality (4.5) and Claims 11 to 13, we can upperbound Advgi:;nzound>_mcu

to be negligible for any PPTA adversary A. This completes the proof of Lemma 16. O
Lemmas 15 and 16 imply Theorem 13. O

An important corollary of Theorem 13 is the following.

Corollary 2. For PKE schemes with superpolynomially large plaintext space size, if (é] \F) Zgs
(B||F), then (B : F : A)-mCCA security does not imply (B : F : A)-mCCA security.

Proof.  Let seq = (B||F) and séq = (B||F), and consider (seq :: unbound)-mCCA security and
(seq :: ())-mCCA security. By Theorem 13 and the given condition seq Z s seq, (seq :: unbound)-
mCCA security does not imply (seq :: (})-mCCA security. However, (seq :: unbound)-mCCA security
implies (B : F : A)-mCCA security while (B : F : A)-mCCA security implies (seq :: ())-mCCA security.
Since an implication of a security notion from another is a transitive relation, (B : F : A)-
mCCA security cannot imply (B : F : A)-mCCA security. O

4.3.4 Implication Results

Here, we show the implications among mixed CCA security notions.

A combination of Theorem 11 and Corollaries 1 and 2 shows that given two mixed CCA
security notions (B : F : A)-mCCA and (B:F: A}-mCCA the latter notion is separated from
the former notion if (B||F||A) Zqs (Bl|FJ|A), (B||F) Zqs (BJ|F), or (F||A) Zqs (F[|A) holds for
PKE schemes with superpolynomially large plaintext space. We show that if none of the
above conditions are satisfied, then we actually have implication from the former notion to
the latter notion, where this implication is also true for PKE schemes with polynomially
bounded plaintext space size and for KEMs.

Theorem 14. For both PKE schemes and KEMs, if (B||F||A) Cq4s (B|[F||A), (B|IF) Cys (BIIF),

and (F||A) C Cys (FI|A) hold simultaneously, then (B : F : A)-mCCA security implies (B:F:A)-
mCCA security.

Intuition. The key point is that if the three conditions regarding query sequences are satisfied,
then whatever strategy regarding the “flexible” queries an (B : F : A)-mCCA adversary may
take, the (B : F : A)-mCCA experiment can be perfectly simulated by an (B : F : A)-mCCA ad-
versary

Proof.  Since the proof is essentially the same for both PKE schemes and KEMs, we only
show the PKE case.

Let II = (PKG, PEnc,PKG) be a PKE scheme which is (B : F : A)-mCCA secure. We
consider the following cases:

e Case 1: (B||F||A) =
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e Case 2: F = unbound
e Case 3: B = unbound
e Case 4: A = unbound
e Case 5: None of (B, F,A) is equal to unbound and (BJ|F||A) # 0

Note that these cases cover all the possibilities. We show that under the given conditions,
(B : F : A)-mCCA security implies (B : F : A)-mCCA security for every case. (Since first four
cases are (almost) trivial, we only show the sketch for them.)

Case 1: (B||F||A) = 0. In this case, we have B=F = A = (), and thus (B : F : A)-mCCA secu-
rity is equivalent to IND-CPA security. Therefore, for any B,F,A € QS*, (B : F : A)-mCCA se-
curity implies (B : F : A)-mCCA security.

Case 2: F = unbound. In this case, (B : F : A)-mCCA security implies (unbound :: unbound)-mCCA se-
curity (i.e. IND-CCA2 security), which trivially implies (B : F : A)-mCCA security for any
B,F,A e 95"

Case 3: B = unbound. In this case, (B : F : A)-mCCA security implies (unbound ::
(F|[A))-mCCA security. Now, consider any (B : F : A)-mCCA PPTA adversary A. Then,
(unbound :: (F||A))-mCCA PPTA adversary B can perfectly simulate the (B : F : A)-mCCA ex-
periment for A. Concretely, the decryption queries from A before the challenge can be
answered by B by unbounded access to the (single) decryption oracle available for B before
the challenge. Let Fi be a part of A’s F- queries made before the challenge, and let Fs be the
remaining F-queries such that (F1|\F2) = F. A can make (F||A)-queries after the challenge.
However, since (Fa||A) C Cys (F||A) C Cys (FI|A) due to the given condition, the queries made by
A after the challenge can be perfectly responded by B by (F||A)-queries available for B after
the challenge. Therefore, B can perfectly simulate the experiment for A, which means that A
and B have the same advantage, and if A has non-negligible advantage, so does B. Therefore,
in Case 3, (B : F : A)-mCCA security implies (B : F : A)-mCCA security.

Case 4: A = unbound. In this case, (B : F : A)-mCCA security implies ((B||F) :: unbound)-mCCA se-
curity. Now, consider any (B : F : A>—mCCA PPTA adversary A. Then, ((B||F) :: unbound)-mCCA PPTA
adversary B can perfectly simulate the (B : F: A)—mCCA experiment for A. Concretely, due to

the given condition (BHF) Cys (BJ|F), all the queries from A before the challenge (i.e. (BHF)

queries) can be perfectly answered by B by (B||F)-queries available for B before the challenge.
Moreover, any query from A after the challenge can be answered by B by unbounded access

to the (single) decryption oracle available for B after the challenge. Therefore, B can perfectly
simulate the experiment for A, which means that A and B have the same advantage, and if

A has non-negligible advantage, so does B. Therefore, in Case 4, (B : F : A)-mCCA security
implies (B : F : A)-mCCA security.

