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Chapter 1

Introduction

1.1 Review of Anomaly Detection

The term anomaly detection refers either to the problem of detecting data not fitting
an expected or normal behavior defined previously or to the problem of detecting data di-
verging from the majority of a set of data given. These two descriptions mark the partition
of the research regarding the problem into supervised and unsupervised approaches.

• (Semi)Supervised Anomaly Detection: Based on a labeled set of normal training
data describing the expected behavior, we compute a score (binary or continuous)
expressing the likelihood of a newly presented test data point to conform with the
expected behavior.

• Unsupervised Anomaly Detection1: We are given a set of unlabeled data, and are
presented with the task of evaluating every data point based on the assumption that
the majority of the data is normal.

While the fundamental problem was first defined within the statistics research com-
munity during the late 19th century, more widespread interest in the topic did not occur
until the rise of computer networks and large scale automated plants during the second
half of the 20th century. The technological progress enforced the development of methods
for automatically judging the state of a complex system - for example a power plant, an
aircraft engine, or a production line - based on the output data - pressure or altitude real

1This term is sometimes also used to refer to supervised anomaly detection as defined above when
discriminating it from an anomaly detection approach using training data to deduce a model of both the
normal and the erroneous data.
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Figure 1.1: a) Conventional two-class classifier built from sample data of both the normal
class (dark) and the anomalous class (light) to classify test data (question marks) b) Su-
pervised anomaly detection: one-class classifier built from sample data of the normal class
(dark) c) Unsupervised anomaly detection: classifier built from unlabeled test data

values, power down binary values, access rate etc. - generated by the system. The system
could be in a normal or in an erroneous state. The generic approach to the problem had
been to properly define both erroneous and normal output, turning the situation into a
two-class discrimination problem as depicted by Fig. 1.1 a). But while the definition of the
output characteristic of the normal behavior of a complex system is fairly easy, defining
the output characteristic of every possible erroneous system state may be quite difficult.

Thus, in order to circumvent the problem, the concept of supervised anomaly detec-
tion was applied, defining any observation deviating from the expected normal output,
any abnormal data, as indicative of an erroneous system state. Figure 1.1 b) shows a
classifier based on this concept. While early applications where mostly related to indus-
trial production [1], the advance of computer, multimedia, and network technology during
the second half of the eighties created new application fields like computer network intru-
sion detection [2], financial fraud detection [3], satellite image analysis [4], and medical
imaging [5].

A new chapter was opened with the rise of complex dynamic systems like wireless
networks, the internet, or mobile robots, during the last decade of the 20th century. Earlier
applications of supervised anomaly detection had mostly been set in fixed environments, for
example a computer pool with a limited number of terminals and registered users, making
it easy to collect the normal training data necessary for supervised anomaly detection. In
a dynamic and anonymous environment like the internet, on the other hand, clean training
data becomes difficult to acquire because the desired application may change and evolve
rapidly. Therefore, the scenario of unsupervised anomaly detection is more realistic, raising
the problem of building a classifier from unlabeled data as shown by Fig. 1.1 c).
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a) b)

Figure 1.2: a) Heterogenous anomalies (light) spread around the bulk of the normal data
(dark) b) Homogenous cluster of anomalous data

While the concept of anomaly detection is convenient and intuitive, there is an aspect
easily overlooked when defining anomalous data points (which are also referred to as out-
liers) within a data set of unlabeled data, as in the unsupervised scenario. In his frequently
quoted definition of outliers, Grubbs [6] states that

”An outlying observation, or outlier, is one that appears to deviate markedly from other
members of the sample in which it occurs.”

This definition echoes the statistical roots of anomaly detection, but leaves one important
point ambiguous: If several anomalous data points or outliers are present in a set of data,
how are they related to each other? If the anomalous data is a heterogenous group, the only
common feature is the deviation from the normal data, which forms the majority of the
set. Detection is easy compared to the case of of a homogeneous anomalous data subset,
because it is sufficient to search for data deviating from all the other data points. Figure
1.2 illustrates the point, using a geometric example. The first subfigure shows a situation
reminiscent of a two dimensional distribution, with the outliers simply being extreme values
scattered around the bulk of the observations, distorting the estimation of parameters such
as mean and covariance. Contrary, the second subfigure shows a homogeneous cluster of
abnormal data, so Hawkin’s definition of an outlier [7] as an

”observation that deviates so much from other observations as to arouse suspicions that it
was generated by a different mechanism.”
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is more befitting. The second situation might arise upon permanent malfunction of a
measurement device, or mixing data from different sources (such as gene sequences from
different organisms). Hereafter, we will refer to the first situation as point-based anomaly
and to the second situation as cluster-based anomaly, a denomination introduced by Lian
et al. [8].

The numerous anomaly detection techniques (supervised and unsupervised) proposed
so far (for an exhaustive list of publications see Chandola et al. [9]) may roughly be divided
into the subsequent four groups. Note, however, that those techniques are not mutually
exclusive but often used in combination. For example, principal component analysis may
be used to preprocess the vectors used for training a support vector machine.

• Anomaly Detection Based on Classification
A classifier is built using the available training data, judging the test data as either
normal or anomalous. Techniques used include one-class support vector machines,
neural networks, principal component analysis, as well as rule based approaches.

One-class support vector machines [10] are a derivative of the original support vec-
tor machine algorithm [11], which had been designed to minimize the structural
risk when separating two classes by a linear classifier, first mapping the data to a
suitable high-dimensional space via a so called Kernel function [12] if necessary to
solve non-linear separation problems. Instead of a function separating two classes,
the one-class support vector algorithm optimizes a function enclosing the majority
of the training data, judging any data outside this boundary as anomalous. While
showing good generalization capabilities, the computational expense of the quadratic
optimization procedure involved has spawned several simplifications, which exploit
the fact that after a suitable mapping, the training data will form a hypersphere
(or hyperellipsoid) [13] [14]. This turns the problem into a minimum-enclosing-ball
problem. As for unsupervised anomaly detection, the above approaches are robust
with respect to point-based anomalies, but cluster-based anomalies might seriously
undermine detection capability.

Artificial Neural networks [15] use a network consisting of units modeled after biolog-
ical neurons to build a nonlinear classifier function, using techniques likes radial basis
functions, hopfield networks, or self-organizing maps. While training is easy, there is
a tendency for overfitting, and for the unsupervised case, even a small percentage of
anomalies might result in serious distortion.

Another family of methods very suitable to the supervised anomaly detection scenario
are rule-based approaches [16]. In contrast to the cohesive approach of statistical
modeling discussed below, rule-based approaches generate a set of rules characterizing
the normal training data, assigning a confidence value dependent on the frequency
of occurrence. A test data point fitting only rules with low confidence is likely to
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be anomalous. This approach is especially suitable for sparse categorical training
datasets [17] [18] featuring a large alphabet, when statistical modeling is likely to
yield unstable results. The unsupervised application of rule-based approaches is
difficult, since even a minor share of anomalous data may generate faulty rules or
lower the confidence of correct rules.

Classification by principal component analysis [19] belongs to a larger family of meth-
ods called spectral methods, which aim at reducing the data complexity (number of
dimensions, mapping of time series to frequency) while improving the discrimination
of anomalous and normal data. Principal component analysis performs a linear trans-
formation of the coordinate system, using an eigenvector decomposition according to
the covariance matrix of the training data. Within the new system, the dimensions
are uncorrelated, and the share of variance carried by one dimension decreases with
rising order of dimension (and is identical to the eigenvalue of the dimension). This
enables the exclusion of dimensions carrying little information. Using normalization
by the eigenvalues of the remaining dimensions, the probability distribution of the
normal data can be approximated using the chi-square distribution if the normal data
obeys a multivariate normal distribution. While originally proposed for the super-
vised scenario [20] (with some filtering of outliers of the normal data), recently also
applicability to unsupervised anomaly detection has been explored [21].

A common strong point of classifier systems is that while the training may take a
considerable amount of time, classification of the testing data is usually fast. The
main common drawback is the dependence on clean training data of most meth-
ods, especially regarding rule based approaches and neural networks. Also, often no
meaningful score regarding the reliability of the judgement is generated.

• Anomaly Detection Based on Data Distance
After defining a suitable distance measure for the data, these approaches compute
the matrix of pairwise distances of the data points in the set. Basically unsupervised,
some algorithms may be modified to process labeled data for parameter estimation.
The techniques may be divided into nearest-neighbor-based techniques and clustering
techniques.

k-nearest-neighbor-based techniques compute a numerical measure for any point
based on the average distance to the adjoining k data points, thus estimating the
local density. The most straightforward algorithm simply classifies the points of
lowest nearest-neighbor distance within the set as anomalous [22]. It detects both
point-based and cluster-based anomalies (sparse clusters are supposed to be anoma-
lous). In order to account for density variations of the normal data, the local outlier
factor [23] was introduced. Supposing only point-based anomalies, this approach
calculates the ratio of the k-nearest-neighbor distance of the point in question, and
the average of the k-nearest-neighbor distances of the k nearest neighbors. Points of
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small ratio are points located outside a cluster above a certain density.

In contrast to the local estimation of the nearest-neighbor techniques, clustering
techniques establish a global model [24]. Crisp partition-based techniques like the
k-means algorithm [25] group the data into several non-overlapping groups or clusters
and then judge a data point as anomalous if it is either member of a sparse cluster
or located exceptionally far from its assigned cluster center. Fuzzy partition-based
methods, on the other hand, assign to any point in the the data set a degree of
membership in each of the clusters [26]. Data points with a small degree of member-
ship in any cluster or high membership in sparse clusters are considered anomalous.
Contrary to partition-based techniques, hierarchical techniques either gradually ag-
glomerate the points of the data set into a single cluster [27] (bottom-up), or break
down the global cluster (top-down), creating a hierarchy of the data points allowing
for the detection of both point-based and cluster-based anomalies.

There have also been some attempts to combine elements of the two above ap-
proaches [28] [8], which are sometimes referred to as density-based clustering.

While distance-based approaches are unsupervised in nature and mostly independent
of the data distribution, the quality of results depends on the setting of parameters,
which often have to be found out by trial-and error. Another point is the quadratic
computational complexity.

• Anomaly Detection Based on Statistics
These techniques generate a statistical model based on the data. A data point is
judged as anomalous if the likelihood of the data point within the estimated model
drops below a certain threshold. The techniques may be divided into parametric and
non-parametric techniques.

Parametric approaches assume that the normal data has been generated by a par-
ticular class of distributions (for example Gaussian) or a mixture of several dis-
tributions [29], and try to infer the parameters of the distribution from the data
given, using maximum-likelihood techniques like the expectation-maximization algo-
rithm [30].

Non-parametric approaches do not assume any particular distribution but adapt to
the data. The most popular technique of this kind creates a histogram by counting
the occurrences of data points within regions of equal size or bins of the data space,
thus estimating the density [31]. If a test data point is located in a bin of low density,
it is judged anomalous. The other frequently employed non-parametric technique
places a standard conditional distribution above every data point, estimating the
overall distribution by combining the conditional distributions [32].

A special subgroup of supervised statistical approaches deals with the problem of
online anomaly detection: Given a stream of data, evaluate the present data point
based on the past data points judged to be correct [33] [34].
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The advantage of statistical methods, which are mostly supervised, is a reliable score
associated with a confidence interval if the distribution has been estimated correctly,
detecting both point-based and cluster-based anomalies. However, many parameter
estimation algorithms are very susceptible to noisy or sparse training data.

• Anomaly Detection based on Information Theory
Information theoretic techniques are based on the observation that outliers within
a set of data instances cause a notable inflation of information theoretic measures
like entropy or complexity. For this purpose, the data is usually represented as
a set of strings. The complexity of a string, as calculated by parsing algorithms
of the type frequently used in compression algorithms, is an approximation of the
theoretic Kolmogorov complexity [35]. The Kolmogorov complexity C (x) of a string
x is defined as the length of the shortest program that will output the string x.
Extending the original thought, the conditional Kolmogorov complexity C (x|y) is
defined as the minimum program length for generating x given y. Most strings of a
given length generated by the same source are supposed to show similar Kolmogorov
complexities.

Research regarding the application of information theory to anomaly detection has
mostly focused on the supervised scenario. The basic assumption is that the source
of the normal data is stationary or does at least produce similar output over time.
Thus, normal sequences share more patterns with the training data than anoma-
lous sequences do, and so the conditional Kolmogorov complexity with respect to
the training data should be higher for anomalous sequences [36] [37]. While most
supervised approaches are static, estimating the conditional Kolmogorov complexity
based entirely on the training data, adaptive approaches start off with the training
data and progressively add test data to the training data, in some cases dropping
older training data. Besides standard information measures, also the use of model
selection criteria (see 3.3.3) has been proposed [38]. In this adaptive test, one looks
for a significant increase in the complexity of the optimum statistical model, which
hints at the inclusion of anomalous data.

For the unsupervised scenario, the standard approach searches for the minimum set
of data points which, when removed from the calculation of the information theoretic
measure with respect to the whole of the set, will result in the maximum decrease
of the measure [39]. Another class of methods defines a mutual dissimilarity score
(or pseudo-distance) of two sequences, based on the estimated single and concate-
nated complexity of the two strings [40] [41]. A suitable clustering algorithm may
then be used to divide normal and abnormal data. However, mutual dissimilarity
measures based on conventional universal compression algorithms not may not meet
the conditions of a metric, and tend to become unstable for short sequence lengths.
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1.2 Research Problem Definition

At about the same time unsupervised anomaly detection became interesting, the ad-
vancement of technology spawned numerous anomaly detection problems involving non-
numerical sequence data, like fraud detection or protein classification. Due to the application-
specific properties of real-world non-numerical sequence data, unsupervised anomaly de-
tection for such data is especially difficult. Previous methods are hampered by difficulties
of parameter selection and computational expense. Therefore, we chose this problem as
the topic of our research. We define our scenario as follows:

1. We are given a set S of n sequences or blocks xb1 , xb2 , . . . , xbn−1 , xbn , with x ∈ X =
{a1, a2, . . . , aZ−1, aZ}, with the alphabet size Z not fixed in advance. We assume that
each bi is a multiple of a minimum block length b. The index i ∈ {1, 2, . . . , n − 1, n}
of the sequences may either be assigned at random or indicate the temporal order of
sequence generation.

