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Abstract 
 

Motion is one of the most important ways for humans to communicate with 

environments, that is, with other people and objects. However, there are patients have 

a clear consciousness but are not able to move their body because of injuries to their 

peripheral motor nerves or voluntary muscles. In these cases, Brain Computer 

Interface (BCI) can bypass the injured parts, directly link brain activity to artificial 

devices, and enable paralyzed patients to move as healthy people. 

 In recent years, many researchers have focused on BCI with invasive 

measurements such as implanted microelectrode arrays or electrocorticography 

(ECoG). These methods directly record brain activities from the brain surface, thus 

they are accurate but not safe and reliable. On the other hand, non-invasive methods 

such as electroencephalography (EEG) and magnetoencephalography (MEG) can 

record brain activity from outside the head and thus are safer and more convenient. 

However, non-invasive methods are easily contaminated by environmental noise and 

thus making it difficult to extract motion patterns. Therefore, current non-invasive 

studies can not provide an efficient prediction and the motion related features in 

continuous motion are yet to be revealed. 

The two most important problems in motion trajectory prediction are noise 

reduction and feature selection because the prediction will not be efficient and robust 

if the features used have too much noise. Therefore in this thesis, both noise reduction 

method and feature selection strategy are discussed to perform an efficient continuous 

motion prediction.  

To perform accurate prediction of motion trajectory from single trials data, a new 

effective noise reduction method with almost no brain activity loss is introduced. 

Firstly, the original spatiotemporal signal space separation (tSSS) method developed 

by Dr. Samu Taulu in Helsinki University of Technology is applied to our system and 

the signal loss problem in tSSS method is discussed. Then an innovative improvement 

on tSSS method, a compensation process which suppresses noise and preserves brain 

signals simultaneously, is introduced. With the compensation process, our method 

shows very good noise reduction performance for both simulation of and the 

application to real MEG data. It should be noted that our method can be applied to all 

kinds of MEG systems, whereas the original method can be applied only to the MEG 

system with both gradiometers and magnetometers. 

A study on 1-D continuous motion using a tool bar is then presented and 

compensation tSSS method is applied to the recorded MEG data to reduce noise. It 

was found out that MEG signal spectrums of certain frequency bands closely 

resemble motion parameters and thus these spectrums are used to predict motion 

trajectory. Thus, in this study, the correlations averaged across all subjects between 
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brain activity spectrum and motion parameters are investigated, and several 

motion-related features that have relatively high correlation values are extracted out. 

Moreover, different channel selection models and time-windows are adopted, and 

proper features that enable us to improve predictions are determined by multivariate 

linear regression prediction. With spectral, spatial, and temporal feature selection, an 

effective motion trajectory prediction with relatively high correlation coefficients 

(average value across all subjects is 0.59, p < 0.001) is achieved on the 5 epoch 

averaged data preprocessed by compensation tSSS method.  

To further improve the prediction performance and provide an acceptable single 

trial motion prediction, differences in brain mechanism between subjects are 

considered and a more robust frequency feature selection model is proposed. In this 

study, motion related frequency features ranged from μ (8-16Hz) and β rhythm 

(18-24Hz) to low frequency δ rhythm (5-7Hz) and some part of high frequency γ 

bands (30-50Hz, 60-70Hz) are determined for each subject. By combining these 

selected subject-dependent frequency features, the prediction performance is further 

improved and this improvement is significant for most subjects. From the prediction 

performance of all subjects, it is concluded that using the correlation based feature 

selection method, single-trial MEG data could also predict continuous motion well (R 

= 0.46) with few features (less than 100).  

Moreover, two other tasks are performed and the robustness of our feature 

selection method on different motion cycles and external devices is proven. In task 1, 

similar motion using a different device (trackball) is performed and the prediction 

results confirm that our feature selection method worked equally well on different 

devices which indicates a robustness in different devices. In task 2, a different motion 

cycle without visual guidance is considered, and the efficiency of our feature selection 

method on different motion cycle, which showed a robustness in different motion, is 

confirmed. As there is no visual guidance, the selected features are verified to be from 

motion brain activities. From further contour map and source estimation studies, it is 

also confirmed that the sources of frequency features selected by our method is really 

located in the contralateral motor cortex and sensorimotor cortex, and thus motion 

related features. 

Our study reveals detailed characteristics of motion related activities which are 

consistent with ECoG and EEG studies. It also provides a guidance to select features 

and achieves a successful single trial motion trajectory prediction. The high quality 

prediction demonstrates that non-invasive measurement can predict motion 

comparably well as invasive measurement such as ECoG. Also, the prediction of 

continuous motion trajectory in our study provides a possibility of controlling external 

prosthetic devices. 
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Chapter 1  Introduction 

 

 

Chapter 1 provides the purpose of our thesis, and briefly reviews each chapter. 

Then we introduce the background of motor system and its pathway, as well as that of 

brain computer interface (BCI), which is a direct communication pathway between a 

brain and an external device. Current BCI researches and techniques are reviewed, 

and existing problems are discussed. Moreover, we introduce 

magnetoencephalography (MEG), which is a non-invasive measurement employed in 

the current study, noise conditions and data analysis method adopted in our research.  
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1.1 Brief review 

Brain computer interface (BCI) is a technology to directly connect brain and an 

external device. BCIs can be used for assisting paralyzed patient achieving certain 

motion, remote surgery or controlling robotic arms. However, current BCI studies 

mainly use invasive recording method or focus on discrete motion, which are not 

suitable for BCI real application. In our study, we discuss continuous motion using 

non-invasive recording method and propose a possible solution for future BCI 

application. 

The main purpose of this thesis is to develop a BCI that accurately predicts motion 

trajectory from brain signals non-invasively recorded with MEG. Specifically, we 

provide an efficient feature selection method that enables real-time prediction of 

motion trajectory. For an accurate prediction of motion trajectory from single-trial 

MEG data, extracting brain signal from environmental noise is vital. Therefore in 

chapter 2, we propose a new noise reduction method called compensation tSSS, which 

cope with the signal loss problem in a previous method (Taulu et al., 2006). We prove 

the effectiveness of our method from simulation data. In chapter 3, we present an 

MEG experiment to record brain activity when subjects moved their arm following a 

cyclic motion of visual target, and investigate temporal, spectral and spatial 

characteristics of motion related activities. We then talk about motion related feature 

characteristics and present an effective motion prediction. By using this feature 

selection protocol, we find that motion related μ-rhythm is the most important feature 

to achieve a good prediction. In chapter 4, we further consider a possibility for a 

subject-dependent frequency band selection, which includes δ-wave, β-wave, γ-band 

in addition to μ-rhythm. This is proven to be efficient in the prediction from single 

trial data. This is a great progress in non-invasive motion prediction. Finally in 

chapter 5, we discuss the features used for the motion prediction in sensor domain as 

well as in source domain. Both analyses provide the evidence that selected features 

are motion-related activities originating from motor cortex, not artifacts such as visual 

response. From these results, we propose that our subject-dependent feature selection 

method, in combination with noise-reduction method called compensation tSSS, is 

suitable for non-invasive BCI studies. 

In the following, we first introduce the background of our study which includes 

motor system, BCI, MEG recording and data analysis. 

 

1.2 Motor System 

Motion is one of the most important ways for human to communicate with 

environments such as other people or objects. During the motion procedure, many 

different parts of our body need to collaborate together and take charge in the 
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generation and control of voluntary and reflex movements. These parts comprise 

motor system. Motor system is a hierarchy and can be simply divided into low level, 

mediate level subcortical motor structures and high level motor cortex. As is shown in 

Figure 1 - 1, motor control is a complicated and distributed process. Low level of 

motor system includes muscles and spinal cords, and it mainly takes charge in 

transferring motor commands and translating motor command into motion. Muscle is 

the executor who executes all forms of movement by extension or contraction. 

Mediate level, or subcortical motor structures, contains cerebellum, basal ganglia and 

brainstem. These parts mainly combine and translate high level motor commands into 

detailed low level motor command. High level, or motor cortex, is the most important 

part which can generate motion commands and regulate low level structures directly 

or indirectly. 

 

 

Figure 1 - 1 Schematic diagram of the major components of the vertebrate 

motor systems (Gazzaniga et al., 2002).  

Arrows indicate the main neural connections between regions. 

 

 

The motor cortex is an area occupies part of the frontal lobe and parietal lobe 

which is involved of the planning, control, and execution of voluntary motor functions. 

Motor cortex is divided into several regions by Brodmann and Matelli (Brodmann, 

1909; Matelli et al., 1985, 1991). These regions are mainly the primary motor cortex 

Premotor 

and supplementary 

motor cortical regions 

Motor 

cortex 

Brainstem 
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Output 
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(to muscles) 
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(MI) and secondary motor cortices, including posterior parietal cortex, premotor 

cortex (PMC) and supplementary motor area (SMA). Primary motor cortex is anterior 

to the central sulcus, the anatomical division separating the frontal and parietal cortex. 

Primary motor cortex is responsible for generating the neural impulses controlling 

execution of movement and is the most prominent part in motor cortex. Different 

body parts are controlled by distinct areas of primary motor cortex, lined up along the 

central sulcus, as is shown in Figure 1 - 2. Posterior parietal cortex, premotor cortex 

and supplementary motor area are also responsible for some motion related functions 

and it is confirmed that these parts worked together and form a complex brain cortical 

networks (Luppino et al., 1990; He et al., 1993, 1995; Picard and Strick, 1996; Ikeda 

et al., 1999; Geyer et al., 2000; Picard and Strick, 2001; Matsumoto et al., 2003; 

Paxinos and Mai, 2004; Matsumoto et al., 2007).
 
However, motor system is a 

distributed system and other parts illustrated in Figure 1 - 3 also take part in motion 

control procedure. 

 

 

Figure 1 - 2 Human motor cortex topography (Ranson, 1920). 

Different body parts are represented by distinct areas, lined up along the central sulcus. 
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Figure 1 - 3 The motor related areas of the cerebral cortex.  

Area 4 is the primary motor cortex. Area 6 on the medial surface is referred to as 

supplementary area (SMA) and on the lateral surface as the premotor cortex (PMC). 

Prefrontal cortex includes the frontal eye fields. Lesions in many posterior areas also can 

produce severe problems in coordination. 

  

 

1.3  Brain computer interface (BCI) 

1.3.1 History of BCI 

In motor system, the motor cortex is obviously the essential part while other two 

are important as well. There are cases that patients who have clear conscious are not 

able to move their body, because of the injuries of their peripheral motor nerves or the 

muscles for execution. In these cases, BCI is a possible solution.  

A brain-computer-interface is a communication system in which the brain does 

not use nerves to transmit orders to the body or to the world outside. For paralyzed 

patients, it can replace the injured motor pathway and provide the patients with an 

alternative way for acting on the world, such as controlling a wheel chair to move. 

While for healthy people, BCI is an artificial extension of the brain in order to control 

computer cursor, cars or even the artificial robot arm. 

The first study on BCIs was done in the 1970s at the University of California Los 

Area 6 

Area 4 

http://en.wikipedia.org/wiki/University_of_California_Los_Angeles
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Angeles (UCLA) under a grant from the National Science Foundation, followed by a 

contract from DARPA (Vidal, 1973, 1977). And since then, BCI technology has 

developed exponentially. Early BCI researches briefly use invasive techniques such as 

implanted electrodes which is highly risky. Thus early researches mainly focus on 

animals such as rats or monkeys (Fetz, 1969; Schmidt et al., 1978). These researches 

reported that animals could perform simple tasks using only mind, such as moving a 

cursor on a monitor, or controlling a robotic arm. However, very few researches 

results on human are also reported during this period. In the 1980s, Apostolos 

Georgopoulos at Johns Hopkins University discovered a key mathematical correlation 

between the electrical responses of individual motor-cortex neurons in rhesus 

macaque monkeys and the direction that they moved their arms (Georgopoulos et al., 

1989). Since the mid-1990s, several groups have been able to capture complex brain 

motor cortex signals using recordings from groups of neurons and use these to control 

external devices, and BCI
 
comes to a rapid developing period (Serruya and Donoghue; 

Stanley et al., 1999; Wessberg et al., 2000; Serruya et al., 2002; Taylor et al., 2002; 

Carmena et al., 2003; Musallam et al., 2004; Lebedev et al., 2005; Santucci et al., 

2005; Lebedev and Nicolelis, 2006; Huber et al., 2008). 

  

http://en.wikipedia.org/wiki/National_Science_Foundation
http://en.wikipedia.org/wiki/DARPA
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1.3.2 Procedures of BCI 

 

 

Figure 1 - 4 Schematic illustration of the 4 major BCI components: signal 

acquisition, signal processing, output device, and operating protocol (Wolpaw 

et al., 2002). 

 

 A common BCI procedure includes four major components: signal acquisition, 

signal processing, output device, and operating protocol. Signal acquisition, or 

recording technique, is the basis of all BCI system. From the technique which is 

adopted in brain activity recording, BCIs fall into two categories: invasive and 

non-invasive ones (Schwartz et al., 2006). Invasive BCIs record the brain activity 

directly from the grey matter of the brain or inside the skull. These techniques are 

implanted electrode or electrode array (Kennedy and Bakay, 1998; Hochberg et al., 

2006) and Electrocorticography (ECoG) (Pistohl et al., 2008). As they rest in the grey 

matter or attach to brain cortex, invasive devices produce the highest quality signals 

of BCI devices. However, they are not stable and the signal will become weaker or 

even lost as the body reacts to a foreign object in the brain. On the other hand, 

non-invasive BCIs record the brain activity from outside of the skull. These 

techniques are Electroencephalography (EEG) (Taheri et al., 1994; Bogdan et al., 

2003), Magnetoencephalography (MEG) and functional magnetic resonance imaging 

(fMRI) (Sitaram et al., 2007; Miyawaki et al., 2008). Non-invasive devices are safe 

and easy to wear, but they produce poor signal resolution because the skull disperses 

and blurs the electromagnetic waves created by the neurons. This makes it difficult to 
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determine the specific area of the brain which creates them or the actions of individual 

neurons. Therefore, motion related features are not completely revealed in current 

non-invasive studies and the predictions are not as accurate and believable as invasive 

studies. In our study, we concentrate on non-invasive MEG recording and try to 

extract useful features. 

Signal processing includes mainly feature extraction and translation algorithm. 

By using these methods, motion related features of interest are extracted and then 

translated into motion commands for the output device. An ideal BCI would respond 

to initial characteristics of user‘s brain waveform features, adjust to its changes, and 

update as the user adapted to the system. Thus it is mainly about the algorithm and 

models used in the BCI prediction. Moreover, for non-invasive studies, data 

preprocessing, especially noise reduction method is very important, because high 

signal to noise ratio (SNR) could make the following process much easier. These parts 

are discussed in section 1.4. 

Output device implements the messages or commands conveyed by the 

translation algorithm. Based on the type of motion, BCI is divided into two categories: 

continuous and discrete BCI. In discrete BCI, only very limited motion commands are 

produced and the motion is discrete, such as moving left, right, forward and backward 

in a wheel chair control. The most common discrete BCI output device is a computer 

monitor on which user could input alphabets simply by thinking, or a wheel chair 

controlled by paralyzed patients. Although this kind of BCI devices provides some 

convenient ways to interact with environmental surroundings, it is very limited and 

not so natural because it is very different to most motions we performed in our daily 

life. For example in a lifting process, our arm gradually and slowly moves from the 

starting position to the end position, but not unexpectedly disappears at the starting 

position and suddenly reappears at the ending position. Therefore, continuous BCI 

providing continuous motion commands can achieve more complicated motion 

control such as computer cursor control, robotic arms and mobile robots. 

Operating protocol reflects how the user and the BCI interact. Signal acquisition 

and output device are hardware; signal processing is software, whereas the operating 

protocol is spirit of the design of BCI. Considering operating protocol, BCIs fall into 

two categories: dependent and independent. A dependent BCI needs an at least 

partially intact peripheral system. A dependent BCI could flash letters on a screen. A 

user could then choose the letters by gazing at them, while brain activity is recorded 

above the particular part of the brain that is active when gazing. From certain brain 

reaction, dependent BCI could recognize and send motion commands. An independent 

BCI, in contrary, works with signals that are totally independent of external cues. The 

flashing letters in the former example would be chosen not by the user brain activity 

of gazing but by "thinking". Although dependent BCIs are easier to make, they are not 

convenient and some severely paralyzed patients could not use them. In our study, we 
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focus on the independent BCI. Although we use visual cues, it is not for arouse 

cue-depend patterns and the successful prediction in task without visual cues also 

confirms this fact.  

 

1.3.3 Current status of BCI 

Current BCI researches are on discrete or continuous motions with invasive or 

non-invasive signal acquisition methods. In invasive researches, both discrete and 

continuous BCI are well studied, as the invasive techniques could provide clear signal 

with high spatial and temporal resolutions. Motion-related cosine tuning model is well 

studied and therefore perfect predictions are easily achieved. On the other hand, 

non-invasive researches are mainly focused on discrete motion and only very few 

studies discussed continuous motion prediction. This is because the SNR and the 

spatial resolution are rather poor in non-invasive measurements. Although 

non-invasive measurements have large quantities of data, the useful information is 

limited and difficult to be extracted, thus the prediction is inefficient. 

Table 1 - 1 listed current representative studies on continuous motion. The first 

three studies using invasive methods show relatively high prediction performance 

with fewer feature number than non-invasive cases (Georgopoulos et al., 2005; 

Bradberry et al., 2009; Bradberry et al., 2010; Toda et al., 2011). In non-invasive 

studies, two studies provide high prediction performance (Georgopoulos et al., 2005; 

Toda et al., 2011) but use an extremely large feature number. Considering the training 

procedure in prediction, the large feature number will lead to a geometric progression 

of calculation cost, which includes calculation time and computer hardware 

requirements. What is more important, the large feature number in prediction always 

causes overfitting problem. With too many features, not only the motion information, 

but also noises and vibrations during motion are considered and precisely described 

by the prediction model. Thus it is highly possible that the model under this condition 

will not work well in other conditions. Considering this fact, selecting efficient 

features is important. In Schalk‘s ECoG research, they added a frequency selection 

and achieved a relatively high prediction performance with about only 10 features. 

Even in invasive researches, this feature number is an amazingly small one. This is 

because of its effective feature selection method which considers features in all 

temporal, spatial and spectral aspects. In non-invasive MEG studies, this feature 

selection method is expected to provide similar high prediction performance with 

small feature number and this is testified in this thesis.  

  



16 
 

Table 1 - 1 Representative studies on continuous motion 

* Prediction performance (r) is the correlation between actual and predicted motion 

positions.  

 Neural data Task Feature selection 
Feature 

number 

Average 

r * 

Wessberg et al.,2000 
Microelectrode 

array 

1D; 

Fetching 
Time Less than 100 0.66 

Wessberg et al.,2000 
Microelectrode 

array 

3D; 

Fetching 
Time Less than 100 0.53 

Schalk et al., 2007 ECoG 
2D; 

Drawing circle 

Frequency, 

Channel, 

Time 

About 10 0.5 

Bradberry et al.,2009 MEG 
2D; 

Center-out 

Channel, 

Time 
1240 0.4 

Georgopoulos et al.,2005 MEG 

2D; 

Darwing 

Pentagon 

Time 4960 0.7 

Bradberry et al.,2010 EEG 
3D; 

Center-out 

Channel, 

Time 
340 0.29 

Toda et al., 2011 MEG + fMRI 
2D; 

Center-out 

Source, 

Time 
16500 0.77 

 

 

1.4  Magnetoencephalography (MEG) recording 

As all recordings in our experiment are done using magnetoencephalography 

(MEG), the characteristics of brain magnetic fields and recording method is 

introduced in this section. 

Magnetic field of brain activity is induced by synchronized neural currents. To 

generate a MEG signal that is detectable, approximately 50,000 active neurons must 

keep their synchronous and spatially parallel activity for a few milliseconds (Okada, 

1983). In macro scale, these neuronal currents with similar orientations can be thought 

as electric dipoles or electric currents. According to Maxwell's equations, any 

electrical current will produce an orthogonally oriented magnetic field, as is shown in 

Figure 1 - 5. The brain magnetic field which is about several tens or several hundreds 

femtotesla (fT) is considerably smaller than the ambient magnetic noise in an urban 

environment, which is at the level of 10
8
 fT or 10 µT. Thus the essential problem of 

MEG measurement is the weakness of the signal relative to the sensitivity of the 

detectors, and to the environmental noise.  
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Figure 1 - 5 Schematic illustration of idealized magnetic field generated by 

postsynaptic current.  

