
Chapter 3

Unsupervised Anomaly Detection
based on Representative Sequence
Selection

In this chapter we present the second approach for unsupervised anomaly detection
within non-numerical sequence data. The approach exploits the fact that certain kernel
classes map the sequence data output by a stationary ergodic source to a spherical cluster
in high-dimensional numerical space.

The algorithm calculates the matrix of pairwise distances of the sequences, and selects
a sequence close to the center of the hypersphere of the normal data as a representative
of the normal data. The sequences are classified according to their distance from the rep-
resentative sequence. After stating the algorithm, we theoretically explain the choice and
parameter setting of the kernel function used for our experiments, the so-called spectrum
kernel. Using structural similarities between the kernel and a probabilistic suffix tree, we
deduce an optimal setting of the dimensional parameter of the spectrum kernel, which regu-
lates the subsequence length for mapping. We also explain the setting of the key parameter
of the algorithm, and deduce bounds of the computational complexity of the algorithm.

Finally, we evaluate the performance of the algorithm using both real world data and
artificial data, demonstrating the performance. We also point out practical limitations of
the theoretical range of the cluster parameter.
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3.1 Algorithm Statement

While the algorithms presented in the previous chapter used the index difference in-
formation of identical symbols, the subsequent algorithm follows the school of thought
prevalent in unsupervised anomaly detection research by mapping the sequences xbi i ∈
{1, . . . , n} of S to points in a numerical space using a kernel, and using the pairwise dis-
tance of those points for classification. The pairwise distance of two sequences xl1 , xl2 of
lengths l1, l2 is based on the kernel function K

(
xl2 , xl2

)
, which is mostly defined as the dot

product
K

(
xl1 , xl2

)
= 〈φ

(
xl1

)
, φ

(
xl2

)
〉, (3.1)

where φ
(
xl1

)
is a transformation of the data to an inner product space. Thus, it computes

a measure of similarity of the two data points xl1 , xl2 within the said numerical space, and
a pseudo metric dK

(
xl1 , xl2

)
of the two original data sequences xl1 , xl3 can be defined via

dK

(
xl1 , xl2

)
=

√
K (xl1 , xl1) − 2K (xl1 , xl2) + K (xl2 , xl2) (3.2)

Our algorithm utilizes the fact that within a feature space of appropriate dimension of
certain kernel classes, the vectors representing sequences generated by a stationary distri-
bution may be modeled by a hypersphere. This view is also applied by One-Class Support
Vector Machines and Core Vector Machines [14]. The algorithm selects a sequence which
is close to the center of the normal hypersphere in numerical space, and then uses the
distance to this representative sequence for classification and anomaly detection.

This task is equivalent to calculating the median of a spatial dataset. Our algorithm is
considerably more efficient than the standard algorithm called L1 median, which has also
been applied to kernel spaces recently [64]. This is because the L1 median supposes the
anomalous data points to be outliers of the normal data, which are scattered around the
center of the normal data. We will show the effect of this supposition in the experimental
section.

The algorithm consists of the following steps:

1. Calculate the mutual distance or dissimilarity matrix D of the sequence set S ac-
cording to the chosen kernel function.

2. Rearrange the entries of every row i ∈ {1, . . . , n} of the distance matrix from smallest
to largest such that for the entries of the rearranged matrix D̂,

D̂i,j ≤ D̂i,j+1 for ∀j ∈ {1, . . . , n − 1} (3.3)

holds.
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3. Find the row i? which meets

D̂i?,θ < D̂i,θ for ∀i ∈ {1, . . . , n} \ {i?} (3.4)

for the given column parameter θ ∈ {1, . . . , n}. Resolve ties by repeatedly decreasing
the column number θ by one and comparing the entries of sequences with identical
entries during the last step. If θ = 0, resolve by random selection.

4. The distances of the sequences within S from sequence number i? are processed to
discriminate the normal and the anomalous sequences.

3.2 Algorithm Parameter Setting

The algorithm searches for a sequence representative of the normal class. Because of the
sequences contributed by the anomalous source and in order to combat noise, a parameter
setting of

θ ∈ [0.5n, 0.7n] (3.5)

is used. Even if the radius of the enclosing sphere of normal vectors is much bigger than
the radius of the sphere enclosing the anomalous vectors (in case of generation by a single
anomalous source), we suppose that the properties of the kernel cause the center of the
anomalous hypersphere to be located near the edge of the normal hypersphere. Thus, a
setting of θ must obey the subsequent bounds:

θ ≤ (1 − ρmax)n
θ ≥ ρmaxn (3.6)

The algorithm is stable for the range given by (3.5) for ρmax = 0.3, as we will show in
the experimental section. Unless noted otherwise, we used a setting of θ = 0.6n for our
experiments.

We illustrate the algorithm and the setting of the parameter θ by a simple example.
Figure 3.1 shows a set S = {s1, s2, s3, s4, s5, s6} of n = 6 points in Euclidean space, with
s1, s2 being anomalous (ρ = 2

6 ≈ 0.33). The center of the normal class is the point s4.

We calculate the subsequent Euclidean distance matrix

D =



dT
1

dT
2

dT
3

dT
4

dT
5

dT
6

 =



0 0.5 2 3 4.12 3.6
0.5 0 1.5 2.5 3.6 3.2
2 1.5 0 1 2.23 2.23
3 2.5 1 0 1.4 2

4.12 3.6 2.23 1.4 0 3.16
3.6 3.2 2.23 2 3.16 0

 , (3.7)
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normal class

anomalous class

Figure 3.1: Example point set

the rows of which consist of the transposed distance vectors of the respective points, which
are defined as

dT
i =

[
dK

(
xbi , xb1

)
dK

(
xbi , xb2

)
· · · dK

(
xbi , xbn

)]
(3.8)

Reordering the respective rows according to the first step of the algorithm, we get

D̂ =



0 0.5 2 3 3.6 4.12
0 0.5 1.5 2.5 3.2 3.6
0 1 1.5 2 2.23 2̂.23
0 1 1.4 2 2.5 3
0 1.4 2.23 3.16 3.6 4.12
0 2 2.23 3.16 3.2 3.6

 . (3.9)

Now we search for the row with the lowest entry in column θ. If θ is set to an overly low
value of θ, say θ = ρn = 2, this will return i? = 1 or i? = 2 (entries overlined), because the
variance within the anomalous sequences of our example is smaller than the variance of
the normal class. On the other hand, an overly high setting of θ, e.g. θ = n = 6 (minimum
radius enclosing all sequences) will cause the selection of s3 (hatted entry) because of its
proximity to the anomalous s1 and s2. A setting of θ = 0.5n = 3 or θ = 0.66n = 4 returns
the correct i? = 4 (entries underlined). The set of distances from point s4 is then processed
by means of robust statistics.

d4
T =

[
3 2.5 1 0 1.4 2

]
(3.10)
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3.3 Sequence Data Distance Matrix Generation

3.3.1 Definition of Kernels and Normalization

A kernel [12] is defined as a function K (, ), which for any possible distinct data set of
n data points {x1, . . . , xn} (numerical or non-numerical), generates a positive semidefinite
n × n matrix  K (x1, x1) · · · K (x1, xn)

...
...

K (xn, x1) . . . K (xn, xn)

 . (3.11)

This is known as Mercer’s condition. Note that although the above kernel specifies only
two input data points, kernels may also process additional information on the data. One
example is the Fisher kernel [65], which uses information about the underlying normal
distribution to create a score. However, because of the unsupervised detection scenario, we
will hereafter suppose that the kernel does not process information besides the two data
points in question.

According to Kwong et al. [14], the kernelized data will form a hypersphere if the kernel
function meets the condition

K
(
xl, xl

)
= % ∀xl ∈ X l ∀l ∈ N (3.12)

with % being a nonnegative constant. This condition is satisfied for any normalized kernel
defined as

Knorm

(
xl1 , xl2

)
=

K
(
xl1 , xl2

)√
K (xl1 , xl1) ·

√
K (xl2 , xl2)

(3.13)

This covers most kernel functions used for non-numerical sequence data.

3.3.2 Kernel Functions for Non-Numerical Sequence Data and the Spec-
trum Kernel

The primary task of kernels processing non-numerical sequence data (which are usually
referred to as sequence kernels or string kernels) [66] is to generate a numerical, non-
negative, and symmetric similarity value, which may then be input to a support vector
machine or a clustering algorithm. The standard approach calculates the inner product
after separate processing of the sequences by the mapping function φ, with the dimensions
of the numerical output vector reflecting the existence and/or number of subsequences of
symbols, which may or may not be contiguous. This approach is non-localized, ignoring
the start indices of the subsequences within the sequence. Contrary, localized approaches

79



use techniques like sequence alignment [67] in order to calculate a sum value according to
the overall length of the matching parts of the two strings. In the following, we will review
some of the standard inner product kernels, and justify our choice of the spectrum kernel.

A general inner product-based sequence kernel may be defined as follows:
For an alphabet X , we define by X ? the set of all finite strings.

X ? def= ∪∞
f=0X f (3.14)

Then the kernel K
(
xl1 , xl2

)
processing two sequences xl1 , xl2 ∈ X ? may be expressed by

K
(
xl1 , xl2

)
=

∑
∀z∈X?

I
(
xl1 , z

)
· wz · I

(
xl2 , z

)
· wz =

∑
∀z∈X?

φ
(
xl1

)
z
· φ

(
xl2

)
z

(3.15)

Here, I
(
xl1 , z

)
represents a function outputting a numerical value according to the exis-

tence and/or number and diffusion of the occurrences of z within xl1 . wz represents the
weight of the result of this subsequence for the overall evaluation of similarity.