2. We suppose that the majority of 1 − ρ (0 ≤ ρ ≤ ρmax = 0.33) of the sequences was
generated by one stationary normal source N (one-class scenario), while the remaining
share ρ of the sequences was generated by one or more stationary abnormal sources
A. Note that this scenario includes the case of ρ = 0 (No anomalous data). The
indices of the anomalous sequences may be random with respect to the overall index
range, or cover a limited section of the range.

3. The task is to derive a measure for the normality of each sequence.

We developed two approaches dealing with this scenario, which may be categorized as
distance based.

The first approach strings together the sequences of the set S into one global sequence,
using the index difference or distance of identical symbols within this global sequence for
anomaly detection.

The second approach computes the distance of any pair of sequences via a suitable
kernel, retrieving a sequence representative of the normal data, the distance from which is
then used for anomaly detection.
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1.3 Non-Numerical Sequence Data and Unsupervised Anomaly
Detection

Supervised anomaly detection for symbolic sequences [42] has been proposed for appli-
cation in various fields, such as proteomics [43], flight safety [44], and computer intrusion
detection [45] [46]. While also data distance based methods have been proposed, statistical
methods and classification methods prevail.

Unsupervised anomaly detection within symbols sequences, on the other hand, has
received less attention. Contrary to the case of supervised detection, the majority of
methods is based on mutual data distance or dissimilarity. How to define the distance of
two sequences of non-numerical data of probably different length is a fundamental problem
of machine learning [47] [12]. In contrast to numerical data, no ready ordinal space exists.

For evaluation of our results, we implemented two unsupervised approaches represen-
tative of previous research: An unsupervised probabilistic suffix tree algorithm [48] and a
clustering technique called fixed width clustering [22]. While the suffix tree algorithm is
an information theoretic method, with encoding based on a statistical model of variable
memory length [49], the clustering approach is based on the mutual distance of sequences.

The suffix tree algorithm first creates a probabilistic suffix tree based on the whole of
the data S given. Using the tree, a dissimilarity measure for judging any sequence xb ∈ S
of b symbols is calculated as follows:

DSIM
(
xb

)
=

− log P (x1, . . . , xb)
b

=
− log (P (x1) · P (x2|x1) · . . . P (xb|x1, . . . , xb−1))

b

=
− log (P (x1) · P (x2|x1) · . . . P (xb|xb−t, . . . , xb−1))

b
(1.1)

For b → ∞, this measure will converge towards the entropy rate of the tth Markov source.
Note that this measure has no upper limit, the lower limit being zero. In contrast to
a criterion based on the frequency of occurrence of the respective subsequences used by
Agrawal et al. [50] for supervised methods, Kam et al. [48] used the Corrected Akaike
Information Criterion for setting the tree depth t i.e. the maximum memory length of the
source description for calculating the dissimilarity measure. While the method performs
well in case of small fixed symbol alphabet size Z, for a combination of long memory, large
variable alphabet size, and small size of the data set S, numerous sparse nodes are created,
forcing the tree to suboptimal depth because of inflation of the parameter term within the
Corrected Akaike Information Criterion. In order to suppress this effect, we have to fix a
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minimum number Smin of occurrences of a preceding subsequence xb−γ , . . . , xb−1 in order
to become a node of the tree at level γ ≤ t. Besides evaluating the performance of our
algorithm, we used the optimum tree depth for deducing certain parameter values. We
explain this in detail in Section 3.3.4.

The clustering algorithm defines a distance measure for any two symbol sequences in S
using the normalized spectrum kernel function [51] controlled by the dimension parameter
k. Having computed the distance of any two blocks in our data set, we may estimate the
density of each block by counting the number of neighboring blocks within a certain radius
w. Blocks of high density are likely to belong to normal data, while blocks of low density
are likely to be outliers. In order to speed up calculation, the algorithm defines the first
data block as the center of a cluster. If one of the following blocks falls within the range
w of one or more blocks previously designated as cluster centers, it is assigned to those
clusters and the respective count of the clusters is increased by one. If not, the block forms
the center of a new cluster. After all sequences have been assigned, the local density of a
block is defined as the density of the cluster it is assigned to. Multiple cluster assignment is
resolved by taking the average. While the algorithm is easy to handle and many extensions
have been proposed to speed up the calculation, the setting of the parameters w and k poses
a difficult problem, and in practice is often done based on experience or trial-and-error.

1.4 Thesis Organization

This thesis is organized as follows:

The first chapter contains the introduction to the topic, problem definition and expla-
nation of the notation used throughout the thesis.

The second chapter introduces the first approach, which was inspired by the work of
Kennel [52] and Rieke et al. [53] [54], and is based on the idea of stringing together all
sequences within S into one global sequence2. We use a function called the average index
difference to create a numerical value for every symbol based on the distance of identical
symbols within the global sequence. After introducing the function and explaining its
properties, the first algorithm, which assumes the anomalous data to be clustered within a
subsection of the global sequence, is presented, including the setting of the parameters and
the global cost. Next, the second algorithm, which removes several drawbacks of the first
one, most important allowing for arbitrary location of the anomalous blocks at the cost of
increased complexity, is explained, again including parameter setting and computational
cost. The chapter closes with an evaluation of the experimental results of both algorithms
using both artificial and real world data.

2The contents of the chapter were presented to some extent at the ADMA2009 conference [55].
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The third chapter introduces the second approach, which is based on selecting a se-
quence representative of the normal data and classifying the sequences in the set according
to the distance from this representative, after initially using a suitable kernel for mapping
the sequence data to a numerical space3. After stating the algorithm and explaining the
parameter setting, we discuss the usage of kernels for mapping sequence data to a suitable
numerical space, as well as the parameter setting of the kernel used for our experiments.
After stating the computational cost, we close the chapter by discussing the results of
experiments using both artificial and real-world data.

The last chapter contains the conclusion, summing up the work presented and pointing
out possible topics of further research.

1.5 Notation

In this section, we present an overview of the notation used in the thesis in the order
of first appearance in the text.

• S: set of non-numerical sequences

• X : alphabet which is the set of symbols appearing in S

• Z: the size of the alphabet X , i.e. X = {a1, a2, . . . , aZ}

• n: number of sequences within S

• bi: length of the ith sequence or block within S with i ∈ {1, . . . , n}

• b: minimum block length. All bi are considered multiples of b.

• ρ: share of anomalous sequences within S

• ρmax: upper limit of ρ

• g: length of the global sequence created by concatenating the sequences of S

• DSIM
(
xbi

)
: Dissimilarity measure for judging the irregularity of a sequence based

on a given distribution

• Smin: Minimum number of occurrences of a subsequence within S in order to create
a node within a probabilistic suffix tree describing S

• t: depth of the suffix tree structure
3The contents of the chapter were presented to some extent at the ICMLC2010 conference [56].
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• w: radius parameter of the fixed width clustering algorithm

• k: dimensional parameter of the spectrum kernel deciding the length of the subse-
quences, the respective occurrences of which are then counted in order to create a
numerical vector describing the sequence

• jA: start index of anomalous data within the global sequence incase of concentrated
anomalous data

• lA: total length of anomalous data within the global sequence

• j: index within the global sequence of length g

• PN
X (x): generation probability of symbol x ∈ X within normal data.

• PA
X (x): generation probability of symbol x ∈ X within abnormal data.

• h (x): ratio of PN
X (x) and PA

X (x) of x ∈ X , i.e. h (x) def= PN
X (x)

PA
X (x)

for x ∈ X such that

PA
X (x) > 0

• Cb: occurrences of symbols identical to the one at index j below j

• Ca: occurrences of symbols identical to the one at index j above j

• Tj (x): average index difference of the symbol x ∈ X located at index j

• ∆(x): index difference of consecutive occurrences of x ∈ X

• ∆i (x): ith index difference between consecutive occurrences of a particular x ∈ X
counting from the start of the global sequence

• ∆(x): mean value of index differences between consecutive occurrences of x ∈ X

• ja
i : ith occurrence of the symbol x ∈ X found at index j counting up from j

• jb
i : ith occurrence of the symbol x ∈ X found at index j counting down from j

• ji: ith occurrence of the symbol x ∈ X counting from the start of the sequence

• τth: threshold for processing the average index difference values

• cth threshold for processing the scalar value assigned to a block

• M : memory variable when searching for typical subsequences of symbols

• Mmax: upper threshold of the memory variable M
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• h
(
xM+1

)
: ratio of PN

X

(
xM+1

)
and PA

X

(
xM+1

)
of xM+1 ∈ XM+1, i.e. h

(
xM+1

) def=
PN

X(xM+1)
PA

X (xM+1)
for xM+1 ∈ XM+1 such that PA

X

(
xM+1

)
> 0

• hth: threshold value of h
(
xM+1

)
for defining the x ∈ X considered representative of

the anomalous data by the algorithm.

• ∆
(
xM+1

)
: index difference of consecutive occurrences of xM+1 ∈ XM+1

• ∆i

(
xM+1

)
: ith index difference between consecutive occurrences of a particular

xM+1 ∈ XM+1 counting from the start of the global sequence

• ∆
(
xM+1

)
: mean value of index differences between consecutive occurrences of xM+1 ∈

XM+1

• Cb block: occurrences of symbols identical to the one at index j below j within the
same block

• Ca block: occurrences of symbols identical to the one at index j above j within the
same block

• νmin: lower threshold of the number of identical subsequences within the same block,
Cb block + Ca block

• Sj

(
xM+1

)
: scaled average index difference using the expected value of Tj (x) in case

of lA = 0 for normalization

• a + 1: dimension of the vector used for vector processing of Sj

(
xM+1

)
• β: parameter used to create a threshold via multiplication with ∆

(
xM+1

)
for judging

the ∆Cb

(
xM+1

)
and ∆Cb+1

(
xM+1

)
in order to decide whether j is located inside

anomalous data

• ξ: parameter used to create a threshold via multiplication with ∆
(
xM+1

)
in order

to decide whether to exclude a particular ∆i

(
xM+1

)
from calculation

• Υ
(
k, xM+1, lA

)
: Parameter describing the share of the sequence length g covered by

∆
(
xM+1

)
surpassing the threshold k

• m: mean of the scalar values of the normal blocks estimated via the median

• σ: deviation of the scalar values of the normal blocks estimated via the median
absolute deviation.

• φ
(
xb1

)
: Transforms the sequence xb1 to an inner product space, calculating a vector

of non-negative numerical entries.
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• K
(
xb1 , xb2

)
: calculates a numerical value describing the similarity of two sequences

xb1 , xb2 as a dot product of the numerical vectors φ
(
xb1

)
, φ

(
xb2

)
• Knorm

(
xb1 , xb2

)
: calculates a numerical value describing the similarity of two se-

quences xb1 , xb2 , which is normalized to the interval [0, 1] by

Knorm

(
xb1 , xb2

)
=

K(xb1 ,xb2)
q

K(xb1 ,xb1)·
q

K(xb2 ,xb2)

• dK

(
xb1 , xb2

)
: pseudo-distance or dissimilarity of two sequences xb1 , xb2 based on the

kernel K
(
xb1 , xb2

)
by

dK

(
xb1 , xb2

)
=

√
K (xb1 , xb1) − 2K (xb1 , xb2) + K (xb2 , xb2)

• D: matrix of mutual distances of the n sequences of S

• D̂: matrix created from D by rearranging the elements of each row from smallest to
largest

• θ: Parameter regulating the number of distances to be enclosed by the minimum
radius of the algorithm.

• C
(
xb1

)
: Kolmogorov complexity of the sequence xb1 , defined as the length of the

shortest program able to generate xb1 .

• C
(
xb1 |xb2

)
: Conditional Kolmogorov complexity of the sequence xb1 given xb2 , de-

fined as the length of the shortest program able to generate xb1 given xb2 .

• Nxb1

(
xk

)
: A function outputting the number of occurrences of the subsequence xk

within the sequence xb1

• Bxb1

(
xk

)
: A function outputting a binary result indicating the occurrence of the

subsequence xk within the sequence xb1

• PS
X

(
xt+1|xt

)
: conditional probability of a symbol x ∈ X to appear in any of the

sequences of the set S, given a certain sequence xt has appeared immediately before
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Chapter 2

Unsupervised Anomaly Detection
based on Average Index Difference

In this chapter we present the first approach for unsupervised anomaly detection within
non-numerical sequence data. The approach concatenates the sequences of the set into one
global sequence. It exploits the fact that in case of stationary ergodic symbol genera-
tion, the expected value of two consecutive occurrences of a symbol is the inverse of the
generation probability.

We introduce a function called the average index difference, which performs a weighted
comparison of the index differences of neighboring identical symbols to assign a numerical
value to the symbol at index j within the global sequence. We show that the average index
difference function converges to an expected value dependent only on the global index j,
but not on the symbol generation probability, for the case of stationary ergodic symbol
generation and no anomalies present. In case of anomalies, the average index difference
values both within normal and abnormal data will deviate form the expected value in a
way that enables the detection of anomalous data.