Case 5: None of (B,F,A) is equal to unbound and (B|[F||A) # 0. In this case, none
of (B,F,A) is equal to unbound as well, due to the given condition (B|[F||A) C Cqs (BJIF[|A).
Now, consider any (B : F : A)-mCCA PPTA adversary A = (A, As) attacking the PKE
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scheme II. We show that there exists a PPTA adversary B = (Bi,Bz) that can perfectly
simulate the (B : F : A)-mCCA experiment for A and has the same advantage as A in breaking
(B : F : A)-mCCA security of the same PKE scheme II. o
For notational convenience, we write seq = (BJ|F||A) and seq = (B||F||A), and moreover
let us write seq = (b1 ...by) so that b; € {s, p} for every i € [n].
We consider the “splitting” of seq according to seq = (b1, ..., b,) so that seq = (seq|| ... |[seq,,||sed,, 1),
and for every 1 <17 < n:

e if b; =s then seq, =s or seq;, = p
e if b; = p then seq; = (s%, p) for some integer ¢; > 0.

We put no condition on seq,, |, which could be (). This splitting guarantees b; Cys seq; for
every 1 <i < n. We stress that such splitting of seq (according to seq) is always possible as
long as seq C4s seq, which is guaranteed by the given condition (B||F||A) C Cqs (B[F||A).

Now, the description of the (B : F : A)-mCCA adversary B = (B1, Bs) is as follows.

Bi: On input pk, By runs A; with input pk. When A; makes i-th query (which is a single
query if b; = s and is a parallel query if b; = p), By answers by following seq,-queries. (If
Aj makes no decryption query before the challenge, this process is skipped.) Since we
have b; Cy seq; for every 1 < i < n by definition and we also have (BHF) Cys (BJ|F) due
to the given condition, B; can always answer A;’s queries, whatever strategy A; may
take for making the decryption queries (i.e. how to make F-queries before and after
the challenge). When A; terminates with output two plaintexts (mg,m1) and state
information st 4, B; sets its own state information stz that consists of all the values
known to B; and terminates with output two plaintexts (mg,m1) and stp.

Bz: On input (c*,sts) where c* is the challenge ciphertext for B, By runs Ay with input
(c*,sta). Let F1 be the F-queries A; made (F; might be (). That is, .A; has made
(B|[F1)- -queries before the challenge, and Az can make (F2||A)-queries after the challenge,
where (F1||F2) = F

Depending on the type of Ay, By works differently in the following ways:

o Type 1: (B||Fy) Cys B. (This type includes the case in which A; has made no
query.) In this case, By has not made any F-queries, because B; could have an-
swered A1’s (B||F1)-queries by only making B-queries. Therefore, By is allowed
to make (F||A)-queries fully. Since (Fy||A) C Cys (F||A), due to the given condition
(FHA) Cys (FI|A), we have (FQHA) Cys (F[|A). Therefore, By can perfectly answer
(FQHA) -queries from As by (F||A)-queries available for Bs.

o Type 2: (BJ|F1) Zq4s B. Let (B||Fy) = (b1...b5) for some 1 < j < n. That is, A;
has made j queries. (Note that (B||F1) # 0 and thus such integer j > 0 exists.)
We further consider two sub-types j = n and j < n.

If j = n, then no further query is allowed for A5, and thus Bs need not use its own
decryption oracle any further.

If j < n, then according to the description of By, B; has made (seq]|... [[seq;)-
queries. Bs is thus allowed to make (seq;4||...||seq,||seq,1)-queries. On the
other hand, by definition, Aj is only allowed to make (F||A)-queries where (Fa||A) =
(bj41-..bn). Recall that b; Cyy seq, for every j+ 1 < i < n. Therefore, all queries
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from As can be perfectly answered by using Bs’s decryption oracle which is avail-
able for B after the challenge.

When A, terminated with output the guess bit b, By also output &’ and terminates.

The above completes the description of B. It is straightforward to see that B perfectly
simulates (B : F : A)-mCCA experiment for A, and B succeeds in guessing the challenge bit
whenever A does so, which means that B and A have exactly the same advantage. If A
has non-negligible advantage, so does B. Since it contradicts that the PKE scheme II is
(B : F: A)-mCCA secure, such PPTA adversary A must not exist. This shows that in Case 5,
(B : F: A)-mCCA security implies (B : F : A)-mCCA security.

We have shown that (B : F : A)-mCCA security implies (B : F : A)-mCCA security for all
cases (Cases 1 to 5). This completes the proof of Theorem 14. O

Combining Theorem 14 with Theorem 10 in Section 4.2.2, we immediately obtain the
following corollary.

