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Index theorem and overlap formalism Taro Kimura

1. Introduction

Ref. [1] recently presented how to identify the would-be zero modes and their chiralities with
staggered fermions, and its application to the staggered versions of the overlap and the Wilson
fermions. There have been some relating works on this topic so far, e.g. the single taste generaliza-
tion [2], the numerical efficiency [3] of the staggered overlap and the phase structure and the chiral
limit of the staggered Wilson fermion [4].

This approach is applied by the present authors to other fermions with species doublers, i.e.
naive and minimally doubled fermions in Ref. [5], which this report is based on. We identify
species in naive and minimally doubled fermions as flavors by using the point-splitting method
[6], and then define proper flavored-mass terms to extract the index in the spectral flow. We also
present new versions of overlap fermions built on these fermion kernels. Especially we construct
a single-flavor naive overlap fermion by using a certain flavored-mass term which assigns negative
mass to only one of species.

2. Point-splitting and flavored-mass terms

We first introduce the point-splitting method to obtain flavored-mass terms for minimally dou-
bled fermions. In this paper we concentrate on the Karsten-Wilczek fermion [7] rather than other
formulations, i.e. Boriçi-Creutz fermion [8] and so on (see [9] for review). We consider the fol-
lowing Dirac operator for the d = 4 minimally doubled fermion in the momentum space,

Dmd(p) = i
3

∑
k=1

γk sin pk +
iγ4

sinα

(
cosα +3−

4

∑
µ=1

cos pµ

)
, (2.1)

with a free parameter α . It has only two zeros located at p = (0,0,0,±α). These two species are
not equivalent since the gamma matrices are differently defined between them as γ ′µ = Γ†γµΓ. In
this case the transformation matrix is given by Γ = iγ4γ5.

The point splitting identifies these inequivalent species as independent flavors [6]. In this
method each flavor field is defined so that the associated fermion propagator includes only a single
pole by multiplying factors removing the other pole,

u(p−αe4) =
1
2

(
1+

sin p4

sinα

)
ψ(p), d(p+αe4) =

1
2

Γ
(

1− sin p4

sinα

)
ψ(p). (2.2)

Here we work in the momentum space, but the forms in the position space are also obtained through
the Fourier transformation even when the gauge fields are turned on [6]. To regard the two fields
as flavors we consider a flavor-multiplet field as following,

Ψ(p) =

(
u(p−αe4)
d(p+αe4)

)
, (2.3)

where eµ stands for the reciprocal vector. We note in this representation of the fermion field γ5

multiplication is expressed as

γ5ψ(p) −→

(
+γ5

−γ5

)
Ψ(p) = (γ5 ⊗ τ3)Ψ(p). (2.4)
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Figure 1: Dirac spectra with flavored mass terms for 2-dimensional free theory: (left) minimally doubled
and (right) naive fermions with a mass parameter m = 1.

This shows the usual γ5 is a flavor non-singlet gamma-5 as γ5⊗τ3 in the doubler multiplet. Now our
purpose is to find a flavored-mass term to assign different masses to the two species. For this pur-
pose we introduce the flavor structure τ3 in the mass term and rewrite it in the usual representation
of the fermion field as

Ψ̄(p)(1⊗ τ3)Ψ(p) = ūu− d̄d =
sin p4

sinα
ψ̄(p)ψ(p). (2.5)

In the position space this flavored-mass term is given by

Mτ3 =
−imτ3

2sinα
(T+4 −T−4) ≡ Mmd, (2.6)

with the translation operator T±µψx = Ux,x±µψx±µ . Although this flavored-mass term satisfies
the gamma-5 hermiticity, in the non-hermitian operator Dmd −Mmd the kinetic and flavored-mass
terms do not commute [Dmd,Mmd] 6= 0 in the presence of the link variable. It results in the complex-
valued Dirac spectrum, which is split into two branches in this case. It indicates the flavored-mass
term assigns one of species positive mass and the other negative mass. In Fig. 1 (left) we show
a numerical result of complex eigenvalues of the Dirac operator for the d = 2 free case with a
parameter being α = π/2.