Two algorithms employing the deviation of the average function for anomaly detection
are presented. The first algorithm supposes a local concentration of anomalous data.
This requirement is lifted by the second algorithm, at the cost of increased complexity.
Nonetheless, the parameters of both algorithms are shown to be theoretically deducible.
Finally, we demonstrate the correctness of the theoretical predictions by experiments using
both artificial and real-world data.
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Figure 2.1: Notation of average index difference function Tj (x). Cb represents the occur-
rences of x below j, while Ca represents the occurrences above j.

2.1 Average Index Difference Function

2.1.1 Definition

Consider a sequence of overall length g generated by a stationary ergodic normal data
source N and a stationary ergodic anomalous data source A. It is partitioned into subse-
quences or blocks of length b, with

b ¿ g. (2.1)

A share of lA symbols is anomalous data. A particular block contains either anomalous
or normal data. One may also imagine the situation as the generating source switching
between the normal and the anomalous state. lA is assumed to be bounded by

0 ≤ lA ≤ g

3
(2.2)

and is a multiple of the block length b. For a particular symbol x ∈ X , the expected value of
the number of occurrences and the expected value of the index difference of two consecutive
occurrences of x inside both the anomalous and the normal data are determined by the
pair of stationary ergodic generation probabilities PN

X (x) , PA
X (x), related by

h (x) def=
PN

X (x)
PA

X (x)
. (2.3)

In case of PN
X (x) > 0, PA

X (x) = 0, h (x) is undefined.

In Section 2.2, we suppose that the lA abnormal symbols are generated as a closed
subsequence of symbols (a consecutive sequence of anomalous blocks) located somewhere
within the the overall sequence g. Note that there may as well be no abnormal data at all.
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∆(x) represents the interval between two consecutive occurrences of x ∈ X . The
expected value of ∆ (x) in either abnormal or normal state of the source for stationary
ergodic symbol generation is given by

E (∆ (x) |A) =
1

PA
X (x)

(2.4)

or
E (∆ (x) |N) =

1
PN

X (x)
(2.5)

from Kac’s Lemma [57](for a more formal statement see Lemma A.1 in the appendix),
where E represents the expectation. The validity of the subsequent approach rests on
these two expressions.

The average index difference Tj (x) of the symbol x found at index j is defined as
the average over the respective index differences of the symbol x found at index j and
all symbols of identical value x within the whole of the sequence of length g. Using the
notation depicted by Fig. 2.1, Tj (x) is written as follows:

Tj (x) def=

∑Cb
o=1

(
j − jb

o

)
+

∑Ca
q=1

(
ja
q − j

)
Cb + Ca

. (2.6)

In case of Cb + Ca = 0, the average index difference is defined to be zero. (2.6) may be
rewritten using a notation of the index differences ∆ (x) of neighboring identical sequences
or symbols, indexing the ∆ (x) from 1 to Ca + Cb, starting from the beginning of the
sequence.

Tj (x) =
Ca∑
o=1

(
Cb − o + 1
Cb + Ca

)
· ∆Cb−o+1 (x) +

Ca∑
q=1

(
Ca − q + 1
Cb + Ca

)
· ∆Cb+q (x) (2.7)

Figure 2.2 shows a visualization of (2.7) for an example featuring Cb = 2 and Ca = 6.
The average index difference function processes the ∆ (x) alike to an asymmetric weighting
window.

We define ∆ (x) as the empirical mean value of the index difference of neighboring
identical subsequences or symbols observed within the overall sequence of length g.

∆ =

∑Cb+Ca
q=1 ∆q (x)
Cb + Ca

(2.8)

2.1.2 Properties of Average Index Difference Function in Case of No
Anomaly

We only have to consider PN
X (x) ∀x ∈ X , ∀j ∈ {1, . . . , g}. In order to calculate the

expected value of the average index difference of a symbol x at index j within a symbol
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Figure 2.2: Visual example of the calculation of Tj (x) based on ∆ (x) for Cb = 2 and
Ca = 6.

sequence of length g, we introduce the expected values of Cb and Ca:

E (Cb) = j · PN
X (x) (2.9)

E (Ca) = (g − j) · PN
X (x) (2.10)

Inserting (2.9), (2.10) and (2.5) into (2.6), the expected average index difference may be
approximated by

E (Tj (x)) ≈ 1
g · PN

X (x)

j·PN
X (x)∑

o=1

o

PN
X (x)

+
(g−j)·PN

X (x)∑
q=1

q

PN
X (x)


=

1
g · PN

X (x)2

j·PN
X (x)∑

o=1

o +
(g−j)·PN

X (x)∑
q=1

q


=

1
g · PN

X (x)2

((
j · PN

X (x)
)2

2
+

(
(g − j) · PN

X (x)
)2

2
+

(
g · PN

X (x)
)

2

)

=
j2 + (g − j)2

2g
+

1
2 · PN

X (x)
(2.11)

≈ j2 + (g − j)2

2g
(2.12)

≥ g

4
(2.13)

The first term of expression 2.11 show the effect of taking the average of the index differ-
ences. The expected value of the average index difference mainly consists of the weighted

26



sum of the differences between the index j and centroid indices of closed areas of constant
probability distribution below and above the index j. The weights consist of the average
percentage of symbols contributed by the respective area.

The second term of expression (2.11) reminds us that in case of very small generation
probability compared to sequence length g, above approximation formula becomes futile.
Together with the lower bound of the remaining terms given by (2.13), this yields the
subsequent condition:

1
2 · PN

X (x)
¿ g

4
(2.14)

Formula (2.12) is symmetric with respect to the index g
2 . The symmetry is achieved

because the average index difference is calculated. While the approximation presented
here is informal, we formally deduced the formula by the subsequent theorems, the proofs
of which are given in the appendix:

Theorem 2.1
For a sequence of g symbols xg ∈ X g generated by a single stationary ergodic source, for
the expected value of the average index difference E (Tj (x)) of the symbol found at index
j = dg · ye (0 < y < 1), the subsequent convergence holds

lim
g→∞

1
g
·
∣∣∣∣E (Tj (x) |lA = 0) − j2 + (g − j)2

2g

∣∣∣∣ = 0 (2.15)

Theorem 2.2
For a sequence of g symbols xg ∈ X g generated by an i.i.d. source, the expected value of
the average index difference E (Tj (x) |lA = 0) of the symbol found at index j ∈ {1, . . . , g}
is given by

E (Tj(x)|lA = 0) =
(
1 −

(
1 − PN

X (x)
)g−1

)
·

(
j2 + (g − j)2

2 · (g − 1)
+

g − 2j

2 · (g − 1)

)
.

(2.16)

Corollary 2.1
For a sequence of g symbols xg ∈ X g generated by an i.i.d. source, the expected value of
the average index difference E (Tj (x) |lA = 0) of the symbol found at index j ∈ {1, . . . , g}
obeys the relative bound∣∣∣∣∣∣E (Tj(x)|lA = 0) − j2+(g−j)2

2g

j2+(g−j)2

2g

∣∣∣∣∣∣ ≤ 4
g − 1

+
(
1 − PN

X (x)
)g−1 ·

(
g + 3
g − 1

)
.

(2.17)
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Theorem 2.3
For a sequence of g symbols xg ∈ X g generated by i.i.d. source, the variance of the average
index difference E (Tj (x)) of the symbol found at index j ∈ {1, . . . , g} obeys the upper
bound

Var (Tj(x)|lA = 0) ≤
g + 39 + 2

g

12 · PN
X (x)

(2.18)

if PN
X (x) ≥ 5

g holds.

2.2 Algorithm Supposing Local Concentration of Anoma-
lous Blocks

2.2.1 Algorithm Statement

The average index difference values are used for block classification according to the
subsequent algorithm:

A subsequence or block is classified as an anomaly if the percentage of symbols showing
an average index difference below a certain limit τth surpasses a certain percentage threshold
cth. The approach is based on the assumption that the overall sequence of g symbols
exhibits a single symbol subsequence of a certain length lA generated by intrusion. Thus,
the symbols characteristic of the anomaly (i.e. symbols frequently occurring inside the
anomalous but not the normal data) will show a smaller average index difference, because
the majority of the identical symbols will be located close to the symbol compared to the
overall sequence length g.

A subsequence or block of length b is classified using the subsequent algorithm:

1. average index difference and percentage calculation:

Calculate the percentage c of the b symbols featuring an average index difference of
Tj (x) ≤ τth (0 ≤ τth ≤ g). The average index difference of symbols only occurring
once within the overall sequence of length g is defined to be zero.

2. percentage evaluation:

If c ≥ cth (0 ≤ cth ≤ 1), the block is classified as anomalous.

The performance of the algorithm is obviously determined by the setting of the parameter
τth. The task of the step employing τth is to search for symbols which are characteristic
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of the anomaly (PN
X (x) ¿ PA

X (x)) when compared to the normal output and are located
within the anomalous data. A pseudocode transcription of the algorithm is shown by
Algorithm 1.

Algorithm 1 Block Classification Algorithm
Ensure: index difference threshold τth ≤ g
Ensure: percentage threshold cth ≤ 1
Ensure: block start index jS ≤ g − b

block variable c ⇐ 0
index variable j ⇐ jS

while j < jS + b do
if Tj (x) ≤ τth then

c = c + 1
b

end if
j + +

end while
if c ≥ cth then

classify block as anomalous
else

classify block as normal
end if

2.2.2 Parameter Setting

As mentioned before, we suppose a single anomaly of length lA starting at index jA.
Due to symmetry with regard to g

2 , we may limit our consideration to j ≤ jA + lA. We
deduce bounds of the expected value of the average index difference, discriminating three
cases for any x ∈ X :

• Case 1: PN
X (x) ¿ PA

X (x) ↔ h (x) ¿ 1
The symbol is characteristic of the anomalous data when compared to the normal
data.

• Case 2: PN
X (x) ≈ PA

X (x) ↔ h (x) ≈ 1
The symbol is characteristic of neither the anomalous nor the normal data.

• Case 3: PN
X (x) À PA

X (x) ↔ h (x) À 1
The symbol is characteristic of the normal data when compared to the anomalous
data.
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Bounds of E (Tj (x)) for j > jA First we examine the case of the reference symbol
being located inside the anomaly. Figure 2.3 shows the centroid indices of both normal
and anomalous areas R1, R2, R3 and R4. We define CR1 , CR2 , CR3 and CR4 as the

Figure 2.3: Reference symbol located inside anomalous data

occurrence numbers of x in the respective areas. Supposing PN
X (x) and/or PA

X (x) suitably
large, the subsequent approximations hold:

CR1 ≈ jA · PN
X (x) (2.19)

CR2 ≈ (j − jA) · PA
X (x) (2.20)

CR3 ≈ (jA + lA − j) · PA
X (x) (2.21)

CR4 ≈ (g − jA − lA) · PN
X (x) (2.22)

ER1 = E
(
|j − jb

i |
∣∣∣jb

i ∈ R1

)
≈ j − jA

2
; i ∈ {1, . . . , Cb} (2.23)

ER2 = E
(
|j − jb

i |
∣∣∣jb

i ∈ R2

)
≈ j − jA

2
; i ∈ {1, . . . , Cb} (2.24)

ER3 = E(|j − ja
i | |ja

i ∈ R3) ≈ jA + lA − j

2
; i ∈ {1, . . . , Ca} (2.25)

ER4 = E(|j − ja
i | |ja

i ∈ R4) ≈ g + jA + lA
2

− j ; i ∈ {1, . . . , Ca} (2.26)

(2.27)

The approximation of expected average index distance goes:

E (Tj (x)) ≈ CR1 · ER1 + CR2 · ER2 + CR3 · ER3 + CR4 · ER4

CR1 + CR2 + CR3 + CR4

(2.28)
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inserting above approximations

E (Tj (x)) ≈ 1
lA · PA

X (x) + (g − lA) · PN
X (x)

·
[(

j − jA

2

)
· jA · PN

X (x)

+
(

j − jA

2

)
· (j − jA) · PA

X (x)

+
(

jA + lA − j

2

)
· (jA + lA − j) · PA

X (x)

+
(

g + jA + lA
2

− j

)
· (g − jA − lA) · PN

X (x)
]

(2.29)

For the three cases introduced above we respectively get

• Case 1: PN
X (x) ¿ PA

X (x)
The terms containing PA

X (x) will determine both the enumerator and the denomina-
tor of (2.29), thus making

E (Tj (x)) ≈ 1
lA

·
[(

j − jA

2

)
· (j − jA) +

(
jA + lA − j

2

)
· (jA + lA − j)

]
(2.30)

a valid approximation. (2.30) may be rewritten and upper bounded as

E (Tj (x)) ≈ 1
2jA

(
(j − jA)2 + (lA − (j − jA))2

)
≤ jA

2
(2.31)

• Case 2: PN
X (x) ≈ PA

X (x)
Since the probability of generation is approximately equal for the whole of the se-
quence, we get a result identical to the case of no anomaly, and (2.29) will converge
to:

E (Tj (x)) ≈ j2 + (g − j)2

2g

≥ g

4
(2.32)

• Case 3: PN
X (x) À PA

X (x)
The terms containing PN

X (x) will determine both the enumerator and the denomina-
tor of (2.29), so we may approximate

E (Tj (x)) ≈ 1
g − lA

·
[(

j − jA

2

)
· jA +

(
g + jA + lA

2
− j

)
· (g − jA − lA)

]
(2.33)
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For the subsequent derivation of the lower bound of (2.33), we first replace j by
jA + zlA, with z ∈ [0, 1]. We may do so because j is located inside the anomaly.
Insertion yields