Corollary 3. For PKE schemes with polynomially bounded plaintext space size and for KEMs,
if (B||F||A) Cgs (BJ|F||A) and (F||A) Cq4s (F||A) hold simultaneously, then (B : F : A)-mCCA
security implies (B : F : A)-mCCA security.

Proof. Let seq = (F||A) and séq = (F||A). By Theorem 10, for PKE schemes with polyno-
mially bounded plaintext space size and for KEMs, (B : F : A)-mCCA (resp. (B : F : A)-mCCA)
security and (B : seq : ())-mCCA (resp. (B : seq : ()-mCCA) security is equivalent. Therefore,
(B : F: A)-mCCA security implies (B : F : A)-mCCA security if and only if (B : seq : §))-mCCA se-
curity implies (B : seq : ())-mCCA security.

Now, consider (B : seq : ()-mCCA security and (B : séq : ())-mCCA security. Then, by
Theorem 14, the former implies the latter if (B||séq||0) C,s (Bl|seq||0), (B||seq) Cqs (Bl|seq),
and (seq||0) Cy4s (seq||) hold simultaneously. Note that these three conditions are equivalent
to the two conditions (B||F||A) Cys (B||F||A) and (F||A) Cys (F||A). In summary, for PKE
schemes with polynomially bounded plaintext space size and for KEMs, (B : F : A)-mCCA se-
curity implies (B : F : A)-mCCA security if both (BJ|F||A) C Cys (BJ|F||A) and (FI|A) C Cys (FIIA)
hold simultaneously. O

4.3.5 Necessary and Sufficient Conditions for Implications/Separations

As a summarization of the results in this section, we show the following necessary and sufficient
conditions for implications/separations among mixed CCA security notions, where the results
for PKE schemes differ depending on the size of a plaintext space.

Theorem 15. For PKE schemes with superpolynomially large plaintext space size, (B:F:
A)-mCCA security implies (B : F : A)-mCCA security if and only if (B||F||A) Cgs (B||F||A),

(B||F) Cy4s (B|F), and (F||A) Cys (F||A) hold simultaneously.

Proof. This follows from a combination of Theorem 11, Corollary 1, Corollary 2, and
Theorem 14. O

Theorem 16. For PKE schemes with polynomially bounded plaintext space size and for
KEMs, (B : F: A)-mCCA security implies (B : F : A)-mCCA security if and only if (B||F||A) C

(B||F[|A) and (F||A) Cys (F||A) hold simultaneously.

81



Proof. 'This follows from a combination of Theorem 11, Corollary 1, and Corollary 3. O

We believe the relations among security notions shown in this section are useful for future
studies on PKE schemes and KEMs whose security notions can be expressed in mixed CCA
security notions. As a concrete evidence of usefulness, by utilizing the above theorems, we
fully establish the relations among bounded parallel CCA security and other exising security
notions, which we summarize in the figures. The results for PKE schemes with superpolyno-
mially large plaintext space size is summarized in Figure 4.5, and those for PKE schemes with
polynomially bounded plaintext space size and for KEMs is summarized in Figure 4.6. In
the figures, the known implication/separation results among PKE schemes and KEMs from
previous results [7, 64, 40] are reflected.

All the implications/separations in the figures can be derived from Theorems 15 and 16
in Section 4.3.5.

We note that the previously established relations among security notions [7, 64, 40] can
be re-proved as corollaries from the above theorems.

Importance of Plaintext Space Size in Relations among Security Notions for PKE
Schemes. As our implications/separations in this section clarifies, it is important to care
about the size of the plaintext space size when considering relations among security notions
for PKE schemes. A natural question would be “when” we should care about it. Theorems 15
and 16 tell us that given (B : F : A)-mCCA and (B : F : A)-mCCA security notions, the implica-
tion/separation from the former notion to the latter notion differs if (B||F||A) Cys (BJ|F||A),

(F||A) C4s (F||A), and (B||F) Z4s (BJ|F) hold simultaneously.

4.4 Black-box Feasibility Results from IND-CPA Secure PKE
Schemes

By adopting the notion of mixed CCA security, we show two black-box construction of PKE
schemes, which can encrypt plaintexts of polynomial length (thus, exponentially large plain-
text space), from IND-CPA secure PKE schemes. The first construction achieves slightly but
strictly stronger security than NM-g-CCA2 security and thus achieves the currently strongest
security notion among the security notions achieved by other PKE constructions that uses
only IND-CPA secure PKE schemes as building blocks. The second construction achieves yet
another security notion which cannot be directly compared with the notion achieved by our
first construction (or cannot be compared even with NM-CPA security).
The first result is the following.

Theorem 17. For any polynomial ¢ > 0, there exists a shielding black-box construction of a
(0 : s%p : B)-mCCA secure PKE scheme which can encrypt plaintexts of polynomial length from
an IND-CPA secure PKE scheme.

Proof.  This theorem is proved by combining the existing results and Theorem 10 in Sec-

tion 4.2.2. Our construction is fairly simple: Using the construction of an NM-¢g-CCA2 secure

PKE scheme by Choi et al. [38] as a KEM, and combining it with an IND-CCA2 secure DEM.
The following statement is due to the result by Choi et al. [38].

