
The Arithmetic of 
Drinfeld Modules 



The Arithmetic of Drinfeld Modules 

Yuichiro Taguchi 

Contents 

Preface 

Chapter I. Ramifications arising from Drinfeld modules 

1. Finite places 

2. Infinite places - Examples 

3. Some finiteness and infiniteness 

4. Higher dimensional cases 

5. The case of non-scalar A-actions on tangent spaces 

Chapter II. A duality for finite t-modules 

1. Finite <p-modules 

2. Finite t-modules 

3. Finite v-modules 

4. The duality 

5. Duality for Drinfeld modules 

6. Duality for 11'-divisible groups 

Chapter III. 11' -adic theory 

1. Galois cohomology 

2. The Hodge-Tate docomposition of finite t-modules 

Chapter IV. Regular singularity of Drinfeld modules 

1. Regular polynomials 

2. Drinfeld modules with regular singularity at infinity 

3. Regular singularity of <p-modules 

Typeset by A,MS-'!EX 



Preface 

The present article contains the author's recent work on the arithmetic of Drin­
feld modules. We study in Chapter I the ramification, both at finite places and 
infinite places, of division points of Drinfeld modules. In Chapter II, we construct 
a duality for finite t-modules. This is the lF q [t]-analogue of the Cartier duality. 
Chapter III concerns with the tr-adic theory. We calculate Galois cohomology 
groups with coefficients in certain complete algebraically closed field, and show the 
existence of a Hodge-Tate decomposition for finite t-modules. Chapter IV pursues 
the analogy between <p-modules and 'D-modules; regular singularity of Drinfeld 
modules and <p-modules are studied. More detailed Introduction will be given at 
the beginning of each Chapter. 

Now let me explain the relation between the Chapters, which are more or less of 
independent character. The story of Drinfeld modules begins by fixing a place oo 
of an algebraic function field in one variable over a finite field, which is regarded 
as the analogue of the infinite place of the rational number field or an imaginary 
quadratic field. Then local theory of Drinfeld modules falls into two classes; one is 
over a finite place and the other is over an infinite place. Both are indispensable 
for the full understanding of the arithmetic of Drinfeld modules. In the classical 
case of characteristic zero, the arithmetic over an infinite place is rather simple; 
there we have only C/IR as the ramification of the base field. In contrast, we 
have more interesting phenomena in function field case, as is observed in Chapter 
I. Over finite places, an important role has been played by the Cartier duality 
in arithmetic geometry over number fields. Since the theory of Drinfeld modules 
has coefficient• in function fields, it is natural to construct a similar duality with 
coefficients in function fields. This is done in Chapter II in the case of rational 
function fields. The tr-adic theory, which is the main theme of Chapter III, is 
the function field theoretic counterpart of the p-adic theory over local fields of 
characteristic zero. We present analogous and, regrettably, unanalogous results to 
those in Tate's celebrated paper p -Divi•ible Group•; the necessity for the duality 
as in Chapter II arose naturally in seeking these analogues. Chapter IV is the most 
independent of the other Chapters, but shares with Chapter I an interest in the 
ramification- now the tameness- of division points of Drinfeld modules. 

Notations adopted may be different for different Chapters. 

References will be given at the end of each Chapter. 

The author would like to express his deep gratitude to Saint Kazuya Kato for 
smooth guidance, proper encouragement and excellent influence. He is also grateful 
to all members of the Kato Seminar who taught him much and with whom he 
enjoyed stimulating discussions. 



Chapter I 

Ramifications arising from Drinfeld modules 

Introduction 

In this Chapter, we study various ramifications arising from division points of Drin­
feld modules, abelian T -modules, formal modules, etc.. A motivation for this is 
to know how many isogeny classes and isomorphism classes of Drinfeld A-modules 
exist over a finite extension of the fraction field of A. We will see ( cf. Remark (3.4)) 
that, modulo the isogeny conjecture, an isogeny class can contain infinitely many 
isomorphism classes and, without any restriction on ramification at the infinite 
places, there can be infinitely many isogeny classes. 

To explain some of the results, let F be a function field in one variable over a 
finite field, oo a fixed place of F, A the ring of elements of F which are regular 
outside oo, and K a finite extension of F. Given a Drinfeld A -module ¢> over 
K and a prime v of A, we denote by K( ,P;vn) the field of vn-division points 
of ¢>. Then it turns out (Corollary 1.6) that the ramification at various primes 
in the tower (K( ¢>; vn)/ K)n>I is bounded at the places over oo by a divisor de­
pending only on ¢>,and at the finite places, it is controlled in a fairly precise way 
in terms of the "discriminant" 6.(¢). Roughly speaking, 6.(¢) is the coefficient 
of the leading term of the defining equation of ¢. For finite places, this result is 
analogous to the case of abelian varieties over number fields. (At least one has 
the Hermite-Minkovski theorem for number fields, which assures the existence of 
an estimate of discriminants.) But at infinite places, there occur new phenomena, 
which we describe by example in §2. We construct explicitly an infinite family of 
Drinfeld modules with everywhere good reduction and with ramification at infinity 
becoming arbitrarily large (Example 2.1), as well as an infinite family of mutu­
ally non-isomorphic Drinfeld modules with everywhere good reduction and with 
bounded ramification at infinity (Example 2.2). In §3, we give a proposition on 
v-adic Galois representations (a positive characteristic version of a theorem of Falt­
ings), and discuss how many isomorphism and isogeny classes can exist. §4 and 
§5 are generalizations of §1 to the cases of finite submodules of higher dimensional 
formal modules. Theorem ( 4.6) is an A-module version of Theoreme 1 of [5]. 



Acknowledgement. Th.is Chapter is an extended version of my talk at the work­
shop "The arithmetic of function fields" held at the Ohio State University in June, 
1991. I would like to thank the organizer David Goss for his efforts and his hos­
pitality during my stay at the Ohio State University after the workshop (I found 
Example (2.1) there). I am also grateful to Greg W. Anderson for asking a question, 
a partial answer to which is the content of §5. 

Notation. Throughout this Chapter, A is a "basic" Dedekind ring and F is its 
fraction field; in §§1 - 3 (global context), F is a function field in one variable over 
a finite field, DO is a fixed place of F, and A is the ring of elements of F regular 
outside DO , whereas in §§4 and 5 (local context), A is a complete discrete valuation 
ring with finite residue field. 

In either context, K will mainly be used to denote a finite extension of F, and 
then D K will denote the integral closure of A in K. 

If we are in the global context, a prime of D K means a non-zero prime ideal of 
D K, wh.ich is identified with a place of K, and called a finite place of K. A place 
of K is called infinite if it extends the place DO of F. A place of K will often be 
identified with a normalized valuation of K. A non-zero fractional ideal of DK is 
often regarded as a divisor of K and denoted additively. So we use notations like, 
e.g., a ::::; b for such a and b. If w is a prime of D K or a place of K, D K,w and 
Kw denote respectively the completions of D K and K with respect to w. 

For a field K, K "P denotes a fixed separable closure of K, and G K denotes 
the absolute Galois group Gal(I("P / K ). For a finite separable extension L/ K, 
T!(L/ K) (resp. D(L / K)) denotes the different (resp. discriminant) of L/ K if it 
can be defined at all. 

If G is a group scheme and v is a non-zero element or a non-zero ideal of End( G), 
then vG denotes the subgroup scheme Ker( v) of G. 

1. Finite places 

In this section, we estimate the differents at finite places of the field extensions 
arising from division points of Drinfeld modules. 

Let F be a function field in one variable over a finite field, DO a fixed place of 
F, and A the ring of elements of F regular outside DO. We assume that the field 
of constants is IF q, the finite field with q = pf elements . For a E A - 0, we define 
deg(a) by Card(A/aA) = qdeg(a). 

Let K be a field of characteristic p > 0, and IGa the additive group scheme over 
K. After choosing a coordinate X of IG., we can identify EndK(IG.) with the 
non-commutative ring of additive polynornials of X with coefficients in K, where 
the product is the composition of maps. So in the following, if 

</>:A ----+ EndK(IGa) ; a....., </>a 

is a Drinfeld module over K, we th.ink of </>. as a polynomial </>.(X) E K[X] via 
th.is identification. If </> is of rank r, the degree of </>a(X) as a polynomial of X is 
qrdeg(a) for all a E A- 0. 
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Let R be, for example, a Dedekind ring over A, and K its fraction field. For a 
Drinfeld module¢ over K, we have a minimal model (¢, m) of¢ over R ([10], §2), 
where m is a fractional ideal of R. If R is a discrete valuation ring, we can take 
m = R, and ( ¢, R) is characterized as the unique (up to isomorphisms) Drinfeld 
module ¢ over K such that ¢a(X) E R[X] for all a E A and the valuations of the 
coefficients of ¢a(X) are minimal. 

LEMMA (1.1). Let R be a discrete valuation ring over A, and K its fraction 
field. Let ¢ be a Drinfeld module over K of rank r, and ( ¢, R) be the minimal 
model of ¢ over R. Then there exists an ideal n of R such that the leading 
coefficient of ¢a(X) E R[X] divides n6(r,a) for any a E A- 0, where c(r, a) := 
(qrdeg(a) _ 1)/(q _ 1). 

PROOF:- Clearly, we may assume ¢ = ¢. Take a non-constant element x E A, 
and let yEA- 0. Since y is algebraic over 1Fq[x], we have a non-trivial relation 

Let z = '£f3i;xiyj bethesumofthe CXijXiyi 'swithdegree d :=maxi,;{ deg(ai;xiyi)} 
in the left side of this equality. We must have then 

deg(z) < d. 

If ¢.(X) = xX + · · · + xmXq'" and ¢.(X) = yX + · · · + YnXq" with m = rdeg(x), 
n = rdeg(y), and Xm, Yn E R, then we have 

So the coefficient of xq•• m 0 = "£ ai;</>.•y; is 

where the sum is over i and j with im + jn = rd. Since this sum must be zero, 
there exist two terms in the sum (say, of indices ( i, j) and ( i', j'), with i # i' and 
j # j') with the same valuation. Denoting by v the valuation of R, we have 

Noticing the relation rd = im + jn = i'm + j'n, we see from this that 

L:..::.l ~ 
Hence, if Xm In ,_, , then Yn In,_, . Now the proof is complete. 



DEFINITION (1.2). Let K be a finite extension of F. For a Drinfeld module 4> 
over K and a prime w of D K, consider its minimal model over D K,(w), and define 
D.w( ¢>) to be the smallest ideal n of DK,(w) with the property stated in Lemma 
(1.1). Define also 6.(¢) := L::w 6.w (¢>), where the sum is over all primes of D K and 
D.w(¢>) is regarded as a divisor of K . 

6.(¢) measures in a sense the "badness" of the reductions of¢> at finite places. 

To estimate the differents, we begin with 

LEMMA (1.3). Let R be a complete discrete valuation ring, K the fraction field, 
and ¢(X) E R (X ] a uparable polynomial with coefficients in R. Assume the 
coefficient of the leading term of ¢> is a unit. Let a be a root of ¢> in K .. P. Then 
the different '.D(K(a) / K) divides the principal ideal (¢'(a)). 

Note that ¢ ' (a)= a0 if ¢> is of the form ¢(X)= L:;, a,XP; and K is of positive 
characteristic p. 

PROOF:- Since the minimal polynomial of a divides ¢(X) and all the roots of 
¢(X) are integral over R, this follows from Cor. 2 (p. 66) to Prop. 11 of §6, Chap. 
III of (8] . 

LEMMA (1.4) . Let R be a complete discrete valuation ring of characteristic p > 0 
and K the fraction field. Let ¢(X ) = L:;~0 a,XP; be a separable polynomial in 
R [X] with a0aN # 0 , and a a root of ¢> in J('•P. Then the different '.D(K( a)/ K) 

N 
divides the principal ideal (a0 a~ - 2

). 

- N l N N l i ; 
PROOF:- ¢(X):= a~ - ,P(X/aN) = L:;i=O a,a~ - -p XP is a separable monic 
polynomial in R (X] and aNa is a root of ¢. The assertion now follows from the 
previous lemma. 

For a finite extension K ofF and a E A - 0, let K(¢>; a) = K(aif>(K,.P)) denote 
the finite separable extension of K obtained by adding the a-division points of¢. 
Let 'i) ,(!) denote the finite part of '.D (/), i.e., the sum of the components of '.D(/) 
not lying over co. Since the extension K( ¢> ;a) / K is obtained by adding r roots of 
1/>a(X) which form an (A/aA)-base of ai/>( K "P) c:e (A/aA)", we see from Lemmas 
(1.1) and (1.4) the following 

PROPOSITION (1.5). Let ¢> be a Drinfeld module over a finit e eztension K ofF 
of rank r . For a E A - 0, we have 

'.D J(K(,P; a)/ K) :::; r [(a)+ S(r, a)(qrdeg(a) - 2). 6.( ¢)]. 

For an infinite place w of K , let Aw(¢) denote the A-lattice in K:,•P correspon­
deing to ¢> 0 K Kw ( (3], §3). This is a G Kw -stable projective A-module of rank 
r. In particular, it is finitely generated over A, and the fixed subfield Kw(Aw(¢>)) 
of K:,•P by the kernel of the natural representation GKw ---> Aut(Aw(¢)) is a 
finite extension of Kw· We have for a E A- 0, aif>(K:,•P) c:e Aw(¢>) / aAw(¢>) as 
GKw-modules, which is rational over K w( Aw(¢>)) . Hence we have: 



COROLLARY (1.6). Let r be a positive integer, v a prime of A, and n a non­
zero ideal of D K. Let S be the set of finite places of K consisting of the finite 
places lying above v or dividing n. Then there exists a family (N(w,n))wES,nEN 
of non-negative integers which has the following property: 

For any Drinfeld module ¢> over K of rank r with fl.(¢>) :S: n and for any n E N, 
we have 

D(K(¢>;vn)/K) :S: L N(w,n) · (w) + M(¢>) · oo, 
wES 

where M ( ¢>) is an integer ;::: 0 depending on ¢> but not on n. 

2_ Infinite places - Examples 

In contrast to the classical case (where we have only C/IR), we have more compli­
cated field extensions at infinity in the Drinfeld module case, if the rank r is bigger 
than one. In this section, we give two typical examples which clarify this contrast. 

Let A, F, and oo be as in §1. For a Drinfeld module ¢> over a finite extension 
K of F and an infinite place w of K, let Aw(¢) denote, as in §1, the A-lattice 
corresponding to ¢> 0 K Kw. 

EXAMPLE (2.1) . Let A= 1Fq[TJ, F = 1Fq(T), oo = ( .,j,), and ran integer;::: 2. 
Then there exists an infinite family (f(n))n>J of Drinfeld modules over F of rank 
r which has the following properties: -
(i) f(n) has everywhere good reduction over A; 
(ii) the ramification of the corresponding lattice A(n) = Aoo(f(n)) at oo becomes 
arbitrarily large, i.e., ord 00 (1:>(Foo(A(n))/Foo)) tends to infinity as n does. 

Especially, for any finite place v of F, there arise infinitely many isomorphism 
classes of v-adic GF-representations Tv(¢>) 0 A. Fv from Drinfeld modules ¢> of 
rank r over F with everywhere good reduction. 

CONSTRUCTION:- Consider a Drinfeld module f(n) over A defined by 

a; E A, 

where we assume: 
(1) arE Ax= IF; 
(2)ordoo(ar-l) = -n(qr-qr-1)+1; 
(3) ord00 (ar-!) :S: ord00(a;) for 1 :S: i :S: r- 1 . 

Let v denote the normalized valuation ord 00 (-) extended uniquely to a fixed 
separable closure F~P of F00 • The Newton polygon of ¢>r( X) E F 00 [X] shows 
that 

(4) ¢>r(X) has (qr- qr-l) roots ), with v(>.) = -n + 1 
1 qr _ qr-

(take and fix one such ), ), and the other non-zero roots have non-negative valua­
tions. Conseqently, V := {>.' E r¢>(F~P); v(>.');::: 0} forms an (r-1)-dimensional 
1Fq-vector space. 
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By ( 4), the degree of the minimal polynomial of .A over Foo cannot exceed 
(qr- qr- 1 ). On the other hand, the denominator of v(.A), expressed as a reduced 
rational number, is (qr -qr- 1 ). Hence the extension F00(.A)/Foo is totally ramified 
of degree ( qr - qr- 1 ), and in particular, it is wildly ramified. 

Let L be the Galois closure in F:;P of F00 (.A)/ F00 • Since L/ F00 is also wildly 
ramified, there exists an element o- E Gai(L/ Foo) of order p . Then a-( .A) is of the 
form 

u(.A) = a>. + .A', for some a E IF; and .A' E V. 

Since v(o-(X)) = v( X) > v(.A), we again have u(.A') E V. Hence qP = 1 implies 
aP = 1. Thus 

u(.A) = .A + .>.' , .A' E V. 

Set 1r := ,f., so that v(-rr) = q•-~·-l and 1r is a uniformizer of F00 (.A). Since 

v(o-(-rr)- -rr) = v((u(.A)- .A)/Tn) = n + v(.A') ~ n, 

and 

II (r(-rr) - -rr), 
rEGal(£/ F = )-1 

this different, and hence 'D(Foo( A) / F 00 ), can become arbitrarily large, as asserted 
before. 