E (TjA+zlA (x)) ≈ 1
g − lA

·
[(

jA + zlA − jA

2

)
· jA

+
(

g + jA + lA
2

− jA − zlA

)
· (g − jA − lA)

]
(2.34)

Taking the first derivative of (2.34) with respect to z we get

dE (TjA+zlA (x))
dz

≈ 1
g − lA

· [lAjA − lA · (g − jA − lA)]

=
lA

g − lA
· [2jA + lA − g] (2.35)

The derivative is independent of z. For jA < g−lA
2 , the derivative is negative, while

for jA > g−lA
2 , the derivative is positive for any z ∈ [0, 1]. This means that for any

possible setting of jA, lA, the minimum and the maximum value of (2.34) with respect
to z are located at z = 0 and z = 1, with the locations switching at jA = g−lA

2 . Thus,
because the behavior of (2.34) for z = 0 is symmetric to the behavior for z = 1 with
respect to g−lA

2 , we may simply set z to zero and take the derivative with respect to
jA searching for the minimum value for jA ∈ [1, g − lA]. We get

E
(
TjA+zlA|z=0 (x)

)
≈ 1

g − lA
· 1
2
·
[
j2
A + (g − jA + lA) · (g − jA − lA)

]
(2.36)

and

dE
(
TjA+zlA|z=0 (x)

)
djA

=
1

g − lA
· [2jA − g] (2.37)

Because (2.37) is strictly monotonic decreasing for jA < g
2 and strictly monotonic

increasing for jA > g
2 , we may deduce that the lower bound of the expression (2.34)

is found at jA = g
2 with z = 0 i.e. j = jA, which yields,

E (Tj (x)) ≈ 1
g − lA

·
[(

j − jA

2

)
· jA +

(
g + jA + lA

2
− j

)
· (g − jA − lA)

]
≥

g2

2 − l2A
2 · (g − lA)

(2.38)
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Figure 2.4: Reference symbol located outside anomalous data

Bounds of E (Tj (x)) for j < jA In the case of j < jA, the reference symbol is located
outside the anomaly. Figure 2.4 shows the centroid indices of both normal and anomalous
areas. Supposing PN

X (x) and/or PA
X (x) suitably large, the subsequent approximations

hold:

CR1 ≈ j · PN
X (x) (2.39)

CR2 ≈ (jA − j) · PN
X (x) (2.40)

CR3 ≈ lA · PA
X (x) (2.41)

CR4 ≈ (g − jA − lA) · PN
X (x) (2.42)

ER1 = E
(
|j − jb

i |
∣∣∣jb

i ∈ R1

)
≈ j

2
; i ∈ {1, . . . , Cb} (2.43)

ER2 = E(|j − ja
i | |ja

i ∈ R2) ≈ jA − j

2
; i ∈ {1, . . . , Cb} (2.44)

ER3 = E(|j − ja
i | |ja

i ∈ R3) ≈ jA − j +
lA
2

; i ∈ {1, . . . , Ca} (2.45)

ER4 = E(|j − ja
i | |ja

i ∈ R4) ≈ g + jA + lA
2

− j ; i ∈ {1, . . . , Ca} (2.46)

(2.47)

The expected average index distance may be written as follows:

E (Tj (x)) ≈ CR1 · ER1 + CR2 · ER2 + CR3 · ER3 + CR4 · ER4

CR1 + CR2 + CR3 + CR4

(2.48)
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Supposing PN
X (x) and/or PA

X (x) suitably large, the expected average index distance may
be approximated as follows:

E (Tj (x)) ≈ 1
lA · PA

X (x) + (g − lA) · PN
X (x)

[(
j

2

)
· j · PN

X (x)

+
(

jA − j

2

)
· (jA − j) · PN

X (x)

+
(

jA +
lA
2

− j

)
· lA · PA

X (x)

+
(

g + jA + lA
2

− j

)
· (g − jA − lA) · PN

X (x)
]

(2.49)

For the three cases introduced above we respectively get

• Case 1: PN
X (x) ¿ PA

X (x)
The terms containing PA

X (x) will determine both the enumerator and the denomina-
tor of (2.49), so we may approximate

E (Tj (x)) ≈ 1
lA

·
[(

jA +
lA
2

− j

)
· lA

]
= jA +

lA
2

− j (2.50)

We replace j by zjA, with z ∈ [0, 1], getting

E (Tj (x)) ≈ jA (1 − z) +
lA
2

, (2.51)

finally deriving the lower bound

E (Tj (x)) ≈ 1
lA

·
[(

jA +
lA
2

− j

)
· lA

]
≥ lA

2
(2.52)

• Case 2: PN
X (x) ≈ PA

X (x)
Since the probability of generation is approximately equal for the whole of the se-
quence, we get a result identical to the case of no anomaly, and (2.49) will converge
to:

E (Tj (x)) ≈ j2 + (g − j)2

2g
(2.53)
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• Case 3: PN
X (x) À PA

X (x)
The terms containing PN

X (x) will determine both the enumerator and the denomina-
tor of (2.49), so we may approximate

E (Tj (x)) ≈ 1
g − lA

·
[(

j

2

)
· j+

+
(

jA − j

2

)
· (jA − j)

+
(

g + jA + lA
2

− j

)
· (g − jA − lA)

]
(2.54)

For deducing a lower bound, we first take the derivative of (2.54) according to jA

while fixing j:

dE (Tj (x))
djA

≈ − lA
g − lA

(2.55)

The result is negative for any jA ≥ j. As mentioned before, because of symmetry,
we may limit our consideration to j ≤ jA. This means that no matter where in the
interval [1, jA] j is placed, (2.54) can be diminished by raising jA. Thus, after setting
jA = g − lA we may move on to find a lower bound for (2.54).

E (Tj (x)) ≈ 1
g − lA

·
[(

j

2

)
· j +

(
g − lA − j

2

)
· (g − lA − j)

]
=

1
2 (g − lA)

·
[
j2 + (g − lA − j)2

]
≥ g − lA

4
(2.56)

Table 2.1 sums up the upper and lower bounds of (2.29) and (2.49) deduced for a particular
lA, while Table 2.2 generalizes the bounds to the range of lA defined by (2.2).

In order to identify anomalous blocks, we would like to deduce a threshold τth for separating
average index differences generated inside the anomaly by symbols typical of the anomaly
(i.e. PA

X (x) À PN
X (x)) from all other index differences. If we know lA, we may use τth = lA

2
because for any particular lA ≤ g

3 as defined by (2.2), the upper bound given by (2.57) falls
below all the other bounds in Table 2.1. But since we only know the range of (2.2), we
have to consult Table 2.2. We see that the upper bound of (2.64) overlaps with the lower
bound of (2.68), causing some misclassification if we want to detect all the index differences
falling below (2.64). However, only few of those symbols are generated outside the anomaly
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Table 2.1: Upper and lower bounds of the expected value of the average index difference
for a single anomalous subsequence of a particular anomaly length lA

PN
X (x) ¿ PA

X (x) PN
X (x) ≈ PA

X (x) PN
X (x) À PA

X (x)

j inside
E (Tj (x)) ≤ lA

2
(2.57)

E (Tj (x)) ≥ g

4
(2.58)

E (Tj (x)) ≥
g2

2 − l2A
2 · (g − lA)

(2.59)

j outside

E (Tj (x))

≥ jA (1 − z) +
lA
2

(2.60)

≥ lA
2

z ∈ [0, 1]

(2.61)

E (Tj (x)) ≥ g

4
(2.62)

E (Tj (x)) ≥ g − lA
4

(2.63)
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Table 2.2: Upper and lower bounds of the expected value of the average index difference
for a single anomalous subsequence of length lA within the range defined by (2.2).

PN
X (x) ¿ PA

X (x) PN
X (x) ≈ PA

X (x) PN
X (x) À PA

X (x)

j inside
E (Tj (x)) ≤ g

6
(2.64)

E (Tj (x)) ≥ g

4
(2.65)

E (Tj (x)) ≥ g

4
(2.66)

j outside

E (Tj (x))

≥ jA (1 − z) +
b

2
(2.67)

≥ b

2
z ∈ [0, 1]

(2.68)

E (Tj (x)) ≥ g

4
(2.69)

E (Tj (x)) ≥ g

6
(2.70)
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(i.e. PA
X (x) À PN

X (x)), and the normal block containing them may not necessarily adjoin
anomalous data, a fact expressed by (2.64). Hence, the threshold setting

τth =
g

6
(2.71)

is used.

2.2.3 Computational Cost

The computational cost of calculating the average index difference of all symbols for a
sequence of length g is upper bounded by a function of order

O (Z · g) (2.72)

For every x ∈ X within the sequence of length g, the number of occurrences Cb+Ca+1, the
indices of the occurrences, and the respective index differences to neighboring occurrence(s)
of identical value, as well as the sum of the index differences between the first occurrence
and the subsequent occurrences have been retrieved, with the computational cost obeying
above bound. What is left to show is that for a particular x, the enumerator of (2.6) of the
occurrences may be calculated starting from the enumerator of the first occurrence, which
has been calculated during the previous step. Changing the notation to index differences
of neighboring symbols of identical value, the average index difference of the 1st occurrence
of x counting from the head of the sequence, the index of which is noted as j1 is rewritten
as

Tj1(x) =

∑Cb+Ca
q=1 q · ∆Ca+Cb+1−q (x)

Cb + Ca
, (2.73)

while the index difference of the ith occurrence at ji is expresses

Tji(x) =

∑i−1
o=1 o · ∆o (x) +

∑Cb+Ca−i+1
q=1 q · ∆Cb+Ca+1−q (x)
Cb + Ca

(2.74)

∆i (x) represents the index difference between the ith and the i + 1th occurrence of x. The
change of the enumerator between the average index difference of the ith and the average
index difference of the i + 1th occurrence consists of subtracting ∆i (x) Cb + Ca − i + 1
times and adding it i times. In other words, the upper limit of the index of the second sum
of the enumerator of (2.74) is decreased by one, while the upper limit of the index of the
first sum is increased by one.

Tj(x, i + 1) − Tj(x, i) =
i · ∆i (x) − (Cb + Ca − i + 1) · ∆i (x)

Cb + Ca

=
(2 · i − Cb − Ca − 1) · ∆i (x)

Cb + Ca

(2.75)

38



a) b)

c) d)

e)

Figure 2.5: Consecutive computation of average index difference based on ∆i (x)

The number of additions and multiplications required to calculate the difference given by
(2.75) is a constant independent of the number of occurrences. Thus, the computational
effort required to calculate the average index differences of the occurrences of a particular
symbol is a linear function of the number of occurrences, and because the number of
occurrences for any x ∈ X is upper bounded by g, the bound of the computational cost is
proven to be correct.

Figure 2.5 shows a graphic example of the process for Ca + Cb + 1 = 5, with the
number of arrows representing the multiplier of the respective ∆i (x) within the sums in
the enumerator of (2.74) and the direction indicating to which of the two sums the ∆i (x)
contributes. While for i = 1 all ∆i (x) contribute to the second sum, for every i > 1 only
the arrows representing the ∆i−1th (x) are turned and their number is altered. For all other
∆ (x), the number and direction of the arrows remains the same.

2.2.4 Processing of Subsequences (Grams)

While the previous sections introduced and analyzed an algorithm processing symbols,
it is important to note that the processing of subsequences of symbols or grams might
sometimes be more effective for sources with memory. Figure 2.6 shows an example for an
alphabet of size Z = 3. The stationary distribution of symbols is identical for anomalous
and normal data. Thus computing the average index difference for the symbol b found at
index j cannot detect the anomaly. The average index difference of the symbol subsequence
of length 2 found at index j, ba, on the other hand, is able to discriminate normal and
anomalous data.
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a)

b)

c)

Figure 2.6: a) Original sequence headed by anomalous blocks b) Symbols identical to the
one found at index j c) Symbol subsequences of length 2 identical to the one found at index
j

A suitable search algorithm for typical subsequences of length M + 1 is shown by
Algorithm 2. It repeatedly increases the memory parameter M starting from M = 0
(symbols) until either the maximum memory Mmax is reached or the occurrence number
Ca block + Cb block of identical symbols/subsequences within the same block drops below a
threshold νmin. The retrieved symbol sequences are then used within the subsequent stages
of the algorithm. Figure 2.7 shows the notation used. The setting of the parameter νmin is
guided by the consideration that νmin has to be chosen small enough to make the generation
of νmin grams within a single block b (an anomaly of minimum length) highly probable even
for small generation probabilities. On the other hand, a large setting increases stability of
the algorithm if no anomaly was generated or the retrieved symbol sequences (grams) are
typical of the normal data. Regarding Mmax on the other hand, it is sufficient to select a
setting just small enough to keep effects at the edge of the anomalous data to a minimum.
Thus a choice below 5% of the block length is suitable. Another concern is the increase of
computational cost in case of large Mmax. A suitable setting for Mmax can be derived
as the depth of a probabilistic suffix tree optimized according to the Akaike Information
Criterion.

