

学 位 論 文

Design and Implementation of the
SORA Multipath Virtual Network Layer

（SORAマルチパス仮想ネットワーク

層の設計と実装）

平成２２年１２月１０日
指導教員： 森川博之・中尾彰宏

東京大学大学院新領域創成科学研究科
基盤情報学専攻

レーン・ジョン・ラッセル

John Russell Lane

ABSTRACT

DESIGN AND IMPLEMENTATION OF
THE SORA MULTIPATH VIRTUAL NETWORK LAYER

DECEMBER, 2010

JOHN RUSSELL LANE

B.Sc., MICHIGAN STATE UNIVERSITY

M.Sc., MICHIGAN STATE UNIVERSITY

Directed by: Professor Akihiro Nakao and Professor Hiroyuki Morikawa

Application-directed routing architectures—those allowing applications some man-
ner of choice regarding the network paths their data packets are to traverse—have been
proposed as an approach to addressing many of the current Internet’s most difficult prob-
lems, including policy, performance (QoS) and economics. Application-directed routing
architectures provide solutions to these problems by giving applications a choice in route
selection; applications can then select paths to meet given policy and performance goals;
moreover, schemes have recently been proposed to foster Internet competition by using
paths as a basis for the sale of Internet access.

However, many open problems are known to exist before such routing architectures
can be deployed, and while testbed environments now exist which could provide a plat-
form for realistic experimentation to address them, there exists no framework to imple-
ment application-directed routing—that is, there exists no data plane to forward pack-
ets based on application specifications; no control plane to establish network paths to
be selected by applications; and no application programming interface by which applica-
tions and novel transport layers might be developed. This makes it difficult to perform
application-directed experiments, which, in turn, hinders research and development of
these open problems.

The research described herein provides a framework for application-directed rout-
ing, with the goal of enabling research and development on existing testbed networks.
Specifically, it provides: an application-directed data plane usable on existing networks, a
control plane for use with such data plane instances, and an application interface allowing
ease of development and experimentation. Furthermore, a usage case of this framework
is described wherein a means for enabling high performance with unmodified TCP/IP
on multipath networks even under heavy packet reordering is developed and tested.

i

ACKNOWLEDGMENTS

This dissertation and the years of research and development that went into its cre-

ation would not have been possible without the long aid, encouragement, patience and

kind counsel of advisors, mentors, friends and family.

First, I would like to thank Dr. Akihiro Nakao for patience and understanding

through the long meetings, and for the discussion and advice he has provided over the

years. Whether with few students (early on) or many (nowadays), whether in the early

morning or late night, whether at the lab or while we were on the road, he provided the

many comments and suggestions that helped bring this work to maturity and it would

not have been possible without his efforts and support.

I would also like to deeply thank Dr. Hiroyuki Morikawa for sponsoring me long

ago in 2001 and for providing continuing counsel, advice and encouragement over the

years. Without his kind input and unwavering support, none of this would be possible.

Special thanks are due to the Japanese Ministry of Education, Culture, Sports, Sci-

ence and Technology whose support made it possible for this research to be completed.

I would like to thank Jay Kusler, from whom I probably learned more about life

than anyone, Dr. Bill Punch for his advice and encouragement, Dr. John Forsyth and

Dr. Richard Reid for their patience and too many of the rest of the faculty and staff of the

Michigan State University Department of Computer Science to name; particularly, the

rogue secretaries. I would also like to thank my previous employers IGES, Turbolinux

and the Ohtsuka International Patent Office for their understanding and support over

the years.

Finally, undying gratitude is due to my mother, whose selflessness is a constant source

of admiration for me, to my extended family for their long support and to the God who

placed me here beyond all odds. This dissertation is dedicated to them.

ii

TABLE OF CONTENTS

Page

ABSTRACT . i

LIST OF FIGURES . ix

GLOSSARY x

CHAPTER

1. INTRODUCTION . 1

1.1 Historical Overview of Networking . 2

1.1.1 Analog Circuit Switching to Digital Circuit Switching 2
1.1.2 Digital Circuit Switching and Digital Packet Switching 4

1.2 A Brief History of Interdomain IP Routing . 7

1.2.1 Design Philosophy . 7

1.2.1.1 The End-to-End Argument . 7
1.2.1.2 Routing Architecture: A Network-of-Networks 8
1.2.1.3 Interior and Exterior Gateway Protocols 8

1.2.2 EGP . 9
1.2.3 BGP . 12
1.2.4 IP Routing Economics . 13

1.3 Current Issues in Interdomain IP Routing . 14

1.3.1 Reliability and Service Quality . 15
1.3.2 Policy Routing and Traffic Engineering Issues 17
1.3.3 Routing Economics . 19

1.4 Past and Present Approaches to Interdomain IP Routing Issues 19

1.4.1 Change Nothing: Heavily Overprovision . 19
1.4.2 Interdomain IP Replacements . 21

1.4.2.1 ATM . 21

iii

1.4.2.2 IPv6 . 22
1.4.2.3 Nimrod . 23
1.4.2.4 4D and Tesseract . 24
1.4.2.5 RCP . 25
1.4.2.6 Architecture for User-Selectable Routes 27
1.4.2.7 PoMo . 27
1.4.2.8 Pathlet Routing . 27
1.4.2.9 Current Next Generation Initiatives 28

1.4.3 Extending IP From Below . 28

1.4.3.1 MPLS . 29
1.4.3.2 GMPLS . 30

1.4.4 Extending IP From Within . 33

1.4.4.1 IntServ and RSVP . 34
1.4.4.2 BGP Fixes . 36
1.4.4.3 NIRA . 37
1.4.4.4 BANANAS . 38

1.4.5 Extending IP From Above . 39

1.4.5.1 Internet Indirection Infrastructure (i3) 40
1.4.5.2 Resilient Overlay Networks (RON’s) 41
1.4.5.3 OCALA . 42
1.4.5.4 X-Bone and GX-Bone . 42

1.4.6 Addressing Economic Issues . 43

1.4.6.1 Bill-Pay . 43
1.4.6.2 MINT . 43
1.4.6.3 Path Brokering . 44

1.5 Summary of Interdomain IP Routing Issues and Approaches 44
1.6 Problem Statement . 45
1.7 Thesis Statement . 46
1.8 Dissertation Overview . 46

2. THE SORA MULTIPATH VIRTUAL NETWORK LAYER 47

2.1 Introduction . 47
2.2 Related Work . 49

2.2.1 IPv4 and IPv6 Source Routing . 49
2.2.2 BANANAS . 49
2.2.3 Testbeds: PlanetLab, VINI, CoreLab, ... 50
2.2.4 RON . 51
2.2.5 OCALA . 51

iv

2.2.6 X-Bone & GX-Bone . 51
2.2.7 Application Interfaces: SCTP, MPTCP, Ingress & Egress 52

2.2.7.1 SCTP . 52
2.2.7.2 MPTCP . 53
2.2.7.3 Ingress & Egress . 53

2.2.8 Summary . 53

2.3 Overview . 54

2.3.1 Data Plane Requirements . 54
2.3.2 Control Plane Requirements . 55
2.3.3 API Requirements . 56

2.4 Data Plane . 56

2.4.1 Challenges . 56
2.4.2 Approach . 58
2.4.3 Link Abstraction . 59

2.4.3.1 Design . 59
2.4.3.2 Implementation . 60

2.4.4 Packet Abstraction . 62

2.4.4.1 Design . 62
2.4.4.2 Implementation . 63

2.4.5 Click-Based Router and Shared Library . 65

2.4.5.1 Design & Implementation . 66

2.5 Control Plane . 67

2.5.1 Challenges . 67
2.5.2 Approach . 68
2.5.3 Ruby-Based Control Plane Library . 69

2.5.3.1 Design . 69
2.5.3.2 Implementation . 69

2.5.4 Link, Link Metric and Path Discovery . 70

2.5.4.1 Design . 70
2.5.4.2 Implementation . 71

2.5.5 Router Link Instantiation . 73

2.5.5.1 Design . 73

v

2.5.5.2 Implementation . 73

2.5.6 Framework for Shared Resource Usage . 74

2.5.6.1 Design . 75
2.5.6.2 Implementation: Pre-Instantiation . 76
2.5.6.3 Implementation: Request Server . 77

2.6 Application Interface . 77

2.6.1 Challenges . 77
2.6.2 Approach . 78
2.6.3 Path Conduit Endpoint Interface . 78

2.6.3.1 Design . 78
2.6.3.2 Implementation . 81

2.6.4 Packet Ingress/Egress: libc Wrapper . 85

2.6.4.1 Design . 85
2.6.4.2 Implementation . 85

2.6.5 Packet Ingress/Egress: Router . 86

2.6.5.1 Design . 86
2.6.5.2 Implementation . 87

2.7 Performance Analysis . 88

2.7.1 Data Plane & Application Interface . 88

2.7.1.1 Processing Performance Testing Methodology &
Environment . 89

2.7.1.2 Packet Processing Performance Results 91
2.7.1.3 Path Monitoring Tools Testing Methodology &

Environment . 92
2.7.1.4 Path Monitoring Tool Performance Results 93

2.7.2 Control Plane . 93

2.7.2.1 Methodology & Testing Environment 94
2.7.2.2 Results . 95

2.8 Examples . 96
2.9 Future Work . 97

2.9.1 Data Plane: Link Types . 98
2.9.2 Control Plane: Extensions for Testbed Network Control 98
2.9.3 Control Plane: Extensions for Live Router Link Monitoring 99
2.9.4 Control Plane: Testbed Deployment . 100

vi

2.9.5 API: Packet Processing Module Structure . 101
2.9.6 API: Path Schedulers . 102
2.9.7 API: Packet Processing Modules . 102
2.9.8 API: Gbps Performance . 102
2.9.9 API: Wrapper Improvements . 103

2.10 Conclusion . 104

3. SORA USAGE CASE: STUDYING PACKET REORDERING 106

3.1 Introduction . 106
3.2 Causes and Effects of Out-of-Order Packet Delivery 107

3.2.1 Approaches to Addressing Out-of-Order Packet Delivery 108

3.3 Best-Effort Reordering . 109
3.4 Related Work . 110

3.4.1 TCP and Reordering . 110
3.4.2 Packet Dispersion / Link Bonding . 110

3.5 Implementation Environment . 112

3.5.1 Emulab . 112
3.5.2 Topology . 113
3.5.3 Introducing Out-of-Order Packet Delivery . 113
3.5.4 Characterizing Out-of-Order Packet Delivery 115

3.6 Reorderer . 116

3.6.1 Maximum Buffer Hold Time . 118

3.7 Results . 120

3.7.1 Discussion . 122

3.8 Conclusion and Future Work . 124

4. CONCLUSION . 126

4.1 SORA Multipath Virtual Network Layer . 128

4.1.1 Data Plane . 128
4.1.2 Control Plane . 129
4.1.3 Application Interface . 130

4.2 SORA Usage Case: Best-Effort Network Layer Reordering 131
4.3 Future Work Summary . 132

4.3.1 Data Plane: Link Types . 132

vii

4.3.2 Control Plane: Extensions for Testbed Network Control 132
4.3.3 Control Plane: Extensions for Live Router Link

Monitoring . 132
4.3.4 Control Plane: Testbed Deployment . 133
4.3.5 API: Packet Processing Module Structure . 133
4.3.6 API: Path Schedulers . 133
4.3.7 API: Packet Processing Modules . 134
4.3.8 API: Gbps Performance . 134
4.3.9 API: Wrapper Improvements . 134

4.4 Summary . 134

BIBLIOGRAPHY . 136

Publications Related to SORA 149

Appendices 149

APPENDICES

A. FUNDAMENTAL SORA CLICK ELEMENTS . 151

A.1 Elements . 151

A.1.1 Packet Header Processing Elements . 151
A.1.2 Packet Option Handling Elements . 152
A.1.3 Conduit Handling Elements . 152
A.1.4 Control Plane Service Lookup . 153
A.1.5 Encapsulation . 154
A.1.6 Path Scheduling . 155
A.1.7 Packet Filtering . 155
A.1.8 Packet Services . 156

B. SORA CONTROL PLANE PROGRAMS . 157

viii

LIST OF FIGURES

Figure Page

1.1 OSI Reference Model Network Stack . 5

1.2 EGP Distance Vector Algorithm . 10

1.3 Distance Vector Algorithm Count-to-Infinity Problem 11

1.4 Exterior Gateway Protocol Algorithms: Distance vs. Path Vector 13

1.5 Overlay Network Depiction . 39

2.1 Application-Directed Testbed-Based Data Plane With Selectable Paths
Via Numbered Tunnels . 58

2.2 Link Abstraction . 60

2.3 Classes SoraLink and SoraUDPIPLink . 61

2.4 Packet Abstraction . 62

2.5 Packet Header . 63

2.6 SoraPacket Class . 64

2.7 Basic Router Element Chain Configuration . 66

2.8 Fundamental Control Plane Library Classes . 70

2.9 Control Plane Query Service Methods . 71

2.10 Control Plane Query Services . 72

2.11 Link Query and Link Request Service Tables . 72

2.12 Router Link Instantiation . 74

2.13 Link Request Service Overview . 75

2.14 Path Conduit and Endpoints . 79

ix

2.15 Path Conduit Endpoint Structure for “Multipath UDP” 80

2.16 SoraUserLevelConduit and Parent Classes . 81

2.17 Packet Processing Module Base Classes . 83

2.18 Two Ingress Types: Router and libc Wrapper . 84

2.19 Click Ingressing Router Inbound Lookup Elements . 87

2.20 Throughput Performance (100 Mbps Network) . 89

2.21 Throughput Performance (Gbps Network) . 90

2.22 Throughput Testing Environment . 90

2.23 Monitoring Performance (Monitored vs. Actual) . 93

2.24 Link and Path Query and Link Request Service Performance 95

2.25 Virtual Network Creation Steps . 96

3.1 Multipath Experiment Topology . 112

3.2 Effect of Varying Dispersion Degree and D Value on Reordering
Density . 114

3.3 Throughput Results With Varying Maximum Window Sizes 121

x

GLOSSARY

Term Definition Page
address mapping a relation established between a physical inter-

face address of an entity and an entity identifier;
used for mapping endhosts interfaces to virtual
network and entity identifiers during ingress

85

application interface the means by which applications interface with
network data and control planes

52

application-directed routing method for packet routing, whereby applica-
tions have access to an arbitrary number of
paths and are made fully responsible for enact-
ing a routing policy and making performance
decisions via monitoring of path performance
metrics

54

circuit switching a network paradigm whereby the network con-
cerns itself with the allocation and management
of circuits between communicating endpoints

3

conduit see path conduit 78
conduit endpoint one of the two ends of a conduit 78
conduit endpoint identifier a unique numeric identifier identifying a single

conduit endpoint instance on a given machine
78

conduit endpoint interface a data construct for performing communica-
tions between two virtual network entities; it
manages the functions of path scheduling, path
monitoring and monitored data feedback

78

conduit interface see conduit endpoint interface 78
connection-oriented a network paradigm whereby communication

between endpoints is facilitated by first estab-
lishing a circuit or connection between them
and then using connection

3

control plane the set of data structures and functional com-
ponents concerned with determining how data
should flow through a network

24

convergence a property of any distributed path computation
algorithm implemented on a given set of routers
and an algorithm is said to converge on a set of
routes in a given system if, in the absence of
further input (e.g., path faults), a single set of
routes is eventually decided upon by all partici-
pating routers

15

xi

Term Definition Page

data plane the set of data structures and functional compo-
nents concerned with executing determinations
made by the control plane

24

default gateway an computer on a local network which will per-
form forwarding on behalf of other local net-
work machines

86

discovery the means by which virtual network objects are
queried for and thus obtained for use by virtual
network entities

69

egress preparation of ingressed packets for exit from a
virtual network and transmission via an existing
network

53

end-host path selection method of packet switching, whereby a path
is selected and specified to the network by the
sending endhost

4

endpoint an entity that is a source and/or destination of
packets

58

entity any virtual network participant which sends or
receives packets via a SORA virtual network in-
stance

58

entity identifier a numeric identifier uniquely identifying an en-
tity within a given virtual network

58

hop-by-hop routing packet routing whereby each router indepen-
dently selects a path from itself to the destina-
tion for a received packet

4

ingress preparation of existing protocol (e.g., TCP/IP
or UDP/IP) packets for input onto and trans-
mission via a virtual network

53

ingressing router a virtual network entity which acts as a default
gateway on a local network while ingressing se-
lect outbound traffic and egressing any received
virtual network inbound traffic

86

link abstraction a data structure and associated methods which
provide a unified interface to underlying tun-
nels for easing development of upper layers by
hiding tunnel usage details

59

link data data representing a link abstraction instance 69
link identifier a numeric identifier uniquely identifying a link

outbound from a given entity on a given net-
work

59

xii

Term Definition Page
link instantiation the establishment of one or more links on a

given entity using link data
72

link metric describes one or more aspects of the link that
may be criteria for use in performing best path
set computation

69

link query control plane service which allows entities to
obtain virtual network link information

69

metric query control plane service which allows obtainment
of live virtual network link metric information

69

network identifier a numeric identifier uniquely identifying a vir-
tual network

58

network toolkit software packages which replace and/or extend
the functionality of the data and control planes
and application interfaces provided by current
networks

50

network tunnel use of an existing network protocol for use in
the transport of data of another protocol; ex-
amples include IPv6 in IPv4 for enabling IPv6,
IP-in-IP for enabling virtual private networks,
and the like

50

overlay network see virtual network 50

packet abstraction the data structure of the data plane by which
data payload and control data is read from and
written to a link instance

61

packet header network control data included when sending a
packet on a virtual network link

63

packet option comprises packet option type, option data and
option handlers

62

packet option data comprises the actual data to be transmitted in
the option

62

packet option handlers functions which perform requisite option han-
dling operations

62

packet option set stores a fixed number of options within a packet
instance

62

packet option type uniquely identifies the option within a given
packet option set

62

packet processing module relatively small methods which, input a packet,
perform a given task on it and return either the
packet or an error

79

packet switching a network paradigm whereby the network con-
cerns itself with the transmission of packets
from one host to another

4

xiii

Term Definition Page
path a series of virtual network links connecting two

endpoints; typically it is specified using the cor-
responding list of link identifiers

59

path conduit an idealized construct for managing all paths be-
tween two communicating endpoints

78

path performance feedback sending monitored information back to the
originating conduit endpoint such that it can be
used in path scheduling

78

path performance monitoring either passive or active monitoring of paths be-
ing used

78

path query control plane service which allows obtainment
of path information

69

path scheduling selection of the next path to be used for a given
packet

78

research network testbed a collection of computing and network hard-
ware resources designed for experimentation

50

router an entity dedicated to forwarding packets 58
routing selection of a path for packet transmission 4
routing economic model an instance of a means for paying for data trans-

port
18

routing economics means by which payment is made for data trans-
port

18

routing policy a set of rules which governs selection of routes
or paths

12

signed link link data accompanied by a cryptographic signa-
ture; the cryptographic signature proves to any
router it is presented to that the link data has
been validated by the link request service

75

source routing method of packet switching, whereby a path is
specified by a sender (source)

4

switching selection of a path for packet transmission 4

virtual network a logical network comprised of network tunnels
between existing network computers

50

wrapper library a dynamically loaded shared object file which
overrides (wraps) existing shared library meth-
ods and modifies their behavior

85

xiv

CHAPTER 1

INTRODUCTION

In under two decades, the Internet has grown from a research network to a medium

for a significant percentage of global communications as well as commerce. It has dis-

placed long prevailing telephone and broadcast-video-based telecommunications models

and our collective reliance on it for communications of all forms would seem irreversible.

Moreover, its fundamental architecture has proven sufficiently flexible, extensible and

scalable for implementation of today’s wide variety of applications, sufficiently reliable

and robust for non-critical applications, and has been able to scale its performance to

meet the demands for ever richer content.

However, its centrality in world telecommunications and commerce has brought in-

creasing scrutiny to shortcomings in its ability to meet future flexibility, reliability and

performance demands and general agreement that the current architecture is insufficient

to the challenge and in need of change. This consensus has, in turn, made improve-

ment or even outright replacement of the current Internet structure an area of intense

research, with national-level next-generation Internet research initiatives currently ongo-

ing in Europe [57, 51], the United States [58] and Japan [3]. This consensus also provides

the network research community a rare opportunity to make more than the merely

incremental changes to the Internet’s structure generally allowed with a production net-

work. Therefore, it has become a priority to maximize the effect of such modifications

and provide an architecture allowing its future reliability, performance and extensibility

requirements to be more flexibly engineered, as future applications demand [58].

The next two sections provide historical details on the development of Internet in-

terdomain routing and Section 1.3 discusses issues with its structure and their sources.

Section 1.4 identifies past and present attempts at addressing these issues and Section 1.5

1

summarizes the current state of Internet interdomain routing with respect to these at-

tempts. Section 1.6, formally defines the problem addressed herein; Section 1.7 defines

how the present work addresses this problem. Finally, Section 1.8, provides a layout of

the rest of the dissertation.

1.1 Historical Overview of Networking

This section and the next provide a historical overview of data networks sufficient to

describe the issues that this work addresses, why they exist and why they are significant.

Specifically, this section describes the development of communications from analog to

digital technologies and from circuit to packet-switched paradigms. The next section

discusses the current Internet regime, its guiding design philosophy, and its development

with respect to packet routing.

1.1.1 Analog Circuit Switching to Digital Circuit Switching

Early communications systems, beginning in the mid-1800’s with the telegraph and

continuing through the 1940’s with the telephone system, allocated a physical, end-to-

end circuit to each communicating terminal or endpoint. Early telephone systems were

manually switched via plugs, switchboards and human switchboard operators that inter-

cepted calls and directed them to the destination requested by the initiator by extending a

physical circuit successively closer to it. In the 1950’s and 1960’s, a fully automatic circuit

allocation system began to fully replace the manually switched telephone network. The

result was the public switched telephone network (PSTN)—a highly engineered, electro-

mechanical switching network dedicated to one specific purpose: automatic allocation

and deallocation of a circuit—a portion of the physical network—to a given phone call.

By the early 1980’s, the PSTN had become global in scope, automatically providing

for end-to-end circuit allocation, setup and teardown from the US to Europe to Asia.

However, until the 1980’s, in keeping with its original requirements, the PSTN was still

largely an analog network—generally only for voice. Each circuit possessed a minimum

bandwidth of eight kHz; the few existing digital devices (e.g., fax machines and modems)

2

sent data over the network by modulating their bitstream onto the eight kHz signal tele-

phone line, transmitting it, and demodulating the received signal back into a bitstream at

the receiver. However, because of its increased bandwidth, its increased medium utiliza-

tion, and its ability to be carried over a wider variety of physical medium (e.g., copper,

microwave and fiber optic cable), the 1980’s and 1990’s saw PSTN carrier networks begin

to quickly transition from analog data transmission to digital. Transition to digital trans-

port also allowed them to offer a wide variety of data transport services with the same (or

better) end-to-end quality of service. Examples of early circuit switching systems include

Frame Relay [144] and X.25 [16].

Such systems were primarily concerned with a “packetized” version of the traditional

method of communication: circuit switching. That is to say, they still established a cir-

cuit between communicating nodes and used the established circuit to carry data, but

with two important distinctions from previous circuit-based systems like the PSTN.

First, they were generally all digital and the data sent over the circuit was packetized.

Second, while the PSTN reserved a physical circuit for communication, these networks

did not necessarily do so, instead allocating network resources such as time slots suffi-

cient to satisfy the application (e.g., voice) requirements. Either way, however—whether

a physical circuit was allocated or the circuit was “virtual”—a resource allocation was gen-

erally made for each connection and state information about that connection was stored in

each router on the path. Such circuit-based services soon become known as “connection-

oriented” or “circuit-switched” because the network did not concern itself with the pack-

ets per se, as these were handled by the circuits, but the network was concerned with the

management of the circuits which carried the packets.

So, while data was packetized and transmitted digitally, nevertheless, the fundamen-

tal purpose of a digital, circuit-switched network was generally the same as that of the

previous analog/electro-mechanical network: the allocation and deallocation of an end-

to-end communication circuit—a network resource to facilitate the reliable transmission

of data (generally voice).

3

1.1.2 Digital Circuit Switching and Digital Packet Switching

At about the same time digital circuit switching was being developed, research into

a different type of digital network, which had begun in the late 1960’s was coming to

fruition. This model was different in that it did not divide network resources up and allo-

cate them to data, it divided the data up into chunks or “packets” (or “datagrams”) and sent it

all over the same, shared network. Each packet was typically individually addressed and

independently routed1, where routing or switching of a packet refers to the selection of a

path for its transmission. Many examples of early packet switching architectures exist; no-

table among these include systems such as DECNET (DNA) [160], CYCLADES [126],

TYMNET [157], TELENET [132], DATAPAC [30], SNA [60, 70], ARAPNET [38, 28],

IP [125] and more recently, OSI [72].

Although they both use packetized data, these packet switching systems were dis-

tinct from the circuit switching systems in that they did not require any specific resource

allocation. In fact, as will be discussed below with respect to IP, most of their designs

purposely provided absolutely no means for resource allocation to be performed at all.

Instead, nodes sent packets over the network by either specifying a given destination or

an explicit route within the packet itself. When specifying an explicit route (e.g., via

“Explicit Routes” in SNA), the specified route takes the form of a list of hop addresses

or identifiers for each successive router on the specified path. Nevertheless, even when

an explicit route was provided with the packet, no extra state information needed to be

stored on the routers themselves. When a route was not specified, as was the common

case in all of these systems, a destination address was provided with the packet and for-

warding performed at each router. That is, each router along the path generally used the

destination address to determine a path and thus a next hop for the packet.

Thus, schemes whereby a path is specified by an endhost or an application running

thereupon are generally referred to as source routing, endhost path selection and, more re-

1Note that herein the terms switching and routing will be used interchangeably.

4

Figure 1.1: OSI Reference Model Network Stack

cently, application-directed routing. Schemes whereby each router independently chooses

the path for each packet are known as hop-by-hop routing.

Of the early protocols mentioned above, only two survive to the present day: IP

and OSI. Of these two, only IP is still in common use; OSI is still discussed today

in large part because it codified a well-accepted, pedagogical model for packet-oriented

networks known as the OSI network stack. Published in 1985, the ISO Open Systems

Interconnect (OSI) Basic Reference is an ISO standard reference for implementing packet-

oriented telecommunications systems [72]. As depicted in Figure 1.1, it divides the tasks

of transmitting data to and from on network endhosts into seven layers: (1) physical,

(2) data link, (3) network, (4) transport, (5) session, (6) presentation and (7) application.

Each of the seven OSI layers represents a distinct set of data handling responsibilities

and the upper layers use the features of the lower. The bottom three layers: physical,

data link and network are concerned with transporting the packet from one end of the

network to the other and thus all network hosts must implement their functionality.

Their roles are relatively well defined: the physical layer treats how to move bits through

a given medium from one host interface to another; the data link layer treats how a given

physical layer should be accessed (e.g., if multiple hosts are accessing it simultaneously) as

well as how data running through a given physical layer should be framed, addressed and

transmitted (e.g., issues such as flow control and error detection); the network layer treats

5

how to move packets from gateway to gateway; from a network source to a network

destination.

The top four layers generally function on communicating endhosts. Briefly, the trans-

port layer is concerned with transparent transport of data from an application running

on one endhost to an application running on another. The transport layer may include a

variety of features; examples include instances that provide only a simple interface for un-

reliable transmission of datagrams and instances that provide error-free, in-order stream-

based transmission, reordering, error detection and retransmission. The session layer

is generally concerned with communication sessions between applications; this allows,

for example, a single application session to span multiple transport layer instances. The

presentation layer provides data conversion (or translation) services so that application

layer instances can, for example, use different data representations and still communicate

seamlessly. For instance, this would include translation between ASCII and EBCDIC

character sets or between one XML format and another; the presentation layer allows

applications to be more encoding-independent. Finally, the application layer is that clos-

est to the user and provides the application-level software interface to the network.

While OSI was proposed as an international communications standard, it was never

adopted for a variety of reasons, not the least of which was the high complexity of its

upper layers [23], particularly in light of the more pragmatic implementation of IP, which

only included the lower four layers in its design and left the rest to be implemented by

individual applications.

In summary, packet switching offers a number of advantages over circuit switching.

First, digitization allows data to be carried over a wider variety of medium, and packet

switching allows data to be carried over the same wide variety of medium without allo-

cation of a circuit. The ability to switch data without the need to allocate resources to it

is of little importance when the data to be sent requires the same constant bit rate (e.g.,

voice), but greatly increases utilization when bitrates vary as they may when a variety

of data is sent over the same network. Thus, packetization allows increased utilization

when networks carry a greater variety of data. Second, because packet switches (i.e.,

6

routers) need not maintain state information regarding circuits, their construction is

simpler than circuit switching equipment. Taken together, when transporting data with

a variety of requirements, packet switching simultaneously increases utilization and de-

creases complexity; this, in turn, reduces network construction and operating cost.

1.2 A Brief History of Interdomain IP Routing

This section discusses the guiding design philosophy of the Internet Protocol, how

it routes packets between domains, as well as how payment for packet service flows

between domains. The Internet Protocol (IP) was designed for use in interconnected

systems of packet-switched computer communication networks [125]. RFC 791, the IP

specification, further states that the “protocol is called on by host-to-host protocols in an

internet environment,” and “calls on local network protocols to carry the internet data-

gram to the next gateway or destination host.” IP itself contains no explicit mechanisms

to implement end-to-end data reliability, flow control, sequencing, or other services com-

monly found in host-to-host protocols. Thus, IP is analogous to layer three of the OSI

layer stack; it provides a method for packet exchange between hosts via cooperating net-

works, which may or may not be using IP internally.

1.2.1 Design Philosophy

Two distinctive elements characterize the design of IP routing: the end-to-end argu-

ment and its fundamental construction as a network of networks.

1.2.1.1 The End-to-End Argument

IP’s design philosophy follows the so-called end-to-end argument in system design

which states that, when drawing boundaries between functions in a communications

system, when a given function “... can completely and correctly be implemented only

with the knowledge and help of [an] application standing at the endpoints of the com-

munication system ... providing that questioned function as a feature of the commu-

nication system itself is not possible.” [138] In other words, communication functions

7

which require knowledge from an application in order to function properly should be

implemented at the endpoints, not in the network.

As was the case with the PSTN, communications networks constructed up until this

point were highly engineered to precisely meet the needs of a specific application (voice).

In this case, system parameters such as required throughput, bitrate, and latency as well

as average duration of communication and number of terminal nodes were well known.

However, the end-to-end argument described above is directed at a more generic network

environment where such application parameters cannot be known a priori. The effect of the

end-to-end argument was to place the complexity of handling application-specific uses in

the same place where the application ran: the endpoints. For example, since the choice

of what type of transport (e.g., reliable or unreliable) is required is application-dependent

in IP, transport layer instances such as TCP [25], UDP [124] and, much later, SCTP [149]

implement their end-to-end data reliability, flow control, sequencing and like features on

the endhosts.

1.2.1.2 Routing Architecture: A Network-of-Networks

As its name suggests, the Internet Protocol was designed from the start as a protocol

to provide packet routing between existing networks. Based on prior experience with

ARPANET, IP was designed to be capable of interoperating with the many existing

network protocols described above. That is, IP was designed to be a packet-switched

network which connected inter-connected packet-switched networks (something historically

known as a “catenet” [125]).

1.2.1.3 Interior and Exterior Gateway Protocols

Thus, from its inception, IP was agnostic about how packets were routed on local

networks—any protocol could be used provided it was capable of delivering local net-

work endhost packets to and from a gateway router connected to the Internet. Such

local networks came to be called “interior” networks and, in contrast, the Internet was

referred to as an “exterior” network. For sharing local routing information on such inte-

8

rior or intradomain networks, many protocols exist such as RIP [104] and OSPF [112, 32]

and IS-IS [119]. However, the focus of this dissertation is interdomain routing.

1.2.2 EGP

The original IP specification, released in 1981, specified that the Gateway-to-Gateway

Protocol (GGP) be used be used to coordinate routing and other Internet control infor-

mation [125]. Around 1985, GGP began to be completely replaced by EGP [134, 139,

109], the reasons for this being its overhead, the rigidity and inflexibility in the rout-

ing algorithm used with GGP and difficulty experienced in implementing fault isolation

between gateways [134].

Like, GGP, EGP’s purpose was to allow exchange of net-reachability information

between Internet gateways. However, EGP introduced the concept of “autonomous

systems”—sets of routers under a single technical administration, using an interior gate-

way protocol and common metrics to route packets internally [139]—and set forth a

more formal framework for the implementation of network interconnection by defin-

ing the Internet’s purpose as routing between these autonomous systems (AS’s). The

basic idea was to assign each AS an AS number (ASN) and to perform routing between

the ASN’s while effectively maintaining a mapping between IP address blocks (address

classes) and AS numbers which served them. The AS abstraction scalably modeled the

underlying split between exterior and interior networks and EGP used a distance vector-

based protocol to share metrics and compute paths, which, at least in theory, provided

the capability of using alternate paths in the event of a fault.

Distance vector protocols work by having neighboring systems exchange vectors of

their current distance to all other systems. These protocols have three basic phases:

(1) routers probe their neighbors and update their distance vector with the probe results

if there is a change, (2) routers send and receive vector updates with neighbors, (3) routers

recompute shortest paths to all systems (e.g., using the Bellman-Ford shortest path algo-

rithm [13, 55]) based on the updated vectors and update their distance vector. This pro-

cess is repeated until there is no change in step (1) and no updates are received via step (2);

9

the goal, at this point, is that all hosts should have the same view of network distances,

all their routing tables should be consistent and there should be no routing loops; the

process of arriving at this state known as “convergence,” and a network system having

reached this state is said to have “converged.”.

(a) Example AS Network
To B C D
A 8 1 4
B 0 5 4
C 5 0 3
D 4 3 0
E 1 4 3
F 4 1 2
G 3 2 1
H 2 3 2

(b) Update Vectors From B/C/D to A

A Next
0 −
8 B
1 C
4 D
7 D
2 C
∞ −
8 D
(c) Pre-Update

A Next
0 −
6 C
1 C
4 D
5 C
2 C
3 C
4 C
(d) Post-Update

Figure 1.2: EGP Distance Vector Algorithm

For example, consider Figure 1.2 and the network in Figure 1.2a. Here, let us assume

that at some point in the past, system G had failed and was no longer reachable, but

has since come back online. The distance vector and next-hop routing table of system

A is depicted in Figure 1.2c and the distance vector updates indicating G’s reachability

depicted in Figure 1.2b have now reached system A. After receiving these updates, A

now calculates a new distance vector and routing table as depicted in Figure 1.2d. It then

shares this with its neighbors and the process continues until the system converges.

10

Distance vector routing is known to propagate news of good routes quickly, but

has a major flaw known as the count-to-infinity problem, which can lead to slow or

non-convergence. The count-to-infinity problem arises because the algorithm includes

no information regarding the actual path which a neighbor is using to reach a given

destination. Consider the example of Figure 1.3. Here, when A fails, B should mark

A as unreachable (a distance equal to infinity), but instead it sees that C has a route to

A. Unfortunately, B has no way of knowing this route is through itself and the process

slowly continues counting progressively higher distances to A as exchanges continue.

While workarounds such as the split-horizon approach exist for coping with this flaw,

there are graphs on which even these will fail [56, 33].