The current is represented as a dipole moment with strength typically on the order of 10 

nAm. This generates a magnetic field of about 100 fT at the distance of the MEG sensors 

(Taulu, 2008). 

 

 

MEG signals were first measured in 1968 by David Cohen who is a physicist  in 

University of Illinois, using a copper induction coil as the detector (Cohen, 1968). To 

reduce the magnetic background noise, the measurements is made in a magnetically 

shielded room. The coil detector is barely sensitive enough, resulting in poor, noisy 

MEG measurements that are difficult to use. Later, Cohen built a better shielded room 

at MIT, and used one of the first superconducting quantum interference device 

(SQUID) detectors, which is developed by James E. Zimmerman (Zimmerma.Je et al., 

1970), to again measure MEG signals (Cohen, 1972). This time the signals are almost 

as clear as those of EEG. This stimulates the interest of physicists who had been 

looking for uses of SQUIDs. Subsequently, various types of spontaneous and evoked 

MEGs began to be measured. 

At first, single SQUID detector is used to measure the magnetic field at a number 

of points around the subject‘s head. In the 1980s, MEG manufacturers begin to 

arrange multiple sensors into arrays to cover a larger area of the head. Nowadays, 

MEG arrays are set in helmet-shaped dewar that typically contain several hundreds of 

sensors, covering most of the head. Currently, we use MEG system containing 440 

SQUID gradiometer sensors, which is the most advanced MEG system in the world. 

In this way, MEGs of a subject or patient can be accumulated rapidly and efficiently. 

Nowadays, most MEG systems adopt SQUID as the detector because of SQUID‘s 
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sensitivity. SQUIDs are sensitive enough to measure fields as low as 5 aT (5×10
−18

 T) 

within a few days of averaged measurements with a noise levels of 3 fT·Hz
-½

 (Drung 

et al., 2007). There are two main types of SQUID considering the number of weak 

links (Jesephon junction) in the SQUID ring: direct current (DC) and radio frequency 

(RF), as is shown in Figure 1 - 6. DC SQUIDs work with two Josephson junction 

which is more stable and sensitive, while RF SQUIDs can work with only one 

Josephson junction, which might make them cheaper to produce, but are less sensitive. 

Considering the stableness and sensitivity of SQUID, most MEG systems are DC 

SQUID type. 

 

 

Figure 1 - 6 Schematic illustration of an rf and dc SQUID (Hamalainen et al., 

1993). 

The Josephson junctions are indicated by crosses. The magnetic flux Ф threads the 

superconducting loop of the SQUID, changing the impedance around (rf SQUID) or 

across (dc SQUID) the loop. 

 

 

 As is mentioned, the environmental noises such as terrestrial magnetism or ones 

generated by electric devices, vehicles or elevator in real world are much higher than 

brain magnetic fields. Therefore, we have to adopt several techniques to suppress 

noises. One way is to use gradiometer. To minimize the outer noises, the coil which 

can measure the spatial gradient of magnetic fields is designed. This coil is one-order 

gradiometer and is usually called gradiometer. Gradiometer is categorized in to axial 

type and planer type, as is shown in Figure 1 - 7. Axial gradiometer consists of two 

magnetometers placed in series and the result coming from the device is the difference 

in magnetic flux at that point in space (𝜕𝐵𝑧 𝜕𝑧 ), while planar gradiometer consists of 

two magnetometers placed next to each other and the result coming from the device is 

the difference in flux between the two loops (𝜕𝐵𝑥 𝜕𝑧  or 𝜕𝐵𝑦 𝜕𝑧 ). Sometimes we 

talked about vector gradiometer (𝜕𝐵𝑥 𝜕𝑧 , 𝜕𝐵𝑦 𝜕𝑧  and 𝜕𝐵𝑧 𝜕𝑧 ), which consists of 

two planar and one axial gradiometer located at the same position and orthogonal to 
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each other. 

 

 

Figure 1 - 7 Various types of flux transformers (Hamalainen et al., 1993). 

(a) Magnetometer;  (b) (first-order parallel) planer gradiometer;  (c) (first-order symmetric 

series) axial gradiometer;  (d) second-order axial gradiometer.  

 

 

Another noise suppression method is using magnetically shielded room (MSR). A 

MSR consists of several layers which is made of a pure aluminium layer, plus a high 

permeability ferromagnetic layer, similar in composition to molybdenum permalloy. 

This helps eliminate radio frequency radiation and magnetic fields at frequencies 

greater than 1 Hz. 

 In our whole-head 440-channel MEG system (MEG version: PQ2440R, 

Yokogawa Electric Co., Tokyo, Japan), both MSR and gradiometer techniques are 

used and thus data with relatively high SNR can be easily obtained. 

 

1.5  Data analysis in MEG 

1.5.1  Noise reduction 

In the former section, noise suppression methods using gradiometers and 

magnetically shielded room are discussed. These two kinds of method are based on 

hardware and can to some extent degrade the effect of environmental noises. However, 

in real application, only by using these methods is not enough to perfectly protect 

MEG signals from outer noises, therefore further software noise reduction methods 

are necessary. 

Many noise reduction methods have been applied on MEG data (de Cheveigné 

and Simon, 2007). Among them, some of the methods employ the reference sensors 

that measure environmental fields (Adachi et al., 2001; Vrba and Robinson, 2001; 
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Volegov et al., 2004; Ahmar and Simon, 2005). As reference sensors are distinct to 

brain sources, only noises are recorded and noise effect could be rejected by 

reconstructing noise sources. However a larger number of reference sensors are 

necessary, therefore it is not suitable for some MEG systems without reference 

sensors. Spectral filter focuses on environmental noise which is typically dominated 

by slowly varying magnetic fields from elevators, vehicles, etc., and by power line 

components at 50 Hz or 60 Hz and multiples. This method is simple and effective, 

therefore is widely adopted in MEG studies. Another category is spatial filtering in 

which linear combinations of sensor signals are formed to suppress noise and/or 

enhance brain activity. Examples are the Laplacian (Kayser and Tenke, 2006), 

Principal Component Analysis (PCA) (Ahissar et al., 2001; Spencer et al., 2001; 

Kayser and Tenke, 2003, 2006), Independent Component Analysis (ICA) (Makeig et 

al., 1996; Vigário et al., 1998; Barbati et al., 2004), Signal Space Projection (SSP) 

(Tesche et al., 1995; Uusitalo and Ilmoniemi, 1997), Signal Space Separation (SSS) 

(Taulu and Kajola, 2005; Taulu et al., 2005), Spatiotemporal Signal Space Separation 

(tSSS), beamforming (Sekihara et al., 2001; Sekihara et al., 2006; Taulu and Simola, 

2006) and other linear techniques (Parra et al., 2005).  

 

1.5.2  Feature extraction 

Motion related features contain information of motion, therefore motion related 

feature extraction is essential for the efficiency of motion prediction. Before 

prediction, most researches perform different kinds of feature selections, ranging from 

spatial selection, time-window selection as well as frequency feature selection. In 

invasive studies, spatial selection is done by directly placing electrodes on the related 

motor cortex, while in non-invasive studies this is done by selecting channels over 

motor cortex. By considering different channel selection and evaluating the prediction 

performance, complicated channel selection method could be achieved. In most 

researches, the time-window is fixed from several seconds to several hundred of 

milliseconds before the motion moment. There are very few BCI studies focus on 

frequency selection. The only example is an invasive ECoG study. In this ECoG study, 

the selected frequency ranges mainly based on the experience of former discrete 

motion researches and distributed in low frequency band of 2-5 Hz, μ-rhythm , β 

rhythm, some part of γ bands in non-invasive studies and even high-γ bands over 100 

Hz. Further selection method called correlation-based feature selector (CFS) is used, 

which could automatically reduce feature number and select features from a large 

feature set by evaluating the prediction performances. This method is a little 

time-consuming, but provides more efficient prediction which indicates a successful 

feature selection strategy.  
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1.5.3  Prediction method 

Prediction method is used for transforming motion related features into actual 

motion parameters. Continuous motion predictions are always performed by artificial 

neural network (ANN) or the linear model. ANN is performed in some invasive 

researches of predicting monkey hand position. ANN is a mathematical model that is 

inspired by the structure aspects of biological neural networks. A neural network 

consists of an interconnected group of artificial neurons, and it processes information 

using a connectionist approach to computation. In most cases an ANN is an adaptive 

system and changes its structure based on external or internal information that flows 

through the network during the learning procedure. As this method can adjust its 

structure automatically, it is usually used to suitable to model complex relationships 

between features and real parameters. 

Linear regression is an approach to modeling the relationship between a scalar 

variable y and one or more variables denoted X. In linear regression, models of the 

unknown parameters are estimated from the data using linear functions. Linear 

regression procedure is usually divided into a train session and a test session. In the 

train session, the relationship between y and X is qualified by the training data set 

which includes a number of y and corresponding X. This is also called a fit procedure. 

Linear regression models are often fitted using the least squares approach, but they 

may also be fitted in other ways, such as by maximizing the correlation value between 

actual and predicted y. After train session, linear regression can be used to predict y 

using X. As algorithm of linear regression is simple and the train procedure is fast, it 

is more popular than other methods and is widely adopted by almost all invasive and 

non-invasive studies. 

 

1.5.4  Mapping and source estimation 

Modern MEG system contains several hundreds of channels which cover most 

area of our head. Therefore, the MEG measurement can provide us the map on the 

sensor space, which is called contour map. We can investigate task related patterns of 

the brain regions and recognize where the patterns are from. These contour maps 

provide us a chance to understand the meanings of measured signals easily. 

From contour map, we could briefly recognize the interested patterns‘ source 

location such as motor cortex or visual cortex. However, this recognition depends on 

head position in MEG helmet and the anatomical structure of the head, and further 

detailed recognition, such as finger or arm motion patterns in motor area, cannot be 

determined by contour map. Thus we need source estimation method which can 

transform MEG signals into sources in the brain. One approach is to perform source 

localization by fitting an equivalent current dipole (Scherg, 1990). This assumes only 
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one active current dipole in the brain at one time, thus is adopted only in some simple 

brain activities. However, brain activity is always complicated and contains many 

current dipoles distributed in all the brain. In this case, we consider a more 

sophisticated approach, which is called beamformer. For different kinds of data, there 

exists several beamformer methods, such as minimum-norm estimates (MNE) , low 

resolution brain electromagnetic tomography (LORETA) (Pascual-Marqui, 1999), 

linearly constrained minimum variance method (LCMV) (Van Veen et al., 1997) and 

dynamic imaging of coherent sources (DICS) (Gross et al., 2001), which are different 

in the calculation algorithm. 
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Chapter 2  Noise reduction - compensation 

tSSS 

 

 

In this chapter, we propose an effective noise reduction method with hardly any 

brain activity loss, which is vital for the accurate prediction of motion trajectory from 

single trials data. We first described the algorithm of the original spatiotemporal 

signal space separation (tSSS) method developed by Dr. Taulu. Then we discussed the 

signal loss problem in the original method, and proposed an improvement on the 

method. We newly introduced a compensation process which could suppress noises 

and preserve brain signals simultaneously. This method showed very good noise 

reduction performances for both simulation and the application to the real MEG data. 

It should be noted that our method can be applied to all kinds of MEG system, while 

the original method can only be applied to the MEG system with both gradiometers 

and magnetometers. 
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2.1  Introduction 

Magnetoencephalography (MEG) is a non-invasive method to measure the 

magnetic fields of ionic current distributions produced by the brain. Because the MEG 

signal generated by brain neuron activities and attenuated with the inverse square law 

as distance increased, these magnetic fields which usually recorded at 3-5 cm far from 

the origins are very weak (about 10
-15

T). Thus, these brain magnetic fields are always 

contaminated by external interference electromagnetic noise as well as some 

biosignals such as heart beat or eye movements. In the single-trial analysis, this 

problem is more serious because we focused on the variety of signals and could not 

reduce the noise by averaging. In this case the noise reduction is very important. 

In order to remove the interference noises, several noise reduction methods 

including hardware and software ways are developed. By using either hardware 

method or software method or by using the combination of them, the interference 

noises can be greatly suppressed. The most widely used hardware methods are 

magnetically shielded rooms (MSR), gradiometers and reference channels. Some of 

the popular software methods are signal space projection (SSP), principal component 

analysis (PCA), independent component analysis (ICA) and spatiotemporal signal 

space separation (tSSS). 

In our case, the hardware method of MSR and gradiometers are combined. The 

MSR can dramatically reduce external interference outside the room, while 

gradiometers can remove homogeneous magnetic fields generated by electric devices 

inside the shield room. Thus, the residuals of interference noises contain 

electromagnetic fields generated by sources near the sensors, such as the noise of 

MEG device and biomagnetic signals of subject. Usually, these kinds of noises can be 

greatly reduced by the average of amount of repeated task. However, in some case 

single-trial variety is important and thus other noise reduction method is necessary. 

SSP bases on the predefined pattern of noise and thus may be affected by the changes 

between the noises before and during the experiment. PCA and ICA aim to extract the 

temporal patterns of interested biosignals and the interference noises. Then, these 

patterns have to be discriminated manually based on prior knowledge. This 

discrimination process is really a challenging work even for expertise researchers and 

thus the quality of the noise reduction varies according to the discrimination criterions. 

Among them, tSSS is a more robust and reliable interference suppression method 

based on spatial filters. This method bases on signal space separation (SSS) which 

consideres the geometry of the sensors and separates biosignals from interference 

noises using the characteristics of magnetic field. After SSS process, temporal patterns 

are further considered for noise removal and clean brain activities are reconstructing 

using the coefficient of signal space basis. The results of tSSS do not depend on the 

prior conditions or users experience and thus tSSS is the ideal noise reduction method 
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in our measurement condition.  

TSSS is originally developed for Elekta system which contains both 

magnetometer and gradiometer type sensors. Currently, most applications of tSSS 

method are done under the Elekta system (Song et al., 2008; Medvedovsky et al., 

2009; Taulu and Hari, 2009), while the application on other systems with only 

gradiometer type sensors is still not fully tested. In our study, we first implemented 

tSSS algorithm on Matlab and applied it to our system (Yokogawa PQ2440R). 

However, the tSSS results did not present a good result on our system. Signal leakage 

problem occurred and brain activities reduced to 1/3~1/2 after using tSSS method. 

Therefore, we carefully considered the leakage problem of tSSS under gradiometer 

only system and tried to fix it.  

We first introduced the algorithm of SSS and tSSS developed by Dr. Taulu, and 

discussed the possible reasons for the signal leakage. Then we provided a solution 

utilizing a compensation process. By this process, our ―compensation tSSS‖ can not 

only effectively remove the environmental noise, but also well preserve useful brain 

signals with our gradiometer system. Our compensation tSSS should work well not 

only on MEG systems with only gradiometers or magnetometers such as Yokogawa 

system but also on MEG systems with magnetometers and gradiometers such as 

Elekta system. In the future, our method can also be used on other types MEG system. 

And this is a great improvement compared to the original tSSS method. 

 

2.2  Method 

As SSS and tSSS algorithms developed by Dr. Taulu are the basis of our 

compensation tSSS method, in this section, SSS and tSSS methods are firstly 

reviewed in 2.2.1 and 2.2.2. Then the signal leakage problem is discussed and the 

algorithm of compensation tSSS method made by ourselves is proposed in 2.2.3. 
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2.2.1  SSS algorithm 

 

Figure 2 - 1 Illustration of internal, intermediate and external spaces. 

The gray area indicates the position of MEG sensors. 

 

 

SSS is a method to separate internal signals and external signals. A geometric 

model of MEG measurement is shown in Figure 2 - 1. In this figure, the red line 

presents a sphere covering the whole brain while the blue line presents a sphere 

covering both the whole brain and sensor space. Here the red and blue spheres have 

the same origin. In this model, the neural activity arouses in the red sphere and thus 

this space is regarded as ‗Internal Space‘. All MEG sensors locate in the space 

between the red and blue sphere and this space is called ‗Intermediate space‘ or 

‗Sensor space‘. Interference electromagnetic noises occur outside the blue sphere and 

thus this space is regarded as ‗External space‘.  

As it is known, the magnetic field B in the sensor space sacrifices the quasistatic 

Maxwell equation: 

 

 𝛻 × 𝑩 = 𝜇0𝑱 ,    𝛻 ∙ 𝑩 = 0 ,                                   2 - 1 

 

where 𝜇0 is the magnetic permeability of vacuum. As the sensors of MEG system 

locate in a source-free volume, the current density 𝑱 = 0 . We can get 𝛻 × 𝑩 = 0 . 

This curl-free magnetic field B thus can be expressed as a gradient of a scalar 

potential  

 

 𝑩 = −𝜇0𝛻𝜱 .                                                2 - 2 

 

Considering equation 2 - 1, the 𝜱 has to satisfy Laplace‘s equation 𝛻2𝜱 = 0. In 
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a spherical coordinates(𝑟, 𝜃, 𝜑), the solution of Laplace‘s equation can be expanded in 

spherical harmonics : 

 

𝜱 𝑟, 𝜃, 𝜑 =   
1

𝑟𝑙+1
𝛼𝑙
𝑚𝑌𝑙

𝑚  𝜃, 𝜑 

𝑙

𝑚=−𝑙

∞

𝑙=0

+   𝑟𝑙𝛽𝑙
𝑚𝑌𝑙

𝑚  𝜃, 𝜑 

𝑙

𝑚=−𝑙

∞

𝑙=0

 

= 𝜱𝑖𝑛 + 𝜱𝑜𝑢𝑡  , 

2 - 3 

 

where 𝑌𝑙
𝑚 (𝜃, 𝜑) is the spherical harmonic function. 

When equation 2 - 3 is substituted into equation 2 - 2, the magnetic field can be 

expressed as  

𝑩 𝑟, 𝜃, 𝜑 = −𝜇0   𝛼𝑙
𝑚

𝑙

𝑚=−𝑙

∞

𝑙=0

𝛻  
𝑌𝑙
𝑚  𝜃, 𝜑 

𝑟𝑙+1
 − 𝜇0   𝛽𝑙

𝑚𝛻 𝑟𝑙𝑌𝑙
𝑚  𝜃, 𝜑  

𝑙

𝑚=−𝑙

∞

𝑙=0

 

= 𝑩𝑖𝑛 + 𝑩𝑜𝑢𝑡  .  

2 - 4 

 

With infinitive number of l, the numbers of internal and external basis are 

infinitive and thus this expansion reconstructed magnetic field exactly. However, in 

real case, the magnetic field B is expressed approximately with a finite number of l, 

thus the internal and external basis as well as the coefficients could be written as the 

form of matrices.  

With the spherical harmonic basis, the MEG recordings B can be expressed as 

follows: 

 

𝑩 = 𝒙𝑖𝑛𝑺𝑖𝑛 + 𝒙𝑜𝑢𝑡 𝑺𝑜𝑢𝑡  ,            2 - 5 

 

where Sin and Sout are matrices containing gradient of spherical harmonic 

functions in equation 2 - 4, xin and xout are the matrices containing the coefficient 𝛼𝑙
𝑚  

and 𝛽𝑙
𝑚 . Equation 2 - 5 can also be written as a compact form as  

 

𝑩 =  𝒙𝑖𝑛 𝒙𝑜𝑢𝑡   
𝑺𝑖𝑛
𝑺𝑜𝑢𝑡

 = 𝑿𝑺 .           2 - 6 

 

Here, the SSS basis S can be divided into separate subspaces Sin and Sout which 

are related to the internal biomagnetic and external interference signals respectively, 

while xin and xout indicated coefficients of the internal and external basis.  

From formula 2 - 6, the coefficients xin and xout can be calculated from the 

pseudoinverse matrix of S, as the following :  
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 𝒙 𝑖𝑛 𝒙 𝑜𝑢𝑡  = 𝑺†𝑩 =  𝑺𝑇𝑺 −1𝑺𝑇𝑩 .         2 - 7 

 

By using the internal basis Sin and estimated coefficient 𝒙 𝑖𝑛 , the estimated 

biomagnetic field can be reconstructed as 

 

𝑩𝑖𝑛 = 𝒙 𝑖𝑛𝑺𝑖𝑛  .              2 - 8 

 

 

2.2.2  tSSS 

Two kinds of errors which may affect the accuracy of SSS reconstruction are the 

MEG sensor calibration error and the truncation error. The reconstruction errors can 

be presented as 

 

𝒙 𝑖𝑛 ,𝜖 = 𝒙 𝑖𝑛 ,𝑐 + 𝒙 𝑖𝑛 ,𝑡  ,             2 - 9 

 

𝒙 𝑜𝑢𝑡 ,𝜖 = 𝒙 𝑜𝑢𝑡 ,𝑐 + 𝒙 𝑜𝑢𝑡 ,𝑡  ,            2 - 10 

 

where the suffixes ‗𝜖‘, ‗c‘ and ‗t‘ indicate total error, calibration error and 

truncation error respectively.  

