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Abstract

In this study, we illustrate a tradeoff between the short-run positive and long-run neg-

ative effects of monetary easing by using a dynamic stochastic general equilibrium model

embedding endogenous growth with creative destruction and sticky prices due to menu

costs. While a monetary easing shock increases the level of consumption because of price

stickiness, it lowers the frequency of creative destruction (i.e., product substitution) because

inflation reduces the reward for innovation via menu cost payments. The model calibrated

to the U.S. economy suggests that the adverse effect dominates in the long run.
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1 Introduction

The Great Recession during 2007–09 prompted many central banks to conduct unprecedented

levels of monetary easing. Although this helped in preventing an economic catastrophe such

as the Great Depression, many economies have experienced only slow and modest recoveries

(i.e., they faced secular stagnation) since then. Japan has fallen into even longer stagnations,

namely the lost decades. Firm entry and productive investment have been inactive since the

burst of the asset market bubble around 1990 despite a series of monetary easing measures

(Caballero et al. (2008)).

In this study, we consider the possibility that monetary easing induces adverse long-run

effects on real economic activity by discouraging creative destruction. To this end, we construct

a dynamic stochastic general equilibrium model that embeds both Schumpeterian and new

Keynesian features: endogenous growth due to creative destruction and sticky prices due to

menu costs, respectively. Then, we conduct numerical simulation for the model calibrated to

the U.S. economy to compute the stationary equilibrium and transition paths when transitory

monetary easing shocks hit the economy.

Our model illustrates a tradeoff between the short-run positive effects and long-run negative

effects of a transitory monetary easing shock. On the one hand, monetary easing increases the

level of consumption due to price stickiness. Although the fraction of price-revising firms

increases endogenously, thus offsetting the real effect of the monetary easing shock partially,

monetary policy is not neutral. Because an increasing number of firms exit over time, the

density of marginal firms that would subsequently revise their prices is relatively low. This

non-uniform firm distribution reduces the increase in price-revising firms in response to the

monetary easing shock. Therefore, the increase in the extensive margin does not completely

eliminate the real effect, yielding a positive short-run effect.

On the other hand, inflation due to monetary easing reduces the reward for innovation via

menu cost payments. As monetary easing increases marginal costs, firms incur more menu cost

payments owing to a need for more frequent price changes. This decreases potential entrants’

value and thus sacrifices their innovations. Such a Schumpeterian feature combined with menu

cost violates the super-neutrality of money even in the long-run. The monetary easing lowers

the frequency of creative destruction (product substitution), and in turn, the growth rate of

consumption.

According to the numerical simulation calibrated to the U.S. economy, we find that the latter

adverse effect dominates the former positive effect in the long-run. A 1σ transitory monetary

easing shock for a quarter (a weekly 0.03% point increase in money growth rate) boosts the

level of consumption by 0.05% in the short run but dampens it by 0.07% permanently.
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Our study is related to the following three strands of the literature. The first strand

concerns menu cost models. As in Golosov and Lucas (2007), Nakamura and Steinsson (2010),

and Midrigan (2011), we solve a dynamic optimization problem numerically and simulate the

effects of monetary policy. Although Caplin and Spulber (1987) find the neutrality of monetary

policy in a simple menu cost model, this result can be reversed by simply introducing the entry

and exit of firms, because firm distribution is non-uniform.

Second, our model of creative destruction is based on Grossman and Helpman (1991),

where firm entry and exit are endogenous. Firms enter the market by inventing a new product

superior in quality to the previous one, while a firm producing an older version of products exits.

The growth rate of the real economy is determined endogenously. With this endogenous growth

setting, we can consider a reallocation from old to new firms with better quality or productivity.

Since the long-run negative effect of monetary easing mainly comes from dampening creative

destruction by potential entrants, monetary easing works as a bailout for incumbents. Although

the incumbents are solvent (thus, not “zombies”) in our model,1 a reallocation through creative

destruction with appropriate frequency is desirable for social welfare. Acemoglu et al. (2013)

extend Lentz and Mortensen (2008) to investigate the effects of subsidy on the incumbents’

and the entrants’ R&D separately and find that the former reduces the overall growth rate.

Our study implies that monetary easing has a similar effect under price stickiness because it

increases the incumbents’ survival rate through a decline in the entry rate.

The third strand is a combination of the above two model types. The importance of

product substitution (turnover) has been pointed out by Bils and Klenow (2004), Nakamura

and Steinsson (2008), and Bils (2009), who examine price developments at a micro level. Despite

the importance of product substitution, to the best of our knowledge, no theoretical study exists

on the effects of frequent product substitution on inflation and the real aggregate economy. To

study this, our study examines the entry and exit of firms and price stickiness in combination.

A deterministic version of our model is extensively studied in Oikawa and Ueda (2015) both

analytically and numerically. Chu and Cozzi (2014) use a model with creative destruction and

money, but without price stickiness such as menu cost.2

This paper is structured as follows. Section 2 provides the basic setup of the model, and

Section 3 provides the analytical results of two simplified models: an exogenous firm entry/exit

1Caballero et al. (2008) argue that zombie firms had decayed economic recovery during the lost decades in
Japan.

2Other related studies include Arato (2009), Funk and Kromen (2010), Amano et al. (2012), Vaona (2012),
and Bilbiie et al. (2014). As for nominal rigidity, none of them is based on a menu cost model. They assume
Calvo-, Rotemberg-, or Taylor-type price stickiness. Among them, Bilbiie et al. (2014) construct another type
of endogenous growth model, a product-variety model, and combine this with Rotemberg-type price stickiness.
However, their product-variety model explains neither the endogenous exit of firms (products) nor the endogenous
growth rate of consumption.
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model and a deterministic model with endogenous entry. Section 4 formulates the full model.

Section 5 discusses the real effects of monetary policy shocks, and Section 6 concludes the

paper.

2 Model

Time is discrete, t = 0, 1, 2, · · · . A representative household consumes and supplies labor.

Firms develop a new product by R&D investment and enter the market. At the same time,

firms with an old product exit. A central bank controls money supply growth.3 Exogenous

aggregate shocks are monetary policy shocks.

Let us now clarify the model differences from our earlier study, Oikawa and Ueda (2015).