Figure 1.3: Distance Vector Algorithm Count-to-Infinity Problem

As the nascent Internet continued to add new AS’s, the shortcomings in EGP’s use

of a simple distance vector-based protocol became obvious. For example, the EGP model

limited the early Internet to spanning tree topologies with a designated “core” system at

the center and “regional” systems at the leaves. Three main reasons existed for this re-

striction: (1) there was no generally accepted interpretation of the routing metrics used

in the various networks; (2) due to the count-to-infinity problem and there being no

agreement on the interpretation of metrics, there was no way to detect routing loops

when they existed; and (3) even if routing loops could be ignored, when two or more

paths existed to the same destination, the distance vector algorithm left no way to mean-

ingfully compare them or to determine the AS’s which they traversed (e.g., to select

11

one which traversed the core as opposed to one or more regional networks), so it was

impossible to declare one as “primary” and another as “secondary” [109, 129].

The limitation to spanning tree topologies served to protect EGP from routing loops

and insure stability, but it meant that only the “core” system was allowed to indicate

reachability via multiple networks; regional networks were generally not allowed to an-

nounce the reachability of another AS via a non-core path [129]. This made it difficult or

impossible to implement many commonly desired routing policies. For instance, EGP

did not allow regional (non-“core”) AS’s to establish bilateral agreements for packet ex-

change between themselves [129]. These problems were the main impetus for the design

of the Border Gateway Protocol (BGP) [129, 113].

1.2.3 BGP

The Border Gateway Protocol (BGP) was designed to address the convergence is-

sues of simple distance vector routing and allow implementation of a subset of “policy

routing”—selection of routes based on a given set of rules. The primary technical means

by which it addresses these issues is the adoption of what has now been termed “path

vector” routing.

Path vector routing is a form of distance vector routing; however, it is distinct from

standard distance vector routing in that shortest path (next hop) computation is not

based solely on distance or cost metric information but on the actual network paths which

neighbors are using to deliver packets; that is, based on a “path vector.” With knowledge

of the actual paths in use, it is possible to implement basic routing policies as well as to

address the count-to-infinity problem.

A simple example of the type of limitation described above with respect to EGP,

whereby EGP provides no means to meaningfully compare two or more existing paths,

is depicted in Figure 1.4. Here, for instance, the administrators of an AS A would like

to follow a policy of avoiding the use of paths which traverse links both of whose AS’s

are outside of the set of AS’s in the area marked “core” (e.g., C-D and C-F are both

acceptable, but F-G is not).

12

(a) Example AS Network
Next Cost Path Vector

B 9 B-E
C 5 C-F-G-H-E
D 7 D-G-H-E

(b) Distance/Path Vector Informa-
tion From AS A to E

Figure 1.4: Exterior Gateway Protocol Algorithms: Distance vs. Path Vector

It is not difficult to see from this example that if AS A receives only distance informa-

tion from its neighbors, it cannot know that the only path acceptable under its policy is

via B. However, because it includes path vector information in its reachability informa-

tion, any policy allowed by selecting from among the routes a given AS’s neighbors are

using (i.e., any policy implementable using hop-by-hop routing) is implementable using

BGP [130, 113].

1.2.4 IP Routing Economics

While the merits of a data transport network model may be evaluated with respect to

such factors as reliability, performance, extensibility or scalability, economic feasibility

is often equally important in determining success or failure: if there is no way to make a

system profitable, there is likely no means to pay for the infrastructure to support it.

By the early 1990’s, commercial traffic was far outgrowing research traffic on NSFNET,

which was largely a cooperative endeavor between autonomous systems and which was

13

originally intended to be an exclusively research-only network. In 1992, the U.S. Congress

even provided an exception allowing NSFNET to carry commercial traffic. However,

a transition was already underway toward an Internet backbone formed by commercial

telecommunications carriers, instead of NSFNET. Nevertheless, even after the transition

was complete, the early NSFNET model described above, whereby a core set of network

providers provided transit service to a larger set of regional providers was largely contin-

ued.

After the transition (and even to the present day), billing was generally implemented

between AS’s using BGP to implement routing policy. Here, with respect to payment

for a given packet, two basic relationship types may be defined between AS’s: transit and

peering. Transit relationships can be further classified as customer-provider, whereby the

former pays the latter, or provider-customer, whereby the latter pays the former; peering

typically involves no fee exchange, and is entered into under the (presumed) benefit of

both parties. Payment for network service was either flat rate, whereby a user or provider

pays a single fee (typically per month) for the right to send or receive (transit) data,

or volume-based, whereby costs increase by some function of total transit data volume;

recently, however, nearly all inter-AS relationships are volume-based.

Under this scheme the most local AS’s, often called “tier 3,” make payment to higher-

level regional AS’s for transit services; these higher-level regional AS’s, often called “tier

2,” in turn receive transit services from and make payment to top-tier or “tier 1” AS’s,

which have adopted their “core” transit role directly from the old NSFNET structure.

Thus, it is worth noting that this hierarchy is largely an artifact of the original NSFNET

structure.

1.3 Current Issues in Interdomain IP Routing

The interdomain routing structure described above has provided scalability in terms

of the number of hosts, routers and autonomous systems it supports, as well as the

amount of traffic it routes and the speed at which it does so. However, the more re-

sponsibility is placed on the Internet for providing access to an ever-widening set of

14

communications requirements, the more critical its shortcomings become. Such criti-

cal shortcomings in BGP have been pointed out in the literature with respect to three

areas: (1) reliability and service quality, (2) policy routing and traffic engineering and

(3) routing economics.

1.3.1 Reliability and Service Quality

As discussed in Section 1.2.2, convergence is a property of any distributed path com-

putation algorithm implemented on a given set of routers and an algorithm is said to

converge on a set of routes in a given system if, in the absence of further input (e.g., path

faults), a single set of routes is eventually decided upon by all participating routers. This

process is invoked each time new path information is provided to BGP routers—in the

form of a new route (e.g., a restoration of a failed link), revocation of an existing route

(e.g., failure of an existing link) or modification of an existing route (e.g., a change in AS

preference). Thus, it is the effective means by which BGP (1) provides connectivity via

failover to alternate routes, (2) maintains high performance via selection of better routes

and (3) implements the afore-described policies.

Despite the fact that its path vector mechanism allows it improved convergence prop-

erties with respect to simple distance vector algorithms (e.g., avoidance of the count-to-

infinity problem), the path vector algorithm has been shown to exponentially exacerbate

the number of possible routing table fluctuations [90]. It has been shown that the theoret-

ical upper bound on complexity for BGP convergence is O(N !) where N is the number

of AS’s [89]; while the authors note this is only a theoretical upper bound, not likely to

be encountered in practice, it nevertheless, indicates the level of complexity inherent in

the distributed computation [89]. Because latency and packet loss have been shown to in-

crease greatly during failover [89], the complexity of convergence has an major effect on

Internet reliability and service quality; long convergence times in the face of failover, for

example, mean slow response times to faults, poor reliability and poor service quality.

Unfortunately, even conservative estimates by ISP’s put convergence time in the pres-

ence of a failover at around half of a minute [79] and a theoretical absolute minimum con-

15

vergence time on a complete graph has also been estimated to be about 30 seconds [89].

Moreover, actual measured delays in Internet interdomain path failovers have been mea-

sured to average three minutes to to take as long fifteen minutes [90, 47] to recover com-

pletely from.

Further, a number of possible sources of routing instability have been identified, be-

yond simple hardware failure (e.g., cable cuts). For example, these including malicious or

inadvertent misconfiguration and unforeseen interactions between exterior and interior

gateway protocols as well as protocol timer interactions.

Coarse-grained policy controls are well-known to complicate BGP configuration [145].

It has been estimated that between 0.2% and 1% of BGP prefixes (address ranges mapped

to AS’s) experience a misconfiguration on a given day [103]. This issue has severe conse-

quences because it has been demonstrated that it is possible for administrators to specify

configurations which guarantee non-convergence [63]. Moreover, it is possible for such

misconfigurations (e.g., so-called “black holes”) to cause an AS in an entirely different

region to experience service instability and even complete long-term service disruption;

such events have actually occurred [8] and may have been the result of malicious activ-

ity [159].

Since misconfigurations have such potential for damage, it would seem that static, off-

line verification of BGP network configurations would be a reasonable solution. How-

ever, for competitive and security reasons, network operators are generally not inclined

to release routing information. Moreover, even if all network operators were to make

such routing information available, verification of global convergence conditions or even

AS reachability has been shown to be either NP-hard or NP-complete, making dynamic

solutions for identifying pathological configurations and coping with them the only fea-

sible approach [63].

Moreover, even “normal” protocol interactions between BGP and various interior

gateway protocols (e.g., OSPF) have been shown to be a source of delayed convergence.

For example the use of time-varying metrics (from an IGP within an ISP) have been

shown to produce “hot potato routing” or route flap—conditions whereby, in the pres-

16

ence of multiple routes, the route selected changes relatively quickly over time [153].

Such changes can produce rapid swings in end-to-end latency which are well-known to

have a detrimental effect on TCP performance, for example.

BGP’s path vector-based protocol addresses the shortcomings of EGP and allows

for the subset of policy routing capabilities implementable using hop-by-hop routing.

However, this has introduced greater complexity in terms of the number of routing table

fluctuations possible as well as the computation complexity of routing table convergence.

These issues with convergence have wide-spread effects, including failover times which

are unacceptably high for mission-critical and live communications; moreover, research

suggests it is not likely possible to improve BGP convergence times to support such

applications. Moreover, it has also been shown that BGP is prone to configuration errors,

that such errors are pervasive, that they can be critical to Internet performance and that

static configuration validation is not generally viable. Finally, it has also been shown

that even “normal” protocol interactions, where a best default route is selected, can cause

routing performance issues for protocols sensitive to swings in latency such as TCP.

All of these issues are linked to BGP’s dependency on convergence; thus, no matter

how much BGP is improved, because its fundamental design requires convergence, it is

unreasonable to expect restoration delays to be maskable, or hidden from users; more-

over, it is even more unlikely that BGP or any hop-by-hop routing system can match

the reliability guarantees provided by circuit-switched networks where, for example, re-

sources can be provisioned for use in the event of a fault and failover carried out within

milliseconds.

1.3.2 Policy Routing and Traffic Engineering Issues

As described in Section 1.2.3, policy routing refers to selection of routes based on a

given set of rules. Rules, here, typically refer to the administrative desires of network

operators. For example, a large network operator may provide fee-based data services

(e.g., upstream Internet access) to regional AS’s (e.g., ISP’s). Such rules allow a network

operator to provide those ISP’s transit service—service connecting other AS’s to them—

17

but to deny transit services to other AS’s. However, BGP-based rules may sometimes

also used to implement more political policies regarding networks or even territories

that data my traverse. For example, “traffic originating in and destined for Canada should

not traverse the United States,” or “traffic should only transit Iceland if there is no other

alternative.” Such policies are configured on each BGP router.

Nevertheless, there are policies which BGP cannot enforce. For example, it is not

possible with BGP to select a route to a given destination that a neighboring AS does

not use for its own traffic; that is, BGP does not enable one AS to send traffic to a

neighboring AS intending that the traffic take a different route from that taken by traffic

originating in the neighboring AS [130]. This shortcoming arises because all traffic from

one AS to another is expected to follow the same route—BGP is inherently restricted by

hop-by-hop routing and can generally provide no means for paths to be selected on some

other basis than destination AS.

Moreover, BGP uses selective path propagation as a means of policy enforcement—

that is, an AS only announces an AS path to a neighbor if it wishes that neighbor to

use the path [145]. At least two common problems arise from this practice: (1) BGP

generally relies upon the lack of general knowledge of a route to prevent its use, however

it has been shown that this method is not completely effective [61]; and (2) this selective

path propagation complicates fine-grained route access control by excessively limiting

propagation of route information [61]. A BGP-based solution to the first issue exists

but involves the use of error-prone dynamic filters; a solution to the second requires

fine-grained policy controls not currently provided by BGP [61].

While the case for finer granularity interdomain traffic engineering controls and thus

finer granularity policy routing mechanisms has been made numerous times [122, 2, 46,

166, 36], the Internet’s hop-by-hop routing paradigm whereby each AS independently

selects the route taken by each packet, is at odds with such controls and makes them

impossible to implement without a fundamental change to this paradigm.

18

1.3.3 Routing Economics

Routing economics refers to the means by which payment is made for data transport.

An routing economic model for routing refers to an instance of a means for paying for

data transport. There are also issues with present Internet routing economic model. The

main problem is that (largely as an artifact of the old NSFNET structure, as mentioned

in Section 1.2.4), there is generally no way for compensation to pass from a given user

to all operators on the path their data flows through. This raises a number of issues.

For example, while a network user may enjoy the benefit of the resources of all operators

along their data path, use of the “downward” portion is effectively paid for by the destination,

resulting in difficulties for providers. Moreover, top-tier providers effectively become a

cash sink whereby compensation flows inbound to them from mid-tier providers but not

outbound to mid-tier providers.

1.4 Past and Present Approaches to Interdomain IP Routing Issues

A number of approaches have been proposed to address the shortcomings of inter-

domain IP routing described above with respect to (1) reliability and service quality,

(2) traffic engineering and policy routing and (3) routing economics. The number of

extant proposals is high and varied, but this section shows that many of the proposals to

address these shortcomings adopt multipath routing approaches. This section summa-

rizes the most salient of past proposals, dividing them into five categories: those which

(1) change nothing, (2) replace IP entirely, (3) extend IP from below the network layer,

(4) extend IP from within the network layer, and (5) extend IP functionality from above

the network layer.

1.4.1 Change Nothing: Heavily Overprovision

As discussed above, the general lack of any resource allocation primitive means that

the Internet treats all packets equally, which makes it difficult for to match the perfor-

mance guarantees of circuit switched networks. Indeed, it has been stated that “the Holy

Grail of computer networking is to design a network that has the flexibility and low cost

19

of the [best-effort] Internet, yet offers the end-to-end quality-of-service guarantees of the

telephone network.” [82]

As discussed in the next section, the search for this ideal has been a major focus of

network research and development for the past three decades and the absolute necessity

of resource allocation for certain services—that is, the need to treat packets carrying data

of different services differently or unequally—in providing services on a future Internet

is often an unquestioned assumption.

The issue of unequal handling of packets has recently become a topic of debate in

society at large: ISP’s have asserted their right to differentiate between services, osten-

sibly in order to improve their quality; critics have raised objections over ISPs assessing

different rates to different user “classes”. Such critics have pointed out that the current

Internet follows a strategy of meeting service requirements by heavy overprovisioning—

that is, by providing far more bandwidth than is required for any given service [117].

They point out that, such overprovisioning is capable of providing statistical guarantees

for services without the large overhead and setup delay of a circuit-switching control

plane and without the network state it introduces.

Moreover, serious proposals have been made to use the IP current network as a ba-

sis for a new type of packet routing which does not perform packet routing from one

host machine to another but from a host or application to the required data [75]. Since

then, a number of such data- or content-centric networking proposals [86, 74] have drawn

research attention away from replacement of the current IP regime and toward more in-

telligent data location.

However, since they do not address the issue of the actual network paths selected

for data transfer and only focus on obtaining data from any source, such schemes may

actually provide performance worse than the current Internet. Moreover, while they

may be well-suited for services such as bulk file download, approaches such as those

based on the statistical guarantees based on overprovisioning as well as content-centric

network are not sufficient for critical services such 911 (emergency services) which must

operate even during times when network congestion is likely. Thus, it is difficult to

20

imagine the construction of such services without better use of the multiple paths the

current Internet is known to possess.

1.4.2 Interdomain IP Replacements

The architecturally cleanest approach to addressing the issues described above is to

completely redesign the current routing infrastructure from the ground up and reim-

plement it with new software and/or hardware to provide better use of multiple paths.

Unfortunately, this approach also incurs the highest up-front cost due to the need to up-

date software and possibly hardware on all routers, switches and endhosts. Nevertheless,

serious and technically sound proposals to replace IP have been made and include ATM,

IPv6, Nimrod, 4D and RCP, as discussed below.

1.4.2.1 ATM

The central features of Asynchronous Transfer Mode (ATM) are its small frame (cell)

size, making it well suited for voice communications, and its virtual circuit switching

paradigm, which implemented the resource allocation primitive discussed above. How-

ever, instead of allocating a physical circuit of fixed bandwidth, ATM allowed allocation

of a virtual circuit, with bandwidth and latency requirements granted and guaranteed

by the network. ATM was originally designed to carry data over voice-centric net-

works [143] and provides for generalized QoS guarantees—applications may request a

virtual circuit with a variety of characteristics (e.g., bandwidth and latency). Accord-

ingly, ATM’s routing and signaling protocols are relatively advanced and intricate.

Furthermore, ATM assumes both control and data plane functions; as such it is in-

timately concerned with both how data is carried over its virtual circuits and the actual

forwarding to implement those circuits. It uses a short (53 byte, 48 byte payload, 5

byte header), fixed cell (packet) format amenable to fast hardware implementation and

high network utilization. Partly to allow for this short size, ATM cells do not con-

tain a destination address—only virtual path and circuit identifiers, which are used to

select an output port at every switch along the path of a virtual circuit. Because ATM is

21

packet-switched, using these a virtual path and circuit identifiers, it is said that ATM is

packet-switched and circuit-oriented.

This packet switching scheme implies the need for a protocol not only to calculate

routes through the network, but also to assign virtual path and circuit identifiers (to

ports) at each switch along a given route. A protocol known as PNNI (physical network-

to-network interface) provides for the establishment, maintenance and teardown of paths

and circuits. That is, PNNI provides (1) for the selection of a path meeting the specified

requirements, and (2) for the assignment of virtual path and circuit identifiers from in-

put to output ports at each switch along the path. However, given the global scope of

ATM, a flat network of such identifiers would simply not scale. Therefore, one of the

main features of PNNI is hierarchical routing structure, allowing ATM subnetworks to

abstract internal routing details from higher layers—providing for scalability.

ATM saw wide deployment in the 1990’s and is still in use today. ATM remains

unique in that it was intended as a complete end-to-end data routing and transport so-

lution: its architecture allowed interdomain resource allocation and thus for bandwidth

and latency guarantees to be made across network operator boundaries. This is impor-

tant because unless resource allocation and reservation is made on a complete, end-to-

end basis, performance guarantees are not generally possible (i.e., on the non-reserved

links) [34].

While ATM specifications were even proposed for portable devices and wireless en-

vironments [6], for a variety of reasons, not the least of which was its high interface

price and negligible performance benefit relative to Ethernet at the time, ATM never

replaced IP and generally only saw widespread adoption within data centers for use in

traffic engineering. [80]

1.4.2.2 IPv6

Long proposed as the successor to IP version four described above, IP version six

(IPv6) [37] has been the subject of much criticism and debate [161], and even now that

IPv6 implementations are complete in most modern operating systems and routers, the

22

difficulty in completing its implementation has been great, due in no small part to the

fact that there has been insufficient economic and technical incentive to fully switch

over to IPv6 [87]. IPv6 represents no great architectural change to IPv4: it proposes

no new resource allocation primitives [37] for reliable connection-oriented operation; it

would likely continue to use BGPv4 via proposed extensions [105]; and its most effective

provisions are a 128-bit address space to replace IPv4’s 32-bit addresses and an extensible

packet format allowing new endhost-based options to be implemented.

IPv6 was developed largely to address a perceived imminent need for a larger ad-

dress as well as make routing more flexible; however, the use of network address/port

translation (NAPT) in home routers and ISP’s has, in large part, ameliorated this prob-

lem. While NAPT complicated the hosting of inbound services such as web servers on

machines behind NAPT-based routers, peer-to-peer services such as Skype [142] and Bit-

Torrent [31] have found suitable workarounds for implementing services on them. Ac-

cordingly, the perceived imminent need for IPv6 has never materialized. Architecturally,

it represents an incremental step and does not provide new solutions to the routing chal-

lenges presented above. Moreover, because of its large address space, IPv6 is also likely

to increase the number of prefixes which must be mapped to AS numbers for Internet

routing. Since these mappings must be stored in the routing tables of every router, recent

studies suggest that this may ultimately limit IPv6’s scalability [120].

Accordingly, while IPv6 provides useful features such as stateless automatic host con-

figuration [116] and packet header extensions, it does not address the routing issues dis-

cussed above and a solution to them must be sought even after it has been implemented.

1.4.2.3 Nimrod

Nimrod [24] is a hierarchical, map-based routing architecture implemented as a set

of protocols and distributed databases. Given a traffic stream’s description and require-

ments, Nimrod provides network devices with information sufficient to allow them to

select their own network paths. The architecture addresses scalability by allowing ar-

bitrary levels of clustering and abstraction of internetworks, by restricting routing in-

23

formation distribution, by caching and by limiting forwarding information. Users of

Nimrod control establishment of paths while service providers control the maintenance

of paths. Nimrod accomplishes path selection through the propagation to end-hosts

of clustered, abstracted, recursively resolvable internetwork maps. It establishes several

modes of transport including those similar to IP source routing, another similar to na-

tive IP hop-by-hop routing and finally a flow-state based protocol. Nimrod addresses

current IP reliability and performance issues by allowing endhosts to select paths to

meet their own application requirements, without requiring connection-switching and

per-connection state maintenance on routers. While an interesting proposal, a consensus

was never established on the sufficiency of this method at addressing current IP issues

and providing for future network requirements, and thus it was never implemented.

1.4.2.4 4D and Tesseract

The 4D architecture [61] as well as its implementation Tesseract [167], is based on the

supposition that the Internet is fragile and difficult to manage because of the complexity

of its control plane (used to implement distributed routing algorithms across network

elements) and management plane (used to monitor the network and configure data plane

mechanisms and control plane protocols). Accordingly, they advocate the elevation of

three key principles: network-level objectives, network-wide views and direct control via the

use of four architectural planes: decision, dissemination, discovery and data. This design,

they argue, allows for a separation of decision logic from protocol operation—something

not possible with today’s Internet architecture.

Network-level objectives call for each network to be configured via a high-level spec-

ification of performance requirements and expectations. Network-wide views allow a

“coherent” snapshot of the state of each network component, providing network ad-

ministrators an accurate, up-to-date view of the data plane. Direct control refers to the

principle that decision logic should not be the responsibility of routers and switches

which manipulate the data, but should be the purview and responsibility of control and

management systems which communicate this information to them.

24

The decision plane is where all decisions driving network control are made including

reachability, load balancing, access control, security and interface configuration. The

dissemination plane exists to provide the system a robust and efficient communication

substrate connecting routers/switches with decision elements. It attempts to address

the problem of how to bootstrap a network configuration with a minimum of static

configuration. The discovery plane is responsible for discovering physical components

in the network and creating identifiers to represent them. It also provides information

to the decision plane for construction of network-wide views. The data plane simply

handles individual packets based on the state that is output by the decision plane. It may

also have fine-grained support for collecting measurements on behalf of the discovery

plane.

As noted in its ACM public review, 4D is not without critics. Many point to marked

similarities between 4D’s more salient features (such as centralized management) and

those of past research and production architectures (e.g., IBM’s SNA [60]) which, for a

number of reasons, have ultimately failed to bring about the type of change 4D seems

to promise. Many do agree, however, that 4D’s problem summation is accurate and

succinct; particular with regard to IP’s conflation of control and data plane [61]. Finally,

while it may provide a more flexible means for manipulating router forwarding tables, it

does not directly address the use of multiple paths in meeting Internet performance and

flexibility goals.

1.4.2.5 RCP

In addition to Tesseract, the 4D system’s ideals are, in part, reflected in a more con-

crete proposal known by its authors as the Routing Control Platform (RCP) [50, 145].

Like 4D, RCP emphasizes architectural separation of routing policy from protocol.

It accomplishes this by removing the task of route selection, propagation and policy en-

forcement from individual routers of a domain and placing it into a logically-centralized

system termed the “Routing Control Platform”. Feamster, et al. claim that RCP could be

implemented incrementally: first AS-internally (as an intra-AS replacement for iBGP and

25

internal BGP route reflectors), then externally (by handling communication with neigh-

boring AS’s and performing AS-wide routing decisions), and the final step–full intra-AS

RCP.

The authors claim the accruing benefits from incremental implementation as follows.

Intra-AS RCP: constraint checking, no undesirable “hot-potato” routing and more flexi-

ble traffic engineering. AS-wide RCP: simpler router configuration, network-wide traffic

engineering, intelligent flap damping and improved prefix aggregation. Inter-AS RCP:

new routing protocols and improved diagnostics and trouble-shooting.

RCP is predicated upon three fundamental principles: a consistent view of routing

state, control of routing protocol interaction and support for flexible, expressive policies. A

consistent view of the network is implemented via an unspecified, distributed method of

centralization (“logical centralization”). Providing a consistent view allows easier policy

expression, prevention of undesirable inter-router dependencies and better routing by

eliminating inter-router state inconsistencies.

Better control of routing protocol interaction is another byproduct of centralization.

Its advantages are said to include: no hard-wired protocol interactions (e.g., eBGP-IGP)

to constrain operator control, fewer protocol inconsistencies (e.g., iBGP-IGP) to cause

forwarding loops and/or route oscillation and possible enhanced overlay-Internet inter-

actions by exposing more network information to overlay networks providing far greater

efficiency than current polling-based methods allow.

Finally, centralization also affords more flexible, expressive policy support. This in

turn is said to allow: a direct method for policy enactment (as opposed to BGP’s current

indirect means); improved policy enactment (over what BGP currently allows); and,

greater inter-AS cooperation through configuration simplification.

RCP is a promising proposal, along the same lines as 4D for improving the flexibility

of managing wide-area Internet routing. Challenges to implementation center around

robustness (“logical centralization” requires careful planning to avoid a single point of

failure), scalability (any centralization must be planned to avoid bottleneck creation)

26

and convergence speed (to ensure that routing table updates to routers are timely and

symmetric).

1.4.2.6 Architecture for User-Selectable Routes

Yang proposed [170] the development of an infrastructure based on the current In-

ternet which could be incrementally adopted with the goal of allowing applications on

endhosts to select the first few hops from a source toward the network core and last

few hops toward a destination. The data plane described herein is different in that it is

directed at experimental use and provides full path selection.

1.4.2.7 PoMo

PoMo (Post-modern Internetwork Architecture) [15] proposes a “post-modern” in-

ternetwork architecture which attempts to address some of the major problems of the

current Internet routing architecture, mainly by: separating forwarding from routing,

making addressing independent from routing, improving peering relationships, allowing

greater information flow to endhost applications and creating a mechanism for secure

path sales.

PoMo’s data plane architecture is similar to that described herein in that it is based

on a unidirectional “link” abstraction between two forwarding elements and paths are

essentially formed via lists of link identifiers. The data plane described herein differs

from that of PoMo in that it is targeted at flexible research and development use and

provides no means for secure path sales; similarly, the control plane described herein

also differs from PoMo’s in that it is not intended for full-scale Internet use but is RPC

query-based and meant for ease of experimentation.

1.4.2.8 Pathlet Routing

Pathlet routing proposes a new routing protocol based on the distribution of inter-

domain path segments which sources concatenate in order to form end-to-end paths [59].

It uses source routing based on forwarding identifiers placed in the packet header which

identify a given pathlet. Routers learn of pathlets via a control plane which distributes

27

them. It is argued that, because pathlet segments only depend upon the initial and final

routers of the path segment, pathlet routing can provide for local transit policies not

possible with BGP, and that, while this makes it impossible for AS’s to implement pol-

icy based on a packet’s ultimate destination and slightly increases state, that the benefits

of enhanced traffic engineering and routing freedom outweigh these shortcomings [59].

Moreover, pathlet routing is also sufficiently flexible to allow emulation of other routing

protocols such as BGP and NIRA. Pathlet routing’s implementation is said to increase

state only slightly over BGP and thus be implementable using routing technologies al-

ready available. The main challenge to path routing is that it requires significant modi-

fications to existing Internet protocols such as BGP in order, for example, to distribute

pathlet identifiers.

1.4.2.9 Current Next Generation Initiatives

Finally, for the past few years large-scale initiatives to construct and test next-generation

Internet architecture alternatives have been ongoing in a number of countries; for exam-

ple, the GENI project in the US [58], FIRE in the EU [51] and AKARI in Japan [3]. Thus

the dominant thought on networks seems to be that the current Internet architecture is

not extendable and a new architecture is required to meet future needs. Nevertheless,

it is instructive to see what problems past initiatives to extend the Internet sought to

address.

1.4.3 Extending IP From Below

As discussed above, computer network designers long sought a network architecture

with the flexibility and low cost of the Internet and the end-to-end quality-of-service

guarantees of the telephone network. After it became clear that an all-in-one (physical

layer to application layer) solution via ATM was not feasible and IP would dominate,

network designers sought a middle ground that was agnostic to physical and data link

layers and would operate nicely with IP to provide the best of both worlds: a resource

allocation primitive without poor utilization. The result was MPLS and, later, GMPLS.

28

1.4.3.1 MPLS

Multi-Protocol Label Switching (MPLS) [133] evolved in the early-to-mid 1990’s from

several technologies, but mainly from ATM and was eventually brought forth as a stan-

dard by the IETF (MPLS Working Group) in January 2001. MPLS is often described as

a “layer 2.5” (L2.5) protocol because it generally performs network switching functions

by examining a small header wedged between layer 3 (e.g., IP) and layer 2. The protocol

was conceived during the early-to-mid 1990’s when it was supposed that conventional IP

routers would be unable to scale to meet the increasing throughput needs of future net-

works (gigabit and beyond). However, the advent of wire-speed IP routers and routing

switches proved this incorrect and many supposed MPLS might disappear. Nevertheless,

one of MPLS’s design goals was to allow the hardware switching advantages of ATM to

be realized on non-ATM layer 2 hardware. Accordingly, MPLS has been adopted as a

traffic engineering tool for network operators to use internally. It is currently widely

deployed, for example, in the core routers of ISP’s to handle internal routing of transit

traffic.

A basic MPLS nomenclature is as follows. MPLS domain: a contiguous set of MPLS-

capable nodes; edge nodes: border nodes which connect to non-MPLS systems or other

domains; forwarding equivalence classes (FEC’s): classes of packets all of which are for-

warded in the same manner (same path, same priority, etc.); labels: short, fixed-length

identifiers (generally of local significance) placed in a frame to identify a particular FEC;

NHLFE: the Next Hop Label Forwarding Entry maps labels to actions; label stack: an

ordered set of labels (in a frame).

MPLS switching is conceptually simple: upon receiving a frame, a node examines the

label atop the label stack, looks this label up in its NHLFE and takes action accordingly:

usually popping the label from atop the stack and forwarding the packet out on the

interface indicated. However, a given NHLFE can also trigger other actions. A few

examples are: pushing several more labels on top of the stack—perhaps tunneling the

frame (e.g., for a VPN); rewriting the stack labels entirely (e.g., for traffic engineering in

a multipath setting); and giving the packet priority in queueing (e.g., in a QoS setting).

29

The stack-based approach is simple, yet powerful, but major complications come in

the form of NHLFE table propagation. In the most common case of IP-based MPLS

networks, basic FEC’s are formed directly from wide-area (i.e., EGP) routing and/or

local area (i.e., IGP) routing tables. Though the mechanism of FEC label propagation is

left to MPLS, the logic of those labels is determined directly by routes propagated by the

given higher-level (IP) protocols.

To some degree, this still allows network operators to perform traffic engineering

and add QoS functionality (e.g., by using static FEC’s for traffic engineering and a QoS

signaling protocol such as RSVP [68] for QoS). However, pairing MPLS and current IP

with its limitations, which, as will be discussed later, include slow convergence, lack of

multipath routing options, and the like, serves to diminish MPLS’s capabilities.

To sum, MPLS brings the benefits of an end-to-end switched underlay network and

has proven invaluable to network operators in traffic engineering. As is discussed later

with respect to RSVP, it has also been used as a tool for implementing resource allocation

with resources being accessed via assigned labels [7, 85]. Moreover, unlike ATM, MPLS

is data link layer-agnostic, capable of being used with any link layer technology, and

some in the research community have seen promise in its use with edge networks and

even wireless edge nodes [164, 140, 95, 101], raising the possibility that it could be an

end-to-end multiprotocol switching solution. However, with regard to end-to-end use

in securing network resources, it is not generally possible to use MPLS labels between

network operators and therefore end-to-end resource allocation is still not feasible with

MPLS even in view of protocols like RSVP.

1.4.3.2 GMPLS

Generalized Multi-Protocol Label Switching (GMPLS), as its name suggests, gen-

eralizes multiprotocol label switching for use with all-optical networks and lambda-

switching or dense wavelength division multiplexing (DWDM) in service provider net-

works. Until recently, networks were constructed from a large variety of underlying

physical and data link layer technologies.

30

For instance, DWDM technologies have been introduced, whereby multiple carrier

signals in a number of frequency bands are multiplexed onto the same physical fiber,

each signal providing high speed transport for network data; atop that, time division

multiplexing (TDM) technologies from the voice arena such as SONET/SDH provide

a method for multiplexing disparate data streams onto a single channel to increase uti-

lization; above that, ATM or MPLS is often used to provide traffic engineering (TE) and

quality of service (QoS) guarantees for the IP traffic transported atop these technolo-

gies. [9]

Lack of a coherent design and all-encompassing control plane to unify administration

of equipment providing multiplexing of data on so many levels (i.e., DWDM and WDM,

TDM, fiber cable and even IP layer) made network management time-consuming and

error-prone. It was seen as critical by the networking industry to address this issue while

still supporting newer networking technologies and GMPLS was the response. [9]

First, the sheer number of virtual communication channels which DWDM multi-

plexes onto a single fiber (soon to number in the thousands or more) [9] make managing

DWDM networks using today’s largely manual and error-prone methods unacceptable.

Not only would it become even more difficult to identify what data was traversing which

endpoint, link or lambda, but assigning IP addresses to all of these is not feasible. To ad-

dress these issues, GMPLS establishes an automatic address configuration mechanism

which assigns “unnumbered addresses” to routers and has routers assign numbers to each

of their link endpoints. Links, then, are ultimately identified by the tuple [router ID,

link number]. These tuples are then used by routing protocols to identify routes on the

network. Duplicates are unlikely and are handled by a separate process. [9]

Second, the variety of physical and data link layer technologies mentioned earlier

(e.g., WDM, SONET, MPLS for IP) had an unfortunate consequence: each had a dis-

tinct and individually managed control plane. In other words, each came with its own

setup and management interface – greatly complicating configuration, setup and adminis-

tration and making it very difficult to automate configuration in direct support of traffic

and network demands. [10]

31

In response, GMPLS presents a unified switching hierarchy reflecting the nature of

DWDM. Higher hierarchy levels represent greater data stream specificity and are nested

(or transported) within lower layers. The lowest level in this hierarchy is the coarsest;

at this level, switching refers to the transfer of data signal from one switch port or fiber

to another. This is generally known as fiber or port switching and equipment capable of

this type of switching is known as Fiber Switching Capable (FSC).

In the next level up, switching refers to the mapping of a lambda on an input port

to a (possibly different) lambda on an output port. This is generally known as lambda

or wavelength switching and equipment capable of this type of switching is known as

Lambda Switching Capable (LSC).

Switching one level further up in the hierarchy refers to the mapping of data input to

time slot (i.e., to time division multiplexing). This is generally known as TDM-switching

and equipment capable of this type of switching is known as Time Switching Capable

(TSC).

The highest level in the hierarchy refers to switching based on the content of a packet

header such as an IP or possibly an MPLS label. This is generally known as packet switch-

ing and this type of equipment is generally known as a packet switch or a router. [9]

Switching in GMPLS is performed based on a label stack like that of MPLS where the

stack has a type identifying to which part of the hierarchy it is referring. Thus, GMPLS

generalizes MPLS to the management of a hierarchy of optical networking technologies

and represents a control plane therefor.

