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Abstract

In this paper, we investigate the structure and evolution of customer-supplier networks in
Japan using a unique dataset that contains information on customer and supplier linkages
for more than 500,000 incorporated non-financial firms for the five years from 2008 to 2012.
We find, first, that the number of customer links is unequal across firms; the customer link
distribution has a power-law tail with an exponent of unity (i.e., it follows Zipf’s law). We
interpret this as implying that competition among firms to acquire new customers yields
winners with a large number of customers, as well as losers with fewer customers. We also
show that the shortest path length for any pair of firms is, on average, 4.3 links. Second,
we find that link switching is relatively rare. Our estimates indicate that the survival rate
per year for customer links is 92 percent and for supplier links 93 percent. Third and
finally, we find that firm growth rates tend to be more highly correlated the closer two
firms are to each other in a customer-supplier network (i.e., the smaller is the shortest
path length for the two firms). This suggests that a non-negligible portion of fluctuations
in firm growth stems from the propagation of microeconomic shocks – shocks affecting
only a particular firm – through customer-supplier chains.

1 Introduction

Firms in a modern economy tend to be closely interconnected, particularly in the manu-

facturing sector. Firms typically rely on the delivery of materials or intermediate products

from their suppliers to produce their own products, which in turn are delivered to other

downstream firms. Two recent episodes vividly illustrate just how closely firms are inter-

connected. The first is the recent earthquake in Japan. The earthquake and tsunami hit

the Tohoku region, the north-eastern part of Japan, on March 11, 2011, resulting in signif-

icant human and physical damage to that region. However, the economic damage was not
1This paper is an extended version of Ref [1].



2

restricted to that region and spread in an unanticipated manner to other parts of Japan

through the disruption of supply chains. For example, vehicle production by Japanese

automakers, which are located far away from the affected areas, was stopped or slowed

down due to a shortage of auto parts supplies from firms located in the affected areas.

The shock even spread across borders, leading to a substantial decline in North Ameri-

can vehicle production.2 The second episode is the recent financial turmoil triggered by

the subprime mortgage crisis in the United States. The adverse shock originally stemming

from the so-called toxic assets on the balance sheets of U.S. financial institutions led to the

failure of these institutions and was transmitted beyond entities that had direct business

with the collapsed financial institutions to those that seemed to have no relationship with

them, resulting in a storm that affected financial institutions around the world.

The lesson from these two episodes is that national economies, as well as the global

economy, are subject to the risk of a chain-reaction in product disruptions through customer-

supplier linkages. Such risk is especially high when the linkage structure in the economy

is dominated by a few hub firms whose products are supplied to many other firms as

input. Importantly, supply chain disruptions are more serious when there are no close

substitutes to these hub firms, at least in the short run. Motivated at least partly by the

two episodes, some recent studies in economics have sought to develop theoretical models

on production chains that extend input-output analysis, which dates back to the seminal

work by Wassily Leontief published in the 1930s [2], to identify conditions under which

microeconomic shocks, i.e., idiosyncratic shocks to individual firms, can propagate to the

rest of the economy through production chains, leading to fluctuations in production at

the macro level [3–8]. Policymakers have also started to think about how to prepare for

the propagation of adverse shocks through production chains.3

Against this background, the present study seeks to provide empirical evidence on the

structure and evolution of customer-supplier networks in Japan using a unique dataset that

contains information on customer and supplier linkages for more than 500,000 incorporated

2U.S. Federal Reserve Chairman Ben Bernanke, for example, stated in the aftermath of the earthquake:
“U.S. economic growth so far this year looks to have been somewhat slower than expected. Aggregate
output increased at only 1.8 percent at an annual rate in the first quarter, and supply chain disruptions
associated with the earthquake and tsunami in Japan are hampering economic activity this quarter.”
(Speech at the International Monetary Conference, Atlanta, Georgia, on June 7, 2011).

3The study of networks as phenomena that deserve analysis goes back to the small-world network
model by Watts [9] and has gained popularity in a variety of scientific disciplines, including statistical
physics, computer science, biology, and sociology. The methodology developed in those disciplines has
been introduced into economics only relatively recently [10,11], but has produced important contributions
to the literature on bank-firm relationships [12], on cross shareholdings [13], on supply chains [14–18], on
systemic risks in financial markets [19,20], and on international trade [21–23].
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non-financial firms for the five years from 2008 to 2012. This dataset provides the customer

and supplier lists for each firm. We use these lists to produce a customer-supplier network.

To illustrate this, Figure 1 shows a simple example consisting of five firms. The red arrows

in the figure indicate the flow of money, while the black arrows indicate the flow of products

each firm produces. Firm j purchases something from firm i and sells something to firms

k and l. That is, for firm j, firm i is a supplier and firms k and l are both customers.

Moreover, firm k, which purchases something from firm j, sells to firm m. Note that firm

k is not only a customer in that it buys from firm j, but also a supplier in that it sells to

firm m. The red arrows in the figure indicate the flow of money, while the black arrows

indicate the flow of products each firm produces.

The rest of the paper is organized as follows. Section 2 compares two important mod-

els for customer-supplier networks, Leontief and PageRank models, showing that the two

model are equivalent under some assumptions. Section 3 provides a more detailed de-

scription of the dataset, while Section 4 looks at the basic structure of customer-supplier

networks, paying particular attention to how closely firms are interconnected. Section 5

then moves on to the issue of how customer-supplier networks evolve over time. Section 6

empirically evaluates to what extent firm sales and growth are affected by the propagation

of idiosyncratic shocks through production chains. Section 7 concludes the paper.