Lemma 17. [38] For any polynomial q¢ > 0, there exists a shielding black-box construction
of an NM-q-CCA2 secure PKE scheme which can encrypt plaintexts of polynomial length from
an IND-CPA secure PKE scheme.

82



Implications NM-CCA2 &

IND-CCAL | | NM-CCAL | IND-CCA2

& Separations

from Notion X

[NM-(g + 1)-pCCAL]|  [NM-(q + 1)-pCCA2]

[IND-(g + 1)-pCCA1 [IND-(g + 1)-pCCA2)

| NM-g-pCCA1 NM-¢-pCCA2 |

IND-¢-pCCAL | | IND-g-pCCA2 |

| NM-1-pCCA1 | [ NM-1-pCCA2 |

NM-¢'-CCA2 HH IND-1-pCCA1 |  [(NM-CPAAIND-1-pCCA1) < IND-1-pCCA2 |
[40]
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Figure 4.5: Relations among bounded parallel CCA security and other existing security notions for
PKE with superpolynomially large plaintext space size. In the figure, ¢ > 2 and ¢’ > 0 are polynomials.
For any security notion X inside the area enclosed by the dotted line, X implies any of the notions
written to the left and below X. However, X does not imply any of the notions written to the right or
above X. The arrows for implications and separations without any reference and equivalence except
for IND-CCA2 < NM-CCA2 are the relations that are not known before.

We write the Choi et al. NM-g-CCA2 secure PKE scheme that is constructed from any
IND-CPA secure PKE scheme as the CDMW PKE scheme. (We recall the Choi et al. [38]
construction in Appendix B.1.)

For any security goal GOAL and any attack type ATK of an adversary considered in Section
2.2, a GOAL-ATK secure PKE scheme can be trivially used as a GOAL-ATK secure KEM by
encrypting a uniformly random string K and using it as a session-key, if the PKE scheme
has sufficiently large plaintext space, say k-bits for k-bit security. Since the CDMW PKE
will have k-bit plaintext space if we use IND-CPA secure PKE scheme with k-bit plaintext
space (which is possible to achieve from any 1-bit PKE scheme by a simple concatenation of
ciphertexts) as the underlying PKE scheme of the CDMW construction, from the CDMW
PKE scheme we can, for any polynomial ¢ > 0, obtain NM-g-CCA2 = () : s? : p)-mCCA secure
KEM (we call it the CODMW KEM).

Then, by the special case of Theorem 10 for KEMs in which B = (), F = s%, and A = p,
we can immediately say that the CDMW KEM is (() : s?, p : (})-mCCA secure.

Finally, by the following composition result of a KEM and a DEM which is implicit from
the work by Herranz et al. [64], we can show that an appropriate combination of a KEM and
a DEM will result in a PKE scheme with the claimed security.

Lemma 18. (Implicit from [64].) Let B,F,A € QS*. If a KEM T is (B : F : A)-mCCA secure
and a DEM D is IND-CCA2 secure, then a PKE scheme constructed from the KEM I" and the
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Figure 4.6: Relations among bounded parallel CCA security and other existing security notions for
PKE schemes with polynomially bounded plaintext space size and those for KEMs. In the figure,
g > 3 and ¢’ > 0 are polynomials. The notations are the same as those used in Figure 4.5.

DEM D in a straightforward manner satisfies (B : F : A)-mCCA security.

Thus, according to Lemma 18, if we construct a new PKE scheme by combining the
CDMW KEM and an IND-CCA2 secure DEM, the resulting scheme is () : s?, p : ()-mCCA secure.
Since we can construct an IND-CCA2 secure DEM without any computational assumption®
here we have shown how to construct, for any polynomial ¢ > 0, a () : s%p : ())-mCCA secure
PKE scheme from any IND-CPA secure one.

Since the CDMW PKE scheme is a shielding black-box construction, and these “shielding”
and “black-box” properties are trivially preserved by our construction, we conclude that our
construction is also shielding and black-box. This completes the proof of Theorem 17. O

Though in the above we have shown how to enhance the CDMW PKE scheme which is
NM-¢-CCA2 = () : s? : p)-mCCA secure to be (() : s?p : (})-mCCA secure, we remark that the
original CDMW PKE scheme might be shown to be () : s?p : ())-mCCA secure as it is (i.e.
without using the arguments shown in the above theorem), under the same assumptions used
to show its NM-q-CCA2 security. However, our main purpose here is to show the improved
feasibility rather than the concrete construction and efficiency, and thus we did not try proving
directly that the CDMW PKE is (f) : s?p : ()-mCCA secure.

We remark that () : s?p : ())-mCCA security trivially implies NM-¢g-CCA2 = (@ : s : p)-
mCCA security, while by Theorem 15 we know that for PKE schemes with superpolynomially
large plaintext space size, () : s? : p)-mCCA security does not imply (@ : s?p : ())-mCCA security.

5One can use a combination of a one-time pad with a one-time secure message authentication code (MAC),
both of which are possible without any computational assumption, in an encrypt-then-MAC manner [9] to
achieve an IND-CCA2 secure DEM.
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Therefore, for these types of PKE schemes, (() : s7p : (#)-mCCA security is strictly stronger than
NM-q-CCA2 security.