In SSS method, accurate calibration and proper sensor configuration are necessary 

for optimal operation (Taulu et al., 2005). In practice, with modern multichannel 

devices using thin-film sensor technology, a calibration accuracy of about 0.1% can 

be achieve in sensitivity, location, orientation, gradiometer balance and cross-talk 

between the channels (Taulu and Simola, 2006). Thus the calibration error is not a 

serious problem. The truncation error related to the termination of the harmonic 

expansions, but it is a insignificantly small error with the assumption that no sources 

of magnetic field in the ‗intermediate space‘. However, intermediate interference 

sources exist unfortunately in practice and do not fall completely on Sin or Sout. This 

leads to leakage of the interference contribution into both internal and external spaces 

and the spatial SSS model with finite truncation orders make this problem more 

serious. That is not only sources located in sensor space but also sources near sensor 

space cause such truncation error. 

In order to remove the intermediate interference sources, the common temporal 

components of 𝒙 𝑖𝑛  and 𝒙 𝑜𝑢𝑡  are extracted and recognized as the intermediate 

interference noises. Because signals of brain activities do not leak to the external basis 

in Electa Nueromag System case, these common patterns do not contain brain 

activities. Thus, the extracted common components can be projected out from the SSS 

reconstructed signals without any loss of useful biosignals. The common temporal 
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patterns can be extracted by calculating the intersection of internal and external 

subspace matrices, as : 

 

𝑳 = 𝑿𝑖𝑛 ∩ 𝑿𝑜𝑢𝑡  ,              2 - 11 

 

where 𝑿𝑖𝑛  and 𝑿𝑜𝑢𝑡  are the subspace spanned by coefficient 𝒙 𝑖𝑛  or 𝒙 𝑜𝑢𝑡  

respectively and L is the common subspace of 𝑿𝑖𝑛  and 𝑿𝑜𝑢𝑡 . The calculation of L is 

referred to ‗Matrix Computations‘ (Golub and Van Loan, 1996). 

In the calculation of L, two vectors in 𝑿𝑖𝑛  and 𝑿𝑜𝑢𝑡  respectively are considered 

identical when the angle 𝜃 between them scarifies cos 𝜃 > 1 − 𝛿. Here 𝛿 is the 

parameter to control the risk of selection. If 𝛿 is too small, only interferences with 

highest amplitudes will be rejected, while for a relatively large 𝛿 , the risk of 

removing brain signals will increase. In practice, the selection of 𝛿 dependes on the 

noise level of the MEG data. 

In the calculation of L, time-window length is also an important factor. Here, the 

time-window length T is related to the number 𝑛 of sample points of MEG data 

segment for calculation. With finite number 𝑛, the angle between two random signals 

is less than 90°. On the other hand, random noise in the MEG data creates the 

uncertainty in the direction of signal vector, and we have to choose a time window 

length T long enough that the angle between the deviation and the orthogonality 

condition is smaller than the noise uncertainty. With longer time-window length, the 

orthogonality is better and the common temporal patterns L is easy to be extracted 

correctly, while a small time-window always lead to loss of useful biosignals. 

With proper calculated L, the intermediate interferences can be removed by 

projecting the signals into the orthogonal subspace of L in time domain. When L is 

orthonormalized, the corrected coefficient are calculated as : 

 

𝒙 𝑖𝑛 ,𝑝 =   𝑰 − 𝑳𝑳𝑇 𝒙 𝑖𝑛
𝑇 

𝑇
 .           2 - 12 

 

With the corrected coefficient, the accurate estimated brain activity signals can be 

given as 

 

𝑩𝑖𝑛 = 𝒙 𝑖𝑛 ,𝑝𝑺𝑖𝑛 =   𝑰 − 𝑳𝑳𝑇 𝒙 𝑖𝑛
𝑇 

𝑇
𝑺𝑖𝑛  .        2 - 13 

 

 

2.2.3  Compensation tSSS 

In section 2.2.2, we explained the fact that error of reconstruction coefficient 
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mainly comes from the truncation error, because the calibration error can be restricted 

into an insignificant level. As Dr. Taulu have said, this truncation error briefly relates 

to the leakage of intermediate interferences, because the leakage of internal and 

external sources is very small in their Elekta Neuromag System, which contains both 

magnetometer and gradiometer type sensors. In our case, Yokogawa 440ch MEG 

System contains only the gradiometer type sensors and thus the changes of sensor 

condition greatly affect the reconstruction error. 

Considering the working principals of the sensors, magnetometer records much 

more information of large external interference noise signals than small internal 

biosignals, while gradiometer picks out signals of near internal source of brain 

activities better than signals of external source far away from sensors. In the algorithm 

view, basis vectors contained in Sout bases are predominantly along the magnetometer 

dimensions of the signal space, whereas in the Sin bases, the gradiometric dimensions 

dominate. 

Our Yokogawa system contains only gradiometer type sensors, thus angle between 

external interference sources and external bases Sout is bigger in our gradiometer only 

system than in magnetometer plus gradiometer type system. Meanwhile, the angle 

between internal sources and external bases Sout is smaller than magnetometer plus 

gradiometer type system. This fact leads to serious problem of signal leakage of 

internal signals falling into external space and external signals falling into internal 

space. This is just similar to problem of intermediate interference sources. As finite 

truncation orders is used in the SSS model, the total error of coefficients is the 

truncation error in our system which comes from three parts, as is shown in the 

following : 

 

𝒙 𝑖𝑛 ,𝜖 = 𝒙 𝑖𝑛 ,𝑡 = 𝒙 𝑖𝑛 ,𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝒙 𝑖𝑛 ,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 + 𝒙 𝑖𝑛 ,𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒  ,    2 - 14 

 

𝒙 𝑜𝑢𝑡 ,𝜖 = 𝒙 𝑜𝑢𝑡 ,𝑡 = 𝒙 𝑜𝑢𝑡 ,𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝒙 𝑜𝑢𝑡 ,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 + 𝒙 𝑜𝑢𝑡 ,𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒  ,   2 - 15 

 

where the suffixes ‗internal‘, ‗external‘ and ‗intermediate‘ indicated error of 

coefficient come from the leakage of internal, external and intermediate sources 

respectively. Thus the SSS separation results are 

 

𝒙 𝑖𝑛 = 𝒙 𝑖𝑛 ,0 + 𝒙 𝑖𝑛 ,𝜖 = 𝒙 𝑖𝑛 ,0 − 𝒙 𝑖𝑛 ,𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝒙 𝑖𝑛 ,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 + 𝒙 𝑖𝑛 ,𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒  ,   

2 - 16 

 

𝒙 𝑜𝑢𝑡 = 𝒙 𝑜𝑢𝑡 ,0 + 𝒙 𝑜𝑢𝑡 ,𝜖 = 

𝒙 𝑜𝑢𝑡 ,0 + 𝒙 𝑜𝑢𝑡 ,𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 − 𝒙 𝑜𝑢𝑡 ,𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 + 𝒙 𝑜𝑢𝑡 ,𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒  ,  

2 - 17 
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where the suffix ‗0‘ indicates undistorted coefficient, the operator ‗-‘ means signal 

loss and operator ‗+‘ indicates the interference part. Among these coefficients, the 

undistorted coefficients 𝒙 𝑖𝑛 ,0  and 𝒙 𝑜𝑢𝑡 ,0  are obvious uncorrelated because they 

contain only internal or external temporal patterns respectively. For other coefficients, 

the suffix indicates the source space of the temporal components which the 

coefficients contain. Thus the common components in our case are much more 

complicated and it can be written as  

 

𝑳 = 𝑿𝑖𝑛 ∩ 𝑿𝑜𝑢𝑡 =  𝑳𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 , 𝑳𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 , 𝑳𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒   .      2 - 18 

 

where 𝑳𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 , 𝑳𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  and 𝑳𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒  are common components 

containing internal, external and intermediate temporal patterns. Among them, 

𝑳𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  is the part to be preserved while 𝑳𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  and 𝑳𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒  are the parts 

to be removed. If the original tSSS method is used as equation 2 - 12, not only the 

intermediate interference components, but also the internal components will be 

removed. This is the problem of biosignal loss occurred in gradiometer only system. 

Thus further analysis to discriminate the internal components from external and 

intermediate components is needed.  

 Here, a simple method by comparing the amplitude of magnetic field fallen in Sin 

and Sout is applied. For each vector l in the common components L, magnetic field of 

temporal pattern l in internal space and external space can be extracted, by the 

formula  

 

𝑩𝑖𝑛 ,𝑙 =  𝒍𝒍𝑇𝒙 𝑖𝑛  
𝑇𝑺𝑖𝑛  ,             2 - 19 

 

𝑩𝑜𝑢𝑡 ,𝑙 =  𝒍𝒍𝑇𝒙 𝑜𝑢𝑡  
𝑇𝑺𝑜𝑢𝑡  ,            2 - 20 

 

where 𝑩𝑖𝑛 ,𝑙  indicates magnetic field containing temporal pattern l and being 

reconstructed by internal bases, 𝑩𝑜𝑢𝑡 ,𝑙  indicates magnetic field containing temporal 

pattern l and being reconstructed by external bases. If l is an internal temporal pattern, 

then 𝑩𝑖𝑛 ,𝑙  should be much larger than 𝑩𝑜𝑢𝑡 ,𝑙  as 𝑩𝑜𝑢𝑡 ,𝑙  is the leakage part of 

internal source. On the other hand, if l is an external temporal pattern, then 𝑩𝑖𝑛 ,𝑙  

should be much smaller than 𝑩𝑜𝑢𝑡 ,𝑙  as 𝑩𝑖𝑛 ,𝑙  is the leakage part of external source. 

And if l is an intermediate temporal pattern, then 𝑩𝑖𝑛 ,𝑙  should be comparable with 

𝑩𝑜𝑢𝑡 ,𝑙  as both of 𝑩𝑖𝑛 ,𝑙  and 𝑩𝑜𝑢𝑡 ,𝑙  are the leakage parts of intermediate source. With 

this knowledge, statistics of the amplitudes of 𝑩𝑖𝑛 ,𝑙  and 𝑩𝑜𝑢𝑡 ,𝑙  can be used to 

determine whether l is internal or external or intermediate components. We firstly 

calculate the absolute amplitude of 𝑩𝑖𝑛 ,𝑙  and 𝑩𝑜𝑢𝑡 ,𝑙 , and average them across time 

domain and channels and written as 𝑩𝑖𝑛 ,𝑙  and 𝑩𝑜𝑢𝑡 ,𝑙 . Then, a ratio for source space 

judgment is given as  
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𝑟 =
𝑩𝑖𝑛 ,𝑙

𝑩𝑜𝑢 ,𝑙
 .                2 - 21 

 

For internal component l, r should be much smaller than 1, while in other cases r 

should be much greater or about the value of 1. From the value of r, the source space 

of vector l can be easily determined and L can be discriminated as 𝑳𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 , 

𝑳𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  and 𝑳𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 . 

Then, similar to original tSSS method, we can remove the external and 

intermediate temporal patterns in 𝒙 𝑖𝑛  by the projection operator 

 𝑰 − 𝑳𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑳𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑇   where 𝑳𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  is the collection of 𝑳𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  and 

𝑳𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 . Then, we can extract the internal temporal patterns in 𝒙 𝑜𝑢𝑡  by the 

projection operator  𝑳𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑳𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
𝑇  .  

Thus, we can get coefficient containing only internal temporal patterns, in the 

form 

 

𝒙 𝑖𝑛 ,𝑝 =   𝑰 − 𝑳𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑳𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑇  𝒙 𝑖𝑛

𝑇 
𝑇

=

𝒙 𝑖𝑛 𝑰 − 𝑳𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑳𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑇  

𝑇
= 𝒙 𝑖𝑛 ,0 − 𝒙 𝑖𝑛 ,𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  , 

2 - 22 

 

𝒙 𝑜𝑢𝑡 ,𝑝 =   𝑳𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑳𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
𝑇  𝒙 𝑖𝑛

𝑇 
𝑇

= 𝒙 𝑜𝑢𝑡  𝑳𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑳𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
𝑇  𝑇 = 𝒙 𝑜𝑢𝑡 ,𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  , 

2 - 23 

 

Considering the missing temporal internal patterns in internal coefficients are 

leaked into the external coefficients, the leakage magnetic field of internal patterns 

can be written as 

 

𝑩𝑙𝑒𝑎𝑘 ,𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝒙 𝑖𝑛 ,𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑺𝑖𝑛 = 𝒙 𝑜𝑢𝑡 ,𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑺𝑜𝑢𝑡  .      2 - 24 

 

Thus, a combination of 𝒙 𝑖𝑛 ,𝑝  and 𝒙 𝑜𝑢𝑡 ,𝑝  is given in the form 

 

𝒙 𝑖𝑛 ,𝑝𝑺𝑖𝑛 + 𝒙 𝑜𝑢𝑡 ,𝑝𝑺𝑜𝑢𝑡 =  𝒙 𝑖𝑛 ,0 − 𝒙 𝑖𝑛 ,𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  𝑺𝑖𝑛 + 𝒙 𝑜𝑢𝑡 ,𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑺𝑜𝑢𝑡 = 𝒙 𝑖𝑛 ,0𝑺𝑖𝑛  .  

2 - 25 

 

This formula indicates that by combining the coefficients 𝒙 𝑖𝑛 ,𝑝  and 𝒙 𝑜𝑢𝑡 ,𝑝 , 

internal magnetic field can be accurately reconstructed as  
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𝑩𝑖𝑛 = 𝒙 𝑖𝑛 ,𝑝𝑺𝑖𝑛 + 𝒙 𝑜𝑢𝑡 ,𝑝𝑺𝑜𝑢𝑡 =   𝑰 − 𝑳𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑳𝑖𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑇  𝒙 𝑖𝑛

𝑇 
𝑇
𝑺𝑖𝑛 +

  𝑳𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑳𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
𝑇  𝒙 𝑖𝑛

𝑇 
𝑇
𝑺𝑜𝑢𝑡  .         2 - 26 

 

 Our new method first removes the leakages of external and intermediate 

components in internal space, which is the same process with original tSSS method. 

And then it extracts and recovers the leakages of internal components in external 

space, which can be called as a compensation process. Thus in the following sections, 

we call this method ‗compensation tSSS‘ in order to discriminate it from original tSSS 

method. 

 

2.2.4  Application of compensation tSSS on simulation and 

real MEG data 

 

Figure 2 - 2 Position of single sphere head model and distribution of 

gradiometer sensors in our MEG system. 

Blue dots indicate the position of MEG sensors, the sphere in the center shows the 

position of head model. The coordinate (x,y,z) with the unit ‗cm‘ is Yokogawa MEG 

coordinate and we use this coordinate in the following dipole simulation.  

 

 

To evaluate the signal/noise separation performances of compensation tSSS, we 

apply it on simulation data, phantom data and raw MEG data. In the simulation of this 

study, we adopted a simple sphere head model whose center locates at the position (0, 

0, 0.02) m in the coordinate illustrated in Figure 2 - 2. The internal human brain 

activity is modeled by the equivalent current dipole source, which is given 
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𝑩 𝒓 =
𝜇0

4𝜋𝑭2
 𝑭𝑸 × 𝒓0 −𝑸 × 𝒓0 ∙ 𝒓𝛻𝑭  ,         2 - 27 

 

where 𝑭 = 𝒂 𝒓𝒂 + 𝒓2 − 𝒓0𝒓  ,           2 - 28 

 

𝛻𝑭 =  𝒓−1𝒂2 + 𝒂−1𝒂 ∙ 𝒓 + 2𝒂 + 2𝒓 𝒓 −  𝒂 + 2𝒓 + 𝒂−1𝒂 ∙ 𝒓 𝒓0 ,   2 - 29 

 

𝒂 = 𝒓 − 𝒓0 .               2 - 30 

 

Here 𝒓0 indicates the vector of internal source position, 𝒓 indicates the vector of 

sensor position and B is the vector of magnetic field at 𝒓 generated by internal 

source at 𝒓0.  

In addition, two kinds of external interference sources were adopted: current 

dipole and magnetic dipole. The magnetic field generated by external current dipole 

can be modeled as 

 

𝑩 𝑟 =
𝜇0

4𝜋

𝑸× 𝒓−𝒓0 

 𝒓−𝒓0 3
 ,              2 - 31 

 

where Q is the moment of external current dipole. The magnetic field generated 

by external magnetic dipole is given as the following formula 

 

𝑩 𝒓 =
3 𝒎∙𝒓 𝒓−𝒎𝒓2

 𝒓 3
 ,             2 - 32 

 

where m is the moment of external magnetic dipole located at 𝒓 = 0.  

 

In the simulation, we adopted the sensor array configuration following Yokogawa 

440-channel MEG system installed at the University of Tokyo. This system enclosed 

140 planar type gradiometers and 300 axial type gradiometers with a common 

baseline of 5 cm. All these gradiometer sensors located in a sphere shell with a radius 

from 12 cm to 15 cm. The distribution of distance from the origin of coordinate to the 

sensors was presented in Figure 2 - 3. In the phantom and raw MEG data test process, 

the same system with the same configuration was used.  
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Figure 2 - 3 The distribution of distance from the origin of coordinate to the 

sensor. 

The circles indicate the position of sensors. Colors show the distance in unit centimeter. 

 

 

The quality of the compensation tSSS performance is evaluated by the value of 

reconstruction error, which is given 

 

𝑒𝑟𝑟𝑜𝑟 =   
 (𝑩𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 −𝑩𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 )2

 𝑩𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
2  ,         2 - 33 

 

where 𝑩𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑  is the reconstructed internal magnetic field by 

compensation tSSS method and 𝑩𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  is the true internal magnetic field 

simulated by the current dipole equation 2 - 27. 

 

 

2.3  Experiments and Results 

2.3.1  Parameter determination 

Similar to tSSS method, compensation tSSS method also needs the reconstruct 

coefficient xin and xout separated by SSS method. In SSS method, we adopt formula 2 

- 4 to separate internal and external signals. In the formula, magnetic field is expanded 

by infinitive bases as l is considered from 0 to positive infinity. This is the optimal 

case and in practice we use finite number l to make the calculation possible. This will 

cause truncation errors and the level of truncation error will be affected by the value 

of l. In the formula 2 - 4, we have two values 𝐿𝑖𝑛  and 𝐿𝑜𝑢𝑡  to be set, which 

correspond to the forward and backward l value in the equation and determine the 

number of vectors in internal and external bases. Please note that the parameter 𝐿𝑖𝑛  
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and 𝐿𝑜𝑢𝑡  mentioned in this section are scalars to determine the base number, and 

they are different with parameter L in bold font which indicates the common temporal 

component matrix. 

In order to determine 𝐿𝑖𝑛  and 𝐿𝑜𝑢𝑡 , we calculate the angle between magnetic 

field of random internal current dipole source and the reconstructed magnetic field , 

and used 𝜃 to indicate the angle. The cosine value of angle 𝜃 is proportional to the 

inner product of original and reconstructed magnetic field vectors of the dipole, and 

thus represents the similarity of these two vectors. The equation of 𝜃 is given 

 

𝑐𝑜𝑠 𝜃 =
𝑩𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ∙𝑩𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑

 𝑩𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙   𝑩𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑  
 ,           2 - 34 

 

where 𝑩𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  is the simulated magnetic field data of all the channels at a 

certain moment and 𝑩𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑  is reconstructed magnetic field data of all the 

channels at the same moment. If the reconstructed result is perfectly accurate, then 

𝑩𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 𝑩𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 , and cos 𝜃 = 1. Thus 𝜃 = 0 is the highest performance 

of SSS. Usually the angle 𝜃 varies from 0 to 90° and smaller value of angle 𝜃 

presented a better SSS performance level. 