2 Equivalence of Leontief and PageRank Models

The idea of interfirm networks goes back to [2], although the nodes in the Leontief analysis

are not individual firms but economic sectors (i.e., industries). Let us denote the number

of firms in an economy by N and the sales vector associated with those firms by x, which

is a column vector with the sales of firm i on the ith row. We normalize x so that x′1 = 1

holds. The input-output structure of the economy is represented by an N × N matrix A

with aij as an (i, j) element. The element aij denotes the share of input j (i.e., commodity

produced by firm j) in the total intermediate input use of firm i. Market clearing conditions

are given by

x = (1 − α)A′x + f (1)

where f is a column vector representing final demand to individual firms，and α is the

share of value added to gross sales. The first and second terms on the right hand side

represent intermediate and final demands. Everything is standard up to this point, but

we now introduce two new assumptions. The first assumption is about the final demand
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vector, which is given by

f =
α

N
1 (2)

That is, final demand is equal across firms. Second, we assume that the aij is equal to

the reciprocal of the total number of suppliers to firm i if aij > 0 and zero otherwise.

This means that the supply links to firm i are of the same thickness. A new input-output

matrix defined in this way is denoted by Ã. Given these assumptions, eq. (1) changes to

x̃ = (1 − α)Ã′x̃ +
α

N
1 (3)

It is important to note that the column vector x̃ in eq. (3) is nothing but a PageRank

vector, which was first introduced by Larry Page, one of the founders of Google, in his

1998 paper jointly written with Sergey Brin [25]. PageRank is an algorithm used by Google

Search to rank websites in their search engine results. Eq. (3) shows that the input-output

model invented by Leontief in the 1930s is closely connected to the basic idea of PageRank.

Based on eq (3), Ref [3] investigates how value added of an economy, the log of which

is denoted by y, is affected by idiosyncratic shocks to individual firms belonging to the

economy. Denoting an idiosyncratic shock to firm i by νi, which is assumed to be i.i.d. with

mean zero and variance σ2, and the corresponding column vector by ν, we have y = x̃′ν.

If the distribution of PageRank across firms (i.e., x̃i for i = 1, . . . , N) follows a uniform

distribution (i.e., x̃i = 1/N), then we have
√

var(y) = σ/
√

N , implying that the standard

deviation of y converges to zero as N → ∞ at the rate
√

N . More generally, the central limit

theorem guarantees that the standard deviation of y decays at the rate
√

N if the PageRank

distribution is sufficiently close to a uniform distribution. This implies that idiosyncratic

shocks to individual firms would not translate into aggregate shocks because idiosyncratic

shocks cancel out each other quickly as the number of firms increases [26]. However, as

recently shown by [3], this does not hold if PageRank is substantially unequal across firms.

Specifically, if the PageRank distribution has a power law tail (i.e., Pr(xi > x) ∝ x−ζ ,

where ζ is a power law exponent with ζ between 1 and 2), we have
√

var(y) = σ/N1−1/ζ .

This means that the standard deviation of y decays at a rate slower than
√

N , implying

that idiosyncratic shocks do not cancel out each other as quickly as implied by the central

limit theorem, so that idiosyncratic shocks to firms with very large PageRank may have a

substantial impact on y. Typically speaking, firms with large PageRank are “hub” firms

which have a large number of trade partners. Idiosyncratic shocks to those hub firms spread

to other firms through customer-supplier linkages, leading to a cascade phenomenon.

It should be noted that the above argument is based on the two assumptions regarding

final demand and the input-output matrix, which may not actually hold in the data.
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However, even in that case, one can make a similar argument by replacing y = x̃′ν with

y = x′ν. Ref [27] shows that var(y) converges to zero as N → ∞ at the rate
√

N if xi’s are

uniformly distributed (or close to it). On the other hand, var(y) decays only at a slower

rate if the distribution of xi is heavy tailed, implying again that idiosyncratic shocks to

individual firms would translate into macro shocks. This is what [27] refers to as granular

hypothesis. An important difference from the cascade hypothesis by [3] is that firms with

large xi may not necessarily be highly connected. For example, large xi of those firms may

come from final demand rather than from intermediate demand.

The two hypotheses have different implications on how policy makers should act to

mitigate fluctuations in y. According to the granular hypothesis, fluctuations in y comes

from firms with large sales, so that it is important to mitigate idiosyncratic shocks to those

firms. “Too big to fail” principle, often discussed in the context of preventing the failures

of large size financial institutions, can be regarded as an example of such an action. On

the other hand, the cascade hypothesis implies that what is crucially important is not the

size of a firm but how closely it is connected to other firms through customer-supplier

linkages. This corresponds to the idea of “too interconnected to fail”, which has been

discussed by [28] among others in the context of the recent financial crisis.

The cascade hypothesis has two testable implications. The first implication is that the

number of trade links is highly unequal across firms. In particular, the number of customer

links for a firm, which is closely related to its PageRank, must be highly unequal, and its

distribution must have a heavy upper tail. Second, the cascade hypothesis implies that

firm growth rates should be more highly correlated the closer two firms are to each other

in a customer-supplier network. In what follows, we test these two implications using a

dataset that contains information on customer and supplier linkages for more than 500,000

incorporated non-financial firms.