However, GMPLS has a few drawbacks. First, because it is primarily aimed at con-

trol of optical technologies, it is not a “universal” network control plane. For example,

although work has been done to partially alleviate this issue [97], GMPLS is still not

generally usable for controlling Ethernet devices, which have a strong installed base.

Second, and most importantly, GMPLS, like MPLS, still does not operate between oper-

ator boundaries. While work continues on the latter issue [168, 36], these two drawbacks

currently make it impossible to use GMPLS as an end-to-end switching solution, for ex-

ample, to allow better exploitation of existing paths.

32

1.4.4 Extending IP From Within

Simultaneous with the development and eventual rollout of ATM in the mid-to-late

1990’s, extensive research and development was being performed with the goal of imple-

menting QoS on IP networks without the aid of an underlying QoS-supporting layer 2

network like ATM. Two models emerged from the IP research community: integrated

services and differentiated services.

Integrated services or IntServ allows the network to identify individual packet flows

and respond to (and provision for) their needs; the term refers to a “an Internet ser-

vice model that includes best-effort service, real-time service, and controlled link shar-

ing.” [21]. In other words, IntServ is a QoS model which allows the network to respond

to each application requirement. In an integrated services network, applications may

make direct requests of the network for precisely the type of network resources they

require and the network will respond—granting the request if possible, denying it other-

wise.

IntServ requires the network to maintain state for flows which request special re-

sources (beyond best effort delivery). Although it does present an attractive platform

upon which to build applications, state maintenance makes IntServ difficult to imple-

ment on otherwise stateless networks like the Internet.

Differentiated services [17, 64] or DiffServ defines a fixed number of behavior classes.

All packets which traverse a network are assigned to a specific traffic class. Each class is

associated with a particular type of handling required of any given packet in the class.

These handling types, known as a per-hop-behaviors (PHB’s), are then used by routers in

determining which packets are dropped when congestion occurs or possibly even which

packets should traverse faster routes, or those more in keeping with the goals of their

traffic class.

DiffServ is relatively easy to implement on a stateless network such as the Internet

and, as such, represents a pragmatic and realistic approach to providing QoS guarantees.

However, the lack of flow differentiation ultimately makes it nearly impossible for ser-

vice providers to provision and guarantee resources for a given flow. Furthermore, the

33

fixed number of traffic classes represents a limitation to the development of new applica-

tions.

In a theoretical sense, IntServ and DiffServ lie at opposite ends of the same spec-

trum; for example, an IntServ network can be conceived of as a DiffServ network which

assigns a per-hop-behavior class for each flow. Not surprisingly, efforts at implement-

ing the DiffServ and IntServ models on the Internet have, in part, resulted in two very

different protocol suites: RSVP and MPLS, respectively (which are discussed next in Sec-

tion 1.4.4.1 and briefly in Section 1.4.3.1). It is not without irony, then, that RSVP and

MPLS were harmoniously merged into GMPLS, the subject of Section 1.4.3.2.

1.4.4.1 IntServ and RSVP

At the heart of the proposed IntServ model [21] is RSVP [173]. RSVP is a network

resource reservation protocol with the following stated goals: (1) a modular design to

accommodate heterogeneous underlying technologies; (2) accommodation of heteroge-

neous receivers; (3) an ability to exploit the resource needs of different applications in

order to use network resources efficiently; (4) allow receivers to switch channels; (5) an

ability to adapt to changing multicast group membership; (6) control protocol over-

head so that it does not grow linearly (or worse) with the number of participants; and,

(7) adapt to changes in the underlying unicast and multicast routes.

In accomplishing these, it assumes the following design principles: receiver-initiated

reservation, separating reservation from packet filtering, providing different reservation

styles, maintaining “soft state” in the network, and protocol overhead control and mod-

ularity. RSVP is said to be “... primarily a vehicle used by applications to communicate

their requirements to the network in a robust and efficient way, independent of the spe-

cific requirements.” [173]

RSVP-capable routers make use of an independent admission control mechanism to

reserve resources; this mechanism is provided a flow requirements specification by the

receiver in order to determine whether a given request can be accepted. Thus, RSVP is

a method for message resource reservation request passing and uses whatever underlying

34

routing protocol exists for message delivery. Separating it from the routing mechanism,

QoS implementation and admission control mechanism allows it to accomplish its first

goal of modularity.

The two most central RSVP messages are: Path messages which specify the properties

of an existing data source flow, and Receive messages which embody a resource request

made on the part of a receiver. Both of these message types contain flow specification

requirements or “flowspecs,” describing the specific requirements of a data flow (in the

case of a Path message) or the specific requirements of a host (in the case of a Receive

message), along with a few other details. By allowing both sources and receivers to pro-

vide flow specifications, RSVP allows individual hosts to request only the resources they

actually require—not necessarily the resources specified by a source’s flow specification.

Here, RSVP meets its second and third goals.

Furthermore, the protocol allows receivers to provide a “filter” (e.g., a list of IP ad-

dresses to receive from) allowing them great flexibility in specifying precisely the senders

they wish to “spend” their allocated resources on; this filter can also, in some circum-

stances, be dynamically modified to allow receivers to “change channels” (change sources)

without making additional resource reservations. In this way, RSVP meets its fourth re-

quirement.

The specific method by which RSVP forwards messages is straightforward. Path mes-

sages are simply sent along the path from source to receiver determined by the underlying

routing algorithm (i.e., they are sent “down” a multicast tree). These messages indicate

the resource requirements of the given source (but do not imply that a reservation is

made).

Receive messages indicate the desire of a receiver to reserve the resources specified

in the flowspec of the given message. These messages are sent on precisely the reverse

path of the Path messages sent by the source. RSVP implements this “reverse forward-

ing” by storing the address of the last hop upstream (toward a source) when it receives

Path messages. It is thus able to “reverse” the route of the underlying network and al-

low upstream message passing along the same downstream path from the source. This is

35

important because while RSVP cannot expect the underlying routing algorithm to pro-

vide matching upstream and downstream routes, RSVP still requires a method to pass

messages to neighbors on the path.

When an RSVP-capable router receives a Receive message, it passes the corresponding

flowspec to the afore-mentioned admission control mechanism which determines if the

request should be granted. If not, the request is rejected and RSVP “routes” this reject

message back to the requester via the router from which it received the request (or the

requester itself if they are adjacent); each router passes the rejection back downstream

(eventually to the receiver, if they are not adjacent). If the request is accepted, RSVP

passes the message along to the next router up the multicast tree as described above. In

this way, each request is handled in a distributed fashion while requiring as few routers

as necessary to process them, thereby meeting RSVP’s sixth goal

Reservations are stored using “soft state”: that is, source availability and path reserva-

tions are both expired after a given time interval and must be periodically re-registered by

sources and receivers (using the same Path and Receive messages). Though the use of soft

state requires more updates, it has the advantage of allowing RSVP to regain consistency

and stability even in the face of host crashes and lost path and receive messages. Further,

Path message updates allow RSVP to quickly adapt to changes in the underlying routing

tables, meeting its seventh goal.

1.4.4.2 BGP Fixes

A number of mathematical models have been proposed to improve both BGP conver-

gence and stability. These models first generalize BGP to some abstract and then move

on to prove conditions for properties such as convergence and optimal path selection

using it.

Research has been performed to mathematically generalize path-vector protocols and

present an algebraic framework for manipulating them, thereby allowing them to be

generalized and reasoned about more formally [146]. Therein, protocols were shown to

possess one or both of the properties of isotonicity and monotonicity; and it is proven

36

that algebras having the isotonicity property converge on optimal paths; those having

monotonicity can be shown to eventually converge. This algebraic framework allows

a convergence property to be proven with respect to a set of assumptions regarding the

type of path computation performed on each system. One practical proposal for improv-

ing BGP uses the path vector algebra to allow construction of wide-area routing protocol

schemes with basic consistency guarantees [62]. Nevertheless, it is difficult or impossible

to enforce such assumptions on a system as large and varied as today’s Internet.

Research has also been conducted to build on some basic observations regarding

pathological BGP configurations and generalize them into five properties—each repre-

senting an important aspect of wide-area routing [48]. The five properties and a brief

description of each: route validity: routes should reach their destination; path visibil-

ity: originating nodes of a given path should also know about the path; safety: a stable

routing state exists; determinism: given a starting state and a set of inputs, the protocol

should always reach the same end state; and information-flow control: routing messages

should not expose more information than necessary. These wide-area logic rules have

also been proposed as a basis for a tool which automatically detects static BGP routing

configurations violating the given constraints [49].

1.4.4.3 NIRA

NIRA [169] is a system that attempts to foster economic competition between providers

by allowing users to select the provider networks their packets will traverse. It accom-

plishes this by dividing the Internet into a hierarchy of routing domains roughly based

on degree of interconnectivity and predominant business relationship (sibling, peering

or provider-customer). Top-level or “core” domains are highly interconnected and tend

to have only sibling or peering relationships, whereas lower-level domains tend to have

less interconnection and feature peering and more often provider-customer relationships.

NIRA routers are assigned address prefixes for which they route all traffic. Recur-

sively, in a top-down fashion (starting from the core), routers are assigned subprefixes

of higher-level routers. Multiply-connected routers are accordingly assigned multiple

37

subprefixes. In this fashion, a path from a low-level router (possibly traversing higher-

level routers) and proceeding directly to the core can be completely specified simply by

providing the appropriate subprefix. Finally, end-hosts are assigned intra-network IDs

unique within their domain. These end-hosts may have multiple routers associated with

them, each with address prefixes associated with them. A path from an end-host to the

core may then be specified simply by appending the given host’s network ID.

NIRA’s fundamental idea is simple and elegant, however a good deal of complication

is created by “non-canonical” paths which connect endhosts without reaching the core

(e.g., those created when two ISP’s peer). NIRA mandates that such paths generally be

specified using multiple addresses. Methods for provider billing are suggested but not

discussed concretely. Path discovery is provided for via a path propagation protocol

which operates on a broadcast basis within domains. Inter-domain path discovery is

provided for via a DNS like lookup service.

NIRA is an interesting architecture in that it addressed a complex routing problem

through a clever use of addressing. However, its heavy reliance on the concept of an

“Internet core”, its failure to allow users to select end-to-end paths and its heavy reliance

on the existing hierarchical billing structure remain open problems.

1.4.4.4 BANANAS

BANANAS [81] proposes much finer-grained control over path selection than NIRA—

allowing users to select individual routers along a given path or subpath. Its authors

propose to extend IP by adding a “path ID” to packets, allowing specific routes to be

specified. This path ID can come in two forms—one inflexible and one somewhat more

flexible.

The inflexible method uses a simple MD5+CRC (32 bit entity) of the ordered path

segments which prevents routers along the path from intelligently reading and possibly

manipulating it and also requires them to maintain state for each path. The other uses

a bit vector where each n-bit-segment represents an encoding of an interface number of

a router on the desired path. Though the first method is more robust in the face of

38

Figure 1.5: Overlay Network Depiction

rapid routing table changes (e.g., the norm with mobile ad hoc networks or in BGP), the

second method is more feature-rich and more scalable.

The system is similar in spirit to MPLS (treated in Section 1.4.3.1), though it removes

some flexibility (path lengths are not unlimited or “stackable”) and adds one feature: no

explicit signaling is required to distribute labels. The authors propose updates to support

multiple path usage in intradomain OSPF and also apply their idea to inter-domain BGP

allowing some extension to basic BGP functionality. Beyond modifications of support

for intra-domain routing protocols, BANANAS implements no method for multi-path

route discovery—specifically no method for discovery of multiple inter-domain paths is

provided.

While the system does provide the ability for end-users to specify end-to-end paths,

BANANAS lacks any method for discovery of such paths and/or path components or

any explicit method for their computation.

1.4.5 Extending IP From Above

Due to the difficulty and expense of modifying the Internet architecture to suit new

requirements and the immediate need for a solution, many approaches to implementing

the required functionality have been made at the application layer. Most of these use

some manner of what is generally referred to as an overlay network.

39

Overlay networks overcome deficiencies inherent in the Internet routing structure

“overlaying” logical networks atop the existing structure in a fashion like that depicted

in Figure 1.5 and operate by placing packet routing functions onto endhosts and passing

packets from endhost to endhost—using encapsulation between them—to effect a desired

route. Often this desired route is one which is not selectable by the current Internet

infrastructure, thus overlay networks can provide a method to immediately route around

path faults and provide a means for selecting better-performing paths.

Overlay networks have often been employed as a solution in decentralized systems—

those without any main server. Because they employ the direct cooperation of peers,

they are sometimes referred to as peer-to-peer networks. Such applications range broadly

and include file storage and sharing [88, 65, 29, 35, 135, 67, 31], host mobility [110],

distributed databases [71] and multi/anycast [127, 128, 137, 177, 150], key/value storage

and retrieval [136, 151, 176] and telephony [142].

Moreover, overlay networks have also been employed to address general routing is-

sues. Examples here include enhanced path fault resiliency QoS [98], path (route) selec-

tion [150] and enhanced routing [4]. Below are outlined two of the more salient proposals

for generic packet routing implemented at the application layer of the current Internet,

i3 and RON.

1.4.5.1 Internet Indirection Infrastructure (i3)

The Internet Indirection Infrastructure (i3) [150] proposes an indirection-based rout-

ing system which uses a distributed hashing function to map an m-bit identifier (a semi-

random bit-string) on to a network address space (or possibly a stack of other identifiers).

The system is an overlay network, presently based on the current IP architecture.

It accomplishes its routing function using two primitives: insert(identifier,

address) and send(identifier, data). Both use the afore-mentioned dis-

tributed hashing function: insert() places a “trigger” in the network (i.e., it maps

identifier to address) and this trigger is acted upon by the send() primitive

(i.e., it looks up identifier and sends data to address, which it maps to).

40

In its simplest form, i3 places a proxy between two hosts which handles lookups

on and updates of the identifier which represents the address of their communication

session. It enables mobility by allowing insert()’s of identifiers in ongoing sessions.

It enables multicast by allowing any number of network addresses to be mapped to a

given identifier. It enables anycast through the use of inexact matching of identifiers: an

anycast group chooses a k-bit (k < m) identifier for their anycast session and this is used

to form the top k bits of their identifier. The bottom m− k bits are application-specific.

Packets are sent to the closest matching address.

A function similar to IP source routing is enabled by allowing stacks (or chains) of

identifiers to be either (1) sent in the packet (sender-controlled); or (2) registered to a

given identifier (receiver controlled). In both cases, identifiers are recursively resolved

and sent, in stack sequence, to the hosts to which the identifiers map. This allows, for

example, implementation of third-party data processing (e.g., HTML-WML translators).

Seen from another perspective, i3 is essentially a naming system in which identifiers

are recursively mapped to services.

A number of security issues, which arise when hosts are allowed to control paths,

are also addressed (albeit with marked increases in latency). Altogether, the system’s

main drawback may well be latency, which is not well addressed. Further, while novel,

the architecture’s reliance upon distributed hashing makes its reliability dependent upon

the reliability of the hash itself, which is only capable of making statistical guarantees

regarding availability.

1.4.5.2 Resilient Overlay Networks (RON’s)

Resilient Overlay Networks (RON’s) are overlay-network-based routing systems de-

signed to address some of the deficiencies in current wide-area Internet routing [4] dis-

cussed above with respect to BGP. Specifically, its slow failover, policy routing deficien-

cies and the lack of ability to use more than one interdomain path simultaneously.

RON’s attempt to address these issues by forming small groups of cooperating nodes

(less than 50) which (both actively and passively) monitor the state of the (virtual) net-

41

work links established between all of them, aggregate and exchange the collected data and

update locally-stored routing tables accordingly [4]. Network metrics measured can be

application-supplied and applications may choose routes to best suit their requirements.

Beyond application-specified performance and reliability improvements, cited appli-

cations include: high-performance proxy and network address translation services, mul-

tipath routing, policy routing and possibly even QoS guarantees.

The main problem with RON’s is scalability: because they generally employ full

mesh topologies in order to discover as many underlying routes as possible, the routing

table of a RON instance grows at O(N2), where N is the number of participating RON

nodes. Thus, in practice, RON’s do not scale well and have been, in practice, kept at

around 50 nodes. Moreover, because they actively ping each virtual link (i.e., all N2

links), if the author-suggested model of one application per RON is applied, running

many RON’s simultaneously could be detrimental to the underlying network.

1.4.5.3 OCALA

OCALA [78] aims to allow users to access different overlays simultaneously, to allow

hosts in different overlays to communicate with each other and to ease the burden on

overlay developers by providing an API toolkit for tasks common to most overlays. For

example, OCALA offers features allowing simultaneous use of services from i3 and RON

networks. OCALA features a modular architecture divided into an overlay convergence

layer which fits between the transport and network layers, and an overlay-dependent layer

which contains details unique to respective overlays. It also attempts to provide users a

means for easy overlay selection (in their current implementation via a faked top-level

DNS suffix which).

1.4.5.4 X-Bone and GX-Bone

X-Bone [155] and GX-Bone [156] allow the configuration and management of routing

overlay networks on standard Internet hosts. However, in sharing an address space with

IP, in their use of existing IP routing mechanisms in packet forwarding, and in their

42

mixing of best path computation and forwarding mechanisms, they are strongly tied to

the old architecture and thus inherit its addressing and routing limitations. Furthermore,

their scope precludes providing inherent means for path discovery or path selection.

1.4.6 Addressing Economic Issues

Several proposals have recently been made to address the shortcomings in the Inter-

net billing model described in Section 1.3.3, and these systems generally address these

shortcomings by allowing compensation from the enduser or originating network to

follow the data along the entire path. Three salient examples exist and are described

below.

1.4.6.1 Bill-Pay

Bill-Pay [42] is designed to leverage the existing scheme of bilateral contracts between

operators while augmenting the network layer packet header to contain data allowing

micropayments from users to flow along the path their packets traverse. When con-

gestion occurs along the default path, micropayments are paid by traffic initiators to

operators to route along a less congested path as compensation for the “good” network

service provided by doing so. However, while the proposed system does provide for the

better use of multiple paths, it does not provide a means for endhost or endnetwork path

selection.

1.4.6.2 MINT

MINT (A Market for INternet Transit) [158] proposes the auction of path segments

by network operators. Use of segments would be enabled via MPLS or similar means,

and evidence is provided that modern routers have sufficient capacity to store lookup

tables of sufficient size to allow such auctions at reasonable time frames. MINT would

allow network operators to monetize enhanced routing services while providing both

providers with enhanced traffic engineering and users with better path selection.

43

1.4.6.3 Path Brokering

In proposing path brokering [93], the present author suggests that when the sole au-

thority to select routes is placed in the hands of parties benefiting from their sale, a conflict of

interest arises and proposes the sale of end-to-end Internet paths via a third party broker.

The broker is responsible for accepting compensation from consumers and passing it on

to ISP’s and thus acts as a natural advocate for consumers, similar to the role of travel

agents in the airline inudstry.

1.5 Summary of Interdomain IP Routing Issues and Approaches

Sections 1.1 discussed the two major communications paradigms, circuit- and packet-

switching, how and why the packet-switched paradigm came to dominate in the form

of IP as well as the relative merits of the two paradigms; Section 1.2 provided a broad

overview of networking with a specific focus on packet-switched networks, and IP’s

interdomain routing protocol implementation, BGP; Section 1.3 discussed shortcomings

that have been raised in the literature with IP routing and BGP and Section 1.4 described

some of the main approaches that the networking community has put forth to address

these specific shortcomings.

Three things are of note. First, nearly all of the efforts discussed above at im-

proving Internet policy, performance, reliability and even economic competition share

a common feature—generally stated, they directly or indirectly provide some form of

application-directed routing. Application-directed routing is routing wherein an appli-

cation (and thus its users) are allowed choice in the paths its packets are to traverse. Ex-

amples include most of the technologies discussed above: ATM via circuit-switching and

automated failover, IPv6 via source routing, NIRA via address-based paths, BANANAS

and PoMo via direct path selection, Nimrod, 4D and RCP via their exposing of multiple

selectable paths to applications and Pathlet Routing by allowing path stitching. There-

fore, it is reasonable to assume that, whatever architecture is adopted in a future Internet,

it will allow applications some manner of choice in the paths their packets are to traverse.

44

Second, no architecture exists to provide for all the requirements necessary to imple-

ment application-directed routing: a data plane to move packets across the network, a

control plane to manage the data plane and an application interface to interact with both.

As discussed above, a number of technologies exist which could be used to implement

an application-directed data plane; examples include ATM, MPLS, IPv6 source routing

and even overlay routing networks. However, while some control plane proposals do

exist (e.g., 4D and PoMo) at present, no viable control plane exists to realize application-

directed routing. Finally, no implementations or proposals exist for an application inter-

face to application-directed networks; this is surprising since the needs of routing-aware

applications (e.g., path scheduling, path performance monitoring, etc.) are more varied

than that currently provided for by the current socket-based interface.

Third, even once data and control planes allowing some form of application-directed

forwarding are available and an application interface is created for their use with appli-

cations, a number of serious problems remain unsolved. These include path scheduling

algorithms for efficient use of multiple simultaneous paths under a variety of conditions,

path monitoring metrics and accompanying metric analysis algorithms for ensuring paths

in use are still meeting an application’s requirements; multipath-aware best path compu-

tation algorithms to provide paths to applications; means to prevent route oscillation to

prevent network instability while still allowing applications to select paths as freely as

possible; and means for allowing existing IPv4 and IPv6 applications to enjoy the benefits of

path selection, to name a few.

1.6 Problem Statement

Many application-directed routing deployment issues still exist before practical real-

ization of application-directed routing can be achieved. However, it is difficult to per-

form the essential research required to overcome these challenges without a data plane,

control plane and application interface usable on current networks to experiment with.

As will be discussed in more detail in Section 2.2, while large-scale testbed networks such as

PlanetLab and Emulab exist which could aid in such research, and network toolkits exist to

45

extend their data plane capabilities, either singularly or in combination, they currently do not

provide an environment allowing research and development of application-directed routing.

1.7 Thesis Statement

The research presented herein provides an infrastructure for performing application-directed

routing-related research and development on large-scale testbeds such as PlanetLab; it includes

a data plane supporting forwarding on a wide-variety of networks, a control plane for

setup and management of the data plane and an application interface allowing interface

with data and control planes as well as research and development of new applications

and transport layers as well as experimentation with existing applications and protocols.

Moreover, a usage case is described wherein this infrastructure is used in the development and

verification of a practical means for using unmodified TCP/IP on endhost-directed networks.

1.8 Dissertation Overview

This balance of the dissertation is constructed as follows. The next chapter presents

the SORA multipath virtual network layer framework, which enables application-directed

routing research and development on current networks, including large-scale testbeds

such as PlanetLab. Chapter 3 presents a usage case of SORA in the investigation of the

performance of a scheme to allow bandwidth aggregation of unmodified TCP traffic via

dispersion of packets over multiple paths, even under heavy packet reordering. Chapter 4

concludes the dissertation and the appendices provide further details regarding SORA.

46

CHAPTER 2

THE SORA MULTIPATH VIRTUAL NETWORK LAYER

2.1 Introduction

Application-directed routing architectures—those allowing applications some man-

ner of choice regarding the network path their data packets are to traverse—have been

proposed as an approach to addressing many of the current Internet’s most difficult prob-

lems, including policy [170], performance (QoS) [172] and economics [93].

Internet users and operators currently have no real control over the specific path

their outbound packets are to traverse, the routing choices being left completely to each

network operator to determine. If the default selected path does not suit a user or appli-

cation, they have little recourse. Moreover, there is no easy way for a user or operator to

know what the default selected path actually is.

Application-directed routing architectures provide solutions to these problems by

giving applications a choice in route selection; applications can then select paths to meet

given policy and performance goals; moreover, schemes have recently been proposed

to foster Internet competition by using paths or subpaths as a basis for selling Internet

access [93, 158, 59].

Despite its advantages, however, no infrastructure currently exists to allow application-

directed routing. Moreover, many open problems exist which prevent the realization and

utility of such an infrastructure such that even if the Internet were now able to provide

application path selection, its adoption would not be possible. These open problems in-

clude, for instance: path scheduling algorithms for efficient use of multiple simultaneous

paths under a variety of conditions, path monitoring metrics and accompanying analy-

sis algorithms for ensuring paths in use are still meeting an application’s requirements;

multipath-aware best path computation algorithms to provide paths to applications; means

47

to prevent route oscillation to mitigate network instability while still allowing applica-

tions to select paths as freely as possible; and means for allowing existing IPv4 and IPv6

applications to enjoy the benefits of path selection, to name a few.

While large-scale testbed environments now exist which could provide a platform for

realistic experimentation, there exists no framework for application-directed routing—

that is, there exists no data plane to forward packets based on application specifications;

no control plane to establish network paths to be selected by applications; and no applica-

tion programming interface by which applications and novel transport layers might select

their paths. This inability to perform application-directed experiments, in turn, hinders

research and development of these open problems.

The design and implementation of such a framework for application-directed rout-

ing brings special requirements when applied to current networks and testbed environ-

ments: (1) an efficient, application-directed data plane usable with existing routers, net-

work stacks, and endhost network software and applications; (2) a control plane allowing

convenient management of large-scale experiment networks; and (3) an application inter-

face allowing ease of development and experimentation.

The sections that follow present the design and implementation of a framework

which provides for these requirements and has already been used in research and develop-

ment addressing application-directed routing problems. They are organized as follows:

the next section discusses related architectures and implementations; Section 2.3 provides

a more detailed overview of the infrastructure described herein and its requirements; Sec-

tions 2.4, 2.5, and 2.6 describe the design and implementation of the data plane, control

plane and application interface, respectively. Section 2.7 provides an analysis of the per-

formance of these three components. Section 2.8 briefly discusses a few examples of how

this infrastructure has been used. Section 2.9 discusses future work and Section 2.10

concludes.

48

2.2 Related Work

A number of architecture proposals exist which could someday provide a basis for

an application-directed data plane and/or control plane (e.g., NIRA [171], more recent

work by Yang et al. [170] and PoMo [15]). However, in examining related work, since the

scope of this research is limited to operation on current networks, only work which is

readily implementable and deployable on current networks and testbeds are considered.

Below, are summarized the most relevant of these and compare and contrast the features

of each with the system described herein.

2.2.1 IPv4 and IPv6 Source Routing

“Source routing” describes any routing means which allows all or a part of a route

to be specified at the packet source; it has long been proposed [152] for allowing greater

application routing control and is a part of both IPv4 [125] and IPv6 [37] specifications.

IPv4 and IPv6 source routing allows source endhosts to specify some or all of the net-

work interface addresses a packet should traverse.

Unfortunately, for security reasons, it is widely disabled in IPv4 and therefore cur-

rently unusable. Moreover, even if, as expected, IPv6 does eventually make source rout-

ing available, its reliance on interface addresses as a means for specifying a route makes

it difficult to select from a variety of potential links between two routers; moreover, it is

also not robust against IP address changes. Finally, no control plane means is currently

provided for applications to discover what network topology exists or to compute paths

and only a basic application interface exists allowing path specification.

2.2.2 BANANAS

BANANAS [81] proposes a modification to current Internet routers which allows

applications on endhosts to specify the individual routers their packets are to traverse.

BANANAS details the construction of a data plane for application-directed routing by

allowing the selection of the outbound interface or tunnel for each router on the path.

49

However, BANANAS does not suggest a means for hiding the complexity using various

interfaces and tunnel types simultaneously.

The data plane described herein is similar to that of BANANAS in that both use

packet control data to select the path a packet is to traverse; it is different in that the data

plane described herein generalizes the concept of network interface selection to include

a variety of tunnels. Moreover, BANANAS provides no details regarding a control plane

and uses the current socket-based interface as its application interface.

2.2.3 Testbeds: PlanetLab, VINI, CoreLab, ...

Research network testbeds such as PlanetLab [27], CoreLab [115], OneLab [118],

GENI [58] and Emulab [162] provide a collection of computing and network hardware

resources designed for experimentation. They are therefore a basis for the research and

development of next-generation networks such as those described above. However, cur-

rent testbeds provide data and control planes only for IP-based forwarding; they cur-

rently do not provide explicit support for application-directed routing.

Network toolkits—software packages which replace or extend the functionality of the

data and control planes and application interfaces provided by current networks—do

provide for a basis for implementation of application-directed forwarding. They do so

by forming virtual networks atop existing networks, with testbed computing resources

acting as routers and the networks between them acting as links. Thus, said virtual

networks are logical networks comprised of network tunnels between existing network

computers; such networks are also often called overlay networks, since they are overlaid

atop the existing network. A network tunnel is the use of an existing network protocol

for transport of data of another protocol; examples include IPv6 in IPv4 for enabling

IPv6, IP-in-IP for enabling virtual private networks, and the like. A number of such

toolkits which enable virtual networks via tunnels use have been developed, as discussed

below.

50

2.2.4 RON

Resilient Overlay Networks (RON’s) [4] are routing systems designed to address

some of the deficiencies in current wide-area Internet routing, particularly with respect

to poor routing performance and reliability. RON’s attempt to address these issues by

accessing routes not selected by the Internet. They do this by forming virtual (overlay)

networks atop the Internet using endhosts as routers and tunnels between these endhosts

as virtual links. They then run routing protocols (e.g., RIP [104] or OSPF [112, 32]) atop

the virtual network links, monitor their state and use the best virtual network path for

transport, thereby obtaining improved performance.

While the original description [4] does not suggest its use for application-directed

routing, RON’s could be adapted to this use by adopting an approach like that specified

in BANANAS; however, until now, this has not been done. Moreover, RON’s provides

no details regarding a control plane and uses the current socket-based interface as its

application interface.

2.2.5 OCALA

OCALA [78] aims to allow users to access different overlay networks simultane-

ously, to allow hosts in different overlays to communicate with each other and to ease

the burden on overlay network developers by providing an API toolkit for tasks com-

mon to most overlays. While the original description [78] does not suggest its use for

application-directed routing, OCALA could be adapted to provide data plane services

similar in spirit to BANANAS; however, to date this has not been implemented. More-

over, OCALA provides no details regarding a control plane and does not provide for

the path scheduling, path monitoring or path monitoring feedback needs of application-

directed networks via an application interface.

2.2.6 X-Bone & GX-Bone

X-Bone [155] and GX-Bone [156] allow the configuration and management of routing

overlay networks on standard Internet hosts. However, they provide no explicit means

51

for application-directed forwarding, no control plane for link or path discovery and no

application interface their use.

2.2.7 Application Interfaces: SCTP, MPTCP, Ingress & Egress

In this work, an application interface will be defined as the means by which appli-

cations interface with network data and control planes. For instance, socket and its

associated methods and data structures comprise the application interface in the case of

IPv4 and IPv6.

Because the Internet provides no means for applications to select the paths their pack-

ets are to traverse, focus for improving performance has typically been on interface selec-

tion. Like path selection, interface selection allows an application to use several network

interfaces simultaneously to improve performance. However, interface selection differs

from path selection in that interface selection only allows selection of the outbound and

inbound network interfaces, whereas path selection provides much finer-grained selec-

tion.

2.2.7.1 SCTP

Nevertheless, the socket interface has been extended to include support for inter-

face selection via the Stream Control Transport Protocol (SCTP) [148]. SCTP is the

current Internet standard transport protocol allowing multiple network interfaces to be

used simultaneously in order to provide enhanced performance. While its use of multi-

ple interfaces originally targeted failover, recent efforts have been made at using SCTP

for concurrent transport [73].

However, interface selection schemes like that of SCTP suffer two main disadvan-

tages with respect to path selection. First, the Internet is known to have excellent path

diversity [96], but because it effectively offers only selection of the first and last hops of

a path, interface selection alone cannot fully exploit this path diversity. Second, interface

selection cannot provide any ultimate guarantee that the paths selected by its interfaces

are disjoint and therefore cannot guarantee actual performance gains.

52

2.2.7.2 MPTCP

Accordingly, research has been conducted with the aim of augmenting SCTP with a

path selection means [99]. Moreover, more recent efforts have been aimed at a complete

redesign of TCP [11]. However, the lack of an application-directed data plane for use

with SCTP or newer transport protocols makes this difficult to implement. Moreover,

SCTP still provides no means for monitoring of metrics such as per-path packet loss, latency

or of feedback of such information for use in path scheduling.

2.2.7.3 Ingress & Egress

The use of existing protocol traffic with application-directed networks has also re-

cently been studied [26] with the aim of bringing the benefits of application-directed

routing to such protocols. Such schemes must have some means for sending and re-

ceiving existing traffic via multiple paths in order to study the effects of multiple path

use. However, there exists no convenient means for ingress or egress of traffic from exist-

ing multipath-unaware protocols such as TCP or UDP on to application-directed networks.

Virtual network ingress is defined as the preparation of existing protocol (e.g., TCP/IP

or UDP/IP) packets for input onto and transmission via a virtual network. Similarly,

virtual network egress is defined as the preparation of ingressed packets for exit from a

virtual network and transmission via an existing network.

2.2.8 Summary

While tunnel-based technologies exist by which an application-directed data plane

could be implemented on current networks, there exists no framework to ease research

and development when interfacing with tunnel-based networks, particularly those com-

prised of a variety of tunnel types. Moreover, no control plane exists to allow such

networks to be conveniently configured for use in large-scale experiments on current

testbeds.

53

Further, no application interface exists to provide for per-path scheduling, monitor-

ing and performance data feedback or to provide for application-directed forwarding

research and development on current networks.

2.3 Overview

The primary objective of SORA is to provide an R&D infrastructure for application-

directed routing on current networks: particularly, large-scale testbeds. The core goal is

an immediately usable solution to the problem of how to conveniently develop and test

both existing and future applications and transport protocols on application-directed

routing networks using the current network infrastructure.

Application-directed routing is a packet routing method, whereby applications are given

access to an arbitrary number of paths and are made fully responsible for enacting a routing

policy as well as making performance decisions by monitoring path performance metrics.

The general requirements of this infrastructure are a data plane for executing application-

directed forwarding, a control plane for management of said data plane, and an application

interface to the application-directed data and control planes. Thus, SORA acts as a toolkit

for extending the data plane capabilities of existing networks.

2.3.1 Data Plane Requirements

The purpose of the data plane is to provide for application-directed packet forwarding

on current networks via tunneling. There are three basic requirements for the data plane.

Because many applications are not implementable without sufficient forwarding per-

formance, the first data plane requirement is forwarding performance so as not to be a bot-

tleneck on current testbed networks.

The second data plane requirement is minimal network setup burden and router resource

waste by optionally supporting forwarding for multiple testbed experiments simultaneously.

The third data plane requirement is ease of development of upper layers which use the

data plane, including the ability to conveniently specify arbitrary per-packet control

54

data, including at least the path the packet is to traverse and feedback of monitored

performance information.

2.3.2 Control Plane Requirements

The purpose of the control plane is to facilitate configuration and management the

data plane outlined above: to provide for link instantiation on routers, link discovery,

link metric discovery and path computation. There are three general requirements for

the control plane.

The first control plane requirement is convenient data plane link, link metric and path

discovery. Link, link metric and path discovery refer, respectively, to the means by which

an entity queries for and obtains data plane links inbound to and outbound from a given

entity, metric data regarding said links and paths through a given virtual network. A full

Internet-scale means for performing these three tasks is beyond the scope of the current

work; what is required is a convenient means for use with experiments on both large and

small virtual networks.

The second control plane requirement is convenient router link instantiation on all vir-

tual network routers. Before a link from one entity to another may be used, the under-

lying tunnel must be set up; for example, in the case of a UDP socket-based tunnel, a

socket must be allocated.