EXAMPLE (2.2). Let A, F, oo, and r be as in Example (2.1). Then there exists 
an infinite family (,p(n))n>o of mutually non-isomorphic Drinfeld modules of rank 
r over a finite extension L of F which has the following properties: 
(i) ,p(n) has everywhere good reduction over the integral closure DL of A in L. 
(ii) Let w be an infinite place of L, and set A(n) := A..,(,p(nl). Then there are in 
fact only finitely many field extensions in the set {L..,( A(n))j L..,; n EN}. 

CONSTRUCTION:- Let K = IFq(t), DK = IFq[t], and C the Carlitz DK·module 
defined by 

C,(X) = tX + Xq . 

Take an irreducible element T = f(t) E D K of degree r, and let A be the subring 
1Fq[T] of DK (oo := (~)=(-[.)inK). Define a Drinfeld A-module 4> over DK 
by 

4>r := cf(t)· 

Then 4> has rank r, and everywhere good reduction over D K . By explicit class 
field theory ([7]), the field L := K(J(tP(K'•P)) = K(r ,P( K'•P)) is an abelian 
extension of K with Galois group (DK/(f(t))r ~ IF;., and the prime (f(t)) 
ramifies totally in L. In particular, the polynomial C f(t)(X)/ X = 4>r(X)/ X over 
D K is Eisenstein at (T); if we write 

4>r(X) = TX + a1Xq + · · · + ar- 1Xq•-• + Xq', 

then we have 

(1) ordr(a;) ~ 1, 1 ::; i::; r- 1. 



Write 

¢T(X) = TX 
X II (1 - -.xl 

-\ E T4>- 0 

Looking at the Newton polygons of ¢T(X) at various finite places of K, we see 
that, for any .A E T¢(K"P) - 0, (.A) is the unique prime ideal of D L lying over 
(T). So we can take a prime element r (say T :=one of the .A's) of D L and write 

A = TAJ, Aj E D~ 

for each .A E T¢(K'"P) - 0. Define Drinfeld modules ¢Cn) ( n = O, 1, 2, · · · ) over L 
by 

X 
T X II (1- ----pn ). 

-\ E T4> - 0 T\ 

where 2.:: Il.; -I) denotes the sum of the products of ( qi - 1) elements, the sum 

taken over all possible choices of (qi - 1) .A's from T¢(K"P)- 0. Set b; := 
2.:: Tic.• -I) i;-. Since (T) = ( Tq• - I) and, for 1 :":: i :":: r - 1, 

is by (1) an element of D K divisible by T, b; is integral; b; E D L. Note that 

(2) 

Since 
a~n) = TTI - q' b( = a;b(-1, 

we have for a prime w of D L, 

(3) ( 
(n)) { ordr(a;) + (pn - 1)ordr(b;) if WIT 

ordw a . = 
' p"ordw(a;) if w{T. 

Moreover we have for i = r, 

a~n) = TTI - q' ( II : y· E D~. 
(q'-1 ) I 

We have thus obtained an infinite family ( ¢Cnl)nEN of Drinfeld modules over D L 

with everywhere good reduction. (2) and (3) imply that these are mutually non­
isomorphic, and yet the T-division points T¢Cnl(£"P) are rational over L. Further, 
it will be shown in §3 (Cor. (3.2), (ii)) that there arise in fact only finitely many 
extensions Lw(Aw(¢Cnl)) / Lw for all w I oo . 



3. Some finiteness and infiniteness 

In this section, A, F and = are as in §1. Let v be a prime of A, K a finite 
extension of F , and n a positive divisor of K. Let V be a finite dimensional 
F.-vector space, and p: GK---> GL(V) an F.-linear continuous representation of 
G K. Consider the following condition for p: 

(*) pis unramified outside Supp(n), and there exists in V a GK-stable A.­
lattice T such that D(K' / K) :<::: n, where K' is the fixed subfield of K"P by the 
kernel of the map G K ---> Aut(T / vT) induced by p. 

PROPOSITION (3 .1). Let r be a positive integer and n a positive divisor of K. 
Then there ezists a finite set S of finit e places of K disjoint from Supp( n} which 
has the following property: 

Let Pi : G K ---> GL(V;), i = 1, 2, be two r -dimensional v -adic representations 
which are semi-simple and satisfy the above condition (*) . If the characteristic 
polynonial of PI(Frobw) and P2(Frobw ) coincide for all w E S, then we have 

PI~ P2 · 

PROOF: - (Cf. Proof of Theorem 5 of [4]) Since there are only finitely many 
separable extensions of K with given degree and discriminant, there exists a finite 
Galois extension Kn / K which contains all separable extensions K' / K such that 
[K' : K] :<::: Card(GLr(lFq.)) and D(K' / K) :<::: n, where q. := Card(A/vA). By 
Cebotarev, there exists a finite set S of firilte places of K disjoint from Supp( n) 
such that Gal( Kn / K) is filled with the images of the conjugacy classes of Frobw 
for wE S. We will show that this S has the required property. Choose GK·Stable 
A v -lattices T; of V; for i = 1, 2, with the property as in the assumption (*), and 
let Mj, 1 :<::: j :'0 r, be the A.-subalgebra of EndA.( I\i T 1 x l\ iT2) generated by the 
image of 1\i p1 x 1\i p2 • By the assumption of semi-simplicity and by a version of the 
Brauer-Nesbitt theorem ( cf. [9]), it suffices to show Tr( m 1 ; l\iV1 ) = Tr( m 2 ; l\iV2 ) 

for all m = ( m 1 , m 2 ) E Mj, 1 :<::: j :<::: r, which is already true by assumption if 
m is conjugate to the image of Frobw for some w E S. It remains to show that 
these images together with their conjugates generate Mj over Av. They generate 
the A. /v A. -module Mi jvMj, because G K, acts trivially on T 1 /vT1 x T2/vT2 

according to our choice of K n . By Nakayama's lemma, they generate the Av­
module Mj. 

Hereafter in §3, w denotes an infirilte place of K. 

Since the Galois representations T.(¢) 0 A. F. are semi-simple ([10]), Cor. {1.6) 
and Prop. (3.1) imply 

COROLLARY (3.2). Let v be a prime of A , r a positive integer, and n a positive 
divisor of K . Then: 
{i) There arise only finitely many isomorphism classes of Galois representations 
T.(¢) 0 A. Fv from Drinfeld modules ¢ over F of rank r such that t!.(¢) :'0 n and 
D(Kw(v<P(K:,ep) / Kw) :'0 n for all infinite places w of K. 
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(ii) For a Drinfeld module ¢> over K and an infinite place w of K, let Aw(¢>) 
be the A-lattice (C K:,ep) correJponding to ¢> ® K Kw. Then there ariu only 
finitely many field exten•ions Kw(Aw(¢>)) / Kw from Drinfeld moduleJ ¢> a• in {i). 
E•pecially, 7J(Kw(Aw(¢>))/ Kw) is bounded. 

REMARK (3.3). Over Kw, there may exist an infinite family (¢Cn))nEN of Drin­
feld modules of rank r ;::>: 2 such that v¢>(n)(K:,•P) is rational over Kw but the 
ramification of the corresponding lattices A (n) is not bounded. For example, let A 
:= IFq[T] and >. (n) a root of the Artin-Schreier equation Xq- X= Tn. Consider 
the rank two Drinfeld module ¢Cn) over F00 corresponding to the A-lattice A(n) 

:= A ->.(n)+A· ~ ( C F~P). Then Gp~ acts trivially on T¢>(n)(F~P) c:e A(n) jTA(n) 
(since u(>.(n))- >.(n) E IFq C A C TA(n) for u E Gp~ ), but 7J(F00 (>. (n))JF00 ) is 
not bounded. 

REMARK (3.4). It is conjectured that the isogeny classes of Drinfeld modules ¢> 
over K are in one to one correspondence with the Galois representations Tv(¢>) 0 A. 
Fv. If this is true, then Ex. (2.1), Ex. (2.2) and Cor. (3.2) imply the following: 

For a Drinfeld module ¢> over K, consider the positive divisor of K 

X(¢>): = 6.( ¢>) + L 7J(Kw(Aw(¢>))/Kw)• 
wloo 

Suppose we are given a positive divisor n of K. Then: 
(i) There exist only finitely many isogeny classes of Drinfeld modules ¢> of rank 
r ;::>: 1 with X(¢) :":: n (Cor. (3.2)). 
(ii) Let A= IFq[T] and F = !Fq(T) . Then 

(ii-1) there exist infinitely many isogeny classes of Drinfeld modules ¢> of rank 
r ;::>: 2 over F with 6.(¢>) :":: n (Ex. (2.1)); 

(ii-2) there exists an isogeny class of Drinfeld modules of rank r ;::>: 2 over some 
finite extension of F which contains infinitely many isomorphism classes (Ex. (2.2) 
+ Cor. (3.2)). 

REMARK (3.5). The above definition of X(¢) is not good. We hope to find a 
definition of the infinite component of X (¢>) which is calculated directly from the 
defining equation of¢> and with which we can bound I; 7J(Kw(Aw(¢>))/Kw)-

4. Higher dimensional cases 

The content of this section is an A-module version of a theorem of Fontaine (Theoreme 
1 of [5]) , which can be regarded as a higher dimensional generalization of Lemma 
(1.3). 

First we give a preliminary on Taylor expansions. 

Let R be a commutative ring and R [[X]] = R [[X 1 , · · · ,Xh]] the ring of formal 
power series over R in h variables . For a multi-index n = (n1 ,-- · ,nh) E Nh (N 
is the set of natural numbers including 0) , we define a "differential operator" 6~. 
as follows: 
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where (';) = (';,') · · · (';::) is the "multi-binomial coefficient" with (';:/) := 0 if 
ni>mi. 

REMARKS (4.1). (1) £.is R-linear. 
(2) 8~. = n! 6~. (where n! := n 1 ! · · ·nh!) is the usual differential operator, and 
£. = ~( fx )n if n! is invertible in R. In particular, we have -/x = fx. 
(3) For f(X) E R[[X]], put Jy(X) := f(X + Y) E R[[X, Y)) = R[[X)J[[YJ]. We 
have 

on on 
oXn Jy(X) = ( oxn f)(X + Y) in R[[X, YJ]. 

(4) 

(5) Let S be an R-algebra and I an ideal of S. Assume S is complete with 
respect to the I -adic topology. If f(X) E R[[X]] has the value f(x) E S at a point 
x = (x,,··· ,xh) E S", then £-f(X) also has the value £-f(x) at x for any 
n EN" 

PROPOSITION ( 4.2). For f(X) E R[[X]], we have the formal Taylor expanJion 
(or rather, the binomial expanJion) 

(4.2.1) f(X + Y) = L o~nf(X). yn in R [[X, Y]]. 
lni;?:O 

If f(X) haJ the value f(x) E S at x E S" and y iJ an element of I", then 
f(x + y) E S al•o exiJtJ and we have 

(4.2.2) 

PROOF:- Write f(X + Y) = L.; an(X)Yn with an(X) E R[[X)). Applying 6~. 
to both sides and reducing modulo Y, we obtain ( cf. Remark ( 4.1), (3)) 

and hence (4.2.1). 



The latter half of the Proposition is obvious. 

Next we recall Fontaine's numbering of the ramification groups of a local field 
and some of his results ([5], §1). In the rest of this section, if L is a discrete 
valuation field, DL (resp. mL, resp. kL) denotes the integer ring of L (resp. the 
maximal ideal of DL, resp. the residue field DL/m£). 

In the following, K is a complete discrete valuation field with perfect residue 
field k of characteristic pi' 0. Let VK denote the valuation on K normalized by 
vK(Kx) = Z, and also its unique extension to any algebraic extension of K. If a 
is a subset of an algebraic extension of K, we put VK(a) := inf{vK(x);x E a}. 

For a finite Galois extension L / K, Fontaine defines a filtration with lower (resp. 
upper) numbering G(i) (resp. G(u)) ( i, u E IR) on the Galois group G = Gal( L/ K), 
which is connected with the usual filtration G; (resp. au) defined in Chapitre IV 
of [8] by 

G; = G((i+I)/•)• resp. Gu = Q(u+I), 

where e = eL/K is the ramification index of L/ K. 

He also defines a real number iL/K (resp. U£fK ), which is characterized as the 

largest real number i (resp. u) such that G(i) i' 1 (resp . G(u) i' 1 ). iL/K and 
U£fK are connected by 

Then he proves the following 

PROPOSITION (4.3). Let L be a finite Galois extension of K. 

(1) ({5}, 1.3) VK(JJ(L/K)) = U£ fK- iL/K· 
(2) ({5}, 1.5) For a real number m ?:: 0, consider the following property (Pm) on 
the extension L/ K: 

(Pm) 

Then 

1 
For any algebraic extension E of K, if there exists 

an DK-algebra homomorphism: DL -> DE/aE/K 

(where aE/K := {:z: E DEiVK(x) ?:: m}J, 

then there exists a K -embedding : L <--+ E. 

(i) if m > U£ fK• L / K has the property (Pm); 

(ii) if L / K has the property (Pm), we have m > uL/K- e£/K· 

Now we shall refine Fontaine's Proposition 1.7 of [5] as follows. The main point 
is that it works, mutatis mutandis, even in positive characteristics. 

PROPOSITION ( 4.4). Let B be a finite flat D K -algebra which is locally of complete 
intersection over D K. Suppose that there exists an element a E D K such that 

flk !oK is a flat (BjaB)-module. 
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(i} Let S be a finite flat D K -algebra and I an ideal of S. Suppou either the S­
submodule a- IJP - 1 of K ®oK Sis topologically nilpotent ( i.e., n n>1(a- 1JP-1)n = 
0 ), or I has a PD-structure such that n n2: 1I [n] = 0. -

(a} For any DK-algebra homomorphism u : E--+ Sjai, there exists an DK­
algebra homomorphism il. : E --+ S which is uniquely determined by u(mod.I) 
and makes the following diagram commutative: 

E ~ Sjai 

S ---> S / I. 

{b) The canonical map of sets 

HomoK-•lg(E,S) --+ Homo K-•lg(E,S j i) 

is injective. 
(ii) The K -algebra EK := K 0 oK E is eta/e. Let L be the smallest subfield 
of a separable closure K,.P of K which contains the images u(E) for all u E 

HomK-alg(EK,K'•P). Then LjK is a finite Galois extension and U£fK:::; vK(a)+ 

p~l · min{vK(a),vK(P)}. 

The proof is essentially the same as the original one due to Fontaine, but here 
we reproduce his proof of (i) to make clear the meaning of the condition in (i) . 

PROOF:- We may and do suppose E is a local ring , because E is the product 
of a finite number of local rings. Let mB be the maximal ideal of E. Replacing 
K by an unramified extension if necessary, we may also suppose E / mB = k, the 
residue field of D K. 

Then nk;oK is a free (E/aE)-module. Let X!,··· ,xh be elements of lllB the 

images of which form a k-base of lllB/(m~ + mKE). We see from the definition of 
differential modules that dz1 > • • • > dXh generate n1/0K > and further, they form a 

(E/aE)-base of nk;oK because of the canonical isomorphisms 

(Eo: = E / mKE), 

lllB /(m~ + mKE) ---> lllB./m~. ---> nk_ /k 0 B. k, 

where mB. = mB / mK E is the maximal ideal of Eo. 

Now let 
Q: DK [[X!,· .. ,Xh]J --+ E 

be the unique continuous DK-algebra homomorphism such that a(Xj) = "'i> and 
let J := Ker( a). Since E is finite of complete intersection over D K, J is generated 
by h elements, say P1, · ·· ,Ph E DK[[X1,··· ,XhlJ· 

For each i' we have 2.::)· i¥:(zl' ... 'Zh)dzj = 0 (note .f. = ar. ), which im-' ) ) 

plies i¥:(x1, · · · , xh) E aE. Hence there are Pij E E such that i¥:(z1, · · · , xh) = 
) ' 
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ap;; . The fact tha t !lk;oK is a free (B / aB)-module means that the free B­

submodule of EB j= 1 BdX; generat ed by 2::; ffi;(x 1 , · • • , xh)dX;, 1 ~ i ~ h, coin­
cides with the one generated by adX; , 1 ~ j ~ h. We can therefore find q1; E B 
such that 

i .e., a1h = (%)(ap;;). (1h is the unit matrix of degee h.) Since B is a free 
DK-module, we can divide both sides by a. Thus the matrix (p;;) is invertible in 
Mh(B) and (qli) = (p;;) - 1

• 

The case of PD-ideals is proved in [5], so we suppose a - 1 JP- 1 is topologically 
nilpotent. Then the ideal a-1 JP - 1 + I is also topologically nilpotent. Set In := 

(a- 1 [P - 1 + I)n - l I, n 2>: 1 (so that a- 1 I~- 1 is again topologically nilpotent, and 
Sis canonically isomorphic to the projective limit of the system (S/ In)n>l ). It is 
easily seen that I~ C ai2 n and I?, C I2 n. To show the assertion, it is e;;ough to 
verify: 

For any integer n 2': 1 and an D K -algebra homomorphism u : B ---+ S / ain, 
there exists anD K-algebra homomorphism u' : B ---+ S/ai2n such that u' (mod. I 2n) 
is uniquely determined by u(mod .In) and u' makes the following diagram com­
mutative: 

In other words, writing I for In and I z for I zn 

For any elements u 1 1 • • • , uh of S such that 

P;(u 1 , · • · 1 uh) = a>.; with some>.; E I (1 ~ i ~ h), 

there exist !-'I, · · · , /-Lh E I such that 1-'i (mod. I 2 ) are uniquely determined by u; (mod.!) 
and 

(4.4.1) 

If 1-'i E I, we have the Taylor expansion ( 4.2.2) 

(4 .4.2) 

with R; := l:lri~Z fJ.'-(u 1 , · · · ,uh)!-'r. 