3 Data

The dataset we use is jointly compiled by Teikoku Databank, Ltd. (TDB), one of the

largest business database companies in Japan, and the HIT-TDB project of Hitotsubashi

University. The dataset mainly provides information related to corporate bankruptcies

and credit ratings and covers about 1.3 million incorporated non-financial firms. Since

the number of corporations in Japan in 2006 (as reported in the 2006 Establishment

and Enterprise Census) was 1.493 million, our dataset covers about 90 percent of all

incorporated firms in Japan. TDB collects various kinds of information from these firms,
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including annual or more frequent financial statement data.

Two types of information on customer-supplier relationships are recorded in this dataset.

First, the dataset contains information on the number of three types of relationships a firm

has with other firms, namely relationships with customers (i.e., firms to which a firm sells

its products), suppliers (i.e., firms from which a firm purchases raw materials and inter-

mediate products), and owners (i.e., firms by which a firm is owned). Since in this paper

we focus on customer-supplier relationships, we mainly use information on customer and

supplier linkages. We denote the total number of firm i’s customer links by NC
i and the

total number of supplier links by NS
i . Second, the dataset lists the firms with which a firm

has links (i.e., customers or suppliers to the firm) with their identification codes. How-

ever, the list is not exhaustive and its length cannot exceed 60 firms. This means that for

smaller firms with fewer than 60 partners all of their partners are listed, but for large firms

with more partners only the 60 most important ones are listed. In all cases, transaction

partners are listed in descending order of importance based on the transaction volume.

Table 1 presents descriptive statistics on customer and supplier linkages. All statistics

in the table are calculated using the total number of linkages, that is, NC
i and NS

i . Note

that the table provides linkage information for five different years (i.e., 2008, 2009, 2010,

2011, and 2012), allowing us to investigate not only the structure of customer-supplier

networks at a particular point in time but also their evolution. The sample mean for the

number of customer links per firm is about 340 each year, and the median for the number

of customer links per firm is 50, which is about one seventh of the mean, implying that

the customer link distribution is not symmetric, but is substantially skewed to the right.

In fact, the maximum number of customer links in 2012 was 95,512, which is far greater

than the mean or the median, given that the standard deviation is only 2,053. Turning

to the number of supplier links, the sample mean is about 60 each year, which is much

smaller than the number of customer links. A typical firm has six times as many customer

links as supplier links. The median number of supplier links per firm is 20, implying again

that the distribution for the number of supplier links is not symmetric but is skewed to

the right. The maximum number of supplier links per firm is also much greater than the

mean or the median.

To investigate the structure of customer-supplier networks and their evolution over

time, we use the list of firms linked to a firm with their identification codes. As mentioned,

the list is not exhaustive, so that, as far as large firms are concerned, links with less

important partners are not recorded. The number of customers and suppliers in the list is

6.7 and 6.4 for a typical firm, which is much smaller than the means of the total number
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of customer and supplier links presented in Table 1. We augment the customer/supplier

lists as follows. We first identify firm A as a supplier of firm B using the customer list of

firm A, thereby producing an augmented supplier list of firm B. We add up the number of

customer links originally shown in the customer list of a firm and the number of customer

links identified in this way, and denote the sum by ÑC
i . Similarly, we use the supplier

lists of firms to produce augmented customer lists and define ÑS
i . This kind of “reverse

lookup” method has been applied to different datasets in previous studies on interfirm

relationships, including [15–17]. Comparing NC
i and ÑC

i , we observe a relationship of the

following form: ⟨
ÑC | NC = n

⟩
∝ n0.83 for 20 ≤ n ≤ 10000. (4)

where ⟨ÑC | NC = n⟩ represents the mean of ÑC
i across i given that the total (true)

number of customer links, NC , for those firms is equal to n. Interestingly, the power expo-

nent of n is smaller than unity, implying that for firms with a large number of customers

the augmented list still does not capture the true number of customers. The example of

a firm leasing vending machines to other firms explains why. This firm has a very large

number of customer firms, but because vending machines are not regarded as a key input

to production by most customer firms, they do not include the leasing firm in their list of

suppliers. In this case, ÑC for the leasing firm is much smaller than NC .

Turning to supplier lists, we have⟨
ÑS | NS = n

⟩
∝ n1.19 for 10 ≤ n ≤ 1000. (5)

indicating that the exponent of n is now greater than unity, which means that ÑS more

than doubles when NS doubles, and in this sense ÑS overestimates NS . A likely reason

is that small suppliers to a prestigious firm with a large number of suppliers will include

the prestigious firm in their customer list reported to TDB, since the prestigious firm is

regarded as a key constituent of their customer base. However, this effect will be weak or

absent if a customer firm is not that prestigious, which makes the exponent of n in Eq. (5)

greater than unity.

4 The Structure of Customer-Supplier Networks

4.1 Unequal links across firms

The number of links is unequal across firms with regard to both customer and supplier

linkages, as we saw in Table 1. One may wonder how unequal it is across firms and whether
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the degree of inequality differs between customer and supplier linkages. To address these

questions, we show in Figure 2 the cumulative distribution functions (CDFs) of links

across firms. The horizontal axis represents the number of links, while the vertical axis

shows the corresponding cumulative densities. The horizontal and vertical axes are both

in logarithm. For example, the number on the vertical axis corresponding to 102 on the

horizontal axis is about 10−1 for supplier linkages, indicating that firms with more than

102 supplier links account for one tenth of all firms. The figure shows the CDFs for the

customer and supplier linkages for each of our five observation years (2008, 2009, 2010,

2011, and 2012).