2.2.5 Drawbacks of Algorithm

The supposition of a consecutive sequence of anomalous data blocks, while convenient,
may not be met by the data. Figure 2.8 shows an example: the anomalous block sequence
is split up and moved to opposite ends of the sequence. Here, although the symbol c
found at index j is obviously typical of the anomalous data, calculation of the average
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Algorithm 2 Search Algorithm for Typical Subsequences
Ensure: nonnegative maximum memory length Mmax ≥ 0
Ensure: positive minimum number of identical sequences νmin > 0 within the block

containing j
memory length variable M ⇐ 0
identical sequence number variable ν ⇐ 0
Calculate the number of symbols ν ⇐ Ca block + Cb block within the block containing j
identical to the one found at index j
if ν ≥ νmin then

while M < Mmax and M < (j − 1) do
M + +
Calculate the number of M + 1-grams ν ⇐ Ca block + Cb block within the block
containing j identical to the one found at index j
if ν < νmin then

M −−
Calculate the number of M + 1-grams ν ⇐ Ca block + Cb block within the block
containing j identical to the one found at index j
break the while loop

end if
end while

end if
Output the Ca+Cb M +1-grams within the overall sequence g identical to the one found
at index j
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Figure 2.7: Notation extension for occurrences within the same block

index difference is futile because the consecutive index difference ∆3 (x) creates a bias. We
observe that in order to suppress the influence of the gap, we have to compare every ∆ (x)
to the mean value defined by (2.8), and eliminate it from the calculation if it surpasses a
threshold defined as a multiple of the mean.

Another point is the implicit supposition of the existence of symbols x ∈ X featuring
PN

X (x) ¿ PA
X (x) i.e. h (x) ¿ 1. While allowing for a convenient derivation of a threshold

setting τth yielding a low error rate, the supposition may not be met by the data.

2.3 Algorithm Allowing for Arbitrary Distribution of Anoma-
lous Blocks

2.3.1 Algorithm Statement

Addressing the main drawback of the algorithm presented in the previous section, we
present an algorithm allowing for arbitrary distribution of anomalous blocks consisting of
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a)

b)

Figure 2.8: Example sequence featuring a distributed anomaly: (a) anomalous data, b)
symbols identical to the one found at index j

the following steps:

1. Search for typical symbol subsequences.

2. Close the gaps between anomalous blocks by comparing the index differences ∆i (x)
to the mean value ∆

(
xM+1

)
.

3. Calculate the average index differences.

4. Process the average index differences of each block to generate a scalar.

In order to broaden applicability, instead of the demanding definition of the ratio of gen-
eration probabilities marking symbol subsequences xM+1 typical of the anomalous data
given by h

(
xM+1

)
¿ 1, this algorithm uses a threshold hth < 1 to define the range of

generation probability ratios considered anomalous.

PN
X

(
xM+1

)
PA

X (xM+1)
= h

(
xM+1

)
≤ hth (2.76)

Here, M is a nonnegative integer expressing the memory of the present average index
difference calculation. A suitable setting of hth will be determined as hth = 1

4 in Section
2.3.2.
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In order for the detection to work, the algorithm supposes the existence of symbol
subsequences xM+1 meeting the conditions

PN
X

(
xM+1

)
PA

X (xM+1)
≤ hth (2.77)

and

E (Cb block + Ca block + 1 |A) ≥ 3,

(2.78)

i.e.

1
PA

X (xM+1)
≤ b

3
, (2.79)

with condition (2.79) being caused by the arbitrary arrangement of blocks allowed by the
algorithm.

The fundamental properties of the average index difference function introduced previ-
ously are also valid for subsequences of symbols, because Kac’s Lemma holds for subse-
quences of symbols in case of stationary ergodic symbol generation.

After preprocessing the symbol sequence in order to remove gaps between anomalous
blocks and detect typical subsequences, we calculate the average index difference according
to (2.6) and scale the returned value using the expected value given by (2.12).

Sj

(
xM+1

) def=
Tj(xM+1, Algorithm 2)
E (Tj (xM+1) |lA = 0)

· g

2
=

Tj(xM+1, Algorithm 2)
j2+(g−j)2

2g

· g

2
(2.80)

Thus, a constant expected value for any j in case of no anomaly is assured.

Vector Processing of Average Index Difference

As mentioned before, the original approach of calculating the scalar value representing a
block consisted of simply calculating the percentage of symbols featuring an average index
Tj (x) difference falling below a threshold τth. This was feasible because of the strong
requirement of h (x) ¿ 1. But the increase of the applicability by introduction of the
threshold hth, as well as the scaling, increase the noisiness in the average index differences
Sj

(
xM+1

)
returned by the second algorithm. Thus, we split up the range defined by τth,

[0, τth], into a sections or bins of equal size, creating a vector of dimension a+1 with entries
according to the average index differences observed in the block, and finally calculating the
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Euclidean norm of the vector, thus creating the scalar used for calculating the receiver
operating characteristic curve1. Since the length of a block is limited, we choose a small
setting of a to avoid sparse vectors.

Algorithm 3 shows the procedure. In order to smooth the returned values, we not only
increase the counter of the bin an average index difference value is falling into, but also
those of adjoining bins. This is also the reason the vector has a+1 instead of a entries. This
detail is inspired by distribution estimation from sparse samples using kernel functions.

Algorithm 3 Calculation of Vector Entries Based on the Average Index Differences of the
Block
Ensure: the vector of average index differences Sj

(
xM+1

)b within the block b has been
calculated before
reset the entries of the output vector V a+1 ⇐ 0
for com1 = 1 to com1 = b do

for com2 = 1 to com2 = a do
if com2 == 1 then

if Tcom1 ≤ τth
a then

V1 ⇐ V1 + 3
V2 ⇐ V2 + 1

end if
else

if Tcom1 ≤ τth
a · com2 and Tcom1 ≥ τth

a · (com2 − 1) then
Vcom2 ⇐ Vcom2 + 2
Vcom2−1 ⇐ Vcom2−1 + 1
Vcom2+1 ⇐ Vcom2+1 + 1

end if
end if

end for
end for
calculate and output the Euclidean norm of the vector V a+1

1The receiver operating characteristic curve or simply ROC curve is a method used for visualization
of the performance of an algorithm on a classification problem. For anomaly detection, the unit of the
x-coordinate is the rate of normal blocks misclassified as anomalous blocks (false positive rate), while
the y-coordinate is the rate of correctly detected anomalous blocks (true positive rate). A point is the
combination of true positive rate and false positive rate returned by a particular parameter setting. The
curve of those points thus marks the tradeoff between true positive and false positive rate achievable by
parameter variation.
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bcabcabca bacbacbac

a)

b)

bcabcabca bacbacbac

Figure 2.9: a) Index j located inside anomalous data b) Index j located inside normal data

Gap Closing

This processing step was designed to close the gaps between anomalous blocks prior
to the calculation of the average index difference, if the symbol was generated inside an
anomaly and is characteristic of the anomaly. In order to illustrate the rationale of this
approach, we present an example sequence with the index j located inside and outside
the anomaly data (Fig. 2.9). While the 2-grams returned are typical of the anomaly, an
occasional 2-gram is located inside the normal data. We are interested in retaining index
differences ∆

(
xM+1

)
inside the anomaly, while eliminating the index differences spanning

the gap, if the index j is actually located inside the anomaly. Therefore, we check the
index differences2 ∆Cb

(x) and ∆Cb+1 (x) adjourning the index j (Fig. 2.7). If both fall
below a suitable fraction of the mean β ·∆

(
xM+1

)
, it is very likely that j is located inside

the anomaly. On the other hand, if one or both of the adjourning index differences equals
or surpasses the mean, j is more likely to be located inside the normal data, in which case
no elimination is desirable. We also must avoid eliminating index differences in case of no
anomaly as much as possible. Another point illustrated by the example is that in order
to allow for effective gap elimination, the anomalous data blocks have to be distributed
uniformly within the whole of the index sequence. Thus we randomly rearrange the order
of the blocks prior to gap elimination, performing an urn experiment without replacement.

2These are the index differences between the symbol sequence found at index j and the neighboring
identical symbol sequences.
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A more formal description reads as follows

1. Check if both ∆Cb
(x) and ∆Cb+1 (x), the index differences adjoining j within the

same block, fall below a suitable fraction of the empirical mean of the index difference
∆

(
xM+1

)
defined as β · ∆

(
xM+1

)
, with the parameter β ≤ 13. If not, skip the next

step.

2. Check the sequence of index differences of neighboring symbol sequences of identi-
cal value, ∆Ca+Cb , for index differences exceeding a multiple of the empirical mean
∆

(
xM+1

)
, ξ · ∆

(
xM+1

)
, with the parameter ξ ≥ 1. Exclude those sequences from

the calculation of the average index difference for this j.

3. Proceed to calculate the average index difference based on the remaining ∆
(
xM+1

)
.

A pseudocode transcription of the processing is shown as Algorithm 4.

Algorithm 4 Gap Elimination Algorithm
Require: Ca + Cb ≥ 2
Ensure: 0 ≤ β ≤ 1
Ensure: ξ ≥ 1

∆ ⇐
PCa+Cb

q=1 ∆q

Ca+Cb

z ⇐ 1
if ∆Cb

≤ β · ∆ and ∆Cb+1 ≤ β · ∆ and ∆Cb
+ ∆Cb+1 ≤ b hold then

while z ≤ Ca + Cb do
if ∆z ≥ ξ · ∆ then

exclude ∆z from calculation
end if
z + +

end while
end if
use the remaining ∆ for calculating the average index difference.

3The existence of subsequences xM+1 falling below the threshold and featuring adjoining occurrences
within the same block is demanded by (2.77) and (2.79).
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2.3.2 Parameter Setting: Stationary Ergodic Source

Setting of β

As mentioned before, the choice of β regulates which subsequences xM+1 are judged to
be located inside anomalous data blocks.

In case of anomaly, the expected value of the mean of index differences of neighboring
occurrences given by (2.8) may be approximated by

E
(
∆

(
xM+1

))
= E

[∑Ca+Cb
q=1 ∆q

(
xM+1

)
Ca + Cb

]

≈ E
[

g

Ca + Cb

]
=

g

E (Ca + Cb)

=
g

lA · PA
X (xM+1) + (g − lA) · PN

X (xM+1)
(2.81)

for a suitably large g À 1
PN

X (xM+1)
, 1

PA
X (xM+1)

. We desire a setting of β which is able to

discriminate the ∆A (x) and ∆N (x).

If we define the symbol sequences xM+1 typical of the anomalous data compared to the
normal data by

PA
X

(
xM+1

)
≥ 1

hth
· PN

X

(
xM+1

)
(2.82)

(2.83)

i.e.

h
(
xM+1

)
≤ hth ≤ 1, (2.84)

the subsequent inequalities may be derived by combining (2.81) and (2.82), with the last
inequality based on the assumption of the maximum anomaly length (2.2).

E
(
∆

(
xM+1

) ∣∣h (
xM+1

)
≤ hth

)
≥ g

lA + (g − lA) · hth
· 1
PA

X (xM+1)
≥ 3

1 + 2hth
· 1
PA

X (xM+1)
,

(2.85)
yielding

E
(
∆(xM+1)|A

)
=

1
PA

X (xM+1)
≤ 1 + 2hth

3
· E

(
∆

(
xM+1

)
|h

(
xM+1

)
≤ hth

)
. (2.86)
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Moreover, in case of h
(
xM+1

)
≈ 0, we get

E
(
∆

(
xM+1

)
|h

(
xM+1

)
≈ 0

)
≈ g

lA · PA
X (xM+1)

≥ 3
PA

X (xM+1)
. (2.87)

Examining the relation of the expected index difference within normal data and the mean
of index differences, we get

E
(
∆

(
xM+1

)
|h

(
xM+1

)
≤ hth

)
≤ g

lA
hth

+ g − lA
· 1
PN

X (xM+1)
≤ g

b
hth

+ g − b
· 1
PN

X (xM+1)
,

(2.88)

E
(
∆

(
xM+1

)
)|N

)
=

1
PN

X (xM+1)

≥
((

1
hth

− 1
)
· lA

g
+ 1

)
· E

(
∆

(
xM+1

)
|h

(
xM+1

)
≤ hth

)
(2.89)

≥
((

1
hth

− 1
)
· b

g
+ 1

)
· E

(
∆

(
xM+1

)
|h

(
xM+1

)
≤ hth

)
.

(2.90)

On the other hand, if we define the symbol sequences xM+1 typical of the normal data
and the neutral sequences by

PA
X

(
xM+1

)
≤ 1

hth
· PN

X

(
xM+1

)
, (2.91)

using (2.2) we get

E
(
∆|h

(
xM+1

)
≥ hth

)
≤ g

(g − lA)
· 1
PN

X (xM+1)
≤ 3

2
· 1
PN

X (xM+1)
. (2.92)

Hence

E
(
∆(xM+1)|N

)
=

1
PN

X (xM+1)
≥ 2

3
· E

(
∆

(
xM+1

) ∣∣h (
xM+1

)
≥ hth

)
. (2.93)

Since the lower bounds of (2.90) and (2.89) are above (2.93), for separating anomalous and
normal index differences ∆

(
xM+1

)
, using (2.86), we deduce the condition

2
3

>
1 + 2hth

3
(2.94)

i.e.
0 < hth <

1
2

(2.95)
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In order to increase protection against noise, we set

hth =
1
4
. (2.96)

Then, according to (2.86), the setting of β must satisfy

β ≤ 1 + 2hth

3
=

1
2

(2.97)

Note that while the upper bound of (2.86) depends both on the maximum anomaly
length and the maximum ratio of stationary probabilities defining sequences typical of
the anomaly, the lower bound (2.93) depends only on the maximum anomaly length. Hav-
ing thus deduced an upper limit for the setting of β, we are also interested in a lower limit.
It is obvious that we may choose a very small setting for β in case of hth ≈ 0. Examining
(2.87) we find a lower bound with

E (∆A (x)) =
1

PA
X (xM+1)

≈ lA
g

· E
(
∆

(
xM+1

)
|h

(
xM+1

)
≈ 0

)
≥ 2b

g
· E

(
∆

(
xM+1

)
|h

(
xM+1

)
≈ 0

)
, (2.98)

with 2b being the minimum length lA of a partitioned anomaly. Thus a reasonable range
of β is given by by

2b

g
≤ β ≤ 1

2
(2.99)

Because we want to keep our algorithm as general as possible, from now on we use the
upper bound of the possible range as a setting for β.