First, the model in this study is stochastic. We solve the optimal pricing and distribution of

firms in the presence of the stochastic shock on money growth and compute a transition path

from one state to another. Second, time is discrete; we need this for numerical simulation.

Third, money plays a real role in this model. Following the previous studies on menu cost,

such as Sheshinski and Weiss (1977), Caplin and Spulber (1987), Golosov and Lucas (2007),

Nakamura and Steinsson (2010), and Midrigan (2011), we assume that the nominal spending

of households is equal to the money supply and that the central bank controls money supply

growth. In contrast, in Oikawa and Ueda (2015), the central bank follows an inflation targeting

policy and money is absent. These assumptions make the aggregate labor quantity redundant,

and this simplifies computation.

2.1 Firm Entry

The firm entry and exit model is based on Grossman and Helpman (1991). A team of h

researchers can get an idea for a new product with a probability of 1. Firms can enter the

product markets freely, leading to Wth/Pt ≥ V E
t , where Wt, Pt, and V E

t represent the nominal

wage, the aggregate price index embedding quality improvement, and the expected present

value of industry-leading firms at entry, respectively. Equality holds when the entry rate of

firms, µt, is positive. Otherwise, µt is zero. We define vEt by vEt ≡ PtV
E
t /Et, where Et

represents the aggregate nominal demand, which equals the money supply, Mt, following the

resource constraint stated below. Now, the above free-entry condition can be rewritten as

Wt

Mt
h ≥ vEt . (1)

3This assumption is introduced for simplicity. In reality, central banks do not have perfect control over
money supply (broad money), although recent experiences show that they can control base money. The zero
lower bound of nominal interest rates is also neglected in our model.

4



When µt = 0, the above condition holds with strict inequality.

2.2 Household

A representative household has the following preferences over all versions of k∈[0,1,· · · ,Kt(j)]

of each product line j∈[0, 1]:

Ut = Et

[ ∞∑
i=0

βi (logCt+i − χLt+i)

]
, (2)

Ct =

[∫ 1

0

[∑Kt(j)

k=0
(q̃(j, k)xt(j, k))

θ−1
θ

]
dj

] θ
θ−1

, (3)

where β ∈ (0, 1) and θ ≥ 0 represent the subjective discount factor and the elasticity of

substitution between goods, respectively; Ct is aggregate consumption; and xt(j, k) and q̃(j, k)

denote the consumption and quality of version k in product line j, respectively. Quality evolves

as

q̃(j, k) = q̃(j, k − 1)q(j, k), (4)

where q(j, 0) = 1 for any j and q(j, k) > 1 represents a step size of the quality over the second-

best firm. In other words, when a new product is invented in product line j, its quality exceeds

that of the existing firm by q(j, k). The quality gap is constant over time once the new product

draws it from some distribution at entry. For notational simplicity, we write qt(j) ≡ q(j,Kt(j)).

Only the state-of-the-art technology is significant in equilibrium as in Grossman and Helpman

(1991).

The budget constraint is

PtCt +Bt = Rt−1Bt−1 +WtLt + Πt, (5)

where Bt, Rt, and Πt represent the nominal savings, nominal interest rate, and dividend from

firms, respectively. We assume that nominal spending must be equal to the money supply:

PtCt = Mt. (6)

The intertemporal optimization of consumption yields Λt = βt/(CtPt), where Λt represents

the stochastic discount factor.
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Because disutility from labor supply is linear,4 we have

χCt = Wt/Pt. (7)

Combined with equation (6), we have

Wt = χMt. (8)

Nominal wage is proportional to the money supply.

The Euler equation is described as

1

Ct
= Et

[
βRtPt
Pt+1

1

Ct+1

]
,

which becomes

1 = Et
[
βRte

−gt+1
]

(9)

from equation (6), where we define the growth rate of money supply, gt, by

gt ≡ log(Mt/Mt−1). (10)

This is subject to the monetary policy shock, which we will specify subsequently.

2.3 Industry-Leading Firms

Firms produce one unit of goods using one unit of labor. We denote the posted price of version k

in product line j by pt(j, k) and the real period profits of industry-leading firms with k = Kt(j)

by Πt(pt(j, k), qt(j)). Because of competition from rival firms, the firm profit is zero unless

pt(j, k) ≤ qt(j)Wt = qt(j)χMt. (11)

Combined with the competition between different product lines, the optimal price should

satisfy

pt(j, k) = min

(
qt(j),

θ

θ − 1

)
χMt, (12)

without nominal rigidity. If θ ≤ 1, pt(j, k) should be equal to qt(j)χMt.

To incorporate nominal rigidity, we assume that firms hire labor when they reset their prices

as much as κ/χ.5 We call this the menu cost. Let Ωt denote firm distribution in terms of price

4According to Oikawa and Ueda (2015), our basic results hold true even when we assume a more general
form for labor supply disutility.

5This definition implies that menu cost payment (Wκ/χ ) relative to total revenue (M) equals κ.
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and quality in period t. Furthermore, let vRt (qt(j),Ωt−1,Mt) and vNt (pt−1(j), qt(j),Ωt−1,Mt)

denote the real value of firm j when the firm reset and does not reset its price, respectively.

Now, we have

vt = max
(
vRt , v

N
t

)
,

vRt (qt(j),Ωt−1,Mt)

= max
p

Pt
Mt

[
Πt(p, qt(j))−

κ

χ

Wt

Pt
+ Ejt

(
(1− µt+1)

Λt+1

Λt

Pt+1

Pt

Mt+1

Pt+1
vt+1(p, qt(j),Ωt,Mt+1)

)]
,

(13)

vNt (pt−1(j), qt(j),Ωt−1,Mt)

=
Pt
Mt

[
Πt(pt−1(j), qt(j)) + Ejt

(
(1− µt+1)

Λt+1

Λt

Pt+1

Pt

Mt+1

Pt+1
vt+1(pt−1(j), qt(j),Ωt,Mt+1)

)]
.

(14)

The firm value at entry equals

vEt (Ωt−1,Mt) = Et max
p

Pt
Mt

[
Πt(p, q) + (1− µt+1)

Λt+1

Λt

Pt+1

Pt

Mt+1

Pt+1
vt+1(p, q,Ωt,Mt+1)

]
, (15)

where q is a random variable since it is unknown before entry. We consider the case in which

the probability of q ≤ 1 is negligible.