Given that the mean for the logarithm of the number of customer links is 1.72 and

the corresponding standard deviation is 0.783, a number like 5,000 links deviates from the

mean by more than 2.52σ, and a number like 50,000 links deviates by more than 3.80σ.

If the number of customer links is lognormally distributed, the cumulative probabilities

corresponding to 5,000 and 50,000 links are 0.0058 and 0.000072, which is much lower than

the probabilities that we actually observe, indicating that the number of customer links

has a heavier upper tail than a lognormal distribution.

The CDFs of customer links show a linear relationship between the log of the number

of links and the log of the corresponding cumulative probability for the number of links

within the range of 80 to 50,000. The slope is around −1 and is not significantly different

from this value in each of the five years, that is,

P>(NC) ∝ 1
NC

for 80 ≤ NC ≤ 50000 (6)

where P>(NC) represents the probability that the number of customer links exceeds a

certain value. Eq. (6) shows that NC follows a power-law distribution and, more impor-

tantly, that its exponent is very close to unity. Power-law distributions with exponent 1

are found in various economic phenomena, including the distribution of city sizes, asset

price changes, and firm sizes, a phenomenon referred to as Zipf’s law. Most importantly,

as shown by previous studies [24], firm sales follows Zipf’s law, suggesting that the sales

of a firm are related to the number of customers the firm has. We will come back to this

issue in Section 5.

Turning to the number of supplier links, we again find a linear relationship between the

log of the number of supplier links and the log of the corresponding cumulative density,

indicating that the number of supplier links also follows a power-law distribution. However,

the slope of the linear relationship is much larger than that in the case of customer links,

implying that the tail part of the supply link distribution is less fat than that of the
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customer link distribution. The slope associated with supplier linkages is about -1.5, so

that the CDFs for the number of supplier links can be characterized by

P>(NS) ∝
(

1
NS

)1.5

for NS ≥ 30. (7)

Since the power-law exponent in this case exceeds unity, Zipf’s law does not hold. Note that

the power-law exponent ζ is related to the Gini coefficient, G, in the form G = 1/(2ζ − 1).

Therefore, the fact that the power-law exponent is larger for supplier linkages than for

customer linkages implies that the Gini coefficient is smaller for supplier linkages and

that, therefore, the number of supplier links across firms is less unequal than the number

of customer links.

What explains this result? As emphasized in the recent literature on customer search

models [29, 30], firms spend substantial resources on marketing to acquire as many cus-

tomers as possible in order to increase their sales and profits. Such competition among

firms produces winners with a large number of customers as well as losers with a small

number of customers, resulting in huge inequality in the number of customers. In contrast,

with regard to supplier linkages, firms have little incentive to increase their number of sup-

pliers because it is not necessarily profitable to buy materials and intermediate products

from more suppliers. It may even be the case that purchases from more suppliers increase

the associated costs (e.g., shipping costs) and therefore reduce profits. Therefore, because

firms do not compete to have as many suppliers as possible, the extent of inequality is not

as high as that with regard to the number of customers.

4.2 How closely are firms interconnected?

To investigate how closely firms are interconnected, we use the augmented customer/supplier

lists of partners mentioned in Section 2 for the set of firms whose identification codes are

listed in the customer and/or supplier lists of the other firms. The number of firms that

appear in the augmented lists is about 500,000.4 Specifically, we randomly pick four firms

(Firms T , R, K, and D) to examine the number of firms connected to a particular firm by

one, two, three, or more path lengths. The result is shown in Figure 3. Firm T is connected

to about 1,700 firms by one path length, but it is connected to more than 60,000 firms by

two path lengths. The corresponding number for four path lengths increases to 503,796,

which is only slightly less than the total number of listed firms. Thus, firm T is connected

to almost all the firms by four path lengths or less.
4The number of firms in the augmented lists is 552,145 for 2008, 541,816 for 2009, 518,565 for 2010,

520,087 for 2011, and 525,836 for 2012.
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The fact that firm T is connected to about 1,700 firms by one path length, which is

much larger than the sample average presented in Table 1, suggests that it is extremely

large. Given firm T ’s size and the fact that it is connected to about 1,700 firms by one

path length, it may not be very surprising to find that it is connected to almost all the

other firms by less than four path lengths. However, a more surprising case is Firm D,

which is connected to only ten firms by one path length and, in fact, is very small with

fewer than ten workers. Nevertheless, the number of firms to which Firm D is connected

is 746 for two path lengths, 13,519 for three path lengths, 196,799 for four path lengths,

and 446,019 for five path lengths. Surprisingly, even a small firm like Firm D is connected

to almost all the listed firms by five path lengths or less.

We pick 130,000 firms that are on the customer/supplier lists for every year in 2008-

2012,5 and then calculate the shortest path lengths for every pair of firms. There are about

17.9 billion pairs and we find that 99.6% of all pairs are connected, but 0.4% cannot be

connected regardless how long the path lengths are. Figure 4 shows the distribution of the

shortest path lengths for those connected pairs. The mode of the distribution is four path

lengths, and about 61.7% of the pairs are connected by four path lengths or less. Note that

a similar feature a customer-supplier network is reported by [16] using a different dataset.

Also note that previous studies including [17] apply the technique of community analysis

to customer-supplier networks to find that path length tends to be shorter between firms

belonging to the same industry or located in the same region.

Why are firms so closely interconnected? It is important to recall that the number of

links, in the case of both customer and supplier linkages, follows a fat-tailed distribution.