We then investigate the doubler-multiplet for the naive lattice fermion and the corresponding
flavored-mass terms. The Dirac operator for the naive fermion in general dimensions is given by

Dnaive(p) = i
d

∑
µ=1

γµ sin pµ . (2.7)

For simplicity we here consider the d = 2 case. It has four zeros, thus we introduce four associated
point-splitting fields as

ψ(1)(p− p(1)) =
1
4
(1+ cos p1)(1+ cos p2)Γ(1)ψ(p), (2.8)

ψ(2)(p− p(2)) =
1
4
(1− cos p1)(1+ cos p2)Γ(2)ψ(p), (2.9)

ψ(3)(p− p(3)) =
1
4
(1+ cos p1)(1− cos p2)Γ(3)ψ(p), (2.10)

ψ(4)(p− p(4)) =
1
4
(1− cos p1)(1− cos p2)Γ(4)ψ(p), (2.11)
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label position χ charge Γ
1 (0,0) + 1
2 (π,0) − iγ1γ5

3 (0,π) − iγ2γ5

4 (π,π) + γ5

Table 1: Chiral charges and transformation matrices for each of zeros in the d = 2 naive fermions with
γ1 = σ1, γ2 = σ2 and γ5 = σ3.

where pi(i = 1,2,3,4) stand for the zeros of four species. Their locations of zeros, chiral charges
and transformation matrices for the sets of gamma matrices γµ

(i) = Γ†
(i)γ

µΓ(i), are listed in Table 1.
The doubler-multiplet field is given by

Ψ(p) =


ψ(1)(p− p(1))
ψ(2)(p− p(2))
ψ(3)(p− p(3))
ψ(4)(p− p(4))

 , (2.12)

and in this case the γ5 multiplicatioin is expressed as

γ5ψ(p) −→


+γ5

−γ5

−γ5

+γ5

Ψ(p) = (γ5 ⊗ (τ3 ⊗ τ3))Ψ(p), (2.13)

where we express the 4-flavor structure in the doubler-multiplet by two direct products of the Pauli
matrix. For our purpose of obtaining the flavored-mass terms to split species, we introduce the
following flavor structure in the mass term this time.

Ψ̄(p)(1⊗ (τ3 ⊗ τ3))Ψ(p) = cos p1 cos p2ψ̄(p)ψ(p). (2.14)

This flavor structure gives two positive and two negative eigenvalues, which implies there are two
species with positive and the others with negative mass. Its position-space expression is given by

Mτ3⊗τ3 = mτ3⊗τ3 ∑
sym.

C1C2 ≡ Mnaive, (2.15)

where we define Cµ = (T+µ +T−µ)/2 and (∑sym.) stands for symmetric summation over the order
of the factors. In Fig. 1 (right) we show the eigenvalues of the Dirac operator with the flavored
mass term, Dnaive −Mnaive. The spectrum is split into two doubled branches crossing the real axis
at |m|, which indicates the flavored-mass term assigns positive mass to two species while negative
mass to the other two.

Furthermore we can consider other kinds of flavored mass terms,

Mτ3⊗1 =
1
2

mτ3⊗1 ∑
sym.

(1+C2
1)C2 ' mτ3⊗1C2, (2.16)

M1⊗τ3 =
1
2

m1⊗τ3 ∑
sym.

C1(1+C2
2) ' m1⊗τ3C1. (2.17)
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Figure 2: Spectral flows of the Hermitean operator based on the naive fermion for the 2-dimensional case
with a topological charge (left) Q = 1 and (right) Q = 2.

These terms are utilized to discuss the overlap formalism in section 4. In the d = 4 case wa can
apply the same approach to obtain a proper flavored mass terms [5].

3. Spectral flow and the index theorem

In the continuum field theory the index is defined as the difference between the numbers of
zero modes of the Dirac operator with positive and negative chirality, n+ and n−. The statement of
the index theorem is that the index is just equal to a topological charge Q of a background gauge
configuration up to a sign factor depending on its dimensionality,

n+−n− = (−1)d/2Q. (3.1)

To detect the index of the Dirac operator, it is useful to introduce a certain Hermitean version of
the Dirac operator H(m) = γ5(D−m), where zero modes of the Dirac operator with ± chirality
correspond to eigenmodes of this Hermitean operator with eigenvalues λ (m) =∓m. If we consider
the flow of the eigenvalues λ (m) as the mass varies, those corresponding to zero modes will cross
the origin with slopes ∓1 depending on their chirality. The non-zero eigenmodes of D, in contrast,
occur in pairs which are mixed by H and cannot cross zero. Therefore the index of the Dirac
operator is given by minus the spectral flow of the Hermitean operator, which stands for the net
number of eigenvalues crossing the origin, counted with sign depending on the slope.