For any element P E J, we have JJ; (x 1 , · • · , xh) E aB, i.e ., 
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If [r [ :2:: 1 and r! is invertible in DK, we see inductively (cf. Remark (4.1) , (2)) 

crp 
cXr(X1, ·· · , X h) E aDK [[X 1 , · · · ,Xh]J + J, 

so 

Since I 2 C Iz, we have 

if [r l :2:: 2 and r! is invertible in DK· 

On the other hand, we have J.Lr E [ lr l C JP C al2 if p divides r!, and fj'. ( u 1 , · · · , uh) 
are always inS (Remark (4.1), (5)). Thus we have 

(4.4.3) R; E alz. 

Take an element P;j E DK[[X1 , · · · ,Xh]] such that a(P;j) = Pij E B for each 
(i,j). We have 

cP 
cx'. (xl,··· ,xh)=ap;j, 

J 

i.e., * = aP;j + R;j with some R;j E J , from which follows the congruence 
' 

and 

( 4.4.4) 

Putting ( 4.4.3) and ( 4.4.4) into ( 4.4.2), we have 

P;(ul + J.LJ, · · · ,uh + J.Lh) = a(>. ;+ L P;j(u1, · · · , uh) · J.Lj) (mod.al2 ) . 

Since Sis flat over DK, the condition (4.4.1) for J.Lj is now equivalent to 

Since the matrix (Pij) = (P;j(x 1, · , xh)) is invertible, the matrix (P;j(u1, · · · , uh)) 
is invertible modulo al. Now the existence of J.Lj E I satisfying (4.4.1) is clear. 
Moreover uj(mod.I), 1 :S j :S h, determine J.Lj(mod.I2 ), 1 :S j :S h, uniquely, 
because they determine A; = 0 (mod. I) and Pij(u1, · · · ,uh) (mod. I) uniquely 
and J2 C [ 2 . 

Part (b) of (i) follows immediately from Part (a). 

The proof of (ii) is exactly the same as in [5]. 
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COROLLARY (4.5). Let the notation and hypothesis be as in Proposition(./ . ./). 
Then we have VK('IJ(L / K)) < VK(a) + P_I_ 1 min{vK(a) , vK(P)} unlw VK('IJ(L / K)) = 
o. 

PROOF:- If L/K is unramified, then vK('IJ(L/K)) = 0. If not, we have iL(K > 
0 and (Prop. (4.3), (1)) 

VK('IJ(L/K)) = U£fK - iL(K < U£ f K :S VK(a) + - 1
-min {vK(a),vK(P)} . 

p-1 

THEOREM ( 4.6). Let A be a complete discrete valuation ring with finite residue 
field, and fix a prime element 1r of A. Let K be a local field of "mixed character­
is tic" over A, i.e., a complete discrete valuation field K with perfect residue field 
which is endowed with an injective ring homomorphism A --+ K inducing a local 
homomorphism A --+ D K . Let n ?: 1 be an integer and J a finite fiat 1r -module 
scheme over DK {{10}, §1} such that the invariant differential module WJ of J is a 
free (D K /1rnD K) .module. {A typical example of such a 1r -module is the kernel of 
1rn on a 1r-divisible group ( loc . cit.)). Let u 0 := nvK(1r)+ P_l_ 1 min{nvK(7r),vK(P)}, 

H the kernel of the action of G K = Gal( K"P / K) on J(K"P), L := (K"P)H. 

Then we have c<;) c H for all u > Uo, and VK('IJ(L / K)) < Uo. 

PROOF:- As in the proof of Theoreme 1 of (5], the affine ring B of J is locally 
of complete intersection. Since !1k(oK = B 0 oK WJ is a free ( B / 1rnB )-module, we 
can apply Prop. (4 .4) and Cor. (4.5) with a= 1rn and obtain the theorem. 

REMARK ( 4. 7). In some simple cases, direct calculations yield sharper results. 
For example, let A and 1r be as above, F the fraction field of A, and Fn, n ?: 0, 
the field of 1rn -division points of a Lubin-Tate group over A associated with 1r. If 
L/K = Fm/Fn with m > n, we have 
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5. The case of non-scalar A-actions on tangent spaces 

Important classes of abelian T-modules ([1]), such as higher Garlitz modules c®n 

([2]) and tensor products of Drinfeld modules ([1], [6]), are such that the actions 
of T on the tangent spaces are not just multiplication by T, but T plus nilpotent 
linear maps. In this section, we study the ramification arising from division points 
of such objects. 

Let A, .,- and K be as in Th. ( 4.6); A a complete discrete valuation ring 
with finite residue field, .,- a uniforrnizer of A, and K a local field of "mixed 
characteristic" over A. Consider a smooth connected commutative formal group J 
over DK with an A-action 

such that, for all a E A, <P~ induces a linear map Lie( <Pa) on Lie( J) of the form 
(multiplication by a)+ (nilpotent map). If J is, for example, the tensor product 
of abelian T-modules with scalar T-actions on their tangent spaces, Th. (4.6) for 
ln = Ker(</JT•) would be valid because ® and Tv(·) should be compatible (this is 
shown in [6] at least for tensor products of two Drinfeld modules). What can be 
said on the ramification of the geometric points of ln := Ker(¢.,.. .. ) in other cases? 

(5.1). First assume that the nilpotent map Lie(¢.,...) - .,- is divisible by .,- in 
EndoK(Lie( J)). Then, since the image of Lie( ¢ .,.. .. ) is .,-nLie( J ), we have 

which is a flat B ; .,-n B -module ( B is the affine ring of ln ). So we can apply Prop. 
(4.4), and Th. (4.6) remains valid for such ln. 

(5 .2). We now return to a general J. Let d :=dim( J) = rankoK (Lie( 1)), and 
let pk be the smallest power of p, the residue characteristic of A, such that pk ~ d. 
Then for any multiple m of pk, the nilpotent map Lie(</J.,..m)- .,-m is divisible by 
.,-m in EndoK (Lie( J)), as is easily seen by looking at the binomial expansion of 

[.,-+(Lie(¢.,..)- .,-)jP•. In view of (5.1), we have 

THEOREM (5 .3). Let J and pk be a• above. For a positive integer n, let n' be the 
smallest multiple ofpk not less than n , U 0 := n'vK(.,-) + p~l min{n'vK(.,-), VK(P)}, 

H the kernel of the action of GK on ln(K••P), and L . - (K••p)H. Then we have 

G~) C H for all u > U 0 , and VK('IJ(L / K)) < U 0 • 

This theorem reduces to Th. ( 4.6) when n is divisible by pk. But if n is not 
divisible by pk, the ramification can be bigger than expected from Th. (4.6), as the 
following example shows: 

EXAMPLE (5.4). Let A = ll'q [[T]] and K = l!'q((T)) , and consider the d-dimensional 
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formal group G~d over A with an A-action defined by 

Then we have 

where C is the Garlitz module defined by CT(X) = T X+ Xq. This means that 
~(K(J1 (K"P)) /K) can become arbitrarily large according to d. 

References 

[1] G. W. Anderson, t-motives, Duke Math. J. 53 (1986), 457- 502 
[2] G. W. Anderson and D. S. Thakur, Tensor powers of the Garlitz module and 

zeta values, Ann. of Math. 132 (1990), 159- 191 
[3] V. G. Drinfeld, Elliptic modules, Math. USSR Sb. 23 (1974), 561 - 592 

[4] G. Faltings, Endlichkeitssatze fiir Abelsche Varietaten iiber Zahlkorpern, 
Inv. Math. 73 (1983), 349 - 366 

[5] J-M. Fontaine, ll n'y a pas de variete abelienne sur Z, Inv. Math. 81 (1985), 
515- 538 

[6] Y. Hamahata, On the Tate module associated to the tensor product of two 
Drinfeld modules I, II, preprint 

[7] D. Hayes, Explicit class field theory for rational function fields, Trans . Am. 
Math. Soc. 189 (1974), 77 - 91 

[8] J-P. Serre, Corps locaux (3eme edition), Hermann, Paris (1980) 
[9] J-P. Serre, A letter to D. Goss, dated April 14, 1990 

[10] Y. Taguchi, Semi-simplicity of the Galois representations attached to Drin­
feld modules over fields of "infinite characteristics", preprint 

19 



Chapter II 

A duality for finite t-modules 

Introduction 

In this Chapter, we establish a duality for finite t-modules and study its basic 
properties. Our duality is the IF q[t ]-analogue of the Cartier duality, where the 
multiplicative group Gm is replaced by the Carlitz module C. Finite t-modules 
are, roughly speaking, finite locally free group schemes which are 1Fq[t]-submodules 
of abelian t-modules ([1]) with scalar t-action on their tangent spaces. See (2.1) 
for the precise definition. In fact, it is only for a finite v ·module (Definition (3.1)) 
that we can define the duality (Definition (4.1)), in a way with Dieudonne theoretic 
flavor. See Remarks ( 4.4), ( 4.5), and Example ( 4.6) for accounts of the necessity of 
a v-module structure. 

A typical case of our duality is supplied by division points of Drinfeld modules 
and dual Drinfeld modules, and is studied in some detail in Section 5. In Section 
6, some results on the duality of 7T -divisible groups are given. 

One may hope to have such a duality for a wider class of t-modules, namely, 
torsion points of abelian t-modules which do not have scalar t-action on the tangent 
spaces, such as higher Carlitz modules cllm ([2]). But this would be possible only 
if the target C of the pairing were replaced by a tensor power c®n with sufficiently 
large n. 

Throughout this Chapter, Os denotes the structure sheaf of a scheme S. In 
general, we will use the following unusual 

NOTATION. A morphism of schemes is denoted by a capital letter, and the corre­
sponding morphism of the structure sheaves is denoted by the corresponding small 
letter. 

1. Finite <p-modules 

For the moment, let A be any commutative ring, and recall the definition of an A­
module scheme. For an A-scheme S, we denote by a: A-> f(S, 0 5 ) the structure 
morphism. 

DEFINITION (1.1). An A-module scheme over an A-scheme S is a pair (G, 'It) 
consisting of a commutative group scheme G over S and a ring homomorphism 
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'I' : A ____, End( GIS) ; a >--> 'I' a such that, for each a E A, >¥. induces multiplication 
by a(a) on the Os-module Lie*(GIS). 

A morphi•m M: (G,>¥)----> (G','l'') of A-module schemes is a morphism M: 
G ____, G' of group schemes such that M o >¥a = >¥~ o M for all a E A. 

EXAMPLE (1.2). A vector bundle G on Scan be naturally regarded as a r(S, Os)­
module scheme. We shall mean by a vector group Jcheme such a f(S, 0 5 )-module 
scheme. 

We will often write simply G for an A-module scheme in place of (G, >¥). 

Hereafter in this section, let A be the finite field IFq of q elements and S an 
IF q -scheme. 

For an 1Fq-module scheme (G, >¥)overS, set Ea := Hom1,,5 (G,G.). (Homr,,s 
denotes the Zariski sheaf on S of IF q -linear homomorphisms.) If GIS is affine (as 
is always the case in the following), we may confuse Oa and 1r.Oa (where 1r is the 
structure morphism of GIS) and may think of Oa as an 0 5 -algebra. Then Ea 
is the Os-submodule of the augmentation ideal Ia of Oa consisting of the local 
sections X which satisfy 

{ 
a( X) =X 0 1 + 1 0 X, 

,P.(X) = a(a)X 

and 

for all a E IF q. 

Here 5 : Oa ----> Oa 0 o 5 Oa is the coproduct of Oa and ,P. : Oa ----> Oa is the 
0 s -algebra homomorphism corresponding to >¥a : G ----> G. 

Note the correspondence G >--> Ea is similar to the "t-motive" construction ([1], 
§1) . See also Remark (3.7) below. 

DEFINITION (1.3). An IFq-module scheme (G, >¥ ) over S is called a finite <p­

module if Oa and Ea are locally free of finite rank over Os with rank(Oa) = 
qrank(Cs), and Ea generates the Os -algebra Oa. 

A morphi•m of finite cp-modules is by definition a morphism of IF q -module schemes. 

REMARK (1.4). (i) A finite <p-module G over S can be embedded canonically 
into the vector group scheme Ea := V( Ea) = Spec(Sym05 Ea) as an IF q -submodule 
scheme (See also Proposition (1.8)), because Ea generates Oa. Let us agree to 
call Ea IS the ambient •pace of GIS. It is clear that a morphism M : G ----> G' of 
finite <p-modules extends uniquely to a morphism EM : Ea----> Ea• of IFq-module 
schemes. 

(ii) The group scheme Jlp of p-th roots of unity over an 1Fp-scheme is not a finite 
<p-module. 

Note that, if M: G ____, G' is a morphism of IFq-module schemes, then the corre­
sponding morphism m: Oa• ____, Oa restricts to give an Os-module homomorphism 
m: Ea· ---->Ea. Since Ea• generates Oa· if G' is a finite cp-module, we have 

LEMMA (1.5). Let G and G' be finite cp-modules. Then the natural homomor. 
phi•m Hom,. ,s(G,G' )----> Homo 5 .mod(Ea•Ja) is injective. 
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In the following, for an Os-module [ (resp. an Os-module homomorphism 
m ), f:(q) (resp. m(q)) denotes the base extension [ ®os Os (resp. m 0 1) by the 
q-th power map Os -+ Os. For example, if G is a group scheme over S, then 
0~) is the structure sheaf of the Frobenius gruop scheme Q(q). Also, we denote 

by Fa : G -+ Q(q) (resp. fa : 0~) -+ Oa) the Frobenius morphism . If G is an 
!Fq-module scheme, then so is Q(q) and Fa is a morphism of 1Fq-module schemes. 

To understand the role of Ea , recall 

DEFINITION (1.6). (Drinfeld [3], §2) A <p-sheaf is a pair (E,<p) consisting of a 
locally free Os-module E on S of finite rank and an Os-module homomorphism 
'P : f:(q) -+ [. 

A morphism m: (E, <p)-+ (E', <p 1
) of <p-sheaves is an Os-module homomorphism 

m : [ -+ [' which makes the diagram 

f:(q) m (q) E'(q) -----> 

\01 110' 
[ -----> [' 

commutative. 

Let ( [, <p) be a <p-shaef and E = V( E) the vector bundle corresponcling to [. 
'P: f:(q) -+ [ induces a morphism ii> : E-+ E(q) of !Fq-module schemes. Drinfeld 
defines then 

Gr(c,<p) := Ker(<I>- FE: E-+ E(q)) 

=Spec (s;[('P - fs)(E(q)ll), 

where S = OE is the symmetric algebra Sym05 [, fs = fE is the Frobenius 

morphism S(q) -+ S, and the bracket [· · ·] denotes the ideal generated by its 
contents. This is a finite <p-module of rank qrank(£c), with 1Fq-action induced by 
the natural!Fq-module structure on[. Note Ea,(£,10) = [. 

Conversely, if G is a finite <p-module over S, the Frobenius morphism fa : 
0~)-+ Oa induces an Os-modulehomomorphism 'Pa: E~q)-+ Ea. Then (Ea,'Pa) 
is a <p-sheaf. The natural Os-algerbra homomorphism Sym05 Ea -+ Oa is sur-

jective, and its kernel contains ( <pa - fEe)( [~q)). Hence we have a surjection 
Oa,(£c,\Oc)-+ Oa of locally free Os-algebras. The equality rank(Oa) = qrank(£c) 
implies Gr(Ea,'Pa)"' G. 

The commutativity of m and <p in the definition of a morphism m: (E,<p)-+ 
(E',<p') of <p-sheaves means that m : [ -+ [ ' extends to an Os-Hopf algebra 
homomorphism 

( S' is the symmetric algebra made of [ 1
.) This is clearly compatible with the 

natural !Fq-actions. Noticing Lemma (1.5), we have thus 
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PROPOSITION (1. 7). The category of finite <p -module• over S i• anti-equivalent 
to the category of <p -•heave• on S. 

Also the next proposition should be noted. 

PROPOSITION (1.8). A finite locally free group scheme G over S is a finite <p­

module if and only if it can be embedded into a vector group scheme E as the kernel 
of an endomorphism of the IFq -module scheme E. 

PROOF:- Let G be a finite cp-module, and let the notation be as before; 

G = Gr(£,cp) = Spec (s/((cp- fs)(t:(q))J). 

Then G is the kernel of an endomorphism of E defined by sections of (cp- fs )(£(q)) . 