This indicates that there are some (although not many) firms with an extremely large

number of links. The presence of such “hub” firms implies that even a small firm, like

Firm D in Figure 3, is able to be connected to a large number of firms through these hub

firms; that is, once a small firm finds a path reaching one of the hub firms (probably via

several steps), it is then connected to the large number of firms to which the hub firm is

linked. This kind of small-world phenomenon can be found for various economic and social

networks [10,11].

5More specifically, we pick 134,067 firms that are on the augmented customer/supplier lists for each
year in 2008-2011 and whose sales data are available for 1980-2009. We will focus on the same set of firms
in the analysis in Section 5.
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5 The Evolution of Customer-Supplier Networks

A distinctive feature of our dataset is that it records information on linkages for five differ-

ent years, allowing us to investigate not only the structure of customer-supplier networks

at a particular point in time, but also their evolution over time. Some firms continue to buy

from the same suppliers and sell to the same customers for a long period. However, other

firms change their partners quite often. The duration of customer-supplier relationships

influences how shocks are transmitted through the network. Suppose that a firm is hit by

an adverse shock, and the firm reduces its production. If the relationships are all fixed and

the network therefore is highly stable, then the shock to that firm spreads to downstream

firms, which are also forced to reduce production. However, if relationships are flexible in

the sense that firms can change their customers/suppliers easily (i.e., without incurring

any large costs), downstream firms can easily establish new supplier links and thereby

keep the shock from spreading.

To see how quickly customer andsupplier networks evolve over time, we present in Table

2 some statistics related to the turnover of customers and supplier links. Specifically, we

identify customer links that appear on the augmented customer list of a firm in 2008 but

not in 2009 and count them as link exits. Similarly, we identify customer links that do not

appear in the augmented customer list of a firm in 2008 but do appear in 2009 and count

them as link entries Links that appear in the firm’s augmented customer list in both 2008

and 2009 are referred to as survivals. The table shows that the entry rate for 2008-2009

(the number of link entries in 2009 relative to the total number of links in 2008) is 10.8%,

and the exit rate during the same period is 7.4%. Since the entry rate exceeds the exit

rate, the number of links increases from 2008 to 2009 by 3.4%. On the other hand, the

survival rate for 2008-2009 (i.e., the number of surviving links between 2008 and 2009

relative to the total number of links in 2008) is 92.6%, indicating that firms update their

customer lists only partially within a year. Given that the survival rate falls to 87.2% for

the two-year period from 2008 to 2010, 82.5% for the three-year period from 2008 to 2011,

and 78.2% for the four-year period from 2008 to 2012, the survival rate for the next τ

years, which we denote by RC(τ), is estimated as

RC(τ) = 0.978 exp(−0.056τ). (8)

Given the above relationship, simple calculation indicates that about 45% of links disap-

pear over a decade and 70% over two decades. For supplier links, the entry and exit rates

for 2008-2009 are 8.9% and 6.7%, respectively, and the survival rate is 93.3%, indicating

a slightly lower turnover than for customer links. The survival rate for the next τ years,
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RS(τ), is given by

RS(τ) = 0.979 exp(−0.050τ). (9)

Next, we examine changes in the total number of links, i.e., NC and NS , over time.

We saw in Figure 2 that the distribution of the total number of links, for both customer

and supplier linkages, does not change much over the five years. However, this does not

necessarily imply that the number of links for each firm does not change much. For exam-

ple, suppose a firm increases its links from 20 in year t to 100 in year t + 1, and another

firm reduces its links from 100 to 20. In this case, the link distribution does not change at

all between years t and t + 1. To see whether underneath the stable distribution there are

changes in firm links that more or less offset each other, Figure 5 presents scatter plots for

customer and supplier linkages respectively, showing the number of a firm’s links in year

t on the horizontal axis and the number of its links in year t + 1 on the vertical axis. We

see that the dots are concentrated on the 45 degree line for both customer and supplier

links, indicating that for most firms the number of links remained unchanged. At the same

time, there are also dots away from the 45 degree line; for example, for some firms, links

increase by a factor of ten or even 100, while for others they decrease by similar factors to

one-tenth or one-hundredth. Comparing the scatter plots for customer and supplier links,

more dots are away from the 45 degree line for customer links, indicating that links with

customers are more volatile than those with suppliers.

To examine in more detail how firms’ number of links changes over time, we show in

Figure 6 the distributions of the annual growth rates for the number of customer links,

log NC
i (t + 1)/NC

i (t), and for the number of supplier links, log NS
i (t + 1)/NS

i (t), with the

growth rates on the horizontal axis and the corresponding densities on the vertical axis.

Note that there are eleven distributions in total in the two panels, each corresponding to

a group of firms with a certain number of links in year t. For example, the distribution

labeled 103.5 ≤ NC(t) < 104.0 represents the distribution of the growth rates of the number

of customer links from year t to year t+1 for firms with a number of customer links within

the indicated range.

Figure 6 shows the following. First, there is a clear peak in the distribution at densities

corresponding to a growth rate of zero. The ratio of firms with a zero growth rate is 93.0%

for customer links and 95.2% for supplier links. Second, each distribution has a fat upper

tail. This can be seen more clearly if we compare the distributions with the dotted line

representing a normal distribution with the same mean and standard deviation as observed

in the data. Interestingly, the upper tail is even fatter for distributions of customer links
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than supplier links, suggesting again that fierce competition among firms to acquire new

customers yields winners with very high growth in customer links as well as losers with

very large negative growth. Third, the distributions do not depend much on the number

of links in year t. To show this more clearly, Figure 7 plots the number of links in year

t against the standard deviation of the growth rates of links from t to t + 1. The figure

shows that although the standard deviation is relatively high when the number of links

in year t is either very small (i.e., below 10) or very large (above 104), it is comparatively

small and almost uniform for intermediate values.

