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1. Introduction

Recently staggered-based Wilson fermions were proposed by introducing the taste-splitting
mass or the flavored-mass terms into staggered fermions [1, 2, 3, 4]. They can be applied to lattice
QCD not only as Wilson fermions but also as an overlap kernel. One possible advantage of these
novel fermions called staggered-Wilson and staggered-overlap is reduction of the matrix sizes in the
associated Dirac operators, which leads to reduction of numerical costs in lattice QCD simulations.
Thus they may be able to overcome the usual naive-fermion-based lattice fermions in lattice QCD
[5]. The purpose of this work is reveal properties of staggered Wilson fermions in terms of the
parity phase structure (Aoki phase) [6]. The Aoki phase for the staggered-Wilson was first studied
in Ref. [4] and the present paper shows further investigation of this topic. The existence of the Aoki
phase and the second-order phase boundary in Wilson-type lattice fermions indicates that one can
apply them to lattice QCD simulations by tuning a mass parameter to take a chiral limit. Besides,
the understanding of the parity-broken phase gives practical information for the application of its
overlap and domain-wall versions.

In this paper we elucidate the parity phase structure for staggered-Wilson fermions in the
framework of the Gross-Neveu model and the hopping parameter expansion in the strong-coupling
lattice QCD. We find the gap equations derived from the both theories show the pion condensate
becomes nonzero in some range of the parameters and the pion becomes massless on the phase
boundaries. It means the Aoki phase exists and the order of the phase transition is second-order.
We also show we can take the chiral continuum limit in the Gross-Neveu model by tuning the mass
and the gauge-coupling. These results on the staggered-Wilson fermion incidate we can obtain
one- or two-flavor fermions by tuning the mass parameter and perform the lattice QCD simulation
with these fermions as in the Wilson fermion. We note the results on the Gross-Neveu model is
based on the work by some of the present authors [4, 7] while the results on the strong-coupling
lattice QCD are the parts of a work in progress [8].

2. Staggered Wilson fermions

We begin with staggered-Wilson fermions in which the flavored-mass terms split the four
degenerate tastes in a manner similar to the usual Wilson term. There are two possible types of the
flavored-mass terms for staggered fermions as

M(1)
f = ε ∑

sym
η1η2η3η4C1C2C3C4 = (1⊗ γ5)+O(a), (2.1)

M(2)
f = ∑

µ>ν

i
2
√

3
εµνηµην(CµCν +CνCµ) = (1⊗ ∑

µ>ν
σµν)+O(a), (2.2)

where Cµ =(Vµ +V †
µ )/2, (ηµ)xy =(−1)x1+...+xµ−1δx,y, (ε)xy =(−1)x1+...+x4δx,y, (εµν)xy =(−1)xµ xν δx,y,

with (Vµ)xy = Uµ ,xδy,x+µ . In the right hand sides we use the spin-taste representation as 1⊗ γ5. We
refer to M(1)

f as the Adams-type and M(2)
f the Hoelbling-type. The former splits the 4 tastes into two

with positive(m = +1) and the other two with negative(m =−1) mass while the latter split them into
one with positive(m = +2), two with zero(m = 0) and the other one with negative mass(m = −2).
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Now we introduce the Wilson parameter r = rδx,y and shift the mass for the actions as with Wilson
fermions. Then the Adams-type staggered-Wilson fermion action is given by

SA = ∑
xy

χ̄x[ηµDµ + r(1+M(1)
f )+M]xyχy, (2.3)

with Dµ = 1
2(Vµ −V−µ). Here M stands for the usual taste-singlet mass (M = Mδx,y). The

Hoelbling-type staggered-Wilson fermion action is given by

SH = ∑
xy

χ̄x[ηµDµ + r(2+M(2)
f )+M]xyχy. (2.4)

In the QCD simulation we will tune the mass parameter M to take a chiral limit. For some negative
values of the mass parameter:−1 < M < 0 for Adams-type and −2 < M < 0 for Hoelbling-type
with r = 1, we obtain two-flavor and one-flavor overlap fermions respectively by using the overlap
formula.

The potential problem in lattice QCD with these fermions is the breaking of some discrete
symmetries as the shift symmetry caused by the flavored-mass terms [2, 3]. There has not yet
been a consensus on whether it does harm to lattice QCD with staggered-Wilson fermions. We
can answer this question partly by studying the Aoki phase since a clear symptom is expected to
appear in the phase structure if the symmetry breaking ruins the essential properties of QCD. In
the following sections we will find the Aoki phase structure in the staggered-Wilson fermion is
qualitatively similar to the original Wilson one and there is no disease.