• spectrum kernel (k):

The entries of the feature vector of the spectrum kernel [51] consist of the occur-
rence numbers of all contiguous subsequences of length k. We present an exam-
ple calculation, given an alphabet {a, b} of size Z = 2 and two sample sequences
xl1 = (a a b b b a) and xl2 = (a a a a b). Setting k = 2, the vectors consist of Zk

components Nxli

(
xk

)
xk ∈ X k, with Nxli

(
xk

)
outputting the occurrence number

of the subsequence xk within the sequence xli .

K (x, y) = 〈φ
(
xl1

)
, φ

(
xl2

)
〉 = 〈


Nxl1 (aa)
Nxl1 (ab)
Nxl1 (ba)
Nxl1 (bb)

 ,


Nxl2 (aa)
Nxl2 (ab)
Nxl2 (ba)
Nxl2 (bb)

〉 = 〈


1
1
1
2

 ,


3
1
0
0

〉 = 4

(3.16)

Using normalization according to the sequence length, the feature space is a space of
probability distributions of sequences of length k. In case of two sources with expected
values of the feature space vector located close to each other (i.e. two sources likely
to be confused), the variance within feature space will be approximately equal if the
length of the sequences is similar.

A special variant of the spectrum kernel is the so-called full spectrum kernel, an
extension of the spectrum kernel which processes all i-grams for 1 ≤ i ≤ k. However
in case of optimum k ≥ 3, the performance of this kernel may deteriorate because
of the noise added by small i. Therefore, we decided to use the original spectrum
kernel.
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• mismatch kernel (k,mis):

The mismatch kernel[68] relaxes the conditions of the spectrum kernel by counting
any occurrences of the subsequence of length k and any subsequences including up
to mis mismatches. Reusing above example vectors xl1 = (a a b b b a) and xl2 =
(a a a a b) with k = 2 and mis = 1, the vector entry for aa will also include the
occurrences of ab and ba, but not bb.

K (x, y) = 〈φ
(
xl1

)
, φ

(
xl2

)
〉 = 〈


Nm

xl1
(aa)

Nm
xl1

(ab)
Nm

xl1
(ba)

Nm
xl1

(bb)

 ,


Nm

xl2
(aa)

Nm
xl2

(ab)
Nm

xl2
(ba)

Nm
xl2

(bb)

〉 = 〈


3
4
4
4

 ,


4
4
3
1

〉 = 44

(3.17)

Note that in contrast to the spectrum kernel, the sum of the entries of the feature
vector is no longer a linear function of the sequence length.

• gap decay kernel (k, λ):

The gap decay kernel [69] weights the occurrence of gapped subsequences of length k
with a power of the decay factor λ according to the length of the gap. Reusing above
example vectors xl1 = (a a b b b a) and xl2 = (a a a a b) with k = 2 and λ = 0.5, we
calculate

K (x, y) = 〈φ
(
xl1

)
, φ

(
xl2

)
〉 = 〈


Ng

xl1
(aa)

Ng

xl1
(ab)

Ng

xl1
(ba)

Ng

xl1
(bb)

 ,


Ng

xl2
(aa)

Ng

xl2
(ab)

Ng

xl2
(ba)

Ng

xl2
(bb)

〉

= 〈


1 + λ3

λ1 + 1
λ2 + λ1 + 1

2

 ,


3

λ3 + λ2 + λ1 + 1
0
0

〉 = 〈


1.125
1.5
1.75
2

 ,


3

1.875
0
0

〉 = 6.1875

(3.18)

Although kernel functions taking into account gapped (non-contiguous) sequences or
inexact sequence matching have shown good results, for evaluation of our algorithm, we
chose the spectrum kernel. We did so because besides low computational effort, this kernel
features only a single parameter k, the setting of which may be deduced theoretically, as we
will show below. Also, the various derivatives mostly implicitly suppose a setting k > 1.
However, as we will show below, depending on the ratio of the size of the dataset and
the alphabet size Z, even for data generated by a source of strong memory, the optimum
setting may be k = 1.
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Note that the entries of the output vectors of the various inner product kernels may
also be used for the calculation of different distance metrics like the Canberra metric or
similarity coefficients like the Jaccard coefficient [70].

3.3.3 Model Selection Criteria

In order to prepare the derivation of the setting of the spectrum kernel parameter k
in 3.3.4, we review the concept of model selection criteria [71] [72], and point out the
connection to anomaly detection.

Presented with the task of fitting a model (statistical or deterministic) to a given
training data set T in order to evaluate a yet unseen test data set S, one finds that naively
increasing the complexity of the model (degree of the polynomial, number of Gaussian
distributions in the mixture) to achieve a perfect fit on the training data will result in
suboptimal results on the test data. The phenomenon is caused by the model adapting
to characteristics of the training data not shared by the test data. This is known as the
problem of overfitting. Thus, the problem of model selection may be defined as follows:
given a limited training data set T , choose the optimum complexity of the model MOD,
which minimizes the generalization error over the yet unseen test data S.

In order to prevent overfitting, the optimization of model selection criteria is employed
for setting the complexity of the model MOD(T ) trained using T . A general definition
may be written as

MSC def= min
MOD(T )

F (T |MOD(T )) + PEN(MOD(T )), (3.19)

where F describes the deviation of the training data T with respect to a trained given
model, while PEN is a strictly monotonic increasing penalty function of the complexity
of the model. The task is to choose a MOD minimizing MSC i.e. yielding a low deviation
value while keeping the penalty term low. For the calculation of both terms, various
functions have been proposed. For statistical models, the deviation is usually calculated
as the loglikelihood of the data according to the model. For deterministic models like
polynomials, the deviaition may be expressed by the squared error.

The two most frequently used model selection criteria are the Akaike Information Crite-
rion (AIC) [73] and the Bayesian Information Criterion (BIC) [74]. For statistical models,
the AIC is defined as

AIC def= min
ψ

−2 log P (T |MOD(T , ψ)) + 2ψ, (3.20)

while the BIC is defined as

BIC def= min
ψ

−2 log P (T |MOD(T , ψ)) + ψ ln |T | , (3.21)
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with ψ representing the number of free parameters in the model. The logarithm of the
cardinality of the training data was included by the BIC in order to account for the precision
necessary to build a model interpolating |T | data points. For small sample sizes |T |, a
corrected version of the Akaike Information Criterion, which is written as

AICc
def= AIC +

2ψ (ψ + 1)
|T | − ψ − 1

, (3.22)

has been proposed [75].

Above criteria may also be deduced using the concept of Kolmogorov complexity
C (x) [76] [77], which has been introduced before as the minimum length of the program
generating a sequence x, and the conditional Kolmogorov complexity C (x|y), which is
defined as the minimum length of the program generating x given y. The MSC may be
interpreted as

MSC def= min
MOD(T )

C (T |MOD(T )) + C (MOD(T )) . (3.23)

With respect to supervised anomaly detection, the model selection task may be re-
formulated: given a sample of normal training data, choose a model complexity which is
general enough to account for the normal data yet unseen, but specific enough to detect
anomalies. In case of unsupervised anomaly detection, the goal is to choose a mapping
which creates a coherent cluster of normal data while also achieving separability of normal
data and anomalous data.

3.3.4 Unsupervised Probabilistic Suffix Tree Algorithm and Spectrum
Kernel Parameter Setting

The unsupervised probabilistic suffix tree algorithm [48] creates a probabilistic suffix
tree based on the whole of the data S given. While previous supervised approaches used
a criterion based on the frequency of occurrence of the respective subsequences [50] for
pruning single branches, the recent unsupervised approach referenced here favors the use
of the Corrected Akaike Information Criterion introduced in the previous section for first
setting a global maximum tree depth t, then optionally pruning single branches.

Based on the distribution PS
X (xt+1|x1, . . . , xt) ∀xt+1 ∈ X t+1 of the set S contained in a

suffix tree of depth t, a normalized dissimilarity measure for judging any sequence xb ∈ S
of b symbols can be defined as follows

DSIM
(
xb

)
def= −1

b

b∑
i=1

log PS
X (xi|xi−t, . . . , xi−1) (3.24)
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The set of scalars calculated according to (3.24) is then processed by means of robust
statistics and the receiver operating characteristic (ROC) curve is created.

For t fixed, ρ = 0 and b → ∞, (3.24) converges towards the entropy rate of a Markov
source of the normal data of memory t. The upper bound of the dissimilarity measure
of the unsupervised case is determined by n and b, the lower bound being zero. A low
dissimilarity measure is likely in case of normal data, while a block of high dissimilarity
measure is likely to have been generated by an anomaly. However, the method is founded
on the implicit assumption that the entropy rate of the normal source at the optimum tree
depth is equal to or below the entropy rate of the anomalous source(s). If this assumption
holds, the information criterion will indeed output a tree which will encode the normal
source more efficiently than the anomalous source. An anomalous source of small entropy
rate compared to the normal source, on the other hand, may not stand out as desired.

We illustrate our observation by the distribution of dissimilarity values output by (3.24)
for various t processing two protein datasets with n = 5, 000 and ρ = 0.05 (see experimen-
tal section). The first dataset, the results of which are shown by Fig. 3.2, features a
normal class with entropy rate below that of the anomalous class, and therefore detection
of the anomalous class can be easily done for t = 3, the global tree depth returned by the
information criterion.