To see what this almost uniform standard deviation means, let us consider a simple

Poisson type situation. We assume that the number of attempts that a firm makes to

acquire new customers in t + 1 is proportional to the number of customers the firm has in

t. We denote the number of attempts by αNC
i (t), where α is a positive parameter. We also

assume that the probability of success for each attempt is 1/α. In this simple setting, the

growth rate from t to t+1 of the number of customers for a firm is, on average, unity, which

is consistent with the empirical result shown in Figure 6. However, the standard deviation

of the link growth rates is
√

NC
i (t) (1 − 1/α), indicating that the standard deviation is

not invariant but decreases with NC
i (t) due to the law of large numbers, which is clearly

inconsistent with the empirical result presented in Figure 7. The result shown in Figure 7

suggests that the law of large numbers does not hold in the data, so that the risk of losing

many customers from t to t + 1 is not small even for firms with a large customer base in

period t.

6 Implications for Firm Sales and Growth

6.1 The relationship between customer links and firm sales

The sales of a firm in a particular year can be decomposed into two parts: sales to other

firms as intermediate output (“intermediate demand” in the terminology of input-output

analysis) and sales to non-firm sectors, including consumers, the public sector, and foreign

buyers (“final demand”). The intermediate demand component of a firm’s sales can be

further decomposed into two determinants: the number of customer links and the average

size of customer links (in terms of sales). In the terminology of economics, the number

of customer links is the extensive margin, while the average size of customer links is the

intensive margin. An important question to be asked is which of the two margins accounts

for differences in the intermediate demand component of firm sales. In the context of

international trade, this issue has been addressed by a number of studies including [31,32],
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some of which show the relative importance of the extensive margin [32]. In the context

of firm dynamics, some studies argue that the number of customer links plays a dominant

role in explaining differences in firm sales [15], while certain anecdotal evidence suggests

that having links of a larger size, which may reflect closer and longer-lasting ties with a

particular partner, makes it possible for firms to achieve higher sales.

However, to the best of our knowledge, researchers have access neither to information

that makes it possible to decompose firm sales into final and intermediate demand nor

to information on the size of customer links. Our dataset does not contain that kind of

information either. However, we are still able to investigate how the number of customers

for a firm is related to the sales of the firm. To this end, Figure 8 shows the relationship

between the two, depicting the number of a firm’s customers on the horizontal axis and

the firm’s sales on the vertical axis. More specifically, we define 14 bins of the same size

in logarithm for the number of customer links and show various percentiles of the sales

distribution for firms belonging to each bin, namely the 25th (×), 50th (◦), 90th (N), 99th

(�), and 99.9th (�) percentiles. As can be clearly seen in the figure, sales are positively

correlated with the number of customer links. Moreover, a simple regression indicates that

the median of the sales distribution in logarithm, denoted by m, depends on the number

of customer links. Specifically, the relationship can be expressed as follows:

m ∝ 1
2

lnNC (10)

Note that a similar linear relationship holds for the other percentiles, especially for the

upper tail part, which is consistent with the results reported in the previous studies in-

cluding [15, 34]. Eq. (10) implies that the variance in the log of sales is related to about

25 percent of the variance in the log of the number of customer links, suggesting that

the extensive margin is relatively important. At the same time, however, Eq. (10) also

indicates that a 10 percent increase in the number of customer links raises firms’ sales

only by 5 percent, implying that other determinants of firms’ sales that are not controlled

for in the regression may be inversely correlated with the number of customer links. For

example, the size of customer links may be negatively correlated with the number of cus-

tomer links; that is, firms with a larger customer base may have customer links of a smaller

size. Alternatively, firms with a larger customer base may be located more upstream in

customer-suppliers chains, so that they may have less opportunity to sell their products

to consumers, etc., as final output.
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6.2 Can customer-supplier links predict firm growth correlations?

Close interconnectedness among firms implies that an idiosyncratic shock to a firm could

diffuse widely to other downstream firms through customer-supplier chains and, ultimately,

result in fluctuations in the economy as a whole. As clearly demonstrated by the recent

earthquake in Japan, the production activities of firms are closely correlated when these

firms are “neighbors” in a customer-supplier network.

To investigate such correlation in production activities in more detail, we compute the

correlation in annual sales growth between two firms, firms i and j, which is represented

by ρij . We do so for every year for all firms on the augmented customer/suppliers lists in

2008-2012 whose sales data are available for 1980-2009. (The number of firms that meet

these criteria is 134,067.) We then examine how ρij is related to the shortest path length

between firms i and j. The results are shown in Figure 9, which depicts the distribution

of ρij for firms that are connected by one path length (labeled “SPL = 1”), by two path

lengths (SPL = 2), by four path lengths (SPL = 4), and by seven or more path lengths

(SPL ≥ 7). We find that ρij is distributed around zero in the case of SPL ≥ 7. In fact,

the distribution in this case is almost identical to the distribution obtained by eliminating

any correlations between firm growth rates by random shuffling,6 which is shown by the

thin dotted line, indicating that there is no statistically significant correlation between the

growth rates for firms i and j. However, the distribution of ρij moves to the right in the

case of SPL = 4, more to the right in the case of SPL = 2, and even more to the right

in the case of SPL = 1. These results indicate that there is a positive and statistically

significant correlation between the growth rates for firms i and j if they are close to

each other in a customer-supplier network. Simple regression shows that the growth rate

correlation between firms i and j is related to the shortest path length between them as

follows:

⟨ρij | lij = l⟩ = 0.21 exp(−0.48l) + 0.045 (11)

where lij is the shortest path length between firms i and j, and ⟨ρij | lij = l⟩ is the average

of ρij conditional on that the shortest path length between them is l. The first term in

Eq. (11), exp(−0.48l), indicates that the growth rate correlation decreases with l.