 In practice, a typical human brain superficial source locates around a shell from 

0.07 m to 0.08 m, corresponding to distances of about 2 cm – 3 cm from the sensors to 

the brain activity dipoles. Thus the distances of 0.07 m – 0.08 m from head model 

origin to the simulated dipoles have to be considered seriously. In order to evaluate 

the separation performance of SSS, 100 simulated internal current dipoles were 

adopted to generate simulated magnetic field. These dipoles randomly located at an 

upper hemisphere with a radius of 7 cm and their moment was set randomly with an 

amplitude of 10−7Am. The angles between simulated and reconstructed magnetic 

field under different combination of 𝐿𝑖𝑛  and 𝐿𝑜𝑢𝑡  were considered and illustrated in 

Figure 2 - 4. These results turned out that when 𝐿𝑖𝑛  increases and 𝐿𝑜𝑢𝑡  decreases, 

the angle decreases. From the criterion mentioned in the former paragraph, bigger 𝐿𝑖𝑛  

and smaller  𝐿𝑜𝑢𝑡  turned to be better for the reconstruction. Thus we concluded 

𝐿𝑖𝑛 = 10 should be the best for SSS method in our system.  
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Figure 2 - 4 Angles between simulated and reconstructed magnetic field of 

internal dipole under different combination of 𝐿𝑖𝑛  and 𝐿𝑜𝑢𝑡  . 

 

 
Figure 2 - 5 Angles between simulated and reconstructed magnetic field of 

external dipoles under different 𝐿𝑜𝑢𝑡  . 

 

 

As the angle hardly varies when 𝐿𝑜𝑢𝑡 < 5, we designe further simulation for 𝐿𝑜𝑢𝑡  

determination. In this step, external current dipoles located at spheres with different 

radius were employed. At each sphere, the angle between randomly generated and 

reconstructed magnetic field were calculated 100 times. Here the reconstructed 

magnetic field was calculated by SSS method with fixed 𝐿𝑖𝑛 = 10 and different 

𝐿𝑜𝑢𝑡  condition. The average results are shown in Figure 2 - 5. From this result, As 
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𝐿𝑜𝑢𝑡  increases, the overall performance firstly improves and then worsens, with the 

best performance at 𝐿𝑜𝑢𝑡 = 3 and 4. Considering the results of dipoles far from 

sensors, 𝐿𝑜𝑢𝑡 = 3 is a little better than 𝐿𝑜𝑢𝑡 = 4. However, from the results of 

dipoles near to sensors, 𝐿𝑜𝑢𝑡 = 4 performed much better than 𝐿𝑜𝑢𝑡 = 3. In summary, 

condition of 𝐿𝑖𝑛 = 10 and 𝐿𝑜𝑢𝑡 = 4 is confirmed the best in our system and is used 

in the following parts. 

 

2.3.2  Computer simulation 

In the simulation, internal current dipole, external current dipole and external 

magnetic dipole were generated. To match the experiment cases which we were 

interested in, two internal current dipoles were generated as the motor and visual brain 

activity sources respectively which appeared in different time segments. 100 external 

current dipoles which located in a sphere with a radius of 0.5 m and 1 external 

magnetic dipole were adopted to mimic the complicated interference noise condition. 

Because our MEG device is gradiometer type system and locates inside a 

magnetically shielded room, interference noise sources with further location are not 

considered in our study. Finally we also added some random sensor noises with the 

amplitude about 40 fT to make the simulated data much similar with real experimental 

condition. The sensor noises are following the standard normal distribution and are 

generated by the Matlab function ‗randn‘. The location, moment amplitude and 

orientation are listed in Table 2 - 1. 

 

Table 2 - 1 Location and moment information of simulated dipoles 

 

 Number 
Location 

(m) 

Amplitude 

(Am) or (Am
2
) for 

current or 

magnetic dipole 

respectively 

Orientation Oscillation 

Internal current 

dipole 
2 

Visual 

(0, 0, 0.05) 

Motor 

(0.03, -0.05, 0.05) 

1e-19 

 

1e-19 

(1, 0, 0) 

 

(1, 0, 0) 

10 Hz 

External current 

dipoles 
100 

In sphere with 

radius of 0.5 m 
5e-6 random 3 Hz 

External 

magnetic dipole 
1 (0.1, 0.5, 0.2) 1e-3 (-1, -1, -1) 2 Hz 
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Figure 2 - 6 Time-series results of simulated dipoles reconstruction using SSS, 

original tSSS and compensation tSSS method. 

 

 

The signal reconstruction and interference suppression effects of SSS, original 

tSSS and compensation tSSS method with common parameters (𝐿𝑖𝑛 = 10, 𝐿𝑜𝑢𝑡 = 4, 

𝛿 = 0.1 and time-window length of 1000 sample points; in compensation tSSS, the 

ratio r in equation 2 - 21 is set to 1) can be examined from time domain characteristics 

in Figure 2 - 6. The upper left waveform plot shows the simulated magnetic field of 

all the internal and external sources. The upper right waveform plot presents the 

simulated magnetic field of brain activity sources which appears in different time 

periods. From the middle left waveform, it is obviously that the interference noise 

from 3Hz external current dipole is suppressed to one third of the original level while 

the 2 Hz external magnetic dipole is suppressed much more to an invisible level. This 

verified that SSS method on our system has some noise reduction effects, but the 

effect is far not enough. The middle right waveform shows the interference 

suppression effect of original tSSS method and it turned out that both the external 

current and magnetic dipole are suppressed greatly and hardly exist anymore, 

however the signal is also suppressed a little bit by tSSS method. As the waveform is 

noisy because of the sensor noise residuals, it is difficult to evaluate the loss of 

internal signals. The lower left waveform plot illustrates the result of compensation 
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tSSS method which presents the best performance among all the results. Not only the 

external current and magnetic interference source, but also most of the sensor noise 

are suppressed greatly. Moreover, the waveform reconstructed by compensation tSSS 

method resembles the original signal in the upper right plot very well which revealed 

a high quality reconstruction. From equation 2 – 33, we calculated the relative 

difference, or the reconstruction error of these three kinds of method. The 

reconstruction error of SSS, original tSSS and compensation tSSS method are 7.0443, 

0.4683, 0.1467 respectively. The smallest relative difference of compensation tSSS 

method also confirmed that this method had the best performance in our system. 

 

 

Figure 2 - 7 FFT results of simulated dipoles reconstruction using SSS, 

original tSSS and compensation tSSS method. 

 

 

Instead of temporal patterns, frequency characteristics can indicate the loss of 

useful signals or the suppression of external noise much clearly. Figure 2 - 7 shows 

the corresponding fast furious transform (FFT) of time series presents in Figure 2 - 6. 

In the upper left plot, the large peak is the external signals. Because of the small 

sample point number and the Gibbs effect of Furious transform, two peaks at 2 Hz 

and 3 Hz are mixed together here. The minor peak around 10 Hz in this plot presents 

the internal signal which is indicated in the upper right plot. From the amplitudes in 
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these two plots, it is clear that the power of external signals is 20 times larger than the 

one of internal signal. The middle left plot illustrates the SSS reconstructed result in 

which the external signals is suppressed to half of original level. In the middle right 

plot which indicates the original tSSS reconstructed result, the external signals are 

removed completely, but the internal signal around 10 Hz is also suppressed from 

about 70000 to 50000. The lower left plot is the reconstructed results of compensation 

tSSS. As the former plot, external signals are removed completely. Meanwhile, the 

peak around 10 Hz is about the value of 70000, which is just the same with original 

internal signal showed in upper right plot. These FFT results also turned out that 

compensation tSSS method can suppress interference noise and preserve internal 

signal very well comparing with SSS and original tSSS method. 

 

 

Figure 2 - 8 Contour map results of simulated dipoles reconstruction using 

SSS, original tSSS and compensation tSSS method. 

 

 

After presenting the well reconstructed results of compensation tSSS method in 

temporal patterns and signal amplitudes, we continued to investigate the performance 

from spatial patterns. The contour map results of all the methods are compared in 

Figure 2 - 8. The upper right map turns out that the simulated internal dipole located 

around the motor cortex in the right hemisphere, with amplitude of about 200 fT. 
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However in the upper left map, the spatial pattern is distorted heavily by external 

interference noises and the spatial pattern over right motor cortex is totally concealed. 

In the middle left map, although it is still noisy in the contour map, two peaks over 

right motor cortex can be roughly recognized. Considering the performance of SSS in 

temporal pattern and FFT analysis, the contour map presents a surprisingly 

reconstruction. This is because of the principle of SSS method – spatial filter, which 

can remove interference noise patterns and extract useful internal patterns in spatial 

domain. The middle right and the lower left map shows the results of original and 

compensation tSSS reconstructed results respectively, which presents similar spatial 

patterns. These two contour maps highly resemble the original map and thus we 

employed dipole fitting method to compare them. In order to accomplish the dipole 

fitting problem, we used the Matlab toolbox ‗Fieldtrip‘ (Scherg, 1990) which is 

developed by Donders Institute for Brain, Cognition and Behaviour, The Netherlands. 

The dipole fitting errors are 10.680, 2.516, 2.609 mm for SSS, original tSSS and 

compensation tSSS method respectively. This concluded that although SSS method 

can briefly extracted the spatial pattern of internal signal, the reconstruction is not so 

accurate comparing with the other two methods. Original and compensation tSSS both 

presented a very well reconstruction results and original tSSS performed a little bit 

better than the other one. However, the difference is only 0.1 mm and is negligible in 

most cases. Considering the preservation of useful signal, it is concluded that 

compensation tSSS method performed best among all these three methods. From all 

the aspect of time, frequency and spatial domain, compensation tSSS deeply 

suppresses interference noises and greatly preserved internal signals in our simulation, 

thus it is confirmed effective for noise reduction in our system. 

 

2.3.3  MEG generated by phantom 

In computer simulation, we generated several external dipoles as well as random 

sensor noises to mimic the complicated environmental noises. However, in the real 

application, the noise condition is much more complicated than we can imagine. In 

addition, imperfect calibration of MEG sensors, sensor instability and sensor noises 

will also affect reconstruction results greatly. To perform simulation under actual 

experimental condition, we used phantom dipole to imitate brain activity source and 

recorded raw data by our MEG system. Then, we used MEG raw data to determine 

the important factor r in equation 2 - 21 and testified the effectiveness in actual 

experimental condition.  

In this experiment, signal generator was adopted to output 10 Hz sine waveform to 

a coil which placed inside the helmet of MEG system to imitate brain activity source. 

The amplitude of generated signal recorded by MEG system is recognized as about 

500fT from the 1000 times averaged data. Here the common parameters in SSS, 
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original and compensation tSSS are 𝐿𝑖𝑛 = 10, 𝐿𝑜𝑢𝑡 = 4, 𝛿 = 0.1 and time-window 

length of 8000 sample points (4s data with sample rate of 2000 Hz). 

 

 

Figure 2 - 9 Time-series and FFT results of simulated phantom dipoles 

reconstruction using SSS and original tSSS. 

 

The reconstructed results of SSS and original tSSS are shown in Figure 2 - 9. The 

upper two plots illustrate the time series and FFT of recorded MEG raw data which 

contain both simulated phantom data and actual environmental noises. The signal 

peak around 10 Hz is the phantom data and this part is what we want to preserve. 

Interference noises in this experiment included 50 Hz and 100 Hz which come from 

the power line noise, peaks from 40 to 50 Hz which are mainly from Helium 

Simulated phantom data FFT of simulated phantom data 

FFT of SSS result 

FFT of tSSS result 

SSS result 

tSSS result 
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circulation system of MEG device, and low frequency noise around 1 Hz which might 

be the vibration of nearby devices. The middle two plots illustrate reconstruction after 

SSS, most of the low frequency noise is removed while other noise and useful signals 

are also suppressed to some extent. The lower two plots are the reconstruction results 

of original tSSS. All the noises as well as useful signals were suppressed in a great 

deal. This result is the same with computer simulation, and thus verified our 

theoretical analysis mentioned in section 2.2.2.  

 

 

Figure 2 - 10 Time-series and FFT results of simulated phantom dipoles 

reconstruction using compensation tSSS with different r value. 

 

 

In compensation tSSS method, we applied the same parameter settings with 

original tSSS in this experiment and considered different values of magnetic field 

in-to-out power ratio r. With different value of r, the recognition results of temporal 

patterns are different. This will affect the reconstruction results of compensation tSSS. 

Figure 2 - 10 shows the reconstruction results of compensation tSSS. The upper two 

plots are corresponding to r = 0.5, while lower two plots are corresponding to r = 1. 

When r = 0.5, the FFT results turn out clear that hardly any noise around 40 – 50 Hz 

existed anymore and useful signals are suppressed to near half of original amplitude, 

from 2.2e-9 to 1.2e-9. When r = 1, the FFT results indicate that there are very small 

r = 0.5 r = 0.5 

r = 1 r = 1 
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power loss of signals around 10 Hz, but interference noises are not completely remove 

in this case. In the lower left plot, the time series of reconstructed result presents an 

extremely clean temporal pattern which is just the about 10Hz sine-wave signal with 

an amplitude of 500 fT. These results specified that the in-to-out ratio value 1 is more 

proper under complicated condition of actual environmental noise.   

  

2.3.4  MEG evoked by button press movement 

The MEG raw data contains recorded MEG data while subject is asked to perform 

a button pushing task. In this section, the results of SSS, original tSSS and 

compensation tSSS method with common parameters (𝐿𝑖𝑛 = 10, 𝐿𝑜𝑢𝑡 = 4, 𝛿 = 0.1 

and time-window length of 1000 sample points (1s data with sample rate of 1000 Hz), 

in-to-out ratio r = 0.5) were investigated. As it is difficult to manually recognize 

single trial time series patterns even in reconstructed data, we adopted 10 epochs of 

button pushing data. Thus in the following, 10 epochs average of each result was 

calculated, and the root-mean-square (RMS) values across channels were calculated 

and compared to evaluate the performance of them. Here, the zero second in each plot 

is the motion onset of button pushing. From prior experience, there should be a peak 

about several hundred fT around zero second.  

 

 

Figure 2 - 11 Time series and FFT of RMS results using SSS, original tSSS 

and compensation tSSS method. 

 

 

The left plot in Figure 2 - 11 shows the time series of RMS results. The blue line 

indicates RMS of 10 epoch averaged raw MEG data. It turned out to be so noisy that 

the peak around motion onset is completely berried. In the green line of SSS 

reconstructed result, although the result is still noisy, a minor peak of motion activity 

was extracted. From the FFT result illustrated in the right plot, we could find out the 
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noise mainly come from 50 Hz power line effect and low frequency interference 

which might be generated by device vibration and baseline fluctuation. Considering 

original tSSS method in red line, the peak of motion activity in time series is obvious 

with very few noises. However in the FFT result, it is a pity that spectral amplitude of 

motion activity around 12 Hz is greatly suppressed. In result of compensation tSSS 

showed in light blue line, the peak is obvious and the amplitude is larger than result of 

original tSSS. From the right plot of FFT, it turned out that motion activity was highly 

preserved and interference noises around 50 Hz and below 1 Hz are greatly 

suppressed. These results confirmed that in actual experiment application, 

compensation tSSS in current settings is effective to preserve brain activity and 

suppress interference noises.  

 

 

2.4  Discussion and Conclusion 

2.4.1  Overfitting problem 

Signal space separation (SSS) method focused on the separation of internal and 

external signals by using amount of spatial bases which is related to sensor 

configurations. This separation is achieved by a linear model of the expansion using 

spherical harmonic functions. In this model the degree 𝐿𝑖𝑛  and 𝐿𝑜𝑢𝑡  determine the 

number of spherical harmonic bases and affect the results of the method. In noise-free 

situation, the separation and reconstruction accuracy increase as the base number 

increases. However, in the real situation where noise is added to the signal, the 

overfitting problem occurs because the statistical model describes random error or 

noise instead of the underlying relationship of signals. Overfitting is a serious problem 

in most statistical studies and thus we should control base number to avoid this 

problem. In order to deal with the overfitting problem, we run a simulation. 

First, we simulated common brain magnetic field including motor activity 

(generated by a dipole with position of (0, 5, 6) cm and amplitude of (1, -1, 0)*20e-9 

Am) and visual activity (generated by a dipole with position of (-8, 0, 0) cm and 

amplitude of (0, 0, 1)*25e-9 Am), and added sensor noise with different noise level 

(peak to peak value from 30 – 80 fT which covered a common sensor noise level) on 

it. The coordinate used in the dipole simulation is defined in Figure 2 – 2 in section 

2.2.4. We reconstructed the dipole signal by SSS method with different 𝐿𝑖𝑛 . Figure 2 

- 12 shows the goodness of fit (GOF) as a function of 𝐿𝑖𝑛 . The GOF value is defined 

as following: 

 

𝐺𝑂𝐹 = 1 −
  𝑩𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑢𝑐𝑡𝑒𝑑 −𝑩𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑  2
𝑠𝑒𝑛𝑠𝑜𝑟

 𝑩𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑
2

𝑠𝑒𝑛𝑠𝑜𝑟
 , 
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where 𝑩𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑  and 𝑩𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑢𝑐𝑡𝑒𝑑  indicate simulated and reconstructed signals 

respectively. The suffix ‗sensor‘ indicates a sum calculation across sensors. 

Considering different sensor noise levels, the GOF peaks around the basis number of 

10, and overfitting is occurring when the basis number is larger than 10. Thus, we 

choose 𝐿𝑖𝑛 = 10 as a proper value. Also, in the application to simulated and real 

recorded MEG data, 𝐿𝑖𝑛 = 10  worked well under different dipole and noise 

conditions, which indicates that this value is really suitable to our experiment 

condition. 

 

Figure 2 - 12 Goodness of fit result of reconstructed signal using SSS method 

with different 𝐿𝑖𝑛  under different sensor noise levels. 
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2.4.2  Leakage problem in gradiometer system 

 

 

Figure 2 - 13 Relationship between spherical coordinates and rectangular 

coordinates. 

 

 

All of SSS, tSSS and compensation tSSS method are based on the separation of 

internal and external space using geometry information of MEG sensors. Thus the 

MEG sensor configuration is the most important factor to affect the performance of 

signal separation. This can be explained by the properties of gradiometer and 

magnetometer. For magnetometer, both signals near and far from sensors can be 

recorded. But as a hardware method to remove environmental noise, gradiometer 

records the gradient of magnetic field. So interference noise which is always far away 

from MEG sensors is greatly suppressed by gradiometer, while internal sources which 

is near sensors can be preserved. Thus spherical harmonic bases corresponding to 

magnetometer is sensitive to both internal and external sources while gradiometer is 

only sensitive to internal sources. In this case, Spherical harmonic bases of 

gradiometer only system cannot reconstruct external signals well and this caused the 

leakage of signals. 

The signal leakage problem can be explained more clearly by considering the 

angle between simulated dipoles and spherical harmonic bases Sin and Sout. Here, we 

simulated several internal or external current dipoles with common moment 

 1,1,1 ∗ 10−7Am and different position. The internal dipoles‘ positions were in the 

same direction  𝜃 = 𝜋 4 , 𝜑 = 𝜋 2   with different r values from 0.01 m to 0.08 m 

with a 0.01 m interval. The external dipoles‘ positions were in the same direction 

 𝜃 = 𝜋 4 , 𝜑 = 𝜋 2   with r values of 0.25m, from 0.3m to 1m with a 0.1m interval, 

1.5m and 2m. The relation between coordinates (𝑥, 𝑦, 𝑧) and (𝑟, 𝜃, 𝜑) is shown in 

Figure 2 - 13. In practice, a typical human brain superficial source located around a 

shell from 0.07 m to 0.08 m, corresponding to distances of about 2 cm – 3 cm from 
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the sensors to the brain activity dipoles. Thus the distances of 0.07 m – 0.08 m from 

head model origin to the simulated dipoles should be considered seriously. For 

external dipoles, all the dipoles should be considered because of the complicated 

interference noise condition. As 𝐿𝑖𝑛 > 10  will cause overfitting problem, we 

consider 𝐿𝑖𝑛 ≤ 10 in this step. 

 

 

Figure 2 - 14 Angles between simulated internal current dipoles and spherical 

harmonic bases. 

 

 

Angles between simulated internal current dipoles and spherical harmonic bases 

are showed in Figure 2 - 14. The angles between internal dipoles and bases Sin 

decrease greatly as 𝐿𝑖𝑛  increases and reached a small value around 5° when 

𝐿𝑖𝑛 = 10. This also confirms 𝐿𝑖𝑛 = 10 is the best parameter for our system, because 

smaller value of the angle means that internal dipoles can be reconstructed by the 

bases more accurately with fewer leakages. However, these angles are still greater 

than the corresponding angles in Nueromag 306 system which adopted both 

gradiometer and magnetometer. The right plot in Figure 2 - 14 illustrated the angles 

between internal dipoles and bases Sout. As we try to avoid Sout reconstructing internal 

sources, the angles in this plot is the bigger the better. Angles vary very little and the 

average value is about 55°. In optimal case when internal source can be perfectly 

reconstructed, the angle between internal signal and Sin is 0° and the angle between 

internal signal and Sout is 90°. However in our system, the corresponding angles are 

5° and 55° with which the signal leakage will absolutely occurred during the 

reconstruction.  
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Figure 2 - 15 Angles between simulated external current dipoles and spherical 

harmonic bases. 