2.4 Monetary Policy

Money supply grows as

log(Mt/Mt−1) = gt = (1− ρ)g + ρgt−1 + εMt , (16)

where εMt represents a monetary policy shock that follows εMt ∼ N(0,σM ).

3 Simple Cases: Short- and Long-Run Impacts

Before analyzing the full model described above, we present the key ingredients of our approach

using simplified models to shed light on the short- and long-run impacts of monetary easing

separately. Section 3.1 illustrates that money is not neutral under an exogenous entry/exit

rate so that monetary easing has a positive real effect in the short run. Section 3.2 introduces
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an endogenous entry rate and illustrates that money is not super-neutral, either. A permanent

increase in a money growth rate has a negative impact on the real growth. For computational

simplicity, we develop the model in a continuous time setting.

3.1 Simple Case 1: Exogenous Entry/Exit Rate

In this subsection, we consider a special case in which firm entry and exit are exogenous. A

new firm produces exactly the same goods as does an exiting firm; that is, q(j, k) = 1 (thus,

no growth). In so doing, we aim to illustrate that having firm entry and exit generates a real

effect of money even in an otherwise simple menu cost model.

Caplin and Spulber (1987) show that money is neutral in a simple menu cost model. This re-

sult stems from endogenous changes in an extensive margin (frequency effect); that is, a change

occurs in the fraction of firms that adjust their prices. Monetary policy shocks increase the

fraction of such firms, adjusting the aggregate price level accordingly and completely offsetting

the real effect.6

By adding just one flavor to the simple menu cost model, that is, firm entry and exit, we

can show that money is no longer neutral. The key to this result is the non-uniform firm’s price

distribution. The fraction of marginal firms that are about to change their prices is lower than

that of the sum of firms that just reset their prices and those that just enter the market. This

dampens the extensive margin effect, and the real effect of money increases as the firm entry

and exit rates increase.

Following Caplin and Spulber (1987), we start with the economy in which no aggregate

uncertainty such as monetary policy is present. Money grows at the constant rate of g > 0.

After solving the stationary equilibrium of the economy, we then consider what happens when

a monetary policy shock εM occurs unexpectedly.

Household The setup for the representative household is the same as before, except that

qt(j) = 1 for any j and t.

Firm Profits Given equation (6) and

Ct =

[∫ 1

0
xt(j)

θ−1
θ dj

] θ
θ−1

, (17)

6According to Golosov and Lucas (2007), the neutrality of money in Caplin and Spulber (1987) stems from
a selection effect. The firms that revise their prices are not selected at random but are the ones whose prices
are farthest from their reset prices. This increases the size of price changes, and in turn, the aggregate price in
response to a monetary easing shock. Such an effect is relaxed in our model because the prices of exiting firms
are not necessarily farthest from their reset prices.

8



the demand for good j can be described as

xt(j) =

(
pt(j)

Pt

)−θ Mt

Pt
. (18)

From equation (18), we can write the real period profits of firm j as

pt(j)−Wt

Pt

(
pt(j)

Pt

)−θ Mt

Pt
. (19)

We define the real price of each good, ξt(j), and the real profit per unit of demand, Π(ξ), such

as

ξt(j) ≡
pt(j)

Wt
, (20)

Π(ξ) ≡ ξ − 1

ξ
(χmξ)1−θ, (21)

where mt represents Mt/Pt, which stays constant at m in a stationary equilibrium of the econ-

omy. Then, from equation (8), the real period profit in the stationary state can be represented

by Π(ξt(j))m, following equations (19) and (21).

Pricing under Menu Cost Because we assume no quality gap between incumbents and

entrants, no limit price exists in this simplified model. Thus, if θ ≤ 1, a firm sets its initial

price at infinity and never resets it regardless of whether nominal rigidity exists or not. Hence

we consider the case with θ > 1 in this subsection. If we introduce step size q > 1, the main

result of this subsection holds for any θ ≥ 0.7

Without nominal rigidity, equation (19) suggests that the optimal real price satisfies Π′(ξ∗)=0

at ξ∗ = θ/(θ − 1). With nominal rigidity, the firm prices remain unchanged, unless the firms

pay menu cost in the form of κ/χ units of labor. Since Wt is linear in Mt, equation (20) implies

that the real price ξt changes at the rate of −g. In other words, these goods become cheaper

as time passes if g > 0. In period ti+1 for i=0, 1, 2, · · · , they pay the menu cost and reset their

price to pi+1. The expected real present value of firm vt becomes

vt =

∞∑
i=0

(∫ ti+1

ti

Π
(
pie
−gt′
)
e−(ρ+µ)t′dt′ − κe−(ρ+µ)ti+1

)
.

7Oikawa and Ueda (2015) analyze the pricing rule with q > 1 and the limit price for the case with θ = 1.
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The first-order conditions with respect to ti and pi yield, respectively

∂vt
∂ti

= 0 =
[
Π
(
pi−1e

−gti
)
−Π

(
pie
−gti

)
+ κ(ρ+ µ)

]
e−(ρ+µ)ti , (22)

∂vt
∂pi

= 0 =

∫ ti+1

ti

Π′
(
pie
−gt′
)
e−(ρ+µ+g)t′dt′. (23)

We define S ≡ log
(
pie
−gti

)
and ∆ ≡ ti − ti−1, and they satisfy

0 = Π (es)−Π
(
eS
)

+ κ(ρ+ µ), (24)

0 =

∫ S

s
Π′ (ez) e

ρ+µ+g
g

z
dz, (25)

s ≡ log
(
pie
−g(ti+∆)

)
= S − g∆. (26)

These conditions pin down S, s, and ∆ as the functions of g and µ.