3. Gross-Neveu model

We first investigate the parity phase diagram for staggered-Wilson fermions by using the d = 2
Gross-Neveu model as a toy model of QCD. To study the pion condensate we generalize the usual
staggered Gross-Neveu model to the one with the γ5-type 4-point interaction, which is given by

S =
1
2 ∑

n,µ
ηµ χ̄n(χn+µ −χn−µ)+∑

n
χ̄n(M + r(1+M f ))χn

− g2

2N ∑
N

[
(∑

A
χ̄2N +A χ2N +A)2 +(∑

A
i(−1)A1+A2 χ̄2N +A χ2N +A)2

]
, (3.1)

where the two-dimensional coordinate is defined as n = 2N +A with sublattices A =(A1,A2)(A1,2 =
0,1). In this model χn is a N-component one-spinor (χn) j( j = 1,2, ...,N) where χ̄χ = ∑N

j=1 χ̄ jχ j.
(−1)A1+A2 corresponds to Γ55 = γ5 ⊗ γ5 in the spinor-taste expression while ηµ = (−1)n1+...+nµ−1

corresponds to γµ . In this dimension the Adams-type and Hoelbling-type flavored-mass terms co-
incide and there is only one type M f = Γ5Γ55 ∼ 1⊗ γ5 +O(a) with Γ5 = −iη1η2 ∑symC1C2. This
mass term assigns the positive mass (m = +1) to one taste and the negative mass (m = −1) to the
other. With bosonic auxiliary fields σN , πN leading to σ -meson and π-meson fields, the action is
rewritten as

S =
1
2 ∑

n,µ
ηµ χ̄n(χn+µ −χn−µ)+∑

n
χ̄nM f χn

+
N

2g2 ∑
N

((σN −1−M)2 +π2
N )+ ∑

N ,A
χ̄2N +A(σN + i(−1)A1+A2πN )χ2N +A, (3.2)

3
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Figure 1: Aoki phase structure for the staggered-Wislon fermion in the Gross-Neveu model. A stands for a
parity symmetric phase and B for Aoki phase.

where we take r = 1 as the Wilson parameter. After integrating the fermion field, the partition
function and the effective action with these auxiliary fields(meson fields) are given by

Z =
∫

DσN DπN e−N Seff(σ ,π), Seff =
1

2g2 ∑
N

((σN −1−M)2 +π2
N )−Tr logD, (3.3)

with Dn,m = (σN + i(−1)A1+A2πN )δn,m + ηµ
2 (δn+µ ,m −δn−µ,m)+(M f )n,m. In the large N limit the

partition function is given by the saddle point of the action as Z = e−Seff(σ0,π0) with the translation-
invariant solutions σ0, π0 satisfying the saddle-point equations δSeff(σ0,π0)

δσ0
= δSeff(σ0,π0)

δπ0
= 0. After

some calculation process to derive the fermion determinant [4] we obtain the concrete forms of the
saddle-point equations in the momentum space

σ0 −1−M
g2 = 4

∫ dk2

(2π)2
σ0(σ 2

0 +π2
0 + s2)− c2

1c2
2σ0

((σ0 + c1c2)2 +π2
0 + s2)((σ0 − c1c2)2 +π2

0 + s2)
, (3.4)

π0

g2 = 4
∫ dk2

(2π)2
π0(σ 2

0 +π2
0 + s2)+ c2

1c2
2π0

((σ0 + c1c2)2 +π2
0 + s2)((σ0 − c1c2)2 +π2

0 + s2)
, (3.5)

with cµ = coskµ/2 and sµ = sinkµ/2. Now what we are interested in is the parity phase diagram
in this theory. The parity phase boundary Mc(g2) is derived by imposing π0 = 0 in (3.4)(3.5) after
the overall π0 being removed in the second one. Then the gap equations are given by

1+Mc

g2 = 4
∫ dk2

(2π)2
2c2

1c2
2σ0

((σ0 + c1c2)2 +π2
0 + s2)((σ0 − c1c2)2 +π2

0 + s2)
, (3.6)

1
g2 = 4

∫ dk2

(2π)2
σ2

0 + s2 + c2
1c2

2

((σ0 + c1c2)2 +π2
0 + s2)((σ0 − c1c2)2 +π2

0 + s2)
. (3.7)