 

 

 The leakage of external signal is much serious as is showed in Figure 2 - 15. In 

optimal case, the angles between external signals and bases Sin and Sout should be 90° 

and 0°, but actually these two angles are around 55° and 33° respectively. 

Comparing with the internal signal reconstruction, a more serious leakage will occur 

during the external signal reconstruction because of the little difference between the 

two angles. Moreover, intermediate signals which are located in or near sensor space 

will also cause serious leakage problem. Thus the leakage problem in gradiometer 

only system contains internal, intermediate and external signal leakages which is a 

more complicated problem than gradiometer plus magnetometer system. 

 

2.4.3  Insensitivity to correlation limit δ and time-window 

length 

In original tSSS method, there are two important parameters which should be 

selected very carefully. One of them is δ which is used to control the risk in the 

selection of common temporal patterns L of 𝑿𝑖𝑛  and 𝑿𝑜𝑢𝑡 . The selection of 𝛿 

depended on the noise level of the MEG data, so it is difficult to select a proper value. 

If 𝛿 is too small, only interferences with highest amplitude were rejected, while for a 

relatively large 𝛿, the risk of removing brain signals would increase. The left two 

plots in Figure 2 - 16 showed results of original tSSS method using different 𝛿 value. 

As 𝛿 increases, more vectors which may hold some internal patterns are selected as 

common vectors and removed, thus the loss of brain activities around 12 Hz increases 

as 𝛿 increases. In the right two plots which indicated the results of compensation 

method, there is hardly any difference between different 𝛿 values. This concludes 
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that our compensation method is not sensitive to the value of 𝛿, thus can be easily 

applied on MEG data different noise level. 

 

 

Figure 2 - 16 Results of original and compensation tSSS method with 

different delta values. 

The left two figures illustrate the results of original tSSS method, while the right two 

figures illustrate the results of compensation tSSS method. Upper two are time-series and 

lower two are FFT results 

 

 

The other parameter to which the original tSSS method is sensitive is time 

window length. As it is mentioned in section 2.2.3, with longer time-window length, 

the orthogonality is better and the common temporal patterns L is easy to be extracted 

correctly. However, longer time-window length means larger datasets, which will 

greatly increase the calculation cost. Moreover, in some experiments, we even can to 

get a long enough dataset. In this case, compensation tSSS method will be a possible 

solution which can deal with short time-window data with low calculation cost. Figure 

2 - 17 showed the results of original and compensation tSSS method with different 

time-window length. The left two figures indicated result of original tSSS and the FFT 

result turns out that with short time-window length, signal loss is more serious than 

other case. However, in the right two figures, no difference is showed between several 
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time-window lengths. This concludes that compensation is not sensitive to 

time-window length and thus can work with small datasets.  

For 440 channels data recorded with a sample rate of 1000Hz, the original tSSS 

calculation time of 1s-long, 2s-long and 4s-long data are 0.153 s, 0.386 s and 1.145 s 

respectively, while for 1s-long data, compensation tSSS data calculation time is 0.94 s. 

For 440 channels data recorded with a sample rate of 500Hz, the original tSSS 

calculation time of 1s-long, 2s-long and 4s-long data are 0.069 s, 0.149 s and 0.378 s 

respectively, while for 1s-long data, compensation tSSS data calculation time is 0.263 

s. Considering the signal loss in compensation tSSS with 1s data is smaller than in 

original tSSS with 4s data, we concluded that compensation tSSS is an effective noise 

reduction method for our system. 

 

 

Figure 2 - 17 Results of original and compensation tSSS method with 

different time-window length. 

The left two figures illustrate the results of original tSSS method, while the right two 

figures illustrate the results of compensation tSSS method. Upper two are time-series and 

lower two are FFT results. 
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2.4.4  Parameter r for source space judgment and the mix of 

signals 

The only parameter which will affect the performance of compensation tSSS is the 

ratio for source space judgment which is given by equation 2 - 21. In optimal case, 

when vector is internal pattern, r should be much greater than 1, because the leakage 

reconstructed by external bases is obviously smaller than the remain part 

reconstructed by internal bases. On the other hand, when vector is external pattern, r 

should be much smaller than 1. However, in actual case, MEG data also contains 

some random noises such as sensor noise. These noises will affect the calculation of 

common patterns and mix internal and external patterns partly. In this case, the 

considered vector would contain some internal as well as some external patterns and 

thus make the r value approach to 1. In this case, it is difficult to discriminate internal 

and external patterns. Usually we set the threshold to 1 and it worked well in most of 

the conditions. All the simulation results in this chapter are calculated with a threshold 

of 1. But when noise level is high, it is difficult to separate internal patterns from 

external patterns with threshold 1. Thus it is better to adopt a smaller threshold in 

order to avoid recognizing internal patterns as noise. Although noise is not completely 

removed in this case, most of the brain activity can be preserved.  

 

 

Compensation tSSS method considers the specialty of gradiometer only system 

and designs a special process to solve the leakage problem. In all of computer 

simulation, phantom simulation and the simulation with real brain signals, 

compensation tSSS method works well. Hardly any brain activity in the 

reconstruction is removed and interference noise is suppressed greatly. Compared 

with SSS and tSSS method, our compensation method provides very small 

reconstruction error and dipole fitting error. This suggests that the compensation tSSS 

is a valuable noise reduction method for single trial analysis in our gradiometer only 

system.  
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Chapter 3  Continuous motion related features 

and trajectory prediction 

 

 

In this chapter, we present a feature selection method for continuous motion 

trajectory prediction and confirm the efficiency of compensation tSSS method in 

continuous motion prediction. We introduced a 1-D continuous motion task using a 

tool bar, and investigated whether and how the spectrum of brain activities is 

correlated with the continuous limb motion. From the correlation results, frequency 

ranges with relatively high correlation values were determined. Also, different 

channel selection models and time-windows selection models were adopted and the 

performances were evaluated by multivariate linear regression prediction. The 

successful prediction results indicated that even non-invasive methods can achieve 

accurate continuous limb motion prediction performance that is comparable to 

invasive methods. 
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3.1  Introduction 

Prediction of motion trajectory using brain signals is important for controlling 

prosthetic devices. The spiking activity of neurons in primary motor cortex has 

already been proved to be highly correlated with limb movements. Recent findings 

employing non-invasive recording methods suggested that limb movements could also 

be decoded by summed results of brain activity. However, such cases mainly 

employed highly BCI-trained subjects or did not predict so accurately comparing with 

the invasive case. Thus, it has been assumed that only invasive method could decode 

kinematic parameters accurately. 

To control external devices, prediction of motion trajectory using a subject‘s brain 

activity during arm movements is necessary. Several researchers have recently 

presented findings on precise movement prediction by employing brain activity 

measurements from invasive methods, such as implanted microelectrode arrays 

(Wessberg et al., 2000) and electrocorticography (ECoG) (Schalk et al., 2007). 

Non-invasive methods, such as electroencephalography (EEG) or 

magnetoencephalography (MEG), have also been introduced to acquire data for 

movement prediction (Georgopoulos et al., 2005). In many of the previous techniques, 

large datasets were necessary for the prediction (Georgopoulos et al., 2005; Schalk et 

al., 2007). This causes a very high load for real-time calculation, especially for 

continuous training procedures. 

In the current study, we extracted the most suitable feature for the prediction of 

movement trajectory from MEG responses. Particularly, we verified an inconsistency 

in the frequency feature as follows: earlier MEG studies found that the responses 

which were filtered at a low frequency range (2-5 Hz) showed high coherence with 

motion trajectory (Jerbi et al., 2007), while previous ECoG and EEG studies reported 

that μ-wave (9-14Hz) contains the most motion information. Here we selected 

frequency bands, channels and time-windows based on the correlation with the 

subject‘s arm movement and found that the μ-wave around the motor area is highly 

correlated with the subject‘s arm motion. By employing these selected features, a 

multivariate regression method was carried out, and a high quality prediction was 

achieved. 

 

3.2  Experiment 

3.2.1  Visual stimulus 

Visual stimuli for the guidance of arm movement were written in Matlab using 

the Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997) and presented on 
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a screen positioned at about 1.2 m in front of the subject. The background is black 

with a fixation mark ‗+‘ presented in the center of the screen during the experiment 

procedure. A green circle is located 2 cm under the fixation mark. The experiment 

contains 15 blocks, and each block contains a moving session and 10 s rest time 

before the moving session. During the moving session, the green circle moved left and 

right periodically at 0.25 Hz on the background and its position scarifies the sine wave 

of time. In every moving session, 11 moving cycles are performed as is shown in 

Figure 3 - 2. 

 

 

Figure 3 - 1 Visual stimuli used in the experiment. 

(a) The screen and visual stimuli used in the experiment. Green ‗+‘ mark indicates the 

fixation point and green ball is the visual guidance. Green ball moves left and right 

periodically as the yellow arrows show. (b) Green ball‘s horizontal position to time in 

one cycle (epoch). Location X indicated the position of the ball. Here the start position at 

0 second is the center of the screen. The ball first moves left which presented an 

increasing X value.  

 

 

 

Figure 3 - 2 The task scheme performed in this experiment. 

In the experiment, 15 epochs were performed. Each epoch contained a rest and a moving 

session. In each moving session, there are 11 moving cycles as shown in Figure 3 - 1 . 

 

a b 
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3.2.2  Experiment task 

In this experiment, four right-handed male volunteers were employed. All these 

subjects are healthy and they have no experience of using brain computer interface 

(BCI). Subjects were asked to sit on the chair in MEG system and continuously 

manipulate a bar-shaped tool with their right hands. They were instructed to move the 

bar to follow the green circle while maintaining fixation on the ‗+‘ mark in the center 

of the screen. Eye blinking was asked to be controlled during the moving session. 

  

 

Figure 3 - 3 The experimental setups used in the task. 

The left box illustrates the side view of experimental set ups including the magnetic 

shield room. The stimulus is generated by a Matlab script running on PC1 and projected 

to the screen in front of subject by a projector. The grey arrow indicates the data stream. 

The right box is the view from subject, which mainly indicates the motion position 

transferring system made of wood. In right figure, the red point is the motion position we 

want to record. The yellow arrows indicate the moving directions. The white point is a 

support point and the black point is the conjunction point. On the wall of magnetic shield 

room, a hole shown in light blue used to let a wooden stick pass through. A mouse 

connected to PC2 is tied on the stick, therefore the position of red point can be 

transferred to the mouse. PC2 runs a self-programmed Labview script in order to record 

the mouse motion and output it to MEG recording system. 
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Experiment set ups are illustrated in Figure 3 - 3. In order to reduce noises from 

electric devices, we transferred the motion position of the toolbar to the outside of 

magnetically shielded room and recorded the motion position using a mouse outside 

the magnetically shielded room. We developed a motion transfer system made of 

wood by ourselves. This system connects user‘s toolbar and the mouse with two 

wooden sticks. These sticks are connected at the end points and formed a lever. Then 

the large scale toolbar motion could be transferred to a small scale motion which can 

be accepted by mouse. This transferring procedure is shown in the right side of Figure 

3 - 3. 

 

3.2.3  Recordings 

Movement of the near-screen end of the tool bar is considered to be consistent 

with arm movement. We recorded motion position of toolbar with the mouse 

connected to PC2 as is shown in Figure 3 - 3. In our experiment, we wish to 

investigate the relation between motion position and MEG signals, thus we have to 

record MEG signals and motion position simultaneously. In our MEG measurement 

system, mouse signal is not acceptable, so we developed a program using Labview 

software (National Instruments Corporation, Texas) in order to record and convert 

mouse positions into voltage signals for MEG system.  

This self-made program adopted a DAQ card USB-6008 produced by National 

Instruments. This program running on PC2 can record real-time mouse positions as 

pixels on the screen, transfer them linearly into voltage values in 0 ~ 5 V and output 

them with a rate of 160 sample points per second. The output was connected to the 

external input port of MEG system and was simultaneously recorded by the MEG 

system. This program is one block of feedback brain science experiment system 

which was used to participate the 2010 National Instrument Application Contest and 

won a participant prize. 

Both motion position and MEG data were collected using a 440 channel 

whole-head MEG system (Yokogawa, PQ2440R, Tokyo, Japan) at a sampling rate of 

1000 Hz with an analog filter of 0.3-200 Hz. 

 

3.3  Data analysis 

3.3.1  Preprocessing 

Because raw MEG signals are contaminated by electromagnetic noise interference, 

the spatiotemporal signal space separation (tSSS) method (Taulu and Simola, 2006; 

Taulu and Kajola, 2009) was applied to the raw MEG data before further analysis. 

tSSS is a spatial filtering method based on spherical harmonic functions and Maxwell 
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equations, which express MEG measurements as a linear combination of spherical 

harmonic functions. MEG signals can be split into brain signals and external 

interferences, which correspond to the inner and outer part of signals in the MEG 

sensor space, respectively. This procedure is proven to be effective in removing 

external electromagnetic noise without affecting useful brain signals (Taulu and 

Simola, 2006; Taulu and Kajola, 2009). It should be noted that tSSS is not time 

consuming, which is essential for online processing in the future. 

 

 

Figure 3 - 4 Schematic illustration of spectral amplitude calculation. 

In the left figure, blue line indicates the original MEG data. A~E are 0.5 s 

time-windows sliding at a 0.1 s time interval. FFT is applied on the windowed MEG 

data and the right figure shows calculated spectral amplitude at 10 Hz as an example. 

Here the 10 Hz FFT results of time-window A~E correspond to data at 0~0.4 s in the 

right figure. 

 

 

Different to most previous non-invasive researches, we considered and 

investigated motion-related features using single trial MEG data sets, without any 

averaging process. After applying tSSS, both MEG and arm location data were first 

segmented into non-overlapping 4-second epochs, each of which corresponded to 1 

cycle of movement. Then, a time-frequency analysis with a 0.5 s Hanning-window 

was carried out at an interval of 0.1 s to get the time course of the spectral amplitudes 

of MEG, as is shown in Figure 3 - 4. From this process, spectral amplitudes on each 

frequency bands (form 1 Hz to 100 Hz, with interval of 1 Hz) were calculated and the 

sample rate is 10 Hz because of the 0.1 s moving window interval. In the following 

frequency selection, the correlation between the spectral amplitudes below 100 Hz, 

not the filtered time-series data, and arm movement trajectory down-sampled to 10 Hz 

was calculated. For the selection of channel and time-window width, not only single 

trial (cycle) data but also the data averaged across 5 epochs (cycles) were considered 

to study the improvement of prediction by increasing signal to noise ratio (SNR). 
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3.3.2  Multivariate linear regression and cross validation 

test 

In the prediction of continuous motion, a multivariate regression method was 

applied to the processed MEG data. 

 

 𝑌 𝑡 =  𝛽0 +  𝛽𝜏
𝑝
𝜏=1 𝑋 𝑡 − 𝜏 + 𝜀 𝑡  ,             𝑡 = 1,⋯ , 𝑛 ,  3 - 1 

 

where 𝑌 𝑡  is the motion position at time t, and 𝑋 𝑡 − 𝜏  is the spectral 

amplitude of pre-processed MEG at time 𝑡 − 𝜏. Recorded MEG data were split into 

training and test data, and coefficients 𝛽𝜏  obtained from the training data were used 

for the prediction of the test data. We selected the best model by comparing the 

correlation values (r) between actual and predicted motion trajectories for the three 

models. To differentiate this correlation from the one mentioned in following 3.3.3.1 

(correlation between spectral amplitudes and actual motion trajectories), we replace 

the word ‗correlation‘ with ‗prediction performance (r)‘. 

In order to test the stableness of the prediction, we performed a cross-validation 

test. We divided data set of 100 trials data into 5 segments, with 20 trials data in each 

segment. For each segment, 2-fold cross validation was conducted by using the first 

half (10 trials) as training/test and the second half (10 trials) as test/trainig, which is 

similar to previous research (Georgopoulos et al., 2005). Thus we performed the 

training-test procedure for 10 times and averaged the prediction performances. We 

have also tested 10-fold cross-validation using all 100 trials data, but the prediction 

results are much lower. This indicates that sequential data (~40 s for 10 trials data) are 

necessary for the motion prediction. 
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3.3.3 Feature selection 

3.3.3.1  Frequency selection 

 

Figure 3 - 5 Correlation between actual motion position and spectral 

amplitudes at each frequency below 100 Hz, averaged across four subjects. 

MEG data from sensors over motor cortex are selected. 

The black line in the center shows the average correlation value across four subjects. The 

error bar indicates the standard error of correlation of all four subjects. 

 

 

To determine the frequency bands that are useful for the prediction of arm 

movement, we studied the relationship between motion and the spectral amplitude of 

the sensors near motor cortex. For each channel near motor cortex, we calculated the 

correlation between the time course of the spectral amplitude at each frequency band 

(1-100 Hz) and motion information, which included motion position, velocity and 

acceleration. Figure 3 - 5 shows the correlation at each frequency from 1-100 Hz, 

averaged across subjects. Here we focused on low-frequency bands (1-30 Hz), in 

which spectral patterns are common for all subjects. A small peak was found around 

50 Hz, but we didn‘t consider this peak because the peak was found only in Subject A. 

Subsequently, statistical measurements across the channels located near motor cortex 

were used to extract motion related features. The spectral amplitude signals that 

correlated with actual movement were selected, and data in the selected frequency 

bands were employed during the following analysis. From the final prediction 

performances, the most appropriate frequency band was confirmed. 
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3.3.3.2  Channel selection 

 

Figure 3 - 6 Example of channels in the three models. 

Model I includes only one channel with maximum correlation value to motion 

parameters. It is indicated by the black dot located in the center of left hemisphere. 

Model II involves channels in the grey area. Model III contains channels indicated with 

yellow color inside the black circle. 

 

 

Channels located near the contralateral motor cortex (left hemisphere as the 

subjects performed the task with their right hands) were selected because brain 

responses related to motion position mainly originate there. Three models of channel 

selection were employed for both single-trial and 5-epoch-average data: Model I used 

a single channel with the highest correlation value; Model II consisted of 14 channels 

around the highest correlation channel; and Model III involved 43 channels near 

motor cortex. The spectral time courses averaged across the selected channels were 

low-pass filtered at 1 Hz and used for the prediction. Here, in Model II, the correlation 

value between spectral amplitudes of channel in Model I and its surrounding channels 

were calculated first. Then surrounding channels with correlation value over 0.7 were 

selected as the channels used in Model II. In Model III, channels with index number 

of 128~191 were considered as channels near motor cortex. Finally, we used only the 

axial gradiometer among them and removed all bad channels which have large noises 

or strange signals. 
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3.3.3.3  Time-window selection 

 

Figure 3 - 7 Model of time-window selection. 

The red arrow points the motion data to predict. The area with light blue color shows the 

time-window used in prediction. Note the spectral amplitude is the averaged data of 

selected frequency bands across selected channels. 

 

 

Most researches used MEG signals several hundred milliseconds just before 

motion to be predict. However, in periodic continuous motion, the mechanism might 

change to some extent, thus we have to investigate and determine the proper 

time-window width by ourselves. To achieve the best prediction, different 

time-window widths (one sample point as one feature) and training dataset numbers 

were considered in the regression coefficient training procedure. From the training 

result, the coefficients 𝛽𝜏  could be determined and by applying them to the test data 

set, the prediction performance could be calculated. The appropriate time-window 

width providing the best prediction could be determined by considering the prediction 

performance on test data set.  

 

3.3.4 Comparison of predictions using tSSS and 

compensation tSSS 

In Chapter 2, we discussed the effectiveness of compensation tSSS method for our 

system. In order to verify this fact in real application, we also applied this method 

here instead of tSSS method, and compared the differences of the prediction results. 

In this procedure, instead of tSSS, compensation tSSS method was first applied on 
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raw MEG data before other preprocessing. After this, all the data processing 

procedure of these two cases are similar.  

After the prediction of both these two cases, the statistics of prediction 

performances are listed and the differences of these two cases are discussed. 

 

3.4  Results 

3.4.1 Frequency selection (Spectral feature) 

 

Figure 3 - 8 Correlation between actual motion and the spectral amplitudes of 

MEG from sensors over motor cortex, for each subject. 