The positive constant term in Eq. (11), 0.045, indicates that the growth rates of firms i

and j are positively correlated even when l is very large, implying that part of the growth
6We eliminate growth rate correlations among firms as follows. For a particular firm, we randomly pick

two years, swap the growth rates for the two years, and repeat this for other pairs of years. We do the
same for all other firms until we have completely eliminated any correlation between the growth rates for
any pair of firms.
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rate correlations may be due to factors that have nothing to do with customer-supplier

chains. In fact, the growth rate correlation for pairs of firms which are not connected at all

in the network (i.e., SPL = ∞) is, on average, 0.056, which is close to the constant term

in Eq. (11). To examine the relationship between the growth correlation and the shortest

path length in more details, we follow the recent literature on supply chains [33, 34] and

assume that

gt = Ãgt + ϵt (12)

where gt is a vector of firm growth rates git, where i stands for the firm, so that gt =

(g1t, g2t, . . . , gNt)′), and ϵt is a column vector representing shocks not stemming from

customer-supplier chains (ϵt = (ϵ1t, g2t, . . . , ϵNt)′). Ã is an N × N input-output matrix

used in eq. (3) with typical element ãij equal to 1/ÑS
i if firm j is the supplier of firm i

and zero otherwise. We assume further that ϵit can be decomposed into shocks common

to all firms, such as changes in monetary and fiscal policies, and idiosyncratic shocks:

ϵit = ut + vit (13)

where ut and vit represent common and idiosyncratic shocks respectively, and vit and vjt

are uncorrelated. Using Eqs. (12) and (13), we decompose growth correlations into two

parts: the correlation stemming from customer-supplier linkages, and the correlation due

to common shocks. We first use ϵt = (I − Ã)gt to recover ϵt. Then, we eliminate the

simultaneous pairwise correlation between ϵi and ϵj by randomly exchanging ϵit and ϵis

until the correlation is removed completely. We denote the uncorrelated new disturbance

vector by ϵ̂t and define the new growth rate vector ĝt as ĝt = (I − Ã)−1ϵ̂t. Note that in

ĝt the growth rates for i and j cannot be correlated through common shocks but may be

correlated through customer-supplier linkages.

The result of this exercise is presented in Figure 10, where the horizontal axis shows the

shortest path length, while the vertical axis depicts the growth correlation conditional on

the shortest path length. The result using actual growth rate data, gt, is represented by �
and shows that ⟨ρij | lij = l⟩ decreases with l, as we saw in Eq. (11). Next, the result for the

growth rate correlations only through linkages, which are calculated using ĝt, are shown by

⋄. The result indicates that ⟨ρij | lij = l⟩ again falls with l, but this time it falls very close

to zero when l ≥ 7. Finally, we add the estimate for the growth rate correlations through

common shocks, 0.045 in Eq. (11), to the growth rate correlations through linkages. Doing

so shows that the sum of the two, which is represented by �, successfully generates the

growth rate correlations observed in the data.
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7 Conclusion

In this study, we investigated the structure and evolution of customer-supplier networks in

Japan using a unique dataset that contains information on customer and supplier links for

more than 500,000 incorporated non-financial firms for the five years starting from 2008

to 2012. Our main findings can be summarized as follows. First, we show that the number

of customer links is unequal across firms in the sense that the customer link distribution

is substantially skewed to the right. The upper tail of the customer distribution is much

thicker than that of a lognormal distribution and close to that of a power-law distribution

with an exponent of unity (i.e., it follows Zipf’s law). We interpret this as implying that

competition among firms to acquire new customers yields winners with a large number

of customers, as well as losers with fewer customers. We also show that the distribution

for the number of suppliers across firms has a power-law tail, but the associated exponent

is greater than unity, indicating that the number of supplier links is less unequal than

the number of customer links. Second, we find that firms are closely interconnected with

each other. Specifically, the shortest path length for any pair of firms is, on average, 4.3

links. Third, we show that in our observation period the frequency of link switching is

limited and that, consequently, customer-supplier networks are fairly stable over time.

Our estimates indicate that the survival rate for customer links (i.e., the rate at which

existing customer links survive one more year) is 92 percent, while that for supplier links is

93 percent. Fourth, we find that the growth rates of a pair of firms tend to be more highly

correlated when the two firms are closer to each other in a customer-supplier network (i.e.,

the shortest path length between the two firms is shorter), suggesting that a non-negligible

portion of fluctuations in firm growth stems from the propagation of microeconomic shocks

- that is, shocks affecting only a particular firm – through customer-supplier chains.

In this paper, we have focused on interfirm connections through customer-supplier re-

lationships, but some previous studies, including [35–37], investigate interfirm connections

through the comovement of stock prices. Specifically, these studies use stock price correla-

tions between firms to construct an interfrim network, finding that firms with customer-

supplier relationships, such as an automobile producer and a tire manufacturer, tends to

be close to each other (i.e., path length is short) even in the network constructed based on

stock price correlations. However, these two interfirm networks are not necessarily iden-

tical. For example, it is known that, during stock price bubbles, stock price correlations

do not necessarily have one-to-one correspondence with customer-suppliers relationships.