The third control plane requirement is supporting setup and management of forward-

ing for multiple testbed experiments simultaneously. When multiple virtual network data

planes are run simultaneously, sharing of router and link resources between data planes

allows for a reduction in router resources consumed because only one router instance is

required for all virtual networks; it also allows for a reduction in total router link instan-

tiation time because existing, shared links need not be instantiated. However, this shared

testbed mode should be optional; the framework must generally be usable as a standalone

infrastructure.

55

2.3.3 API Requirements

The purpose of a software interface for application-directed networks is to allow

applications to interface with the control plane (e.g., to obtain link and path data) and

send and receive data via the data plane. There are two general requirements for the

application interface.

The first API requirement is ease of application-directed routing-aware application de-

velopment and experimentation. The goal of this framework is to aid in the research

and development of application-directed forwarding applications and transport layers.

Accordingly, for example, the application interface should allow for easy swapin and

swapout of different path scheduling and monitoring configurations and include a li-

brary for performing common tasks.

The second API requirement is usability with existing network applications and proto-

cols. While new application development is one goal, the framework must also be usable

with existing protocols and applications in order to aid testing of their performance on

application-directed networks and to allow comparison with new protocols and applica-

tions.

The data plane, control plane and application interface are the respective subjects of

the three sections that follow.

2.4 Data Plane

As described in Section 2.3.1, the three data plane requirements are: (1) forward-

ing performance so as not to be a bottleneck on current testbed networks, (2) optional

forwarding for multiple experiments simultaneously and (3) ease of upper layer develop-

ment.

2.4.1 Challenges

The first challenge is providing for application-directed forwarding on existing net-

works while also providing forwarding performance that is not a bottleneck on them.

However, by adopting the well-known technique of using virtual network composed of

56

tunnels (e.g., as discussed with respect to RON’s), near native forwarding performance

can be obtained while using a variety of routing schemes [4]. Unlike previous networks,

however, each tunnel in the virtual network is selectable, as is described below in Sec-

tion 2.4.2. Moreover, use of virtual networks atop existing networks also provides the

advantage of allowing forwarding for multiple virtual network instances simultaneously,

meeting the second requirement.

The challenge in the construction of a router to implement the virtual network data

plane lies in efficiently supporting a variety of testbed environments; specifically, in or-

der to maximize performance, the router should ideally support operation both when

no kernel-level implementation is possible and when kernel-support is possible. This

challenge is addressed by an implementation of the data plane structures in a shared li-

brary libsora and a router implementation based on the Click modular router frame-

work [84].

However, two challenges remain related to ease of development (third goal) on tunnel-

based virtual networks.

First, while it is possible to use tunnels that form a virtual network directly for

transport, simultaneous use of multiple tunnels of different types (e.g., UDP/IP encap-

sulation, TCP/IP encapsulation, IPv6 encapsulation, etc.) makes development more

difficult; therefore, the challenge to easing development on such networks is to provide

a unified network interface to underlying tunnels, which hides their usage details from up-

per layers, including tunnel management (setup and teardown), packet send, receive and

specification of a list of tunnels in order to form a path. This challenge is addressed by

the link abstraction.

Second, operation with various link types (e.g., UDP/IP and IPv6) requires control

(e.g., path) and payload data to be specified in different locations with respect to each

other. For instance, a UDP/IP encapsulation may place control data contiguously above

payload data, however, an IPv6 encapsulation-based tunnel, may place control data in

an option extension, while the payload data is positioned, non-contiguously, in the IPv6

payload.

57

Moreover, while it is possible for each application to manage its own control data

(options) format, forcing each application to independently implement its own options

processor makes development more difficult: specifically, it becomes difficult to share

and reuse code between implementations when options are specified in different formats.

Thus, the second challenge is providing a structure which allows: (1) control and

payload data to be positioned independently for use by the link abstraction; (2) application-

directed control data (e.g., path and monitoring feedback data) data to be specified compactly;

and (3) arbitrary new application-defined types to be added. This challenge is addressed by

the packet abstraction.

PlanetLab

Path
1 → 1 → 1 → 2

Path
 1 → 4 → 4 → 3

Path
1 → 2 → 2 → 1 → 2

Path
1 → 3 → 4 → 4 → 3

1
 3

1

2

1

3

3

2

1

3

4

3

4

1
1

1

2

1

2

4

5
 1

3
 1

2

4

2

1

Tunnel

GRE Tunnel

UDP Tunnel

GRE Tunnel

GRE Tunnel

UDP Tunnel

TCP Tunnel

TCP Tunnel

UDP Tunnel

UDP Tunnel

UDP Tunnel

UDP Tunnel

UDP Tunnel

UDP Tunnel

UDP Tunnel

Figure 2.1: Application-Directed Testbed-Based Data Plane With Selectable Paths Via
Numbered Tunnels

2.4.2 Approach

First, a general structure is defined wherein a number of virtual network data planes

may simultaneously operate on a given network. Here, virtual network identifiers pro-

vide the means for differentiation between virtual network data planes. Virtual network

identifiers are implemented as 32-bit values.

As depicted in Figure 2.1, each virtual network has a number of entities—virtual

network routers or endhosts, which have one or more inbound or outbound links, as

described below. Entity identifiers provide the means for identifying an individual entity

on a given virtual network, independent of the many network interface addresses (e.g.,

58

IPv4 and IPv6) it may have. Entity identifiers are also implemented as 32-bit values. End-

points are defined as sources and destinations of packets; routers are defined as entities

dedicated to virtual network packet forwarding.

As discussed later, these identifiers are used mainly for link lookup (to uniquely iden-

tify a link) and path computation (to uniquely identify entities and links in a virtual

network graph).

2.4.3 Link Abstraction

The link abstraction is defined as a data structure and associated methods which

provide a unified interface to underlying tunnels for easing development of upper layers

by hiding tunnel usage details. Links provide packet transport from one virtual network

entity to another. All links are unidirectional—even if the underlying transport means is

bidirectional, packets travel in only one direction. A path is defined as a series of virtual

network links connecting two entities; typically it is specified using the corresponding

list of link identifiers.

2.4.3.1 Design

The link abstraction provides upper layers a unified interface to setup, teardown,

read packets from and write packets to a given tunnel. As depicted in Figure 2.2, a link

essentially comprises virtual network metadata to identify it on a given virtual network:

a virtual network ID, source and destination entity IDs and a link ID; a link is uniquely

identified by the three-tuple: <virtual network ID, source entity ID and link ID>; as

discussed in Section 2.5.4, it may also comprise a metric. Access to the underlying tun-

nel is abstracted via methods for setup, teardown and packet send and receive. Setup and

teardown methods establish or remove an inbound or outbound tunnel. Send and re-

ceive methods perform input and output of instances of the packet abstraction discussed

below.

59

En#ty
En#ty
 Src IP, Port
 Dst IP, Port
UDP Tunnel
Src IP, Port
 Dst IP, Port
TCP Tunnel
Tunnel Setup Data
 Tunnel Setup Data
Tunnel

•  Source Entity ID

•  Destination Entity ID

•  MTU

•  Validity Period

Data

•  send_packet
Methods

•  recv_packet

•  Network ID

•  Link ID

Link
Uniquely Identified By

•  teardown_inbound

•  teardown_outbound

•  setup_inbound

•  setup_outbound

Figure 2.2: Link Abstraction

2.4.3.2 Implementation

As depicted in Figure 2.3, the link abstraction interface is defined by the C++

pure virtual class SoraLink. Pure virtual classes cannot be instantiated directly: each

given link type implementation inherits the SoraLink interface and implements a ba-

sic set of methods for the tunnel; specifically: setup of inbound and outbound links

(respectively, setup_inbound and setup_outbound), teardown (teardown_in-

bound and teardown_outbound), send (send_packet), receive (recv_packet),

setting of blocking and non-blocking read and write (respectively, set_blocking and

set_non_blocking), determination of the location of the packet header and pay-

load within the data of a given transport means (respectively, get_sora_header and

get_sora_payload) and retrieval of the underlying tunnel file descriptors (get_fd).

For instance, as is also depicted in Figure 2.3, the SoraUDPIPLink class inherits the

SoraLink interface and implements methods to operate on UDP/IP sockets. Specif-

ically, SoraUDPIPLink uses setup data (its attributes) comprising source and destina-

tion ports and IP addresses to open a datagram socket, the file descriptor of which it

stores (in socket_fd). To send a packet, it obtains the header and payload from the

packet, via the means described below, encapsulates the header at the top of the UDP/IP

packet payload, followed by the payload. To receive a packet, it parses the packet header,

using the means described below, then obtains the payload and returns a packet structure

formed from these.

60

SoraLink

M
e
th

o
d
s

A
tt

ri
b

u
te

s

recv_packet(SoraPacket *) : SoraPacket *
send_packet(sora_packet_t *, void *,
 SoraPacket *) : bool
setup_inbound() : bool
setup_outbound() : bool
teardown_inbound() : bool
teardown_outbound() : bool
get_fd() : int

network : sora_network_t
source : sora_entity_t
destination : sora_entity_t
link_id : sora_link_id_t
inter_router : bool
encap_type : sora_encap_t

SoraUDPIPLink

M
e
th

o
d
s

A
tt

ri
b

u
te

s

recv_packet(SoraPacket *) : SoraPacket *
send_packet(sora_packet_t *, void *,
 SoraPacket *) : bool
setup_inbound() : bool
setup_outbound() : bool
teardown_inbound() : bool
teardown_outbound() : bool
get_fd() : int

src_ip : sora_ip_addr_t
dst_ip : sora_ip_addr_t
src_port : sora_ip_port_t
dst_port : sora_ip_port_t
socket_fd : int

Figure 2.3: Classes SoraLink and SoraUDPIPLink

Other links may be implemented similarly. For instance, TCP/IP sockets may also

be used for encapsulation; the SoraTCPIPLink class has precisely the same interface

as SoraUDPIPLink. It also uses its attributes to set up a socket and stores the file

descriptor for reading or writing. To send a packet, the TCP/IP link instance obtains

header and payload and sends them similarly to the UDP/IP link instance. However, to

receive a packet, since the underlying transport is a stream, the read method first decodes

the header using the means described below, determines the payload size, and then reads

the entire payload out before returning the completed packet instance.

A path is formed solely from link data; it comprises a virtual network identifier,

source and destination entity identifiers and a series of link identifiers specifying the

next hop link outbound from each successive entity on the path from the source entity

to the destination. It has the same format as that described with respect to the control

plane in Section 2.5.3.2 and in Figure 2.8.

The methods of the link abstraction provide a unified network interface to underly-

ing tunnels and hide transport details from upper layers, while still allowing new link

types to be implemented easily.

61

2.4.4 Packet Abstraction

The packet abstraction is the data structure of the data plane by which data payload

and control data is read from and written to a link instance. Its purpose is to means

for: (1) control and payload data to be positioned independently for use by the link

abstraction; (2) application-directed control data (e.g., path and monitoring feedback

data) data to be specified compactly; and (3) arbitrary new application-defined types to

be added.

2.4.4.1 Design

As depicted in Figure 2.4, the packet abstraction comprises a set of options and a

buffer for payload data. The option set stores a fixed number of options. Each option

comprises an option type, option data, and a set of option handlers which define read and

write operations on the option data. The option type uniquely identifies the option

within a given option set. The option data comprises the actual data to be transmitted in

the option and may take any format desired. The option handlers are functions which

perform requisite option handling operations; there are five such operations to be defined

for all option data instances: initialization to set a starting value to the data, length

obtainment to determine the length of the option data, serializing to prepare the option

data for transmission (e.g., conversion to network byte order), marshaling to prepare the

option data for reading by the host (e.g., conversion to host byte order), and character

conversion to convert the option data to a user-readable character string for printing.

Initialize

Serialize

Marshal

Get Length

Stringify
H

an
dl

er
s
Option Type

Option Data

Handlers
O

pt
io

n

P
ac

ke
t

Add Option

Get Option

Serialize Options

Payload

Marshal Options

Get Header

Option Set

O
pt

io
n

Se
t
 Option

Option

Option

. . .

Option

Method

Attribute
K

ey

Serialize: Convert to Network Byte Order
Marshal: Convert from Network Byte Order

Figure 2.4: Packet Abstraction

62

The framework defines several basic option types and handlers, including those for

storing virtual network ID, source and destination entity IDs and path data. Applica-

tions define new types by assigning an option type and defining the five handlers de-

scribed above. Further details regarding the implementation specifics of this structure,

including its header representation, are discussed below.

2.4.4.2 Implementation

To implement the abstraction depicted in Figure 2.4, structures were adopted which

minimize both the space consumed in the packet header as well as the data copy during

both read and write link operations. The packet header is network control data included

when sending a packet on a virtual network link.

The challenge in minimizing header space consumed lies in reducing the amount of

redundant data contained in the header: packet options typically include both option

type and length information; however, inclusion of these for each option is redundant.

First, type information for all options contained in the entire packet header can be summa-

rized in a single bit vector, wherein each bit indicates the presence or absence of a given

type. The presence or absence of each option in the packet is then encoded by a single

bit in the bit vector. Second, as discussed above, length information for any given option

can be obtained via the pre-defined handler for each option type, which are called with the

given option data.

0 1 2 3 4 5 6 7
0123456701234567012345670123456701234567012345670123456701234567
+-------+-------+-------+-------+-------+-------+-------+------+
| Checksum |Payload Length | Header Length|
+-------+-------+-------+-------+-------+-------+-------+------+
| Option Bit Vector | [... Options ...] |
+-------+-------+-------+-------+-------+-------+-------+------+

Figure 2.5: Packet Header

As depicted in Figure 2.5, the packet header contains a 32-bit (CRC-32) checksum (for

error detection over lossy links), 16-bit payload and header lengths (to allow quick de-

termination of the both the packet and header lengths), an option bit vector and option

63

data of variable length. The option bit vector is 32 bits long, thus supporting a maxi-

mum of 32 options (per communicating endpoint pair). Option data for each option is

concatenated in order, and is parsed using the length obtainment handler for each option

present.

SoraPacketOptions

M
e
th

o
d

s

add_option(SoraPacketOption & option) : bool
get_option_vec() : sora_packet_header_option_bitvec_t
get_options_length() : sora_size_t
get_option(sora_packet_header_option_bitvec_t) :
 SoraPacketOption *

SoraPacket

M
e
th

o
d

s

A
tt

ri
b

u
te

s

parse_packet_struct() : bool
get_packet_struct() : sora_packet_t *
set_payload(void *, size_t) : void
marshal() : bool
serialize() : bool
set_checksum() : sora_crc32_t
verify_checksum() : bool

packet : sora_packet_t *
slab : char [MAX_PKT_SIZE]

SoraPacketOption

A
tt

ri
b

u
te

s data : void *
handler : sora_packet_header_option_handler_t *

M
e
th

o
d

s

SoraPacketHeaderOption(
 sora_packet_header_option_t *,
 sora_packet_header_option_handler_t *)
marshal() : bool
serialize() : bool
get_option_type() : sora_packet_header_option_type_t
get_option_data() : void *
get_option_length() : size_t

Figure 2.6: SoraPacket Class

The packet abstraction acts as an interface for packing and parsing application-specified

option data to and from this packet header format. As depicted in Figure 2.6, an option

set comprises an array of 32 options, an option bit vector and handlers for all possible

options; the handlers allow for packed option sets to be sent and for newly-received op-

tion sets to be parsed. An option instance comprises a type, a pointer to its option data,

a pointer to its handlers, as described above.

64

To send a packet, an application sets any payload data to be sent and adds any num-

ber of options via the add option method. The packet is then ready to be passed to

the link (i.e., via the link send_packet method): the link calls the options serialization

method, which calls serialize on each option to prepare it for transport; the link then

calls the get_packet_struct method in order to obtain a packed representation of

the options. The link then places the header and payload into their appropriate places

for transport on a given link and sends.

To receive a packet, a link reads the packet struct (header) and payload data out from

the given tunnel directly into the buffer (the slab) provided by the packet, identifies the

location of the header and payload data and sets these in the packet structure. It then calls

the options marshal method of the packet. This method first identifies the start position

of the option data of each option present and stores this information in the position in

the options array corresponding to each option. It then calls the marshal method of each

option to prepare the data of each option for use. The packet is then ready for reading

by upper layers via the options array.

The packet abstraction separates control and payload data for use by the link abstrac-

tion and provides a simple interface for new options to be specified easily. Further, use of

a single buffer (slab) and pointers to options and payload data allows option and payload

data to be copied just once (from the network buffer), thereby minimizing overhead.

2.4.5 Click-Based Router and Shared Library

The link and packet classes as well as all supporting methods and data types described

above (and the application interface described in Section 2.6) are implemented in C++

and contained in a library called libsora.

The purpose of the data plane router is to support fast data plane forwarding, both

when no kernel-level implementation is possible (e.g., PlanetLab) and when kernel-

support is possible (e.g., Emulab). The Click modular router framework [84] allows

for the creation of packet routers by linking together simple packet processing modules

called element classes (elements), which are implemented as C++ classes. The task of

65

a Click element is to accept packets on or more input ports, perform a given operation

on the packet and output the packet on or more output ports. Click runs on Linux and

BSD and contains libraries for processing most common transport, network and data

link layer packet header formats (e.g., Ethernet, IPv4 and IPv6, UDP/IP, etc.). Click

also supports both kernel-level and user-level operation with little configuration modifi-

cation and has been shown to provide high performance in both modes [84].

Figure 2.7: Basic Router Element Chain Configuration

2.4.5.1 Design & Implementation

The Click router implementation currently supports operation on PlanetLab and

Emulab using UDP/IP-based encapsulation, but is designed to be extensible to include

other types; it is implemented via a set of simple packet processing modules, each of

which based on libsora.

These modules include the following essential processing tasks: location of a packet

header within a received packet on a given link (SoraUDPIPMarkHeader), verification

of the checksum on the header (SoraCheckHeader), incrementing of the hop counter

(SoraIncrementHop), lookup of the next hop link in the next hop link table (Sora-

LookupNextHopLink), determination of the next hop link type of the determined

link (SoraNextHopLinkClassifier) for support of future link types, encapsula-

tion and sending on the selected next hop link (SoraUDPIPSocket), and serializing

and marshaling of packet options (SoraHToN and SoraNToH).

66

As depicted in Figure 2.7, these modules can be chained and formed into a packet

router capable of receiving a packet on a given input link and outputting a packet on

a given output link, as determined by the control data in the parsed packet header. It

should be noted that SoraUDPIPSocket is capable of handling multiple link instances.

Moreover, in the future, outbound link types other than UDP/IP are handled via So-

raNextHopLinkClassifier, which selectively outputs packets to respective ports

based upon their outbound link type.

The configuration of outgoing links (for lookup in SoraLookupNextHopLink) is

performed via the control plane and is discussed in the next section. The performance

of the data plane router (and thus the processing library libsora) in different environ-

ments is discussed in detail in Section 2.7.

2.5 Control Plane

As described in Section 2.3.2, the three requirements for the control plane are: (1) con-

venient link, link metric and path discovery, (2) convenient router link instantiation and

(3) minimization of network setup burden and router resource waste by optionally sup-

porting setup and management of forwarding for multiple testbed experiments simulta-

neously.

2.5.1 Challenges

Three challenges in the design and implementation of an infrastructure arise corre-

sponding to these three goals.

First, the challenge in creating a link, link metric and path discovery means lies in effi-

ciently supporting the needs of both smaller and larger experiments. While copying flat files

containing link and path descriptions may be ideal for smaller experiments comprising

only a few routers and endhosts, this task quickly becomes burdensome virtual networks

comprise thousands of routers, many thousands of links and many endhosts all requiring

paths through the network.

67

Second, the challenge in providing for convenient router link instantiation lies in re-

ducing the total amount of effort required to instantiate all the links of a virtual network on

all of its routers. Similar to the case with link, link metric and path discovery, manual

link instantiation is not an option when dealing with hundreds or thousands of routers;

and some means for automation is required.

The third challenge relates to operation in the shared mode described above where

forwarding is being performed for multiple experiment networks simultaneously. How-

ever, the challenge is more subtle: when an experimenter installs application-defined

routing software on a testbed, they are responsible for ensuring testbed resources are

used according to the acceptable use policy of the testbed; link installation is done at

their discretion and therefore it suffices for the framework to provide experimenters a

simple password-based authentication which the experimenter may use to ensure only

their approved links are instantiated.

However, when a shared virtual network routing service is provided, the shared vir-

tual network routing service itself must guarantee that testbed resources are not misused. Nev-

ertheless, the service must also still support ingress of traffic onto and egress of traffic off from

external networks. Therefore, the challenge for providing sharing of testbed resources be-

tween multiple virtual networks simultaneously lies in allowing for ingress and egress of

network traffic from testbed-external links while still ensuring only authorized management

and use of testbed resources.

2.5.2 Approach

The control plane is implemented via a programming library, which includes link,

path and supporting data type implementations as well as methods for their manipula-

tion. The control plane implementation addresses the respective challenges above via:

(1) RPC-queryable link database, link metric and path computation services; (2) an RPC-

queryable link instantiation service; and (3) a means for providing testbed router and link

sharing by pre-instantiating all testbed links and centrally authenticating all other (testbed-

68

external) links, thus allowing approved links to be instantiated by experimenters directly

and avoiding the need for any central link instantiation or storage.

2.5.3 Ruby-Based Control Plane Library

The purpose of the control plane library is to facilitate creation and manipulation of

all control plane-related data structures and services.

2.5.3.1 Design

To facilitate convenient virtual network construction and modification, while allow-

ing inheritance similar to what is possible with the C++ libsora implementation,

an object-oriented scripting language, Ruby was chosen for the library implementation.

The library contains implementations of the main Link and Path structures and allows

them to be read from and written to character strings for storage and retrieval.

2.5.3.2 Implementation

The fundamental classes of the library are Link and Path, as depicted in Figure 2.8;

these implement essentially the same structure as in the data plane (though they lack

methods for setup, teardown, send or receive).

Moreover, the library also contains a multipath path computation engine module

implementation. This module allows a set of Link objects to be read in directly by the

Ruby interpreter and for a shortest path set to be computed through the given link set.

Because the module is implemented in C++, it does not suffer from the overhead of the

interpreter. The module computes multiple paths by: (1) running Dijkstra’s algorithm to

compute the shortest path between two endpoints; (2) removing the edges of the shortest

path; and (3) repeating these steps until the requested number of paths is obtained or until

there exists no such path.

The library forms the basis for implementation of the discovery, link instantiation

and shared resource approaches described below.

69

Link

M
e
th

o
d

s

A
tt

ri
b
u
te

s

serialize : String
marshal : Link
to_s : String

network : Network
source : Entity
destination : Entity
link_id : LinkID
mtu : Fixnum
src_admin_ip : IPAddress
dst_admin_ip : IPAddress
start_time : Time
end_time : Time
metric : Metric
link_data : LinkData

Path

M
e
th

o
d

s

serialize : String
marshal : Link
to_s : String

A
tt

ri
b
u
te

s network : Network
source : Entity
destination : Entity
mtu : Fixnum
metric : Metric

Array<LinkID>

Metric

M
e
th

o
d

s

serialize : String
marshal : Link
to_s : String

A
tt

ri
b
u
te

s hopcount : Fixnum
latency : Fixnum
losses : Fixnum
throughput : Fixnum

Figure 2.8: Fundamental Control Plane Library Classes

2.5.4 Link, Link Metric and Path Discovery

Link, link metric and path discovery refer to the means by which these objects are

queried for and thus obtained for use by virtual network entities. The components which

implement link, link metric and path query build on and extend the fundamental data

structures of the control plane library. As depicted in Figure 2.9, the link metric query

methods allow an entity to obtain link metric data, which is defined as data describing

one or more aspects of a link instance that may be criteria for use in path set compu-

tation. It should be noted that, in application-directed routing, link metric data are not

used by applications; applications are concerned with the monitoring and use of paths,

not individual links.

The link query service and its methods allow an entity or setup host to obtain link

data—data representing a link instance—and for authorized users to insert, update or

remove link data. The path query service method allows an entity to obtain paths by

which to send and receive packets via a virtual network.

2.5.4.1 Design

For all queries discussed above, an RPC-based means is used to request and return

data. For links, a database is used to store and index link information; authentication is

performed on database writes only. For link metrics, three basic metrics are supported:

70

Path Query Service Methods

get_paths(Network, Entity, Entity, Fixnum) : Paths

Entity Query Service Methods

set_outlinks(Links, AuthToken) : Bool
set_signed_outlinks(Links) : Bool
unset_outlinks(Links, AuthToken) : Bool
reset_outlinks(AuthToken) : Bool
get_outlinks : Links
set_inlinks(Links, AuthToken) : Bool
set_signed_inlinks(RSASignedLinks) : Bool
unset_inlinks(Links, AuthToken) : Bool
reset_inlinks(AuthToken) : Bool
unset_inlinks(Links, AuthToken) : Bool

reset_inlinks(AuthToken) : Bool
get_inlinks : Links
get_remote_rtt(IPAddress) : RttData
get_remote_tput(IPAddress) : Float
get_cpu_load : Array<Float>
set_mappings(AddressMappings) : Bool
unset_mappings(AddressMappings) : Bool
reset_mappings : Bool
get_mappings : AddressMappings

Link Query Service Methods

get_link(LinkID, Entity, Network, AuthToken) : Link
get_inlinks(Entity, Network, AuthToken) : Link
get_outlinks(Address, AuthToken) : Link
get_links(Network, AuthToken) : Links

set_links(Links, AuthToken) : Bool
unset_links(Links, AuthToken) : Bool
request_links(Links, AuthToken) : RSASignedLinks
reset_all(Network, AuthToken) : Bool

Figure 2.9: Control Plane Query Service Methods

remote RTT, remote throughput and CPU load; that is, an RPC query may be made to

a remote entity to obtain the current average RTT to another entity, current throughput

to another entity or the current CPU load on the remote entity.

2.5.4.2 Implementation

RPC queries are implemented via HTTPS-based XML-RPC [163, 165]. Link query

service, link metric query service and path query service methods take the form depicted

in Figure 2.10.

The link query service is backed by a MySQL [114] database with tables as depicted

in Figure 2.11, implemented by the daemon program sora_sqldbd, which handles

the XML-RPC interface with the database; the daemon is queryable via the API directly

or via the command line utility sora_db. API queries which write to the database

require username and password-based authentication via a token passed with the query;

the token is authenticated against a password file local to the database host.

The link metric service measures and returns RTT using ping, throughput using

netperf and CPU load averages using uptime. The link metric service is imple-

71

Link Query
Server

- get_link
- get_inlinks
- get_outlinks
- get_links

Path Query
Server Data Plane

Router

Endhost

- get_paths

- get_remote_rtt
- get_remote_tput
- get_cpu_loadMethods

Figure 2.10: Control Plane Query Services

mented by the daemon program sora_entityd; it is queryable via the API directly

or via the command line utility sora_entity.

sora_links sora_users

username varchar(16)

domain varchar(32)

password varchar(16)

network binary(4)

Field MySQL Type

network binary(4)

source binary(4)

destination binary(4)

link_id binary(2)

link_type binary(1)

mtu integer

inter_router binary(1)

Field MySQL Type

src_admin_ip binary(4)

dst_admin_ip binary(4)

start_time integer

end_time integer

metric blob(1024)

link_data blob(1024)

Field MySQL Type

Figure 2.11: Link Query and Link Request Service Tables

The path query service computes paths using the path computation engine module

of the library discussed above. The path query service is implemented by the daemon

program sora_pcsd; it is queryable via the API directly or via the command line

utility sora_pcs.

By using these query services, it is possible to centrally manage link and path data

such that all entities across the experiment network can query for and obtain it auto-

matically and to automate the retrieval of link metric data from a service running on

each entity. Nevertheless, when convenient (e.g., on smaller virtual networks), it is still

possible to use file-based link and path storage and retrieval.

72

2.5.5 Router Link Instantiation

The router link instantiation component also builds on and extend the control plane

library. Link instantiation is defined as the establishment of one or more links on a

given entity using link data. Accordingly, as depicted in Figure 2.12, the router link

instantiation service allows for link data regarding one or more links to be sent to a given

router and for the links to be established.

2.5.5.1 Design

An RPC-based means is used to send link data and request instantiation; the router

instantiates the links if and only if user authentication succeeds or signed link authen-

tication succeeds in the case of use in shared virtual network mode, as is described in

more detail in Section 2.5.6. Further, in order to support both kernel-level and user-

level operation of the data plane router, the instantiation handler determines whether or

not the Click kernel-level router or user-level router is in use and sends the link to the

appropriate Click data plane router interface.

2.5.5.2 Implementation

RPC queries are implemented via HTTPS-based XML-RPC. The methods imple-

menting link instantiation are summarized in the link query service methods of Fig-

ure 2.9 (set_outlinks, set_signed_outlinks, unset_outlinks, reset_-

outlinks, get_outlinks, set_inlinks, set_signed_inlinks, unset_-

inlinks, reset_inlinks and get_inlinks); service queries are made to respec-

tive servers in the form depicted in Figure 2.10.

When a link request is received (e.g., via set_outlinks), the request is authenti-

cated against a local password file via an authentication token (username/password pair)

passed with the query; in the case of signed links, the RSA signature is checked, as is

described in Section 2.5.6.3. If authentication succeeds and all requested links are instan-

tiated, the query returns true; otherwise the query returns false.

73

As depicted in Figure 2.12, when a link instantiation request is received and approved,

it must be sent to the Click data plane router instance. This involves communicating

with the router’s configuration interface: if the user-level router is running, the interface

is Click’s ControlSocket, which waits on a TCP socket for configuration commands;

if the kernel-level router is running, the interface is Click’s proc-like filesystem, which

allows configuration commands to be written to a file which passes the information to

the appropriate router element running in the kernel. Either interface allows access to

the Click processing elements. The query server daemon program implementing this

functionality is sora_entityd.

Links

Links

Links

Data Plane
Router

Query Server
Daemon

Links

Links

Figure 2.12: Router Link Instantiation

Currently, for PlanetLab and Emulab use, instantiation of UDP outlinks is sup-

ported. Although the query service API allows inlink requests, since UDP allows in-

bound connections from any host, no inlink instantiation is required; such requests are

currently ignored.

The client instantiation request program is sora_instantiate_links; it op-

tionally reduces query time by spawning multiple threads to execute queries in parallel.

That is, it inputs a set of links, maps router administration IP addresses to links, and

optionally spawns a given maximum number of threads simultaneously—one per router.

2.5.6 Framework for Shared Resource Usage

As described above, this framework provides a central link request service. Its pur-

pose is to facilitate the above-described optional mode of operation wherein pre-instantiated

74

links may be shared between experiments and external links added while still ensuring

only authorized use of testbed resources.

2.5.6.1 Design

As depicted in Figure 2.13, the service accepts link requests along with user authenti-

cation information; it authenticates the user making the requests using the testbed’s own

authentication mechanism. For example, on PlanetLab it uses PLC-API, which provides

access via HTTPS-based XML-RPC to the testbed user database. If authentication fails,

the query fails; otherwise, the service checks each link to determine whether it is accept-

able. If any check fails, the query fails. Otherwise, the server creates and returns a set

of signed links; a signed link is link data accompanied by a cryptographic signature; the

cryptographic signature proves to any router it is presented to that the link data has been

validated by the link request service.

This design has the dual advantage of (1) allowing the same parallelizable interface

for link instantiation described above to be used for all links while (2) not requiring any

centralized per-virtual network link storage be performed for approved links.

Link Request
Server

Signed Link

LinkValid?

No
Link

Reject

Figure 2.13: Link Request Service Overview

Pre-instantiation of all possible testbed links is adopted as a means to allow quick

instantiation of virtual networks; in this way, if such links can be shared between exper-

iments, instantiation of individual links can be skipped.

75

2.5.6.2 Implementation: Pre-Instantiation

Pre-instantiation of all links implies a full mesh topology. As described above, the

current PlanetLab implementation already shares a single UDP port for all inbound

links, therefore only outbound links are required. Removing the need for all but a

single inbound link means that a full mesh requires one outbound link between each

PlanetLab node; at its current size of 1045 nodes, this equates to just over one million

links (1,090,980). However, each individual router only requires a table storing 1,044

links, lookups for which can be handled by a simple hash table.

The set of all links is pre-generated by a script (sora_mk_pl_links) and placed in

a file: the network ID for all links is set to 0.0.0.0; the source and destination entity

IDs are set to the primary IPv4 addresses of the source and destination PlanetLab nodes.

The pre-generated file is compressed for periodic download to each PlanetLab router.

The uncompressed file is approximately 309 MB; the compressed file is approximately

9.5 MB. Each router obtains its links via a regular expression file search (grep) for its

source address and instantiates them at startup.

One data plane issue arises when sharing pre-instantiated links between virtual net-

works: when a packet is received, a lookup is performed on the three tuple: <network

ID (from the packet), entity ID (of the router on the network), and the link ID (of the

next hop in the path)>. However, for all shared links, the network ID is 0.0.0.0,

which means such queries would never succeed since the network in the packet control

data does not match.

To address this issue, in shared environments, the link ID space is split: the highest

4,096 link IDs (of the 65,535 link ID space) are reserved for shared links; the lower part

of the link space (zero to 61,439) are dedicated to virtual network use. That is, in shared

testbed mode, when a packet arrives, if its next hop link ID is greater than 61,440, the

network ID for lookup is set to the shared network (0.0.0.0) regardless of the packet

network. With this split link ID space hack, both links can be used simultaneously, albeit

at the expense of a smaller link ID space.

76

2.5.6.3 Implementation: Request Server

RPC queries are implemented via HTTPS-based XML-RPC. The link request ser-

vice API has a single method request_links(links, auth_token). First, the

username and password contained in the auth_token structure are authenticated on

PlanetLab via the HTTPS-based XML-RPC-based PLC-API [27]. On success, a network

ID for the username is queried in the MySQL database; if none exists, one is created

and associated in the sora_users table with the username and PlanetLab domain (it

should be noted that the password is not stored for such queries; it is only stored for the

“local” domain, which provides for local database authentication).

After user authentication succeeds, each link is then verified: currently all link re-

quests are accepted provided the source port of the link is the default UDP source port

used for PlanetLab. The link’s network is reset to the one assigned to it. An SHA-1 [41]

hash is made of a fixed representation of the link data; the hash value is signed using the

request server’s private RSA key; and an RSASignedLink is created using the given

link and the signature. This is repeated for each link and the result is returned as a set

of RSASignedLinks to the client. The server program implementing link request is

sora_sqldbd; the client program is sora_db.

The given signed links may then be instantiated via the same process described above

for normal links, using the set_signed_outlinks(signed_links) method.

2.6 Application Interface

As described in Section 2.3.3, the requirements for the application interface are:

(1) ease of application-directed routing-aware application development and experimenta-

tion with the data and control plane; and (2) usability with existing network applications

and protocols.

2.6.1 Challenges

The challenge for easing development and experimentation lies in allowing for conve-

nient swapin and swapout of different configurations (e.g., methods for path scheduling

77

and monitoring) and including a library for common tasks. The challenge for provid-

ing usability with existing applications and protocols while allowing application-directed

routing features to be used simultaneously lies in facilitating ingress and egress of appli-

cation data to and from virtual networks.

2.6.2 Approach

The approach adopted to allow swapin and swapout and a framework for imple-

menting common tasks such as path scheduling and monitoring is a modular “conduit

endpoint” structure and associated libraries for such tasks.