Conversely, an IF q -endomorphism of a vector group scheme E is given, locally 
on S, by a polynomial in r, the q-th power map, with coefficients in the matrix 
algebra over 0 5 . By using additional variables if necessary, we can write the kernel 
G of such a morphism in the form 

where A and B are n x n matrices, and X := 

'(Xf, · · · , X~). Since G is locally free over Os, B 
G is of theform Gr( £, <p). Q.E.D. 

'(X1 , · · · , X,..) and X(q) := 

must be invertible, and hence 

The set of valued points of Gr( £, cp) is described as follows: 

PROPOSITION (1.9). Let (t:,cp) be a cp-sheafon S, and letT be an S-scheme. 
Then the set of T -valued points of Gr( £, <p) is 

Gr(£,<p)(T) = Hom..,,o 5 (£,0r), 

the set of Os-linear homomorphisms f: £->Or such that f(<p(x)) = f(x) 9 for 
any local section x of £. 

PROOF:- This is clear from the definiton of Gr(£,<p). Q.E.D. 

2. Finite t -modules 

In the rest of this Chapter, A is the polynomial ring IF9 (t) in one variable t over 
IF9 . We work over a fixed A-schemeS, and denote by 0 the image oft under the 
structure morphism a : A -> r( S, 0 s). 

DEFINITION (2 .1) . A finite t-module (G, >It) overS is an A-module scheme over 
S such that 
(1) G is killed by some a E A- IF9 ; and 
(2) (G, >It lr.) is a finite <p-module over S. 

A morphi•m of finite t-modules is by definition a morphism of A- module schemes. 
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A typical example of a finite t-module is a finite IF9 [t] -submodule of an abelian 
t -module ([1]) with scalar t-action on its tangent space. As is well-known, we have 

LEMMA (2.2). A fin ite t-module G/S which is killed by a E A - 0 is etale over 
S if a i• invertible on S. 

PROOF:- It is enough to see f1~/S = 0 , but a· f1~/S = 0 and a is invertible. 
Q.E.D. 

REMARK (2.3). If (G, W) is a finite t-module, W induces an action of A on the 
ambient space Ea (Remark (1.4), (i)). But Ea with this action is not in general 
an A-module scheme in the sense of Definition {1.1). 

DEFINITION {2.4). A t -sheaf (£,cp,,P,) (or simply, (£,cp,,P)) on S is a pair 
consisting of a cp -sheaf ( £, cp) and an endomorphism ..p, of ( [, cp) such that 
(1) there exists a polynomial a(X) E IF9 [X] such that a(cp,) = 0 on£; and 
(2) ..p, induces multiplication by () on Coker( cp ). (Recall that Coker( cp) is canoni­
cally isomorphic to Lie*Gr(£,cp) ([3], Proposition 2.1, 2)).) 

Equivalently, we may think that ..P is a ring homomorphism A -> End<p,O s ( £); a >-> 

..Pa such that ..Pa = 0 for some a E A - IF 9 and, for each a E A, ..Pa induces multi­
plication by a( a) on Coker( cp). 

A morphism m: (£,cp,,P,)-> (£',cp',..PD is a morphism of cp-sheaves such that 
m o..p, = ..p~ o m. 

The following proposition , extending (1.7), is obvious. 

PROPOSITION (2.5). The category of finite t -modules over S i• anti-equivalent 
to the category of t -sheave• on S. 

We write Gr( [, cp, ..p) for the finite t-module corresponding to a t-sheaf ( [, cp, ..p). 

EXAMPLE (2.6). Let (E, >IT) be a Drinfeld A-module of rank roverS. Assume 
for simplicity that S = Spec R with R an A-algebra, and that the action of t is 
given by 

with respect to a trivialization E ~ Ga = Spec R [X ] . Then for a E A - O, 
G := Ker(Wa) is a finite t-module over R. £a is a freeR-module of rank r ·deg(a) 

with a basis (X 9;; 0 .,:; j .,:; r · deg(a) - 1), and cp: [~q)-> Ea is given by 

cp(X 9; 0 1) = X 9i+• . 

Here X 9i+ ' for j + 1 2 r · deg(a) should be rewritten in terms of (Xq;; 0 .,:; j .,:; 
r · deg(a) - 1) according to the relation ..Pa(X) = 0. 

In the simple case where a = tk, we can take the basis (,Pt'(X) 9;; 0 .,:; i .,:; 
k - 1, 0 .,:; j .,:; r - 1) of Ea, with respect to which ..p, is represen ted by the matrix 
whose (i,j)-component is 1 if i = j + r and 0 otherwise. 
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3. Finite v-modules 

To establish a nice duality, we need one more structure. 

Recall that a finite cp-module G is embedded canonically into its ambient space 
Eo (Remark (1.4), (i)), which is a vector group scheme. 

DEFINITION (3.1). A finite v -module (G, IJ!, V) overS is a finite t-module scheme 

(G, IJ!) over S together with a morphism V: E/j) ->Eo of IFq-module schemes 
such that IJ!, = (0 + V o FEG) Ia. (Here 0 means multiplication by 0 = a(t) E 
f(S,Os) on Eo, and FEG is the Frobenius morphism of E0 .) 

A morphism M : (G, IJ!, V)-> (G', w', V') of finite v-modules is a morphism of 
finite cp-modules which renders the diagram 

Eo 
EM 

Eo· ___, 

vj r v· 
E(q) ___, E(q) 

G 
E (• ) 

G' 
M 

commutative. 

DEFINITION (3.2). A v-sheaf (t:,cp,v) on S is a pair consisting of a cp-sheaf 
on Sand an Os-module homomorphism v: [ -> t:(q) such that (C:,cp,,P,) with 
..p, := 0 + cp o v is a t-sheaf on S. (Here () means multiplication by () on [ .) 

A morphism m: (t:,cp,v)-> (E',cp',v') of v-sheaves is a morphism of cp-sheaves 
which renders the cliagram 

t: ~ t:' 

vl 
t:(q) 

commutative. 

These definitions are made so that Proposition (2.5) extends to 

PROPOSITION (3.3). The category of finite v .modules over S i• anti-equivalent 
to the category of v -sheaves on S . 

We write Gr ( [, cp, v) for the finite v-module corresponding to a v-sheaf ( [, cp, v). 

EXAMPLE (3.4). Let (E, IJ!) and G = Ker(IJ! a) be as in Example (2.6). Then the 
finite t-module G is furnished with a standard v-module structure by 

v : Eo -> t:~q), 

xq' ....., xq' -
1 0 (Oq' - 0) + x/ 0 a(+·· · + xq•+• -

1 
0 a~'. 
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(Here Xq'- '0 (9q' -9) := 0 if i = 0.) If G = Ker(w,) for example and if we regard 

Ea and £~q) as the column vectors of rank r by fixing the R-basis (Xq; )o;5j :$r-l 

and (Xq; 0 l)o;5j :$ r-l respectively, then v is represented by the matrix 

- 9 _,) 
(The vacant components are 0.) Note that 1/;1 = 0 on Ea in this case, and still v 
has enough information to recover the dual of G. But this v-module structure is 
not unique unless Ker( cpa : £~q) -+ Ea) = 0. 

In fact, finite v-modules over "mixed characteristic" bases are not so far from 
finite t-modules, since we have: 

PROPOSITION (3.5). Let (G, 1}1) be a finite t-module which is t!tale over the generic 
points of S. Then (G, w) has a unique v -module structure Va eztending the given 
t-module structure; 1}1, = (9 + Va o FEa) Ia· If G and G' are two such finite 
t -modules, then a morphism G -+ G' of finite t -modules preserves this v -module 
structure. In particular, if a : A -+ 0 5 is injective (cf. Lemma (2.2}}, the two 
concepts, a finite t -module and a finite v -module, are equivalent. 

The same is valid for a t -sheaf ( £, cp, 1/;1) such that cp : £(q) -+ £ is injective 
over the generic points. 

PROOF:- We prove this for t-sheaves. By (2) of Definition (2.4), we have 

Im(,P,- 9) C Im(cp). 

Hence v := cp- 1 o (,P,- 9) : £ -t £(q) is well-defined and gives a unique v-sheaf 
structure on (£,cp) extending the t-sheaf structure 1/;1 . 

Let m: (£,cp,,P1)-+ (E',cp',,P;) be a morphism oft-sheaves. If cp and cp' are 
generically injective, we have the diagram 

£ 
m 

£' ----> 

·1 1·· 
£(q) 

m ( q ) 
£1(q) ----> 

~1 1 ~· 
£ ----> £' 

in which v and v' are defined as above and in which the outer and the lower 
squares are commutative. Since cp' is generically injective, the upper square is also 
commutative, i.e., m is a morphism of v-sheaves . Q.E .D. 
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EXAMPLE (3.6). Let C be the Garlitz module over Spec A, i.e., the rank one 
Drinfeld A-module on Ga =Spec A[Z) with t-action given by It: Z,..... BZ + zq. 
(Here, one may choose another t-action Z >-+ BZ + azq for any a E r;, but then 
a-1 t acts by Z >-+ a(a-1 t)Z + zq. So in the following, we fix tEA and its action 
on C as above.) Let G be a finite A-submodule of C. Then over A, G has a 
unique v-module structure 

vc: Ea-+ £~l, 
zq; ...... Z 9;_, 0 (B9 ; -B)+ zq; 0 1. 

In §4, we shall think of G X spec AS, over any base scheme S, as a finite v-module 
with v-structure induced by this canonical one. Also, it would be convenient in 
what follows to think of C itself as a "v-module" with vc: £0 -+ £~) defined as 
above, though we deal in fact with its finite subgroups. 

The following Remark is not used in this paper, but provides us with some feeling 
on Ea. 

REMARK (3. 7). Let G be a finite v-module over S. Then the Os-module Ea 
would deserve the name the "Dieudonne module" of G, because we have Ea = 
Hom., 5 (G, CW). Here CW is the v-module of "Witt covectors", defined as follows 
(we disregard the topology): CW is, as a group scheme, the infinte direct product 
of Ga 's with affine algebra Ocw = Os[· · · , X_n, · · · , X_ 1, Xo], and the t-module 
and v-module structures are defined by 

for all n 2 0. 

4. The duality 

t: X_n ,..... BX_n + X~n- 1 , 

V : X_n >-+ X-n-1 181 1 

For an Os-module £,put £* := Hom05 (£,0s). If (£,tp,v) is a v-sheaf on S, 
then tp and v induce respectively the Os-module homomorphisms 

tp' : £' -+ [•(q) and v• : [•(q) -+ £'. 

It is easy to check that (£',v',tp') is a v-sheaf on S. 

DEFINITION (4.1). We define the dual (£,tp,v)' of a v-sheaf (£,tp,v) to be the 
v-sheaf (£',v',tp'). For a finite v-module G = Gr(£,tp,v}, define its dual G' to 
be Gr( £•, v•, tp'). 

Note that if, as in Proposition (3.5}, ( G, 'II) is a finite t-module which is etale 
over the generic points (resp. (£,tp,,P,) is at-sheaf such that tp is injective over 
the generic points}, then we can define its dual. We have clearly the following 
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PROPOSITION ( 4. 2). Let a be a finite v -module. 
(i) a• haJ the Jame rank aJ a. 
(ii) The corre•pondence a >-+ a• iJ functorial. Thi• functor iJ exact. 
(iii) a•• i• canonically i•omorphic to a. 
(iv) (a Xs T)* ~a· Xs T for any s -Jcheme T. 

The Jame iJ true for the duality of v -JheaveJ. 

THEOREM (4.3). Let G be the Garlitz module over Spec A (cf. Example {3.6}), 
and let a be a finite v -module over S. 

(i) The functor 

Hom.,s: (S-Jcheme•)--+ (A-module•) 

T >-+ Homv,T(a Xs T, G X spec AT) 

iJ repreJented by {the underlying finite t -module of) a•. 

(ii) There exi•t• a canonical A -bilinear pairing of A -module JchemeJ: 

lie : a x s a• --+ G 

Juch that: 

{ii-1) If a' iJ a finite t -module over S Jilting in an A -bilinear pairing II' : 
a x s a' --+ G, then there exiJtJ a unique morphi•m M : a' --+ a• of finite t­
moduleJ which make• the diagram 

a x sa' 
Il' 

G ---> 

lxM 1 
a x s a· ---> G 

IlG 

commute. 

{ii-2) If M: a --+ H iJ a morphiJm of finite v -module• and M* : H* --+ a• •• 
itJ dual morphiJm induced by functoiality, then we have 

IIH o (M x 1) = lie o (1 x M*) on a x H*. 

Converuly, M* iJ the unique morphiJm which ha• thi• property. 

(ii-!i) If a :A--+ Os iJ injective and S iJ integral with function field K, then 
lie induce• a non-degenerate Galoi• equivariant A- bilinear pairing between the 
A -module• of geometric pointJ: 

a(K'•P) X a*(K'.P)--+ G(K'.P). 

PROOF:- Recall that Oc is the polynomial ring A[Z] with t-action It : Z >-+ 

IJZ+Zq and v-modulestructure vc: £c--+ [~); Z >-+ Z ®l. Let a= Gr(£e,<;:>e,ve). 
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An Or-algebra homomorphism m : Oc ®A Or --> Oa ®o 5 Or corresponds to a 
morphism of v-modules G Xs T--> C X spec AT if and only if 

(4.3.1) 

(4.3.2) 

m(Z) E f(T, t:a ®o 5 Or), and 

m(q) o vc(Z) = (va 181 1) o m(Z). 

Let S* be the symmetric Os-algebra Sym05 £(;, and Zo a global section of 
£a ®o s £(; which gives a basis of the rank one Os-submodule of £a ®o 5 £(; on 
which one has m 181 1 = 1 181 m* for all m E Endo 5 (£a). A canonical choice for Zo 
is L; X; 181 Xi, where (X;); is a local basis of £a and (Xi); is its dual basis. Let 

•: Ea ®o s £(; --> [~q) ®os [~(q) 

X i81 Y ~--t (X i81 1) 18i (Y i81 1) 

be the natural map. Then we have (v 181 1)(Z0 ) = (1 181 v*) o •(Zo) for all v E 

Hom0 5 (£a,£~)). If we take Or = S* and Z >--> Zo, then (4.3.2) reads 

(1 181 fs·) o •(Zo) = (1 181 v(;) o •(Z0 ). 

Us· is the Os-linear Frobenius morphism s•(q) --> s· .) Let :r be the smallest 
ideal of s· such that 

(1 181 (v(;- fs· )) o •(Zo) E £~q) ®os :!*. 

Then it follows from what we observed at the beginning of the proof that the functor 
Homv,s(G, C) is represented by Spec(S* I J*) = Gr(£(;, v0), with t-action induced 
by.,P;on£(; . 

REMARK (4.4). To represent the functor Homv,s(G,C), the v-module structure 
of G* is not needed (and in fact a v-module structure on Gr(£(;,v0) may not be 
unique (cf. Example (3.4)) , but for G to represent Homv,s(G*,C), G* must have 
the v-module structure 'Po. 
PROOF CONTINUED:- The pairing G xs G*--> C is given by 

71': Oc--> Oa ®os Oa·, 

Z~--t Z1 , 

where Z1 is the image of Zo in Oa ®o 5 (S* I J*). The universality of G* (ii-1) is 
clear from the above discussion. 

The non-degeneracy of (ii-2) is a consequence of a basic fact in linear algebra; let 
(X;) and (Yj) be Os-bases of Ea and [H respectively, (Xi) and (Y/) the dual 
bases , m: [H --> £a an Os-linear map, and m* : £(; --> £'H its dual map. Then 
we have L; X; 181 m*(Xi) = Lj m(Yj) 181 Yt in £a ®o 5 £'if . Conversely, m* is 
the unique 0 5 -linear map with this property. 

Since G is etale over K if a is injective (Lemma (2.2)), (ii-3) follows from the 
well-known equivalence between the category of finite etale K••P -schemes and the 
category of finite sets. Q.E.D. 
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REMARK ( 4.5) . If we consider only the t-module structure, we will have the 
following: 

(i) The functor 

Homt,s(G,C): (S-schemes) _,(A-modules) 

T ,_., Homt,r(G x s T, C X specA T) 

is represented by an A-module scheme c• over S. 

(ii) If G is etale over the generic points of S, then G* is of the form G* U G~, 
where G* is (the underlying finite t-module of) the dual finite v-module of G, 
G being considered to be a finite v-module with the unique v-module structure 
(Proposition (3.5)), and where G~ is supported on the locus in S over which G is 
not etale. In general, G~ has a positive dimension. For example: 

EXAMPLE ( 4.6). Let R be an (A/ tA)-algebra (i.e., we are in the "characteristic" 
(t) situation in the sense that the kernel of the structure map a :A_, R is (t) ), and 
let G =Spec R[X1 ,X2]/(Xf.xn be a finite t-module with t acting by X;,_, 0 
for i = 1, 2. If we think of G as the t-division points of the abelian t-module 
(E, 'II) = CEll2; 

then it is natural to make G into a finite v -module by v : X; ,_., X; 18> 1 for i = 1, 2. 
On the other hand, G can be regarded as the t-division points of another abelian 
t-module(E', 'II') with 

Now it is natural to make G into a finite v-module by v : X; ,_., X 3 _; 18> 1 for 
i = 1, 2. In the former case, we have G* = Spec R[Y1 , Y2]/(Y1 - Y1q, Y2 - Yn 
(the constant group scheme IFq E!l lFq ), whereas in the latter case, we have G* = 

Spec R[Y]/(Y- yq' ) (the etale group scheme IFq' ). Of course, we could choose 
any v-module structure v : xi ,_, XI 18> al i + x2 18> a2i for i = 1, 2 with aji E R. 
Without v-module structures, we will have Q• ~ Ak in this case. 