The index theorem for lattice fermions is also obtained from the spectral flow for not only the
Wilson [11], but also the fermions with species doublers [1, 5]. However In the latter cases, the
index apparently cancels between pairs of doublers, thus an eigenvalue flow with a simple mass
term does not properly capture gauge field topology. This difficulty is resolved by introducing
proper flavored-mass terms for staggered [1], minimally doubled and naive fermions [5]. The
Hermitean versions of naive and minimally-doubled Dirac operators with flavored-mass terms are

Hmd(m) = γ5(Dmd −Mmd), Hnaive(m) = γ5(Dnaive −Mnaive), (3.2)

where Mmd and Mnaive are the flavored-mass terms in (2.6) and (2.15), and m stands for mτ3 for the
minimally doubled fermion and mτ3⊗τ3 for the naive fermion. Note that the mass terms of these
Hermitean operators are flavor-singlet as γ5Mmd ' γ5 ⊗ 1, γ5Mnaive ' γ5 ⊗ 1, which is essential in
detecting the correct index. Fig. 2 shows the numerical result of the spectral flow for the d = 2 naive
fermion with a topological charge Q = 1 and Q = 2, respectively.1 There are doubled crossings
around the origin, and the number of crossings counted depending on slopes should be the index

1See [5] for details of the numerical simulation and the case with minimally doubled fermion.
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related to the topological charge. Taking account of the sign of the slope of the crossings, these
results satisfies the index theorem for the naive fermion given by

Index(Dnaive) = 2d(−1)d/2Q, (3.3)

where the factor reflects 2d species. We can study minimally doubled fermions in a parallel way
[5].

4. Overlap formalism

The establishment of the index theorem, as discussed in section 3, leads to new versions of
overlap fermions [10] based on naive and minimally doubled fermions,

Dov = 1+ γ5
H(m)√
H(m)2

(4.1)

where we now substitute the Hermitean operators defined in (3.2). Here m stands for mτ3 or mτ3⊗τ3

again. We note it satisfies the Ginsparg-Wilson relation {γ5,Dov} = Dovγ5Dov. We can obtain the
index of the overlap fermion from this Ginsparg-Wilson relation

Index(Dov) = −1
2

Tr

(
H(m)√
H(m)2

)
= −1

2
Tr sgnH(m). (4.2)

Note that the half of the species which have negative mass are converted into physical massless
modes in the overlap formulation while the others with positive mass become massive and decouple
in the continuum limit. This is because the flavored-mass terms we introduce for minimally doubled
and naive fermions assign negative mass to half of species and positive mass to the others. This
reduction of flavors also affects the indices of the Dirac operators,

Index(Dmd-ov) =
1
2

Index(Dmd), Index(Dn-ov) =
1
2

Index(Dnaive). (4.3)

This relation relies on the property of the Hermitean operator γ5H(m)γ5 = −H(−m). This is also
the case with the staggered overlap, but not the case with the usual Wilson fermion.

We then investigate how to reduce the number of massless modes of the overlap operator with
the naive kernel. In the case of the d = 2 naive fermion with the flavored-mass term (2.15), there
are two degenerate species with negative mass, which leads to two overlap massless modes. We lift
this degeneracy by adding other kinds of flavored-mass terms in (2.16) and (2.17). To preserve the
rotational symmetry we have to consider the following combination,

Mnaive(c) = Mτ3⊗τ3 + c(Mτ3⊗1 +M1⊗τ3) (4.4)

with mτ3⊗τ3 = mτ3⊗1 = m1⊗τ3 in (2.15)(2.16)(2.17). Fig. 3 shows the Dirac spectra and the corre-
sponding spectral flows of the Hermitean operator built with this modified mass term (4.4) for the
two c cases. As seen from them, we change the number of negative-mass modes in the original
Dirac operator by choosing the parameter c. Since such negative-mass modes are converted into
massless modes in the overlap formulation, the result in Fig. 3 indicates a single-flavor overlap
fermion is obtained from the naive fermion kernel. The generalization to the d = 4 is straightfor-
ward. In terms of flavored-mass terms the difference between the original overlap and our overlap
fermions is just a choice of the flavored mass term. Now we have varieties of overlap fermions
including the staggered one and ours, which will be studied further.
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Figure 3: Dirac spectra and the corresponding spectral flows of the naive Hermitean operator with Mnaive(c)
for (left) c = 0.2 and (right) c = 0.8.

5. Summary

In this paper we have shown how the index theorem is realized in naive and minimally doubled
fermions by considering the spectral flow of the Hermitean version of Dirac operators. The key is
to make use of a point splitting for flavored mass terms. We also presented a new version of
overlap fermions composed from the naive fermion kernel, which is single-flavored and maintains
the hypercubic symmetry essential for a good continuum limit.
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