We also remark that due to Theorem 10, the Choi et al. result [38] (i.e. Lemma 17 in
this section) already achieves the shielding black-box construction of () : s%p : ())-mCCA secure
PKE schemes for polynomially bounded plaintext space size. However, the Choi et al. result
itself does not imply Theorem 17, because how to construct PKE schemes which can encrypt
plaintexts of polynomially length from PKE schemes which has polynomial size plaintext
space in a black-box and shielding manner is not known so far’.

A corollary of Theorem 17 is the following.

Corollary 4. There exists a shielding black-box construction of an IND-1-pCCA2 secure PKE
scheme which can encrypt plaintexts of polynomial length from an IND-CPA secure PKE
scheme.

Our second result on black-box constructions is the following.

Theorem 18. For any polynomials q,q' > 0, there exists a shielding black-box construction
of a (slp: s7 (0)-mCCA secure PKE scheme which can encrypt plaintexts of polynomial length
from an IND-CPA secure PKFE scheme.

Proof. 'To prove this theorem, we combine the result from Theorem 17 and the construction
by Cramer et al. [40] which, for any polynomial ¢, constructs an IND-¢-CCA2 secure PKE
scheme from any IND-CPA secure PKE scheme. (We call the construction by Cramer et
al. [40] the CHH+ PKE scheme, and recall it in Appendix B.2.)

We will use the following generalized version of Lemma 1 in [40]°.

Lemma 19. For any B € QS*, if the underlying PKE scheme II in the CHH+ construction
is (B :: 0)-mCCA secure and the underlying signature scheme Y. is strongly one-time secure,
then the CHH+ PKE scheme cgg. (Fig. B.2) satisfies (B : s? : (0)-mCCA security.

The proof of this lemma is essentially the same as that of Lemma 1 in [40], and thus we
omit it.

Due to Theorem 17 above, for any polynomial ¢ > 0, we can construct a () : sp :
()-mCCA secure PKE scheme, which is also (s?p :: ())-mCCA secure, from any IND-CPA secure
PKE scheme. Then, by using this PKE scheme as a building block of the CHH+ PKE scheme,
due to Lemma 19, we have a PKE scheme which satisfies the claimed security. Moreover,
the CHH+ PKE construction is shielding and black-box. Since the construction of the PKE
scheme in Theorem 17 is also shielding and black-box, so is the construction here as a whole.
The size of the plaintext space is maintained as well. This completes the proof of Theorem 18.

O]

We note that by Theorem 15, for PKE schemes with superpolynomially large plaintext
space size, the security notion (s?p : 7 ())-mCCA achieved in Theorem 18 cannot be directly
compared even with NM-CPA= ({) :: p)-mCCA security. That is, the security notion (s7p : s? :

"Recently, Myers and Shelat [81] showed a black-box construction of multi-bit IND-CCA2 secure PKE schemes
from 1-bit IND-CCA2 secure PKE schemes. However, whether their results extend to mixed CCA security is
not known so far. Moreover, their construction is non-shielding.

8The original statement of Lemma 1 in [40] is a special case of Lemma 19 in which B = (). Moreover, the
special case of Lemma 19 in which B = unbound is also mentioned in [40]. See Remark 2 after the proof of
Lemma 1 in [40].
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()-mCCA does not imply NM-CPA security, and vice versa. Therefore, for PKE schemes with
superpolynomially large plaintext space size, the achieved security in Theorem 18 also cannot
be directly compared with those achieved in Theorem 17. However, the security achieved
in Theorem 18 allows the bounded number of “flexible” single queries before and after the
challenge, after the parallel query in the first stage, while the security achieved by Theorem 17
does not allow any query after one parallel query for an adversary. Moreover, at least the
notion that can be achieved by Theorem 18 is stronger than IND-q-CCA2 type security, and
thus we believe that Theorem 18 is also meaningful and interesting as a feasibility result.

Handling Decryption of Unboundedly Many Ciphertexts before the Challenge.
Previous to our work, none of the constructions of PKE schemes that use only IND-CPA secure
schemes have achieved the security notion against adversaries that can observe unboundedly
many decryption results (via the decryption oracle) in the first stage, i.e., before choosing two
challenge plaintexts, regardless of whether the construction is black-box or non-black-box.
On the other hand, Theorems 17 and 18 (and also the combination of [38] and Theorem 10)
clarified that it is possible to construct a PKE scheme which is secure even though an adversary
can observe unboundedly many decryption results by one parallel decryption query before the
challenge.

Thus, our results in this section clarified that the difficulty of constructing an IND-CCA1
secure PKE scheme only from IND-CPA secure ones lies not in whether the number of decryp-
tion results that the adversary can see before the challenge is bounded or not, but in whether
the number of the adversary’s “adaptive” decryption queries is bounded. We believe that this
observation is important and interesting towards fully answering the problem of whether a
CCA secure PKE schemes can be constructed only from IND-CPA secure ones, and can be
seen as a concrete evidence that studying mixed CCA security is useful.