Finally in this section, we describe a relation between the Frobenius and the 
Verschiebung over a "finite characteristic" base. 

PROPOSITION (4.7) . Let (G,'li,V) be a finite v-module overS. 

{i) Let d be a poJitive integer, and F~ : G _, G(q") the qd -th power Frobeniu• 

morphiJm. Then G(q•) (reJp. F~) iJ a finite v -module {reJp. a morphi•m of 
finite v-module•) if Im(a) C IFq•. If thiJ iJ the case and M : G --> G' i• a 

morphi•m of finite v -module•, then we have M (q•) o F~ = F~, o M. 
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(ii} Aswme Ker(a: A_, Os) = (p) with p E A being a monic prime element of 
degree d. Let Va ,p : G(q•) _, G be the dual morphism of Fa· ,p := F~. : G* _, 
a•(q'). Then we have 

'lip = Va ,p o Fa,p and 
(q•) 

'lip = Fa,p o Va,p· 

In particular, we have an ezact sequence of finite t -modules 

0 _, Ker(Fa,p) _, Ker(lltp) _, Ker(Va,p) _, 0. 

PROOF: - (i) The only point we must care about is the action of a E A on 
Lie*(G(q

4
)), which is multiplication by a(a)(q'). This should be a( a), which is the 

case if Im( a) C 1Fq•. The compatibility conditions for v-module structures and 
morphisms are then automatically satisfied. 

(ii) Let Z E O c and Z1 E Oa 181 o 5 Oa· have the same meaning as in the proof 
of Theorem (4.3). Let 

1r : Oc _, Oa 181 o 5 Oa· 

z ._.. z1 

be the 0 s -algebra homomorphism corresponding to the pairing II a : G x s G* _, C. 
Then the A-linearity of the pairing is written as 

(.,Pp 181 1)(Z1) = 1r(-yp(Z)) = (1 181 7/J;)(Z1). 

Here"(: A_, Endo 5 (0c); a>-> "fa is the map describing the A-action on C. 

Since "'p(Z) = zCq')(mod.p) (e.g. [5] , Proposition 2.4), we have 

(.,Pp 0 1)(Z1) = 1r(Zq') = Ua,p 181 fa· ,p) o t(ZI) 

= Ua,p 0 va,p 181 1 )( zl ). 

Hence 7/Jp = fa,p o va,p, and lltp = Va,p o Fa,p. 

By (i), we have also the commutative diagram 

from which follows the equality 

Q.E.D. 
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5. Duality for Drinfeld modules 

In this section, we construct explicitly the dual E of a Drinfeld IF'9 [t]-module E, 
and prove the compatibility of this construction and the duality of §4 for the torsion 
points of E and E. E is an (r - I)-dimensional abelian t-module ([1]) if E is of 
rank r 2: 2. 

Let A = IF'9 [t) and Ran A-algebra. The image oft E A in R will be denoted 
by 8 . (Though all constructions below work over any A-scheme S, we work over 
an affine U =SpeeR for simplicity.) 

Let (E, w) be a Drinfeld module over R of rank r 2: 2. Suppose the action of 
t E A is given by 

with respect to a coordinate X of E. (As before, we use a small letter .,P to denote 

a map of affine rings.) On E := IG~j"~l), define an A-module scheme structure 

~ :A --+ EndR(IG~(r- l)), in terms of the coorillnates Y = '(YI, · · · , Yr-1) of 

IG~(r-l) = SpecR[Y1, · · · , Yr-1J, by 

with 

Here and elsewhere, for a matrix IE, IE(qi) denotes the matrix IE but with entries 
raised to the qi -th power. We will call this type of A-module schemes (E, ~) dual 
Drinfeld modules. Note that one can recover the Drinfeld module E starting with 

a dual Drinfeld module E, so that we may think E = E. 

Let C be the Garlitz module on which t acts by 'Yt : Z >--+ 8Z + zq with respect 
to a coorillnate Z of C. 

THEOREM (5.1). (i) If R ia a perfect field, E ia an abelian t-module oft-rank 
r(E) = r, r -rank p(E) = r -1, and weight w(E) = (r- 1) / r in the aenae of (1}. 
(ii) For a non-zero a E A, the kernel aE of the action of a on E ia a finite 
t -module over R of rank qr·deg(a). 

{iii) For a non-zero a E A, there exiata an A-bilinear pairing defined over R: 

{iv) If we furnish aE with the standa1·d v -module strv.ctv.re as in (9.4), then we 
have aE ~ aE*, and the pairing ailE of {iii) coincides with the pairing IT.E of 
Theorem {4.9}. 
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REMARK (5.2). (i) Anderson takes A= Fp[t] with a prime pin [1]. So we should 

assume in (5.1) ,(i) q = p, or define the t motive M(E) = HomR(G~(r-I),Ga) to 
be the F q -linear homomorphisms. Here we will take the latter, and denote it, as 
before, by £E. 
(ii) The statements of the Theorem are valid also for a higher dimensional abelian 
t -module (E, llt) if llt :A--+ EndR(G~d) is defined by an equation of the form 

,P,(X) = OX + a1X(q) + · · · + arX(q'), X = '(X1 ,· · · ,Xd), 

with a ; E Md(R) and ar E GLd(R). 

(iii) For a Drinfeld module E of rank 1, there exists an ind-finite etale A-module 
scheme E (a twist of the constant A-module scheme Fq(t) /Fq[t] ), together with a 
pairing as in (iii) of the Theorem. 

(iv) Even if E does not have good reduction over R , we can define an A-bilinear 
pairing between the division points of E and E', a twist of E, with target C', a 
twist of C. Especially, we can take E' to be the ( r - 1 )-st exterior product 1\ r-l E 
of E ([1]) defined by 

with 

( -1)"a1 J 
(-!)""-··· , 

a r-1 

and C' to be the r -th exterior product 1\ rE of E ([1], [4]) defined by 

E' and C' may have non-stable reduction. It would be interesting to seek a good 
model of E'. 

PROOF OF THE THEOREM: - (i) This is clear; an R[~t]-base of 

£E = Homr, ,R(G~( r- l) ,Ga) is (a; 1Yrq-l> Y1, · · · , Yr - 1), which implies r(E) = r. 
The other assertions are obvious. 

(ii) Put G = aE. The affine ring Oo of G can be identified with the quotient 
R [Y1, · · · , Yr-d/~a(Y). It is enough to show that Oo is free over R of rank 
qr·deg(a), and that £o is free over R of rank r · deg(a). 

We may assume a E A = 1Fq[t] is monic of degree k ;:::: 1, and write a= tk +g(t), 
g(t) = L:Z,;;-; g;ti , g; E Fq. Define elements Yii E Oo for 0 :'0 i :'0 k - 1 and 
1 :'0 j :'0 r - 1 by 

Yk -l,i = Yi (1 :'0 j :'0 r - 1), 
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and 

(5.1.1) (1 s; i s; k - 1 ), 

where Y; := '(Y;1, · · · , Yi,r-1) . Applying ( 5.1.1) repeatedly, we find 

(5.l.la) 

and especially, 

whence 
{,,(Yo) = {la(Yk-1) - 9o'lfk-1· 

This shows that the equality {la(Yk_t) = 0 (which means G = aE) is equivalent 
to 

(5.1.2) 

We can thus regard Oa as the quotient of R[Y01 , · ·· , Yk - 1,r_ 1] by the relations 
(5.1.1) and (5.1.2). 

By setting (Y;j) 9 := Y;j if j < r - 1 and Y;',r-l := Yi ,r- 1, we embed Oa into 
the quotient 0' of R[Y~1 , · · · , Y~_ 1 ,r_ 1 ] by the same relations (5 .1.1) and (5.1.2). 
Then (5.1.1) and (5.1.2) read: 

(unit)(Y;j)
92 + (lower terms) = 0, 0 S:: iS:: k- 1, 1 S:: j S:: r - 1. 

By Lemma 1.9.1 of [2], 0' is free of rank q2 k(r- 1) over R, with a base 

(IT (Y;j )1
'i ; o s; l,i s; l - 1 ). 

i,j 

Since Oa is the R-submodule of 0' generated by 

(IT (Y,j )1
'i ; qll•j if 1 s:: 1 s:: r - 2), 

i,j 

it is also free, and of rank qk(r- 2 ) · q2 k = qkr. Ea is also free on the R-base 
(Y;j; 0 S:: i S:: k - 1, 0 S:: j S:: r - 1), so we have rank(Oa) = q""k(t:G). 

(iii) Passing to the language of affine rings, we shall give an R-algebra homo­
morphism 

1r : o.c __, o.E ®R o.s. 
or more explicitly, 
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which is compatible with the comultiplications ( Z >--> Z 0 1 + 1 0 Z, etc.) and the 

A-actions. Write a = tk + g(t) , g(t) = 2::7:: g;t' and define Yi1 E O. E as in the 
proof of (ii). Set further 

(5.1.3) (0 :::: i:::: k - 1). 

Simplifying the notaion, we also set X; j := ,P,;(X)q; for i,j ~ 0. Then we have 

(5.1.4) 

and 

(5.1.5) 0 

(5.1.5a) 

xi+I,O = ,P,(X;o) = OX;o + I>jxij 

j=l 

k- 1 
Xko + l:g;X;o 

i = O 

k- 1 

= 8Xk-l,o + l:aiXk- l,i + l:g;X;o-
j = l i = O 

Now define the map 1r by 

k - 1 r - 1 

1r Z >--> 2::2:: X;i 0 Yii-
i=o i= O 

This is obviously compatible with the comultiplications and the actions of 1Fq ( C 
A); it only remains to check the commutativity of the following diagram: 

O.c 
,. o.E 0 n O.E --

~. 1 1 ,P,®I, 1®,],, 

O. c - o.E ,. 0 n o.e. 

The three composite maps in the diagram are calculated as follows: 

k - Ir-1 

(,P, 0 1) o 1r(Z) = L:L:x•+l,j 0 Yi1 
i= O j=O 

k-lr-1 k - lr-1 

2::2:: X;i 0 Yi - 1,1 2:: l:g;X;i 0 Yk-l,j 
i=l j=O i= O j =- 0 

r-1 k-1 r - 1 

(5.1.6) -2:: Xoj 0 goYk- l,j + 2::2:: X;i 0 (Yi-l,i- g;Yk- l,i)-
j = O i=l j = O 
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In view of (5.1.1) and (5.1.2), we find this equal to 

k-1 r - 1 

(1 181 ,J;t)o1r(Z) = LLX;j l8l ,j;,(Y;j). 
i= O j=O 

Finally, 
k -1 r - 1 k-1 r - 1 

7r O{t( Z) o(LLxij i8I Yij) + (LLxij i8I Yij)q 
i = O j=O i=O j=O 

k -1 r - 1 k-1 r-1 k - 1 

(5.1.7) L L X;j 181 IIY;j + L L X;j 181 Y;~j -1 + L X;r 181 Yi~r-1 · 

i=O j=O i=O j=l 

If 0 :S i :S k - 2, we see from (5.1.4) 

r-1 

X;r = - a; 1(11X;o + LaiXii - X;+1,o). 
j=1 

For i = k - 1, we see from (5 .1.5a) 

r-1 k-1 

xk -1,r = -a;1(11Xk-1,0 + L:ajXk-1,j + Lg;X;o) . 
j=l i=O 

Hence the companion with which X ;j is t ensored in the above expression (5.1.7) 
of 1r o It( Z) is , if i = j = 0, 

IIYoo - a; 1 11Y0~r- 1 - a;1goYL1,r_1 = - goYk-1 ,0 (by (5.1.3)); 

if i = 0 and 1 :S j :S r - 1 , 

- goYk- l,j (by (5.1.2)); 

if 1 :S i :S k - 1 and j = 0, 

= Yi -1 ,0 - g;Yk -l,o (by (5 .1.3)); 

if 1 :S i :S k - 1 and 1 :S j :S r - 1 , 

Putting all these together, we find 1r o lt(Z) is also equal to (5.1.6). 

(iv) We may regard £,.E and £.~;; dual to each other by making (Xij) and 
(Y;j) the dual bases. Then our construction of the pairing here coincides with the 
construction in §4, and we have aE ~ aE*. Q.E.D. 
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REMARK (5.3). In what follows, we regard aE" = aE by this concrete construc­
tion (iv). 

PROPOSITION (5.4). Let M : E --. F be an isogeny of Drinfeld modules (resp. 
dual Drinfeld modules) over R of rank r 2 2. 

(i) There ezists a unique isogeny M : P --. E of dual Drinfeld modules (resp. 
Drinfeld modules) wch that, for all non- ze ro a E A, 

(5.4.1) ailE 0 (1 X M) = aiiF 0 (M X 1) 

where aiiE: aE X aE-> aC and aiiF : aF X aF-> aC are the duality pairings 
(5.1}, {ii) on the a-division points. 

(ii) Let M* : aF* -> aE" be the morphism of finite t -modules which M : aE -> 

aF induces by functoriality of * . Then we have M* = M on aF" = aF {cf. 
(5.3 )). 

(iii) We have canonically Ker(M) = Ker(M)* . 

PROOF: - We assume E and F are Drinfeld modules; the dual case is proved 
similarly. 

(i) Let [E := Homr,,n(E,IGa), the IF'q-linear homomorphjsms defined over R. 
The rings Rand A acts naturally on [E. It is easy to see, by the explicit form of the 
defirung equation of E, that [E is a free R [t] -module ofrank r. ForE and F (resp. 
E and F), we use the common symbol (X0 ,X1 , · · · ,Xr_ 1 ) = (X,Xq,· . . ,Xq'-' ) 
(resp. (Yo, Y1, · · · , Yr-d) for the R [t]-basis of [E and [p (resp. Es and Ep ), and 
regard (X;) and (Y;) as the dual basis to each other (cf. Proof of (5.1)). 

An isogeny M: E--. F induces an R[t]-module homomorphism m: [p--. [E. 

Let ih be its transpose; ih is the unique R [t]-module homomorphism Es --. Ep 
such that I:~~g m(Xi) 0 Y; = I:~~g X ; 0 m(Y;) in [E 0 n[t] £p. If m(X;) = 

L:~;;;,~mh;Xh, mhi E R[t], then m(Yh) = L:j;;; ~mh;Y;- Clearly ih defines an 
isogeny M : P --. E. We will show M has the reqillred property. 

Fix a non-zero a E A, and let Za = I: X;; 0 Yi; be the element of E.E 0 n E.s 
and (F 0 n E. P as in the proof of (5 .1 ), (iii) (we use agrun the symbol Za in 
common for E and F). Then the equality (5.4.1) is eqwvalent to the equality 

(5.4.2) (1 0 m)(Za) = (m 0 1)(Za) in £.E 0 n E.P· 

The uruqueness of M follows from this equality, because it determines 
m(Y;)(mod a£p) for all non-zero a E A. 

Let us prove the equality (5.4.2). Recall that X;; = t ' X; (= abbreviation of 

,P,.(X;)) and Yi; = b;Y; (=abbreviation of .&dY;)). If a = tk + I:~~01 g1t
1 with 

91 E IF'q, then by (5.1.1a) , we see that b; = tk - l -i + 9 k-lt k -Z-i + · · · + 9 i+l· Since 
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m co=utes with elements of A, we have 

(m 0 l)(Z.) = (m 0 1) L(t' 0 b;)(Xj 0 Yj) 
i,j 

r-1 

= l::Ct' 0 b;)(L ffihjXh) 0 Yj 
iti h=O 

k-l 

= L(mhj 0 1)(Lt' 0 b;)(Xh 0 Yj)· 
i=O 

Similarly, 
k-l 

(1 0 m)(Za) = L(1 0 ffihj)(L t' 0 b;)(Xh 0 Yj). 
h,j i=O 

So the coincidence of these two elements is implied by the annhilation of Xh 0 Yj 
by 

k-l 

(5.4.3) (mhj 0 1-1 0 mhj) L(t' 0 b;) 
i=O 

Since the 0 is over R and ffihj E R[t], it suffices to prove this for mhj = tn for all 
n ~ 1 . But tn 0 1 - 1 0 tn has the factor t 0 1- 1 0 t, so we may assume mhj = t. 
In that case, a simple calculation shows that (5.4.3) equals a 0 1 - 1 0 a. This kills 
Xh 0 Yj because we are now working on a-division points. 

(ii) is clear from the uniqueness of M* as shown in (ii-2) of ( 4.3). 