Firm Distribution Because of the presence of menu cost, firms are heterogeneous with

respect to their prices. Log real prices z ≡ logξ are distributed in the range between s and S,

or, in terms of the time following the last price change, in the range between 0 and ∆. We

denote the density function of z(t′) using f(z(t′)), where t′ ∈ [0,∆] and z ∈ [s, S]. Because z(t′)

changes at the rate of −g for z ∈ [s, S], the density function should satisfy

f(z(t′)) = f(z(t′ − dt′))(1− µdt′)

= f(z(t′) + gdt′)(1− µdt′)

for a small dt′ if the firm distribution is stationary. This equation implies that the density at

t′ should be equal to that of t′ − dt′ multiplied by the survival probability of firms between

t′ − dt′ and dt′, that is, 1− µdt′. This equation is transformed into d logf(z(t′)) = µ/g. Using

1 =
∫ ∆

0 f(z(t′))dt′, we obtain the following firm density function:

f(z(t′)) =
µ

1− e−µ∆
e−µt

′
. (27)

That is, firm distribution is not uniform. Its density function is decreasing with respect to t′

and increasing with respect to the real price ξ.
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3.1.1 The Aggregate Inflation Rate

Since the price level is depicted as

Pt =

(∫ 1

0
pt(j)

1−θdj

) 1
1−θ

, (28)

the aggregate inflation rate can be written as

gdt = logPt+dt − logPt

= f(z(∆))dt · (S − s) + µdt · S.

The left-hand side is gdt because Mt/Pt stays constant in the stationary equilibrium of the

economy and Mt grows at the rate of g. The right-hand side is derived through the following

two channels. First, firms change their log real prices from s to S by paying the menu cost

with probability f(z(∆))dt. Second, new firms enter the market with probability µdt. A new

log real price is set at S from the average log price of zero. Thus, we have

g =
µ

1− e−µ∆
e−µ∆g∆ + µS. (29)

3.1.2 Real Effect of a Monetary Policy Shock

Thus far, we assumed no aggregate uncertainty. To consider the real effect of monetary policy

shock, we now assume that a monetary policy shock εMt occurs unexpectedly in period t as

log(Mt/Mt−1) = gt = g + εMt . (30)

Prior to period t, the economy is at a stationary equilibrium. The size of a monetary policy

shock is sufficiently small compared to g. When a shock occurs, the real money stock, m, may

change, but as in Caplin and Spulber (1987), we assume that it remains unchanged. Thus, S,

s, and ∆ do not change. As long as the monetary policy shock is temporary and small, this

assumption does not appear to be restrictive.

As equation (19) shows, the nominal marginal cost increases by the growth rate of money.

A surprise monetary policy shock thus further lowers the real prices ξt(j) by εMt dt. Therefore,

the firms that reset their prices t′ ∈ [∆−dt−εMt dt/g,∆] periods ago reset their prices between
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periods t and t+ dt. The inflation rate thus becomes

πtdt = logPt+dt − logPt

=

∫ ∆

∆−dt−εMdt/g
f(z(t′))dt′ · (S − s) + µdt · S,

yielding

πt =
1

dt

∫ ∆

∆−dt−εMt dt/g

µ

1− e−µ∆
e−µt

′
dt′ · (S − s) + g − µe−µ∆

1− e−µ∆
g∆

=
µe−µ∆

1− e−µ∆

(
1 +

εMt
g

)
g∆ + g − µe−µ∆

1− e−µ∆
g∆

= g +
µ∆e−µ∆

1− e−µ∆
εMt .

From equation (6), consumption changes as

dlogCt = g + εMt − πt

=

(
1− µ∆e−µ∆

1− e−µ∆

)
εMt . (31)

Since the coefficient on εMt is positive, a positive monetary policy shock increases consumption.

Proposition 1 Money is not neutral unless the entry and exit rate µ is zero. For µ� 1, the

real effects of money increase as µ increases.

The proof of the first sentence has already been provided previously. For the second sen-

tence, we know that d(µ∆)/dµ = ∆ + µ(d∆/dµ) and d∆/dµ is finite.8 Thus, for a sufficiently

small µ, d(µ∆)/dµ is positive. For x > 0, the function f(x) = 1 − xe−x

1−e−x is positive and

increasing with x. Thus, the coefficient on εMt in equation (31) is increasing with µ for µ� 1.

This proposition suggests that the monetary policy shock is not completely canceled out

by a change in price level. This contrasts the result reported by Caplin and Spulber (1987). In

their model, no firm entry or exit is present and hence firm distribution is uniform. Thus, the

density of firms whose real price is close to S is the same as that of firms whose real price is

close to s. In our model, because firms enter and exit, firm distribution is no longer uniform.

8From equations (24) to (26), we obtain

d∆

dµ
= −1

g

1 +

Π′(eS)
Π′(es)

e

(
1+ ρ+µ

g

)
g∆ − 1

Π′(eS)
Π′(es)

eg∆ − 1

−1  Π′(eS)
Π′(es)

e

(
1+ ρ+µ

g

)
g∆ − 1

Π′(eS)
Π′(es)

eg∆ − 1

κ

Π′(es)es
+

∫ S
s

Π′(ez)ze

(
1+ ρ+µ

g

)
z
dz

Π′(es)e

(
1+ ρ+µ

g

)
s

 .
Since Π′(es) > 0 > Π′(eS), this is finite as long as g 6= 0.
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Over time, an increasing number of firms exit, and the density of firms whose real price is close

to S becomes larger than that of firms whose real price is close to s. A monetary policy shock

induces the latter firms to reset their prices. Because their density is relatively low, the change

in the extensive margin and that in the aggregate price level are small. This generates the real

effects of monetary policy.

3.2 Simple Case 2: Constant Money Growth

In this subsection, we develop a model of endogenous creative destruction rate. To focus on

the long-run growth impact of monetary shock, we assume that θ = 1, constant q > 1, and

nonstochastic g.

When θ = 1, equation (3) suggests that the demand for goods is given by

xt(j, k) =
Mt

pt(j, k)
(32)

for the highest version k = Kt(j) and zero otherwise unless the posted price is too high. When

only the highest version of products exist in the markets, the aggregate price Pt can be written

as

logPt =

∫ 1

0
log
[
pt(j,Kt(j))
q̃(j,Kt(j))

]
dj, (33)

with quality improvement taken into account.

From equation (32), we can write the period profit of industry-leading firms with k = Kt(j)

as

Πt(pt(j, k)) =
pt(j, k)−Wt

pt(j, k)

Mt

Pt
=
ξt(j, k)− 1

ξt(j, k)

Mt

Pt
≡ Π(ξt(j, k))

Mt

Pt
(34)

in real terms. Owing to competition with rival firms, the firm profit becomes zero unless

pt(j, k) ≤ qWt = qχMt. (35)

Thus, this constitutes a limit price, ξt = q.