β =
1 + 2hth

3
=

1
2

(2.100)

Summing up, we get

E
(
∆

(
xM+1

) ∣∣A, h
(
xM+1

)
≤ hth

)
≤ β · E

(
∆

(
xM+1

)
|h

(
xM+1

)
≤ hth

)
(2.101)

=
1 + 2hth

3
· E

(
∆

(
xM+1

)
|h

(
xM+1

)
≤ hth

)
.

(2.102)

One might now be tempted to simplify the algorithm by only looking at the number of
symbol sequences within a block featuring adjourning index differences below the threshold
β · ∆

(
xM+1

)
. However, experiments show the performance is degraded for large lA and

by adjourning symbols. Moreover, it is easy to construct counter-examples of two index
difference distributions which, despite featuring different expected values, show cumulative
probabilities of similar range at the threshold.
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Figure 2.10: Gaps between the anomalous blocks

Setting of ξ

The parameter ξ is used for filtering index differences unlikely to have been generated
inside anomalous data and a limited share of index differences in case of no anomaly.

In case of lA 6= 0, even when supposing h
(
xM+1

)
¿ 1, we must avoid choosing an

overly high setting of ξ. It holds from (2.81) that

E
(
∆

(
xM+1

) ∣∣h (
xM+1

)
¿ 1

)
≈ 1

PN
X (xM+1)

· g

lA

(
1

hth
− 1

)
+ g

(2.103)

≈ 1
PN

X (xM+1)
· g

lA
hth

+ g
(2.104)

¿ 1
PN

X (xM+1)
. (2.105)

But the observed index differences covering normal data will be dominated by the index
differences between symbols located in different anomalous blocks in case of a partitioned
anomaly. The worst case is shown in Figure 2.10, where the gap between anomalous blocks
is given by

G (lA) =
g − lA
lA
b − 1

(2.106)

For 2b ≤ lA ≤ g
3 we derive the subsequent bounds of (2.106):

G (lA) ≥ G
(g

3

)
= 2b (2.107)

G (lA) ≤ G (2b) = g − 2b (2.108)
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Even a low multiple of the empirical mean of the average index difference may surpass
above limit.

As an example, suppose h
(
xM+1

)
¿ 1 and PA

X

(
xM+1

)
≈ 3

b in accordance with (2.79).
We approximate the expected value of ∆

(
xM+1

)
for the worst case of Fig. 2.10, we get

E
(
∆

(
xM+1

))
≈ g

PA
X (xM+1) · lA − 1

(2.109)

≈ b

3
· g

lA − b
3

(2.110)

we derive the subsequent expected values:

E
(
∆

(
xM+1

)
|lA = 2b) ≈ g

5
(2.111)

and

E
(
∆

(
xM+1

) ∣∣∣lA =
g

3

)
≈ b (2.112)

Comparing (2.112) and (2.107), we see that a setting of

ξ ≈ 2 (2.113)

is needed to cover the worst case.

In case of no anomaly, the possibility of the index difference of neighboring occurrences
exceeding a certain multiple of the expected value is bounded by

P
(
∆

(
xM+1

)
≥ ξ · E

(
∆

(
xM+1

)))
= P

(
∆

(
xM+1

)
≥ ξ · E

(
∆

(
xM+1

)))
≤ 1

ξ
(2.114)

Setting of τth for ξ = 2

Having deduced the settings of ξ = 2 and hth = 1
4 , the final step is the determination

of the threshold parameter τth, which is used for evaluation of the scaled average index
difference as given by (2.80). We have to determine how much the gap closing routine -
if applied - using the setting ξ = 2 shrinks the overall sequence of length g, and thus the
average index difference calculated from index differences within this sequence, both for
h

(
xM+1

)
> hth and h

(
xM+1

)
≤ hth.

For the subsequent calculations, we define Υ
(
k, xM+1, lA

)
as the expected share of a

sequence of suitable length g À 1
PN

X (xM+1)
, 1

PA
X (xM+1)

including an anomaly of overall length
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lA covered by index differences ∆
(
xM+1

)
of length above a positive integer k:

Υ
(
k, xM+1, lA

) def= E

(∑Ca+Cb
i=1 f(∆i

(
xM+1

)
, k) · ∆i

(
xM+1

)
g

)

f(∆i

(
xM+1

)
, k) =

{
0 : ∆i

(
xM+1

)
< k

1 : ∆i

(
xM+1

)
≥ k

∀k ≥ 0 (2.115)

We will supplement above definition by additional conditions when necessary. We subse-
quently approximate Υ

(
k = ξ · ∆

(
xM+1

)
, xM+1, lA

)
by

Υ
(
k = ξ · ∆

(
xM+1

)
, xM+1, lA

)
≈

(
lA · PA

X

(
xM+1

)
· E

(
∆A

(
xM+1

)
|∆A

(
xM+1

)
≥ ξ · ∆

(
xM+1

))
g

)
·P

(
∆A

(
xM+1

)
≥ ξ · ∆

(
xM+1

))
+

(
(g − lA) · PN

X

(
xM+1

)
· E

(
∆N

(
xM+1

)
|∆N

(
xM+1

)
≥ ξ · ∆

(
xM+1

))
g

)
·P

(
∆N

(
xM+1

)
≥ ξ · ∆

(
xM+1

))
.

(2.116)

The two sum terms respectively represent the share of the overall sequence length g covered
by index differences ∆N

(
xM+1

)
and ∆A

(
xM+1

)
above the threshold k = ξ · ∆

(
xM+1

)
.

The respective first terms of the products are the expected values of Cb and Ca.

Using the approximation of (2.81), we derive the subsequent relations between the
expected value ∆

(
xM+1

)
and the expected values of the index difference of consecutive

occurrences within N and A:

E
(
∆

(
xM+1

))
=

g
lA

h(xM+1)
+ (g − lA)

· E
(
∆N

(
xM+1

))
(2.117)

E
(
∆

(
xM+1

))
=

g

lA + (g − lA) · h (xM+1)
· E

(
∆A

(
xM+1

))
(2.118)

The distribution of the ∆
(
xM+1

)
of symbols of high stationary probability is fairly con-

centrated around the mean value given by

E
(
∆

(
xM+1

))
=

1
PX (xM+1)

, (2.119)

and may be approximated by a simple geometric distribution. In case of rare events how-
ever, a more sophisticated approach is necessary. Hirata et al. [58] and Abadi [59] showed
that for rare events within a fairly general stationary ergodic process, the distribution of

53



∆
(
xM+1

)
is best approximated by a mixture of a dirac pulse carrying the probability for

immediate repetition of the symbol subsequence, such that ∆
(
xM+1

)
≈ 0, and a geometric

distribution of mean 1
P (∆(xM+1)>0)·PX(xM+1)

, such that

P
(
∆

(
xM+1

)
> k

)
≈ P

(
∆

(
xM+1

)
> 0

)
· exp−P(∆(xM+1)>0)·PX(xM+1)·k ∀k > 0, (2.120)

which yields an expected value alike to the one given by (2.119). For the subsequent
considerations we define

PXM+1,N
min

def= min
xM+1∈XM+1

P
(
∆N

(
xM+1

)
> 0

)
(2.121)

PXM+1,A
min

def= min
xM+1∈XM+1

P
(
∆A

(
xM+1

)
> 0

)
(2.122)

PXM+1

min
def= min

(
PXM+1,N

min , PXM+1,A
min

)
. (2.123)

We examine the behavior of (2.116) for several values of h
(
xM+1

)
and ξ = 2. The deduction

of the expressions for E
(
∆N(A)

(
xM+1

)
|∆N(A)

(
xM+1

)
≥ k

)
and P

(
∆N(A)

(
xM+1

)
≥ k

)
is

delayed until Section 2.3.3.

• lA = 0
Using the equivalence

E
(
∆

(
xM+1

))
= E

(
∆N

(
xM+1

))
=

1
PN

X (xM+1)
, (2.124)

the expected shrinking ratio may be calculated by

Υ
(

k =
2

PN
X (xM+1)

, xM+1, lA = 0
)

≈ PN
X

(
xM+1

)
· E

(
∆N

(
xM+1

)
|∆N

(
xM+1

)
≥ 2

PN
X (xM+1)

)
·P

(
∆N

(
xM+1

)
≥ 2

PN
X (xM+1)

)
≈ PN

X

(
xM+1

)
·
(

2
PN

X (xM+1)
+

1
P (∆N (xM+1) > 0) · PN

X (xM+1)

)
·P

(
∆N

(
xM+1

)
> 0

)
· exp

−P(∆N(xM+1)>0)·PN
X(xM+1)· 2

PN
X(xM+1)

=
(
2 · P

(
∆N

(
xM+1

)
> 0

)
+ 1

)
· exp−2·P(∆N(xM+1)>0) (2.125)

(2.125) is monotonically decreasing with P
(
∆N

(
xM+1

)
> 0

)
. Thus, the bound

Υ
(

k =
2

PN
X (xM+1)

, xM+1, lA = 0
)

≤
(
2 · PXM+1,N

min + 1
)
· exp−2·P XM+1,N

min (2.126)
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holds.

• h
(
xM+1

)
≈ 1

With a deduction similar to the case of lA = 0, the shrinking ratio may be calculated
by

Υ
(
k = 2 · ∆

(
xM+1

)
, xM+1, lA 6= 0

)
≈ lA

g
·
(
2 · P

(
∆A

(
xM+1

)
> 0

)
+ 1

)
· exp−2·P(∆A(xM+1)>0)

+
g − lA

g
·
(
2 · P

(
∆N

(
xM+1

)
> 0

)
+ 1

)
· exp−2·P(∆N(xM+1)>0) (2.127)

Thus, the bound

Υ
(
k = 2 · ∆

(
xM+1

)
, xM+1, lA 6= 0

)
≤

(
lA
g

(
2 · PXM+1,A

min + 1
)
· exp−2·P XM+1,A

min

)
+

(
g − lA

g

(
2 · PXM+1,N

min + 1
)
· exp−2·P XM+1,N

min

)
≤

(
2 · PXM+1

min + 1
)
· exp−2·P XM+1

min (2.128)

holds.

• h
(
xM+1

)
6= 1

Using (2.117) and (2.118), we write

Υ
(
2 · E

(
∆

(
xM+1

))
, xM+1, lA 6= 0

)
≈

(
lA
g

)
·

(
2 · P

(
∆A

(
xM+1

)
> 0

)
lA
g + h (xM+1) · g−lA

g

+ 1

)
· exp

−
2·P(∆A(xM+1)>0)
lA
g +h(xM+1)·

g−lA
g

+
(

g − lA
g

)
·

2 · P
(
∆N

(
xM+1

)
> 0

)
lA
g ·

(
1

h(xM+1)
− 1

)
+ 1

+ 1

 · exp

−
2·P(∆N(xM+1)>0)
lA
g ·
 

1
h(xM+1)

−1

!

+1

=
(

lA
g

)
·

(
2 · P

(
∆A

(
xM+1

)
> 0

)
lA
g + h (xM+1) · g−lA

g

+ 1

)
· exp

−
2·P(∆A(xM+1)>0)
lA
g +h(xM+1)·

g−lA
g

+
(

g − lA
g

)
·

(
2 · P

(
∆N

(
xM+1

)
> 0

)
· h

(
xM+1

)
lA
g + h (xM+1) · g−lA

g

+ 1

)

· exp
−

2·P(∆N(xM+1)>0)·h(xM+1)
lA
g +h(xM+1)·

g−lA
g . (2.129)
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For h
(
xM+1

)
> 1 (symbols typical of the normal data), we would like to derive an

upper bound of Υ
(
2 · E

(
∆

(
xM+1

))
, xM+1, lA 6= 0

)
. As we will show below, using a

suitable approximation of (2.129) given by (2.133), Υ
(
2 · E

(
∆

(
xM+1

))
, xM+1, lA 6= 0

)
is approximately strictly monotonic increasing with respect to h

(
xM+1

)
for all lA ∈[

0, g
3

]
. Assuming h

(
xM+1

)
À 1, Υ

(
2 · E

(
∆

(
xM+1

))
, xM+1, lA 6= 0

)
is approxi-

mately strictly monotonic increasing with respect to lA. The upper bound of
Υ

(
2 · E

(
∆

(
xM+1

))
, xM+1, lA 6= 0

)
is thus derived from (2.129) as follows:

Υ
(
2 · E

(
∆

(
xM+1

))
, xM+1, lA 6= 0

)
≤ Υ

(
2 · E

(
∆

(
xM+1

))
, xM+1, lA =

g

3

∣∣h (
xM+1

)
À 1

)
≈ 1

3
+

2
3
·
(
3 · P

(
∆N

(
xM+1

)
> 0

)
+ 1

)
· exp−3·P(∆N(xM+1)>0)

≤ 1
3

+
2
3
·
(
3 · PXM+1,N

min + 1
)
· exp−3·P XM+1,N

min (2.130)

For symbols featuring h
(
xM+1

)
≤ hth (symbols typical of the anomaly), we derive

a lower bound of Υ
(
2 · E

(
∆

(
xM+1

))
, xM+1, lA 6= 0

)
using the second sum term of

(2.129):

Υ
(
2 · E

(
∆

(
xM+1

))
, xM+1, lA 6= 0

)
≥

(
g − lA

g

)
·

(
2 · P

(
∆N

(
xM+1

)
> 0

)
· h

(
xM+1

)
lA
g + h (xM+1) · g−lA

g

+ 1

)

· exp
−

2·P(∆N(xM+1)>0)·h(xM+1)
lA
g +h(xM+1)·

g−lA
g (2.131)

(2.131) is strictly monotonic decreasing with respect to h
(
xM+1

)
and

P
(
∆N

(
xM+1

)
> 0

)
. Thus the lower bound uses h

(
xM+1

)
= hth < 1 and

P
(
∆N

(
xM+1

)
> 0

)
= 1. (2.131) has a single maximum within the range lA ∈

[
0, g

3

]
.