(iii) Take any non-zero a E A such that Ker(M) C .E. Then there exists 
an isogeny N : F -+ E such that N o M = a on E and M o N = a on F . 
Restricting the dual maps to a-division points, we have Ker(M) = Im(N) and 
Ker(N) = Im(M). Applying the exact functor • to the exact sequence 

0 ---> Ker(M) ---> .E ___!:-!____, .F , 

we find the sequence 

0 <--- Ker(M)* <--- .E* 

exact. Using (ii), we conclude 

M" 
<---

Ker(M)* ~ .E* /Im(M*) = .E/Im(M) 

.E/Ker(N) ~ Im(N) = Ker(M). 
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6. Duality for 1r-divisible groups 

Let 1r be a monic prime element of A = IF9 [t], and let G be a 1r-divisible group 
over an A-schemeS of hight h. Thus G is an inductive system (Gn,in)n>o of 
finite v-modules G., over S with transition maps in : Gn -+ Gn+l such that, for 
alln ~ O, 

(1) Gn is killed by 1r", and of rank l1r lnh = qnh·deg("); and 

(2) the sequence 

0 --? Gn ~ Gn+l 
.... 

------> G n+l 

is exact. 

An anti-equivalent definition can be stated in terms of v-sheaves; we call a 
projective system [ = (En,Pn)n>o of v-sheaves a 1r -adic v -sheaf on S of hight h 
if, for all n ~ 0 , -

(1) En is killed by 1rn, and of rank nh · deg(1r); and 

(2) the sequence 

is exact . 

It is clear that the category of 1r-divisible groups over S is anti-eqwvalent to 
the category of 1r-adic v-sheaves on S (cf. Proposition (3 .3)). 

The dual G* = (G~,i~)n~ o of G is defined as follows: G~ is the dual of Gn in 
the sense of §4, and the transition map i~ : G~ -+ G~+l is the dual morphism of 
the surjective morphism 1r : Gn+l -+ Gn. It is clear that G* is a 1r -divisible group 
and has the same hight as G. 

Assume now that S is integral and, for all n ~ 0, Gn is etale over the generic 
point of S. Let K••P be a separable closure of the function field K of S. Define 
two Galois modules ~ .. (G) and T,(G) as usual: 

~ .. (G): = ~Gn(K'•P), 

T,(G) := ~Gn(K'•P), 

where the transition maps are those induced by in and 1r respectively. If A.­
denotes the 1r-adic completion of A, and F, denotes the fraction field of A .. , then 
~ .. (G) is a divisible A,-module, and T,(G) = HomA.(F,/A .. ,~ .. (G)) is a free 
A, -module of rank h. Write Cn for the kernel of 1rn on the Garlitz module C . 
Noticing the compatibility ((4.3), (ii-2)), and passing to the limit as n-+ oo of the 
pairing (( 4.3), (ii-3)): Gn(K••P) X G~(J(••P) -+ Cn(K••P), inductively with Gn 
and Cn and projectively with G~, we obtain: 
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PROPOSITION (6 .1 ). There ezist canonical isomorphisms of Galois modules: 

T.,.(G*) ::e HomA.(ii>.,.(G),ii>.,.(C)) 

~ HomAw(T""(G),T1f(C)). 

Assume now that S =Spec R, where R is a complete ni:itherian local A-algebra 
such that the structure morphism a : A --> R is injective and a( 1r) is in the maximal 
ideal of R. As was shown in (1.4) of [6], the category of connected 1r-divisible groups 
over R is equivalent to the category of divisible formal A,. -modules over R. The 
dimension of a 71"-divisible group G over R is defined to be the dimension of the 
formal A,.-module corresponding to the maximal connected sub-1r-divisible group 
G0 of G. The following proposition is proved in the same way as Proposition 3 of 
[7], using Proposition ( 4.7). 

PROPOSITION (6.2). Let d and d* be the dimensions of G and its dual G* re­
spectively. Then we have d + d* = h, the hight of G and G*. 
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Chapter III 

1r-adic theory 

Introduction 

This Chapter is an attempt to develope the 71"-adic theory similar to [3] and [6] . It 
turns out (§1) that the Galois representations attached to 71"-divisible groups lose 
so much information after being tensored with C,.., the completion of a separable 
closure of 1Fq(( 1r)), that a Hodge-Tate decomposition of 1r -divisible groups, if exists 
any, is nonsense at least from the view point of Galois action. Nevertheless, we have 
(§2) a kind of Hodge-Tate decomposition a Ia Fontaine ([3]) for finite t-modules 
whose meaning is quite visible from the construction. 

1. Galois cohomology 

In this Section, we exhibit, by calculating Galois cohomology, a crucial difference 
of the 71"-adic theory in positive characteristic from the usual p-adic theory in 
characteristic zero. One reason for this difference is that the Garlitz module, which 
plays in our theory the role of the multiplicative group Gm in the classical theory, 
is an additive group scheme. 

Let A be the polynomial ring 1Fq[t] in one variable t over the finite field 1Fq of 
q elements. Let K be a complete discrete valuation field of "mixed characteristic" 
over A, by which we mean that K is endowed with an injective ring homomor­
phism a : A --> K such that the inverse image by a of the maximal ideal of the 
integer ring of K is a non-zero prime ideal of A. We assume that the residue 
field of K is perfect. Our objective is to calculate the Galois cohomology group 
Hi(Gal(K'•P I K),C(r)) fori= 0,1 andr E Z . (The notations are explained be­
low.) Of special importance is that H 0 (Gal(K'•P I K), C(r)) does not vanish even 
if r # 0. See the concluding Remark 2 for more discussion. 

Let 1r be the unique monic prime element of A such that a( 1r) is a non-unit 
in the integer ring of K (so ( 1r) is the "residual characteristic" of K). In the 
following, we think of A as a subring of K by means of a. Let C be the Garlitz 
A-module over A such that the action oft E A on C is given by [t](Z) = tZ + zq 
with respect to a coordinate Z of C. The 71"-adic Tate module of C is a rank one 
free A.--module, where A,.. is the 71"-adic completion of A. C being considered to 
be an object over K , the absolute Galois group G K := Gal(K••P I K) of K acts on 
T .. ( C) continuously. ( J(••P is a fixed separable closure of K. In general, we denote 
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by G L the absolute Galois group of a field L .) The character X : G K --+ A~ which 
describes this action is called the Garlitz character. 

For any valuation field L, we denote by L the completion of L with respect 

to the valuation topology. Let C := ~. The action of G K on K'•P extends 
uniquely to a continuous action on C. C is algebraically closed. For a subfield L 
of C, we denote by L"d the inseparable closure of L in C. 

For any topological A,. -module M with a continuous G K -action, and for any 
r E Z, we define the r-th Tate twist M(r) of M by the Garlitz character to be the 
GK-module with the same underlying A,.-module M and with a twisted Galois 
action <7.m = X(<7)" · <7(m) for all <7 E GK and mE M, where <7(m) denotes the 
presupposed action. 

For a topological group G and a topological module M with a continuous G­
action, we denote by H;(G,M) the i-th cohomology group defined by the i-th 
right derived functor of the functor "fixed part" : M >--+ MG (or eqwvalently, 
defined by continuous cochains). Our main result is: 

(1) 

(2) 

THEOREM. For all r E Z, we have 

H 0 (GK,C(r)) 

H 1 (GK ,C(r)) 

(~ · c-r)(r) "=' ~' 
0. 

and 

Here cis an element of C such that CT(c) = X(<7)c for all CT E GK, and constructed 
explicitly in the following. 

REMARK 1. The followings are previously known: 

(i) (Tate [3], Theorems 1 and 2) If K is of characteristic zero and Cp(r) denotes 
the completion of an algebraic closure of K, with the usual Tate twist, then one 
has, for i = 0, 1, 

. { K if r = 0, 
H'(GK, Cp(r)) "=' . 

0 If r oJ 0. 

(ii) (Ax [1]) If K is a rank one valuation field (of arbitrary characteristic) which is 
henselian with respect to the valuation, then one has 

H 0 (GK,C) = ~. 
This result includes the case r = 0 in (1) of the Theorem. 0 

First of all, note that, when we are working over A,., we may replace the Garlitz 
module C by an isomorphic Lubin-Tate A,.-module C' on which the action of 1r is 
given by [1r]( Z') = 1r Z' + z•q" , where d = deg( 1r). So in the following, we assume 
C = C', q = qd, and A,.= 1Fq[[7r]J. 

We construct now the element c E C. Choose and fix a system (7rn)n>o of 
elements of K'•P which corresponds to a generator of T,.( C). So 1r n is a gene~ator 
of the 1rn-division points of C, and we have [1r](1rn) = 7rn-l for all n 2 1. We 
define our element c E C as follows : 

42 



The series on the right clearly converges. (1} of the Theorem is implied by Ax's 
theorem (Remark 1, (ii}) and the following 

LEMMA 1. For X E ex and r E z, write X = XtCr with Xt E ex . Then we 
have, for all r E GK, 

In particular, if L is a GK -stable subtield of e wruclt contains c, then multiplica­
tion by c-r induces an isomorphism L-+ L(r) of G K -modules. 

PROOF. The claim is easily reduced to the case x = c and r = 1; we are to 
show r(c) = x( r)c for all T E G K. Write j(1r) = I;;>o a;1ri, with a; E IF9 , for the 
formal power series x( T) E A~ . Then -

x(r)c. 

We used in the third equality that the group law of Cis 1Fq-linear. Q.E.D. 

To prove (2} of the Theorem, we consider certain subextensions of e; K as in 
[3]. Let Koo be the subfield of Ksep corresponding to Ker(x); thus the element c 

is in K;;,, and Gal(Koo / K) is identified with the subgroup Im(x) of A~. Choose 

(a) a non-trivial element o- of Gal(Koo / K) such that x(o-} E 1 +1rA,.., and 

(b) a closed subgroup E of Gal(Koo / K) 
such that Gal(Koo/ K) = (u ) x E, where (o-) is the closure in Gal(Koo/ K) of 
the cyclic subgroup generated by o- (so (o-) ~ Zp, with p the characteristic of K ). 
Denote by L 00 and Moo respectively the subextensions of Koo which correspond to 
E and (u ) . So we have Gal(Koo/ Moo) ~ Gal(Loo/ K) ~ (o- ) and Gal(Koo/ Loo) ~ 
Gal(Moo/K) ~E. The above splitting yields, for each n 2: 0, a splitting x - 1 (1 + 
1rP• A,..} = (o-n) x En, where <Tn is a power of o- and En is a subgroup of E. 
Accordingly, we have three fields Kn, Ln and Mn, with Kn = LnMn, which are 
the subfields of Koo correspoding respectively to x- 1 (1 + 1rp" A,..}, (o-n} and En. 
Note that Kn = K(1rp"}. 

LEMMA 2. Let X be one of the following fields: K;;,, L:, "K?, and L'.:,d. 
Then we have H 1 ( (o-),X) = 0. 

In fact, as Le=a 3 shows, we have "K? = K;;, and L~d = L 00 • 

PROOF. We prove this for X = "K? and L~d . The other cases are proved in 
the same way. Since a continuous 1-cocycle : (o- ) -+ X is determined by its value 
at o-, H 1 ( (o-), X) is a subspace of Coker( o- - 1 : X -+X) . So it is enough to show 
the map o- - 1 : X -+ X is surjective. 

For any valuation field F, we denote by Op its valuation ring. Let 0 be either 
OK~d or OL;,::d . We first show that (u - 1)(0) contains the maximal ideal of 0. 
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Suppose 0 = OK"d, and set On:= OK"d . For any n ;::: 1, the map <Tn-l - 1: 
On --+ On is On- I ':'linear. On the other" hand, if n is sufficiently large, there 
exists an element of On which is mapped by <Tn-l - 1 to an element of On- l 
with absolute value not very small. In fact, if x(o-n_ 1) = 1 + u-rrk with u E A: 
and pn- l :::; k < pn, put m := m.in{pn- l + k, pn}. Then 7rm is in On, and 
(o-n - 1 - 1)(-rrm) = [u](-rrm-k) is in On- 1 (Here again we used the additivity of the 
Carlitz module). Thus (o-n-1 - 1)(0n) contains 1rm-k0n- l. Since <Tn- l is a power 
of o-, (o- -1)(0n) also contains 1rm- k0n - l · Passing to the union, and noticing 
that m - k increases geometrically with n, we see that (o-- 1)(0) contains the 
maximal ideal of 0. 

The statement for 0 = 0 L'•d follows by noting that 0 K"d is a free 0 L'•d ­

module which admits a free ba;;is consisting of units of OM~':' This can be se";;n, 
for example, by applying repeatedly the decomposition 

[M,.,M,. _!]-1 

OL~d·M.. ffi OL~d·M .. -1 . p.~, 
i = O 

where J.!n is a unit of OM,. such that OM,. = OM. _,[J.!n ]· 

Now again let 0 be either OK••d or Ouad . As above, we can choose a Krad_ 

basis (tv")">o of K~d (resp. L;'2) consisting of elements, e.g., of -rrOx. Then 
any element-:z: of X can be written as a convergent series 

where"'" E K"d and l:z:-1--+ 0 as 11--+ oo . Since -rrOx is contained in (o--1)(0), 
there exists for each 11 an element tv~ of 0 such that (o-- 1)(tv~) = tv". The 
element 

x' := L Xv · tv~ E X 
v ~ O 

is then mapped by o- - 1 to :z:. Q.E.D. 

The next step is: 

LEMMA 3. (cf. {3}, Proposition 10) Let K be any complete discrete valuation 
field with perfect residue field, K= an infinite APF-extension of K ({4}), and L a 
Galois extension of K=. Then we have 

if i > o, 
if i = 0. 

- - -rad -
In particular, we have K= = K;:,d (= K= ), and hence K= is perfect. 

Note that our K=, L= and M= are all APF-extensions of K. 

As in [3], the above lemma is a formal (though somewhat tricky) consequence 
of: 
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LEMMA 4. (cf. {3}, Proposition 9) Let Koo/K be as above, and let L/Koo be a 
finite separable extension. Denote by (h the valuation ring of L, and by m00 the 
valuation ideal of K 00 • Then we have TrL/K~ (th) ::::> m00 • 

PROOF. We reproduce the proof of Tate [3], pointing out how to use our assump­
tion. Replacing K by a finite subextension of L/ K, we may suppose that there 
is a finite extension L0 of K, linearly disjoint from Koo, such that L = L0 K 00 

(see [2], p. 97, Lemma 6). We may also suppose that L 0 / K is a Galois extension, 
because we my replace L/ Koo by its Galois closure. 

For u ;:=: -1, let K, be the fixed subfield of Koo by the u-th ramification group 
Gal(Koo/K)" in the upper numbering, and put L, := L0 K,. Let v denote the 
normalized valuation of K. Then the valuation of the different 'JJ L,jK, of L,f K, 
is 

v('JJL,;KJ = [~ ((Gal( I<,~ K)•: 1) - (Gal(L,~ K)Y : 1)) dy. 

If hEIR is so large that y ;:=: h implies Gal(L/ J<)Y C Gal(L/ L0) (i .e., Gal(K,f K)V ~ 
Gal(L,/ J<)Y for all u ;:=: -1 ), then we have 

j h dy 
v('JJL./K.) ::0 _

1 
(Gal(K,/K)•: 1) . 

Since K 00 /K is APF of infinite degree, for any fixed y, Gai(Koo/K)Y is open in 
Gal(K00 /K) and (Gal(K,/K)• : 1) tends to infinity with u. Hence the above 
integral tends to zero with u. 

Recall (from e.g. [2], p. 60, Proposition 7) that, in general, for a finite integral 
extension B/A of Dedekind domains and an ideal b (resp. a) of B (resp. A), we 
have 

Trs;A(b) C a ¢? b C a'JJBfA . 

Applying this forb = (h. and a = TrL./K.(OL,), we see that 

'JJL, jK, C TrL,/K.(OL.)OL, . 

Since v('JJL,/K.)-> 0 as u-> oo, so does v(TrL./K.(OL.)OLJ· This means that 
TrL/K~ (OL) :::> moo. Q.E.D. 

Now we can complete the proof of (2) of the Theorem. By Lemma 1, we may 
assume r = 0. Look at the spectral sequence 

0 -> H1 (Gal(Loo/K),H0 (GL~ ,C))-> H 1(GK ,C)-> H1 (GL~ ,C). 

By Lemma 3, H1 (GL~ ,C) = 0. By Ax (Remark 1, (ii)), H0 (GL~ ,C) = L"<:,d. By 

Lemma 2, H 1 (Gal(Loo/K),L'<:,d) = 0. Hence we obtain (2). 

REMARK 2. Lemma 1 shows that C is (and in fact, even If;, is) "so big" that 
a topological A~[GK]-module loses much information after being tensored with C . 
This is because we have our element c in C, and at this point, our C might be more 

analogous to BdR or Bcri• in the usual p-adic theory, rather than to Cp = Q>~ep 
(this observation was communicated to the author by Nobuo Tsuzuki, to whom the 
author is grateful). But our C does not have enough structures to recover 1r-adic 
Galois representations. Is there a cleverer ring than C ? 
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2. The Hodge-Tate decomposition of finite t-modules 

The purpose of tills Section is to give the Hodge-Tate decomposition of finite t­
module, wlllch is very similar to that in [6] , §4. Since the story goes exactly in the 
same way, we merely give definitions and the statements of our results, and point 
out some minor differences from the classical case. 