Contrary, the second dataset features the case of the normal class entropy rate being
much higher than the entropy rate of the anomalous class. Figure 3.3 shows the results.
The distribution for the depth t = 3 returned by the criterion does not allow for efficient
detection. It is interesting to see, however, that although the scalar similarity measure
is not able to separate the two classes, the optimum tree depth maximizes the respective
intra-class variance of the dissimilarity measure.

Note that (3.24) can be approximated as

DSIM
(
xb

)
≈ −

∑
xt+1∈X t+1

Nxb

(
xt+1

)
b

· log PS
X

(
xt+1|xt

)
, (3.25)

where Nxb

(
xt+1

)
represents the number of occurrence of a certain sequence xt+1 ∈ X t+1

within a sample sequence xb. We utilize this fact to determine the parameter of the
spectrum kernel in the next section. The approximation given by (3.25) may be seen

as a dot product of a vector with entries
[

N
xb(xt+1)

b

]
xt+1∈X t+1

and a vector consisting of

entries
[
log PS

X
(
xt+1|xt

)]
xt+1∈X t+1 , the former describing the distribution of subsequences

of length t + 1 based on xb and the latter containing a weighting spectrum of how badly
a predictor of memory t based on the entire set S emulates subsequences of length t + 1.
Because the spectrum kernel calculates an empirical estimate of the distribution of k-grams
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based on the sequence, looking at (3.25), we understand that for k = t + 1, the entries of
the feature vector of the spectrum kernel are equal to the occurrence numbers within the
sum. Thus, the optimized depth t of the suffix tree may be used to set the parameter k to

k = t + 1. (3.26)
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Figure 3.2: Example distribution of dissimilarity values for the case of the variance of the
normal class being smaller than the variance of the anomalous class

3.4 Computational Cost of Algorithm Using Spectrum Ker-
nel

It has been shown [78] that the computational cost of computing the spectrum kernel
of two sequences of respective length l1 and l2 is upper bounded by a function of order

O (l1 + l2) (3.27)
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Figure 3.3: Example distribution of dissimilarity values for the case of the variance of the
normal class exceeding the variance of the anomalous class

Thus, with bmax being the maximum sequence length within the n sequences of the set S,
the computational cost of creating the distance matrix is bounded by a function of order

O
(
n2 · bmax

)
(3.28)

On the other hand the computational cost of ordering a set of n nonnegative real values
from smallest to largest without any further constraints can be bounded by a function of
order

O (n · log n) (3.29)

The computational cost of rearranging the n rows of the distance matrix and determining
the representative sequence is thus upper bounded by a function of order

O
(
n2 · log n

)
(3.30)
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3.5 Experimental Results

3.5.1 ROC Parameter Calculation

In order to calculate the receiver operating characteristic curve from the noisy set of
scalars returned by the various algorithms, we use the median and the median absolute
deviation for mean and deviation estimation. For further description see Section 2.4.2.

3.5.2 Artificial Data

We used i.i.d. symbol generation. While the first round of experiments used distri-
butions featuring a uniform distribution of probabilities within a certain interval, thereby
limiting the distinctiveness of the distributions, the second round of experiments used
distributions featuring an exponential probability spectrum i.e. a few symbols have large
generation probabilities, while the overwhelming majority features very small probabilities.
For further explanation, see Section 2.4.3.

The overall sequence length g was set to 4, 000. Because we set the alphabet size
Z = 100 to the same range as the block size b = 200 = 0.05 · g and because of i.i.d.
generation, the subsequent simulations use zero maximum memory length Mmax.

Setting of the Representative Sequence Selection Algorithm

We used a setting of θ = 0.6n. Experimental results presented in Fig. 3.4 show that for
artificial data, within the bounds given by (3.5), the choice of θ has very little influence on
the classification accuracy. The parameter k of the spectrum kernel is set to 1 according
to the optimized depth of the probabilistic suffix tree.

Settings of the Previous Approaches

The cluster algorithm is set up with k = 1 and w = 0.9, with the latter setting retrieved
via trial and error. The optimum depth of the suffix tree turned out to be t = 0, regardless
of the setting of Smin.

We simulate anomaly lengths lA of 0.05 · g, 0.15 · g, and 0.25 · g respectively, using
uniform distribution (interval [0.1, 1]) and exponential generation for symbol distribution
generation. The uniform generation limits the range of h (x) to 1

10 ≤ h (x) ≤ 10 (P (x) ∈[
1

5.5·Z , 10
5.5·Z

]
), thus posing are more difficult task than a symbol distribution generated
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Figure 3.4: Representative sequence selection algorithm: Uniform distribution generation,
15% anomalous data: a) θ = 0.3n b) θ = 0.4n c) θ = 0.5n d) θ = 0.6n; Exponential
distribution generation, 15% anomalous data: a) θ = 0.3n b) θ = 0.4n c) θ = 0.5n d)
θ = 0.6n

by the exponential approach. Each simulation consists of 10, 000 repetitions of sequence
generation, with the symbol distributions generated anew after every 100th run. The
anomalous blocks are randomly rearranged after initial generation in case of the algorithm
allowing for arbitrary distribution of anomalous blocks. Figure 3.5 shows the results
of the simulation. Our algorithm performs very well for both uniform and exponential
distribution generation, providing a stable performance in case of uniform distribution
generation for various anomalous shares ρ, while the performance of the pervious methods
decreases with rising ρ. The algorithm is slightly inferior to the previous algorithms in
terms of the decrease of the false positive rate in case of no anomaly.

3.5.3 Computer Security Data

One possible application of the representative sequence selection algorithm is network
masquerade attack detection, where the goal is to detect abuse of a valid network account
by analyzing the session input. We use the well known data set created by Schonlau et
al. [62] for their supervised experiments, discarding the training data. For more information
on the background, see Section 2.4.4. The data set features g = 10, 000 and b = 100. The
parameters Mmax and k are set using the depth t of the tree returned by the probabilistic
suffix tree algorithm. In order to show the impact of Smin for data generated by a source
with memory, we use the settings Smin = 1 and Smin = Z.
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Figure 3.5: Representative sequence selection algorithm: Uniform distribution generation:
a) 5% anomalous data b) 15% anomalous data c) 25% anomalous data d) Decrease of
false positive rate; Exponential distribution generation: a) 5% anomalous data b) 15%
anomalous data c) 25% anomalous data d) Decrease of false positive rate

Setting of the Representative Sequence Selection Algorithm

We used the optimum tree depths t = 0 and t = 1 returned by the suffix tree algorithm
for respectively setting the parameter k of the spectrum kernel to k = 1 and k = 2. We
tried for three different settings for θ: θ = 0.5n, θ = 0.6n θ = 0.7n

Settings of the Previous Approaches

The cluster algorithm uses a radius w = 1.3, again set using trial and error. For the
suffix tree algorithm, Smin = 1 and Smin = Z yields t = 0 → Mmax = 0, k = 1 and
t = 1 → Mmax = 1, k = 2 respectively

The average ROC curve and the decrease of the false positive rate is shown by Fig. 3.6,
with very good performance by our algorithm. The low false positive value returned for
m+2σ (cross mark) hints that the distances of normal sequences from the center sequence
may be modeled by a Gaussian distribution. The rather poor performance of the suffix tree
algorithm may be explained by the combination of small n and b, a rather large Z (about
150), and the exponential distribution of generation probabilities, which causes an overly
rough modeling of the data. The comparison of the results for Smin = 1 and Smin = Z for a
threshold of m+2σ show that the optimum depth returned by the suffix tree algorithm for
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Smin = 1 yields the best result for our algorithm. shows the average decrease of the false
positive rate in case of ρ = 0 with rising threshold. The decrease of false positive rate of
our algorithm, on the other hand, is notably improved for Smin = Z. The most important
difference compared to artificial data is the notable drop of performance for θ = 0.5n.
This may be explained by the fact that most real world data is rather generated by a
combination of several closely related sources, creating a cluster of several hyperspheres of
the normal data in the feature space.
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Figure 3.6: Real world masquerade data and Smin = 1: a) θ = 0.5n b) θ = 0.6n b) θ = 0.7n
d) decrease of false positive rate for θ = 0.6n and ρ = 0 ; Real world masquerade data
and Smin = Z: e) θ = 0.5n f) θ = 0.6n g) θ = 0.7n h) decrease of false positive rate for
θ = 0.6n and ρ = 0

3.5.4 Protein Data

We follow the experiment of the paper introducing the unsupervised suffix tree algo-
rithm by mixing data from the HCV core protein family and the NADHdh protein family
(Z = 20), both made available by the well-known Pfam database [79]. While the first
family consists of 5, 000 sequences with an average sequence length of b = 60 derived from
6 seeds, the second family consists of 12, 000 sequences with an average length of b = 128
derived form 23 seeds. Thus, the entropy rate of the NADHdh family exceeds the entropy
rate of the HCV core family.

We created datasets of n = 300 sequences both with the HCV core family and the
NADHdh family as the major contributor.
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Setting of the Representative Sequence Selection Algorithm

We used the optimum tree depths t = 3 returned by the suffix tree algorithm for setting
the parameter k of the spectrum kernel to k = 4. We tried three different settings for θ:
θ = 0.5n, θ = 0.6n, and θ = 0.7n, which yielded no tangible difference of performance.
The graph data given in below figure was retrieved for θ = 0.6n.

Settings of the Previous Approaches

The cluster algorithm uses a radius w = 1.1 for the first and w = 1.3 for the second
data set, again set using trial and error. For the suffix tree algorithm, Smin = 1 and
Smin = Z yield t = 3 and t = 4 respectively. Because of the sparseness of the data, we
used t = 3 → k = 4 for the subsequent experiments.