The approach adopted for facilitating convenient ingress and egress of packets to and

from virtual networks is to provide two means for application interface: (1) a libc wrap-

per which intercepts system calls such as socket, connect, send and recv, ingresses

sent packets based on a given criteria and egresses received packets to the application; and

(2) an ingressing router, which is capable of acting as a default gateway (at layer two) on

a network, intercepting all traffic inbound and outbound from a given host (or set of

hosts) and performing ingress and egress to and from virtual networks based on some

flexible criteria (e.g., source IP address and port number).

2.6.3 Path Conduit Endpoint Interface

As depicted in Figure 2.14, a conduit is an idealized construct for managing all paths

between two communicating endpoints. Ideally, this structure would provide for mon-

itoring of paths and the links that comprise them and perform path scheduling to op-

timize performance and efficiency. However, because a path is formed by individual

links and the individual links are managed by routers distributed across the network, it

is difficult for a single data structure to directly encompass and manage all such links.

2.6.3.1 Design

However, by performing path monitoring of traffic over the paths at both sides of

this hypothetical path conduit and feeding information regarding their performance back

to each other, a pair of “path conduit endpoints” may act as an approximation of this

78

Path Conduit
Endpoint
 Endpoint

Endhost
 Endhost

Figure 2.14: Path Conduit and Endpoints

idealized structure. Thus, a path conduit endpoint interface is a data construct for per-

forming communications between two virtual network entities; it manages the functions

of: path scheduling—selection of the next path to be used for a given packet; path perfor-

mance monitoring—either passive or active monitoring of paths being used; and path

performance feedback—sending monitored information back to the originating conduit

endpoint such that it can be used in path scheduling.

Specifically, the path conduit endpoint structure provides a modular interface to the

data and control planes described above for both inbound and outbound paths between

a pair of communicating endpoints. A path conduit endpoint: obtains paths from the

control plane, sends and receives packets on inbound and outbound links, performs

monitoring of performance on both inbound and outbound paths, feeds information

back to the sender regarding inbound paths, and may use collected path information to

inform path scheduling based on a given policy. Header options processing, monitoring

and feedback handling are performed by packet processing modules which may be added

or removed; these modules are relatively small methods which, input a packet, perform

a given task on it and return either the packet or an error.

An example conduit endpoint structure for implementing a multipath datagram ser-

vice is depicted in Figure 2.15. As depicted, a path conduit endpoint comprises the

following components: an inbound link (inlink) set, an outbound link (outlink) set, an in-

link reader, an outlink writer, a path scheduler, a path set, an input (pull) module chain and

an outbound (push) module chain.

79

re
ad

In
lin

k
Se

t

pu
sh

 (
ou

tp
ut

)

w
rit

e

O
ut

lin
k

Se
t

Conduit Endpoint Interface (“UDP”)

Ap
pl

ic
at

io
n

N
et

w
or

k

Path Scheduler
 Path Set

In
lin

k
R
ea

de
r

pu
ll

(i
np

ut
)

Sc
he

du
le

 P
at

h

O
ut

lin
k

W
rit

er

Se
t

N
et

w
or

k
ID

Se
t

So
ur

ce
 I

D

Se
t

D
es

t.
 I

D

Se
t

Pa
th

Se
t

Pa
yl

oa
d

Se
t

Fl
ag

s

Tr
ac

k
Se

nd
 S

ta
ts

Tr
ac

k
R
ec

v
St

at
s

Figure 2.15: Path Conduit Endpoint Structure for “Multipath UDP”

The conduit endpoint exists mainly to provide packet send and receive methods to

applications and transport layers. For example, when a packet is written to the conduit

of Figure 2.15, it is “pushed” through the output (push) module chain. Each output mod-

ule executes a specific action on the packet (i.e., scheduling a path; addition of header op-

tions: packet flags, network ID, destination ID and path; setting of the payload; tracking

of sent packet statistics). The module chain ends at the outlink writer, which determines,

based on the selected path, which outlink of the outlink set to write the packet to. It

writes the packet to the given outlink and thereby sending it on the given path.

When a packet is to be read from the conduit, it is input (pulled) from the inlink

reader. The inlink reader selects a random link with data, reads a packet from the link

and returns it. The packet is then passed, for example, through the received packet

statistics tracking module and back to the application.

With this structure, operations on packets can be handled automatically by mod-

ules, new combinations of packet operations can be tried easily without significant code

modification and code can be reused via the modular interface.

80

2.6.3.2 Implementation

The conduit endpoint interface is implemented via a C++ template class SoraUser-

LevelConduit. It is templatized to allow instantiation using a variety of components.

Its five template parameters are: path type, path scheduler type, input/output module chain

pair type, inlink reader type and outlink writer type. Each is explained below.

SoraConduit

A
tt

ri
b

u
te

s

sora_network_t : network
sora_entity_t : source
sora_entity_t : destination
sora_conduit_id_info_t : conduit_id_info
packet_flags : sora_packet_flags_t
seq_num_pair : SoraSequenceNumberPair
handlers : sora_packet_header_option_handlers_t

SoraUserLevelConduit<PathType, SchedType, ChainPairType, ReaderType, WriterType>

M
e
th

o
d

s

A
tt

ri
b

u
te

s

write(void *, size_t) : int
read(void *, size_t) : int
send(SoraPacket *) : int
recv(SoraPacket *=NULL) : SoraPacket *
set_blocking : void
set_non_blocking : void
setup_inlinks : bool
setup_outlinks : bool
setup_links : bool
add_inlinks(SoraLinkPointerVector &) : void
add_outlinks(SoraLinkPointerVector &) : void

inlinks : SoraInlinkPointerVector
outlinks : SoraOutlinksPointerVector
inlink_reader : ReaderType
outlink_writer : WriterType
ppm_chain_pair : ChairPairType

A
tt

ri
b

u
te

s

scheduler : SchedType

SoraPathSchedulerConduit<PathType, SchedType>

M
e
th

o
d

s

schedule(size_t) : SoraPath *
add_path(PathType &) : void
add_paths(SoraPathVector<PathType> &) : void
paths_from_file(const char *) : int
remove_path(const PathType &) : int
remove_paths(const SoraPathVector<PathType> &) : int

Figure 2.16: SoraUserLevelConduit and Parent Classes

First, a path scheduler is a templatized class with one parameter: path type. The

path type must be a subclass of SoraPath, which is the default template path type;

SoraPath implements the basic functionality related to storing the link identifiers that

comprise the path. Within the SORA framework, paths are means for path metrics to

be stored by path monitoring and feedback receipt modules; different path types allow

81

implementation of different metrics. For instance, one path type may track loss rate;

another may track both loss rate and latency over the past 10 minutes. Subclasses of

SoraPath include: SoraPathEpochTotals, which tracks loss and latency since

conduit creation; SoraPathTimeWindowTotals, which tracks loss and latency on a

time-window basis and SoraPathGeneralTotals which tracks both of these.

The path scheduler type determines choice of path scheduler implementations. All

path schedulers inherit the SoraPathScheduler base class and thus have the same in-

terface, which centers around the schedulemethod which returns a pointer to the next

scheduled path object. Currently supported implementations include round robin (So-

raRoundRobinPathScheduler) and random (SoraRandomPathScheduler); the

default is the random scheduler.

An input/output module chain pair is a class formed by input packet and output

packet processing module chains, as discussed above. Each module chain is a linked list

of packet processing modules wherein each successive module performs some task and

either calls the next module or returns an error value.

The module chain pair must be a subclass of SoraPPMPushPullChainPair.

Modules may be allocated and added directly to its processing chains members push_-

chain and pull_chain. In order to perform more complex setup operations, it is

often convenient to subclass this class. For example, monitored information (e.g., the

loss of a given sequence number) may be fed back to the sender on the next available

packet via an output packet processing module. To implement this, however, the loss

monitoring module must have access to the loss feedback module, which requires the

additional setup afforded by the constructor of a subclass. Packet processing modules are

described below.

An inlink reader is a class which reads the next packet from the set of inlinks. It is,

by default, implemented by the SoraRandomInlinkReader class, which randomly

selects the next ready inlink. A random inlink selection policy efficiently avoids link

read starvation and, unless a different reading policy is desired, there is no reason not to

use this default.

82

An outlink writer is a class which determines the next hop link by referring to the

next hop set in the selected path and is, by default, implemented by the SoraOut-

linkWriter class. Since the outlink scheduling policy is effectively set by the path

scheduler, there is little reason to change from the default, except, for instance, in the

case of handling blocking writes, where the current framework will block.

SoraPPMPushIn

push(SoraPacket *) : intMethods

SoraPPMPushOut

Methods output(SoraPacket *) : int

Attributes next : SoraPPMPushIn *

SoraPPMPushInPushOut
push(SoraPacket *) : int
handle(SoraPacket *) : SoraPacket *Methods

SoraPPMPullOut

pull() : SoraPacket *Methods

SoraPPMPullIn

Methods input() : SoraPacket *

Attributes next : SoraPPMPullOut *

SoraPPMPullInPullOut
pull() : SoraPacket *
handle(SoraPacket *) : SoraPacket *Methods

Figure 2.17: Packet Processing Module Base Classes

There are two types of packet processing modules, corresponding to the output and

input chains: push input/push output, and pull input/pull output. The interfaces of these

classes are implemented via the pure virtual classes SoraPPMPushInPushOut and

SoraPPMPullInPullOut.

To implement a packet processing module, an implementor inherits one of these

interfaces and then simply implements the SoraPacket * handle(SoraPacket

*) method to perform tasks on the given packet. The SoraPPMPushInPushOut and

SoraPPMPullInPullOut classes call the handle method with any packet that they

are pushed (or pulled) a packet. These classes expect the implementor modules of the

handle method to return a packet on success or NULL on failure. Packet processing

modules should never deallocate a packet; this is the responsibility of the initiator of the

pull or push chain.

83

Current inbound modules include SoraPPMMonitorPacketLoss for sequence

number-based packet loss monitoring and SoraPPMMonitorPathLatency for uni-

directional latency monitoring. Packet loss monitoring is performed by tracking packet

sequence numbers and the paths they map to at the sender, monitoring excessive packet

delays at the receiver and then feeding information back to the sender regarding exces-

sively delayed packets. Efficient unidirectional path latency monitoring is performed

using an algorithm similar to that recently published by Song et al. [147]. An analysis

of performance of the tools provided for both packet loss monitoring and unidirectional

path latency monitoring is provided in Section 2.7.1.3.

Current outbound modules include SoraPPMSchedulePath for path scheduling,

SoraPPMSetFlags for setting flags options, SoraPPMSetNetwork for setting the

network ID option, SoraPPMSetSource for setting the source entity ID option, So-

raPPMSetDestination for setting the destination entity ID option, SoraPPMSet-

Path for setting the path option, SoraPPMSetPayload for setting the payload based

on the amount of space available considering the link MTU and the size of the added

options.

Data Send/Receive

Via Conduit
Endpoint

Via Existing
Network

Network

Conduit
Endpoint

Conduit
Endpoint

Ingress Logic

Ingress
Logic
W

ra
pp

er

Application

libc

D
at

a

D

at
a

Figure 2.18: Two Ingress Types: Router and libc Wrapper

84

2.6.4 Packet Ingress/Egress: libc Wrapper

As depicted on the left side of Figure 2.18, packet ingress can be implemented by

intercepting normal network-related system calls and redirecting them to use a virtual

network.

2.6.4.1 Design

This interception and redirection of system calls is performed using a wrapper library.

A wrapper library is defined as a dynamically loaded shared object file which overrides

(wraps) existing shared library methods and modifies their behavior.

More specifically, Linux and a number of other operating systems are equipped with

feature allowing a given shared object library to be loaded before any others are loaded.

That is, the symbols defined in the pre-loaded library take precedence over those loaded

later, thus allowing system call symbols to be overridden. Linux also allows applications

to query for the location of the next instance of a given symbol (in the case of overridden

system call symbols, the location of the real symbol), allowing it to be called as well

from the same process. These two features of (1) redirecting calls to a given function

and (2) being able to call the redirected function on demand allow system calls such as

socket and sendto to be overridden based on certain criteria.

2.6.4.2 Implementation

In the current implementation, when a socket requesting UDP protocol traffic is

requested, a conduit endpoint interface is created instead and a fake socket file descriptor

(one with value 1023) is returned. Then, whenever the fake file descriptor is passed to

any other relevant system call, the appropriate conduit endpoint interface call is invoked

instead (e.g., send for sendto, read for recv, etc.). For other file descriptors (e.g.,

for files or TCP sockets), system calls are passed through directly.

This method has the advantage of not requiring setup and installation of any addi-

tional routers because ingress and egress happen within the wrapper. However, a number

of limitations exist with the current implementation: (1) because no reliable bytestream

85

implementation is currently available for use with the user-level conduit, only UDP sock-

ets can currently be wrapped; (2) because there is no corresponding functionality in the

conduit, the out-of-band messaging functions of sendmsg and recvmsg are not yet

usable; and (3) the current implementation supports mapping of one socket per applica-

tion.

Nevertheless, the interface is usable for a number of applications and all conduit-

related performance tests below use netperf run via a wrapped UDP socket.

2.6.5 Packet Ingress/Egress: Router

As depicted on the right side of Figure 2.18, an ingressing router acts as a default

gateway for one or more virtual network-unaware endhosts on a network. That is, it is a

virtual network entity which accepts traffic from said endhosts and forwards it on their

behalf, while ingressing select outbound traffic onto virtual networks and egressing any

received virtual network inbound traffic to the endhosts.

2.6.5.1 Design

The design of this structure is based on extensions to the Click data plane router

described above in Section 2.4.5. In order to act as a default gateway for endhosts, the

Click data plane router is passed all traffic from them. As depicted on the right side of

Figure 2.18, ingress logic is used to determine which packets to attempt virtual network

ingress for. This ingress logic can use, for example, the source and destination IP address

and/or port number to make the ingress determination. Packets which are not to be

ingressed can be routed normally (e.g., passed directly to a next hop router).

For packets to be ingressed, first a mapping is maintained by the router between end-

host IP addresses and virtual network addresses (network and entity identifiers). These

mappings are maintained using the methods of the entity query service summarized

in Figure 2.9 (set_mappings, unset_mappings, reset_mappings and get_-

mappings). When addresses are found in the router’s IP address to virtual address map

86

for the IP source and destination address, a conduit endpoint interface is instantiated

with the respective source and destination network and entity identifiers.

Queries are then made for inbound and outbound links. If inbound and outbound

links are available, they are added to the conduit endpoint interface and outbound paths

are obtained from the given source to the given destination. If outbound paths are avail-

able, they are added to the conduit endpoint interface and packets may then be encapsu-

lated and sent via the virtual network. At the egress, packets are decapsulated and sent,

as is, on the network to their destination. A similar ingress process occurs for any reply.

Figure 2.19: Click Ingressing Router Inbound Lookup Elements

2.6.5.2 Implementation

The Click ingress chain for implementing the queries described above and scheduling

packets for sending as well as for egressing received packets is depicted in Figure 2.19.

For ingress, the first element SoraConduitCacheFind locates any cached con-

duit for the given source and destination IP and port pair; if found, it passes the packet di-

rectly to the path scheduler; otherwise, the packet passes first to the ingress lookup chain.

The first element of the lookup chain SoraCreateConduit creates a conduit for the

packet; the next modules perform default value setting (SoraSetConduitValues),

caching (SoraConduitCacheSet) setting of the path scheduler type (SoraSet-

87

PathScheduler), path and link lookup (SoraLookupLinks, SoraLookupPaths).

If any of the lookups fail, the packet is discarded; otherwise, the packet is passed to the

path scheduler and out to the packet processing chain (not depicted), which creates a

packet, adds any required options and sends to the output chain. The output chain is

essentially the same as that depicted in Figure 2.7 starting with the SoraLookupNex-

tHop element.

For egress, the conduit information in the packet control data (network, source and

destination entity ID and conduit ID) is located, and the conduit cache is consulted to

determine whether or not a conduit for the packet has already been created. If not, a

conduit is created and cached so all further communication back from the receiver uses

the same conduit. Then, the encaspulating header is stripped off and the packet is sent

out on the network to its destination.

In this way, packets from any application that match a desired pattern can be in-

gressed onto and egressed off from a virtual network using a given conduit endpoint pair.

The disadvantages to using the router are the need to install and configure extra network

equipment and the fact that the current implementation only operates at user-level and

therefore suffers from precisely the same performance bottleneck as the user-level router;

this is discussed next, in Section 2.7.

2.7 Performance Analysis

Performance analysis of the three components (data plane, control plane and appli-

cation interface) is divided into two sections: first, the packet processing performance of

the data plane in conjunction with the application interface is evaluated, followed by the

control plane link and path discovery means.

2.7.1 Data Plane & Application Interface

Performance analysis was conducted in order to determine how the data plane, appli-

cation interface and their components perform with actual packet traffic.

88

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 150 300 450 600 750 900 1050 1200 1350 1500

Th
ro

ug
hp

ut
 (

M
bp

s)

Packet Size

Raw UDP/IP w/Linux Kernel
Raw Link w/SORA Kernel
Conduit w/SORA Kernel

Conduit w/SORA Userlevel

(a) Throughput (Mbps)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 150 300 450 600 750 900 1050 1200 1350 1500

Th
ro

ug
hp

ut
 (

Kp
ps

)

Packet Size

Raw UDP/IP w/Linux Kernel
Raw Link w/SORA Kernel
Conduit w/SORA Kernel

Conduit w/SORA Userlevel

(b) Throughput (Kpps)

Figure 2.20: Throughput Performance (100 Mbps Network)

2.7.1.1 Processing Performance Testing Methodology & Environment

In order to evaluate the processing capabilities of both the router and application

interface, both in terms of bits and packets per second, a testing environment like that

depicted in Figure 2.22 comprising three nodes was established. All nodes were Dell

r710’s with an Intel Xeon 2.4 GHz (a Nehalem four core, each core having an 8 MB

cache) CPU, 3 GB of RAM, running Linux 2.6.24.7-117 and Click 1.8. Moreover, all

nodes were single-user and dedicated only to packet processing, meaning that no other

processes were competing for processor or memory resources on these machines. The

methodology for obtaining throughput results was to send packets from the source end-

point to the destination endpoint as quickly as possible (with no flow control) and mon-

itor how many packets/bits were actually received.

Four test were performed: (1) Raw UDP, (2) Raw SORA Kernel, (3) Conduit/SORA

Kernel and (4) Conduit/SORA User; each test was conducted five times for a duration of

10 seconds, with the average taken. These test parameters were chosen because measure-

ments in 10 second intervals have been shown to provide relatively consistent results on

networks with low jitter and loss rate like that used in the present test network [77], and

because of the lack of variability in the data due to the routers and links being dedicated

89

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 150 300 450 600 750 900 1050 1200 1350 1500

Th
ro

ug
hp

ut
 (

M
bp

s)

Packet Size

Raw UDP/IP w/Linux Kernel
Raw Link w/SORA Kernel
Conduit w/SORA Kernel

Conduit w/SORA Userlevel

(a) Throughput (Mbps)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 150 300 450 600 750 900 1050 1200 1350 1500

Th
ro

ug
hp

ut
 (

Kp
ps

)

Packet Size

Raw UDP/IP w/Linux Kernel
Raw Link w/SORA Kernel
Conduit w/SORA Kernel

Conduit w/SORA Userlevel

(b) Throughput (Kpps)

Figure 2.21: Throughput Performance (Gbps Network)

to forwarding for this experiment alone. Raw UDP measures raw UDP throughput via

netperf 2.4.5 [77] through an intermediate unmodified Linux kernel router; it pro-

vides a baseline estimate of the maximum throughput performance possible through the

network. Raw SORA Kernel measures throughput to and from a single UDP link in-

stance on either endpoint, with the intermediate router running the SORA Click router

in kernel mode. Conduit/SORA Kernel measures throughput via netperf wrapped

using the wrapper described in Section 2.6.4 with the intermediate router running the

SORA Click router in kernel mode. Conduit/SORA User measures throughput via the

same wrapped netperf means but with the intermediate router running the SORA

Click router in user mode.

...

Intermediate
SORA Routers

Endhost

Figure 2.22: Throughput Testing Environment

90

The results for 100 Mbps environments, typical of most testbeds such as PlanetLab,

are depicted in Figure 2.20; those for Gbps environments are depicted in Figure 2.21.

2.7.1.2 Packet Processing Performance Results

First, the throughput results in Figure 2.20 indicate that the performance of the

SORA Click kernel router scales well against the baseline UDP through all packet sizes;

thus, it does not present a bottleneck in typical testbed environments. Next, perfor-

mance via the SORA conduit endpoint interface is nearly identical to that of the kernel

router indicating that it also does not present a throughput bottleneck. However, as can

be seen more clearly in the packet processing depiction of Figure 2.20b, throughput via

the Click user-level router does present a bottleneck at packet sizes below 200 bytes or

packet processing speeds between 40 and 45 Kpps.

Therefore, in environments such as Emulab, where kernel modifications are possible,

the SORA conduit endpoint interface can provide performance on par with native IP

routing for all packet sizes when used with the kernel router at 100 Mbps or less. How-

ever, when used with the user-level router, a performance bottleneck exists for smaller

packets even for 100 Mbps networks, the exact extent of which will depend upon the

packet processing capabilities (i.e., CPU and memory bus) of the given virtual network

router.

Next, the same test was done using the same hardware but with Gbps-capable switches.

The throughput results are depicted in Figure 2.21a; they indicate that the performance

of the SORA Click kernel router also scales well against the baseline UDP through all

packet sizes even at full Gbps speeds; thus, it does not present a bottleneck in Gbps en-

vironments. However, while performance of the SORA conduit endpoint interface is

nearly identical to that of the kernel router in Figure 2.21b down to packet sizes of 900

bytes, beyond this point the packet processing speed of the conduit endpoint interface

reaches a limit of about 140 Kpps for all packet sizes beyond. Moreover, the user-level

router is, as above, consistently limited to 50 Kpps and is thus not well suited to Gbps

environments.

91

Therefore, while the SORA kernel router is capable of scaling with IP, when Gbps

performance is required of the conduit endpoint interface, packet sizes must currently be

kept above a certain minimum, which depends upon the packet processing capabilities

of the given virtual network router.

The reason for this limitation on the conduit interface is largely due (1) to the extra

data copy overhead required with the libc wrapper: it is passed a buffer via send and has

no choice but to copy it into the UDP buffer, resulting in extra overhead not experienced

by UDP; and (2) to the extra options processing that UDP does not have to perform.

Given that the extra copy overhead is precisely the bottleneck experienced between the

user-level and kernel-level Click router and the kernel-level implementation allowed the

router to scale with IP for all packet sizes, it is believed that a kernel-level implementation

of the conduit endpoint interface would also improve its performance similarly.

2.7.1.3 Path Monitoring Tools Testing Methodology & Environment

As discussed in Section 2.6.3.2, the application interface provides path performance

monitoring libraries to ease development of application-directed routing applications and

transport protocols; these include packet loss and unidirectional path latency.

In order to evaluate the accuracy of the monitored statistics provided by these utili-

ties, a testing environment similar to that described above (depicted in Figure 2.22), but

comprising three intermediate routers, and thus three paths, was established. Then, traf-

fic sent over the network via a conduit endpoint pair was monitored using the utilities

described above. Two separate tests were performed: one to measure loss rate monitor-

ing performance and another to measure latency monitoring performance. In each test,

the actual packet loss rate and latency on two of the three links forming the paths of the

network were varied with each path being assigned unique latency and loss rates. Loss

rate and latency to the links were assigned by numbering the paths p = 0 through 2 and

using a value D to assign per-path loss rate of D ∗ 0.005 ∗ p and per-path added latency

of D ∗ p msec. In order to test for false error messages and latency error, one path was

92

held constant (at zero added loss and latency) for all tests. The monitored loss rate and

latency were then compared to the actual values.

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

 0.11
 0.12
 0.13
 0.14
 0.15
 0.16
 0.17
 0.18
 0.19
 0.2

 0 2 4 6 8 10 12 14 16 18 20

Lo
ss

 R
at

e

D Multiplier (Actual Path Loss Rate = D * 0.005 * Path Number)

Monitored Path 0 Loss Rate
Monitored Path 1 Loss Rate
Monitored Path 2 Loss Rate

Actual Path 0 Loss Rate
Actual Path 1 Loss Rate
Actual Path 2 Loss Rate

(a) Loss Rate

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42

 0 2 4 6 8 10 12 14 16 18 20

La
te

nc
y

(m
se

c)

D Multiplier (Actual Path Latency = D * Path Number)

Monitored Path 0 Latency
Monitored Path 1 Latency
Monitored Path 2 Latency

Actual Path 0 Latency
Actual Path 1 Latency
Actual Path 2 Latency

(b) Unidirectional Latency

Figure 2.23: Monitoring Performance (Monitored vs. Actual)

2.7.1.4 Path Monitoring Tool Performance Results

The results are summarized in Figure 2.23. First, Figure 2.23a indicates that, as the

loss rate is increased, the monitor is capable of providing an effective estimate. Next

in Figure 2.23b latency was also shown to have low error with respect to the actual set

values. Thus, results indicate that the loss rate and latency utilities provided for use with

the application interface are effective at measuring loss rate and unidirectional latency.

2.7.2 Control Plane

Performance analysis was conducted in order to determine the performance (and thus

convenience) of the control plane link and path discovery services in realistic environ-

ments. As a measure for what could be considered “convenient”, query times in excess

of one minute for network setup operations were regarded as “inconvenient”.

93

2.7.2.1 Methodology & Testing Environment

The test objective for both the link and path discovery services was query time. The

methodology for obtaining both link and path query times was to (1) obtain a realistic

graph, (2) generate graphs of varying size similar to the obtained graph, (3) generate a

virtual network topology based on each graph and (4) test the performance of standard

queries using the virtual network topology. As a realistic graph, a view of the current

Internet AS graph was constructed using the Skitter datasets gathered by CAIDA [22] via

RouteViews [154] for the period from January 1, 2008 to January 14, 2008. To generate

graphs of varying size similar to this graph, the Orbis [102] graph generation package

was used. The original graph from the CAIDA set contained 7,632 AS’s (vertices) and

35,476 inter-AS connections (edges).

A total of 78 graphs were generated, ranging in size from a smallest of 32 vertices and

84 edges to a largest of 8,499 vertices and 39,060 edges. For the case of path computation,

all 78 graphs were used. For the case of the link database, only 30 graphs were used,

ranging in size from a smallest of 32 vertices and 84 edges to a largest of 2,543 vertices

and 11,366 edges. (Only 30 graphs were used because the average setup time of largest

graph exceeded the range of one minute.)

To evaluate link query performance, MySQL [114] version 5.0.51 was configured

with the tables depicted in Figure 2.11 on a machine with 500 MB RAM and dual Intel

Pentium D 2.8 GHz processors, each with a 1 MB cache. For each virtual network, the

time required to: (1) insert each virtual network, (2) perform single link insertion and

retrieval operations and (3) remove all links was measured 30 times. The average of each

run is graphed with error bars indicating standard error in Figure 2.24a.

To evaluate path query performance, SORA was installed on an Intel Core 2 Duo

2 GHz processor with 4 MB cache, and 2 GB RAM running Mac OS X 10.4.8. For each

virtual network graph, k = 1 to 10 paths were computed three times and the running

time for each was measured. The average of each run is graphed with error bars indicating

standard error in Figure 2.24b.

94

2.7.2.2 Results

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000

Q
ue

ry
 T

im
e

(s
ec

on
ds

)

Number of Edges (Links)

Set All Links
Set Single Link
Get Single Link

Unset Single Link
Unset All Links

(a) Link Query

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 5000 10000 15000 20000 25000 30000 35000 40000

Co
m

pu
ta

tio
n

Ti
m

e
(s

ec
on

ds
)

Number of Edges

1 Path
2 Paths
3 Paths
4 Paths
5 Paths
6 Paths
7 Paths
8 Paths
9 Paths

10 Paths

(b) Path Computation

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

R
eq

ue
st

 T
im

e
(s

ec
on

ds
)

Number of Links

Link Request Time

(c) Link Request

Figure 2.24: Link and Path Query and Link Request Service Performance

The link query results in Figure 2.24a indicate that single queries complete in rela-

tively constant time across all network sizes, which is not unexpected given that databases

of these sizes can easily fit into memory. The results also indicate that virtual networks of

roughly 10,000 edges can be inserted in under one minute but that, given the seemingly

polynomial growth curve, more than this will require significantly longer.

Upon investigation using direct database access (as opposed to going through XML-

RPC), it was determined that XML-RPC overhead and the parsing of the link data was

to blame for a substantial portion of the query processing time required and a more effi-

cient implementation would yield lower query times. Nevertheless, 10,000 edge virtual

network insertion time in under one minute is deemed adequate for most testbed-based

virtual networks, which typically do not exceed 1,000 nodes.

The path query results in Figure 2.24b depict the expected performance of Dijkstra’s

algorithm. Further, they indicate that the Ruby path computation module is capable of

computing seven disjoint paths on a graph with nearly 8,500 vertices and 40,000 edges

(and up to 10 in under 13 seconds), with three paths possible through the largest graph in

five seconds. Given that most testbed-based virtual networks have less than 1,000 nodes,

the path computation module performance is adequate for most testbeds.

The link request query results in Figure 2.24c indicate that, as expected, link request

query time increases linearly with the number of links. This is expected because each

95

Link Metric
Gathering1

Setup Host

Router Router

Router

Get RTT
Get RTT

Get RTT

Link Metric Data

2
Network
Formation

Setup Host

Link Selection

Link Metric Data

Virtual Network Graph

Link Set=

3
Link
Request

Optional

Link Request
Server

LinksSetup Host

Link Set

4
Link DB
Insertion

Link Query
Server

Setup Host Link Set

5
Link
Instantiation

Links

Links

Links

Setup Host

Link Set

6
Conduit
Instantiation

Link Query
Server

Path Query
Server

Get Paths

Endhost

Get Links
Endhost

Paths

Figure 2.25: Virtual Network Creation Steps

link signature is computed individually in series and has the same run time. The results

also indicate that, within the target duration of one minute (an average of 51.83 seconds),

requests for 2,000 links can be handled. Given that with link pre-instantiation, the num-

ber of link requests required is expected to be far less than the network size, these results

indicate that the link query service is suitable for large virtual networks relative to the

standard of PlanetLab and the one-minute guideline discussed above.

2.8 Examples

As summarized in Figure 2.25, the general steps for creation and usage of a virtual

network are link metric gathering, virtual network graph formation, link request (optional),

link database insertion, router link instantiation and conduit instantiation. Notably, this

assumes that the Click-based SORA data plane router described in Section 2.4.5.1 and

the control plane daemon (sora_entityd) described in Section 2.5 is installed and

running on each router.

96

This framework has been deployed and used in application-directed experiments on

both Emulab and PlanetLab.

On PlanetLab, an early version of the framework was used to examine the feasibility

of using packet dispersion across hundreds of PlanetLab-router-based paths with TCP/IP.

Results [91] indicate that, for small numbers of paths, dispersion provides a reduction

in the load on individual paths while still providing the reliability benefits of dispersion

without greatly degrading performance; however, as the number of paths and the amount

of reordering TCP must cope with is increased, performance decreases quickly.

On Emulab, the ingressing router described in Section 2.6.5 was also used to ingress

packets onto a virtual network to test TCP/IP performance. Partially in response to

the results from the above-described PlanetLab experiment, the performance of different

TCP/IP implementations (e.g., RENO and Cubic) was evaluated while using multipath

packet dispersion.

In these experiments [92, 94], TCP/IP traffic was dispersed across ten paths simulta-

neously; then, Emulab was used to add progressively more latency to the links forming

these paths in order to induce out-of-order delivery. Because TCP confuses out-of-order

delivery with packet loss, its performance is known to suffer greatly under such con-

ditions. To cope with this, a best-effort network layer reordering was proposed and its

performance evaluated. This service was shown to be capable of preserving near-linear

throughput gain with respect to the number of paths in use even under heavy reordering,

thereby providing significant performance improvements over unmodified TCP.

2.9 Future Work

The data plane, control plane and application interface are available for use now and

provide an immediately usable solution to the problem of how to conveniently develop

and test both existing and future applications and transport protocols on application-

directed routing networks using the current network infrastructure, as proven both by

experiment and usage case. Nevertheless, a number of extensions and improvements

have been envisioned for the current implementation, as are described below.

97

2.9.1 Data Plane: Link Types

As described in Section 2.4.3.2, the framework currently implements two basic link

types: UDP/IP and TCP/IP. Because UDP/IP is a datagram-oriented, best-effort trans-

port protocol, UDP/IP-based links are well-suited for experiments which assume a best-

effort network layer like that currently provided by the current Internet. Because TCP/IP

provides reliable, stream oriented transport, it is well-suited for experiments which as-

sume a connection-oriented network or data link layer, as well as in replicating and

comparing parallel TCP/IP experimental results.

However, as described in Section 2.4.3 most any type of tunnel (link) may be im-

plemented using the data plane framework by inheriting the SoraLink interface and

implementing the required send, receive, setup and teardown methods. The main goals

of extending the framework to support further link types are to: (1) support for a larger

variety of testbed networks and (2) provide better packet utilization and thus better per-

formance.

In order to support a larger variety of environments, future link support may be

extended to include GRE-based tunnels [44], which are used by VINI [12] and Core-

Lab [115], and OpenFlow-based tunnels [108], which are used by GENI [58]. In order

to provide better packet utilization and thus better throughput performance, the link in-

terface may be extended to support embedding of the SORA header into existing packet

options such as IPv6 options extensions. Implementation of links provide support for the

application interface. In order to support these links in the SORA Click router, SORA

Click elements for link receive and send (i.e., SoraPLIface and SoraUDPIPSocket

for current UDP/IP links) would be implemented for the SORA router.

2.9.2 Control Plane: Extensions for Testbed Network Control

As described in Section 2.3, the current framework is not designed to replace existing

testbed networks but to complement them—to extend existing testbed control and data

planes, allowing creation and operation of application-directed data planes atop them.

However, network setup and teardown on testbed environments can be be further eased

98

via extensions to directly support link-based network setup and management of testbed

networks.

For instance, when using Emulab with the current control plane, three basic steps

must be performed before the SORA control plane can be used to instantiate links:

(1) creation of virtual network link data representing the desired link topology and link

metric characteristics; (2) manual creation of an experiment configuration, comprising

routers (hosts), network topology and network latency and bandwidth characteristics

to match the given virtual network configuration; and (3) manual instantiation of the

network on the testbed and installation of SORA software on the routers.

However, network configuration steps (2) and (3) could be eliminated by extending

the current SORA control plane to directly manipulate testbed control planes such as

that of Emulab or CoreLab and integrating integrating instantiation features directly into

the SORA control plane framework. In this case, on Emulab for instance, an extended

SORA control plane would input a link file, create an Emulab experiment configuration

based on the links and link metrics therein, and then instantiate the network.

Moreover, where underlying testbed networks support it, such a SORA control plane

extension could also be used to allow live manipulation of link characteristics such as band-

width and latency. This would make it possible to not only remotely query for live

metric data but to remotely set live link metric characteristics.

2.9.3 Control Plane: Extensions for Live Router Link Monitoring

As described in Section 2.3, the goal of this framework is to enable application-

directed routing on current networks. Herein, application-directed routing is defined as

a packet routing method, whereby applications are given access to an arbitrary number

of paths and are made fully responsible for enacting a routing policy as well as mak-

ing performance decisions by monitoring path performance metrics; thus, link metric

information is not used for path scheduling in application-directed routing. However,

since live link monitoring information could conceivably be of use in examining differ-

99

ent path scheduling schemes, another possible control plane extension is live router link

monitoring.