Let A be the polynomial ring IFq[t] in one variable t over the finite field IFq of 
q elements, and let F be its fraction field IFq(t). Let a : A _, K be a complete 
discrete valuation field of "mixed characteristic" over A. Let (.,.) be the residual 
"characteristic" of K, where .,. is the unique monic prime element of A such that 
a(1r) is in the valuation ideal of K. We denote by A,. (resp. F,.) the 1r-adic 
completion of A (resp. F). 

For a finite t-module (Chapter II, §2) J = Spec B over OK, let 
[J := Homr. ,oK(J,IGa) be the OK-submoduleof B = HomoK(J,A1 ) consisting of 

fq -linear morplllsms of group schemes defined over OK. Let £}q) denote the base 
extension of 0 J by the q-th power map of 0 K. Then, as in §§1 and 2 of Chapter 
II, we are given an OK-module homomorphism 'PJ: £}q) _, [J which comes from 
the Frobenius morphism of J, and an 0 K -endomorplllsm .,P, : [J _, [J which 
describes the action oft. Since J is etale over K (Chapter II, Lemma (2.2)), it 

has a unique v-module structure VJ: [J-> £}q) (Chapter II, Proposition (3.5)). 

Let B 1 = Ker(cj: B-> OK) be the augmentation ideal of B (cj is the counit 
of B). B 1 is the ideal generated by [J. If B 2 denotes the square of B 1 , we have 
B 1 / B 2 ~ Coker('PJ) (cf. [5] , Proposition 2.1, 2)). For an OK-module M, we put 
tJ(M) := HomoK(Coker(<pJ),M) (the tangent space of J with values in M), and 
tj(M) := M 0 oK Coker(<pJ) (the cotangent space of J with values in M). The 
OK module '!0 of invariant differentials of J can be identified with tj(OK) = 
Coker( 'PJ). In our case, this identification is induced simply by d : [J -> ~J ; 
x >-+ dx. Also for tJ, we have canonical identifications 

Recall that for a finite v-module J, there is defined its dual J ' (Chapter II, §4; 
where it was written J* ). We have 

and VJ• = <p~ (resp. 'PJ' = vj ), the transpose of 'PJ (resp. VJ ). 

For an OK-module M, we put 

This is identified with 

Ker(<p~ 181 M: HomoK([J,M) _, HomoK(£}q)' M)) 

= HomoK(Coker(<pJ),M) = tJ(M). 
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The finite t-module J represents the functor (Chapter II , Theorem (4.3)) 

Homv(J',C) : (OK-algebras)-> (A-modules) 

R >-> Homv,R(R 0 oK J', R 0 A C). 

Once we fix a coordinate Z of C , the ring homomorphism R [Z] -> R 0 oK B' 
corresponding to a homomorphism R 0 oK J' -> R 0 A C is determined by the 

image of Z. Since the v -module structure of C is given by Eo -> [~); Z ,__. 1 0 Z, 
we have 

The map 

restricts to give a map 

07( 0 [J,-> !loK(07( 0 oK B') 

x >-> dx 

Extending the scalars, we obtain a map 

which is 07<-linear and GK-equivariant. There is a canonical decomposition 

where !1 := !loK(OK). As in [6] , 4.5, we find that the image of if)J is actually in 

Thus we obtain a map 

The maps </>~ and </>) admit another interpretation as in [6], §4, Propositions 6 
and 7. The follomng results are obtained exactly in the same way as in [6]. In our 
case, the argument is even simpler, sinece we used x >-> dx (rather than x ,__. ~) 
to define the map </>J. Note that in proving our version, we should work with [J 
and [J, (rather than B and B' ). 

PROPOSITION 1. The following diagram is commutative: 

(07( 0 A. J(Ox)) X (0x 0 A. J'( 07()) ~ tj ,(O'K) Ell tJ(!I) E!1t j(0x) Ell tJ'(!!) 

ol 1-
(/{/07()(1) 
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where 

8 is the map obtained by extension of scalars from the duality pairing 
8: J(Ox) x J'(Ox)--+ .. ~ C(Ox), 

-- [is the map induced by ( : K(l) --+ fl of §1 of {6}, and 

-- v(a' ,>.,a,>.') :=>.(a)+ >. '(a') for 
(a',>., a,>.') E tj,(OK) Ell tJ(fl) Ell tj(OK) Ell tJ•(fl). 

The proof is the same as the proof of Proposition 8 of [6], but the concluding 
equality is 

(vo(¢J x ¢J'))(u,v) = d(Lu(b;)v(b~)), 

because the duality pairing J x J' --+ C is given by Z >--+ I;, b; 0 bi (see the proof 
of Theorem (4.3) of Chapter II) . 

Using the same formalism as in [6], we have 

THEOREM. Let a be an element of OK such that vp(a) = q~I + vp('iJK;F)· 
Then the kernel and the cokernel of the map 

is killed by a. 

Now let 1f be a prime element of A, and let H be a 1f-divisible group over OK 
of height h, i.e., an inductive system (Hn,in)iEN in which 

(i) Hn is a finite t-module over OK of rank qn\ and 

(ii) for all n EN, in: Hn--+ Hn+I as a morphism of finite t-modules which 
identifies the kernel of multiplication by 1fn on Hn+I. 

Let T .. (-) denote the 1f-adic Tate module; T,(H) := projlimHn(OJ() and 
T,(fl) := HomA.(F,jA,,fl) . Then the Theorem passes to the projective limit (cf. 
[6], §5, n°' 5.8 a 5.10) to give 

PROPOSITION 2. There exists a canonical C,[G K]-module lwmomorphism 

which is injective and whose cokernel is of finite length over Oc • . 

Tensoring with C,, we obtain the Hodge-Tate decomposition 
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Chapter IV 

Regular singularity of Drinfeld modules 

Introduction 

In analogy with the classical theory of ordinary differential equations (see e.g. [6], 
[1], [5]), we define in this Chapter the notion regular singularity of a Drinfeld 
module at infinity. It turns out (Theorem (2 .2) ) that a Drinfeld module with regular 
singularity can not have a complex multiplication if the infinite place is of degree 
one, and has a tamely ramified period lattice wluch is of diamond shape. In §3, 
we study regular singularity of cp-modules, which have more sinlilar formalism to 
D-modules. We express the regularity of the singularity of cp-modules over a local 
field in four ways (Theorems (3.8) and (3.9)); (1) naively in terms of the valuations 
of the coefficients of certain polynonlials , (2) by the existence of cp-stable lattices, 
(3) by the tameness of Galois actions, and ( 4) in terms of the norm of connections. 

For a field K, we denote by J(••P a fixed separable closure of K, and let G K := 

Gal(K••P / K), the absolute Galois group of K. 

1. Regular polynomials 

Let K be a discrete valuation field of characteristic p > 0 , with valuation denoted 
v. Choose and fix an extension of v to J(' •P , denoted also v . 

DEFINITION (1.1). A polynonlial f(X) = aoX + a1XP + · · · + anXPn E K[X] is 
said to be regular (at v) if a0 # 0, an # 0, and 

(1.1.1) 

for all i = 1, · · · , n - 1 . 

A regular polynonlial f(X) is separable because f'(X) = ao # 0. The con­
dition (1.1.1) is saying tha t the Newton polygon of f(X) is a straight line. This 
is equivalent to that all non-zero roots of f(X) have the same valuation (v(ao)­
v(an))j(pn - 1). 

Regularity of f(X) is invariant by multiplying f(X) by an element of Kx. If 
an is a unit (i.e. v( an) = 0), then (1.1.1) is simply 

(1.1.2) 
pn _pi 

v(a;) 2: --v(ao). pn - 1 

so 



Regularity of f(X) is invariant also under the change of variable X>-+ aX with 
aE Kx. 

The terminology "regular" for f (X) has a dual meaning, because it may be the 
zero or the pole (singularity) at v of the roots of f(X) that is meant by this word 
to be not so wild. In §2, however , "regular" always alludes to singularity. 

For any separable polynomial f (X) E K [X], we denote by K 1 the minimal 
splitting field of f contained in K ••P . 

PROPOSITION (1.2). Let f be a regular polynomial over K. Th en the eztension 
K tf K is tamely ramified at v. 

PROOF:- We may assume f is monic; an = 1. Dividing by XP" the both sides 
of the equation 

we have 

(1.2.1) ( 
1 )p" -l ( 1 )p" -p ( 1 )p• -p•-l 

ao X + a1 X + · · · +an-I X + 1 0. 

Take an element s E K••P such that a0 sP"-I = 1, and put Y := 1/s X and 

b, := a,sp"-p' . Then the equation (1.2 .1) is equivalent, over K( s), to 

(1.2.2) 0 

Write g(Y) for the left hand side of (1.2 .2). Since K(s) / K is tamely ramified at 
v, it is enough to show the minimal splitting field of g(Y) is tamely ramified over 
K(s). Since the composition of two tamely ra1nified extensions is again tamely 
ramified, it is enough to show that K(s,y) is tamely ramified over K(s), where y 
is any root of g(Y) in K••P . 

Since v(s) = -v(a0 )f( pn -1), we see, by the assumption that f is regular, that 

v(bi) 
pn- pi 

v(a,)- --v(a0 ) ~ 0. 
pn- 1 

Hence the roots y of (1.2.2) are all units. Thus g'(y) 
K(s,y) / K(s) is unramified. Q.E .D. 
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2. Drinfeld modules with regular singularity at infinity 

Let k be an algebraic function field in one variable over its field of constants IF9 , 

the finite field of q elements. Fix a place oo of k, and let A be the ring of elements 
of k which are regular outside oo. For a E A, define deg(a) by qd•g(a) = #(A/aA) 
if a# 0, and deg(O) := 0 . 

Let K be any complete discrete valuation field which contains k in such a way 
that the valuation v of K extends the zero-order valuation at oo, ord00 , of k. Let 
¢>: A-> EndK(G.); a>--+ ¢>. be a Drinfeld A-module over K of rank r . We think 
of ¢> as being given, for each a E A, by a polynomial 

a; E K (n = r · deg(a)) 

with respect to a fixed coordinate X of G • . Write oq,(a) for the coefficient a., of 
the leading term of </>.(X). 

DEFINITION (2.1). A Drinfeld module </>over K is said to have regular singularity 
(at v) if there exists a non-constant element a of A such that </>. is a regular 
polynomial (1.1). 

This definition does not depend on the choice of the coordinate X of G •. 

Recall ([2], §3) that a Drinfeld module over K of rank r can be uniformized by 
its period lattice A, which is a projective A-module of rank r contained in J(••P. 

The situation is best described by the diagram 

0 _____, A _____, K'•P ~ K'•P _____, 0 

1· 
0 _____, A _____, J(••P ~ J(••P _____, 0, 

where e : J(••P -> J(••P is the map defined by 

e(z) = z IT (1- ~) 
>.EA-0 

for all z E J(••P. Let 1·1 denote the absolute value of J(••P such that Ia I = #(A/ aA) 
for all a E A - 0. 

THEOREM (2.2) . Let </> be a Drinfeld module over K of rank r. Let A be the 
period lattice of </>, and put 

l1 := min{I.AI ; A E A - 0} 

At := {A E A; I-AI =It}. 

(the first successive minimum of A) , 

(i) Let a be a non-constant element of A. Then </>. is regular if and only if A is 
generated by A1 over IF9 [a]. If this is the case, we have 
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(1) It = la l ·la/ o.p (a) l1/ (q• d••<•J_ 1) ; 

{2} for any b E A, deg(b) i~ a multiple of deg(a) ; 

{S} if the place oo i~ of degree one (i. e., the reJidue fi eld of oo i~ lFq}, then we 
have A = lFq [a] . 

(ii) Let K(A)/K (reJp . K(~<f>)/K) be the field exten•ion obtained by adjoining the 
element~ of A {resp. a-division points of</>). If</> has regular ~ingularity, then we 
have K(A) = K(~<f>) for all non-con•tant element a of A. In particular, K(A) /K 
i~ tamely ramified. 

PROOF: - (i) Assume <f>~ is regular. Then all non-zero roots z 0 of <f>~ have the 
same absolute value 

(2.2.1) 

and are of the form 

xo e(.Ao) = .Ao II (1 - ~) 
a a a.A 

~ EA - 0 

for some Ao E A. Take A1 E A1 and set x 1 .- e( ~), a root of <f>~ . Then 

11 - ~~ = 1 for all A E A- 0. Hence we have lx11 = 1 ~ 1 - This together with 
(2.2.1) proves (1). 

If A1 does not generate A over lFq[a] , then there exists a non-zero element .A2 
of A which is not a linear combination of elements of A1 over lFq[a] and which is 
minimal with respect to the absolute value I · 1- Set x2 := e( 4'-), another root of 
<f>~. We must have 

Suppose la.A I = I-A2I for some A E A. Then I-A I < I-A2I - The minimality of I-A2I 
implies that A is a linear combination of elements of A1 over lFq[a], and that 

la.A - .A2I = I-A2 I = la.AI. Hence 11 - ~~ = ~ ~~.-/ ' 1 = 1. We have thus 

lx2 l = I.A
2 II (1- ~) I :2: I.A

2 1 > 1~ 1 = lxd, 
a a.A a a 

~ EA-0 

yielding a contradiction. 

Suppose conversely that A1 generates A over lFq [a] for some a EA. Then any 
non-zero root of <f>~ is of the form e( ~) for some .A 1 E A1 . All these have the same 
absolute value 11 /I a I, whence <f>~ is regular. 

Before proving (2), we note the following 

LEMMA (2 .2 .2) . Let a be an element of K••P with lal > 1, and let .A 1, ... ,.Ad be 
element~ of A1 which are linearly independent over lFq. Then we have 

lc1.A1 + · · · + cd .A dl = max{ lci.Ail; 1 :<:: i :<:: d} 

for any c1, · · ·, cd E lFq(( ~ )) . In particular, the elements A1 , · • · , Ad E K'•P are 

linearly independent over lFq((~)). 
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PROOF: - Suppose c; = L:;<n c;;ai with Cij E l!'q for 1 :'0 i :'0 d, and Cin # 0 

for some i (i.e. n =max{ deg.(c;); 1 :'0 i :'0 d} ) . Then 

and 

d 

Lc;>.; 
i = l 

d 

L(L c;;>.;)ai, 
j ~n i=l 

Since At,· · · , >.d E At are linearly independent over lF q, we have L;~= t c;n>.i = It. 
Hence the claimed equality follows. 

Now suppose that <I> a is regular for a non-constant element a of A, and that 
there exists an element b of A such that deg(b) is not a multiple of deg(a). Take 
At E At and consider the a-division point 

I xt := e(b>.t) 
a 

b>.t IT (1 - ba;). 
>. EA - 0 

a 

By (i), any>. E A is a linear combination of elements of At over l!'q[a]. Then by 
Lemma (2.2.2), Ja>.J is It times a power of Ja /, so we cannot have Ja>.J = Jb>.t /· 
Thus /1 - ¥tl = max(1, /¥t /), and 

This contradicts the fact t hat the roots of </>a all have the same absolute value. 

To prove (3), suppose At generates A over 1Fq[a] . Let k00 be the topological 
closure of k in K. If oo is of degree one, then by Lemma (2.2.2), elements of 
At U {0} which are linearly independent over l!'q are still linearly independent over 
k00 • In particular, we have l!'q[a] ®r, (At U {0}) ~A~ A ®r, (At U {0}). Since 
At U {0} is faithfully flat over l!'q, we have A= l!'q[a] . 

(ii) Let a be a non-constant element of A. We have K(A) :::> K(a<l>), since 
A/ aA ~ a</> as Galois modules . We will show K(A) = K(a</>). If 0' E Gal(K(A)/ K(a</>)), 
then 0' fixes A (mod. aA ), that is, for each >. E A, we have 

0'(>.) = >.+a>.' for some >.' E A. 

For >. EAt, this >.' must be zero , because we must have /O'(>.)J = J>.J = It, while 
/a/ > 1. Since At generates A over A by (i), 0' fixes all of A. Thus K(A) = K(a</>), 
which is tamely ramified over K by Proposition (1.2). Q.E.D. 
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3. Regular singularity of cp-modules 

Let K be a field which contains the finite field IF'q of q elements. 

DEFINITION (3.1) . A cp-module over K is a pair (D,cp) consisting of a finite 
dimensional K -vector space D and an IF'q-linear map cp: D-+ D such that 

(1) cp(a:z:) = aqcp(:z:) for all a E K and :z: E D; 

(2) K · cp(D) =D . 
The dimension of the K -vector space D is called the rank of (D, cp). A morphi•m 
of cp-modules is a morphism of K -vector spaces which commutes with the cp 's. We 
denote by :F K the category of cp -modules over K . 

Our notion of cp -modules is the simplest case of more general notions such as 
those considered in (3], (8], [4], etc .. Note that, in a general context, our cp-modules 
should be called etale cp-modules. 

In what follows, K is always the bese field on which we work, and n is the rank 
of the cp -module under consideration. 

We define the tensor product (D,cp) = (D 1 ,cp1 ) 0 (D 2 ,cp 2 ) of two cp-modules 
(D 1 ,cp1 ) and (D2 ,cp2 ) by setting D := D 1 0 K D2 and defining cp: D-+ D to be 
the map cp 1 0 cp2 • With this tensor product, :F K becomes a 0 -category. 