In each figure, the black line is the average correlation value of selected channels over 

motor cortex. The error bar is the standard error value of selected channels. Here, we 

focus on low frequency band and show frequency below 30 Hz. 

 

 

Figure 3 - 8 shows examples of the correlation between motion position and 

spectral amplitudes of MEG measured from sensors near the motor cortex. Three 

subjects (A, C, D) showed a correlation result with three peaks: two prominent peaks 

Subject A 

Subject B 

Subject C 

Subject D 
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around 9-14 Hz and 20-26 Hz and a small peak around 3-7 Hz (subjects A and D). 

This finding indicates that these frequency bands contain a relatively large amount of 

information about motion position. Moreover, these frequency bands correspond to 

μ-wave (9-14 Hz), β-wave (20-26) and δ-rhythm (3-7 Hz), which are all frequency 

bands related to motion. This is similar to the previous studies with ECoG (Miller et 

al., 2007; Schalk et al., 2007) and EEG (Wolpaw and McFarland, 2004). One 

subject (B) showed less prominent peaks, but the peak frequencies were similar to the 

other subjects.  

 

 

Figure 3 - 9 Correlation between motion parameters (motion position, 

velocity and acceleration) and the spectral amplitudes of different frequency 

bands, averaged across four subjects. 

White, gray and black color bars indicate results of motion position, velocity and 

acceleration respectively. 3-7 Hz, 9-14 Hz and 20-26 Hz indicate correlation results 

between motion parameters and spectral amplitudes of corresponding frequency bands. 

The error bars are the standard errors of four subjects. 

 

 

Figure 3 - 9 illustrates the correlation between motion parameters (motion 

position, velocity and acceleration) and spectral amplitudes, averaged across all 

subjects. Error bars indicate the standard error across subjects. In two-way repeated 

measures ANOVA results, a significant main effect of frequency band was shown (F(2, 

6) = 6.17, p < 0.05). The multiple comparison results showed that frequency band 

9-14 Hz has a significant higher correlation value than frequency band 20-26 Hz (p < 

0.05). No significant difference between frequency band 9-14 Hz and 3-7 Hz (p > 

0.05). Considering many previous researches have confirmed that μ-wave played an 

important role the motion prediction (Wolpaw and McFarland, 2004; Schalk et al., 
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2007), we choose frequency band 9-14 Hz rather than 3-7 Hz as our frequency 

feature.  

 

3.4.2 Channel selection (Spatial feature) 

 

 
Figure 3 - 10 Prediction performances of the three models. 

White, grey and black color bars correspond to prediction performance using Model I, II 

and III. In x axis, ‗single trial‘ means single trial MEG data used in the prediction and ‗5 

epoch average‘ indicates 5 epoch averaged MEG data used in the prediction. The error 

bar is standard error of results of four subjects. 

 

 

After this analysis, we selected the ‗max channel‘ with the highest correlation 

value at 9-14 Hz in the contralateral motor cortex (the black dot in left hemisphere 

shown in Figure 3 - 6). Motion location was predicted by using the 9-14 Hz power 

data from the following models: Model I, max channel only; Model II, averaged 

across channels around the max channel; and Model III, averaged across channels 

near motor cortex. Figure 3 - 10 shows the prediction performance comparison of the 

three models. Error bars indicate the standard error across subjects. Here, both 

single-trial and 5-averaged-epoch condition suggested that model III showed the 

highest prediction performance. A two-way repeated measures ANOVA found a 

significant main effect of channel selection model (F(2,6) = 10.5, p < 0.05), and the 

multiple comparison results showed that prediction performance of model III was 

significantly different compared to the other two (p < 0.05). Thus, the average over all 

motor channels was found to provide the best prediction performance.  
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Figure 3 - 11 Typical examples of actual (blue) and predicted (red) motion 

trajectories with different prediction performances (r), for Subject A. 

 

 

Figure 3 - 11 shows an example of the actual motion trajectory and its prediction 

with the three different channel selections. Graphs in the upper, middle and lower 

panels show the result of Model I, II and III, respectively, for subject A. From upper 

to lower graph, the prediction performance increases. When the prediction 

performance is 0.5, the predicted motion trajectory is noisy and different to real 

motion trajectory sometimes. When it improves to 0.6, the predicted line is less noisy 

and much similar to real one. When it improves to 0.83 as is shown in the lower graph, 

the predicted line is very smooth, suggesting very little noise, and the predicted and 

real motion trajectory are very similar.  

 

r = 0.5 

r = 0.6 

r = 0.83 
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3.4.3 Time-window selection (Temporal feature) 

 

 

Figure 3 - 12 Prediction Performances using different feature numbers. 

The upper graph illustrates prediction performance statistics using single trial MEG data. 

The lower graph illustrates prediction performance statistics using 5 epoch average MEG 

data. White, grey and black color bars are results of motion position, velocity and 

acceleration respectively. In x axis, 1 feature means the time-window width is 0.1s, 10 

features means a 1s time-window width, and so on. Error bars are standard errors of four 

subjects. 

 

 

The performances of regression prediction are displayed in Figure 3 - 12 (a, 

results of single trial data; b, results of average data across 5 epochs). Error bars 

indicate the standard error across subjects. In both predictions using single trial data 

and using averaged data from 5 epochs, the statistics of all subjects‘ prediction 

performances are illustrated in Figure 3 - 12. For both single trial and averaged data 

conditions, prediction performances showed similar tendency, improved with the 

feature number and saturated at about 30 features (30 sample points) regardless of 

motion location, velocity or acceleration. Thus in the following prediction, we used 30 

features for the prediction of location. As the prediction procedures are similar to all 

these three types of motion, we focused on the motion trajectory prediction without 

a 

b 
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talking about velocity and acceleration prediction in detail.  

 

 
Figure 3 - 13 Examples of actual (blue) and predicted (red) motion trajectory 

using 30 features 

a. prediction and real motion trajectories using 30 features of single trial MEG data. The 

prediction performance value is 0.50.  b. prediction and real motion trajectories using 

30 features of 5 epoch average MEG data. The prediction performance value is 0.81. 

Frequency band selection and channel selection are the same as discussed in the former 

two sections. 

 

 

By employing these feature numbers in the prediction procedure, examples of 

movement trajectory prediction for a typical subject A are illustrated in Figure 3 - 13 

(a, result using single trial data; b, result using 5 epochs averaged data.). Blue lines 

indicate actual motion trajectories while red lines indicate predicted motion 

trajectories. In subject A‘s results, 5 epochs averaged data provides a higher prediction 

performance than single trial data, indicating data with higher SNR could predict 

motion better. Considering the prediction performances of all subjects, the prediction 

performances showed similar result that averaged data (average r = 0.36, p < 0.001) 

provides a higher prediction performance than single trial data (average r = 0.23, p < 

0.001).  

  

b 

 

r = 0.81 

a 

r = 0.50 
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3.4.4 Training data set determination 

The training data set size also affects prediction performance. When training data 

set is small, we have the overfitting problem in which the model becomes relatively 

complex as there is not enough effective information. We considered different size of 

training data set from 1 trail to 20 trials for selected model mentioned in previous 

sections. The results in Figure 3 – 14 showed that the performance saturates at around 

10 trials so that we adopted the training data size of 10 trials. 

 

 

Figure 3 - 14 Prediction performance with different training data sets. 

 

 

3.4.5 Comparison of tSSS and compensation tSSS 

Table 3 - 1 lists the best prediction performance using feature selection methods 

mentioned in former sections. All processes are the same except the noise reduction 

method in preprocessing procedure. Two aspects are considered: single trial or 5 

epoch average MEG data sets; tSSS or compensation tSSS method as noise reduction 

method before preprocessing. For single trial data case, the prediction performance of 

tSSS is 0.23 ± 0.14 (mean ± standard deviation (SD), across all subjects) which is a 

rather poor value, while the one of compensation tSSS is 0.32 ± 0.14 which is an 

acceptable performance. For 5 epoch average data case, the prediction performance of 

tSSS is 0.36 ± 0.40 which is a good prediction performance, while the one of 

compensation tSSS is 0.59 ± 0.27 which is much better than tSSS. Two-way repeated 

measures ANOVA found a significant main effect of noise reduction method (F(1,3) = 
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22.3, p < 0.05), indicating that prediction using compensation tSSS method performed 

significantly better than that using tSSS method. This result confirmed that 

compensation tSSS method could provide a higher signal to noise ratio than tSSS 

method on our MEG system, thus motion related information is easier to be extracted. 

In the ANOVA results, no significant main effect of average method was found (F(1, 

3) = 3.92, p > 0.05), indicating that prediction using averaged data has no significant 

difference to single trial data. This may because of the variety of prediction 

performances of all subjects on current data sets. 

 

Table 3 - 1 Comparison of prediction performance results using tSSS and 

compensation tSSS method. Results of both single trial and 5 epoch average 

cases of all subjects are listed below (mean ±SD ). 

Data tSSS Compensation tSSS 

Single trial 0.23 ± 0.14 0.32 ± 0.14 

5 epoch average 0.36 ± 0.40 0.59 ± 0.27 

 

 

The prediction result examples are illustrated in Figure 3 - 15. After performing 

tSSS method, the prediction performance using selected features is 0.16 (subject A). 

In upper graph of Figure 3 - 15, hardly any motion pattern is well predicted in the first 

half part of the motion, in the second half of the motion, only sometimes predicted 

motion trajectory is similar to real motion. While using compensation tSSS method, 

the prediction performance improved to 0.3. In the comparison of predicted and real 

motion trajectories, the first half does not change comparing to tSSS case. However in 

the second half, predicted motion is very similar to real motion which suggesting a 

good prediction. Thus from both the statistics of prediction performance and predicted 

motion trajectories, the results of compensation tSSS are better than tSSS method. 
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Figure 3 - 15 Prediction results of subject C using single trial MEG data after 

applying tSSS or compensation tSSS method. 

Upper graph is result using tSSS method before preprocessing. Lower graph is result 

using compensation tSSS method as noise reduction method. Blue line and red line are 

corresponding to real and predicted motion positions. r in the right upper position of 

each graph is prediction performance which suggesting the similarity of predicted and 

real motion position. 

 

3.5  Discussion 

3.5.1 Overfitting in feature selection 

In channel selection, we tested three models with changing the number of 

channels, but it should be noted that the data are averaged across sensors, and the 

feature number is fixed across the three models. Here we tested channels over 

contralateral motor cortex instead of all the channels. This is because we were trying 

to improve prediction performance by using the features related to the real motion. 

Specifically, we tried not to use signals related to visual motion processing by 

restricting the sensors to those around motor cortex. We used previous knowledge that 

contralateral motor cortex is activated during motion. Since subjects used right hand, 

channels around left motor cortex are considered. The analysis basically shows that 

r = 0.16 

r = 0.3 
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increasing the number of channels around the motor cortex improved prediction 

performance. This is because signal to noise ratio is increased by increasing the 

number of sensors averaged. 

In time-window selection, five models were tested with changing the number of 

used features. As is shown in Figure 3-12a, the prediction performance of motion 

position, velocity and acceleration using single trials data peaks at around the feature 

number of 30. The same tendency was observed in the averaged data case, as is shown 

in Figure 3-12b. The reason for the decrease in prediction performance for the feature 

number of 40 is that the model focuses not on general pattern but on the too much 

detail of training data. The feature number which has the highest prediction 

performance provides the proper time-window length which indicates a model with 

suitable complexity. Thus we used the time-window size of 30 to solve the overfitting 

problem. 

 

3.5.2 Motion related features 

Earlier studies found that MEG responses filtered at low frequency ranges (2-5 

Hz) showed high coherence with motion trajectory (Jerbi et al., 2007). In the current 

study, we considered the spectral amplitude rather than the filtered MEG signals and 

found that not only a similar frequency band (3-7 Hz) but also two additional 

frequency bands (9-14 Hz and 20-26 Hz) were correlated with motion trajectory. Our 

results suggested that -wave (9-14 Hz) contains the most motion information for 

every subject, which is consistent with previous ECoG and EEG studies (Wolpaw and 

Mcfarland, 1994). Although an EEG study employing trained subjects reported that 

20-26 Hz activity was also useful for motion prediction (Wolpaw et al., 2003; Wolpaw 

and McFarland, 2004; Mellinger et al., 2007; Yuan et al., 2010), the prediction of 

motion trajectory using this frequency band was not successful in our case. This might 

result from the fact that we used untrained subjects, but further investigations are 

necessary. The peak at the low frequency band (3-7 Hz) demonstrated that 

non-invasive MEG findings, by considering spectral amplitude, are consistent with a 

former ECoG study (Miller et al., 2007). 

The most appropriate number of features was found to be 30 for all of location, 

velocity and acceleration, which correspond to 3 s data because the spectrum 

amplitude was calculated using a 0.1 s sliding time-window. We concluded that for 

continuous motion, long duration brain activities at 9-14 Hz might contain more 

information and provide better predication than short duration activities. Contrary to 

our results, a previous MEG study predicted joystick trajectory by using only 20 ms 

MEG data before the motion. Although we applied very different features, our 

prediction was comparable to their prediction but with significantly fewer features 

(4960 features vs. 30 features). Therefore, our method could greatly reduce the 
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calculation cost in regression training and reduce the risk of overfitting problem, 

which is vital for real-time closed-loop prediction. 

In compensation tSSS case, the prediction performances are higher than tSSS 

case for all subjects, both on single trial and 5 epoch average data sets. This suggests 

that using compensation tSSS method, our feature selection method worked better 

under current MEG measurement condition. Comparing with tSSS method, 

compensation tSSS could not only further remove external noises, but also recover 

useful brain activity patterns. Thus the noise levels are lower and brain activities are 

larger in compensation tSSS results than in tSSS results. It is the lower noise level and 

the larger brain activity that improved the SNR. With more information of motion 

patterns, the prediction performance could surely be improved. This result further 

confirmed that compensation tSSS method is a more efficient noise reduction method 

than tSSS method for our gradiometer only MEG system. Regardless to noise level 

(single trial or 5 epoch data), compensation tSSS could improve the prediction 

performances, which indicated compensation tSSS method could work well under 

different noise levels.  

 

The current study demonstrated that -wave of MEG contains information that is 

necessary for the prediction of arm trajectory. By extracting -wave brain activity 

around the motor cortex, we could reduce the effect of the contaminating 

environmental noise and improve the trajectory prediction performance. Although the 

single trial prediction performance is not so good, the prediction performance using 5 

epochs average data demonstrated the possibility of a high-quality non-invasive BCI.  
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Chapter 4  Subject-dependent features in 

continuous motion 

 

 

In Chapter 3, we revealed the motion related MEG features and achieved good 

prediction on 5 epoch averaged data. In Chapter 4, we reconsidered the experiment in 

Chapter 3 and investigated correlation between motion trajectory and MEG spectral 

amplitudes below 100 Hz for each subject. Compared with the fixed frequency band 

(9~14 Hz) used in Chapter 3, subject-dependent frequency band based on the 

correlation between spectral amplitude and motion offered a better prediction 

performance. The combination of subject-dependent two or three frequency bands 

further improved the prediction performance, and we could achieve a good single-trial 

prediction (r = 0.47) with few features. These results suggest that non-invasive study 

can predict as efficient as invasive studies. 

 

  



76 
 

4.1  Introduction 

Continuous motion predictions have already been performed by several 

non-invasive studies and most of them used time-series (Georgopoulos et al., 2005) or 

pre-determined frequency bands (Wolpaw and McFarland, 2004). These researches 

mainly focused on the prediction itself and lacked the analysis of extracting more 

proper features. Thus the feature number in non-invasive case was always large and 

prediction training was time consuming. Furthermore, prediction using a large feature 

number has a high risk of causing overfitting problem. In this case, although we could 

get a good prediction on training data sets, the prediction on long time testing data set 

will not be stable. In Chapter 3, we have developed a feature selection method based 

on correlation values between motion and spectral amplitudes and performed a good 

continuous motion trajectory prediction. However, these predictions were well 

performed on only the 5 epoch average data for most of the subjects. Even using 

compensation tSSS method, the prediction value is only acceptable, but not well 

enough in the single trial data case. One reason is that fixed frequency range is not 

proper for every subject because of the differences between subjects. The other reason 

is that although the selected feature is highly motion related, other motion related 

frequency ranges may exist depending on different subjects. These problems need to 

be further considered to improve prediction performance. 

In this chapter, we investigate correlation between motion position and spectral 

amplitude below 100 Hz again and focus on different features for each subject. Here, 

subject-dependent features lay in several frequency bands ranged from low frequency 

δ to high γ bands were extracted by our feature selection method and were applied in 

motion prediction. Also, we try to combine several subject-dependant features to 

further improve the single trial prediction performance. By using combination of 

subject-dependent features, efficient single trial prediction is achieved.  

 

4.2  Method 

4.2.1 Participants 

Four right-handed male volunteers participated in the experiment after given 

informed consent about their risks and tasks in the experiment. All these subjects are 

healthy and they have no experience of using brain computer interface (BCI) devices. 

Just before the experiment, every subject practiced tasks and how to use the toolbar 

for about 15 minutes. 
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4.2.2 Task design 

We used the same task design as mentioned in Chapter 3. Totally 11 motion 

sessions were included in the whole task and 10 seconds resting sessions were added 

between each two motion sessions for performing eye blinking. Below a fixation mark 

‗+‘ in the center of screen, a green ball continuously moving left and right at 0.25 Hz 

was presented during the motion session. Subjects were instructed to move the bar to 

follow the green circle while maintaining fixation on the ‗+‘ mark in the center of the 

screen. 

 

Figure 4 - 1 The experimental set up used in the task. 

The left figure illustrates the experimental design. The right figure indicates the position 

of green ball shown on the screen. 

 

 

4.2.3 Motion trajectory and MEG recording 

Brain magnetic fields were recorded by a whole-head MEG system comprising 

440 gradiometers (Yokogawa, PQ2440R, Tokyo, Japan) located in a magnetically 

shielded room. The sampling rate was 1000 Hz, and the signals were bandpass filtered 

between 0.3 and 200 Hz before digitalizing and recording. 

Continuous motion information was transferred to a mouse outside the magnetic 

shielded room by a self-made transferring system made of wood. We programmed an 

application using Labview software (National Instruments Corporation, Texas, USA) 

to record mouse information and output it into MEG system as voltage signals. This 

voltage motion information was then recorded simultaneously by our MEG system 

with a sample rate of 1000 Hz. 

  

Subject 
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4.2.4 Data analysis 

In this experiment, we focused on frequency features, thus we kept channel 

selection and time-window selection method the same as is mentioned in Chapter 3. 

All the results are calculated after applying tSSS method if it is not specified as using 

compensation tSSS. For frequency characteristics, we reconsidered correlation 

between continuous motion and spectral amplitudes of MEG. In order to extract more 

motion related features, spectral amplitudes at each frequency below 100 Hz were 

investigated in this experiment. For each subject, several frequency bands with 

relatively high correlation values were selected and regarded as subject-dependant 

motion related features. These subject dependant features were then adopted in the 

following continuous motion trajectory prediction. 

Then, we considered three motion related feature selection models: (1) fixed 

frequency band (9~14 Hz) mentioned in the former chapter; (2) main 

subject-dependent frequency band around 9~14 Hz; (3) combination of several 

subject-dependent frequency bands. For each subject, spectral amplitudes in these 

three models were averaged across channels near motor cortex, and 3s-long spectral 

amplitude data (30 features for each frequency band) was used in the multivariate 

linear regression method to predict motion trajectory. The multivariate regression 

formula is shown as follows: 

 

𝑌 𝑡 = 𝛽0 +   𝛽𝑖,𝜏𝑋𝑖 𝑡 − 𝜏 𝑝
𝜏=1

𝑁
𝑖=1 ,                         𝑡 = 1,… , 30,   4 - 1 

 

where 𝑌 𝑡  is motion position at moment t, 𝑋𝑖 𝑡 − 𝜏  is the 𝜏-th feature in the 

𝑖-th frequency range and 𝛽𝑖,𝜏  is the regression coefficient of feature 𝑋𝑖 𝑡 − 𝜏 . 

In this experiment, we adopted single trial data as the test dataset and performed 

the prediction of different models. Here, we performed a cross-validation test similar 

to the one mentioned in chapter 3 and the prediction performances were evaluated by 

the correlation between real and predicted motion trajectories. 