Figure 3.7 show the ROC curves and the decrease of the false positive rate for both
data sets. While all algorithms show similar classification performance for a majority of
HCV core, for the difficult case of the entropy rate of the normal class NADHdh exceed-
ing the entropy rate of the anomalous class, our algorithm clearly outperforms the other
algorithms. Alike to the masquerade data, the low false positive value returned for m+2σ
(cross mark) hints for a Gaussian distribution of normal sequence distances. Regarding
the decrease of the false positive rate, our algorithm is more susceptible to noise in case of
NADHdh because the intra-class variance hampers the selection of a central representative
sequence. For a majority of HCV core, the suffix tree algorithm does very well compared
to the masquerade detection application. This is because of a more balanced distribution,
a smaller alphabet, and a larger n.

We also compared our algorithm to detection based on the L1 median. Figure 3.8 shows
the results for ρ = 0.05 and ρ = 0.15. While the spatial median does well for small or zero
ρ, the performance decreases significantly for higher ρ.

3.6 Concluding Remarks

In this chapter we presented an unsupervised anomaly detection algorithm based on
the pairwise distance of data points, which may be used to process non-numerical sequence
data given a suitable kernel function. We showed how the parameter of an example kernel
can be set using an information theoretic criterion, yielding good experimental results.
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Figure 3.7: HCV core dataset and θ = 0.6n: a) ρ = 0.05 b) ρ = 0.15 c) ρ = 0.25 d)
Decrease of false positive rate for ρ = 0; NADHdh dataset and θ = 0.6n: e) ρ = 0.05 f)
ρ = 0.15 g) ρ = 0.25 h) Decrease of false positive rate for ρ = 0

a)

new algorithm

spatial mean

b)

false positive rate

tr
u
e
 p
o
s
it
iv
e
 r
a
te

our algorithm with parameter set to 60 percent
spatial depth

new algorithm

spatial mean
our algorithm with parameter set to 60 percent

spatial depth

false positive rate

tr
u
e
 p
o
s
it
iv
e
 r
a
te

Figure 3.8: NADHdh dataset a) ρ = 0.05 b) ρ = 0.15
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Chapter 4

Conclusion

In this thesis, we elaborated on two approaches to the problem of one-class unsupervised
anomaly detection within a set S of non-numerical sequences.

In Chapter 1 we gave an introduction to the general problem of anomaly detection
and to the particular problem of unsupervised anomaly detection, defining the problem
scenario as follows:

1. We are given a set S of n sequences xb1 , xb2 , . . . , xbn−1 , xbn of varying length, with
x ∈ X = {a1, a2, . . . , aZ−1, aZ},

2. We suppose that the majority of 1 − ρ (0 ≤ ρ ≤ ρmax = 0.33) of the sequences was
generated by one stationary normal source N (one-class scenario), while the remaining
share ρ of the sequences was generated by one or more stationary abnormal sources
A.

3. The task is to derive a measure or score for the normality of each sequence in the set
S.

Having stated the scenario, we introduced two methods representative of previous research
on the topic used for evaluation of our algorithm, the probabilistic suffix tree algorithm
and the fixed-width clustering algorithm.

Our first approach, which we explained in Chapter 2, fuses together the set of sequences
S into a single global sequence of length g. It uses a function called the average index
difference to respectively generate a numerical value associated with every single symbol
within the global sequence.
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We introduced the average index difference function, which calculates the average of
the index differences between a symbol or subsequence found at a particular index j and
symbols or subsequence of identical value within the global sequence. We proved the
convergence of the function to an expected value dependent only on the global index j
but not on the symbol generation probability for the case of stationary ergodic symbol
generation.

We presented two algorithms based on this function.

The first algorithm exploits the fact that, if the abnormal sequences happen to be
clustered within a subsection of the global sequence, the output value of the average index
difference function is reciprocally related to the likelihood of the symbol to be representative
of the anomalous data compared to the normal data and to have been generated within an
anomalous sequence. This is because most of the identical symbols will be generated close
to the index j, thus significantly decreasing the average index difference function value.
The percentage c of symbols within a sequence featuring an average index difference below
a certain threshold τth is used for final classification.

Because the first algorithm is hampered by supposing the abnormal sequences to be
consecutively clustered within the overall sequence, we conceived the second algorithm,
which extends the original average index difference function, allowing for an arbitrary lo-
cation of the anomalous sequences within the global sequence. Furthermore, the algorithm
extends the function to subsequences of symbols, the maximum length Mmax of which was
set via an information theoretic criterion. It compares index differences between neigh-
boring occurrences ∆

(
xM+1

)
to a ξ multiple of the empirical mean value ∆

(
xM+1

)
of

those index differences, in order to identify gaps between anomalous blocks prior to the
calculation of the average index difference.

Besides conceiving the algorithms, our contribution consisted of showing how suitable
settings for all the parameters both for the case of stationary ergodic generation and i.i.d.
generation can be derived by theoretical considerations. We also deduced bounds for the
computational cost of both algorithms, showing how the average index difference of every
symbol within the sequence of length g can be computed in a time linear with g.

We evaluated the performance of the two algorithms using both computer security-
related real world data and artificial data, comparing our results to those of the previous
methods. Calculating the curves of the respective receiver operating characteristic, we
deduced the thresholds from the set of scalar values returned for S by the algorithms by
means of robust statistics. The experiments with the i.i.d. data showed the preference of
the algorithms for symbol distributions featuring exponentially distributed symbol prob-
abilities i.e. a small group of symbols features large generation probabilities, while the
generation probability of the majority of the alphabet is very small. For those exponen-

94



tial distributions the two algorithms showed a performance equal to those of the previous
methods, while for distributions featuring a uniform spectrum of generation probabilities,
there was a notable gap of performance. Those findings were supported by the good results
for computer-security related experiments, where the task consisted of finding anomalous
records within a set of computer network session logs. The records feature a large alphabet
of commands with exponentially distributed probabilities. Comparison with the previous
methods showed that while the second algorithm is inferior for high false positive rates, in
case of false positive rates below ten percent, it yields comparable or superior performance.
Contrary, the first algorithm showed higher true positive rates at the price of an increased
false positive rate.

Our second approach to the problem, which we explained in Chapter 3, computes the
matrix of pairwise distances of the set of sequences S by mapping them into a numeri-
cal space via a suitable kernel function, turning the scenario into a spatial classification
problem.

The algorithm conceived works as follows: First we map the sequences of S into a vector
space using a suitable kernel, such that the vectors calculated from the sequences output
by a stationary source will form a hypersphere. After calculating the matrix of pairwise
distances of the vectors, we select a sequence close to the center of the hypersphere of the
normal data as a representative of the normal data. This is done by using the distance
matrix to calculate the radius β necessary to cover a share of θ of the n sequences for
any sequence within S. The sequence with minimum β is chosen as representative of the
normal data. Finally, the sequences are classified according to their distance from the
representative sequence.

Besides the algorithm, our contribution consisted of theoretically explaining the choice
and parameter setting of the kernel function used for our experiments, the so-called spec-
trum kernel. Using the structural similarities between the kernel and a probabilistic suffix
tree, we showed how the optimized depth of the tree may be used for setting the dimen-
sional parameter of the spectrum kernel. This parameter regulates the subsequence length
for mapping. Moreover, we explained the setting of the key parameter of the algorithm, θ.
We also deduced bounds of the computational complexity of the algorithm.

We evaluated the performance of the algorithm using both real world data and artificial
data, comparing our results to those of the previous methods. We used the same ROC
calculation method as in Chapter 2. The experiments using i.i.d. generated artificial
data showed that while for a uniform spectrum of generation probabilities our algorithm
performs slightly worse than the previous approaches, this performance is stable for a wide
range of anomalous shares ρ. Although the performance was stable for the theoretically
deduced range of θ in case of artificial data, the results for computer-security related data
showed that structural complexities of the data may decrease the performance for the lower
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half of the theoretical range. Using data related to bioinformatics, we showed the superior
performance of our algorithm for the difficult case of a combination of high entropy of the
normal data and low entropy of the anomalous data.

Possible future research includes the subsequent problems:

• Extended investigation of the properties of the average index difference function for
certain scenarios
We showed the convergence of the expected value of the average index difference
function for stationary ergodic symbol, but the speed of convergence could not be
determined. Expressing the speed of convergence as a function on the memory length
and alphabet size of the data source poses an interesting theoretical problem. Another
point is the bounding of the variance of the function.

• Testing of representative sequence selection algorithm for various kernels
So far, we only examined the combination of the representative sequence selection
algorithm and the spectrum kernel. The good results of this combination invite
experiments with other kernels, as well as experiments involving kernelized spatial
data.

• Extension of one or both approaches to multi-class problems
We only dealt with the problem of one-class unsupervised anomaly detection. How-
ever, many applications involve multiple normal classes. An extension of one or
both approaches to this more general scenario would broaden the applicability of our
approaches.
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Appendix A

Proofs

Lemma A.1
For an infinite sequence of symbols x ∈ X = {a1, a2, . . . , aZ−1, aZ} generated by a station-
ary ergodic source, given that the symbol a? was found at index i, the expected value of
the recurrence time of a?, which may be written as

E (R) =
∞∑

k=1

k · P (xi = a? |xi+1 6= a?, . . . , xi+k−1 6= a?, xi+k = a?) , (A.1)

is the inverse of the stationary generation probability of the symbol a?.

E (R) =
1

P (x = a?)
(A.2)

For the complete proof, see [80].