For hth = 1
4 , the minimum is found at lA = 0. Thus, the lower bound

Υ
(
2 · E

(
∆

(
xM+1

))
, xM+1, lA 6= 0

)
≥ Υ

(
2 · E

(
∆

(
xM+1

))
, xM+1, lA → 0

)
≥ 3 · exp−2 ≈ 0.4 (2.132)

holds.

We now explain the validity of the deduction for the upper bound of
Υ

(
2 · E

(
∆

(
xM+1

))
, xM+1, lA 6= 0

)
for h

(
xM+1

)
> 1 given by (2.130):

Making use of the fact that for h
(
xM+1

)
> 1 the terms

2·P(∆N(xM+1)>0)·h(xM+1)
lA
g

+h(xM+1)· g−lA
g

and

2·P(∆A(xM+1)>0)
lA
g

+h(xM+1)· g−lA
g

are respectively restricted to the ranges [2P
(
∆N

(
xM+1

)
> 0

)
, 3]

56



and [0, 2], we create a linear approximation of (2.129):

Υ
(
2 · E

(
∆

(
xM+1

))
, xM+1, lA 6= 0

)
≈

(
lA
g

)
·

(
1 − 0.3 ·

2 · P
(
∆A

(
xM+1

)
> 0

)
lA
g + h (xM+1) · g−lA

g

)

+
(

g − lA
g

)
·

(
0.83 − 0.21 ·

2 · P
(
∆N

(
xM+1

)
> 0

)
· h

(
xM+1

)
lA
g + h (xM+1) · g−lA

g

)
(2.133)

The numerical parameters of (2.133) can be deduced a follows:

For the range z ∈ [0, 3], the function f(z) = (z + 1) · e−z is a strictly monotonic
decreasing function with f(z) ∈

[
1, 4 · e−3

]
. Thus we approximate the behavior of

the first term of (2.129) by

(z + 1) · e−z ≈ f (z = 0) − f(z = 0) − f(z = 2)
2

· z
≈ 1 − 0.3z

z =
2 · P

(
∆A

(
xM+1

)
> 0

)
lA
g + h (xM+1) · g−lA

g

, z ∈ [0, 2] . (2.134)

For the second term of (2.129), we derive

(z + 1) · e−z

≈ f
(
z = 2P

(
∆N

(
xM+1

)
> 0

))
−

f(z = 2P
(
∆N

(
xM+1

)
> 0

)
) − f(z = 3)

3 − 2P (∆N (xM+1) > 0)
·
(
z − 2P

(
∆N

(
xM+1

)
> 0

))
≈ 0.83 − 0.21z

z =
2 · P

(
∆N

(
xM+1

)
> 0

)
· h

(
xM+1

)
lA
g + h (xM+1) · g−lA

g

, z ∈
[
2P

(
∆N

(
xM+1

)
> 0

)
, 3

]
,

(2.135)

supposing P
(
∆N

(
xM+1

)
> 0

)
≥ 0.9. (2.135) forms an upper bound of the actual

term for all P
(
∆N

(
xM+1

)
> 0

)
∈ [0.5, 1] because of the falling inflection point of

f(z) being located at z = 1.

Comparing (2.132), (2.130), (2.128) and (2.126), it is evident that a parameter setting for
avoiding false positives depends on PXM+1

min and PXM+1,N
min . We supposed

PXM+1

min , PXM+1,N
min > 0.9. (2.136)
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Thus,
Υ

(
2 · E

(
∆

(
xM+1

))
, xM+1, lA 6= 0 |h

(
xM+1

)
≥ 1

)
< 0.5 (2.137)

holds. Using the notation introduced above and remembering that the anomalous blocks
are uniformly distributed within the sequence, the expected value of the unscaled average
index difference after eliminating the ∆

(
xM+1

)
according to the setting ξ = 2 and hth may

be expressed as

E
(
Tj(xM+1, Algorithm 2) |lA 6= 0, ξ = 2)

≈
(
1 − Υ

(
2 · E

(
∆

(
xM+1

))
, xM+1, lA 6= 0

))
· E

(
Tj

(
xM+1

)
|lA = 0, ξ = ∞)

=
(
1 − Υ

(
2 · E

(
∆

(
xM+1

))
, xM+1, lA 6= 0

))
· j2 + (g − j)2

2g
. (2.138)

Combining (2.138) and the scaling definition of (2.80), we get

E
(
Sj

(
xM+1

)
|lA 6= 0, ξ = 2) ≈

(
1 − Υ

(
2 · E

(
∆

(
xM+1

))
, xM+1, lA 6= 0

))
· g

2
.

(2.139)

Therefore, a setting τth avoiding false positives has to be chosen according to

τth ≤
(

1 − Υ
(

2
PN

X (xM+1)
, xM+1, lA 6= 0 |h

(
xM+1

)
≥ 1

))
· g

2
. (2.140)

Inserting (2.137), we get

τth ≤ 0.25 · g. (2.141)

2.3.3 Parameter Setting: i.i.d. Source

Setting of ξ

In case of i.i.d. generation, the index difference of neighboring occurrences of identical
symbol subsequences forms an independent geometrically distributed variable, a fact we
may use to deduce the setting of ξ > 1. A convenient approximation of the probability
that a ∆

(
xM+1

)
within a certain range expressed as a product of the expected value of

the index difference
E

(
∆

(
xM+1

))
=

1
PN

X (xM+1)
(2.142)

and ξ is observed, may be deduced as follows. We first express the desired probability
using the geometric distribution:

P
(
∆

(
xM+1

)
≤ ξ · E

(
∆

(
xM+1

)))
= 1 −

(
1 − PN

X

(
xM+1

))ξ·E(∆(xM+1))

= 1 −
(
1 − PN

X

(
xM+1

)) ξ

PN
X(xM+1) (2.143)
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By using the approximation (1 − p)
1
p ≈ exp−1, we get

P
(
∆

(
xM+1

)
≤ ξ · E

(
∆

(
xM+1

)))
≈ 1 − exp−ξ, (2.144)

and hence
P

(
∆

(
xM+1

)
≥ ξ · E

(
∆

(
xM+1

)))
≈ exp−ξ . (2.145)

For the subsequent calculations, we use Υ
(
k, xM+1, lA

)
as defined by (2.115) for rep-

resentation of the expected share of a sequence of suitable length g À 1
PN

X (xM+1)
, 1

PA
X (xM+1)

including an anomaly of overall length lA covered by index differences ∆
(
xM+1

)
of length

above k. For lA = 0, Υ
(
k, xM+1, lA = 0

)
may be approximated by

Υ
(
k, xM+1, lA = 0

)
≈

(
g · PN

X

(
xM+1

)
− 1

)
· P

(
∆

(
xM+1

)
> k

)
· E

(
∆

(
xM+1

)
|∆

(
xM+1

)
> k

)
g

(2.146)

The first term within the enumerator represents the expected number Cb+Ca of ∆
(
xM+1

)
.

The second term represents the probability that a ∆
(
xM+1

)
will surpass k. The third term

represents the expected length of a ∆
(
xM+1

)
, if ∆

(
xM+1

)
is longer than k. Keeping in

mind the condition of 1
PN

X (xM+1)
¿ g, the complete transcription of 2.146 reads

Υ
(
k, xM+1, lA = 0

)
≈

(
g · PN

X

(
xM+1

)
− 1

)
·
(
1 − PN

X

(
xM+1

))k ·
(
k + 1

PN
X (xM+1)

)
g

≈ PN
X

(
xM+1

)
·
(
1 − PN

X

(
xM+1

))k ·
(

k +
1

PN
X (xM+1)

)
(2.147)

The third term of (2.147) is derived by the fact that for all ∆
(
xM+1

)
> k, the difference

∆
(
xM+1

)
−k is again a geometrically distributed variable of expected value 1

PN
X (xM+1)

, and
hence

E
(
∆

(
xM+1

)
|∆

(
xM+1

)
> k

)
= k + E

(
∆

(
xM+1

))
(2.148)

= k +
1

PN
X (xM+1)

(2.149)

holds. Replacing k by ξ · E
(
∆

(
xM+1

))
and using (2.145), (2.147) may be simplified to
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1
PN
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·
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X

(
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)) ξ

PN
X(xM+1) ·

(
ξ

1
PN

X (xM+1)
+

1
PN

X (xM+1)

)
≈ exp−ξ · (1 + ξ) , (2.150)
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again dependent on the condition 1
PN

X (xM+1)
¿ g. Using (2.150), we may set ξ to a value

leaving the majority of index differences of neighboring identical sequences in case of no
anomaly untouched. Because in case of no anomaly the thus deleted index differences are
uniformly distributed within the overall sequence, the expected average index difference in
case of no anomaly after deletion may be calculated using (2.12):

E
(
Sj

(
xM+1

) ∣∣ξ, ∆Cb
≤ β · ∆

(
xM+1

)
,∆Cb+1 ≤ β · ∆

(
xM+1

))
≈ E

(
Sj

(
xM+1

)
|lA = 0, ξ = ∞) ·

(
1 − Υ

(
ξ · E

(
∆

(
xM+1

))
, xM+1, lA = 0

))
(2.151)

Note that the expected value given by (2.151) is attained if and only if both of the in-
dex differences adjourning the symbol sequence found at index j fall below the threshold
∆

(
xM+1

)
. Otherwise, the expected value is given by (2.12). Because the anomalous blocks

are roughly uniformly distributed within the sequence by the initial block rearrangement,
(2.151) holds for the case of anomaly as well.

In order to derive a suitable setting of ξ > 1, we are interested in the behavior of
Υ

(
ξ · E

(
∆

(
xM+1

))
, xM+1, lA 6= 0

)
for both h

(
xM+1

)
< hth and h

(
xM+1

)
≥ 2. The limit

of 2 was chosen in order to create a set of neutral sequences. This examination splits the
possible range of h

(
xM+1

)
into three parts.

• h
(
xM+1

)
< hth: Sequences considered representative of the anomalous data.

• hth ≤ h
(
xM+1

)
≤ 2: Neutral sequences.

• h
(
xM+1

)
≥ 2: Sequences considered representative of the normal data.

We express E
(
∆

(
xM+1

))
as a function of PN

X

(
xM+1

)
/PA

X

(
xM+1

)
using (2.81) and h

(
xM+1

)
:

E
(
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(
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≈ g

lA + (g − lA) · h (xM+1)
· 1
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· 1
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(2.152)

and

E
(
∆

(
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≈ g

lA
h(xM+1)

+ g − lA
· 1
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X (xM+1)

=
1

lA
g ·

(
1
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− 1
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+ 1

· 1
PN
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(2.153)
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Respectively inserting into (2.150), we derive:
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(2.154)

The first term of the sum of (2.154) represents the share of
Υ

(
ξ · E

(
∆

(
xM+1

))
, xM+1, lA 6= 0

)
within the normal data, while the second term repre-

sents the share within anomalous data. The subsequent bounds hold because (ξ + 1)·exp−ξ

of (2.150) is strictly monotonic decreasing with respect to ξ > 0.
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(

lA
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)
(2.156)

Plotting the two bounds (2.155) (2.156) and (2.150) for lA = 0.05g, lA = 0.15g, lA = 0.25g
and lA = 0.35g (Figure 2.11), we observe that a setting of ξ ≈ 2 keeps (2.155) stable for
various lA while still retaining a reasonable distance to the case of no anomaly. Thus, we
subsequently use a setting of ξ = 2.

Figure 2.12 shows the plotting of (2.154) for various lA and ξ = 2. The plots show there
is an almost linear increase of Υ

(
ξ · E

(
∆

(
xM+1

))
, xM+1, lA 6= 0 | ξ = 2

)
for h

(
xM+1

)
> 1

with respect to lA. Contrary, for h
(
xM+1

)
< 0.25, there will be no significant increase of

Υ
(
ξ · E

(
∆

(
xM+1

))
, xM+1, lA 6= 0 | ξ = 2

)
with respect to lA for lA ≥ 0.15 · g. Moreover,

for h
(
xM+1

)
≤ 0.25, Fig. 2.12 shows a distinctive decrease of (2.154) for lA = 0.35g,

indicating the strong degradation of performance for lA ≥ g
3 .
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Figure 2.11: a)lA = 0.05g, b)lA = 0.15g, c)lA = 0.25g, d)lA = 0.35g

Setting of τth for ξ = 2

In case of i.i.d. generation, an improved setting of the threshold τth guided by the
theory developed above is possible. Using (2.150), (2.151), (2.154), and (2.80), we deduce
that for ξ = 2, the threshold has to be selected from a range

τth ≤
(

1 − Υ
(

2
PN

X (xM+1)
, xM+1, lA = 0

))
· E

(
Sj

(
xM+1

)
|lA = 0, ξ = ∞)

≈ 0.6 · E
(
Sj

(
xM+1

)
|lA = 0, ξ = ∞) (2.157)

= 0.6 · 0.5 · g. (2.158)
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Figure 2.12: Plot of (2.154) for various anomaly ratios.