The real value of the entering firm, vEt , is

vEt =
Pt
Mt

max
{ti,pi}

∞∑
i=0

[∫ ti+1

ti

Πt′(pie
−gt′)e−(r+µ)(t′−t)dt′ − κ

Mti+1

Pti+1

e−(r+µ)(ti+1−t)
]

= max
∆

1

1− e−(ρ+µ)∆

[∫ ∆

0
Π(ξe−gt

′
)e−(ρ+µ)t′dt′ − κe−(ρ+µ)∆

]
, (36)

where ξ is the reset relative price: ξ = q if g ≥ 0 and ξ = qeg∆ for g < 0. Following Oikawa
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and Ueda (2015), we obtain

vEt =


1

ρ+µ

(
1− eg∆(g,µ)

q

)
+ κ for g > 0,

1
ρ+µ

(
1− e−g∆(g,µ)

q

)
for g < 0.

(37)

At the same time, the free-entry and the household’s labor supply optimality conditions,

(1) and (8), require

vEt = χh (38)

as long as µ > 0. Equations (37) and (38) pin down the long-run µ in response to the money

growth rate g.

Proposition 2 The frequency of creative destruction, µ, is decreasing in |g|.

The proof of this proposition is straightforward from Lemma 2 in Oikawa and Ueda (2015),

which states that

dvE

d|g|

∣∣∣∣
dµ=0

< 0,
dvE

dµ

∣∣∣∣
dg=0

< 0 if g 6= 0 and µ > 0.

To keep vEt constant, a greater |g| leads to a smaller µ.

This proposition indicates us that a permanent monetary shock is not super-neutral. It has

a negative impact on the real growth rate, because the real growth is monotonically increasing

in frequency of innovation, a = µ log q, as in standard quality ladder models. A transitory

shock affects the real growth rate temporarily but a level effect remains in the long run.

The intuition behind this result is simple. Focus on the case g ≥ 0 for convenience. When

g = 0, there is no need to reset the price (∆ =∞) and no menu cost payment. As g becomes

larger, firms would incur more menu cost payments owing to more frequent price changes,

leading to a decline in vEt . Now, potential entrants have less incentive to innovate, and the

entry rate in the aggregate economy, µ, becomes smaller, which, in turn, increases vEt until vEt

is equalized to the constant labor cost.

The two simplified models in this section illustrate the short-run positive and long-run

negative effects of monetary easing. An increase in g raises the real consumption under nominal

rigidity, but at the same time, deteriorates firm value by more frequent menu cost payments

that discourages R&D by potential entrants. This tradeoff motivates us to investigate which

impact dominates under a plausible parameter setting.
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4 Model with Endogenous Firm Entry and Shocks

We now return to the model in Section 2 and examine its equilibrium numerically. We assume

the unit elasticity of substitution between products, θ = 1, unlike previous studies such as

Golosov and Lucas (2007), Nakamura and Steinsson (2010), and Midrigan (2011).9 As will be

clear, this assumption simplifies the numerical simulation of our model greatly.

4.1 Values of Industry-leading Firms

Substituting (8) and (20), the value functions of the firms can be simplified to

vRt (qt(j),Ωt−1, gt) = max
ξ

[
ξ − 1

ξ
− κ+ βEjt

[
(1− µt+1)vt+1(ξe−gt+1 , qt(j),Ωt, gt+1)

]]
, (39)

vNt (ξt−1(j)e−gt , qt(j),Ωt−1, gt) =
ξt−1(j)e−gt − 1

ξt−1(j)e−gt

+ βEjt
[
(1− µt+1)vt+1(ξt−1(j)e−gt−gt+1 , qt(j),Ωt, gt+1)

]
. (40)

We need condition (35) with qt(j) instead of constant q, or, equivalently,

1 ≤ ξt(j) ≤ qt(j) (41)

to earn a positive profit in period t. If the leading firm’s real price is higher than qt(j), we

assume that this firm stops production and its competitive firm with lower q̃ produces goods

and sells them for ξt(j) = 1. The firm value at entry equals

vEt (Ωt−1, gt) = Et max
ξ

[
ξ − 1

ξ
+ β(1− µt+1)vt+1(ξe−gt+1 , q,Ωt, gt+1)

]
, (42)

where we again assume that the probability of q ≤ 1 is negligible.

Note that these firm values are independent of firm distribution Ωt−1. Except for µt, there

is no term in equations (39) to (42) explicitly depends on Ωt−1. Moreover, µt is independent

of Ωt−1, too, because it is determined by vEt = χh from equations (1) and (8). Therefore,

unlike Nakamura and Steinsson (2010) and Midrigan (2011), we do not have to adopt an

approximation method, as developed by Krusell and Smith (1998). This property arises partly

because the elasticity of substitution between products is 1. Otherwise, an aggregate price level

Pt would enter into period profits, like in equation (21), through which Ωt−1 influences firm

values.

9Lentz and Mortensen (2008) calibrate θ = 1 in a model with creative destruction.
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In summary, we obtain

vt = max
(
vRt , v

N
t

)
, (43)

vRt (qt(j), gt) = max
ξ

[
ξ − 1

ξ
− κ+ β (1− µt+1(gt))Ejt

[
vt+1(ξe−gt+1 , qt(j), gt+1)

]]
, (44)

vNt (ξt−1(j)e−gt , qt(j), gt)

=
ξt−1(j)e−gt − 1

ξt−1(j)e−gt
+ β (1− µt+1(gt))Ejt

[
vt+1(ξt−1(j)e−gt−gt+1 , qt(j), gt+1)

]
, (45)

vEt (gt) = Et max
ξ

[
ξ − 1

ξ
+ β (1− µt+1(gt)) vt+1(ξe−gt+1 , q, gt+1)

]
. (46)

Note that µt+1 depends on expected gt+1 not realized gt+1, because µt+1 is determined by

equation (46). Thus, µt+1 is a function of gt.

The firm value at entry, vEt , is constant, from equations (1) and (8). Thus, equation (46)

determines µt+1, given vt+1. Consider what happens when the money supply growth rate, gt,

increases. Assume a persistent money shock so that gt+1 increases, too. First, it increases

consumption, Mt/Pt = Ct, because firm distribution is non-uniform and price increases are

less than money increases, as illustrated in Section 3.1. Second, analogous to the argument

in Section 3.2, vt+1 decreases because the menu cost payment increases. Thus, µt+1 falls to

keep vEt+1 constant. This implies a lower growth rate of consumption. In this way, a tradeoff

between the short-run increase and long-run decrease is generated.