Lemma A.2
For a sequence of g symbols xg ∈ X g generated by a single stationary ergodic source, for the
conditional average index difference of the symbol found at index j = dg · ye (0 < y < 1),
the subsequent expected value holds

E (Tj (x) |Cb, Ca) =
1

2 · PN
X (x)

·
(

C2
b + C2

a

Cb + Ca
+ 1

)
(A.3)

Proof:
The index difference of consecutive identical symbols is a stationary ergodic process. We
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first state

E

(
Cb∑
o=1

(
j − jb

o

)
|Cb, Ca

)
= E

(
Cb∑
o=1

(Cb + 1 − o) ·
(
jb
o−1 − jb

o

)
|Cb, Ca

)

=
Cb∑
o=1

(Cb + 1 − o) · E
(
jb
o−1 − jb

o |Cb, Ca

)
=

Cb∑
o=1

(Cb + 1 − o) · j

Cb + 1
(A.4)

=
Cb · j

2
, (A.5)

with
jb
0

def= j (A.6)

(A.4) can be derived as follows. We suppose a hypothetical occurrence x identical to the
one at index j at the imaginary index 0, the index of which we will annotate as jb

Cb+1.
Then the expected value of the sum of the index differences of neighboring occurrences of
x with index equal to or below j may be expressed as

E

(
Cb+1∑
o=1

(
jb
o−1 − jb

o

)
|Cb, Ca

)
= j (A.7)

(A.8)

and

Cb+1∑
o=1

E
(
jb
o−1 − jb

o |Cb, Ca

)
= j. (A.9)

(A.10)

Because of the stationarity of the sequence, the expected value is independent of the re-
spective indices. Therefore,

E
(
jb
o−1 − jb

o |Cb, Ca

)
=

j

Cb + 1
∀o ∈ {1, . . . , Cb + 1} (A.11)

holds. A derivation similar to the above yields

E

 Ca∑
q=1

(
j − ja

q

)
|Cb, Ca

 =
Ca · (g − j)

2
. (A.12)
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We move on to

E (Tj (x) |Cb, Ca) = E

(∑Cb
o=1

(
j − jb

o

)
+

∑Ca
q=1

(
ja
q − j

)
Cb + Ca

|Cb, Ca

)

=
E

(∑Cb
o=1

(
j − jb

o

)
|Cb

)
+ E

(∑Ca
q=1

(
ja
q − j

)
|Ca

)
Cb + Ca

=
1

Cb + Ca
· Cbj + Ca · (g − j)

2
(A.13)

=
Cbj + Ca · (g − j)

2 · (Cb + Ca)
, (A.14)

where (A.13) follows from (A.5) and (A.12). This finishes the proof.

Note that the derivatives of (A.14) with respect to Cb and Ca read

dE (Tj (x) |Cb, Ca)
dCb

=
Ca · (2j − g)
2 (Cb + Ca)

2 (A.15)

and
dE (Tj (x) |Cb, Ca)

dCa
=

Cb · (g − 2j)
2 (Cb + Ca)

2 (A.16)

A.1 Proof of Theorem 2.1: Expected Value of the Average
Index Difference in Case of Stationary Ergodic Symbol
Generation

For simplicity, we represent E (Tj (x) |lA = 0) by E (Tj (x)). We first present some
definitions

j = dy · ge; 0 < y <
1
2

(A.17)

0 < δ < 1 (A.18)

The limitation of j is valid because of the symmetry of the function.

A ,
{
Cb : PN

X (x) · g · y · (1 − δ) ≤ Cb ≤ PN
X (x) · g · y · (1 + δ)

}
(A.19)

B ,
{
Ca : PN

X (x) · g · (1 − y) · (1 − δ) ≤ Ca ≤ PN
X (x) · g · (1 − y) · (1 + δ)

}
(A.20)
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Rewriting the definition of the expected value of the average index difference using above
definitions and dividing both sides by g, we get

E (Tj (x))
g

=

∑y·g
Cb=0

∑(1−y)·g
Ca=0 PN (Cb, Ca) · E (Tj (x) |Cb, Ca)

g

=

 ∑
Cb∈A∩Ca∈B

PN (Cb, Ca) · E (Tj (x) |Cb, Ca) ·
1
g

+
∑

Cb /∈A∪Ca /∈B

PN (Cb, Ca) · E (Tj (x) |Cb, Ca) ·
1
g


(A.21)

The upper and the lower bound of (A.21) read as follows, with ε expressing the probability
of Ca and/or Cb falling outside the range defined by (A.20) and (A.19):

E (Tj (x))
g

≤

 ∑
Cb∈A∩Ca∈B

PN (Cb, Ca) · E (Tj (x) |Cb, Ca) ·
1
g

+

ε︷ ︸︸ ︷∑
Cb /∈A∪Ca /∈B

PN (Cb, Ca) ·g · 1
g


=

 ∑
Cb∈A∩Ca∈B

PN (Cb, Ca) · E (Tj (x) |Cb, Ca) ·
1
g

+ ε


≤ E (Tj (x)

∣∣Cb = PN
X (x) · g · y · (1 − δ) ,

Ca = PN
X (x) · g · (1 − y) · (1 + δ)

)
· 1
g

+ ε (A.22)

≤ 1
2

(
g2y2 (1 − δ) + g2 (1 − y)2 (1 − δ + 2δ)

g (1 − δ)

)
1
g

+ ε (A.23)

=
1
2

(
j2 + (g − j)2

g
+

(g − j)2 · 2δ

g (1 − δ)

)
1
g

+ ε (A.24)

Where inequality (A.22) holds because E (Tj (x) |Cb, Ca) is a monotonically decreasing
function of Cb and a monotonically increasing function of Ca for 0 < y < 1

2 , as can be seen
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from (A.15) and (A.16).

E (Tj (x))
g

≥
∑

Cb∈A∩Ca∈B
PN (Cb, Ca) · E (Tj (x) |Cb, Ca) ·

1
g

≥ (1 − ε) · E
(
Tj (x) |Cb = PN

X (x) · g · y · (1 + δ) ,

Ca = PN
X (x) · g · (1 − y) · (1 − δ)

)
· 1
g

(A.25)

≥ (1 − ε)
1
2
· g2y2 (1 + δ) + g2 (1 − y)2 (1 + δ − 2δ)

g (1 + δ)
· 1
g

(A.26)

= (1 − ε)
1
2
·

(
j2 + (g − j)2

g
− (g − j)2 · 2δ

g · (1 + δ)

)
1
g

(A.27)

Raising g to infinity, ε will converge to zero, and δ can be selected arbitrarily small, causing
(A.22) and (A.25) to coincide. Hence, we have

lim
g→∞

1
g
·
∣∣∣∣E (Tj (x) |lA = 0) − 1

2

(
j2 + (g − j)2

g

)∣∣∣∣ = 0 (A.28)

This completes the proof of theorem 2.1.

A.2 Proof of Theorem 2.2: Expected Value of the Average
Index Difference in Case of i.i.d. Symbol Generation

The general approximation (2.12) yields a rather demanding condition (2.14). However,
in case of i.i.d. generation, we may derive an expression of expected value valid for any
PN

X (x) > 0. Consider a sequence of length g. With a generation probability of PN
X (x), the

expected value of (2.6) may be written as a sum of expected values:

E (Tj(x)|lA = 0) =
g−1∑

Cb+Ca=0

E (Tj(x)|lA = 0, Cb + Ca) · P (Cb + Ca) (A.29)

The conditional expected value on the right side of (A.29) may be rewritten as follows in
case of Cb + Ca > 0

E (Tj(x)|lA = 0, Cb + Ca) =

=
1

Cb + Ca
· E

 Cb∑
o=1

∣∣∣j − jb
o

∣∣∣ +
Ca∑
q=1

∣∣j − ja
q

∣∣ |Cb + Ca

 (A.30)

=
1

Cb + Ca
· E

j−1∑
o=1

v (j − o) · o +
g−j∑
q=1

v (j + q) · q|Cb + Ca

 (A.31)
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Here, v (p) represents a binary variable signalizing wether or not a symbol x has been
generated at index p. Because of i.i.d. symbol generation, those variables obey an i.i.d.
distribution with respect to all possible occurrence combinations for the fixed value Cb +Ca:

P (v (p) = 1|Cb + Ca) =
Cb + Ca

g − 1
(A.32)

P (v (p) = 0|Cb + Ca) = 1 − Cb + Ca

g − 1
(A.33)

Thus, (A.31) may be resolved to

E (Tj(x)|lA = 0, Cb + Ca) =

=
1

Cb + Ca
· E

 Cb∑
o=1

∣∣∣j − jb
o

∣∣∣ +
Ca∑
q=1

∣∣j − ja
q

∣∣ |Cb + Ca


=

1
Cb + Ca

·

j−1∑
o=1

E (v (j − o) |Cb + Ca) · o +
g−j∑
q=1

E (v (j + q) |Cb + Ca) · q


=

1
Cb + Ca

·

j−1∑
o=1

Cb + Ca

g − 1
· o +

g−j∑
q=1

Cb + Ca

g − 1
· q


=

1
g − 1

·
j−1∑
o=1

o +
g−j∑
q=1

q


=

1
2 · (j − 1) · j + 1

2 · (g − j) · (g − j + 1)
g − 1

=
j2 + (g − j)2 + (g − 2j)

2 (g − 1)

=

(
j2 + (g − j)2

2 (g − 1)
+

g − 2j

2 (g − 1)

)
(A.34)
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Inserting (A.34) into (A.29), we get

E (Tj(x)|lA = 0) =

=
g−1∑

Cb+Ca=0

E (Tj(x)|lA = 0, Cb + Ca) · P (Cb + Ca)

= (1 − P (Cb + Ca = 0)) ·

(
j2 + (g − j)2

2 (g − 1)
+

g − 2j

2 (g − 1)

)

=
(
1 −

(
1 − PN

X (x)
)g−1

)
·

(
j2 + (g − j)2

2 (g − 1)
+

g − 2j

2 (g − 1)

)
(A.35)

This completes the proof. With PN
X (x) fixed, (A.35) will converge to (2.12) for g → ∞.