 

 

4.2.5 Comparison of predictions using tSSS and 

compensation tSSS 

Similar to Chapter 3, both tSSS method and compensation tSSS method were 

applied on raw MEG data before feature selection and prediction. Other processing 

are exactly the same. To testify the effectiveness of subject-dependant feature 

selection method, the results in this chapter were compared to the prediction results in 

Chapter 3 using fixed frequency band. Also, the results here are compared between 
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tSSS and compensation tSSS cases in order to check the effectiveness of 

compensation tSSS method and the stableness of the subject-dependant feature 

selection method. 

 

4.3  Results 

 

Figure 4 - 2 Statistics of correlation values between continuous motion 

position and spectral amplitudes of MEG data over motor cortex, averaged 

across all subjects. 

The blue line in the plot is the average correlation value across 4 subjects and the dark 

red area shows the standard error of the correlation value. The correlation values are first 

calculated for each frequency and for each channel over motor cortex, and then averaged 

across channels.  

 

 

The averaged correlation values across all subjects were shown in Figure 4 - 2. 

Several peaks which are related to motion position can be recognized from this figure. 

These peaks range from μ-rhythm, β-rhythm to several γ-bands. Among them, 

μ-rhythm around 9~14 Hz is a common frequency band with the highest correlation 

values, which is mentioned in the former chapter. The β-rhythm around 18~24 Hz is 

also a common frequency band with high correlation value as is mentioned before. 

Moreover, several γ-bands such as 45~50 Hz and 65~70 Hz presented a relatively 

high correlation value in the averaged plot. As these frequency bands are not common 

features of all subjects, they might play an important role in the subject-dependent 

prediction.  
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Figure 4 - 3 Statistics of correlation values between continuous motion 

positions and spectral amplitudes of MEG data over motor cortex, listed for 

each subject.  

Labels A, B, C and D indicated correlation results of different subjects. For each 

frequency and each channel over motor cortex, correlation value is calculated. The blue 

line in every plot is the average correlation value across channels and the dark red area 

shows the standard difference of the correlation value. The light blue area indicates the 

frequency ranges which have relatively high correlation value. These frequency ranges 

are 9~13 Hz, 20~24 Hz, 47~50 Hz for subject A; 5~7 Hz, 10~12 Hz, 66~70 Hz for 

subject B; 8~10 Hz, 35~37 Hz for subject C; 11~16 Hz, 44~45 Hz for subject D. 

 

 

The correlation results below 100 Hz of all subjects were investigated and shown 

in Figure 4 - 3. For subject A and B, three frequency ranges with relatively high 

correlation value were selected while for subject C and D, only two frequency ranges 

were selected. The detailed ranges of these motion related frequency are described in 

the description of Figure 4 - 3 and we call them subject-dependant frequency ranges. 

From the figures, we could confirm again that μ- rhythm frequency bands (9~14Hz) 

presented a much higher correlation value than other selected frequency bands. Thus, 
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we recognized μ-rhythm as the main motion related frequency features. However, μ- 

rhythm frequency ranges varied a little around 9~14 Hz for different subject, and we 

called them the main subject-dependant frequency ranges. From Figure 4 - 3, we 

could determine that main subject-dependant frequency ranges are 9~13 Hz, 10~12 

Hz, 8~10 Hz and 11~16 Hz for subject A-D respectively. 

 

 

Figure 4 - 4 Prediction performances using different feature selection models 

on single trial data. MEG data was preprocessed using tSSS method. 

Labels ‗fixed‘, ‗subject depended‘ and ‗combined‘ in x axis indicate results using model 

1: fixed frequency band (9~14 Hz), 2: main subject-dependent frequency range around 

9~14 Hz; 3: combination of several subject-dependent frequency ranges respectively. 

Blue, green, red and light blue lines in the plots represent prediction performances of 

subjects A-D respectively. 

 

 

Using multivariate linear regression method, we predicted continuous motion 

trajectory and evaluated performances on different models. In prediction results 

adopting tSSS preprocessed single trial data, two subjects (A and D) presented much 

better performances using main subject-dependent feature than pre-defined fixed 

feature, while the other two subjects presented a minor increased (subject C) or 

decreased (subject B) performances. When features of several subject-dependent 

frequency ranges are combined, prediction performances of all subjects improved 

comparing to main subject-dependent feature. Considering the total effects, subject A, 

C and D showed an improvement between combined subject-dependant and fixed 

feature models.  
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Figure 4 - 5 Single trial prediction results using combination of several 

subject-dependant features, for subject A. 

Y axis indicates motion position in meters. Blue line is the actual motion position and red 

line is the predicted motion position. Prediction performance is evaluated by the 

correlation between actual and predicted motion position, and is shown in the upper left 

corner as r = 0.62 . 

 

 

Predicted motion position using tSSS preprocessed single trial MEG data is 

shown in Figure 4 - 5. Comparing predicted to actual motion trajectories, we found 

out that similar motion tendency is shown in the whole 25 s motion process. The 

correlation value r = 0.62 also indicated that this single trial prediction is successful. 

In the data analysis using compensation tSSS as noise reduction method, 

correlation values showed similar results for each subject while varied slightly. By 

using the same subject-dependant feature selection method, mainly the same 

frequency bands were chosen as selected frequency features (8~14 Hz, 20~24 Hz, 

44~46 Hz for subject A; 10~14 Hz, 5~8 Hz, 66~69 Hz for subject B; 7~11 Hz, 45~47 

Hz, 54~56 Hz for subject C; 12~18 Hz, 28~30 Hz, 45~47 Hz, 53~54 Hz for subject 

D).  

 

r = 0.62 
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Figure 4 - 6 Comparison of prediction performances using different feature 

selection models on single trial data. MEG data was preprocessed using 

compensation tSSS method. 

Labels ‗fixed‘, ‗subject depended‘ and ‗combined‘ in x axis indicate results using model 

1: fixed frequency band (9~14 Hz), 2: main subject-dependent frequency range around 

9~14 Hz; 3: combination of several subject-dependent frequency ranges respectively. 

Blue, green, red and light blue lines in the plots represent prediction performances of 

subjects A-D respectively.  

 

 

 The prediction performances using compensation tSSS preprocessed single-trial 

data are illustrated in Figure 4 - 6. For all the subjects, the prediction performance 

value improves as the model changes from pre-defined fixed frequency feature to 

subject-depended frequency feature. When several subject-dependent frequency 

features are combined, subject A, B and C showed great improvements while subject 

D is an exception that prediction performance decreased slightly. However, comparing 

combined feature model to fixed feature model, the improvement is still significant 

for all the subjects, which indicates an effectiveness of combined subject-dependent 

frequency feature model under compensation tSSS condition. 
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Figure 4 - 7 Single trial compensation tSSS prediction results using fixed 

frequency feature and combination of several subject-dependant features, for 

subject A. 

Upper graph indicates prediction result using fixed frequency features; lower graph 

shows prediction result using combination of several subject-dependant features. Y axis 

indicated motion position in meters. Blue line is the actual motion position and red line 

is the predicted motion position. Prediction performance is evaluated by the correlation 

between actual and predicted motion position, and is shown in the upper left corner as r 

value. 

 

 

 The prediction results using compensation tSSS are shown in Figure 4 - 7. In the 

upper graph, prediction performance is r = 0.52, which is a relatively high value. The 

waveform pattern of predicted motion trajectory is briefly the same with actual 

motion. In the lower graph, prediction performance using combination of several 

subject-dependant features is r = 0.66, which is a good prediction performance. 

Comparing to the upper graph, predicted motion trajectory using combined model is 

much more similar to actual motion and nearly all the motion pattern peaks and 

tendency are well depicted. 

 

r = 0.52 

r = 0.66 
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4.4  Discussion 

4.4.1 Overfitting in model selection 

In this task, we used subject-dependent frequency feature selection instead of 

using all the spectrums to avoid overfitting problem. By selecting motion-related 

features, effective information is extracted from the large amount of spectral data, thus 

prediction will not focus on irrelevant noise and other brain activities. Here we used 

the combination of several subject-depended frequency bands as feature selection 

method and obtained the best prediction performance than the other models. When we 

tested the combination of frequency bands that are not subject-dependent, the 

performance got worse because of the overfitting problem. Although the feature 

number increased in such cases, the prediction performance rather got worse. This 

indicated that performance improvement by using subject-dependent frequency bands 

does not come from the increased number of features, but from the extraction of 

effective information, which is precisely our purpose. 

 

4.4.2 Model comparison 

Both the averaged and subject-dependant correlation values indicated that 

μ-rhythm (around 9~14 Hz) is the common and best motion related frequency range. 

This is consistent with not only our former study, but also some previous EEG studies. 

Also, we found out that low frequency δ rhythm (5~7 Hz) or β rhythm (18~24 Hz) is 

related to continuous motion in some subject‘s data, which is similar to previous 

continuous MEG and EEG studies. Moreover, several high frequency γ bands (30~50 

Hz, 60~70 Hz) were also revealed as motion related frequency ranges. This has been 

presented by some non-invasive discrete motion studies and invasive continuous 

motion studies, but has not been reported by continuous non-invasive studies. 

In the comparison of three different frequency selection models, improvement of 

prediction performance varied a lot from subject to subject. This variance might come 

from different distribution of motion related frequency ranges and different signal to 

noise ratio (SNR). 

Table 4 - 1 listed the prediction performances of different models using different 

noise reduction methods. The prediction performance results indicated that 

subject-depended features predict continuous motion more efficiently than 

pre-defined fixed features. Subject A, C and D represented an improvement in tSSS 

preprocessed data. This revealed that motor related signal differed slightly from 

person to person. An exception is subject B. Considering the correlation plot of 

subject B, correlation peak around fixed frequency band 9~14 Hz is not as clear and 

high as other subjects and thus the subject-dependant frequency band 10~12 Hz is not 
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a proper main subject-dependant frequency range for subject B, which lead to very 

little improvement. However, in the prediction performance using compensation tSSS, 

this problem is fixed and all subjects presented an improvement, which further 

confirms motor related subject-dependent feature is more proper for motion 

prediction. 

 

Table 4 - 1 Prediction improvement between different models for each 

subject. 

Model 1, 2 and 3 indicated fixed frequency range model, main subject-dependant 

frequency range model and combination of several subject dependant frequency range 

model respectively. Symbol ‗○‘ means improvement on both original tSSS and 

compensation tSSS data. Symbol ‗t‘ means only improvement on original tSSS data, 

while symbol ‗c‘means only improvement on compensation tSSS datga.  

Subject Model 1 to 2 Model 2 to 3 Model 1 to 3 

A ○ ○ ○ 

B c ○ c 

C ○ ○ ○ 

D ○ t ○ 

 

 

In the comparison of main subject-dependant model and combination model, 

almost all the subjects showed significant improvement in both tSSS and 

compensation tSSS data, which revealed the efficiency of combination model. Subject 

D represented a slight decreased prediction performance in compensation tSSS data 

and the possible reason is that current selected frequency features did not contain 

enough motion information and other undiscovered motion related frequency band 

may exist. 

In both tSSS and compensation tSSS data prediction results, it turned out that a 

much better prediction performance was achieved by using the combination of subject 

dependant frequency model than using fixed frequency feature model. The only 

exception is subject B who showed significant improvement only on compensation 

tSSS data. This might be the reason that the main subject-dependent frequency band 

(10 – 12 Hz) has the same correlation level to frequency band 5 – 7 Hz and mixed 

with each other, thus it is not a really main subject-dependent frequency band for 

subject B.  

The significant improvement of prediction performance in combined feature 

model confirmed that continuous motion was not only related to μ (9~14 Hz) and β 

rhythm (18~24 Hz), but also related to low frequency δ rhythm (5~7 Hz) and some 

part of high frequency γ bands (30~50 Hz, 60~70 Hz), which is similar to previous 

ECoG and MEG discrete motion study (Waldert et al., 2008). Moreover, the high 
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prediction performance value in this study is comparably high with previous study 

using averaged data. This confirmed that our subject-dependant frequency feature 

selection method is efficient in single trial prediction of continuous motion. 

 The statistics of prediction performances were also considered. Prediction 

performances were first averaged for each subject and each condition (model and 

noise reduction method). Then, the statistical results of all subjects were calculated 

and listed in Table 4 - 2. A two-way repeated measures ANOVA found a significant 

main effect of noise reduction method (F(1,3) = 12.2, p < 0.05), indicating that 

prediction using our compensation tSSS performed significantly better than that using 

the conventional tSSS. There was also a significant main effect of the model (F(2, 6) 

= 5.6, p < 0.05), and the multiple comparison results showed that prediction 

performances of model 3 was significantly higher than model 1 (p < 0.05) and model 

2 (p < 0.05). The interaction between noise reduction method and model was not 

significant. 

 

Table 4 - 2 Comparison of prediction performance results using tSSS and 

compensation tSSS method, fixed model, main subject-dependant model and 

combined model. The result is shown as mean ± SD. 

Single-trial data tSSS 
Compensation 

tSSS 

Fixed frequency 0.23 ± 0.14 0.32 ± 0.14 

Main subject- 

dependant frequency 
0.27 ± 0.11 0.40 ± 0.10 

Combination of 

subject-dependant 

frequencies 

0.31 ± 0.08 0.47 ± 0.10 

 

 

From this study, we concluded that using subject-dependant feature selection 

method, single-trial MEG data could also predict continuous motion as well as some 

invasive studies with fewer features. 
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Chapter 5  Robustness of motion-related 

feature selection 

 

 

In Chapter 5, we tested different motion cycles and devices to study the 

robustness of our motion trajectory projection. In task 1, we performed an experiment 

with motion similar to chapter 3 using a different device (trackball). The prediction 

result confirmed that our feature selection method could work equally well on 

different devices which indicated a robustness of different devices. In task 2, we 

considered a different motion cycle without visual guidance and confirmed the 

efficiency of our feature selection method on different motion cycle. This indicated a 

robustness of different motion. As there is no visual guidance in this task, the selected 

features are absolutely from motion brain activities. We then applied source 

localization technique, and confirmed that the frequency features selected by our 

feature selection method were motion related activities originating from motor cortex 

and sensorimotor cortex.  
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5.1  Introduction 

Currently, there are many studies focused on continuous motion prediction. 

However, most of them are invasive studies on monkeys who have been implanted 

microelectrode arrays. These studies contained from one dimensional to three 

dimensional motions as well as the real-time robotic arm controls. By using the firing 

spikes of certain area of motor cortex, a direction tuning between arm motion 

directions and firing rate was discovered as a convincing motion related mechanism. 

Therefore perfect continuous motion prediction can be achieved and this kind of 

prediction is robust. However, as invasive recording is risky, very few human invasive 

studies on continuous motion were reported. 

Because invasive study is difficult to apply on human, recent years, some 

non-invasive studies started to focus on continuous motion of human. These studies 

mainly used MEG or EEG recordings and tried to perform a good prediction on 

kinematic parameters. However, most of them simply presented a good prediction 

performance with a huge quantity of data set, and did not provide any motion related 

feature or mechanisms. Therefore, whether these predictions are robust on other kinds 

of motion or devices is still unknown. Also, whether the information they used are 

really related to motion or some other responses is still not fully investigated yet. 

In the former study, we proposed an efficient subject-dependant feature selection 

method which could provide good prediction performance using single trial data 

recorded by non-invasive MEG. As these features are selected from the correlation 

between brain activities and motion parameters, they are highly possible to be motion 

related features. However, without contour map or source analysis, it is not so 

convincing. Therefore, in this chapter, we first performed different tasks to testify the 

robustness of our method, then considered the spatial patterns and source level 

activities to investigate our selected features are motion related or not.  

In this study, different external device (track ball) or motion cycle is adopted in 

task 1 or task 2 in order to test the robustness of different device and motion type. By 

comparing the prediction performance of former and current experiments, the 

robustness on different devices and motion type is confirmed, indicating our 

subject-dependant feature selection method could be used under different conditions. 

In chapter 3, we investigated motion task with visual stimulus. Although we adopted 

MEG signals over motor cortex, whether the selected features used in prediction come 

from motion intention or visual response is still unclear. Thus, task 2 is designed as a 

voluntary motion task without any visual stimulus guidance in order to find out the 

truth. In source analysis of task 2, we firstly considered the correlation between 

motion position and spectral amplitude and then illustrated the contour map of 

different frequency bands with high correlation values to indicate the source area of 

selected frequency features. Finally, we further discussed the source position of 
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continuous motion by beamformer source determination using Fieldtrip toolbox on 

Matlab. From beamformer source analysis, it is confirmed that these frequency band 

features came from motor cortex in some subject, which provided the evidence for 

feature selection in motion prediction. 

 

5.2  Method 

5.2.1 Participants 

 Three volunteers are participated in the experiment after giving informed 

consents about the safety of experimental devices, our duty of confidentiality 

concerning private matters, and the task design of our experiment, etc. All subjects 

were novices (not experts) at track ball control.  

 

5.2.2 Task design 

5.2.2.1 Task 1 

 Participants were seated upright on the chair in MEG system, watching a 50*50 

cm area on a screen located at an eye distance of 1.2 m, resulting in a maximum visual 

angle of 12° from the central direction. 

 Visual stimuli for the guidance of continuous motion were generated using 

Psychtoolbox (Brainard, 1997; Pelli, 1997) and presented on the screen. The 

background is black with a green fixation mark ‗+‘ presented in the center of the 

screen during all the experiment procedure. A green ball is located 2 cm under the 

fixation mark. The experiment contains 15 moving sessions with 10 s rest time 

between two moving sessions, as is described in chapter 3. During the moving session, 

the green ball moved left and right periodically every 4 seconds on the background 

and its position scarifies the sine wave to time. In every moving session, 11 moving 

cycles is performed. During the following task, instead the end point of toolbar, a red 

ball smaller than the green ball stimulus is used as feedback. The motion of the red 

ball is exactly the same as the horizontal motion of trackball. 

 Recordings were performed in the session lasting about 15 minutes. In the 

moving session, participants were asked to using a track ball (Logitech® Trackman® 

Marble®) to control the cursor on the screen and follow the moving ball. Here we 

used track ball instead of tool bar because track ball is easy to use and could provide a 

smooth continuous motion while tool bar is hard to move and the motion is not 

strictly continuous and periodical. By following the periodically moving ball, we 

assumed that subjects could perform similar continuous motion in every moving 

cycle.  
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5.2.2.2 Task 2 

Voluntary motions with similar motion pattern are performed in task 2. With the 

purpose of avoiding the effect of visual stimulus, no moving visual stimulus guidance 

is adopted in this task. Instead, a ‗+‘ mark is provided in the center of the screen as an 

onset guidance. The position of the ‗+‘ mark does not change during the whole 

experiment procedure and is used as a fixation point. The task contained 100 trials 

without any interval. In each trial, there are one rest session and one move session, 

both lasted for 3 seconds. The color changing of the ‗+‘ mark is used as the guidance 

of session onset. When the color of ‗+‘ mark changes from green to white, the rest 

session starts and the color keeps white during the 3 seconds rest session. When the 

color of ‗+‘ mark changes from white to green, the move session starts and the color 

keeps green during the 3 seconds move session. The scheme is illustrated in Figure 5 - 

1. 

  

 

Figure 5 - 1 Experiment scheme of Task 2. 

Two graphs in the bottom are the screen shown to subjects during rest or move session. 

The screen contents do not change during each session. 

 

 

Because there is no visual stimulus guidance during the task, subjects were asked 

to practice 3 seconds periodical continuous left-right motion using a visual guidance 

mentioned in task 1 for over 15 minutes just before the task in order to remember the 

motion pattern and perform similar motion in each move session. During the task, 

subjects were asked to fix their eye on the fixation point to avoid eye movement 

during both rest and move sessions. Subjects were told to keep their eye open without 

any movement of their hand during the rest session, and start moving when the ‗+‘ 
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mark turned green and perform smooth left-right motion they have just remembered. 

No feedback was provided during the task in order to avoid effect of visual stimulus. 

Eye blinking was asked to be controlled during the move session. 

 

5.2.3 Continuous motion and MEG recording 

 MEG was recorded in a magnetically shielded room using a whole-held system 

(Yokogawa, PQ2440R, Tokyo, Japan) comprising 440 first-order gradiometers. Data 

were sampled at a rate of 1000 Hz with a band pass filter from 0.3 Hz to 200 Hz. 

 Head position was recorded before the experiment for each subject using 

localization coils that were fixed at the forehead as prefrontal points and at left and 

right ear as preauricular points, forming a head-relative coordinate system. From the 

coil signals present in the recordings, it was possible to compute the head‘s relative 

position and orientation off-line using goodness of fitting of each coil‘s amplitude 

distribution to a magnetic dipole forward model. This was done by source dipole 

determination method provided by PC software MegLaboratory 2.003D (Yokogawa, 

Tokyo, Japan).  