For instance, this could be implemented via extensions to the existing control plane

daemon (sora_entityd) to perform two additional steps: (1) regularly gather moni-

toring information regarding the state of all instantiated links; (2) make this information

available to entities. To make this information available, three means are possible: a

query means, a callback means and a shared measurement database.

With the query means, another XML-RPC-based method (e.g., get_monitored_-

link_metrics) would be established for entities to query the router for information

regarding any given monitored links (by specifying the network identifier, source entity

identifier and link identifier of the given links).

With the callback means, the router would maintain a list of XML-RPC URLs

and would provide periodic updates of monitored metric data by calling an XML-RPC

method (e.g., set_monitored_link_metrics) for each URL with monitored met-

ric data. The list of URLs could be maintained by having entities desiring metric up-

dates register their URLs via a router XML-RPC method (e.g., register_link_-

metric_update_url).

With the shared measurement database, each router would be configured with an

XML-RPC URL which it uses to call a query method (e.g., update_link_metrics)

with a set of links and their monitored metrics. This URL corresponds to a link metric

database service which processes said query and updates its database with the given link

metrics. Then, entities may query the same URL via a query method (e.g., get_-

monitored_link_metrics) for updated link metrics from the database, instead of

querying each router separately as with the query means described above.

2.9.4 Control Plane: Testbed Deployment

As described in Section 2.8, the current framework has already been used to obtain

results on both PlanetLab and Emulab and its source code is freely available for download

and deployment. The next step is using the shared testbed features of the control plane

100

(described in Section 2.5.6) to deploy the data plane as a routing service on PlanetLab

and CoreLab. This would place all possible links on these testbeds at the disposal of

routing researchers, would represent the largest application-directed data plane currently

available and would allow experimenters to perform application-directed experiments

more quickly and easily than is currently possible.

2.9.5 API: Packet Processing Module Structure

As described in Section 2.6.3.2, the current packet processing module chain structure

supports two types module operation: push-input/push-output and pull-input/pull-output.

Currently, these respectively correspond to output and input modules and are sufficient

for implementing modules which perform an operation on a packet and immediately

return it (or return an error). However, in order to implement more complex modules

such as those which perform queueing, it would be more convenient to have an interface

which supported mixed mode operation. Specifically, a pull-input/push-output configu-

ration would allow a module to pull (input) a packet from a source, buffer it for some

period of time, and then push (output) it; conversely, a push-input/pull-output configura-

tion would allow a module to be pushed (input) a packet from a source, and then buffer

(queue) it until a later pull operation unbuffers (dequeues) it.

In support of mixed mode operation, two new classes are currently proposed as an

extension: SoraPPMPushInPullOut and SoraPPMPullInPushOut. As described

in Section 2.6.3.2 and specifically in Figure 2.17, the former class inherits the SoraPPM-

PushIn and SoraPPMPullOut classes and implements the push method, which calls

a pure virtual handle method to be implemented in a subclass; the latter class inherits

the SoraPPMPullIn and SoraPPMPushOut classes and implements the pull meth-

ods, which calls a pure virtual handle method to be implemented in a subclass. Thus,

these pure virtual class interfaces are to be inherited in constructing processing modules

that implement packet buffer queues, packet reorderers and the like.

101

2.9.6 API: Path Schedulers

As described in Section 2.6.3.2, the framework currently supports two path sched-

ulers: round-robin and random. However, many scheduling algorithms, such as weighted

round-robin, weighted fair queueing and the like exist [45] to provide better performance

under a variety of network conditions. The current framework allows such schedulers to

be implemented and make use of different monitored path metrics (e.g., latency, loss rate,

bandwidth, jitter, reordering and the like or some combination of thereof). Therefore,

another future extension to the framework is implementation of support for a larger vari-

ety of schedulers. As is also described in Section 2.6.3.2, new schedulers are implemented

by creating a subclass of SoraPathScheduler and implementing the scheduling logic

within it to return the next path in the given path set.

2.9.7 API: Packet Processing Modules

As described in Section 2.6.3.2, current packet processing modules include those for

packet options setting (e.g., path, network, source and destination identifiers, sequence

numbers, path latency and loss information, etc.), payload setting as well as monitoring

of statistics such as packet send and receive, packet loss, relative path latency and packet

reordering. Moreover, modules can be created to perform new tasks; in particular, two

types of extensions are envisioned for the current infrastructure: (1) support for further

monitored metrics such as jitter and throughput in support of the path schedulers dis-

cussed above; and (2) modules supporting features such as packet reordering and, for

instance, insertion of artificial packet delay via the mixed mode module interface dis-

cussed above; insertion of packet delay is useful in testing and experimentation because

it allows controlled amounts of latency to be added on demand.

2.9.8 API: Gbps Performance

As discussed in Section 2.7, the kernel-level router and conduit currently provide

performance on par with native IP for 100 Mbps networks and the kernel-level router

scales with native IP even for Gbps networks. However, as depicted in Figure 2.21, the

102

conduit implementation suffers from the same type of characteristic bottleneck on Gbps

networks that the user-level router does on 100 Mbps networks. As can be seen between

the performance of the user-level and kernel-level data plane routers, a kernel-level imple-

mentation eliminates the extra data copy and greatly improves performance. Therefore,

in order to support experiments on a wider variety of environments, another proposed

extension to the current framework is a kernel-level conduit endpoint interface imple-

mentation. It is believed that this will place the performance of the conduit endpoint on

par with the native IP used as a baseline and that processing performance will then only

be limited by the number and type of modules used with it.

2.9.9 API: Wrapper Improvements

As described in Section 2.6.4, the current libc wrapper implementation for applica-

tion data ingress and egress has three limitations: (1) limitation to UDP sockets, (2) limi-

tation to a single socket per application and (3) lack of support for out-of-band messaging

functions (i.e., those provided by sendmsg and recvmsg). In order to better support

experiments with existing applications, another proposed extension is aimed at address-

ing these issues.

The challenge in supporting TCP/IP sockets lies in the need for a conduit-based re-

liable stream protocol implementation to replace the functionality lost when TCP/IP

sockets are redirected to conduit endpoint instances (i.e., a conduit supporting error,

loss detection, retransmission and reordering); once this is available, TCP/IP socket data

communication functions can be mapped to the methods of this conduit implementa-

tion.

The challenge in supporting multiple sockets per application lies in coping with the

fact that UDP/IP applications, for instance, can change the source/destination socket

address pair of an existing file descriptor, on demand. Since conduit endpoint instances

depend upon the socket address, when such socket address changes are possible, it no

longer suffices to simply map file descriptors to conduit endpoints since a new conduit

must be created for each socket address pair. One approach is to maintain a list of conduit

103

endpoint instances mapped to a single file descriptor. Then, when a new socket address

pair is used, a new conduit endpoint instance is created and inserted into the list; when

a send or receive is performed, the file descriptor is used to search for the corresponding

conduit endpoint list and the located list is searched for the conduit endpoint instance

corresponding to the given socket address; when a close is performed on the socket, all

conduit endpoint instances in the corresponding list are destroyed.

The challenge in supporting out-of-band messaging functions lies in mapping the

out-of-band message data to data carried in the packet but outside of the payload. One

approach is to map such data to a packet header option. Then, when a message bearing

such data is sent by an application via the wrapper, it is sent through the conduit via the

given option; when a packet bearing such an option is received by the wrapper from the

conduit, the option data is passed to the application as out-of-band message data.

2.10 Conclusion

This work described the SORA multipath virtual network framework, including an

application-directed data plane, a control plane for configuring use of the data plane

on large-scale testbed networks such as PlanetLab and an application interface for use in

research and development of new application-directed routing applications and transport

layers.

The data plane was shown to provide: (1) forwarding performance so as not to be a

bottleneck on said networks, (2) optional forwarding for multiple experiments simulta-

neously and (3) ease of upper layer development via the path conduit endpoint interface.

The control plane was shown to provide: (1) convenient data plane link, link metric

and path discovery, (2) convenient router link instantiation and (3) optional setup and

management of forwarding for multiple simultaneous testbed experiments.

The application interface was shown to provide: (1) convenient application-directed

routing-aware application development and experimentation via a modular control and

data plane interface which allows quick component swapin and swapout and a library

104

for common tasks; and (2) usability with existing network applications and protocols via

two methods: a libc wrapper and an ingressing/egressing router.

Moreover, Section 2.8 described specifically how the data plane, control plane and

application interface of the framework can be used in experiments on two major testbed

network targets (Emulab and PlanetLab); Chapter 3 describes a concrete usage case

studying the use of unmodified TCP/IP on application-directed networks on Emulab; fi-

nally, the framework is currently being used to develop and test new application-directed

routing-aware transport protocols. Thus, the present framework attains its core goal of

providing an immediately usable solution to the problem of how to conveniently develop

and test both existing and future applications and transport protocols on application-

directed routing networks using the current network infrastructure, as proven both by

both experiment and a usage case.

However, a number of items for future work were discussed in the section above:

namely, link types for the data plane; testbed network control, live router link monitoring

and PlanetLab-based deployment for the control plane; and a modified packet processing

module structure, alternate path schedulers as well as packet processing module additions,

Gbps performance and wrapper enhancements for the application interface. However,

these represent possible functionality extensions and enhancements to the current frame-

work and are not necessary to begin using the framework immediately. Accordingly,

even though many areas for future work exist, the software framework is deemed to be

useful because it has been shown by experiment as well as a usage case to meet its core

goals.

Nevertheless, the real test of any software framework is whether or not users find it

useful. Source code for libsora, the SORA Click router and the SORA Ruby con-

trol plane library as well as documentation for their use are freely available under the

GNU Public License at sora.nakao-lab.org. Moreover, development continues

on many of the future work items listed above and it is hoped that future user require-

ments will continue to guide new development.

105

CHAPTER 3

SORA USAGE CASE: STUDYING PACKET REORDERING

3.1 Introduction

Demands for a future Internet include greater reliability and performance than can

be obtained with the current routing model. Multipath routing, whereby network paths

may be selected and simultaneously used on a per-packet basis, is well-suited for meet-

ing these requirements because of the superior failover and bandwidth resource usage

freedom it allows. One typical application of multipath routing that has long been pro-

posed for realizing such reliability and performance gains is packet dispersion [106, 107],

wherein packets in a given flow are striped across multiple paths.

However, the simultaneous use of larger numbers of paths causes packets to be deliv-

ered increasingly out-of-order. The performance of TCP (the Internet’s most commonly

used transport protocol) is known to degrade under precisely the type of out-of-order

packet delivery encountered using multipath routing applications such as packet disper-

sion [14, 5]. While many performance improvements to address this issue with TCP

have been suggested and a few have even been implemented, out-of-order delivery is a

main issue preventing multipath routing from becoming a viable means for improving

Internet performance and reliability.

While research is ongoing into next-generation transport layer replacements for TCP,

which are capable of coping with reordering and taking fuller advantage of the improved

access to multiple paths expected from a future Internet, given TCP’s near ubiquitous

deployment in networked computing systems from desktop computers to embedded de-

vices, complete replacement of TCP is not possible on a short time scale. The reality

is that TCP will continue to be used well after deployment of a future Internet is complete.

106

Therefore, research into techniques allowing unmodified TCP to take advantage of mul-

tipath routing applications such as packet dispersion are highly relevant for sustaining

Internet growth.

This chapter investigates the feasibility of using a best-effort network layer packet re-

ordering service to mitigate poor TCP performance in the presence of varying degrees

of out-of-order packet delivery. Herein, packet dispersion is adopted as one highly typ-

ical cause of out-of-order packet delivery. However, as mentioned above, a number of

possible causes exist; it should be noted that the reordering service described herein as

well as its implementation are capable of aiding any out-of-order packet stream and are

not particularly limited to use with multipath routing. Moreover, as will be described in

Sections 3.3 and 3.5, the reordering service embodiment described herein requires no end-

host modifications. While previous work on the subject [92] only simulated out-of-order

delivery at the ingress, did not characterize the type of reordering observed and only

tested one TCP variant, herein, these shortcomings are addressed and results presented

from experiments to test the performance of two common TCP variants under packet

dispersion with differing numbers of paths and amounts of inter-path latency variance,

as might be expected from use of packet dispersion on a wide-area network.

The next section discusses the causes of and remedies for out-of-order packet delivery;

Section 3.3, defines what is meant by a best-effort reordering; thereafter, related work is

presented. In Section 3.5, details are provided of the experimental testing environment;

thereafter, a packet reorderer implementation made for these experiments is described;

finally, experimental results are presented and discussed and the chapter concludes in

Section 3.8.

3.2 Causes and Effects of Out-of-Order Packet Delivery

By definition, out-of-order packet delivery (OOD) occurs when a source host sends

a first packet prior to a second but the second packet arrives at its destination before the

first. It is now commonly introduced by a variety of factors, including network operator

107

use of traffic engineering to exploit multiple internal paths as well as switches employing

parallel processing [14].

In multipath environments and particularly with packet dispersion, OOD is gener-

ally caused by inter-path differences in latency. These differences can be described more

formally as follows. Let P be a set of network paths from a given source host to a given

destination host. Let the latency of any path α ∈ P at the time a given packet instance a

is sent via it be given by α.latency; let the inter-send time between two packets a and b

be ∆s(a, b), where positive values of ∆s(a, b) imply a was sent before b. Then the inter-

receive time ∆r(a, b) between packets a and b, sent consecutively and traversing paths α

and β, respectively, is given by:

∆r(a, b) = β.latency− α.latency + ∆s(a, b) (3.1)

By definition, in-order delivery can be guaranteed if and only if ∆r(a, b) > 0; that is,

if

β.latency− α.latency + ∆s(a, b) > 0 (3.2)

Therefore, the following must also hold:

α.latency− β.latency < ∆s(a, b) (3.3)

3.2.1 Approaches to Addressing Out-of-Order Packet Delivery

Equation 3.3 suggests three basic methods for ensuring ∆r(a, b) > 0: (1) at the sender,

by delaying packets in order to ensure large enough ∆s(a, b) to cope with relatively small

β.latency; (2) in the network by manipulating α.latency and β.latency; and (3) at the

receiver by holding out-of-order packet b until the packet a arrives—effectively increasing

β.latency.

108

The first option—delaying packets at the sender—is only possible when consistent

information regarding both α.latency and β.latency is available, which is generally

not the case on large inter-domain networks such as the Internet; the second option—

controlling the network latency to ensure proper delivery—is not feasible on networks

like the Internet where there is no centralized control over intermediate links; herein,

focus is placed on the third option—effectively reordering the packet stream at the re-

ceiver.

3.3 Best-Effort Reordering

Reliable, connection-oriented transport services such as TCP typically ensure an or-

dered packet stream by including a monotonically increasing sequence number within

the packet header and buffering out-of-sequence packets while waiting for slower packets

to arrive. Excessively delayed packets are generally handled via explicit retransmission

requests to the sender.

Another method is to use the same sequence number-based buffering scheme but

instead of requesting retransmission, to perform a best-effort reordering. Here, packets

are held just as before but a process is repeated whereby packets are buffered in sequence

number order until the packets they depend upon arrive or until a maximum hold time

threshold elapses since receipt of the earliest-sent packet in the buffer. When this occurs,

the packet or packets that the earliest-sent packet in the buffer depend upon are declared

lost and the earliest-sent packet is removed from the buffer and sent. This process is then

repeated using the next earliest-sent packet in the buffer.

This method is best-effort in that no attempt is made to provide reliable packet deliv-

ery, which would introduce significant latency via retransmission requests. Moreover,

it is possible to tune the maximum amount of latency the process adds by adjusting the

maximum hold time threshold value. It is thus amenable for use with protocols such

as TCP which are already providing reliable packet delivery and are sensitive to added

latency. An algorithm to implement this method is formally presented in Section 3.6.

109

Best-effort reordering can be realized by a number of means and in multiple contexts.

For instance, it is possible to use the scheme with TCP by using TCP’s sequence num-

bers directly for the reordering. However, this method is transport-layer-dependent—it

will not, for instance, benefit UDP streams. Another method, applicable to any trans-

port layer instance, is to have a local router encapsulate input stream (e.g., TCP or UDP)

packets, within UDP/IP packets and add per-stream, monotonically-increasing sequence

number information between the two headers. Here, UDP and TCP streams are dis-

tinguished by the five-tuple of protocol identifier, source and destination IP addresses

and port numbers (from the packet header); sequence number information is then main-

tained for each stream at the ingress. This allows existing transport layer instances to

be used without modification and is the approach adopted in the experiments discussed

herein.

3.4 Related Work

3.4.1 TCP and Reordering

TCP has performed packet reordering since its inception. While optimizations for

performance have long assumed a single-path environment with practically no out-of-

order delivery, more recently a number of TCP modifications have been proposed or

implemented [14]. Most notably, selective acknowledgment (SACK) [18] allows packets

to be acknowledged out-of-order and duplicate selective acknowledgment (DSACK) [54]

allows for better performance recovery after duplicate acknowledgments have triggered

congestion control [19, 52]. Nevertheless, TCP performance under reordering is still

suboptimal and research continues at the transport layer [174, 39, 20].

3.4.2 Packet Dispersion / Link Bonding

Data dispersion across disjoint paths or links in a communications context has been

proposed at the data link, transport and network layers.

At the data link layer, the concept is often referred to as link bonding (or inverse mul-

tiplexing) and has been realized in conjunction with dialup and ISDN [141], ATM [40],

110

and even wired and wireless Ethernet [100, 83]. While data link layer-based techniques

are known to provide good performance, it is not generally possible to use them with

disparate link technologies (e.g., ATM with Ethernet), which precludes their use in end-

to-end contexts.

Another approach, adopted by Adiseshu et al., is to place a layer of software at the

endpoints—logically between the data link and network layers—and have this software

perform striping of packets over multiple interfaces [1]. This approach differs from that

presented herein; while it operates with disparate link layer technologies, it assumes the

existence of multiple network interfaces; moreover, it makes no active attempt to ensure

delivery of an ordered packet stream to the transport layer.

A number of attempts have also been made to employ varying forms of packet disper-

sion at the transport layer; examples include pTCP [69], which demultiplexes application

data onto multiple host interfaces and mTCP [175], which stripes application data across

multiple network paths while still attempting to maintain reliability and fairness. While

these approaches do treat reordering, unlike the method presented herein, they do so by

replacing TCP—requiring endhost modifications.

Packet dispersion at the network layer was first proposed in the 1970s [106] and has

been revisited a number of times since [66]. Most recently, it has been suggested for use

in wireless contexts by Chebrolu et al. [26]. The goal of their work is to exploit multiple

wireless interfaces on hosts by dispersing packets using them. They suggest addressing

reordering by scheduling sends (a sender-side solution, as discussed in Section 3.2.1) and

also employing reordering using a buffering network proxy near the receiver.

The work presented herein in introducing reordering services at the network layer

differs from this work in several ways: first, their focus is on hosts with multiple net-

work interfaces, whereas the focus of this work is not limited to this and assumes a

future network wherein multiple network paths are available even on single interface de-

vices. Second, the effectiveness of the approach presented herein is demonstrated using

empirical results from actual application data running on several TCP variants. Finally,

this work investigates a greater degree of packet dispersion (using up to 10 simultane-

111

ous paths, as compared with three interfaces) as well as varying degrees of out-of-order

delivery.

3.5 Implementation Environment

The environment used to conduct the experiments presented herein is comprised of a

SORA-based multipath routing network implemented on the Emulab network testbed;

this section explains SORA running within Emulab, the experimental network topology

and configuration used in these experiments as well as the method by which out-of-order

delivery is introduced to the packet stream.

3.5.1 Emulab

The network environment used to conduct the experiments presented herein was

implemented on the Emulab testbed [162], hosted at the University of Utah. Emulab is a

network testbed environment that allows researchers to create and perform experiments

on dedicated networks of their own configuration—that is, on networks whose topology

and link characteristics such as latency and loss rate are configurable and comprising

machines running operating systems and software of the experimenter’s own choosing.

Emulab allows dedicated access to computing and network resources so that experiments

are not subject to interference by resource competition from external sources.

Throughput through the SORA routers used in the present Emulab experiments was

only limited by the packet processing capabilities of the underlying hosts. These exper-

iments were conducted using hosts running Linux 2.6.29 with dual 3 GHz processors;

routers and ingresses ran Click 1.6 in user mode.

Figure 3.1: Multipath Experiment Topology

112

3.5.2 Topology

In selecting a topology for the experimental network, the objectives were (1) to

strictly control all sources of path latency and (2) to minimize factors which may sec-

ondarily contribute to TCP latency such as packet loss due to competition for shared

resources (e.g., link capacity and buffer space at routers). Because such resource compe-

tition is exacerbated when paths are not edge- and vertex-disjoint, a multipath topology

was chosen as depicted in Figure 3.1, wherein path latency can be strictly controlled by

employing traffic shaping (on links adjacent to one of the ingress/egress routers) and

resource competition can be minimized because all paths are edge-disjoint (i.e., share

no non-duplex links) and only forward and reverse paths share a vertex (i.e., a router).

To avoid having the maximum throughput achievable on the routers be a resource con-

straint, a maximum network throughput of 10 Mbps was adopted. To provide this with

a maximum of 10 paths, the available bandwidth on each of the links adjacent to the

ingress was set to 1 Mbps.

Finally, adopting round-robin path scheduling would result in consistent use of the

same pattern of paths on the given network and thus the same packet latency pattern.

Because this could result in differing results if the same latencies were used in a different

pattern, random scheduling was employed, whereby the next path is scheduled randomly

from among the paths in the current set. This eliminates the issue of a given schedul-

ing pattern biasing the results, without changing the statistical distribution of scheduled

paths.

3.5.3 Introducing Out-of-Order Packet Delivery

To study the effects of reordering on TCP throughput, a simple method was required

to gradually increase the severity of out-of-order delivery introduced by the network

through modification of the respective path latency values. Here, a gradual increase

in latency variance from zero was sought, in which case the only reordering is that

introduced by variations in the native network latency, to greater degrees of variance

113

D = 0 D = 1 D = 2 D = 3 D = 4 D = 5 D = 6 D = 7

1
Pa

th

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25

2
Pa

th
s

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25

3
Pa

th
s

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25

4
Pa

th
s

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25

5
Pa

th
s

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25

6
Pa

th
s

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25

7
Pa

th
s

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25

8
Pa

th
s

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25

9
Pa

th
s

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25

10
Pa

th
s

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

-25 -20 -15 -10 -5 0 5 10 15 20 25

D = 0 D = 1 D = 2 D = 3 D = 4 D = 5 D = 6 D = 7

Figure 3.2: Effect of Varying Dispersion Degree and D Value on Reordering Density

114

and thus reordering, but with most cases still consistent with what might actually be

experienced on a planet-wide network such as the Internet.

Accordingly, a set of delay configurations was adopted wherein the variance of the

latency of the paths in the path set was gradually increased. To accomplish this, the paths

in a full path set P were arbitrarily numbered from i = 0 to |P |−1 and used a variable D

defined over the positive integers to set the latency of path number i to D ∗ i msec. For

example, with D = 3, the latency configuration on a four path set (p0, p1, p2, p3) would

be (0, 3, 6, 9). While Internet latency values are unlikely to be constant, this scheme may

be viewed as application of the oft-used technique of adopting a mean value to model an

unknown distribution.

While it is clear with this configuration that the statistical variance of the respective

sets of latency values increase smoothly with D, an investigation was required to exam-

ine the extent of increase in out-of-order delivery said variance actually induced in the

received packet stream. In the next section one metric which characterizes reordering is

briefly examined and applied to this method.

3.5.4 Characterizing Out-of-Order Packet Delivery

A number of formal proposals have recently been made for metrics quantifying the

severity of packet reordering [111, 76] induced by a network. RFC 5236 defines a statis-

tical distribution that characterizes reordering and has been shown effective and readily

implementable [123]: a reordering density distribution.

A reordering density distribution is a measure of how severely packets in a stream are

displaced from their expected (in-order) arrival positions. It is a probability distribution

indicating the likelihood that an arriving packet will be displaced a given number of

arrival positions away from its expected position (zero). Thus it conveys both the like-

lihood of out-of-order delivery and the extent to which packets are displaced from their

expected position. Note that in its computation, lost (or excessively delayed) packets

are not counted as part of the reordering density distribution. In the reordering density

distributions depicted in Figure 3.2, the x-axis represents the number of packet arrival

115

positions distant a packet arrived from its expected position; the y-axis represents the

frequency at which packets arrived a given distance from their expected positions.

Passive measurement of this metric was implemented on a given packet stream within

the SORA multipath routing framework and the effects of the present method for intro-

ducing latency variance while dispersing packets over a 10 path network was measured.

Reordering density was observed at the destination egress as both D and the dispersion

degree (i.e., the number of simultaneous paths used) were increased. A portion of the

results are summarized in Figure 3.2; therein, the top row depicts the D = 0 path la-

tency configuration, wherein reordering is induced solely by the network itself as the

number of paths is increased. In the two path case (far left) packets arrive nearly in order

and the likelihood of out-of-order delivery increases as the number of paths increases

(to the right). In the second row, D is increased to 2 and the likelihood of out-of-order

delivery can be seen to increase as the histogram is seen to gradually “flatten out”; this

trend continues in the final row with D = 4. Thus, the D-based configuration does

produce a gradual transition from a reordering distribution wherein most packets arrive

in sequence to one where packets begin to arrive significantly out of sequence.

3.6 Reorderer

The reorderer used in the experiments presented herein is a component of SORA and

is implemented in C++. It relies on sequence numbers assigned by a SORA ingress and

stored in the SORA packet header and uses a min-heap to buffer packets. A min-heap

is a data structure internally organized such that the minimum heap element is always

available for removal in O(1) time and insertion (to maintain this property) requires

O(lg n), where n is the heap size. Herein, the MinPktHeap class is used to describe

the functionality of this heap; it has instance methods insert, min, remove_min,

is_empty and drain, which respectively allow packet insertion, return and removal

of packet with minimum sequence number, confirmation of whether the heap is empty

and “draining” of the heap (described below). The reorderer uses two execution threads:

an asynchronous packet receiving thread (i.e., running in the same thread as the packet

116

router), which receives packets and places those received out of order into the heap, and

a synchronous thread, which periodically “drains” the heap of expected or excessively

delayed packets.

The algorithm which defines this “draining” of the packet heap is depicted in Al-

gorithm 1 as an instance method of the MinPktHeap class. Here, E is the currently

expected packet sequence number; M is the maximum hold time threshold value for

the earliest-sent packet; the sequence number and receive time (e.g., in msec) of a given

packet p are p.seq_num and p.recv_time, respectively; and curr_time indicates the cur-

rent time. While the packet at heap top is the expected packet or has been waiting longer

than M , the algorithm loops over the heap; within the loop body, it removes the packet

at heap top and inserts it into the output queue if its sequence number is greater than or

equal to E and drops it otherwise.

As depicted in Algorithm 2, the heap draining thread repeatedly runs the drain

method on the given heap to remove packets from the packet buffer as necessary and,

when no packet is buffered, sleeps until the packet with earliest sequence number must

be removed or until it is awoken by the packet processing thread.

Here, S is a signaling semaphore that implements mutual exclusion locking and sig-

naling. It is similar in spirit to the POSIX semaphore structures pthread_mutex_t

and pthread_cond_t and their associated functions, as used in the implementation.

The Signal class implements instance methods for blocking lock acquisition (ac-

quire_lock) and release (release_lock), signal sending (signal), blocking sig-

Algorithm 1: MinPktHeap Method drain

Input: PktQueue O, SeqNum E, Time M
while min.seq_num == E ||1

min.recv_time + M < curr_time do2

p = remove_min3

if p.seq_num ≥ E then4

O.enqueue(p)5

E = p.seq_num + 16

end7

end8

117

nal receipt (await_signal) and blocking signal receipt with a maximum time value

(await_signal_until). Packet queue class PktQueue implements instance meth-

ods for blocking packet read (dequeue) and non-blocking write (enqueue); enqueue-

ing a packet into the output queue O causes it to be decapsulated and forwarded to its

destination (an unmodified endhost).

More specifically, Algorithm 2 repeats the process of: (1) outputting the packet at

heap top which depended on the newly-arrived packet or has been waiting longer than

maximum hold time threshold M , (2) sleeping until such time as a packet at heap top

has been waiting longer than M or (3) sleeping indefinitely or until a packet is inserted

in the heap and it is awoken by the packet processing thread.

In Algorithm 3, the packet processing thread dequeues the next packet from packet

input packet queue I and outputs it to the output packet queue O if the heap H is empty;

else, it inserts the packet into H and notifies the drainer that there is now a packet

waiting. The drainer wakes, runs drain on the heap and waits until the maximum hold

value has expired for the given packet or until it is awoken again.

3.6.1 Maximum Buffer Hold Time

Determination of the maximum hold time value (M , above) is dependent upon the

maximum possible end-to-end latency—the maximum amount of time a packet could be

delayed in the network. Suboptimal selection of this value can hinder performance in

two ways: (1) too large a value may needlessly increase network latency when packets

are dropped in the network; and (2) too small a value may degrade performance when

Algorithm 2: Heap Draining Thread
Input: MinPktHeap H , SeqNum E, Time M , Signal S
while true do1

S.acquire_lock2

H.drain(E, M)3

if H.is_empty then S.await_signal4

else S.await_signal_until(H.min.recv_time + M)5

end6

118

Algorithm 3: Packet Processing Thread
Input: PktQueue I , PktQueue O, Time M
MinPktHeap H1

SeqNum E = 12

Signal S3

while true do4

p = I.dequeue5

S.acquire_lock6

if p.seq_num == E && H.is_empty then7

O.enqueue(p)8

else9

H.insert(p)10

S.signal11

end12

S.release_lock13

end14

packets which were not dropped in the network but only delayed are effectively dropped

by the reorderer.

In the absence of precise latency information regarding the path an expected packet

is to traverse, an ideal balance between these two cases is a maximum hold time just

larger than the maximum possible packet inter-receive time; that is, just larger than the

difference between the largest and smallest possible path latency values. This value is

ideal because it minimizes the amount of time spent waiting for dropped packets in

the first case, and guarantees no packets will be effectively dropped by the reorderer

in the second case. One widely-used estimate for minimum and maximum one-way

latency values is half the minimum and maximum round-trip times between the two

hosts, which can be obtained by continual monitoring.

When packet loss is persistent and relatively high, the reorderer tends to slow all

packets to the latency of the slowest path and, as noted above, adds a correspondingly

high degree of both latency and burstiness to the data stream, which is known, for in-

stance, to cause TCP throughput reductions. Such packet loss is commonplace in many

environments, wireless networks being one example. Accordingly, a best-effort reordering

service like that investigated herein is likely not well suited for such environments, and it

119

may be best to disable the service automatically when such loss is detected and reenable

it after recovery.

However, in environments with negligible packet loss, only the second case (selecting

too small a value) is of relevance and there is little penalty for selecting too large a value

for the maximum hold time. Thus, an extremely accurate estimate of the ideal value is

unnecessary and it suffices to select any value highly likely to be larger than the maxi-

mum possible latency value (e.g., double the maximum observed latency).

The goal herein is to investigate what is possible with a simple best-effort packet

reordering service in largely error- and loss-free environments like those provided by

current wired networks, where loss generally only signals congestion. Accordingly, in

the experiments described herein, the maximum hold threshold was set such that it was

always greater than the maximum possible inter-arrival time. While this is possible here

because the latency values were known, they may also be probed dynamically and up-

dated according to changes during data transmission, making this approach feasible even

when they are not known in advance.

3.7 Results

The throughput achieved was tested with and without the use of the reorderer on two

common TCP variants: Reno [43] and CUBIC [131], using the implementations of the

Linux 2.6.29 kernel (note that these include NewReno [53] extensions). In all tests SACK

and DSACK were enabled, and congestion window caching between TCP connections

was disabled to avoid carry-over between experiments. TCP throughput was measured

using the network performance utility netperf [77]; each data point is an average of

five 30 second tests with error bars indicating the standard error in each test set. Let D

be the delay configuration, as described in section 3.5.3 and N be the degree of packet

dispersion (i.e., the number of paths used simultaneously). The results are summarized

in the plots of Figure 3.3.

Therein, the plots in the leftmost column depict cases where packet dispersion was

used without best-effort reordering; those in the middle column depict cases where packet

120

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (

Kb
ps

)

Number of Paths

D=0.0
D=1.0
D=2.0
D=3.0
D=4.0
D=5.0
D=6.0
D=7.0

(a) Reno w/o RO, Wmax = 32 KB

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (

Kb
ps

)

Number of Paths

D=0.0
D=1.0
D=2.0
D=3.0
D=4.0
D=5.0
D=6.0
D=7.0

(b) Reno w/RO, Wmax = 32 KB

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

Pe
rc

en
t

Im
pr

ov
em

en
t

Number of Paths

D=0.0
D=1.0
D=2.0
D=3.0
D=4.0
D=5.0
D=6.0
D=7.0

(c) Reno Speedup, Wmax = 32 KB

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (

Kb
ps

)

Number of Paths

D=0.0
D=1.0
D=2.0
D=3.0
D=4.0
D=5.0
D=6.0
D=7.0

(d) CUBIC w/o RO, Wmax = 32 KB

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (

Kb
ps

)

Number of Paths

D=0.0
D=1.0
D=2.0
D=3.0
D=4.0
D=5.0
D=6.0
D=7.0

(e) CUBIC w/RO, Wmax = 32 KB

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

Pe
rc

en
t

Im
pr

ov
em

en
t

Number of Paths

D=0.0
D=1.0
D=2.0
D=3.0
D=4.0
D=5.0
D=6.0
D=7.0

(f) CUBIC Speedup, Wmax = 32 KB

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (

Kb
ps

)

Number of Paths

D=0.0
D=1.0
D=2.0
D=3.0
D=4.0
D=5.0
D=6.0
D=7.0

(g) CUBIC w/o RO, Wmax = 64 KB

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (

Kb
ps

)

Number of Paths

D=0.0
D=1.0
D=2.0
D=3.0
D=4.0
D=5.0
D=6.0
D=7.0

(h) CUBIC w/RO, Wmax = 64 KB

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8 9 10

Pe
rc

en
t

Im
pr

ov
em

en
t

Number of Paths

D=0.0
D=1.0
D=2.0
D=3.0
D=4.0
D=5.0
D=6.0
D=7.0

(i) CUBIC Speedup, Wmax = 64 KB

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (

Kb
ps

)

Number of Paths

D=0.0
D=1.0
D=2.0
D=3.0
D=4.0
D=5.0
D=6.0
D=7.0

(j) CUBIC w/o RO, Wmax = 96 KB

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (

Kb
ps

)

Number of Paths

D=0.0
D=1.0
D=2.0
D=3.0
D=4.0
D=5.0
D=6.0
D=7.0

(k) CUBIC w/RO, Wmax = 96 KB

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6 7 8 9 10

Pe
rc

en
t

Im
pr

ov
em

en
t

Number of Paths

D=0.0
D=1.0
D=2.0
D=3.0
D=4.0
D=5.0
D=6.0
D=7.0

(l) CUBIC Speedup, Wmax = 96 KB

Figure 3.3: Throughput Results With Varying Maximum Window Sizes
121

dispersion was used with best-effort reordering (note that “RO” stands for “reordering”).

In the plots of both the left and middle columns, the x-axis is the number of paths used

simultaneously for dispersion, the y-axis is the throughput obtained, and each line repre-

sents the throughput obtained using the value of D indicated in the legend. The plots in

the rightmost column depict the speedup obtained by using the reorderer, calculated by

dividing the throughput obtained with best-effort reordering by the throughput obtained

without using it.