A.2.1 Proof of Corollary 2.1: Bound of the Expected Value of the Av-
erage Index Difference in Case of i.i.d. Symbol Generation

We first present the following useful lower bound of (A.34):

E (Tj(x)|lA = 0, Cb + Ca) =

(
j2 + (g − j)2

2 (g − 1)
+

g − 2j

2 (g − 1)

)

=
g

g − 1
·

(
j2 + (g − j)2

2g
+

g − 2j

2g

)

>
j2 + (g − j)2

2g
+

g

g − 1
· g − 2j

2g
(A.36)

On the right side, we note the symmetry of the absolute value of the second term (which
is negative for j ≥ g

2 and positive otherwise) and the symmetry of the non-negative first
term with respect to j = g

2 . An upper bound of the absolute difference between (A.34)

103



and (2.12) may be deduced as follows:

∣∣∣∣∣E (Tj(x)|lA = 0, Cb + Ca) −
j2 + (g − j)2

2g

∣∣∣∣∣
=

∣∣∣∣∣
[

g

g − 1
·

(
j2 + (g − j)2

2g
+

g − 2j

2g

)]
− j2 + (g − j)2

2g

∣∣∣∣∣
=

∣∣∣∣∣
[

g

g − 1
·

(
j2 + (g − j)2

2g
+

g − 2j

2g

)]
−

[
g − 1
g − 1

·

(
j2 + (g − j)2

2g

)]∣∣∣∣∣
≤ 1

g − 1

∣∣∣∣∣[g − (g − 1)] ·

(
j2 + (g − j)2

2g

)∣∣∣∣∣ +
∣∣∣∣g · g − 2j

2g

∣∣∣∣ (A.37)

≤ 1
g − 1

·
(g

2
+

g

2

)
=

g

g − 1
(A.38)

≤ 2 (A.39)

The decomposition of (A.37) is valid because of the symmetry properties of the terms
within (A.36). (A.38) converges to 1 for g → ∞, while the relative difference is bounded
by

∣∣∣∣∣∣E (Tj(x)|lA = 0, Cb + Ca) − j2+(g−j)2

2g

j2+(g−j)2

2g

∣∣∣∣∣∣ ≤ 4
g − 1

≤ 4 (A.40)

and will converge to zero.

Using above relative bound, the overall expected value of the average index difference
may be bounded by

∣∣∣∣∣∣E (Tj(x)|lA = 0) − j2+(g−j)2

2g

j2+(g−j)2

2g

∣∣∣∣∣∣ ≤ 4
g − 1

+
(
1 − PN

X (x)
)g−1 ·

(
g + 3
g − 1

)
, (A.41)
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completing the proof. If PN
X (x) is not fixed, for suitably large g, the approximation

E (Tj(x)|lA = 0) =

=
(
1 −

(
1 − PN

X (x)
)g−1

)
·

[
g

g − 1
·

(
j2 + (g − j)2

2 · g
+

g − 2j

2g

)]

≈
(
1 −

(
1 − PN

X (x)
)g−1

)
·

(
j2 + (g − j)2

2g

)

≈
(
1 − exp−g·PN

X (x)
)
·

(
j2 + (g − j)2

2g

)
(A.42)

may be used, with the second approximation being the Poisson approximation of the bi-
nomial distribution.

The preceding arguments show that for a fixed Cb + Ca 6= 0, every index within the
overall sequence of length g (except j, of course) has the same chance of contributing to
the sum of index differences of (A.30). If we select any of the Cb + Ca occurrences at
random, the index of this occurrence is approximately uniformly distributed within [1, g].
This is true because for i.i.d. generation, the probability distribution of the index ji of the
ith occurrence of x counting from the start of a sequence of length g − 1 for a fixed total
number of occurrences Cb + Ca 6= 0 may be expressed as

P (ji) =

(
ji−1
i−1

)
·
(

g−1−ji
Cb+Ca−i

)(
g−1

Cb+Ca

)
ji ≥ i ; ji ≤ g − 1 − (Cb + Ca − i) , (A.43)

the so-called negative hypergeometric distribution [81]. The expected value of ji is

E (ji) = i · g

Cb + Ca + 1
. (A.44)

This shows the correctness of the approximation.

The situation is analogous to the subsequent urn experiment without replacement. The
urn is filled with g−1 balls numbered form 1 to g, excluding the index j. We draw Cb +Ca

balls without returning them. The numbers of the drawn balls are the occurrences of the
particular symbol x found at index j within the sequence of length g. We do not care about
the order of the drawn indices, only about their value. The index of each draw roughly
obeys a uniform distribution between 1 and g. If we draw all the balls from the urn, the
indices located within a subsection of the interval [1, g] are uniformly distributed within
the new sequence.
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Using the approximation introduced above, the expected value of the average index
difference for a fixed Cb + Ca may be approximated by

E (Tj(x)|lA = 0, Cb + Ca) =

=
1

Cb + Ca
· E

 Cb∑
o=1

∣∣∣j − jb
o

∣∣∣ +
Ca∑
q=1

∣∣j − ja
q

∣∣
≈ 1

Cb + Ca
·

Cb+Ca∑
q=1

E (|j − Uniform (1, g) |)

≈ 1
Cb + Ca

Cb+Ca∑
q=1

(
1
2
· j · j

g
+

1
2
· (g − j) · g − j

g

)

=
j2 + (g − j)2

2g

(A.45)

While this expected value is identical to the one (A.34) converges to, the variance of this
approximation provides an upper bound of the variance of the actual function, a fact that
will be used for the subsequent proof.
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A.3 Proof of Theorem 2.3: Upper Bound of the Variance of
the Average Index Difference in Case of No Anomaly
and i.i.d. Symbol Generation

While still dealing with small generation probabilities, we assume

PN
X (x) ≥ 5

g
. (A.46)

This enables the approximation the expected value by (2.12), as well as the bounding of the
variance of (2.6) by a weighted sum of partial variances, ignoring the case of Cb + Ca = 0:

Var (Tj(x)|lA = 0) =

=
g−1∑

Cb+Ca=1

E
(
((Tj(x)|lA = 0, Cb + Ca) − E (Tj(x)|lA = 0))2

)
· P (Cb + Ca)(A.47)

We start deducing an upper bound of the partial variance :

E
(
[(Tj(x)|lA = 0, Cb + Ca) − E (Tj(x)|lA = 0)]2

)
= E

 1
Cb + Ca

·

 Cb∑
o=1

∣∣∣j − jb
o

∣∣∣ +
Ca∑
q=1

∣∣j − ja
q

∣∣ − E (Tj(x)|lA = 0)

2
≤ E

 1
Cb + Ca

·
Cb+Ca∑

q=1

|j − Uniform (1, g) | − Cb + Ca

Cb + Ca
· E (Tj(x)| = 0)

2(A.48)

=
(

1
Cb + Ca

)2

· E

Cb+Ca∑
q=1

(|j − Uniform (1, g) | − E (Tj(x)|lA = 0))

2
=

(
1

Cb + Ca

)2

·
Cb+Ca∑

q=1

E
(
[|j − Uniform (1, g) | − E (Tj(x)|lA = 0)]2

)
, (A.49)
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which continues as

E
(
[(Tj(x)|lA = 0, Cb + Ca) − E (Tj(x)|lA = 0)]2

)
≤

(
1

Cb + Ca

)2

·
Cb+Ca∑

q=1

E
(
[|j − Uniform (1, g) | − E (Tj(x)|lA = 0)]2

)

≤ 1
Cb + Ca

· 1
g
·

g2

4
+

j−1∑
q=1

[q − E (Tj(x)|lA = 0)]2

+
g−j∑
q=1

[q − E (Tj(x)|lA = 0)]2

 (A.50)

≤ 1
Cb + Ca

· 1
g
·

[g

2
+ 2

]2
+

j−1∑
q=1

[∣∣∣∣∣q − j2 + (g − j)2

2g

∣∣∣∣∣ + 2

]2

+
g−j∑
q=1

[∣∣∣∣∣q − j2 + (g − j)2

2g

∣∣∣∣∣ + 2

]2
 (A.51)

Approximation (A.48) follows the line of argument used by the proof the expected value,
treating the indices of the occurrences of x as independent identically distributed random
variables, as described in (A.45). (A.49) is valid because the expected value of the average
index difference given by (2.12) is equal to the expected value of the index difference
between the j and an index randomly selected from [1, g]. (A.50) resolves the expected
value and utilizes the fact that the Cb + Ca sum terms are identical. As we continue the
deduction, we restrict the range of j to

[
0, g

2

]
for certain transformations. This does not
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cause problems because of the symmetry of (A.51) with respect to j = g
2 .