 Continuous motion position which was provided by track ball was recognized 

from the mouse position on PC. Then the visual stimuli program presented mouse 

position in the form of a smaller red ball on the screen as a feedback in task 1 (no 

visual feedback is provided in task 2). Meanwhile, the program also adopted the 

Matlab data acquisition toolbox to output motion positions immediately using NI 

(National Instruments Corporation, Texas) DAQ card (USB-6008) in both task 1 and 

task 2. The output motion positions were recorded simultaneously with MEG signals 

by MEG system. 

 

5.2.4 Data analysis 

5.2.4.1 Task 1 

As raw MEG signals are contaminated by electromagnetic noise interference, 

compensation tSSS method which is designed for our MEG system in chapter 2 was 

applied to the raw MEG data before further analysis. Then, both MEG signals and 

track ball motion position data were split into non-overlapping 4-second epochs, each 

of which corresponded to 1 cycle of movement. After that, similar spectrum 

calculation and subject-dependent feature selection to chapter 4 was adopted to extract 

several motion related features for prediction. Spatial and temporal feature selection 

models were also fixed following the result mentioned in chapter 3. With selected 

features, prediction was performed using multivariate linear regression method, as is 

mentioned in equation 4 - 1. Finally, statistics of prediction performance of all 
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subjects were calculated and compared in order to testify the robustness.  

 

5.2.4.2 Task 2 

Similar to Task 1, before further data analysis, compensation tSSS method was 

applied in order to remove external noises. Then, motion onset was determined from 

motion position data with a threshold of 5% of the maximum position from the center. 

According to the motion onset in each move session, both MEG and motion position 

data from track ball were split into non-overlapping 6-second epochs, each of which 

corresponded to 1 trail (3-second data before motion onset is rest session and 

3-second data after motion onset is move session). Then, time-frequency analysis and 

feature selection similar to task 1 were performed. Subject-dependant features were 

selected for each subject and used in the following motion trajectory prediction. From 

statistic analysis, the robustness of feature selection method is tested. 

In order to find out the origin of subject-dependent features, we investigated the 

spatial patterns and source positions on these selected frequency bands. As the SNR is 

still not high enough for contour map illustration, we assumed that motor responses 

are similar in each cycle and investigated the patterns by averaging certain frequency 

band powers of single trial signals. The relative power is calculated by considering 

average power in the rest session as baseline and dividing average power in the move 

session by it. Then we presented contour map of the relative power of certain 

frequency bands by using the function of Fieldtrip toolbox (developed by Centre for 

Cognitive Neuroimaging of the Donders Institute for Brain, Cognition and Behaviour 

together with collaborating institutes).  

In contrast to evoked response analysis of contour map, we imaged the brain 

sources underlying the sensor measurements from statistics of single-trial data which 

contained not only data averaging but also covariance. Thus we preserved 

trial-specific temporal information which is crucial to the study of the spatiotemporal 

properties of motor encoding. The neural current density distribution of certain 

frequency bands was estimated by applying dynamic imaging of coherent sources 

(DICS), which calculated the power normalized with an estimate of the spatially 

inhomogeneous noise. This was implemented with beamforming analysis in Fieldtrip 

toolbox.  

 

5.3  Results 

5.3.1 Results of Task 1 

The correlation value between motion parameter and spectral amplitudes is 

considered as is mentioned in former chapters. In the correlation plots, high 
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correlation value indicates much motion information contained in the corresponding 

frequency band, thus these frequency bands are selected as subject-dependant 

frequency features. As is shown in Figure 5 - 2, subject-dependent frequency bands 

are 9-15 Hz, 20-24 Hz and 49-53 Hz for subject A; 8-12 Hz for subject D; 6-10 Hz, 

15-19Hz, 25-39Hz and 48-52 Hz for subject E. The similar prediction is performed as 

mentioned in chapter 4 using combination of all listed subject-dependant features. The 

prediction performance in task 1 is 0.45 ± 0.25 (mean ± SD, across all subjects), 

which is the same prediction level to tasks using tool bar. This indicates that our 

subject-dependent feature selection method is robust on different external devices. 

 

 

Figure 5 - 2 Correlation between motion position and spectral amplitudes 

using the method mentioned in chapter 3.  

Graphs a, b and c indicate the results of subject A, D and E, respectively. The red areas 

indicate subject-dependant motion related frequency ranges. 

 

 

5.3.2 Results of Task 2 

Figure 5 - 3, Figure 5 - 4 and Figure 5 - 5 illustrate the correlation value between 

motion parameter and spectral amplitudes, the contour map and source estimation of 

subject-dependant motion related features of each subject in task 2. In the correlation 

a b 

c 
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plots, high correlation value indicates much motion information which is contained in 

the corresponding frequency band. In the contour map of certain frequency band, we 

used the relative power of each frequency band which is calculated by absolute 

powers in move session dividing by absolute powers in rest session, as the following :  

 

𝑉 =
𝑃𝑜𝑤𝑒𝑟𝑚𝑜𝑣𝑒 − 𝑃𝑜𝑤𝑒𝑟𝑟𝑒𝑠𝑡

𝑃𝑜𝑤𝑒𝑟𝑟𝑒𝑠𝑡
 

 

Here the source pattern (red color) in contour map presented increasing values of 

the powers in move session comparing to the baseline (powers in rest session), while 

the sink pattern (blue color) presented decreasing values of the power in certain 

frequency band such as μ-wave or β-wave. 
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Figure 5 - 3 Correlation plot and contour map of relative power of Subject D. 

a 

b 

c 

d 
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Relative power is the division of power in move session by power in rest session. Different colors 

in color bar indicated the intensity of the source. 

(a) Correlation between motion position and spectral amplitudes using the method mentioned in 

chapter 3. The red area indicates subject-dependant motion related frequency range (10-16 Hz, 

22-32 Hz, 61-63 Hz).  

(b) Contour map and source estimation of relative power in the selected frequency band 10-16 Hz. 

(c) Contour map and source estimation of relative power in the selected frequency band 22-32 Hz. 

(d) Contour map and source estimation of relative power in the selected frequency band 61-63 Hz. 
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Figure 5 - 4 Correlation plot and contour map of relative power of Subject E. 

Relative power is the division of power in move session by power in rest session. Different colors 

in color bar indicated the intensity of the source. 

(a) Correlation between motion position and spectral amplitudes using the method mentioned in 

chapter 3. The red area indicates subject-dependant motion related frequency range (9-12 Hz, 

27-28 Hz).  

(b) Contour map and source estimation of relative power in the selected frequency band 9-12 Hz. 

(c) Contour map and source estimation of relative power in the selected frequency band 27-28 Hz. 

 

 

a 

b 

c 
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Figure 5 - 5 Correlation plot and contour map of relative power of Subject E. 

Relative power is the division of power in move session by power in rest session. Different colors 

in color bar indicated the intensity of the source. 

(a) Correlation between motion position and spectral amplitudes using the method mentioned in 

chapter 3. The red area indicates subject-dependant motion related frequency range (9-14 Hz, 

22-25 Hz).  

(b) Contour map and source estimation of relative power in the selected frequency band 9-14 Hz. 

(c) Contour map and source estimation of relative power in the selected frequency band 22-25 Hz. 

 

a 

b 

c 
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In the correlation plot of subject D shown in Figure 5 - 3a, several frequency 

bands (10-16 Hz, 22-32 Hz, 61-63 Hz) showed obvious peaks. Among them, 10-16 

Hz power spectral amplitude showed the highest correlation value and thus was 

regarded as the main subject-dependant frequency feature. Considering the fact that 

signals around 100 Hz might be the affection of power line noises, we do not include 

this frequency band. Therefore, contour map in 10-16 Hz, 22-32 Hz and 61-63 Hz was 

shown in Figure 5 - 3a, b and c. From the contour map shown in Figure 5 - 3b, the 

channels over motor cortex in left hemisphere, which is corresponding to the 

contralateral side of the moving hand, presented two peaks. The color is deep blue, 

which means a great decrease of μ-wave during the motion comparing to the rest. 

Over the right motor cortex which is corresponding to the ipsilateral side of the 

moving hand, the contour map also showed two peaks. Although the peaks are smaller 

than the ones in the left and even some parts of the peaks are mixed with peaks in the 

left hemisphere, we could still recognize them and they also turned to be a smaller 

decrease in power than the peaks over left motor cortex. This suggested a major 

motion reaction in contralateral cortex. These results are similar to previous 

knowledge. The two peaks in right motor cortex indicated that ipsilateral motor cortex 

also works during the continuous motion. From the brain surface map, we could 

further specify that these patterns come from motor cortex and sensorimotor cortex 

which play an important role in motion. In Figure 5 - 3c, the contour map showed two 

decrease peaks of 22-32 Hz in the left motor cortex, which suggested a decrease of 

β-wave in contralateral side of moving hand during the motion. The brain surface map 

presented the sources located in both hemispheres which indicated the ipsolateral side 

is also related to continuous motion. In the results of 61-63 Hz, although there is no 

obvious peak of the γ-wave signal in contour map, we could still find a clear source 

located in the contralateral motor and sensorimotor cortex in the brain surface map. 

This is because beamformer analysis in source analysis considers varieties in different 

trial, thus it is much more accurate and reliable than contour map.  

 Figure 5 - 4a illustrates the correlation plot of subject E. It turned out to be no 

major peaks but two minor peaks (9-12 Hz, 27-28 Hz). 9-12 Hz is just a μ-wave 

signal and thus is recognized as main subject-dependant frequency band. The contour 

maps of these two frequency bands do not present any clear two peak pattern in both 

left and right motor cortex. Instead, a large area over both left and right hemisphere 

including the motor cortex shows a decrease pattern during the move session. In brain 

surface maps, although the decreased sources located in a relatively larger area than 

subject D, these activated areas are still in motor and sensorimotor cortex. This 

indicates μ-wave and β-wave which decrease during the motion of hand are really 

motion related activities, which is similar to both previous knowledge and subject D.  

 In results of subject A indicated in Figure 5 - 5, one major peak and one minor 
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peak turned out to be related to motion. 9-14 Hz is the major peak and thus is 

recognized as main subject-dependant peak. In 9-14 Hz, the contour map presents no 

clear two peaks pattern, however, areas over left motor cortex indeed reveals a 

decrease μ-wave pattern in brain surface map. In 22-25 Hz, the areas over both left 

and right motor cortex presents decrease patterns and the decrease peak over left 

motor cortex has a larger change which suggests that the main β-wave brain activity 

occurred in the contralateral side of moving hand.  

In task 2, the prediction performance is 0.43 ± 0.02 (mean ± SD, across all 

subjects), which is the similar prediction level to 4 second motion cycle tasks. This 

indicates that our subject-dependent feature selection method is robust on different 

motion types. 

 

5.4  Discussion 

The average prediction performances of task 1 and task 2 are 0.45 and 0.43, 

which are similar levels to task using tool bar. This indicates that the motion 

mechanisms are the same using tool bar and using track ball. In task 2, although 

different motion cycle is considered, the prediction performance does not change. 

This demonstrates that our subject dependant feature selection method can work 

equally well for different motion types. Thus our subject-dependant feature selection 

method is robust on different kinds of motion and is a reliable method for continuous 

motion prediction. 

In former tasks and task 1 in this chapter, visual guidance is used. Although the 

features are selected from channels over motor cortex by using correlation between 

brain activities and motion parameters, it is still possible that these features are 

affected by other brain activities such as visual response. In task 2, no moving visual 

stimulus is applied and thus the visual response related to motion does not exist. In 

this case, the subject-dependent features are surely motion related features come from 

motor cortex. Moreover, the similar level prediction performance in task 2 also 

provides evidence that our prediction does not affected by brain activities other than 

motor response. 

From contour map and source analysis results of all subjects in task 2, we cand 

find out that motor responses in both left and right motor cortex appear 

simultaneously in most of the subject dependent frequency bands. This is similar to 

previous knowledge that during hand motion, although the contralateral motor cortex 

dominates this process, the ipsilateral motor cortex also participates in the control. 

This reveals that during continuous motion process, bilateral motor cortex 

collaborates with each other to achieve the motion task. Thus if channels over motor 

cortex in both sides are used in the feature selection, more motion related information 

is included and prediction performance may improve again.  
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For subject D, the contour map and source responses in left motor cortex have 

greater power than the right ones, which is consistent to the contralateral domination 

theory. However for subject E, case is opposite that the right motor cortex has a 

greater power than the left. For subject A, the contour map shows a contralateral 

dominated pattern while the source analysis presents an opposite result. The possible 

reason of the inconsistency of all subjects is the problem of average process in data 

analysis, as we have assumed in the design of the experiment that all the continuous 

motion cycles in moving session are the same. Actually, continuous motions vary a 

little bit and this leads to the peak cancellation during the average process.  

 In contour maps of task 2, almost all the patterns in μ-wave, β-wave and γ-wave 

are shown exactly over motor cortex, and source analysis results further confirm this 

fact. This reveals that the selected feature frequency bands are indeed motor related 

activities. From the relative power results, we can confirm that these patterns are 

decrease patterns in μ-wave and β-wave, increase patterns in γ-wave, which are 

exactly the same to previous researches of discrete motion (Waldert et al., 2008). 

 Low frequency band 3-7 Hz is regarded as minor common peak in chapter 3, 

which is similar to previous researches. In this chapter, although this frequency band 

is not extracted by our subject-dependent feature selection method, all subjects 

present a clear motor related pattern in the contour map. This suggests that in low 

frequency band 3-7 Hz, another mechanism about continuous motion still remains 

unrevealed. Considering this frequency band is a common frequency band, it might be 

a possible way to further improve the single trial prediction performances.  
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Chapter 6  Conclusion 

 

 

The chapter 6 summarized all the experiments in this thesis and discussed the 

effects and problems of them. Then, we talked about possible improvements of the 

motion prediction based on current results. Finally, we described the plans that we 

will work on in the future as the extension of our past researches.  
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6.1  Summary and discussion 

In this thesis, we firstly discussed the interference noise condition and explained 

the signal loss problem of tSSS on our system. We demonstrated a compensation step 

in the original tSSS method and argued its value by both simulation data and raw 

MEG data. This effectively suppressed the noise without MEG signal loss and to 

some extent solved most of the SNR problem in single trial data analysis. Moreover, 

this method worked better with higher noise levels and therefore can be used in some 

simple magnetically or non-magnetically shielded room cases. 

Then we aimed designing a valuable feature selection method for single trial 

continuous motion prediction. In chapter 3, we investigated continuous motion related 

features from spectral, spatial, and temporal aspects; and applied adaptive and 

non-adaptive feature selection methods to extract the optimal features of these three 

aspects. It is confirmed by 5 epoch average data prediction that these features 

contained more motion information than MEG raw data and thus can provide a more 

efficient prediction, which is represented by fewer features and higher prediction 

performance.  

In contrast to using 5 epoch average data, in chapter 4 we used single-trial data 

for prediction. We employed the knowledge of spatial and temporal features in 

chapter 3, and reconsidered the spectral features for each subject. In the single trial 

prediction, it turned out that by combining several subject-dependent frequency bands, 

a successful prediction can be achieved with single trial MEG data. We concluded that 

the subject-dependent spectral feature selection method is more powerful and is 

suitable for single trial motion prediction.  

In both chapter 3 and chapter 4, we applied tSSS and compensation tSSS as 

preprocessing noise reduction methods. The higher prediction performance of 

compensation tSSS confirmed again that this method is optimal for our gradiometer 

only MEG system because of the improvement in signal-to-noise ratio. 

Contour map and source analysis in chapter 5 revealed the sources of selected 

frequency features. The results provided some evidence that motion related features 

selected by our method come mainly from motor and sensorimotor cortices but not 

visual responses, and thus should be motion-related features.  

 From all tasks in this thesis, we could obtain statistics of prediction performances 

of continuous motion under different experiment conditions, as is shown in Table 6 - 1. 

Considering the feature selection method, we found out that combined 

subject-dependent model is definitely better than fixed frequency model.  

By using combined feature selection model, for different devices such as toolbar 

or trackball, the motion mechanism changes little although they involve wrist motion 

and finger motion respectively. Also, in task 2 in chapter 5, we performed a 

continuous motion with different motion cycle. The averaged prediction performance 
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confirmed that different cycle length does not affect the prediction results. This 

indicates that current feature selection method extracts the intention of left-right 

continuous motion, thus is robust on different kinds of motion and valuable for actual 

continuous motion prediction. 

 Both experiments with and without visual stimulus are discussed in this thesis. In 

tasks with visual stimulus, although the selected features over motor cortex provided a 

good prediction, little possibility that prediction is affected by visual response exists. 

In task without visual stimulus, visual response aroused by moving stimulus is absent 

and thus the selected features for prediction are therefore definitely related to motor 

commands. 

 

Table 6 - 1 Comparison of motion condition and prediction performances 

in all tasks  

Feature selection Device Cycle 
Visual 

stimulus 

Number 

of 

Subject 

Average 

r 

Fixed frequency Toolbar 4 s Yes 4 0.32±0.14 

Combined 

subject-dependent 
Toolbar 4 s Yes 4 0.47±0.10 

Combined 

subject-dependent 
Trackball 4 s Yes 3 0.45±0.25 

Combined 

subject-dependent 
Trackball 3 s No 3 0.43±0.02 

 

 

Our study revealed detailed characteristics of motion related activities which are 

consistent to ECoG and EEG studies. It also provided guidance in selecting features 

and achieved a successful single trial motion prediction. The high quality prediction 

demonstrated that a non-invasive measurement predicts motion comparably well as in 

invasive measurement such as ECoG. As is shown in Figure 6 - 1, our prediction 

performance is better than some of the MEG studies with fewer features. Thus, the 

prediction of arm movement trajectory in our study provides the possibility to control 

external prosthetic devices. 
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Figure 6 - 1 Comparison of continuous motion prediction. 

Red ‗+‘ mark indicates invasive study (Schalk et al., 2007 used ECoG, Wessberg et al., 

2000 used implanted microelectrode arrays). Blue ‗o‘ mark indicates non-invasive study 

(Bradberry et al., 2009 and Georgopoulos et al., 2005 used MEG, Toda et al., 2010 used 

both MEG and fMRI). X axis is feature numbers used in the experiment and Y axis is 

prediction performance. The left top side means an efficient prediction while the right 

bottom side means an inefficient prediction. 

 

 

6.2  Possible improvement and future work 

 We noted that the motion related feature selection method is effective even on 

single trial data. However, it is less stable than predictions using invasive methods and 

can not achieve sufficient results on some subjects. One reason is that current feature 

selection is mainly based on the correlation between motion parameters and spectral 

amplitude of brain activities, while other mechanisms (Todorov, 2000) or 

relationships such as other frequency bands mentioned in chapter 5 or direction tuning 

in some invasive studies might exist and remain undiscovered. This led to the 

deficiency in motion related features which might cause unsuccessful motion 

prediction. Currently, some research (Todorov, 2000) has built models of different 

motion parameters theoretically. Also, in the invasive studies using implanted 

microelectrode arrays (Paninski et al., 2004) or ECoG, direction tuning is proved to be 

a sophisticated algorithm for motion prediction. However, these methods are difficult 
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to apply in non-invasive studies. In our case, although the motion is continuous, the 

motion intention might not be a continuous process. This leads to the difficulty about 

making a conjunction between motion and intention. In chapter 5, we used averaging 

method as well as source determination method and successfully presented clear 

motor patterns. This is also a possible way to determine mechanisms such as direction 

tuning. 

 Most current continuous motion predictions including ours used the multivariate 

linear regression method as the prediction algorithm. This method is a simple method 

and is easily applied. Meanwhile, other complicated methods such as sparse 

regression (Sato, 2001) were also employed in some research, and these methods are 

regarded as more valuable for prediction. Improvement of prediction method will 

enable much higher performance increases. 

 Current research is done at the sensor level. Although we have done some sensor 

(channel) selection, it was rather simple. More complicated channel selections have 

been implemented in some previous research and proved to be helpful. Moreover, 

some research (Toda et al., 2011) discussed continuous motion prediction in source 

level and demonstrated progress. Such kind of improvement can also improve 

prediction performance. 

In the future, we wish to build a model that connects motion and intention on 

non-invasive cases, based on our previously mentioned theoretical model and try to 

develop a more stable prediction. Also, we hope to adopt a more efficient channel 

selection or use the source current in motor cortex for prediction. With a sophisticated 

regression method, we definitely believe the prediction performance can be further 

improved. 
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