The policy function of firm j can be obtained from equations (44) and (45) as

ξt(j) = F
(
ξt−1(j)e−gt , qt(j), gt

)
, (47)

For convenience, we give the real price set by entering firm j as

ξ∗t (j) = F (∞, qt(j), gt) . (48)

Note that F (ξt−1(j)e−gt , qt(j), gt) equals ξt−1(j)e−gt if vRt ≤ vNt , and ξ∗t (j) otherwise. Since

entering firm j sets its price after observing qt(j), the optimal price is the same between entrants

and price-resetting incumbents, given qt(j).
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4.2 Firm Distribution

The density function of firms, Ωt, is a function of ξt, qt, and gt and its law of motion is described

as

Ωt(ξt, qt, gt)

=

∫
dgt−1

∫
dξt−1I{ξt−1|ξt=F (ξt−1e−gt ,qt,gt)}Pr(gt|gt−1)(1− µt(gt−1))Ωt−1(ξt−1, qt, gt−1)

+

∫
dgt−1I{ξt=F (∞,qt,gt)}Pr(gt|gt−1)Pr(qt)µt(gt−1)Pr(gt−1), (49)

from which we can compute the stationary density function Ω(ξ, q, g).

The density function given the history of gt, g
t = {gt, gt−1, gt−2, · · · }, that is, Γt, is described

as

Γt(ξt, qt|gt) = (1− µt(gt−1))

∫
dξt−1I{ξt−1|ξt=F (ξt−1e−gt ,qt,gt)}Γt−1(ξt−1, qt|gt−1)

+ µt(gt−1)I{ξt=F (∞,qt,gt)}Pr(qt). (50)

We assume that, in the initial period of t = 0, gt=0 equals g and the density function is its

stationary one:

Γ0(ξ, q|g0) = Γ(ξ, q) =

∫
dgΩ(ξ, q, g). (51)

4.3 The Aggregate Inflation Rate

We analyze the growth rate of the aggregate price index. Equation (33) is transformed into

πt = logPt − logPt−1 (52)

=

∫ 1

0
log
[
pt(j,Kt(j))
q̃(j,Kt(j))

]
dj −

∫ 1

0
log
[
pt−1(j,Kt−1(j))
q̃(j,Kt−1(j))

]
dj.

This yields the inflation rate given gt :

πt = (1− µt(gt−1))

∫
dξt−1

∫
dq · Γt−1 · log

(
F (ξt−1e

−gt , q, gt)

ξt−1e−gt

)
+ µt(gt−1)

(∫
dΩq · log

(
F (∞, q, gt)

qe−gt

)
−
∫
dξt−1

∫
dq · Γt−1 · logξt−1

)
, (53)

where Ωq is the marginal distribution about q.10

10Ωq is equivalent to the exogenous distribution of q, from which entrants draw, if its support lies above 1.
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The real growth rate denoted by at is given by

at = log

(
Ct
Ct−1

)
= log

(
Mt/Pt

Mt−1/Pt−1

)
= gt − πt. (54)

Note that, in the deterministic case where neither a quality nor monetary policy shock exists,

equations (53) and (54) are simplified to a = µ log q. This suggests that the real growth rate is

the highest when µ is the highest.

Since the entry rate µ in equilibrium could be lower or higher than the socially optimal

level, a higher growth rate is not necessarily better in terms of welfare in general. However, our

calibrated parameters in Section 5 indicate that it is plausible to think it is actually better in

terms of welfare, in other words, R&D is underinvested in the market equilibrium (satisfying

the following condition (55)).

In the special case of θ = 1, the market equilibrium is associated with underinvestment in

R&D (too low µ) if

log q̄ >
1− β
βhχ

. (55)

One can find this condition by solving the social planner’s problem, in its simplified form,

max
∞∑
t=0

βt [Kt log q̄ + log xt − χ (h(Kt+1 −Kt) + xt)] ,

where q̄ is the average step size of new innovation, Kt ≡
∫ 1

0 Kt(j)dj and xt(j) = xt for all j.11

4.4 Equilibrium

An equilibrium is a collection of prices and allocations, ξt(j), Pt, Ct, and µt such that, taking

prices as given, the allocations and prices solve the household’s and firm’s problems and the

goods and labor markets clear, given the exogenous shocks εMt and q(j). Specifically, an equi-

librium of the model economy consists of 12 values and functions: vEt , v
R
t , vNt , vt, F , gt, Wt/Pt,

Mt/Pt, Ct, πt, µt, and Ωt; they satisfy 12 equations: (1), (6), (8), (16), (43), (44), (45), (46),

(47), (49), (52), and (53).

We make the following iterative steps to solve for the equilibrium:12 (i) We specify a finite

grid of points for the state variables, ξt(j), qt(j), and gt. (ii) We solve for the firm’s policy

function F by value function iteration using equations (43), (44), and (45), where we use

µt+1 (gt) obtained in the previous iteration and we update µt+1 (gt) using equations (1) and

(46). This enables us to obtain vEt , v
R
t , vNt , vt, F , and µt. (iii) We calculate other features of

11When θ 6= 1, whether R&D is under- or over-invested depends on the level of the equilibrium entry rate.
12The code we used is based on that in Nakamura and Steinsson (2008, 2010).

18



the equilibrium values such as Mt/Pt, Ct, πt, and Ωt.