4.5 Open Problems

Two or More Parallel Queries? None of our feasibility results achieves parallel (or
mixed) CCA security in which we can handle more than one parallel decryption query, and
whether we can construct a PKE scheme with such security only using IND-CPA secure schemes
is still unclear. Therefore, we would like to leave it as an open problem. Since any (unbounded)
CCA secure PKE construction from IND-CPA secure ones must first be secure against adver-
saries who make two or more parallel decryption queries, we believe that overcoming this
barrier of “two parallel queries” is worth tackling.

We notice that if it is generically possible to construct an NM-g-pCCA1 (resp. NM-g-pCCA2)
secure PKE scheme from any IND-g-pCCA1 (resp. IND-¢g-pCCA2) secure one, by combining
such a statement with Theorem 10 and taking the same KEM-DEM approach as done in the
proof of Theorem 17, we will be able to construct an NM-¢g-pCCA1 (resp. NM-g-pCCA2) secure
PKE schemes for ¢ > 1 only from IND-CPA secure ones. Moreover, we also notice that if we
can construct a strong DV-NIZK proof system with ¢-bounded “parallel” strong soundness,
which is a natural extension of a strong DV-NIZK with ¢g-bounded strong soundness [40] in
the soundness experiment of which an adversary can ask verification of many theorem /proof
pairs in a parallel manner, only from the existence of IND-CPA secure PKE schemes, then by
using it in the NY construction [84] (resp. the DDN construction [47]) we will be able to
construct an IND-(q 4+ 1)-pCCA1 (resp. IND-(q + 1)-pCCA2) secure PKE scheme. However,
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how to construct such a DV-NIZK proof system only from IND-CPA secure PKE schemes is
not known so far. This might be worth looking at towards the next step from our results.

Efficient Instantiations of PKE with Bounded Parallel CCA Security? Seeking
for bounded parallel CCA secure PKE schemes with practical efficiency from specific compu-
tational hardness assumptions may also be interesting. Cramer et al. [40] show that under
the DDH assumption, for any polynomial ¢ we can construct an IND-g-CCA2 secure PKE
scheme which has redundancy-free ciphertext size (plaintext size plus randomness size used
for encryption), which is not achieved by any IND-CCA2 secure PKE scheme in the standard
model known so far. Of course tackling this problem is interesting only if we seek for schemes
which have some properties that are not achieved by the known IND-CCA2 secure schemes
such as [27, 70, 98, 65, 37, 61, 67, 73, 66, 62] (smaller ciphertext, smaller parameter size,
smaller computational costs, and/or basing security on weaker assumptions, etc.)

On Black-Box Impossibility Results. Gertner et al. [55] show that there exists no
shielding black-box construction of an IND-CCA1 secure PKE scheme from IND-CPA secure
PKE schemes. Since the constructions in Theorems 17 and 18 are both shielding and black-
box, according to the impossibility result of [55], we have that there exists no shielding
black-box construction of an IND-CCA1 secure PKE scheme from PKE schemes which satisfy
any security notion achieved in Theorems 17 and 18.

It is currently not known if we can strengthen the impossibility result of [55]. Thus,
it may also be interesting to clarify if we can show a stronger impossibility result so that
constructing IND-g-pCCA1 secure PKE schemes in a shielding and black-box manner for some
g > 1 is impossible. (Or more generally, we can also consider the impossibility of some of
mixed CCA security notion.) Note that this strengthening of the impossibility result of [55]
is meaningful only if we consider parallel decryption queries, because the result by Choi et
al. [38] already shows that it is possible to achieve the strongest form of (ordinary) bounded
CCA security, i.e., for any polynomial ¢’ > 0 achieving NM-¢'-CCA2 secure PKE scheme from
any IND-CPA secure one in a shielding and black-box manner is possible.

4.6 Conclusion

In this chapter, in order to address the further possibility of constructions of CCA secure
PKE schemes only from CPA secure ones, we first introduced the notion of bounded parallel
CCA security, which is an extension of the conventional bounded CCA security. We then
investigated the implications and separations among bounded parallel CCA security notions
and the conventional security notions for PKE schemes and KEMs. As a feasibility result,
we showed a shielding black-box construction of an IND-1-pCCA2 secure PKE scheme from
an IND-CPA secure PKE scheme. Moreover, in order to precisely describe further feasibility
results, we introduced the notion of mixed CCA security, which is a generalization of the
conventional bounded CCA security and bounded parallel CCA security, and then we showed
two shielding black-box constructions of PKE schemes that satisfy stronger security notions
than the security notions achieved by the existing shielding black-box constructions of PKE
schemes from any IND-CPA secure PKE schemes. We furthermore discussed the consequences
of our feasibility results, made several observations, and left some open problems. We believe
that studying bounded parallel CCA security and mixed CCA security further will be good
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intermediate steps towards solving the problem of whether constructing (unbounded) CCA
secure PKE schemes from any CPA secure PKE schemes is possible or not.
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Chapter 5