If we may be sure that a substantial portion of the generated symbols of the anomaly data
shows a h

(
xM+1

)
¿ 0.25, we may set τth = 0.45 ·E

(
Sj

(
xM+1

)
|lA = 0, ξ = ∞), which will

create an almost perfect detector result. On the other hand, a relaxed condition supposing
that the symbols typical of the anomaly are h

(
xM+1

)
≈ 0.25 demands a higher threshold

τth = 0.5 · E
(
Sj

(
xM+1

)
|lA = 0, ξ = ∞), increasing the false positive rate.
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Table 2.3: Possible combinations of true class and classification result.

Classification Result: Anomaly Classification Result: Normal
True Class: Anomaly True Positive TP False Negative FN

True Class: Normal False Positive FP True Negative TN

2.3.4 Computational Cost

With a line of argument similar to the one used in Section 2.2.3, we can show that the
computational cost is bounded by a function of order

O
(
g2

)
(2.159)

2.4 Experimental Results

2.4.1 Detection Quality Evaluation: Receiver Operating Characteristic

After classification, for every member of the set S, there are four possible combinations
of true class and classification result, as shown in Table 2.3. Here, TP , FN , FP and TN
are variables representing the occurrence numbers of the respective combinations within
S, such that

n = TP + FN + FP + TN. (2.160)

These four variables can be used to calculate various coefficients, which show the tradeoff
between the number of correctly detected anomalous data points and the number of normal
data points mistakenly classified anomalous. These include

• True Positive Rate or Recall: percentage of correctly detected anomalous data

TPR =
TP

TP + FN
(2.161)

• False Positive Rate: percentage of normal data mistakenly classified anomalous

FPR =
FP

FP + TN
(2.162)

• Precision: percentage of true anomalies within the data classified anomalous

PR =
TP

TP + FP
(2.163)
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Figure 2.13: a) Overly low true positive rate b) Optimum combination of true positive rate
and false positive rate c) Overly high false positive rate

• Accuracy: percentage of overall correct classifications

ACC =
TP + TN

TP + FN + FP + TN
(2.164)

One of the most frequently used measures of classification quality is the combination of true
positive rate and false positive rate. In order to show the effect of parameter tuning on the
result, a so-called Receiver Operating Characteristic (ROC) graph [60] can be used. The
name was coined by radar engineers during the second world war, who where interested in
finding the optimum tradeoff point of correct detection of enemy aircraft and false alarms.
They plotted the points representing the combination of true positive rate and false positive
rate for certain classifier settings. Figure 2.13 shows an example with a primitive classifier.
Every data point inside the circle is classified as normal, while everything outside the circle
is classified as anomalous. Fixing the center, we alter the radius. While an overly large
radius yields zero false positive rate but insufficient true positive rate, an overly small radius
yields an unacceptable false positive rate. The optimum radius yields a good tradeoff of
true positive and false positive rate.
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2.4.2 ROC Parameter Calculation

In order to enhance the comparability of ROC curves generated from different data
samples featuring different anomaly lengths, we conceived a new scheme for ROC calcu-
lation. We estimated the mean m and the deviation σ of the normal values within the
retrieved sequence of scalars (similarity measures, densities, average index difference vec-
tor lengths, percentages etc.) by calculating the median and the median absolute deviation
(MAD)4 [61]. The threshold cth used for ROC calculation is then chosen from the interval
[m,m + 4σ].

2.4.3 Artificial Data

We used i.i.d. symbol generation, with both the normal distribution and the anomalous
distribution generated according to the subsequent methods. The expected value of the
generated probabilities is equal to the inverse of the alphabet size Z.

E (P (x)) =
1
Z

(2.165)

1. Uniform Generation:
Z random values uniformly distributed within a fixed interval with non-negative
limits, [u1, u2] are generated independently and assigned to the respective symbols,
followed by normalization using the sum of the generated values. The range of per-
centage values observed with high probability depends on [u1, u2]

z ∈

[
u1

Z · (u2+u1
2 )

> 0,
u2

Z · (u2+u1
2 )

<
2
Z

]
(2.166)

The generated percentage values are approximately uniformly distributed.

2. Exponential Generation:
While above model is easy to handle, certain real world data displays an exponential
distribution of percentages. Thus we used an exponential distribution to generate
the Z independent samples.

The overall sequence length g was set to 4, 000. Because we set the alphabet size
Z = 100 to the same range as the block size b = 200 = 0.05 · g and because of i.i.d.
generation, the subsequent simulations use zero maximum memory length Mmax.

4In order to avoid zero median absolute deviation, we only consider non-zero entries of the sequence of
differences between the scalars and the median.
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Setting of the Algorithm Supposing Local Concentration of Anomalous Blocks

Because the length of the anomaly lA is supposed to be unknown, we choose a setting
τth = g

6 = 666.

Settings of the Algorithm Allowing for Arbitrary Distribution of Anomalous
Blocks

A setting ξ = 2 leaves approximately 60% of the covered area in case of no anomaly
untouched, while at least 45% are eliminated in case of anomaly and the symbol sequence
being typical of the anomaly. The parameter β is set to 0.5. The threshold τth is set to
1, 000. The dimension of the vector calculated from the average index differences is set to
a = 3.The minimum number of identical symbols within a block is set to νmin = 4.

Settings of the Previous Approaches

The cluster algorithm is set up with k = 1 and w = 0.9, with the latter setting retrieved
via trial and error. The optimum depth of the suffix tree turned out to be t = 0, regardless
of the setting of Smin.

We simulate anomaly lengths lA of 0.05 · g, 0.15 · g, and 0.25 · g respectively, using
uniform distribution (interval [0.1, 1]) and exponential generation for symbol distribution
generation. The uniform generation limits the range of h (x) to 1

10 ≤ h (x) ≤ 10 (P (x) ∈[
1

5.5·Z , 10
5.5·Z

]
), thus posing are more difficult task than a symbol distribution generated

by the exponential approach. Each simulation consists of 10, 000 repetitions of sequence
generation, with the symbol distributions generated anew after every 100th run. The
anomalous blocks are randomly rearranged after initial generation in case of the algorithm
allowing for arbitrary distribution of anomalous blocks.

The Figures 2.14 and 2.15 show the ROC curves returned by our algorithms and pre-
vious approaches, as well as the decrease of the false positive rate in case of no anomalous
data within the interval [m + 2σ,m + 4σ]. The main difference between our two algorithms
is the extraordinary low false positive rate of the algorithm supposing local concentration
of anomalous blocks. The reason is found in the fact that the algorithm will only de-
tect symbols inside anomalous data in case of long lA or h (x) ¿ 1, while the settings
of ξ = 2 and β = 0.5 of the algorithm allowing for arbitrary distribution of anomalous
blocks will also shrink a certain percentage of normal average index differences, causing
a higher percentage of the average index differences of normal symbols to be misclassi-
fied. Because no generation probability pairs featuring h (x) ¿ 1 for any x ∈ X exist in
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Figure 2.14: Algorithm supposing local concentration of anomalous blocks: Uniform distri-
bution generation: a) 5% anomalous data b) 15% anomalous data c) 25% anomalous data
d) Decrease of false positive rate; Exponential distribution generation: a) 5% anomalous
data b) 15% anomalous data c) 25% anomalous data d) Decrease of false positive rate

case of uniform distribution generation, the algorithm allowing for arbitrary distribution
of anomalous blocks is outperformed by the previous approaches. Contrary, the algorithm
supposing local concentration of anomalous blocks yields results comparable to those of
previous algorithms if lA is suitably large, the higher share of anomalous data compensating
for the lesser difference of generation probabilities. While the suffix tree algorithm delivers
perfect results for all lrmA, the cluster algorithm is slightly affected. In case of exponential
distribution generation, all the algorithms produce very good results. An ROC threshold
of cth = m + 2σ (marked by an x) returns low false positive rates for both exponential and
uniform distribution data.

2.4.4 Computer Security Data

One possible application of our algorithm is network masquerade attack detection. A
masquerade attack consists of an attacker somehow stealing the password and login of a
regular user. Because he is able to perform a regular login to the computer network, there
will be no noticeable anomalies within the network traffic before or during the attack. Thus,
the only possibility to immediately detect the attack is the analysis of the user input during
the session. This input often solely consists of the command line data input by the user,
which may be modeled as a time series of symbol sequences, one sequence representing
a single session. Ever since the Schonlau et al. published their groundbreaking paper
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Figure 2.15: Algorithm allowing for arbitrary distribution of anomalous blocks: Uniform
distribution generation: a) 5% anomalous data b) 15% anomalous data c) 25% anomalous
data d) Decrease of false positive rate; Exponential distribution generation: a) 5% anoma-
lous data b) 15% anomalous data c) 25% anomalous data d) Decrease of false positive
rate

comparing the performance of several supervised statistical classifiers [62], a plethora of
supervised anomaly detection approaches to the problem has been proposed [63]. The
dataset created by them for their experiments quickly become the standard data set for
evaluating new detection algorithms, and is commonly referred to as the SEA dataset.

The data was captured using the UNIX acct auditing mechanism. Any parameters
and time stamps were removed, leaving a truncated command dataset, (i.e. a sequence of
commands). Examples of commands are: sed, eqn, troff dpost, echo, sh, cat, netstat, tbl,
sed, eqn, sh and so forth.

15, 000 sequential commands of 70 users were originally recorded. Among those 70 users,
50 were randomly chosen as victims and the remaining 20 as intruders. The first 5, 000
commands for each victim do not contain any commands generated by masqueraders and
are commonly used as classifier training data. The next 10, 000 commands can be thought
of as 100 blocks of 100 commands each, and command data generated by the group of
users used as masqueraders was randomly inserted for testing purposes. Note that 20 users
feature no anomaly data at all(lA = 0). The ROC curves shown below were created by
applying the respective methods separately to the data of every user, finally calculating
the average of true positive and false positive rate. Note that in contrast to the uniform
distribution of generation probabilities in case of the artificial data above, the real world
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Figure 2.16: Real world masquerade data and Smin = 1: a) Average ROC for algorithm
supposing local concentration of anomalous blocks. b) Decrease of false positive rate

data features an exponential distribution of command probabilities. While a few commands
are used very often, the majority features very low stationary generation probabilities.

Because our topic is unsupervised anomaly detection, we discarded the designated
training data. The blocks are randomly rearranged in case of the algorithm allowing for
arbitrary distribution of anomalous blocks.

The data set features g = 10, 000 and b = 100. The parameters Mmax and k are set
using the depth t of the tree returned by the probabilistic suffix tree algorithm. In order to
show the impact of Smin for data generated by a source with memory, we use the settings
Smin = 1 and Smin = Z.

Setting of the Algorithm Supposing Local Concentration of Anomalous Blocks

Because the length of the anomaly lA is supposed to be unknown, we choose a setting
τth = g

6 = 1, 666.
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Settings of the Algorithm Allowing for Arbitrary Distribution of Anomalous
Blocks

The setting ξ = 2 leaves roughly 50% of the covered area in case of no anomaly un-
touched. The parameter β is set to 0.5. The threshold τth is set to 2, 500. The dimension
of the vector calculated from the average index differences is set to a = 3. The minimum
number of identical symbols within a block was set to νmin = 4.

Settings of the Previous Approaches

The cluster algorithm uses a radius w = 1.3, again set using trial and error. For the
suffix tree algorithm, Smin = 1 and Smin = Z yields t = 0 → Mmax = 0, k = 1 and
t = 1 → Mmax = 1, k = 2 respectively.

The ROC curves returned by the algorithms introduced for the settings Smin = 1 and
Smin = Z, as well as the decrease of the respective false positive rates, are shown by
Fig. 2.16 and Fig. 2.17. Although the probabilistic suffix tree algorithm provides suitable
estimates for the parameter k of the clustering algorithm, the actual performance of the
algorithm is inferior to both our algorithms and the cluster algorithm. The rather poor
performance of the suffix tree algorithm may be explained by the fact that the combination
of small g and large Z causes an overly rough estimation of the probabilities in case of
exponential probability distribution. Opposite to the case of artificial data, the algorithm
supposing local concentration of anomalous blocks features a high false positive rate, which
hampers its performance despite high true positive rate. The reason for this behavior is
found in the fact that within the masquerade data, local bursts of single commands may
occur, causing a small share of blocks to display percentage values above the range given
by m and σ, because the share of those blocks is just small enough not to affect the
calculation of median and median absolute deviation. The algorithm allowing for arbitrary
distribution of anomalous blocks, on the other hand, outperforms the suffix tree algorithm
and equals the fixed-width clustering algorithm for both Smin = 1 and Smin = Z within
the most interesting range of false positive rates below ten percent. An ROC threshold
of m + 2σ returns a suitable combination of false positive/true positive rate. The main
difference betweenSmin = 1 and Smin = Z is a faster decrease of the false positive rate for
the algorithm allowing for arbitrary distribution of anomalous blocks, and a significantly
improved true positive rate of the clustering algorithm.
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2.5 Concluding Remarks

In this section we presented two unsupervised anomaly detection algorithms for non-
numerical sequence data based on the average index difference function. Besides a suitable
detection performance comparable to those of previous approaches, both algorithms share
the advantage of theoretically deducible parameter settings. While the first algorithm
features low computational cost, it supposes the local concentration of anomalous blocks,
a requirement not posed by the second algorithm.
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Figure 2.17: Real world masquerade data and Smin = 1: a) Average ROC for algorithm
allowing for arbitrary distribution of anomalous blocks b) Decrease of false positive rate ;
Real world masquerade data and Smin = Z: c) Average ROC for algorithm allowing for
arbitrary distribution of anomalous blocks d) Decrease of false positive rate
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