By removing σ0 in these equations, we derive the phase boundary Mc(g2). The result is shown
in Fig. 1. It indicates the parity phase structure in the staggered-Wilson fermion is qualitatively
similar to the usual Wilson case [6] reflecting the mass splitting of tastes given by the flavored
mass. We also check the pion mass becomes zero on the second order phase boundary as

m2
π ∝ 〈 δ 2Seff

δπN δπM
〉|M=Mc = V

δ 2S̃eff

δ 2π2
0
|M=Mc = 0. (3.8)

where Seff = V S̃eff with V being the volume.
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We next consider the chiral and continuum limit of the staggered-Wilson Gross-Neveu models.
The strategy is to expand the fermion determinant in the effective potential in Eq. (3.3) with respect
to the lattice spacing a. After some calculations (See details in Ref. [4]) we obtain the effective
potential remaining in the limit a → 0,

S̃eff = −
(M +1/a

g2
σ

+
2
a

C1

)
σ0 +

( 1
2g2

π
−C̃0 +

1
π

log4a2
)

π2
0

+
( 1

2g2
σ
−C̃0 +2C2 +

1
π

log4a2
)

σ2
0 +

1
π

(σ 2
0 +π2

0 ) log
σ 2

0 +π2
0

e
. (3.9)

with the three numbers as C̃0 = 1.177, C1 = −0.896 and C2 = 0.404. Here the chiral symmetry is
encoded as the rotational symmetry between σ0 and π0; thus, the chiral limit means restoring this
symmetry by tuning the parameters. In this model we need introduce two independent coupling
constants g2

σ and g2
π to restore the symmetry although the necessity of two couplings is just a model

artifact. The tuned point for the chiral limit without O(a) corrections is

M = −2g2
σ

a
C1 −1, g2

π =
g2

σ
4C2g2

σ +1
, (3.10)

To take the continuum limit we introduce the Λ-parameter as 2aΛ = exp
[

π
2 C̃0 −πC2 − π

4g2
σ

]
. Then

the coupling renormalization for the chiral and continuum limit is given by

1
2g2

σ
= C̃0 −2C2 +

1
π

log
(

1
4Λ2a2

)
,

1
2g2

π
= C̃0 +

1
π

log
(

1
4Λ2a2

)
. (3.11)

where we keep Λ finite when taking the continuum limit a → 0. Finally the renormalized effective
potential in the chiral and continuum limit is given by

S̃eff =
1
π

(σ 2
0 +π2

0 ) log
σ2

0 +π2
0

eΛ2 , (3.12)

This wine-bottle potential yields the spontaneous breaking of the rotational symmetry. We have
shown that the chirally-symmetric continuum limit can be taken by fine-tuning a mass parameter
and two coupling constants in the staggered-Wilson Gross-Neveu model. Considering that the
necessity of the two coupling constants is just a model artifact, this result indicates we can take a
chiral limit by tuning only the mass parameter as in the Wilson fermion. Indeed, our results on the
chiral and continuum limit for staggered-Wilson are almost the same as the Wilson case [6].

4. Strong-coupling QCD

In this section we investigate the Aoki phase structure in lattice QCD with the staggered-
Wilson fermion in the framework of the hopping parameter expansion (HPE) in the strong-coupling
regime. For simplicity we concentrate on the Hoelbling-type lattice fermion here, but we can
also make the same analysis in a parallel way for the Adams-type fermion. To perform the HPE
for the Hoelbling-type fermion, we rewrite the action (2.4) by redefining χ →

√
2Kχ with K =

1/[2(M +2r)],

S = ∑
x

χ̄xχx +2K ∑
x,y

χ̄x(ηµDµ)xyχy +2Kr∑
x,y

χ̄x(M f )xyχy. (4.1)

5
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Figure 2: (Left):Feynman rules for the HPE. (Center):one point function. (Right):two point function.

In Fig. 2(Left) we write down the Feynman rules in the HPE for this fermion. Now we derive
chiral and pion condensates from the one-point function of the meson operator (Mx = χ̄xχx) in the
mean-field approximation. The equation for the one-point function is obtained in a self-consistent
way as shown in Fig. 2(Center),

−Σx ≡ 〈Mx〉 = 〈Mx〉0 +2K2 ∑
µ

Σx+µ̂Σx −2 · 1
24

(Kr)2 ∑
µ 6=ν

ΣxΣx+µ̂+ν̂ , (4.2)

where we drop the link variable since we work in the strong-coupling limit. Other diagrams are
found to vanish due to the grassman properties and the cancellation between the diagrams. Here we
solve this as a self-consistent equation for the condensate Σ within the mean-field approximation.
For our purpose we assume Σx = σx + iεxπx, where σx and πx correspond to the chiral and pion
condensates. We substitute this form of Σx in Eq. (4.2) and obtain the self-consistent equation