Conclusion

In this thesis, we have focused on generic constructions of CCA secure PKE schemes, and
made the following contributions:

e Aiming at generic constructions that lead to CCA secure PKE schemes with practical
efficiency, we focused on the IBE-to-PKE transformation paradigm, which is the only
known generic methodology with which we can construct CCA secure PKE schemes
with practical efficiency. To improve the large ciphertext size that all the previous
methods sufferred from, we proposed two approaches. The first approach is to require
non-malleability, slightly stronger security than CPA security, for the underlying IBE
scheme, and we developed a new very simple IBE-to-PKE transformation where we only
used a one-way function, the weakest primitive used in the area of cryptography, as an
additional building block. The second approach is to develop a new efficient encapsu-
lation scheme, which is a special kind of commitment scheme and is a primitive used
in one of the previous IBE-to-PKE transformations, from a pseudorandom generator
that satisfies near collision resistance for predetermined parts of output, and we use the
new encapsulation scheme in the transformation. Both approaches do not need strong
cryptographic primitives as additional building blocks, and lead to CCA secure PKE
schemes with smaller ciphertext size than the previous IBE-to-PKE transformations.

e We focused on the problem of whether it is possible to construct a CCA secure PKE
scheme only from a CPA secure one is one of the most important fundamental open
problems, which leads to clarifying a necessary and sufficient condition to realize a CCA
secure PKE scheme. Since we can achieve the best possible security in the bounded
CCA security notions that capture security notions that lie between CPA and CCA, in
order to further tackle the fundamental problem, we need new security notions that cap-
ture intermediate security notions that lie between CPA and CCA security in a different
sense from the existing bounded CCA security definition. Motivated by this situation,
in order to provide a theoretical foundation for further tackling the above problem, we
focused on parallel decryption queries for the extension of bounded CCA security, and
introduced a new security notion which we call mized CCA security. It captures security
against adversaries that make single and parallel decryption queries in a predetermined
order, where each parallel query can contain unboundedly many ciphertexts. Moreover,
how the decryption oracle is available before and after the challenge is also taken into
account in this new security definition, which enables us to capture existing major se-
curity notions that lie between CPA and CCA security, including complex notion like
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non-malleability against bounded CCA, in a unified security notion. We investigated
the relations among mixed CCA security notions, and show necessary and sufficient
conditions regarding implications/separations between any two notions in mixed CCA
security for PKE schemes and KEMs. We then showed two black-box constructions
of PKE schemes from a CPA secure scheme. The first one satisfies a strictly stronger
security notion than the security notions achieved by the existing constructions of PKE
schemes constructed only from a CPA secure one, while the second one achieves yet
another security notion that has not been achieved by the previously known construc-
tions. We also discussed the consequences of our results regarding security with parallel
decryption queries and gave several observations, as well as several open problems.

From the former part of our results, the IBE-to-PKE transformations, we expect that
more and more practical concrete PKE schemes which are CCA secure based on some concrete
intractability assumptions will be constructed, and our transformations will give insights to
such constructions that will be proposed in the future. In fact, previously, based on the
construction idea of the first IBE-to-PKE transformation by Canetti et al. [34], one of the
most efficient CCA secure PKE scheme was proposed by Boyen et al. [27, 28].

Regarding the latter part of our results, we believe that our way of formalizing and
analysing the mixed CCA security notions will be useful, and can be done in the same way
as ours, for any security notion of any primitive that involves an adversary’s oracle queries.
Moreover, we also believe that studying such security notions of primitives will lead to bet-
ter understanding of the security notions and the primitives themseleves as well as concrete
constructions of them, and will ultimately lead to systematizing the theoretical foundations
in the area of cryptography.
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Appendix B

The Existing PKE Constructions

Here, we recall the existing PKE constructions from IND-CPA secure PKE schemes we mention
in this paper.

B.1 The CDMW Construction

Here, we recall the black-box construction by Choi et al. [38] of an NM-CPA secure PKE scheme
from any IND-CPA secure PKE scheme.

Let II = (PKG, PEnc,PDec) be a PKE scheme, ¥ = (SKG, Sign, SVrfy) be a signature
scheme in which we assume that the length of a verification key vk is k, when generated from
SKG(1¥). Define a code W over the alphabet {0,1}" as follows:

W={ (p(1),...,p(10k)) | p is a degree-k polynomial },

which is the Reed-Solomon code with minimum relative distance 0.9, and thus we can correct
up to 0.45 fraction errors. (It is known that there exists an efficient decoding algorithm.)

Then the PKE scheme Igpyy = (PKGepuy, PEncepmyr, PDecepuyr) by Choi et al. [38] is
constructed as shown in Figure B.1. (We call this construction the CDMW’ PKE scheme, in
order to distinguish from the enhanced version of this scheme below.) It was shown in [38]
that if the underlying PKE scheme II is IND-CPA secure, and the underlying signature scheme
> is strongly one-time secure, then the PKE scheme Il¢pyy is NM-CPA secure.

Moreover, it was also stated in [38] that if we change the size of the set S and the degree
of the polynomial p from k to 8(k + ¢), and the number of columns in Cj,q from 10k to
80(k + q), then the resulting PKE scheme achieves NM-¢-CCA2 security (see [38] for details).
We call this enhanced scheme the CDMW PKE scheme.