The first and second rows of plots depict the cases of Reno and CUBIC, respectively

with a maximum window size Wmax of 32 kilobytes, a commonly used default socket

buffer size; this setting was effected by setting the maximum TCP socket buffer size via

netperf options, which use the setsockopt() system call to modify maximum

socket send and receive buffer sizes. Notably, there is little difference between the per-

formance of Reno and CUBIC—either with or without best-effort reordering. This was

found to be the case with all the tests performed; while the degree of similarity is sur-

prising, since both detect lost packets via the same threshold on the number of duplicate

acknowledgements received, this is not entirely unexpected. Accordingly, since the re-

sults were also near identical for higher window sizes, for brevity, results are depicted

only for CUBIC for the 64 and 96 kilobyte cases in the third and fourth rows, respec-

tively.

3.7.1 Discussion

First, in the 32 kilobyte cases without best-effort reordering (Figures 3.3a and 3.3d),

near linear performance is seen with respect to N in the case of D = 0, and for all D with

N ≤ 2. For N ≥ 3 and D ≥ 1, however, performance degrades as out-of-order delivery

increases with D and N . Characteristically, the throughput curves tend to be concave—

gradually rising to a given peak value and gradually falling thereafter—for example, the

case of D = 7 peaks at N = 6, with a throughput of nearly 4 Mbps and gradually falls to

just under 3 Mbps at N = 10.

122

However, as depicted in Figures 3.3b and 3.3e, the use of best-effort reordering ex-

tends this near linear performance with respect to N to all cases of D ≤ 5. Nevertheless,

thereafter the same type of performance degradation is visible as in the unreordered case.

This is also clear from Figures 3.3c and 3.3f, where the speedup provided by best-effort

reordering increases markedly for N ≥ 3, particularly for larger D values but drops off

sharply thereafter.

To understand this behavior, the effects of out-of-order delivery must be examined.

For a given N , the best-effort packet reorderer must accumulate a group of packets and

wait until the longest delayed among them is received—approximately D ∗N msec plus

the delay provided by the underlying network; it then sends the accumulated (and cor-

rectly ordered) group of packets out in one burst. Repetition of this process leads to

packet bursts sent at regular intervals based on the D ∗ N msec maximum wait time.

In the case of the best-effort reorderer, as D and N increase, the effective latency using

packet dispersion tends to increase to the latency of the slowest path—roughly, D ∗ N

msec. It has been shown by Padhye, et al. [121] that, with negligible packet loss, effective

TCP throughput can be approximated by Wmax/RTT. Therefore, it is reasonable to hy-

pothesize that the latency introduced by waiting for the slowest path (i.e., the increase in

RTT) is the source of the throughput reductions in the cases of larger D and N and that

this can be overcome by increasing the maximum window size.

To test this hypothesis, the same experiment as above was conducted, but the max-

imum window size was increased from 32 kilobytes to 64 and then 96 kilobytes. It

should be noted that these values are within the norm of those now in use: default

socket buffer sizes now commonly range to hundreds of kilobytes, particularly on high

bandwidth/high latency networks. The results are depicted in the plots of the third

and fourth rows of Figure 3.3. First, notably the graphs in the cases without best-effort

reordering (Figures 3.3g and 3.3j) are no longer concave, indicating that latency is no

longer dominating Wmax/RTT for larger D and N . The respective peaks in the through-

put curves in the reordered case with a 64 kilobyte window size are significantly higher

than in the 32 kilobyte case, and in the 96 kilobyte case all but a few results (D ≥ 6,

123

N ≥ 9) provide throughput near linear with respect to N , indicating that this hypothe-

sis is correct. Moreover, the speedup plots of the 64 and 96 kilobyte cases (Figures 3.3i

and 3.3l) show the peak speedup moving to higher dispersion degrees—indicating that

speedup over the non-reordered case is increasing with the number of paths. Further,

while slowdowns (negative speedups) are not infrequent with smaller window sizes, they

are negligible in the 96 kilobyte case. Because the throughput obtained at a maximum

window size of 96 kilobytes was nearly identical to that obtained with zero added delay,

further increases were unnecessary.

Thus, if the window size can be increased to compensate for the latency added by

best-effort reordering it is possible to insulate TCP from the performance-degrading ef-

fects of even heavy reordering.

3.8 Conclusion and Future Work

This chapter discussed a method for insulating TCP from the performance-degrading

effects of out-of-order packet delivery—a reality in multipath routing networks and par-

ticularly in those employing packet dispersion. It discussed the causes and effects of

out-of-order delivery on TCP, provided an overview of a multipath testbed implemen-

tation as well as a reorderer implementation; it discussed a metric for quantifying the

severity of reordering of the packet stream and used it to demonstrate that the method

of adding increasing amounts of latency to the respective paths in the testbed gradually

induced out-of-order packet delivery.

The results presented herein indicate that a simple reordering service implemented on

ingress/egress routers can mitigate performance degradation and provide consistent per-

formance without requiring endhost modifications: throughput was improved in nearly

all test cases using a 96 kilobyte maximum send window, with speedups of more than

45% and most between 10% and 25%. While non-linear speedups as well as slowdowns

were also encountered in some cases with smaller maximum window sizes, the results

indicate that linear speedups can be expected if the window size can be increased to

compensate for the latency added by the reorderer.

124

Given the role multipath routing networks may play in a future Internet, the wide-

spread use of TCP and the difficulty of upgrading all existing devices, methods for help-

ing TCP to take better advantage of multipath routing by coping with out-of-order

packet delivery deserve further research. Examples include a method for dynamically

optimizing the maximum hold time to allow correct classification of lost packets, meth-

ods for TCP-friendly path scheduling to avoid reordering and investigations of other

delay configurations and topologies.

125

CHAPTER 4

CONCLUSION

It has been shown that a number of shortcomings exist in the interdomain routing

regime of the current Internet which hinder its growth as well as the implementation

of reliable, high performance services using it. These include poor control over interdo-

main traffic (e.g., selection of AS paths is limited to the options provided by neighbors),

slow recovery in the face of faults (e.g., three minute average, 15 minute observed worst

case and minimum 30 second projected convergence times), an inability to respond to dif-

fering application requirements (e.g., one-size-fits-all routing, where applications, endsys-

tems and even endnetworks have no input regarding the path a packet is to traverse) as

well as economic issues such as an inability for content producers to receive payment for

the bandwidth content consumers consume when accessing their services, making many

business models difficult or impossible, and an inability for ISP’s to always be able to

match user network charges with user traffic usage rates.

It has been demonstrated that many of these shortcomings have their roots in: (1) the

Internet’s conflation of control and data planes, (2) the Internet’s dependence upon con-

vergence and hop-by-hop routing and (3) the Internet’s current payment structure. The

conflation of control and data planes refers to the fact that nearly all forwarding deci-

sions (e.g., best path decisions) are made by the same machines that perform the actual

forwarding—the routers themselves. This has forced network architects to use hop-by-

hop routing and distributed best-path computation protocols that require convergence.

Hop-by-hop routing makes it difficult for network operators to perform traffic engineer-

ing or to set routing policies. Moreover, the dependence on convergence leads to slow

recovery times because the result of each round of the best-path computation must be

computed and redistributed. Finally, the problems described above with the current eco-

126

nomic regime have been explained by its failure to allow payment for network services

to flow along the entire path that data traverses.

Much of the research aimed at improving Internet policy, performance, reliability

and even economic competition shares a common feature—it directly or indirectly pro-

vides some form of application-directed routing, whereby applications (and thus their

users) are allowed choice in the paths their packets are to traverse. Therefore, it is reason-

able to assume that, whatever architecture is adopted in a future Internet, it will allow

applications choice in the paths their packets are to traverse.

However, no architecture exists to provide for all the requirements necessary to im-

plement application-directed routing: a data plane to move packets across the network, a

control plane to manage the data plane and an application interface to interact with both.

While a number of technologies exist which could be used to implement an application-

directed data plane (e.g., ATM, G/MPLS, IPv6 source routing and even overlay routing

networks), there exists no convenient method to use them for application-directed re-

search and development. Moreover, at present, no viable control plane exists to realize

application-directed routing and no implementations or proposals exist for an applica-

tion interface.

Moreover, even once data and control planes allowing some form of application-

directed forwarding are available and an application interface is created for use with ap-

plications, a number of serious issues remain open problems; these include path schedul-

ing algorithms, path monitoring metrics and accompanying analysis algorithms; multipath-

aware best path computation algorithms; means to prevent route oscillation; and means for

allowing existing IPv4 and IPv6 applications to enjoy the benefits of path selection.

However, it is difficult to perform the essential research required overcome these

challenges without a data plane, control plane and application interface usable on cur-

rent networks on which to perform application-directed routing research and develop-

ment. While large-scale testbed networks exist which could aid in such research, what

is currently lacking is the environment that would allow research and development of

application-directed routing.

127

4.1 SORA Multipath Virtual Network Layer

The primary objective of SORA is to provide an R&D infrastructure for application-

directed routing on large-scale testbeds; it comprises a data plane for executing application-

directed forwarding, a control plane for management of said data plane, and an application

interface to the application-directed data and control planes.

4.1.1 Data Plane

The data plane provides for application-directed packet forwarding on testbed net-

works; it has three general requirements: (1) forwarding performance so as not to be a

bottleneck; (2) minimal network setup burden and router resource waste via optional sup-

port for routing for multiple experiments simultaneously; and (3) ease of development

of upper layers.

SORA’s data plane adopts the well-known technique of using virtual networks com-

posed of tunnels (e.g., overlay networks) for data plane construction; it then allows ap-

plications to select from lists of such tunnels (paths) to send packets by. Because multiple

virtual networks can exist on the same network, each with different topologies and rout-

ing structures [12], adoption of a virtual network-based structure allows the ability to

optionally forward for multiple experiments simultaneously, satisfies the second require-

ment (configuration of shared data planes is handled by the control plane).

However, tunnels complicate network usage because there are a variety of tunnel

types that can be in use. In order to provide for the third requirement of ease of develop-

ment, SORA provides two data abstractions: a link abstraction, which hides the details

of tunnel setup, teardown and data send and receive on various tunnel types; and a packet

abstraction, which allows payload and control (options) data to be sent on links.

Implementations of these abstractions as well as supporting data types and methods

are gathered in a shared library called libsora. Based on libsora, a full set of mod-

ular router elements for implementing SORA routers using the Click modular router

framework were implemented. The router is currently functional in both kernel and

128

user-level modes for operation on PlanetLab and Emulab environments as well as most

any modern Linux version.

The packet processing performance of the data plane was analyzed; the results are

presented in Section 2.7.1. Analysis indicates that the kernel router packet processing

performance scales with IP on both 100 Mbps and Gbps environments, but the user-

level router may present a bottleneck for smaller packet sizes on 100 Mbps and is not

well suited for full Gbps networks. Thus the data plane’s packet processing performance

does not present a throughput bottleneck when kernel access is available (e.g., Emulab).

Moreover, bitrates on the major target testbed environments of interest (e.g., PlanetLab,

OneLab) currently do not yet exceed 100 Mbps, therefore the data plane performance

meets its performance requirements on these networks.

4.1.2 Control Plane

The control plane requirements are: (1) convenient link, link metric and path dis-

covery, (2) convenient router link instantiation and (3) minimization of network setup

burden and router resource waste by optionally supporting setup and management of for-

warding for multiple testbed experiments simultaneously. In particular, the challenge in

supporting the third requirement lies in creating a mechanism for sharing the resources

of an existing testbed such as PlanetLab for the creation of many virtual networks, while

ensuring only authorized use of the testbed.

The control plane is implemented via a Ruby-based programming library, which

includes link, path and supporting data type implementations as well as methods for

their manipulation. The control plane implementation provides: (1) RPC-queryable link

database, link metric and path computation services; (2) RPC-queryable link instantiation

service; and (3) a means for providing testbed router and link sharing by pre-instantiating

all testbed links and centrally authenticating all other (testbed-external) links, thus allowing

approved links to be instantiated by experimenters directly and avoiding the need for

any central link instantiation or storage.

129

The performance of the control plane link and path discovery and link request ser-

vice components were analyzed; the results are presented in Section 2.7.2. Analysis

indicates that the link database is capable of providing fast retrieval for all link database

sizes tested and sub-one-minute insertion times for networks of 10,000 links, which is

believed to be suitable for all current testbed networks. The path discovery service is ca-

pable of computing up to 10 disjoint paths through graphs with nearly 8,500 vertices and

40,000 edges in under 13 seconds, with three paths possible through the largest graph in

five seconds, which is also believed to be suitable for all current testbed networks. The

link request service was capable of servicing 2,000 link requests in under one minute

(an average of 51.83 seconds); given that in shared environments, most links are pre-

instantiated and link requests are only required for external virtual network entities, this

is also deemed suitable for use with even the largest of current testbeds.

4.1.3 Application Interface

The requirements for the application interface are: (1) ease of application-directed

routing-aware application development and experimentation with the data and control

plane; and (2) usability with existing network applications and protocols.

Ease of development and experimentation was provided via the conduit endpoint

abstraction: a modular programming interface, allowing quick addition and removal of

packet processing components as well as a library for common tasks such as packet loss

and path latency monitoring and feedback. Usability was provided for via two means:

(1) a libc wrapper, which automatically instantiates a conduit endpoint and performs

send and receive via the conduit when inbound and outbound traffic match certain pa-

rameters (e.g., IP address or port number); and (2) an ingressing router, which is an

extension to the Click user-level data plane router and acts as a default gateway for hosts

on a network and also instantiates a conduit endpoint and performs virtual network

ingress when outbound traffic matches certain parameters.

The packet processing performance of the conduit endpoint interface was analyzed;

the results are presented in Section 2.7.1. For access via the ingressing router, since it

130

runs using the user-level router, it shares the performance bottleneck of the user-level

router. For access via the libc wrapper, analysis indicates that the conduit is capable of

scaling with native IP for all packet sizes on 100 Mbps networks. However, while the

conduit interface is capable of Gbps speeds for nearly half the range of packet sizes tested,

for smaller packet sizes on Gbps networks, the conduit does present a bottleneck. Thus

the packet processing performance of the libc wrapper-based conduit endpoint interface

does not present a throughput bottleneck for testbed networks such as PlanetLab, which

do not yet operate at Gbps speeds and is thus deemed to meet the requirements for their

use; however, it may not be well suited for full Gbps testbeds.

4.2 SORA Usage Case: Best-Effort Network Layer Reordering

The SORA prototype (API, conduit endpoint interface and router) was used to ex-

tend multipath benefits to existing IPv4 applications and transport protocols such as

TCP and UDP via application-directed routing while insulating them from the known

detrimental effects of packet reordering via a scheme called best-effort network layer

reordering.

Here, the automated ingress and egress feature discussed above was used to divert traf-

fic onto a SORA virtual network and a min-heap-based buffer was added to the conduit

interface in order to buffer early-arriving packets at the receiver, while waiting for later

arrivals, with the goal of delivering an in-order packet sequence to the waiting endhost.

In order to cope with packet loss, a configurable maximum hold timer controlled how

long packets should be waited for in the queue before giving up on them and passing

along the next-received packet. Results indicate that, when sufficient TCP window size

is available to cope with the network latency, best-effort network layer reordering is able

to improve performance by more than 45% with typical gains in the range of 15 to 25%.

131

4.3 Future Work Summary

While, as described above, the current framework offers an immediately usable so-

lution to the core problem of how to conveniently develop and test both existing and

future applications and transport protocols on application-directed routing networks us-

ing current networks, a number of areas exist for improving and extending the current

infrastructure. These are summarized below but are described concretely in Section 2.9.

4.3.1 Data Plane: Link Types

The data plane framework currently implements two link types: UDP/IP and TCP/IP.

One natural step forward is extending the current set of supported links to include GRE

and IP-in-IP, among others, in order to allow more convenient use on testbed networks

such as VINI [12] and CoreLab [115], which support optional data plane construction

using GRE tunnels and GENI, which uses OpenFlow [108] for network control.

4.3.2 Control Plane: Extensions for Testbed Network Control

The current framework is intended to extend existing testbed control and data planes,

allowing creation and operation of application-directed data planes atop them; it is not

intended to replace them. However, one next step toward easing data plane setup on

testbed networks is to add extensions to the current control plane to directly support

link-based network setup and management of testbed networks. For instance, such an

extension would allow direct instantiation of a testbed network from a virtual network

link set. Moreover, on testbed networks (e.g., Emulab) which support setting of net-

work characteristics (link metrics) such as latency or throughput, it would also allow

live manipulation of such metrics.

4.3.3 Control Plane: Extensions for Live Router Link Monitoring

The current framework is intended to enable application-directed routing, which is

defined as a packet routing method, whereby applications are given access to an arbi-

trary number of paths and are made fully responsible for enacting a routing policy as

well as making performance decisions by monitoring path performance metrics; thus,

132

link metric information is not used for path scheduling in application-directed routing.

However, since live link monitoring information could conceivably be of use in exam-

ining different path scheduling schemes, another possible control plane extension is live

router link monitoring, whereby routers monitor a set of links and provide monitored

data to entities.

4.3.4 Control Plane: Testbed Deployment

The current framework has already been used to obtain results on both PlanetLab

and Emulab and its source code is freely available for download and deployment. The

next step is the deployment of shared testbed features of the control plane (described in

Section 2.5.6) to establish a shared data plane as a routing service on testbed networks

such as PlanetLab and CoreLab.

4.3.5 API: Packet Processing Module Structure

The current packet processing module chain structure supports two types module

operation, which respectively correspond to output and input modules; it is sufficient

for implementing modules which perform an operation on a packet and immediately

return it (or return an error). However, in order to implement more complex modules

such as those which perform queueing and buffering, it would be more convenient to

have an interface which supported mixed mode operation: specifically, a pull-input/push-

output configuration would allow a module to pull (input) a packet from a source, buffer

it for some period of time, and then push (output) it; conversely, a push-input/pull-output

configuration would allow a module to be pushed (input) a packet from a source, and

buffer (queue) it until a later pull operation unbuffers (dequeues) it.

4.3.6 API: Path Schedulers

The framework currently supports two path schedulers: round-robin and random.

However, many scheduling algorithms exist to provide better performance under a va-

riety of network conditions. Therefore, another future extension to the framework is

implementation of support for a larger variety of schedulers.

133

4.3.7 API: Packet Processing Modules

As described above, some conduit endpoint interface packet processing modules are

provided for basic tasks. However, one natural addition is further packet processing

modules to support, for example, monitoring of conduit performance metrics beyond

loss rate and latency, to include, for example, jitter.

4.3.8 API: Gbps Performance

As discussed above and demonstrated in Figure 2.21, the conduit implementation

suffers from the same type of characteristic bottleneck on Gbps networks that the user-

level router does on 100 Mbit networks. As can be seen between the performance of

the user-level and kernel data plane routers, a kernel-level implementation eliminates the

extra data copy and greatly improves performance. Therefore, another next step forward

is a kernel-level conduit implementation, which is expected to be on par with the native

IP used as a baseline and only limited by the number of options it is made to process.

4.3.9 API: Wrapper Improvements

As described in Section 2.6.4, work is also progressing on addressing the current con-

duit endpoint interface libc wrapper limitation to use with UDP. This mainly involves

two components: (1) the addition of reliable stream-oriented transport to SORA; and

(2) mapping socket address pairs to conduits.

4.4 Summary

This dissertation described the SORA multipath virtual network layer; it provides:

(1) a data plane supporting fast application-directed forwarding on a variety of current

networks; (2) a control plane to allow convenient setup and management of the data

plane, including a shared mode allowing resource usage reductions and easier virtual net-

work setup and usage when multiple virtual networks use the same testbed; and (3) an

application interface which eases application-directed routing-aware application develop-

134

ment and experimentation with the data and control plane and provides usability with

existing network applications and protocols.

While a number of areas for future work exist with respect to improving and extend-

ing the current framework defined by these components, the framework offers an imme-

diately usable solution to its core problem of how to conveniently develop and test both

existing and future applications and transport protocols on application-directed routing

networks using current large-scale testbed networks, as was proven both by experiment

and usage case. Source code for its components as well as documentation for their use

are freely available under the GNU Public License at sora.nakao-lab.org.

135

BIBLIOGRAPHY

[1] Adiseshu, Hari, Varghese, George, and Parulkar, Guru. An Architecture for
Packet-Striping Protocols. ACM Trans. Comput. Syst. 17, 4 (1999), 249–287.

[2] Agarwal, S., Chuah, Chen-Nee, and Katz, R.H. OPCA: Robust Interdomain
Policy Routing and Traffic Control. 2003 IEEE Conference on Open Architectures
and Network Programming (April 2003), 55–64.

[3] AKARI. AKARI Architecture Project. akari-project.nict.go.jp.

[4] Andersen, David, Balakrishnan, Hari, Kaashoek, Frans, and Morris, Robert. Re-
silient Overlay Networks. In SOSP ’01: Proceedings of the Eighteenth ACM Sym-
posium on Operating Systems Principles (New York, NY, USA, 2001), ACM Press,
pp. 131–145.

[5] Arthur, Colin M., Lehane, Andrew, and Harle, David. Keeping Order: Determin-
ing the Effect of TCP Packet Reordering. Networking and Services, 2007. ICNS.
Third International Conference on (19-25 June 2007), 116–116.

[6] Awater, Geert A., and Kruys, Jan. Wireless ATM: An Overview. Mob. Netw. Appl.
1, 3 (1996), 235–243.

[7] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., and Swallow, G. RSVP-
TE: Extensions to RSVP for LSP Tunnels. RFC 3209 (Proposed Standard), Dec.
2001. Updated by RFCs 3936, 4420, 4874, 5151, 5420.

[8] Ballani, Hitesh, Francis, Paul, and Zhang, Xinyang. A Study of Prefix Hijacking
and Interception in the Internet. SIGCOMM Comput. Commun. Rev. 37, 4 (2007),
265–276.

[9] Banerjee, A., Drake, J., Lang, J.P., Turner, B., Kompella, K., and Rekhter, Y.
Generalized Multiprotocol Label Switching: an Overview of Routing and Man-
agement Enhancements. Communications Magazine, IEEE 39, 1 (January 2001),
144–150.

[10] Banerjee, A., Drake, L., Lang, L., Turner, B., Awduche, D., Berger, L., Kompella,
K., and Rekhter, Y. Generalized Multiprotocol Label Switching: an Overview
of Signaling Enhancements and Recovery Techniques. Communications Magazine,
IEEE 39, 7 (July 2001), 144–151.

[11] Barrénd, Séstien, Raiciu, Costin, Bonaventure, Olivier, and Handley, Mark. Ex-
perimenting with Multipath TCP. In SIGCOMM 2010 Demo (September 2010).
http://conferences.sigcomm.org/sigcomm/2010/papers/sigcomm/p443.pdf.

136

[12] Bavier, Andy, Feamster, Nick, Huang, Mark, Peterson, Larry, and Rexford, Jen-
nifer. In VINI Veritas: Realistic and Controlled Network Experimentation. In
Proceedings of the ACM SIGCOMM Conference (September 2006).

[13] Bellman, Richard. On a Routing Problem. Quarterly of Applied Mathematics 16, 1
(1958), 87–90.

[14] Bennett, J.C.R., Partridge, C., and Shectman, N. Packet Reordering Is Not Patho-
logical Network Behavior. IEEE/ACM Transactions on Networking (TON) 7, 6
(1999), 789–798.

[15] Bhattacharjee, Bobby, Calvert, Ken, Griffioen, Jim, Spring, Neil, and Sterbenz,
James. Postmodern Internetwork Architecture. Tech. rep., 2006.

[16] Black, U. X.25 and Related Protocols. IEEE Computer Society Press, Los Alamitos,
CA, USA, 1991.

[17] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., and Weiss, W. An Archi-
tecture for Differentiated Service. RFC 2475 (Informational), Dec. 1998. Updated
by RFC 3260.

[18] Blanton, E., Allman, M., Fall, K., and Wang, L. A Conservative Selective Ac-
knowledgment (SACK)-based Loss Recovery Algorithm for TCP. RFC 3517 (Pro-
posed Standard), Apr. 2003.

[19] Blanton, Ethan, and Allman, Mark. On Making TCP More Robust to Packet
Reordering. SIGCOMM CCR 32, 1 (2002), 20–30.

[20] Bohacek, Stephan, Hespanha, Joao P., Lee, Junsoo, Lim, Chansook, and
Obraczka, Katia. A New TCP for Persistent Packet Reordering. IEEE/ACM Trans.
Netw. 14, 2 (2006), 369–382.

[21] Braden, R., Clark, D., and Shenker, S. Integrated Services in the Internet Archi-
tecture: an Overview. RFC 1633 (Informational), June 1994.

[22] CAIDA Macroscopic Topology Project Team. CAIDA Skitter AS Links Topol-
ogy (collection). http://imdc.datcat.org/collection/1-000W-X=
CAIDA+skitter+AS+Links+Topology.

[23] Campbell-Kelly, M., and Garcia-Swartz, D.D. The History of the Internet: The
Missing Narratives.

[24] Castineyra, I., Chiappa, N., and Steenstrup, M. The Nimrod Routing Architec-
ture. RFC 1992 (Informational), Aug. 1996.

[25] Cerf, V., Dalal, Y., and Sunshine, C. Specification of Internet Transmission Con-
trol Program. RFC 675, Dec. 1974.

[26] Chebrolu, Kameswari, Raman, Bhaskaran, and Rao, Ramesh R. A Network Layer
Approach to Enable TCP Over Multiple Interfaces. Wirel. Netw. 11, 5 (2005), 637–
650.

137

[27] Chun, Brent, Culler, David, Roscoe, Timothy, Bavier, Andy, Peterson, Larry,
Wawrzoniak, Mike, and Bowman, Mic. PlanetLab: an Overlay Testbed for Broad-
Coverage Services. SIGCOMM Computer Communications Review 33, 3 (2003),
3–12.

[28] Clark, D. The Design Philosophy of the DARPA Internet Protocols. In SIG-
COMM ’88: Symposium Proceedings on Communications Architectures and Protocols
(New York, NY, USA, 1988), ACM Press, pp. 106–114.

[29] Clarke, Ian, Sandberg, Oskar, Wiley, Brandon, and Hong, Theodore W. Freenet:
a Distributed Anonymous Information Storage and Retrieval System. In Inter-
national Workshop on Designing Privacy Enhancing Technologies (New York, NY,
USA, 2001), Springer-Verlag New York, Inc., pp. 46–66.

[30] Clipsham, W.W., Glave, F.E., and Narraway, M.L. DATAPAC Network
Overview. In Proc. ICCC (1976), pp. 131–136.

[31] Cohen, Bram. Incentives Build Robustness in BitTorrent. In Workshop on Eco-
nomics of Peer-to-Peer Systems (Berkeley, CA, USA, June 2003).

[32] Coltun, R., Ferguson, D., Moy, J., and Lindem, A. OSPF for IPv6. RFC 5340
(Proposed Standard), July 2008.

[33] Cormen, L. Introduction to Algorithms. McGraw-Hill Company (2000).

[34] Crowcroft, Jon, Hand, Steven, Mortier, Richard, Roscoe, Timothy, and Warfield,
Andrew. QoS’s Downfall: at the Bottom, or Not at All! In RIPQoS ’03: Proceed-
ings of the ACM SIGCOMM Workshop on Revisiting IP QoS (New York, NY, USA,
2003), ACM Press, pp. 109–114.

[35] Dabek, Frank, Kaashoek, M. Frans, Karger, David, Morris, Robert, and Stoica,
Ion. Wide-Area Cooperative Storage with CFS. In SOSP ’01: Proceedings of the
Eighteenth ACM Symposium on Operating Systems Principles (New York, NY, USA,
2001), ACM Press, pp. 202–215.

[36] Dasgupta, S., de Oliveira, J.C., and Vasseur, J.P. Path-Computation-Element-Based
Architecture for Interdomain MPLS/GMPLS Traffic Engineering: Overview and
Performance. IEEE Network 21, 4 (2007), 38–45.

[37] Deering, S., and Hinden, R. Internet Protocol, Version 6 (IPv6) Specification.
RFC 2460 (Draft Standard), Dec. 1998. Updated by RFC 5095.

[38] Deloche, G. ARPA Network Functional Specifications. RFC 8, May 1969.

[39] Dimopoulos, Peter, Zeephongsekul, Panlop, and Tari, Zahir. Multipath Aware
TCP (MATCP). ISCC (2006), 981–988.

[40] Duncanson, J. Inverse Multiplexing. Communications Magazine, IEEE 32, 4 (Apr
1994), 34–41.

[41] Eastlake 3rd, D., and Jones, P. US Secure Hash Algorithm 1 (SHA1). RFC 3174
(Informational), Sept. 2001. Updated by RFC 4634.

138

[42] Estan, Cristian, Akella, Aditya, and Banerjee, Suman. Achieving Good End-to-
End Service Using Bill-Pay. In Hotnets-V (New York, NY, USA, 2006), ACM.

[43] Fall, K., and Floyd, S. Simulation-Based Comparisons of Tahoe, Reno and SACK
TCP. ACM SIGCOMM CCR 26, 3 (1996), 21.

[44] Farinacci, D., Li, T., Hanks, S., Meyer, D., and Traina, P. Generic Routing En-
capsulation (GRE). RFC 2784 (Proposed Standard), Mar. 2000. Updated by RFC
2890.

[45] Fattah, H., and Leung, C. An Overview of Scheduling Algorithms in Wireless
Multimedia Networks. Wireless Communications, IEEE 9, 5 (2002), 76 – 83.

[46] Feamster, N., Borkenhagen, J., and Rexford, J. Techniques for Interdomain Traffic
Engineering. Computer Communications Review 33, 5 (2003).

[47] Feamster, Nick, Andersen, David G., Balakrishnan, Hari, and Kaashoek, Frans.
Measuring the Effects of Internet Path Faults on Reactive Routing. In ACM Sig-
metrics - Performance 2003 (San Diego, CA, June 2003).

[48] Feamster, Nick, and Balakrishnan, Hari. Towards a Logic for Wide-Area Inter-
net Routing. In FDNA ’03: Proceedings of the ACM SIGCOMM Workshop on Fu-
ture Directions in Network Architecture (New York, NY, USA, 2003), ACM Press,
pp. 289–300.

[49] Feamster, Nick, and Balakrishnan, Hari. Detecting BGP Configuration Faults
with Static Analysis. In 2nd Symp. on Networked Systems Design and Implementa-
tion (NSDI) (Boston, MA, May 2005).

[50] Feamster, Nick, Balakrishnan, Hari, Rexford, Jennifer, Shaikh, Aman, and van der
Merwe, Jacobus. The Case for Separating Routing from Routers. In FDNA ’04:
Proceedings of the ACM SIGCOMM Workshop on Future Directions in Network Ar-
chitecture (New York, NY, USA, 2004), ACM Press, pp. 5–12.

[51] FIRE. FIRE - Future Internet Research & Experimentation. cordis.europa.
eu/fp7/ict/fire.

[52] Floyd, S. A Report on Recent Developments in TCP Congestion Control. Comm.
Magazine, IEEE 39, 4 (Apr 2001), 84–90.

[53] Floyd, S., and Henderson, T. The NewReno Modification to TCP’s Fast Recovery
Algorithm. RFC 2582 (Experimental), Apr. 1999. Obsoleted by RFC 3782.

[54] Floyd, S., Mahdavi, J., Mathis, M., and Podolsky, M. An Extension to the Selective
Acknowledgement (SACK) Option for TCP. RFC 2883 (Proposed Standard), July
2000.

[55] Ford, Jr., L R, and Fulkerson, D. R. Flows in Networks. Princeton University
Press, 1962.

[56] Garcia-Lunes-Aceves, J. J. Loop-free Routing Using Diffusing Computations.
IEEE/ACM Trans. Netw. 1, 1 (1993), 130–141.

139

[57] Gavras, Anastasius, Karila, Arto, Fdida, Serge, May, Martin, and Potts, Martin.
Future Internet Research and Experimentation: the FIRE Initiative. SIGCOMM
Comput. Commun. Rev. 37, 3 (2007), 89–92.

[58] GENI. Global Environment for Network Innnovations. www.geni.net.

[59] Godfrey, P., Ganichev, I., Shenker, S., and Stoica, I. Pathlet Routing. ACM SIG-
COMM Computer Communication Review 39, 4 (2009), 111–122.

[60] Gray, James P. Services Provided to Users of SNA Networks. In SIGCOMM
’79: Proceedings of the Sixth Symposium on Data Communications (New York, NY,
USA, 1979), ACM Press, pp. 52–62.

[61] Greenberg, Albert, Hjalmtysson, Gisli, Maltz, David A., Myers, Andy, Rexford,
Jennifer, Xie, Geoffrey, Yan, Hong, Zhan, Jibin, and Zhang, Hui. A Clean Slate
4D Approach to Network Control and Management. SIGCOMM Comput. Com-
mun. Rev. 35, 5 (2005), 41–54.

[62] Griffin, T.G., and Sobrinho, J.L. Metarouting. In SIGCOMM ’05: Proceedings of the
2005 Conference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications (New York, NY, USA, 2005), ACM, ACM Press, pp. 1–12.

[63] Griffin, Timothy G., and Wilfong, Gordon. An Analysis of BGP Convergence
Properties. In SIGCOMM ’99: Proceedings of the Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication (New York,
NY, USA, 1999), ACM Press, pp. 277–288.

[64] Grossman, D. New Terminology and Clarifications for Diffserv. RFC 3260 (In-
formational), Apr. 2002.

[65] Gummadi, P. Krishna, Saroiu, Stefan, and Gribble, Steven D. A Measurement
Study of Napster and Gnutella as Examples of Peer-to-Peer File Sharing Systems.
SIGCOMM Comput. Commun. Rev. 32, 1 (2002), 82–82.

[66] Gustafsson, E. Karlsson, G. A Literature Survey on Traffic Dispersion. In IEEE
Network (1997), IEEE, pp. 28–32.

[67] Hand, Steven, and Roscoe, Timothy. Mnemosyne: Peer-to-Peer Steganographic
Storage. In IPTPS ’01: Revised Papers from the First International Workshop on Peer-
to-Peer Systems (London, UK, 2002), Springer-Verlag, pp. 130–140.

[68] Herzog, S. RSVP Extensions for Policy Control. RFC 2750 (Proposed Standard),
Jan. 2000.

[69] Hsieh, Hung-Yun, and Sivakumar, R. pTCP: An End-to-End Transport Layer
Protocol for Striped Connections. Network Protocols, 2002. Proceedings. 10th IEEE
International Conference on (12-15 Nov. 2002), 24–33.

[70] Hsieh, Wen-Ning, and Gitman, Israel. Routing Strategies in Computer Networks.
IEEE Computer 1, 1 (1984), 46–56.

140

[71] Huebsch, Ryan, Hellerstein, Joseph M., Lanham, Nick, Loo, Boon Thau, Shenker,
Scott, and Stoica, Ion. Querying the Internet with PIER. In VLDB (2003), pp. 321–
332.

[72] ISO. ISO Standard, IS 7498, Information Processing Systems – Open Systems
Interconnection – Basic Reference Model. ISO (1985).

[73] Iyengar, Janardhan R., Amer, Paul D., and Stewart, Randall R. Concurrent Mul-
tipath Transfer Using SCTP Multihoming Over Independent End-to-End Paths.
IEEE/ACM Trans. Netw. 14, 5 (2006), 951–964.

[74] Jacobson, V., Smetters, D.K., Briggs, N.H., Plass, M.F., Stewart, P., Thornton,
J.D., and Braynard, R.L. VoCCN: Voice-over Content-Centric Networks. In Pro-
ceedings of the 2009 Workshop on Re-Architecting the Internet (2009), ACM, pp. 1–6.