5 Monetary Policy Effects

5.1 Calibration

Our model is calibrated to the U.S. economy. The unit of time interval is week. The number

of grids is 101, 500, and 21 for ξt(j), qt(j), and gt, respectively. Table 1 shows the summa-

rized parameter values and moments, respectively. We set β = 0.96 in an annual basis. The

per-capita GDP growth during the period 1995 to 2012 implies that the average per-capita

GDP growth rate is a = 0.0127 in real terms and g = 0.0328 in nominal terms annually. The

parameters associated with monetary policy, ρ and σM , are respectively 0.41 and 0.027 quar-

terly, which are then transformed into weekly basis, in the same way as Midrigan (2011). The

entry and exit rate of firms (product substitution rate) µ is 0.034 monthly according to Bils

and Klenow (2004).13 According to Nakamura and Steinsson (2008), the monthly frequency of

price changes is 0.087 excluding product substitution. This amounts to 0.022 in weekly terms if

the firms are homogeneous in pricing decisions. If firms are heterogeneous, and this is actually

true according to Bils and Klenow (2004) and Nakamura and Steinsson (2008), then the actual

weekly frequency of price changes is considered to be between 0.022 and 0.087.14

Using the above values, we calibrate χ, h, q̄, σq, and κ, assuming that qt(j) obeys normal

distribution with mean q̄ and standard deviation σq. We calibrate χ to match L and calibrate

h and q̄ to match a and µ. Since we do not have good prior information, we set σq = 0.005

tentatively, but we confirm that this choice does not alter our results below. As for the size of

menu cost, we set κ = 0.05, which is several times larger than that in previous studies: 0.007

in Levy et al. (1997) and 0.022 in Midrigan (2011). Even with this relatively large value, our

model yields a frequency of price changes (excluding product substitution) four times as high

as the lowest bound of the actual frequency, that is, 0.022 weekly.15

In our model, two features lead to a higher frequency of price changes. The first is Bertrand

competition within product lines. If there were no Bertrand competition, the Ss band of real

prices would be constructed around the “optimal” price in equation (12), depending on the

13The average of entry and exit rates of establishments is 0.118 annually, which is lower than the rate of
product substitution.

14The weekly frequency of price changes equals its upper bound, for example, in the following case. Two
types of goods (A and B) exist and differ in the frequency of price changes. The share of A is 0.087 and that
of B is 0.913. The weekly frequency of price changes is one for A and zero for B. This means that the monthly
frequency of price changes is also one for A and zero for B. Thus, the weighted average of the frequency of price
changes equals 0.087 both weekly and monthly.

15Here, we assume that prices are not revised when the industry-leading firm gives up production and stops
price revision and the second-best firm instead produces at the ξ = 1.
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stochastic process of gt. For example, if gt is symmetric around zero, the optimal price should

be about the center of the Ss band. Bertrand competition brings a discontinuous cutoff on the

profit and allows narrower (or no) space of prices higher than the optimal one. Thus, firms

tend to have lower S. Because of concavity of the profit curve for prices lower than the optimal

price, the marginal benefit of revising prices tends to be larger than that without the limit

price if the width of the Ss band is the same. This implies that they have more incentive to

reset their price. This is definitely significant if θ ≤ 1 because it implies that real profit is

monotonically increasing and the optimal price is never available for firms owing to the limit

price.

Second, like Golosov and Lucas (2007), Nakamura and Steinsson (2010), and Midrigan

(2011), introducing one more type of shock that captures technological changes may lower the

size of menu cost. If productivity changes every period, firms come to have more incentive to

wait and see their output prices, which could lower the frequency of price changes. However, this

remedy may not necessarily increase price stickiness because firms are subject to larger shocks.

Moreover, it increases the dimension of state variables to four, which definitely complicates our

analysis further.

Admitting these challenges, we choose κ = 0.05 so as to obtain a weekly frequency of price

changes close to the highest bound of the actual frequency, 0.087, in Nakamura and Steinsson

(2008). With regards the size of price changes, our model yields much lower values than actual

data, probably reflecting the above challenge that our model yields a higher frequency of price

changes.

5.2 Deterministic Case

For illustration, we begin with a deterministic model in which there is no aggregate monetary

policy shock. This is essentially the same as the model in Section 3.2. Figure 1 illustrates how

a deterministic change in money growth rate g influences the equilibrium. The rates of change

are displayed on an annual basis. The real growth rate a is the highest when g is zero. The

inflation rate π = g − a exhibits a kink at g = 0. These results are in line with our earlier

findings in Oikawa and Ueda (2015). An important implication is that permanent monetary

easing (too high g) lowers the entry-exit rate, and, in turn, the real economic growth rate.

The circles in graphs indicate the points calibrated using a stochastic model in which

monetary policy shock is present. For both a and µ, the circles lie almost on the curve. That

is, the real growth rate and the entry-exit rate hardly change in the stochastic environment

compared with those in the deterministic one.

20



Table 1: Calibration

Calibrated parameters

h 2.1647

q̄ 1.0286

χ 0.9983

κ 0.05

Assigned parameters

β 0.961/52

g 1.03281/52 − 1 = 6.20 · 10−4

ρ 0.404761/13 = 0.9328

σM 3.11 · 10−4

σq 0.005

Moments Data
Stochastic model

(benchmark)

Real growth rate a
1.01271/52 − 1

= 2.43 · 10−4 2.29 · 10−4

Entry-exit rate µ
1− (1− 0.034)1/4

= 8.61 · 10−3 8.37 · 10−3

Frequency of price changes 0.022 ∼ 0.087 0.083

Frequency of price changes

including product substitution
0.028 ∼ 0.109 0.090

Size of price changes 0.085 0.009

Size of price changes

when product substitution
– 0.004

−0.05 0 0.05

0.005

0.01

0.015

0.02

a

g
−0.05 0 0.05

0.2

0.4

0.6

µ

g

−0.05 0 0.05
−0.05

0

0.05

π

g

Figure 1: Quantitative impacts of money growth. The circles in graphs indicate the points
calibrated using the stochastic model.
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5.3 Stochastic Case

5.3.1 Equilibrium and Stationary Distribution

In this subsection, we present an equilibrium in a stochastic environment. Figure 2 displays

the key variables, where the rates of change are displayed on an annual basis.

The top right panel displays the policy function F (ξt(j), qt(j), gt) with gt on the horizontal

axis, where qt(j) is set at its mean q̄. The three lines are depicted in the order of the upper

bound of no price change (S), the reset price (ξ∗t (j)), and the lower bound of no price change

(s) from the top. As gt moves away from its mean g, the Ss band is widened. That is, given

ξt(j), firms tend not to revise their prices, because ξt(j) changes fast and the marginal benefit of

revising their price decreases. When gt is positive, ξt(j) declines over time as long as the posted

prices remain unchanged. Thus, the reset price ξ∗t (j) equals the limit price, qt(j), which does

not depend on gt. When ξt(j) decreases sufficiently low to the level of s, firms reset their prices

at ξ∗t (j). Interestingly, firms do not necessarily revise their prices even though ξt(j) surpasses

qt(j) and their period profit falls to zero. This is because there is a positive probability that,

after some period i, ξt+i(j) falls below the limit price and the period profit becomes positive by

having a high gt. When gt is negative, ξt(j) rises over time as long as the posted prices remain

unchanged. Thus, firms reset their prices at a lower level than the limit price qt(j) and ξ∗t (j)

decreases as gt decreases. In parallel, s also decreases.