B.2 The CHH+ Construction

Here, we recall the black-box construction by Cramer et al. [40] of an IND-¢g-CCA2 secure PKE
scheme from any IND-CPA secure PKE scheme.

First we briefly review the definition of a cover free family which is used as a building
box of their construction. Let F' = {F;}1<i<s be subsets over the indices {1,...,d} such that
|F;] =1 for all 1 <4 < s (such family F' is called [-uniform). We say that F' is g-cover-free
over {1,...,d} if F; € U;cg, Fj, for all i € {1,...,s} and for all S; C {1,...,s}\{i} such
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PKGepuw (1 k)i PEncepmy (PK,m) :

(p k:l(bj), kz(bj)) — PKG(1%) Parse PK as {pk(b)}
for 1 <i<k, 1<j<10k, be {0,1} ai,.. ak<—{01}

Pick a set of indices S C {1,...,10k} Define p(z) = aga® + - -+ + a1z + m over GF(2F).
uniformly such that |S| = k. sj «p(j) for 1 < j <10k

PK « ({pk(b)} (vk, sigk) < SKG(1%)

SK « ( {sk § View vk as a k-bit string (v1]]. .. ||vk).

ci,j < PEnc(pk;’,s;) for 1 <i <k, 1<j <10k
Cmat — {cz,]}

0 < Sign(Sigkv Cmat)

Return C + (vk, Cpat, 0).

Return (PK SK)

PDecepmy (SK, C) :
Parse SK as ({skz(bj)}, S) and C as (vk, Cpat,0).
(1) Check if SVrfy(vk, Cpat, 0) = accept.
Parse Chat as {c; ;} and view vk as a k-bit string (vi]| ... ||vg).
sj ¢ PDec(sk{"), c1 ;) for 1 < j < 10k
Find a codeword w = (w1, ..., wiox) € W which agrees with
($1,...,510k) in at least 9k positions. (If no such codeword is found, return L.)
(2) Check if PDec(ski", c1;) = - = PDec(sk{"*), cx, ;) holds for all j € S.
(3) Check if s; = w; for all j € S.
If the checks (1) to (3) all accept, return m that corresponds to the codeword w else return L.

Figure B.1: The CDMW’ PKE construction Ilepyy: -

that |S;| < ¢. It is known that there is a deterministic polynomial time algorithm which on
input s and ¢ returns (I,d, F'), where F' = {F;}1<i<s is a [-uniform g-cover-free family over
{1,...,d}. Moreover, let SUB denote the resulting deterministic polynomial-time algorithm
that on input s, ¢, and ¢ where i € {1,...,s} returns F;. See [40] and references therein for
details of such cover free families. We set s = 2%, d = 16kq?, and | = 4kq, where k is a
security parameter and ¢ is the upperbound of decryption queries we expect the construction
to be resistant against.

Using the above tool, we now recall the construction of a PKE scheme by Cramer et
al. [40] (which we call the CHH+ PKE scheme). Let II = (PKG,PEnc,PDec) be a PKE
scheme, ¥ = (SKG, Sign, SVrfy) be a signature scheme in which we assume that the length
of a verification key vk is k, when generated from SKG(1*). Then the CHH+ PKE scheme
egnt = (PKGepnt, PEncennst, PDecegn+ ) is constructed as shown in Figure B.2. It was shown
in [40] that if the underlying PKE scheme II is IND-CPA secure, the underlying signature
scheme ¥ is strongly one-time secure, and the parameters (d,q,l) are as explained above,
then the PKE scheme Ilgggy is IND-g-CCA2 secure.

Moreover, it was also stated in [40] (Remark 2 after the proof of Lemma 1 in [40]) that if
we replace the underlying IND-CPA secure PKE scheme with IND-CCA1 secure one, then the
resulting PKE scheme achieves (unbound :: s7)-mCCA security (the notations used here are
defined in Section 4.2).
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PKGCHH+(1k) :
for1 <i<d
PK + {pk;}
Return (PK, SK).

IDEY‘IC(;].[1.1+(.ID.Z:{7 m) :
Parse PK as {pk;}.
(vk, sigk) < SKG(1F)
F,i + SUB(2%,q,vk)
Let For = (s1,...,51)-
Pick mg, ..., m; randomly
such that m = @221 m;.
¢; < PEnc(pks,,m;)
for1 <i<l|
Crec < (C1,...,0)
o « Sign(sigk, Cyec)
Return C <+ (vk, Cyec, 0).

PDeCCHH+(SK, C) :

Parse SK as {sk;}.

Parse C as (vk, Cyec, 0).

If SVrfy(vk, Cyec, 0) = reject
then return L.

Parse Cyec as (c1,...,¢).

Fyr + SUB(2%, q,vk)

Let Fyr = (s1,-..,51)-

m,; < PDec(sks,,¢;) for 1 <i <1

If 35 € {1,...,1} such that m; = L
then return L.

Return m <+ @i:l m;.

Figure B.2: The CHH+ PKE construction Iegg. .
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