[75] Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., and Bray-
nard, R.L. Networking Named Content. In Proceedings of the 5th International
Conference on Emerging Networking Experiments and Technologies (2009), ACM,
pp. 1–12.

[76] Jayasumana, A., Piratla, N., Banka, T., Bare, A., and Whitner, R. Improved Packet
Reordering Metrics. RFC 5236 (Informational), June 2008.

[77] Jones, Rick. Netperf. www.netperf.org.

[78] Joseph, Dilip, Kannan, Jayanthkumar, Kubota, Ayumu, Lakshminarayanan,
Karthik, Stoica, Ion, and Wehrle, Klaus. OCALA: An Architecture for Support-
ing Legacy Applications over Overlays. Tech. Rep. UCB/CSD-05-1397, EECS
Department, University of California, Berkeley, 2005.

[79] Kaat, M. Overview of 1999 IAB Network Layer Workshop. RFC 2956 (Informa-
tional), Oct. 2000.

[80] Kalmanek, Charles. A Retrospective View of ATM. SIGCOMM Comput. Com-
mun. Rev. 32, 5 (2002), 13–19.

[81] Kaur, H. Tahilramani, Kalyanaraman, S., Weiss, A., Kanwar, S., and Gandhi, A.
BANANAS: an Evolutionary Framework for Explicit and Multipath Routing in
the Internet. In FDNA ’03: Proceedings of the ACM SIGCOMM Workshop on Fu-
ture Directions in Network Architecture (New York, NY, USA, 2003), ACM Press,
pp. 277–288.

[82] Keshav, S. An Engineering Approach to Computer Networking. Addison-Wesley,
1997.

[83] Kim, Sung-Ho, and Ko, Young-Bae. Wireless Bonding for Maximizing Through-
put in Multi-Radio Mesh Networks. Pervasive Computing and Communications
Workshops, 2007. PerCom Workshops ’07. Fifth Annual IEEE International Confer-
ence on (19-23 March 2007), 570–576.

141

[84] Kohler, Eddie, Morris, Robert, Chen, Benjie, Jannotti, John, and Kaashoek,
M. Frans. The Click Modular Router. ACM Trans. Comput. Syst. 18, 3 (2000),
263–297.

[85] Kompella, K., and Lang, J. Procedures for Modifying the Resource reSerVation
Protocol (RSVP). RFC 3936 (Best Current Practice), Oct. 2004.

[86] Koponen, T., Chawla, M., Chun, B.G., Ermolinskiy, A., Kim, K.H., Shenker,
S., and Stoica, I. A Data-Oriented (and Beyond) Network Architecture. ACM
SIGCOMM Computer Communication Review 37, 4 (2007), 192.

[87] Koren, Debby. Are We Ready for IPv6? Is IPv6 Ready for Us? Int. J. Netw. Manag.
15, 1 (2005), 61–66.

[88] Kubiatowicz, John, Bindel, David, Chen, Yan, Czerwinski, Steven, Eaton, Patrick,
Geels, Dennis, Gummadi, Ramakrishna, Rhea, Sean, Weatherspoon, Hakim,
Wells, Chris, and Zhao, Ben. OceanStore: an Architecture for Global-Scale Per-
sistent Storage. In ASPLOS-IX: Proceedings of the Ninth International Conference
on Architectural Support for Programming Languages and Operating Systems (New
York, NY, USA, 2000), ACM Press, pp. 190–201.

[89] Labovitz, Craig, Ahuja, Abha, Bose, Abhijit, and Jahanian, Farnam. Delayed
Internet Routing Convergence. IEEE/ACM Trans. Netw. 9, 3 (2001), 293–306.

[90] Labovitz, Craig, Ahuja, Abha, and Jahanian, Farnam. Experimental Study of
Internet Stability and Wide-Area Network Failures. In Proc. International Sympo-
sium on Fault-Tolerant Computing (1999).

[91] Lane, John Russell, and Nakao, Akihiro. SORA: A Shared Overlay Routing Ar-
chitecture. In ROADS Warsaw 2007: Proceedings of the 2007 Workshop on Real
Overlay and Distributed Systems, Warsaw (New York, NY, USA, 2007), ACM
Press.

[92] Lane, John Russell, and Nakao, Akihiro. Best-Effort Network Layer Packet Re-
ordering in Support of Multipath Overlay Packet Dispersion. Globecom 2008,
Proceedings of (December 2008).

[93] Lane, John Russell, and Nakao, Akihiro. Path Brokering for End-Host Path Selec-
tion: Toward a Path-Centric Billing Method for a Multipath Internet. Proceedings
of ReArch 2008 (Dec. 2008).

[94] Lane, John Russell, and Nakao, Akihiro. On Best-Effort Packet Reordering for
Mitigating the Effects of Out-of-Order Delivery on Unmodified TCP. IEICE
Transactions on Communications 93, 5 (2010), 1095–1103.

[95] Langar, Rami, Grand, Gwendal Le, and Tohme, Samir. Fast Handoff Process in
Micro-Mobile MPLS Protocol for Micro-Mobility Management in Next Gener-
ation Networks. In WONS ’05: Proceedings of the Second Annual Conference on
Wireless On-demand Network Systems and Services (WONS’05) (Washington, DC,
USA, 2005), IEEE Computer Society, pp. 252–257.

142

[96] Lee, Sung-Ju, Banerjee, Sujata, Sharma, Puneet, Yalagandula, Praveen, and Basu,
Sujoy. Bandwidth-Aware Routing in Overlay Networks. INFOCOM 2008 (2008).

[97] Lehman, T., Sobieski, J., and Jabbari, B. DRAGON: a Framework for Service
Provisioning in Heterogeneous Grid Networks. Communications Magazine, IEEE
44, 3 (March 2006), 84–90.

[98] Li, Zhi, and Mohapatra, P. QRON: QoS-Aware Routing in Overlay Networks.
IEEE Journal on Selected Areas in Communications 22, 1 (January 2004), 29–40.

[99] Liao, Jianxin, Wang, Jingyu, and Zhu, Xiaomin. cmpSCTP: an Extension of SCTP
to Support Concurrent Multi-Path Transfer. In ICC (2008), pp. 5762–5766.

[100] Linux Channel Bonding. sourceforge.net/projects/bonding.

[101] Liu, Hang, and Raychaudhuri, Dipankar. Label Switched Multi-path Forwarding
in Wireless Ad-Hoc Networks. In PERCOMW ’05: Proceedings of the Third IEEE
International Conference on Pervasive Computing and Communications Workshops
(PERCOMW’05) (Washington, DC, USA, 2005), IEEE Computer Society, pp. 248–
252.

[102] Mahadevan, Priya, Hubble, Calvin, Krioukov, Dmitri, Huffaker, Bradley, and
Vahdat, Amin. Orbis: Rescaling Degree Correlations to Generate Annotated In-
ternet Topologies. In SIGCOMM ’07: Proceedings of the 2007 Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer Communications
(New York, NY, USA, 2007), ACM, pp. 325–336.

[103] Mahajan, Ratul, Wetherall, David, and Anderson, Tom. Understanding BGP Mis-
configuration. In SIGCOMM ’02: Proceedings of the 2002 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communications (New
York, NY, USA, 2002), ACM Press, pp. 3–16.

[104] Malkin, G. RIP Version 2. RFC 2453 (Standard), Nov. 1998. Updated by RFC
4822.

[105] Marques, P., and Dupont, F. Use of BGP-4 Multiprotocol Extensions for IPv6
Inter-Domain Routing. RFC 2545 (Proposed Standard), Mar. 1999.

[106] Maxemchuk, N. F. Dispersity Routing. Proc. IEEE Int’l Comm. Conf. (ICC ’75) 1,
1 (June 1975), 10–13.

[107] Maxemchuk, N.F. Dispersity Routing on ATM Networks. INFOCOM ’93. Pro-
ceedings of the Twelfth Annual Joint Conference of the IEEE Computer and Commu-
nications Societies 1 (1993), 347–357.

[108] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rex-
ford, J., Shenker, S., and Turner, J. OpenFlow: Enabling Innovation in Campus
Networks. ACM SIGCOMM Computer Communication Review 38, 2 (2008), 69–74.

[109] Mills, D.L. Exterior Gateway Protocol Formal Specification. RFC 904 (Historic),
Apr. 1984.

143

[110] Montenegro, G. Reverse Tunneling for Mobile IP, revised. RFC 3024 (Proposed
Standard), Jan. 2001.

[111] Morton, A., Ciavattone, L., Ramachandran, G., Shalunov, S., and Perser, J. Packet
Reordering Metrics. RFC 4737 (Proposed Standard), Nov. 2006.

[112] Moy, J. OSPF Version 2. RFC 2328 (Standard), Apr. 1998.

[113] Murphy, S. BGP Security Vulnerabilities Analysis. RFC 4272 (Informational),
Jan. 2006.

[114] MySQL, AB. MySQL, 2004.

[115] Nakao, A., Ozaki, R., and Nishida, Y. CoreLab: an Emerging Network Testbed
Employing Hosted Virtual Machine Monitor. In Proceedings of the 2008 ACM
CoNEXT Conference (2008), ACM New York, NY, USA.

[116] Narten, T., Draves, R., and Krishnan, S. Privacy Extensions for Stateless Address
Autoconfiguration in IPv6. RFC 4941 (Draft Standard), Sept. 2007.

[117] Odlyzko, Andrew. The Delusions of Net Neutrality. 36th Telecommunications
Policy Research Conf. Proceedings (Sept. 2008).

[118] OneLab. OneLab - Testbeds for Future Internet Research & Experimentation.
www.onelab.eu.

[119] Oran, D. OSI IS-IS Intra-domain Routing Protocol. RFC 1142 (Informational),
Feb. 1990.

[120] Owezarski, Philippe. Does IPv6 Improve the Scalability of the Internet? In
IDMS/PROMS 2002: Proceedings of the Joint International Workshops on Interactive
Distributed Multimedia Systems and Protocols for Multimedia Systems (London, UK,
2002), Springer-Verlag, pp. 130–140.

[121] Padhye, Jitendra, Firoiu, Victor, Towsley, Don, and Kurose, Jim. Modeling TCP
Throughput: A Simple Model and its Empirical Validation. In SIGCOMM ’98:
Proceedings of the ACM SIGCOMM ’98 Conference on Applications, Technologies,
architectures, and Protocols for Computer Communication (New York, NY, USA,
1998), ACM, pp. 303–314.

[122] Pelsser, C., and Bonaventure, O. RSVP-TE Extensions for Interdomain LSPs,
October 2002. Work in progress, draft-pelsser-rsvp-te-interdomain-lsp-00.txt.

[123] Piratla, N.M., and Jayasumana, A.P. Metrics for Packet Reordering—a Compara-
tive Analysis. International Journal of Communication Systems 21, 1 (2008), 99–113.

[124] Postel, J. User Datagram Protocol. RFC 768 (Standard), Aug. 1980.

[125] Postel, J. Internet Protocol. RFC 791 (Standard), Sept. 1981. Updated by RFC
1349.

[126] Pouzin, L., and AndrGe, E. Cyclades Computer Network: Toward Layered Network
Architectures. Elsevier Science Inc. New York, NY, USA, 1982.

144

[127] Ratnasamy, Sylvia, Francis, Paul, Handley, Mark, Karp, Richard, and Schenker,
Scott. A Scalable Content-Addressable Network. In SIGCOMM ’01: Proceedings
of the 2001 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications (New York, NY, USA, 2001), ACM Press, pp. 161–
172.

[128] Ratnasamy, Sylvia, Handley, Mark, Karp, Richard M., and Shenker, Scott.
Application-Level Multicast Using Content-Addressable Networks. In NGC ’01:
Proceedings of the Third International COST264 Workshop on Networked Group
Communication (London, UK, 2001), Springer-Verlag, pp. 14–29.

[129] Rekhter, J. EGP and Policy Based Routing in the New NSFNET Backbone. RFC
1092, Feb. 1989.

[130] Rekhter, Y., and Li, T. A Border Gateway Protocol 4 (BGP-4). RFC 1654 (Pro-
posed Standard), July 1994. Obsoleted by RFC 1771.

[131] Rhee, I., and Xu, L. CUBIC: A New TCP-Friendly High-Speed TCP Variant. In
Proc. PFLDnet (2005), vol. 2005.

[132] Roberts, L.G. The TELENET Network; The Benefits of Public Packet Service.
In Proceedings of the 3rd International Conference on Computer Communications
(1976), pp. 239–245.

[133] Rosen, E., Viswanathan, A., and Callon, R. Multiprotocol Label Switching Archi-
tecture. RFC 3031 (Proposed Standard), Jan. 2001.

[134] Rosen, E.C. Exterior Gateway Protocol (EGP). RFC 827, Oct. 1982. Updated by
RFC 904.

[135] Rowstron, Antony, and Druschel, Peter. Storage Management and Caching in
PAST, a Large-Scale, Persistent Peer-to-Peer Storage Utility. In SOSP ’01: Proceed-
ings of the Eighteenth ACM Symposium on Operating Systems Principles (New York,
NY, USA, 2001), ACM Press, pp. 188–201.

[136] Rowstron, Antony I. T., and Druschel, Peter. Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-Peer Systems. In Middleware
2001: Proceedings of the IFIP/ACM International Conference on Distributed Systems
Platforms, Heidelberg (London, UK, 2001), Springer-Verlag, pp. 329–350.

[137] Rowstron, Antony I. T., Kermarrec, Anne-Marie, Castro, Miguel, and Druschel,
Peter. SCRIBE: The Design of a Large-Scale Event Notification Infrastructure. In
NGC ’01: Proceedings of the Third International COST264 Workshop on Networked
Group Communication (London, UK, 2001), Springer-Verlag, pp. 30–43.

[138] Saltzer, J. H., Reed, D. P., and Clark, D. D. End-to-End Arguments in System
Design. ACM Trans. Comput. Syst. 2, 4 (1984), 277–288.

[139] Seamonson, L., and Rosen, E.C. “STUB” Exterior Gateway Protocol. RFC 888,
Jan. 1984. Updated by RFC 904.

145

[140] Sethom, Kaouthar, Afifi, Hossam, and Pujolle, Guy. Wireless MPLS: a New Layer
2.5 Micro-Mobility Scheme. In MobiWac ’04: Proceedings of the Second Interna-
tional Workshop on Mobility Management & Wireless Access Protocols (New York,
NY, USA, 2004), ACM Press, pp. 64–71.

[141] Sklower, K., Lloyd, B., McGregor, G., Carr, D., and Coradetti, T. The PPP
Multilink Protocol (MP). RFC 1990 (Draft Standard), Aug. 1996.

[142] Skype. Skype home page. www.skype.com.

[143] Smallwood, J.E. An Introduction to ATM. Computing & Control Engineering
Journal 9, 5 (October 1998), 233–245.

[144] Smith, P. Frame Relay: Principles and Applications. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 1993.

[145] Snoeren, Alex C., and Raghavan, Barath. Decoupling Policy from Mechanism in
Internet Routing. SIGCOMM Comput. Commun. Rev. 34, 1 (2004), 81–86.

[146] Sobrinho, J.L. Network Routing with Path Vector Protocols: Theory and Appli-
cations. In SIGCOMM ’03: Proceedings of the 2003 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications (New York,
NY, USA, 2003), ACM Press, pp. 49–60.

[147] Song, Fei, Zhang, Hongke, Zhang, Sidong, Ramos, Fernando M. V., and
Crowcroft, Jon. Relative Delay Estimator for SCTP-Based Concurrent Multipath
Transfer. In GLOBECOM (2010), pp. 1–6.

[148] Stewart, R. Stream Control Transmission Protocol. RFC 4960 (Proposed Stan-
dard), Sept. 2007.

[149] Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer, H., Taylor, T.,
Rytina, I., Kalla, M., Zhang, L., and Paxson, V. Stream Control Transmission
Protocol. RFC 2960 (Proposed Standard), Oct. 2000. Obsoleted by RFC 4960,
updated by RFC 3309.

[150] Stoica, Ion, Adkins, Daniel, Zhuang, Shelley, Shenker, Scott, and Surana, Sonesh.
Internet Indirection Infrastructure. IEEE/ACM Trans. Netw. 12, 2 (2004), 205–218.

[151] Stoica, Ion, Morris, Robert, Karger, David, Kaashoek, M. Frans, and Balakrishnan,
Hari. Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications.
In SIGCOMM ’01: Proceedings of the 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (New York, NY, USA,
2001), ACM Press, pp. 149–160.

[152] Sunshine, Carl A. Source Routing in Computer Networks. SIGCOMM Comput.
Commun. Rev. 7, 1 (1977), 29–33.

[153] Teixeira, Renata, Shaikh, Aman, Griffin, Tim, and Rexford, Jennifer. Dynamics
of Hot-Potato Routing in IP Networks. In SIGMETRICS 2004/PERFORMANCE
2004: Proceedings of the Joint International Conference on Measurement and Modeling
of Computer Systems (New York, NY, USA, 2004), ACM Press, pp. 307–319.

146

[154] The University of Oregon. Routeviews Project. www.routeviews.org.

[155] Touch, J. Dynamic Internet Overlay Deployment and Management Using the X-
Bone. In ICNP ’00: Proceedings of the 2000 International Conference on Network
Protocols (Washington, DC, USA, 2000), IEEE Computer Society, p. 59.

[156] Touch, Joseph D., Wang, Yu-Shun, Pingali, Venkata, Eggert, Lars, Zhou, Run-
fang, and Finn, Gregory G. A Global X-Bone for Network Experiments. In TRI-
DENTCOM ’05: Proceedings of the First International Conference on Testbeds and
Research Infrastructures for the DEvelopment of NeTworks and COMmunities (TRI-
DENTCOM’05) (Washington, DC, USA, 2005), IEEE Computer Society, pp. 194–
203.

[157] Tymes, LR. Routing and Flow Control in TYMNET. Communications, IEEE
Transactions on 29, 4 (1981), 392–398.

[158] Valancius, Vytautas, Feamster, Nick, Johari, Ramesh, and Vazirani, Vijay. MINT:
A Market for INternet Transit. Proceedings of ReArch 2008 (Dec. 2008).

[159] Wan, T., and van Oorschot, P.C. Analysis of BGP Prefix Origins During Google’s
May 2005 Outage. Proc. of Security in Systems and Networks (2006).

[160] Wecker, S. DNA: the Digital Network Architecture. Communications, IEEE Trans-
actions on [Legacy, Pre-1988] 28, 4 (1980), 510–526.

[161] Weiser, Mark. Whatever Happened to the Next-Generation Internet? Commun.
ACM 44, 9 (2001), 61–69.

[162] White, Brian, Lepreau, Jay, Stoller, Leigh, Ricci, Robert, Guruprasad, Shashi,
Newbold, Mac, Hibler, Mike, Barb, Chad, and Joglekar, Abhijeet. An Integrated
Experimental Environment for Distributed Systems and Networks. In Proc. of the
Fifth Symposium on Operating Systems Design and Implementation (Boston, MA,
Dec. 2002), USENIX Association, pp. 255–270.

[163] Winer, David. XML-RPC Specification. www.xmlrpc.com/spec.

[164] Xie, Kaiduan, Wong, V.W.S., and Leung, V.C.M. Support of Micro-Mobility in
MPLS-Based Wireless Access Networks. IEEE Wireless Communications and Net-
working Conference (WCNC 2003) 2 (March 2003), 16–20.

[165] XML-RPC-C. XML-RPC-C Library Website. xmlrpc-c.sourceforge.
net.

[166] Xu, Wen, and Rexford, Jennifer. MIRO: Multi-path Interdomain Routing. In
SIGCOMM ’06: Proceedings of the 2006 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (New York, NY, USA,
2006), ACM, pp. 171–182.

[167] Yan, Hong, Maltz, David A., Ng, T. S. Eugene, Gogineni, Hemant, Zhang, Hui,
and Cai, Zheng. Tesseract: A 4D Network Control Plane. In NSDI (2007),
http://www.usenix.org/events/nsdi07/tech/yan.html.

147

[168] Yang, Xi, Lehman, Tom, Tracy, Chris, Sobieski, Jerry, Gong, Shujia, Torab,
Payam, and Jabbari, Bijan. Policy-Based Resource Management and Service Pro-
visioning in GMPLS Networks. The First IEEE Workshop on Adaptive Policy-based
Management in Network Management and Control, Proceedings of 1, 1 (April 2006).

[169] Yang, Xiaowei. NIRA: a New Internet Routing Architecture. In FDNA ’03: Pro-
ceedings of the ACM SIGCOMM Workshop on Future Directions in Network Architec-
ture (New York, NY, USA, 2003), ACM Press, pp. 301–312.

[170] Yang, Xiaowei. An Internet Architecture for User-Controlled Routes. NSF FIND
Proposal (2007).

[171] Yang, Xiaowei, Clark, David, and Berger, Arthur. NIRA: a New Routing Archi-
tecture. IEEE/ACM Transactions on Networking (2007).

[172] Yang, Xiaowei, and Wetherall, David. Source Selectable Path Diversity via Rout-
ing Deflections. In SIGCOMM ’06: Proceedings of the 2006 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communications (New
York, NY, USA, 2006), ACM, pp. 159–170.

[173] Zhang, Lixia, Deering, S., Estrin, D., Shenker, S., and Zappala, D. RSVP: a New
Resource Reservation Protocol. Communications Magazine, IEEE 40, 5 (May 2002),
116–127.

[174] Zhang, Ming, Karp, Brad, Floyd, Sally, and Peterson, Larry. RR-TCP: A
Reordering-Robust TCP with DSACK. In ICNP ’03: Proceedings of the 11th
IEEE International Conference on Network Protocols (Washington, DC, USA, 2003),
p. 95.

[175] Zhang, Ming, Lai, Junwen, Krishnamurthy, Arvind, Peterson, Larry, and Wang,
Randolph. A Transport Layer Approach for Improving End-to-End Performance
and Robustness Using Redundant Paths. In USENIX 2004 Conference Proceedings
(2004), pp. 99–112.

[176] Zhao, B.Y., Huang, Ling, Stribling, J., Rhea, S.C., Joseph, A.D., and Kubiatowicz,
J.D. Tapestry: a Resilient Global-Scale Overlay for Service Deployment. IEEE
Journal on Selected Areas in Communications 22, 1 (January 2004), 41–53.

[177] Zhuang, Shelley Q., Zhao, Ben Y., Joseph, Anthony D., Katz, Randy H., and
Kubiatowicz, John D. Bayeux: an Architecture for Scalable and Fault-Tolerant
Wide-Area Data Dissemination. In NOSSDAV ’01: Proceedings of the 11th Interna-
tional Workshop on Network and Operating Systems Support for Digital Audio and
Video (New York, NY, USA, 2001), ACM Press, pp. 11–20.

148

PUBLICATIONS RELATED TO SORA

1. SORA: A Shared Overlay Routing Architecture – Enabling Multipath Routing on
PlanetLab and Beyond, ACM ROADS 2007, Warsaw, Poland

2. End-Host Path Monitoring and Selection Supporting Packet Dispersion on Multipath
Overlay Networks, CFI 2008, Seoul, Korea

3. Best Effort Network Layer Packet Reordering in Support of Multipath Overlay Packet
Dispersion, IEEE GlobeCom 2008, New Orleans, USA

4. Path Brokering for End-Host Path Selection: Toward a Path-Centric Billing Model for
a Multipath Internet, ACM ReArch 2008, Madrid, Spain

5. On Best-Effort Packet Reordering for Mitigating the Effects of Out-Of-Order Delivery
on Unmodified TCP, IEICE Transactions on Communications, Special Issue on
Technology and Architecture for Sustainable Growth of the Internet, Vol. 93, No.
5, May 2010

149

Appendices

150

APPENDIX A

FUNDAMENTAL SORA CLICK ELEMENTS

A.1 Elements

A.1.1 Packet Header Processing Elements
SoraPacketHToN()

Agnostic. Converts the SORA packet header pointed to by the SORA packet annotation
pointer from host to network byte order.

SoraPacketNToH()
Agnostic. Converts the SORA packet header pointed to by the SORA packet annotation
pointer from network to host byte order.

SoraSetChecksum()
Agnostic. Computes the checksum of the SORA packet header pointed to by the packet
annotation pointer and sets the computed value therein.

SoraCheckHeader()
Agnostic. Performs basic verification of the SORA packet header sizes and computes the
packet checksum and verifies that it matches the checksum in the packet.

SoraUDPIPMarkHeader()
Agnostic. Given a UDP/IP packet as input, creates pointers to the start of the SORA
packet header struct and SORA payload in the Click packet annotation.

SoraStripHeader()
Agnostic. Sets the Click packet start pointer to point to the SORA payload (i.e., the
encapsulated packet).

SoraUnstripHeader()
Agnostic. If a pointer address to the SORA packet header remains in the Click packet
annotation, sets the Click packet start pointer to point to the given pointer address.

SoraIncrementHop()
Agnostic. Increments the current link identifier in the SORA path option in the SORA
packet header pointed to by the SORA packet annotation pointer.

151

A.1.2 Packet Option Handling Elements
SoraCreatePacketClass()

Agnostic. Creates a SoraPacket object and sets a pointer to it in the Click packet annota-
tion.

SoraCreatePacketStruct()
Agnostic. Obtains the SoraPacket object from the Click packet annotation and uses it
to create a header struct (sora_packet_t) and sets a pointer to it in the Click packet
annotation; deallocates the SoraPacket object.

SoraSetConduitIDInfoOption()
Agnostic. Adds the conduit ID information option to the SoraPacket object pointed to
in the Click packet annotation using information from the conduit.

SoraSetDestinationOption()
Agnostic. Adds the destination option to the SoraPacket object pointed to in the Click
packet annotation using information from the conduit.

SoraSetFlagsOption()
Agnostic. Adds the packet flags to the SoraPacket object pointed to in the Click packet
annotation using information from the conduit.

SoraSetNetworkOption()
Agnostic. Adds the network option to the SoraPacket object pointed to in the Click
packet annotation using information from the conduit.

SoraSetPathOption()
Agnostic. Adds the path option to the SoraPacket object pointed to in the Click packet
annotation using information from the conduit.

SoraSetSourceOption()
Agnostic. Adds the source option to the SoraPacket object pointed to in the Click packet
annotation using information from the conduit.

SoraSetSequenceNumberOption()
Agnostic. Adds the sequence number option to the SoraPacket object pointed to in the
Click packet annotation using information from the conduit.

A.1.3 Conduit Handling Elements
SoraCreateConduit(OVERWRITE boolean)

Agnostic. Creates a new path conduit endpoint object and sets its pointer address in the
Click annotation; if OVERWRITE is true, creates a conduit even if a non-zero value exists
for the conduit pointer address value in the Click annotation; if OVERWRITE is false,
refuses to create a new conduit.

152

SoraSetConduitValues(ID_ONLY boolean, IS_INBOUND boolean)
Agnostic. Sets initial default values for the path conduit endpoint instance pointed to
by the conduit endpoint pointer address value stored in the Click annotation, including
source and destination conduit endpoint identifiers; if ID_ONLY is true, only sets the
conduit endpoint identifiers; if IS_INBOUND is true, sets the conduit values based on
an initial inbound packet (i.e., with source and destination swapped).

SoraConduitCacheFind(USE_IP boolean, USE_PORT boolean, IS_INBOUND bool-
ean)

Port 0: Agnostic; Port 1: Push. Looks up the conduit endpoint instance in the conduit
cache for the given packet; if it finds it, it sets the conduit endpoint pointer address value
in the Click annotation and outputs the packet on port zero; if it does not find it, it sends
the packet out port one; if both USE_IP and USE_PORT are set, the lookup key is the
source and destination IP addresses, ports and the protocol; if USE_IP is set and USE_-
PORT is not, the lookup key is only the source and destination IP addresses; if USE_IP
is not set, an inbound packet is assumed and the lookup key is the conduit endpoint
identifiers in the packet; if IS_INBOUND is true, an inbound packet is assumed for
purposes of creating the lookup key based on IP addresses (i.e., the source and destination
addresses are swapped).

SoraConduitCacheSet(USE_IP boolean, USE_PORT boolean, IS_INBOUND bool-
ean, OVERWRITE boolean)

Agnostic. Inserts a pointer to the conduit endpoint instance referred to by the conduit
endpoint pointer address value in the Click annotation into the path conduit endpoint
cache; if both USE_IP and USE_PORT are set, the lookup key is the source and des-
tination IP addresses, ports and the protocol; if USE_IP is set and USE_PORT is not,
the lookup key is only the source and destination IP addresses; if USE_IP is not set,
an inbound packet is assumed and the lookup key is the conduit endpoint identifiers in
the packet; if IS_INBOUND is true, an inbound packet is assumed for purposes of cre-
ating the lookup key based on IP addresses (i.e., the source and destination addresses are
swapped); if OVERWRITE is true, stores the conduit even if a mapping already exists for
the given key in the conduit cache.

SoraFilterUnsetConduits()
Input 0: Agnostic; Output 0: Agnostic, 1: Push. Verifies that the conduit referred to
by the conduit endpoint pointer address value in the Click annotation has minimum re-
quirements to begin sending packets with: a network identifier, a source entity identifier,
a destination entity identifier and at least one path. Packets meeting these requirements
are output on port zero; unset packets are output on port 1; this element is generally
used in the lookup pipeline.

A.1.4 Control Plane Service Lookup
SoraSetPacketState(STATE string)

Agnostic. Sets the packet ingress lookup state to the given argument, which should be
one of LIVE, LOOKUP or PASSTHROUGH.

153

SoraLookupLinks(DIRECTION string, LOOKUP_TARGET string, STORAGE_TAR-
GET string, PATH_SOURCE string, URL string, USERNAME string, PASSWORD str-
ing)

Input 1: Agnostic, Outputs 1-3: Push. Performs link lookup on a state database. The
DIRECTION argument is one of INBOUND or OUTBOUND and determines the type
of links to search for. The LOOKUP_TARGET is one of SOURCE, DESTINATION,
FIRST_HOP or NEXT_HOP. If the lookup target is one of SOURCE or DESTINATION,
lookup is performed on all outbound (source) or inbound (destination) links, otherwise,
a hop-based lookup is performed: the path is consulted and the first hop or next hop link
is looked up, depending upon the argument given. The STORAGE_TARGET argument
should be one of CONDUIT or ANNO and determines where retrieved links are stored:
in the conduit or in the annotation. The PATH_SOURCE argument should be one of
CONDUIT or ANNO and determines where the path should be obtained in the case of a
hop-based lookup: the conduit or packet annotation. The URL argument should con-
tain the base URL of an XML-RPC query server; it overrides the system default. The
USERNAME and PASSWORD arguments specify the username and password required to
access the query server.

SoraLookupPaths(NUM_PATHS integer, WINDOW_LENGTH integer, NUM_WINDOWS
integer, URL string, USERNAME string, PASSWORD string)

Input 1: Agnostic, Outputs 1-3: Push. Performs paths lookup using the source and
destination entity identifiers stored in the conduit. The WINDOW_LENGTH and NUM_-
WINDOWS arguments control the size and length of the statistics windows maintained
by the SoraPath classes created by the element upon successful path query. The URL
argument should contain the base URL of an XML-RPC query server; it overrides the
system default.

SoraDiscardFailedLookups(VERBOSE boolean)
Agnostic. Examines the ingress lookup state and discards all non-live packets. Outputs a
message on discard if the VERBOSE option is set.

A.1.5 Encapsulation
SoraUDPIPEncap()

Input 1: Agnostic, Output 1: Agnostic, 2: Push. Encapsulates an input packet in a
UDP/IP header by adding the UDP/IP header just above it. Reads a UDP/IP hop
link pointer from the packet annotation and writes the UDP information therein to
the packet header. For direct use with Click interfaces. For using sockets (e.g., on
PlanetLab), see SoraUDPIPSocket.

154

SoraUDPIPSocket(SOURCE_PORT IP port)
Input 1: Agnostic, Output 0. Encapsulates an input packet in a UDP/IP header by
adding the UDP/IP header just above it. Reads a UDP/IP next hop link pointer from
the packet annotation and sends the packet to the destination IP and port noted therein
using the given source port which defaults to the SORA default outbound port (48484).
For use with sockets, therefore this also deallocates the packet and has no output port.
For using Click interfaces, see SoraUDPIPEncap.

A.1.6 Path Scheduling
SoraSetPathScheduler(TYPE string)

Agnostic. Creates a scheduler for the conduit referred to in the given packet’s annotation.
The type of the scheduler is determined by the TYPE option and is one of ROUND_-
ROBIN or RANDOM.

SoraSchedulePath(PROBES boolean)
Input 1: Agnostic, Output 1: Push. Schedules a packet using the scheduler within the
conduit endpoint interface pointed to by the packet’s pointer annotation. Whether the
scheduler schedules a live or a probe packet is determined by the PROBES option (when
it is true, probe packets will be scheduled, otherwise live packets will be scheduled).

A.1.7 Packet Filtering
SoraClassifier(SRC address, DST address, SRC_ANNO address, DST_ANNO address,
FIRST_HOP integer, NEXT_HOP integer, -)

Input 1: Agnostic, Outputs: Push. Implements basic classifier functionality similar to
Click’s own Classifier and IPClassifier elements. Each argument specifies a
match target (the given argument) and an output port (the position of the argument in
the argument list); packets with a field matching the given argument are sent out its
corresponding output port. The special argument “-” matches all packets. Note that
SRC and DST match against the packet source and destination identifiers; SRC_ANNO
and DST_ANNO match against the annotation pointer source and destination identifiers.

SoraLocalTargetFilter(USE_CONDUIT boolean, ADDRESSES IP address list, URL str-
ing, USERNAME string, PASSWORD string)

Input 1: Agnostic, Output 1: Agnostic, 2: Push. Attempts to determine the local inter-
face IP addresses; uses those from the ADDRESSES option, if available. The element also
tries to load the address mapping cache using those addresses. When input a packet, it
examines the destination address pointed to either in the conduit or the packet (depend-
ing upon the configuration variable USE_CONDUIT) as well as the path and outputs a
packet on its second port if the packet is either destined for one of the local addresses or
if this is the last hop, and on its first port otherwise.

155

A.1.8 Packet Services
SoraReorderPackets(MAX_HOLD integer, STRICT boolean)

Input: Agnostic, Outputs: Push. Accepts a packet on its input port and, if it has a se-
quence number available, locates the conduit endpoint instance referenced in the packet
annotation and uses it to locate the reorderer instance for the given conduit endpoint.
If a reorderer instance is found, it updates the reorderer with the packet. If a reorderer
instance is not found, it creates one with the given arguments for max_hold and strict
reordering.

156

APPENDIX B

SORA CONTROL PLANE PROGRAMS

Name Purpose
sora_compute_paths Computes paths based on input links
sora_cpp Processes a SORA Click router input file
sora_db Interfaces with the SORA link database
sora_entity Interfaces with SORA entity-based services
sora_entityd Handles services for entities
sora_gencert Generates an RSA certificate for use with XML-RPC
sora_genkey Generates an RSA key for use with link signatures
sora_get_rtts Obtains RTTs from a set of hosts
sora_instantiate_links Instantiates a set of links (in parallel)
sora_mk_pl_links Generates a full mesh link set for PlanetLab
sora_pcs Interfaces with the path computation service
sora_pcsd Handles path computation service
sora_rtts_to_links Converts a set of RTT values into links
sora_sign_links Signs links in a link file
sora_sqldbd Handles link database and link request services
sora_verify_links Verifies links against an link signing RSA key
sora_wrap Performs libc wrapping for automated ingress

Table B.1: SORA Control Plane Program Summary

157

	K-02999_cover_sheet
	K-02999