There remains much to be done regarding how these two interfirm networks are related
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with each other.
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Figure Legends

Figure 1. An illustration of customer-supplier network consisting of five firms. The
red arrows in the figure indicate the flow of money, while the black arrows
indicate the flow of products each firm produces. For example, firm j
purchased something from firm i and sells something to firms k and l.

Figure 2. Cumulative distributions of customer and supplier links in 2008-2012.
The horizontal axis represents the total number of links, i.e., NC and NS ,
while the vertical axis represents the corresponding cumulative densities.
The dotted straight lines are reference lines with a slope of -1 and -1.5
respectively. The number of firms used in this calculation is shown in
Table 1.
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Figure 3. Number of firms connected to a particular firm by n path lengths. Firms
T, R, K, and D are randomly picked from the sample, which consists of all
the firms on the augmented customer/supplier lists.

Figure 4. Distribution of the shortest path lengths for all pairs of firms. We pick
firms that are on the augmented customer/supplier lists for each year in
2008-2011 and whose sales data are available for 1980-2009, the number
of which is 134,067. We calculate the shortest path length for every pair
of firms. There are 17.9 billion pairs.
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Figure 5. The number of links in year t on the horizontal axis versus the number
of links in year t+1 on the vertical axis. The upper and lower panels
are for customer links and for supplier links respectively. The figures are
produced using the total number of links, i.e., NC and NS . The number
of firms used in the figures is shown in Table 2.
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Figure 6. Distributions of link growth rates from year t to year t + 1 for customer
links (upper panel) and for supplier links (lower panel). The dotted curve
in the upper panel represents a normal distribution with a standard de-
viation of 0.12, which is the standard deviation estimated for the growth
rate of customer links, while the dotted curve in the lower panel repre-
sents a normal distribution with a standard deviation of 0.10, which is
the standard deviation estimated for the growth rate of supplier links.
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Figure 7. Relationship between the number of links in year t, which is shown on
the horizontal axis, and the standard deviation of link growth rates from
year t to year t + 1, which is shown on the vertical axis.

Figure 8. Firm sales conditional on the number of customer links. We define 14
bins of the same size in logarithm for the number of customer links and
show various percentiles of the sales distribution for firms belonging to
each bin, namely the 25th (×), 50th (◦), 90th (N), 99th (�), and 99.9th
(�) percentiles. The solid straight line is a reference line with a slope of
1/2.
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Figure 9. Distributions of growth rate correlations between two firms with different
shortest path lengths. The thin dotted line labeled “random shuffling” rep-
resents the distribution for the case of random shuffling in which (1) we ran-
domly pick two years for a particular firm, swap the growth rates for the two
years, and repeat this for other pairs of years; (2) we conduct the same random
shuffling for other firms until we have completely eliminated any correlation
between the growth rates for any pair of firms.

Figure 10. Average of the growth rate correlations between pairs of firms conditional on
the shortest path length between the pairs. The figure shows the correlations
obtained from the data (�), the correlations through common shocks (△),
the correlations through customer-supplier links (⋄), and the correlations
through the sum of the two (�).
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Tables

Table 1. Number of customer and supplier links per firm

Customer Links
2008 2009 2010 2011 2012

Number of firms 160,508 155,806 144,006 142,931 145,317
Number of links per firm

Mean 339 343 341 340 339
Median 50 50 50 50 50
Std. Dev. 2,107 2,090 2,015 2,022 2,053
Max. 90,200 90,504 90,000 90,000 95,512
Min. 0 0 0 0 0

Supplier Links
2008 2009 2010 2011 2012

Number of firms 215,562 208,459 192,111 189,493 193,045
Number of links per firm

Mean 56 58 61 62 61
Median 20 20 20 20 20
Std. Dev. 281 314 368 332 351
Max. 52,100 55,100 70,000 70,000 70,000
Min. 0 0 0 0 0
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Table 2. Turnover of customer and supplier links

Customer Links Number of Links in
the Initial Year Net Increase Entries Survivals Exits

Between 2008 and 2009 867,612 29,583 93,540 803,655 63,957
(0.034) (0.108) (0.926) (0.074)

Between 2008 and 2010 829,014 52,511 158,564 722,961 106,053
(0.063) (0.191) (0.872) (0.128)

Between 2008 and 2011 801,508 70,835 210,754 661,589 139,919
(0.088) (0.263) (0.825) (0.175)

Between 2008 and 2012 781,578 78,281 248,723 611,136 170,442
(0.100) (0.318) (0.782) (0.218)

Supplier Links Number of Links in
the Initial Year Net Increase Entries Survivals Exits

Between 2008 and 2009 864,814 19,416 77,154 807,076 57,738
(0.022) (0.089) (0.933) (0.067)

Between 2008 and 2010 830,486 32,667 128,810 734,343 96,143
(0.039) (0.155) (0.884) (0.116)

Between 2008 and 2011 801,210 46,418 173,515 674,113 127,097
(0.058) (0.217) (0.841) (0.159)

Between 2008 and 2012 779,470 56,970 210,670 625,770 153,700
(0.073) (0.270) (0.803) (0.197)

Note: The figures in parentheses show the ratio to the number of links in the initial year.
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