E
(
[Tj (x) − E (Tj (x))]2 |lA = 0, Cb + Ca

)
≤ 1

Cb + Ca
· 1
g
·

[g

2
+ 2

]2
+

j−1∑
q=1

[∣∣∣∣∣q − j2 + (g − j)2

2g

∣∣∣∣∣ + 2

]2

+
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+
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2

∣∣∣ + 2
]2

+
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q=1

[∣∣∣q − g
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 (A.52)

≤ 1
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2
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· 1
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=
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(
g + 2 +

2
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2
g
·

g
2 ·

(g
2 + 1
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· (g + 1)

6
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≤ 1
Cb + Ca

·
(

g + 2 +
2
g

+
g2 + 3g + 2

12

)
(A.53)

(A.54)

The upper bound of (A.52) is founded upon the following argument. The function

S(p) =
z∑

q=1

(|q − p| + y)2 z > 0, y > 0 (A.55)

is symmetric with respect a single global minimum at p = z
2 , and is monotonically decreas-

ing for p < z
2 and monotonically increasing for p > z

2 . This means that for two values
p1, p2, S(p1) ≥ S(p2) holds if

∣∣ z
2 − p1

∣∣ ≥
∣∣ z
2 − p2

∣∣ is met. One can easily show that the
inequalities ∣∣∣∣ j2 − g

2

∣∣∣∣ ≥

∣∣∣∣∣ j2 − j2 + (g − j)2

2g

∣∣∣∣∣∣∣∣∣g − j

2
− g

2

∣∣∣∣ ≥

∣∣∣∣∣g − j

2
− j2 + (g − j)2

2g

∣∣∣∣∣
∀j ∈ [1, g] (A.56)
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hold. Thus, the bounding is valid.

Inserting (A.54) into (A.47), we get

Var (Tj(x)|lA = 0) ≤
g−1∑

Cb+Ca=1

P (Cb + Ca) · Var (Tj(x)|lA = 0, Cb + Ca)

≤
g−1∑

Cb+Ca=1

(
P (Cb + Ca) ·

1
Cb + Ca

·
[
g + 2 +

2
g

+
g2 + 3g + 2

12

])

=

(
1 +

2
g

+
2
g2

+
g + 3 + 2

g

12

)
·

g−1∑
Cb+Ca=1

(
P (Cb + Ca) ·

g

Cb + Ca

)

≤
g + 39 + 2

g

12 · PN
X (x)

(A.57)

This completes the proof.

110



Bibliography

[1] Stefansky, W.: Rejecting outliers in factorial designs. Technometrics, Vol. 14, No. 2,
pp. 469-479, 1972.

[2] Lazarevic, A., Kumar, V., Srivastava, J.: Intrusion Detection: A Survey. Massive Com-
puting, Vol. 5, Chapter 2, Springer, 2005.

[3] Sudjianto, A., Nair, S., Yuan, M., Zhang, A., Kern, D., Cela-Diaz, F.: Statistical Meth-
ods for Fighting Financial Crimes. Technometrics, Vol. 52, No. 1, pp. 5-19, February
2010.

[4] Chang, L., Chen, C.: Detection of Ocean Surface Anomaly Using Optical Satellite
Image. The 30th Asian Conference on Remote Sensing, 2009.

[5] Minhas, A. S., Redd, M. R.: Neural Network based Approach for Anomaly Detection in
the Lungs Region by Electrical Impedance Tomography. Physiological Measurements,
Vol. 26, No. 4, pp. 489-502, August 2005.

[6] Grubbs, F. E.: Procedures for Detecting Outlying Observations in Samples. Techno-
metrics, Vol. 11, No. 1, pp. 1-21, 1969.

[7] Hawkins, D. M.: Identification of Outliers. Chapman and Hall, 1980.

[8] Lian, D. et al.: Cluster-Based Outlier Detection. Annals of Operations Research, Vol.
168, No. 1, pp. 151-168, 2009.

[9] Chandola, V., Banerjee, A., Kumar, V.: Anomaly Detection - A Survey. ACM Com-
puting Surveys, Vol. 41, No. 3, Article 15, July 2009.

[10] Schoelkopf, B., Platt, J. C., Shawe-Taylor, J. C., Smola, A. J., Williamson, R. C.:
Estimating the Support of a High-Dimensional Distribution. Neural Computation, Vol.
13, No. 7, pp. 1443-1471, 2001.

[11] Vapnik, V. N.: The Nature of Statistical Learning Theory. Springer, 1995.

111



[12] Hoffman, T., Schoelkopf, B., Smola, A.: Kernel Methods in Machine Learning. The
Annals of Machine Learning, Vol. 36, No. 3, pp. 1171-1220, January 2000.

[13] Rajasegarar, S., Leckie, C., Bezdek, J. C., Palaniswami, M.: Centered Hyperspherical
and Hyperellipsoidal One-Class Support Vector Machines for Anomaly Detection in
Sensor Networks. IEEE Transactions on Information Forensics and Security, Vol. 5,
No. 3, pp. 518-533, September 2010.

[14] Tsang, I. V., Kwok, J. T., Cheung, P.: Core Vector Machines: Fast SVM Training
on Very Large Data Sets. Journal of Machine Learning Research, Vol. 6, pp. 363-392,
January 2005.

[15] Markou M., Singh, S.: Novelty Detection: A Review - Part 2: Neural network Based
Approaches. Signal Processing, Vol. 83, No. 12, pp. 2481-2497, December 2003.

[16] Cohen, W. W.: Fast Effective Rule Induction. Proceedings of the 12th International
Conference on Machine Learning, pp. 115-123, 1995.

[17] Cohen, W. W.: Learning Trees and Rules with Set-Valued features. Proceedings of
the 13th National Conference on Artificial Intelligence and 8th Innovative Applications
of Artificial Intelligence Conference, Vol. 1, pp. 709-716, 1996.

[18] Shoemaker, C., Ruiz, C.: Association Rule Mining Algorithms for Set-valued Data.
Proceedings of the 4th International Conference on Intelligent Data Engineering and
Automated Learning. Lecture Notes on Computer Science, Vol. 2690, Springer, 2003.

[19] Jolliffe, I.: Principal Component Analysis. Springer, 2002.

[20] Shyu, M., Chen, S., Sarinnapakorn, K., Chang, L.: A Novel Anomaly Detection
Scheme Based on Principal Component Classifier. Proceedings of the IEEE Founda-
tions and New Directions of Data Mining Workshop, in conjunction with the 3rd IEEE
International Conference on Data Mining (ICDM03), pp. 172-179, November 2003.

[21] Kwitt, R., Hofmann, U.: Unsupervised Anomaly Detection in Network Traffic by
Means of Robust PCA. Proceedings of the International Multi-Conference on Comput-
ing in the Global Information Technology, pp. 37-41, 2007.

[22] Eskin, E., Arnold, A., Prereau, M., Portony, L., Stolfo, S.: A Geometric Framework
for Unsupervised Anomaly Detection: Detecting Intrusions in Unlabeled Data. Appli-
cations of Data Mining in Computer Security. Kluwer Academic Publishers, 2002.

[23] Breunig, M. M., Kriegel, H.-P., Ng, R. T., Sander, J.: LOF: Identifying Density-
Based Local Outliers. Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 93-104, 2000.

112



[24] Xu, R., Wunsch, D.C.: Clustering. IEEE Computational Intelligence Society, 2009.

[25] Gaddam, S., Phoha, V., Balagani, K.: K-Means+ID3: A Novel Method for Supervised
Anomaly Detection by Cascading K-Means Clustering and ID3 Decision Tree Learning
Methods. IEEE Transactions on Knowledge and Data Engineering, Vol. 19, No. 3, pp.
345-354, March 2007.

[26] Gath, I., Geva, A. B.: Unsupervised Optimal Fuzzy Clustering. IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 11, No. 7, pp. 773-780, July 1989.

[27] Moshtaghi, M., Rajasegarar, S., Leckie, C., Karunasekera, S.: Anomaly Detection
by Clustering Ellipsoids in Wireless Sensor Networks. 5th International Conference on
Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp. 331-336,
December 2009.

[28] Leung, K., Leckie, C.: Unsupervised Anomaly Detection in Network Intrusion Detec-
tion Using Clusters. Proceedings of the 28th Australasian Computer Security Confer-
ence, pp. 333-342, 2005.

[29] Veracini, T., Matteoli, S., Diani, M., Corsini, G.: Fully Unsupervised Learning of
Gaussian Mixtures for Anomaly Detection in Hyperspectral Imagery. 9th International
Conference on Intelligent Systems Design and Applications, pp. 596-601, 2009.

[30] Dempster, S. P., Laird, N. M., Rubin, D. B.: Maximum Likelihood from Incomplete
Data Via the EM Algorithm. Journal of the Royal Statistical Society Series B (Method-
ological), Vol. 39, No. 1, pp. 1-38, 1977.

[31] Yamanishi, K., Takeuchi, J.: Discovering Outlier Filtering Rules from Unlabeled Data:
Combining a Supervised Learner with an Unsupervised Learner. Proceedings of the 7th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 389-394, 2001.

[32] Parzen, E.: On the Estimation of a Probability Density Function and Mode. Annals
of Mathematical Statistics, Vol. 33, pp. 1065-1076, 1962.

[33] Yamanishi, K., Takeuchi, J., Williamas, G., Milne, P.: On-line Unsupervised Outlier
Detection Using Finite Mixtures with Discounting Learning Algorithms. Data Mining
and Knowledge Discovery Journal, Vol. 8, No. 3, pp. 275-300, May 2004.

[34] Chen, D., Shao, X., Hu, B., Su, Q.: Simultaneous Wavelength Selection and Outlier
Detection in Multivariate Regression of Near-Infrared Spectra. Analytical Sciences, Vol.
21, No. 2, pp. 161-167, 2005.

[35] Kolmogorov, A. N.: Three Approaches to the Quantitative Definition of Information.
Problems of Information Transmission, Vol. 1, No. 1, pp. 1-7, 1965.