For any cp-module (D, cp) over K and any field extension L / K, we make DL := 

L 0 K D a cp-module over L by defining cp: DL-+ DL to be the map 

If the extension is Galois, then the Galois group acts on DL via the firt factor. 

For a cp-module (D, cp) over K, put 

V(D) := (K'•P 0 K D)'P, 

the set of fixed points of DK"P by cp. It is clear that V(D) is an IF'q-vector space 
which is stable under the action of GK on DK"P · We have thus an IF'q-linear 
representation V(D) of GK· 

Conversely, if V is a finite dimensional IF' q -linear representation of G K, put 

the set of points of J(••P 0 r , V which are fixed by the diagonal action of G K. 

Clearly D(V) is a K -vector space, which we make a cp-module by defining cp : 
D(V) -+ D(V) to be the map 

The following lemma holds in fact in much greater generality; for a proof, we 
refer the reader to §0 of [7] , or §A.l of [4]. See also [3], Proposition 2.1 and Chapter 
II, Proposition (1. 7). 
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LEMMA (3.2). Let FK (re& p. 9K) be the category of <p -module& over K (re&p. 
the category of finite dimenJional lF9 -linear representaions of GK ) . Then by the 
construction explained above, we have a 0 -equivalence of 0 -categories V : F K _, 

9K, with a quasi-inverse D: YK-> FK- 0 

A vector x of a <p -module D is srud to be cyclic if the n vectors x, 'P( x ), ... , 'Pn-1 (x) 
form a K -base of D. As in Lemme 1.3, Chapitre II of [1], we have 

LEMMA (3.3). If the base field K is infinite, there exists a cyclic vector for (D, <p). 

PROOF:- Let m be the largest integer such that there exists a vector x E D 
such that x, <p(x), · · · , <pm-1 (x) are linearly independent over K . Suppose m < n. 
Then t here exist two vectors x and y in D such that 

(3.3.1) { 
the (m + 1) vectors x, <p(x), ... ,<pm-1(x), 'Pm( y) 

are linearly independent over K. 

For any a E K , the (m + 1) vectors 

x + ay, <p(x + ay), , <p"'(x+ay) 

are linearly dependent over K . So we have 

0 (x + ay) II (<p(x) + a9 <p(y)) II ··· II ('Pm(x) + aq= 'Pm(y)) 

L qaq J 'PAl ( x) II <p"J (y ), 
/ UJ =m+l 

where the sum is taken over all partitions of m + 1 := {0, 1, · · · , m}; 

{
I = {i1, · · · ,ir}, J = {j1, · · · ,j,}, 

I U J = m + 1, I n J = 0, 

and the abbreviated notations are: 

(r + s = m+1) 

Since qJ 's are different for different J 's, and since we have assumed K is infinite, 
all the exterior products which appear as the coefficients of a9 J 's must be zero. In 
particular, we obtain 

xll<p(x)ll II <pm- 1 (x) II <p"'(y) 0, 

contradicting to (3.3.1). Q.E.D. 
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Now we return to a general K, and assume the <p-module (D,<p) has a cyclic 
vector z . We associate with z a polynomial P.(X) E K [X ] as follows: if 

with a; E K, 

then put 

This polynomial is determined by z uniquely. Multiplying z by a scalar a E Kx 
yields: 

a9" P.(a- 1 X) 

aoaq"-1 X+ a1a9"- 9 X 9 + · · · + an _1a9"-q• - • xq•-• + Xq". 

We also define 
V.(D) := {a E J(,.P; P.(a) = 0}. 

This is clearly an IF 9 -vector space on which G K acts. 

Recall that we have a canonical inclusion D C DK••• (by definition) and a 
canonical identification DK••• = J(••P ®r, V(D) (by Lemma (3.2)). 

LEMMA (3.4). Suppou that z is express ed by a column vector '(zo, · · · 1 Zn-1), 
z; E J(••P, with respect to an IF9 -bau (e;)o ~ i~n- 1 of V(D). Then then element• 
zo,· · · ,zn_1 form an IF9 -bau of V.(D), so V.(D) is an n-dimensional lF9 -linear 
repreuntation of GK. The two representations of GK, V(D) and V.(D), are 
contragredient to each other. 

PROOF:- Since 'f'i(z) = '(zg; 1 · · • , z~_ 1 ) with respect to the base (e;), each z; 

is a root of P.(X); we have Zi E v.(D). Since det(zr; )o ~i,j~n-1 i 0 by cyclicity 
of z, the n elements zo, · · · , Zn-1 are linearly independent over IF9 • Since the 
cardinality of V.(D) does not exceed the degree of P.(X), it follows that V,(D) 
is n-dimensional and is spanned by zo, · · · , Zn- 1. 

Since z = zoeo + · · · + Zn-1en_1 ED is fixed by GK, the representations V(D) 
(which has (e;) as an IF9 -base) and V.(D) (which has (z;) as an IF9 -base) are 
contragredient to each other. Q.E.D. 

In the rest, we assume that K is a complete discrete valuation field, with valua­
tion v and residue field k. We shall interpret the regularity (in the sense of (1.1)) 
of the polynomial P. in terms of lattices, Galois actions, and connections. Let 
I · I = q - •(-) be the absolute value associated with v. For any algebraic extension 
L/ K, the valuation v and the absolute value 1·1 of K extend uniquely to L, which 
are again denoted v and I · I respectively. We denote by 0 L the valuation ring of 
L. 

Let (D, 'f') be a <p-module over K. An OK -lattice D 0 of D is said to be 
'f' -•table if <p(D 0

) c D 0 and OK. <p(D0
) = D 0

• The next lemma is easy to see. 
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LEMMA (3.5). Let D 0 be an OK -lattice of D. 

(i) The OK -lattice D 0 is <p -stable if and only if <p is given by a matrix in GLn(OK) 
with respect to an OK -base of D 0

• 

(ii} If D 0 is cp -stable, we have 

D 0 ={xED; the set {cpi(x); j 2: 0} is bounded}. 

In particular, if a <p -module D has a <p -stable OK -lattice, then it is unique. 0 

The existence of a cp-stable OK-lattice means that V(D) is "finite etale" over 
OK; 

LEMMA (3.6). Let (D, <p) be a <p -module over J(. 

(i) The following conditions are equivalent: 

{1} There exists a cp-stable OK -lattice D 0 in D . 

(2} The representation of G K on V(D) is unramified. 

(ii} If GK acts on V(D) trivially, then the cp -stable OK -lattice is the OK -submodule 
of D spanned by V(D). 

(iii) There exis ts a finite separable extension L/K such that DL has a cp-stable 
OL -lattice. 

PROOF:- Since GLr,(V(D)) is finite, Part (iii) follows immediately from Part 
(i). 

To show (i), it is enough to assume that /( has a separably closed residue field 
k and to show the equivalence of the statement (1) with 

(2)' The representation of GK on V(D) is trivial. 
Suppose D 0 is a cp-stable OK-lattice in D. Let t be a uniforrnizer of K. Then 
DO := D 0 JtD 0 is a cp -module over k of the same rank n as D. By a theorem of 
Lang (which says the exactness of the sequence 1-+ GLn(IF9)-+ GLn-+ GLn-+ 1 
in the etale topology, where the third arrow is the map: (a;j) >-+ (a?j)(a;j)- 1 ), 

there exists a k-base Cxo, ... 'Xn-1 ), of D 0 such that cp(x;) = x;. Choose a lifting 
x; E D 0 of x; for each i. Then the limit cp""(x;) = limi-oo'Pi(x;) exists in D 0 . 

Since cp(cp""(x;)) = cp""(x;), we have cp""(x) in V(D). Since cp""(x;) (mod. tD0
) 

= x;, Nakayama's lemma assures that ( cp""(xo), · · · , cp""(xn-!)) is an OK-base of 
D0 , and a fortiori an IF 9 -base of V(D). Thus V(D) C D, and G K acts trivially 
on V(D). 

Assume now conversely that G K acts on V(D) trivially. Then (without any 
assumption on k) we have V(D) C D. The OK-submodule of D spanned by 
V(D) is an OK-lattice (Lemma (3.2) assures that ]{ · V(D) =D), and is <p-stable; 
whence (1), and also (ii). Q.E.D. 

DEFINITION (3. 7). A cp-module (D, cp) over J( is said to have regular singularity 
(at v) if it is the direct sum of cp-submodules (D;, cp;) each of which has a cyclic 
vector x; such that the associated polynomial P,, is regular in the sense of (1.1). 
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When the residue field k of K is separably closed, the D; in the above definition 
can be taken to be irreducible if once (D,cp) has regular singularity, as the proof 
of the following theorem shows. 

THEOREM (3.8). Aswme the residue field k of K is separably cloud. Let (D, cp) 
be a cp -module over K. Then the fa/lowing conditions are equivalent: 

(1} The cp-module (D,cp) is regular. 

{2} There ezists a finite tamely ramified eztension L/ K such that DL has a 
cp -stable 0 L -lattice D'},. 

(3) The Galois representation V(D) is tamely ramified. 

PROOF:- The equivalence of (2) and (3) follows from Lemma (3.6), (i). The 
implication (1) =} (3) follows from Proposition (1.2) and Lemma (3.4), but here 
we proceed another way. 

(1) =} (2): It is enough to show (2) for each D;, so we assume z is a cyclic 
vector of D such that the polynomial P. is regular; 

a; E K, ao # O, 

with 

(3.8.1) for 1 :<::: i :<::: n - 1. 

Take an element a of K••P such that 

(3.8.2) 

and put L := K(a). The extension L/K is then tamely ramified. The vector ax 
is a cyclic vector of DL, and we have 

By (3.8.1) and (3 .8.2), we see 

According to Lemma (3.5), (i), tlus shows that the OL-lattice D'}, spanned by 
(ax, cp( ax),· · · , cpn-l (ax)) is cp -stable. 

(3) =} (1): Let L be the subfield of K••P which corresponds to the kernel of 
the action of GK on V(D) . By assumption, Gal(L/ K) is a cyclic group of degree 
prime to q, so the representation 

p : Gal(L/ K)-+ GLr. (V(D)) 

is semi-simple, and factors through a Cartan subgroup of GLr.(V(D)). We may 
assume that p is irreducible. Then D is also irreducible as a cp-module by Lemma 
(3.2). If p is trivial, there is nothing to prove. So we come to assume that p factors 
through the non-split Cart an subgroup H '=" JF; .. , and does not factor through any 

subgroup isomorphic to lF;~ with min and m < n. Here we note: 
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LEMMA (3.8.3). {i) Let V := lF~n be the column vectors of dimension n, and let 
H be the non-split Cartan subgroup of GLn(IF q) acting on V. Then there exists a 
vector :z: E IF q" ®r, V and a character (isomorphism) X : H -+ IF;. such that 

u .:z: = x(u)x for all u E H. 

If we regard V as a trivial <p -module and IF q" ®r, V its base extension, then all 
such pairs (x,x) are of the form 

with c E IF;. and 0 ::0: j ::0: n - 1. 

Since x•; ( u) , 0 ::0: j ::0: n - 1, are dijJe1·ent ft"om each other if u is a generator of 
H, the corresponding eigen vectors :z:, 'f'( :z: ), · · · , <pn-l ( :z:) are linearly independent 
over lFq" (i.e., :z: is a cyclic vector). In particular, all entries of :z: are non-zero. 

(ii) In the polynomial ring 1Fq[X0 , · · ·Xn- l ) 1 one has the identity {Moore's deter­
minant): 

n-1 m-1 

det(Xt )o~i,j ~ n-1 = IT IT (Xm + L a;X;). 
m=O (ai)EFf '"' i=O 

In particular, if :z: = 1(:z:o, · · · , Xn-d E IFq" ®r, V is a cyclic vector as in {i), then 

Xm + L:;;:~' a;:z:; is non-zero for all m = 0, · · , n- 1 and ( ao, · · · , am- 1) E IF~m 1 

so the n elements :z:0 , · · · , Xn - l E IF q" are linearly independent over lF q • D 

By (i) above, there exists a cyclic vector :z: E lFq" ®r, V(D) and a character 

X : Gal(L / K) -+ IF;. such that 

for all u E Gal(L/ K) and 0 ::; j ::; n - 1. 

Since L/ K is tamely ramified and the residue field k is separably closed, there 
exists an element a of L such that 

{ 
L = K(a) , v(a) > 0, 

u(a) = x(u)- 1a for all u E Gal(L / K). 

Then for any bj E k, 0 ::0: j ::0: n - 1, the vector 

IS m D because it is fixed by G K. We shall show that, if bj 's are sufficiently 
general, then y is a cyclic vector of D and the associated polynomial Py is regular . 

If :z: is expressed by a column vector 1(x 0 , · • · ,xn_1 ), :z:; E IFq", with respect to 
a IFq-base of V(D), then we have y = '(yo,··· ,Yn-d with 
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By Moore's deternlinant identity ((3.8.3), (ii)), we have 

n - 1 n-1 m - 1 

det(y,'f'(y),·· · ,\On- !(y)) II II ( "L bjo:q j ( "'m + "L a,x,)qj l-
m = O (a.;)E f~.n j=O i=O 

Since Xm + 2:: ::~ 1 a;:z:; # 0 for all m and a; ((3.8.3), (ii)), this deternlinant does 
not vanish (i.e., y is a cyclic vector of D) for general b; 's. By Lemma (3.4), the 
n elements y0 , · · · ,Yn-t of L form an 1Fq-base of the space Vy(D) of all roots of 
Py(X). Since 

{ 
Yi = (bo:z:;)o: + (b,x1)o:q + · · · + (bn_ 1x(-

1 

)o:q•-l, 

bj E k, :z:;EIFq"> v(o:)> O, 

and :z:o, · · · , Xn-1 are linearly independent over !Fq ((3.8.3), (ii)), all roots of Py(X) 
have the same valuation v(o:). Thus the Newton polygon of Py(X) is straight, i.e ., 
Py(X) is regular. Q.E.D. 

Now we turn our attention to the connection associated with a 10-module D. 
Recall (e.g. [4], A.2.2) that there exists on D a unique connection \1 : D --> 

D 0 K f!}c/k for which I" : D -> D is horizontal; \1 o I" = (I" 0 id) o \1. If the Galois 

representation V(D) is trivial, t hen D" (:= Ker(\1)) = k 0r. V(D). So if :z: E D is 
expressed by a column vector '(:z:o, · · · , Xn-t), Xj E K, with respect to an !Fq-base 
of V(D), then we have 

V(:z:) = '(dxo, · ·· , dxn- t)-

The connection may also be regarded as a K -linear map 

such that, for all 8 E Derk(K) ~ HomK(f!}c/k ' K), one has \1(8) = (1 0 8) o \1. 

Let 11 · 11 be the norm on DK" P for which the unit ball is the 10-stable OK••• ­
lattice D7< ••• = OK••P · V(D). 

THEOREM (3.9). Assume the residue field k of K is separably cloud. Let t be a 
uniformizer of K. Then the following conditions are equivalent: 

(1} The 10-module D has regular singularity; 

{2} For any :z: E D, we have IIV( tf,)(:z:) ll S:: ll:z:ll -

The condition (2) may be rephrased that the norm of \1, 
II VII := supzED-o II V(tcft)(:z:)ll /ll:z:ll, equals 1 (We have always II VII 2 1) . Also, 
it may be rephrased that there exists in D a V(tf,)-stable OK-lattice which is a 
"proper ball" with respect to the norm II · II-
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PROOF: - Noting Theorem (3.8) , we prove the equivalence of the tameness of 
V(D) and the condition (2) . Let L be the subfield of K'•P which corresponds to 
the kernel of the action of GK on V(D). 

Assume L / K is tamely ramified of degree e. Then it is of the form L = K( s), 
with s • = t. On DL, which contains V(D), the effect of 'V(tft) is described 
simply by the formula 

\1 (t~) (x;)o ~j~n- 1 = (t d:/) O ~j~n- 1 = Gs d::) O ~j~ n- 1 1 Xj E L, 

in terms of the coordinates with respect to an f q-base of V( D). Since is ;::.1 ::; lx; I , 
(2) follows. Note that this argument shows the inequality of (2) holds for all x E 
Ktame 181 r. V(D), where Ktame / K is the maximum tamely ramified subextension 
of K••P j K. 

Assume L / K is wildly ramified. Let p be the characteristic of fq. Replacing K 
by a tamely ramified extension, we may assume Gai(L/ K) is a p-group. Replacing 
D and V(D) by subquotients, we may assume that the action of GK on V(D) 

is non-trivial and is of the form (
1 

; ) , * E fq. Fix an fq-base of V(D) with 

respect to which the GK-action looks like tllis. Let O" be an element of Gai(L/ K) 

whose action on V(D) is given by a matrix ( 
1 ~) with >. non-zero and in the 

prime field fp . Let LtfK be a subextension of L / K such that Gai(LtfK) is 
generated by the image of O" . Then a vector x = '(x 0,x1) E DL, belongs to D if 
and only if 

O"(xo) = Xo - >.x 1 and X1 E K. 

In particular, there exists a vector x = '( u, 1) in D such that u is a root of an 
Artin-Schreier equation uP - u = t- •, e ~ 1, p f e. We have t!fJt = er•. Since 

jt-• j = q• > q•IP =lui, it follows that II'V(tft)(x) ll > llxll. Q.E.D. 
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