−(σ + iεxπ) = −1+2K2 ·4
(
σ 2 +π2)−2 · 1

24
(Kr)2 ·4 ·3(σ + iεxπ)2 , (4.3)

which yields −σ =−1+16K2π2 and −iπ =−8K2 ·2iσπ . Here we have set r = 2
√

2 for simplicity.
We have two solutions depending on whether π = 0 or π 6= 0: For π = 0 we have a trivial solution
σ = 1. For π 6= 0 we have a non-trivial solution as

σ =
1

16K2 , π = ±

√
1

16K2

(
1− 1

16K2

)
. (4.4)

In this solution the pion condensate is non-zero and the ± signs indicate the spontaneous parity
breaking. This parity-broken phase (Aoki phase) appears in the range of the hopping parameter or
the mass parameter as | K |> 1/4 or equivalently −4

√
2−2 < M < −4

√
2+2.

We next discuss the two-point function of the meson operator S (0,x) ≡ M0Mx. From Fig.
2(Right) we derive the following equation for two point function. (other diagrams vanish again.)

S (0,x) ≡ 〈χ̄a
0 χa

0 χ̄b
x χb

x 〉 = −δ0xNc +K2 ∑
±µ

〈χ̄a
µ̂ χa

µ̂ χ̄b
x χb

x 〉

+
(

2Kri
1

23
√

3

)2

∑
±µ,±ν
(µ 6=ν)

〈χ̄a
µ̂+ν̂ χa

µ̂+ν̂ χ̄b
x χb

x 〉. (4.5)

Then the self-consistent equation for S is given in the momentum space as

S (p) = −Nc +
[
−K2 ∑

µ

(
e−ipµ + eipµ

)
+

(
2Kr

1
23
√

3

)2

∑
µ 6=ν

(
e−i(pµ+pν ) + ei(pµ+pν ) + e−i(pµ−pν ) + ei(pµ−pν )

)]
S (p). (4.6)
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We finally obtain the meson propagator as

S (p) = Nc

[
−2K2 ∑

µ
cos pµ +4

(
2Kr

1
23
√

3

)2

∑
µ 6=ν

cos pµ cos pν −1
]−1

. (4.7)

The pole of S (p) gives the meson mass. Remembering γ5 in the staggered fermion is given by
εx = (−1)x1+...+x4 and the pion operator is given by πx = χ̄xiεxχx, it is obvious that the momentum
of the pion should be measured from the shifted origin p = (π,π,π,π). Thus we set p = (imπa+
π,π,π,π) for 1/S (p) = 0 in (4.7), which gives the pion mass mπ as

cosh(mπa) = 1+
1−16K2

6K2 . (4.8)

In this result the pion mass becomes tachyonic in the range | K |> 1/4. It indicates there occurs
a phase transition between parity-symmetric and broken phases at |K| = 1/4, which is consistent
with the result on the condensates in Eq. (4.4). The reason why the pion has tachyonic mass in the
parity-broken phase in the HPE is the vacuum we work on is not proper. To derive the pion mass
in this phase we need to analyze the effective potential, which we will show in the full paper [8].

5. Summary

In this paper we study the Gross-Neveu model and the strong-coupling lattice QCD with stag-
gered Wilson fermions with emphasis on the Aoki phase structure. We have shown the parity
broken phase and the second order phase boundary exist in the staggered-Wilson fermions as with
the Wilson fermion. Our results indicate that we can apply the staggered Wilson fermions to lattice
QCD simulations by mass parameter tuning, where we derive one-flavor fermion in the Hoelbling-
type and two-flavor fermions in the Adams-type fermions. These results also indirectly suggest the
applicability of the staggered overlap and staggered domain-wall fermions to lattice QCD. We note
our results on the Aoki phase diagram exhibit no diseases due to a discrete symmetry breaking.
It implies the symmetry breaking, for example breaking of the shift symmetry, does no harm to
a QCD simulation with the staggered-Wilson fermion, which is consistent with the results in the
lattice perturbation in [2, 3]. In the full paper we also discuss the parity-flavor phase structure in the
case of the two flavor QCD. The analysis is parallel, and we will find a spontaneous parity-flavor
breaking as in the Wilson fermion.
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