113



[36] Callegari, C., Giordano, S., Pagano, M.: On the Use of Compression Algorithms for
Network Anomaly Detection. IEEE International Conference on Communications 2009
(ICC ’09), pp. 1-5, June 2009.

[37] Lee, W., Xiang, D.: Information-Theoretic Measures for Anomaly Detection. Proceed-
ings of the 2001 IEEE Symposium on Security and Privacy (S&P 2001), pp. 130-143,
2001.

[38] Yamanishi, K., Maruyama, Y.: Dynamic Model Selection with Its Applications to
Novelty Detection. IEEE Transactions on Information Theory , Vol. 53, No. 6, pp.
2180-2189, June 2007.

[39] He, Z., Xu, X., Deng, S.: An Optimization Model for Outlier Detection in Categorical
Data. Proceedings of the International Conference on Intelligent Computing, Lecture
Notes in Computer Science, Vol. 3644, Springer, 2005.

[40] Sculley, D., Brodley, C. E.: Compression and Machine Learning: A New Perspective
on Feature Space Vectors. Proceedings of the Data Compression Conference 2006 (DCC
2006), pp. 332-341, March 2006.

[41] Li, M., Chen, X., Li, X., Ma, B., Vitanyi, P. M. B.: The Similarity Metric. IEEE
Transactions on Information Theory, Vol. 50, No. 12, pp. 3250-3264, December 2004.

[42] Chandola, V., Mithal, V., Kumar, V.: A Comparative Evaluation of Anomaly Detec-
tion Techniques for Sequence Data. Technical Report of the University of Minnesota,
2008.

[43] Sun, P., Chawla, S., Arunasalam, B.: Mining for Outliers in Sequential Databases.
Proceedings of the SIAM Conference in Data Mining, pp. 3-14, 2006.

[44] Srivastava, A. N., Eskin, E., Noble, W. S.: Discovering System Health Anomalies
Using Data Mining Techniques. Proceedings of 2005 Joint Army Navy Nasa Air Force
Conference on Propulsion, 2005.

[45] Maxion, R., Townsend, T.: Masquerade Detection Augmented With Error Analysis,
IEEE Transactions on Reliability, Vol. 53, No. 1, pp. 124-147, 2004.

[46] Forrest, S., Hofmeyer, S., Somayai, A., Longstaff, T.: A Sense of Self for Unix Pro-
cesses. Proceedings of the IEEE Symposium on Security and Privacy, pp. 120-128,
1996.

[47] Boriah, S., Chandola, V., Kumar, V.: Similarity Measures for Categorical Data: A
Comparative Evaluation. Proceedings of the 8th SIAM International Conference on
Data Mining, pp. 243-254, 2008.

114



[48] Low-Kam, C., Laurent, A., Teisseire, M.: Detection of Sequential Outliers Using a
Variable Length Markov Model. Seventh International Conference on Machine Learning
and Applications, pp. 571-576, 2008.

[49] Ron, D., Singer, Y., Tishby, N.: The Power of Amnesia: Learning Probabilistic Au-
tomata with Variable Memory Length. Machine Learning, Vol. 25, No. 2, pp. 117-149,
1996.

[50] Agrawal, R., Srikant, R.: Mining Sequential Patterns. Eleventh International Confer-
ence on Data Engineering, pp. 3-14, 1995.

[51] Leslie, C. S., Eskin, E., Noble, W. S.: The Spectrum Kernel: A String Kernel for
SVM Protein Classification. Proceedings of the Pacific Biocomputing Symposium, pp.
564-575, 2002.

[52] Kennel, M.: Statistical Test for Dynamical Nonstationarity in Observed Time-Series
Data. Physical Review E, Vol. 56, No. 1, pp. 316-321, 1997.

[53] Rieke, C., Sternickel, K., Andrzejak, R., Elger, C., David, P., Lehnertz, K.: Measuring
Nonstationarity by Analyzing the Loss of Recurrence in Dynamical Systems. Physical
Review Letters, Vol. 88, No. 24, Article No. 244102, 2002.

[54] Rieke, C., Andrzejak, R., Mormann, F., Lehnertz, K.: Improved Statistical Test for
Nonstationarity Using Recurrence Time Statistics. Physical Review E, Vol. 69, No. 4,
Article No. 046111, 2004.

[55] Skudlarek S., Yamamoto, H.: Anomaly Detection Using Time Index Differences of
Identical Symbols with and without Training Data. Proceedings of the 5th International
Conference on Advanced Data Mining and Applications, pp. 619-626, 2009.

[56] Skudlarek S., Yamamoto, H.: Representative Sequence Selection in Unsupervised
Anomaly Detection using Spectrum Kernel with Theoretical Parameter Setting. Pro-
ceedings of the 2010 International Conference on Machine Learning and Cybernetics,
pp. 2099-2104, 2010.

[57] Cover, T., Thomas, J.: Elements of Information Theory. Wiley & Sons, 2006.

[58] Hirata, M., Saussol, B., Vaienti, S.: Statistics of Return Times: A General Framework
and New Applications. Communications in Mathematical Physics, Vol. 206, No. 1, pp.
33-55, 1999.

[59] Abadi, M.: Exponential Approximation for Hitting Times in Mixing Processes. Math-
ematical Physics Electronic Journal, Vol. 7, No. 2, pp. 19, 2001.

[60] Fawcett, T.: An Introduction to ROC Analysis. Pattern Recognition Letters, Vol. 27,
No. 8, pp. 861-874, June 2006.

115



[61] Huber, P. J.: Robust Statistics. Wiley, 1981.

[62] Schonlau, M., DuMouchel, W., Ju, W., Karr, A., Theus, M., Vardi,Y.: Computer
Anomaly: Detecting Masquerades. Statistical Science, Vol. 16, No. 1, pp. 58-74, 2001.

[63] Bertachini, M., Fierens, P.I.: A Survey on Masquerader Detection Approaches. Pro-
ceedings of the Fifth Ibero-American Congress on Information Security, 2009.

[64] Chen, Y., Dang, X., Peng, H., Bart, H. L.: Outlier Detection with the Kernelized Spa-
tial Depth Function. IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 31, No. 2, pp. 288-305, February 2009.

[65] Jaakkola,T., Diekhans, M., Haussler, D.: A Discriminative Framework for Detecting
Remote Protein Homologies. Journal of Computational Biology, Vol. 7, No. 1-2, pp.
95-114, 2000.

[66] Maetschke, S., Gallagher, M., Boden, M.: A Comparison of Sequence Kernels for
Localization Prediction of Transmembrane Proteins. Proceedings of the CIBCB 2007
Symposium, pp. 367-372, April 2007.

[67] Saigo, H., Vert, J.-P., Ueda, N., Akutsu, T.: Protein Homology Detection Using String
Alignment Kernels. Bioinformatics, Vol. 20, No. 11, pp. 1682-1689, July 2004.

[68] Leslie, C. S., Eskin, E., Cohen, A., Weston, J., Noble, W. S.: Mismatch String Kernels
for Discriminative Protein Classification. Bioinformatics, Vol. 20, No. 4, pp. 467-476,
2004.

[69] Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text Classifi-
cation Using String Kernels. Journal of Machine Learning Research, Vol. 2, pp. 419-444,
2002.

[70] Rieck, K., Laskov, P., Mueller, K. R.: Efficient Algorithms for Similarity Measures
over Sequential Data: A Look Beyond Kernels. Proceedings. of 28th DAGM Symposium
on Pattern Recognition, Lecture Notes in Computer Science, pp. 374-383, September
2006.

[71] Burnham K. P., Anderson D. R.: Model Selection and Multimodel Inference. Springer,
2002.

[72] Konishi, S. and Kitagawa, G.: Information Criteria and Statistical Modeling. Springer,
2008.

[73] Akaike, H.: A New Look at the Statistical Model Identification. IEEE Transactions
on Automatic Control, Vol. 19, No. 6, pp. 716-723, 1974.

116



[74] Schwarz, G.: Estimating the Dimension of a Model. The Annals of Statistics, Vol. 6,
No. 2, pp. 461-464, 1978.

[75] Sugiura, N.: Further Analysis of the Data by Akaike’s Information Criterion and the
Finite Corrections. Communications in Statistics, Theory and Methods, Vol. 7, No. 1,
pp. 13-26, 1978.

[76] Vereshchagin, N. K., Vitanyi, P.: Kolmogorov’s Structure Functions and Model Se-
lection. IEEE Transactions on Information Theory, Vol. 50, No. 12, pp. 3265-3290,
December 2004.

[77] Adriaans, P., Vitanyi, P.: Approximation of the Two-Part MDL Code. IEEE Trans-
actions on Information Theory, Vol. 55, No. 1, pp. 444-457, January 2009.

[78] Vishvanathan, S. V. N. and Smola, A. J.: Fast kernels for string and tree matching.
Kernel Methods in Computational Biology. MIT Press, pp. 113-130, 2004.

[79] Bateman, A., Birney, E., Durbin, R., Eddy, S. R., Howe, K. L. and Sonnhammer, E.
L.: The Pfam Protein Families Database. Nucleic Acids Research, Vol. 28, No. 1, pp.
263-266, January 2000.

[80] Kac, M.: On the Notion of Recurrence in Discrete Stochastic Processes. Bulletin of
the American Mathematical Society, Vol. 53, No. 10, pp. 1002-1010, October 1947.

[81] Schuster, E. F., Sype, W. R.: On the Negative Hypergeometric Distribution. Interna-
tional Journal of Mathematical Education in Science and Technology, Vol. 18, No. 3,
pp. 453-459, 1987.

117