The top middle panel shows the policy function F (ξt(j), qt(j), gt) with ξt(j) on the hori-

zontal axis for qt(j) = q̄ and gt = g. When ξt(j) goes too low, firms reset their prices by paying

the menu cost. Firms may not reset their prices even though ξt(j) exceeds q̄ and their period

profit is zero because of the above argument. Firms wait for a while.

As the top left panel shows, the rate of product substitution in period t, µt = µ(gt−1),

has an inverse U shape with respect to gt−1. The dotted vertical line is plotted at gt−1 = g.

Note that here gt−1 is the money supply growth rate not in the long-run, but in the previous

period t − 1. This shape resembles that in Figure 1 for a deterministic model, but differs in

two points. First, µt is the highest not at gt−1 = 0. Second, the curve is asymmetric. The

slope of the decline in µt is larger for positive gt−1 than for negative gt−1. These reasons can

be attributed to the presence of a limit price at qt(j). The profits of firms are discontinuous at

ξt(j) = qt(j). On the one hand, their profits decrease gradually when ξt(j) falls from qt(j), and

drop to zero when ξt(j) exceeds qt(j). If gt−1 is positive, ξt(j) declines over time as long as the

posted prices remain unchanged. This lowers the possibility that firm profits drop to zero. On

the other hand, if gt−1 is negative, ξt(j) rises, which increases the possibility of the firm profits

to drop to zero. However, a too high gt−1 is much more harmful to firm values than a too low

gt−1. This is because, when gt−1 is very high, firms anticipate a rapid decline in ξt(j) in the
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future and accommodate a price higher than qt(j) by sacrificing current profits. On the other

hand, when gt−1 is very low, firm prices are always strictly below qt(j), enabling firms to earn

positive profits. Therefore, the inverse U curve becomes asymmetric. In this simulation, the

money growth rate gt that achieves the highest µt is almost equal to the mean of the money

growth rate, g. This suggests that monetary policy rate shocks εMt dampen the entry and exit

rate irrespective of whether they are positive or negative.

The bottom three panels show the firm value vt(ξt(j), qt(j), gt) by keeping two of the three

arguments fixed at their mean. In the right panel, the dashed line represents the firm value at

entry vEt , which is constant due to the free-entry condition (1). The firm value vt(ξt(j), qt(j), gt)

is increasing with qt(j) because the markup increases. With respect to ξt(j), a too low or too

high value induces firms to reset their prices by paying the menu cost. In an intermediate

region, firms do not reset their prices, and at one point, the firm value becomes the largest.

As gt increases, the firm value tends to decrease, because firms have to make frequent price

changes, which increases their menu cost payment and decreases firm value. However, this

tendency does not hold for a very high gt, because the rate of product substitution changes

with gt, as seen in the top left panel. A lower rate of product substitution increases the value

of incumbent firms. Therefore, firm value can be both increasing and decreasing with respect

to gt.

Figure 3 shows the stationary density function of firms. Because firm distribution is three-

dimensional with respect to ξt(j), qt(j), and gt, we draw the stationary density function with

respect to one argument by summing the density function with respect to the other two ar-

guments except for the last panel. In the top two panels, we confirm that firm distribution is

normal with respect to both qt(j) and gt. The bottom two panels display the firm distribution

with respect to ξt(j). The right panel is displayed by fixing qt(j) and gt at their mean. The

firm density function is non-uniform: it is increasing with ξt(j) in the Ss bound. When ξt(j)

equals its reset price ξ∗t (j), which is near the upper bound (S) of ξt(j), the density is the

largest. This is because firms set their real prices at this level both when they reset their prices

and when they enter the market. As time passes, ξt(j) changes (mostly declines because gt is

mostly positive). At the same time, some firms exit the market, and so the density decreases as

ξt(j) moves away from ξ∗t (j). When ξt(j) falls to the lower bound (s), firms reset their prices,

and so the density below s becomes zero.16 The bottom left panel represents the stationary

density function with respect to ξt(j), where the density functions like the bottom right panel

are aggregated with respect to qt(j) and gt. Because qt(j) and gt are stochastic, the stationary

density function is more diverse than that in the bottom right panel.

16The dip at the left of ξ∗t (j) arises from the computation in discrete time. Starting from ξ∗t (j), ξt(j) does not
move continuously but jumps by egt∆t, where ∆t represents a time interval.
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Figure 2: Key variables

Figure 4 depicts the density function with respect to the size of price changes. The top

panel represents that for the matched sample (excluding product substitution), and the bottom

one does that for new products (product substitution). In the latter case, we simply compare

the posted prices without adjusting quality improvement. Clearly, the size of price changes

is dispersed, in contrast to Golosov and Lucas (2007). Heterogeneous distribution motivates

the work of Midrigan (2011). In our model, because qt(j) and gt are dispersed, the optimal

markup comes to have heterogeneity. However, as discussed related to Table 1, our model fails

to account for the size of price changes quantitatively.

5.3.2 Transition Path

Next, we investigate the transition path of the economy when gt changes unexpectedly by

a sequence of monetary policy shocks. We assume that, initially in period t = 0, firms are

distributed according to their stationary distribution and gt=0 equals its steady state level g.

For the economy, we assume positive shocks of the size of σM lasting for a quarter from

t = 14 to 26. Thereafter, gt converges to g with the persistence of ρ. The transition path up to
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two years (104 weeks) is simulated. Figure 5 shows the result. The line with the dot represents

the transition path in the face of shocks, whereas the dashed line represents the case for no

monetary policy shock. We call the latter the benchmark. The bottom left panel displays

the difference of consumption from the benchmark level. Note that even without shocks, the

economy exhibits some fluctuations. This is because the stationary distribution in the presence

of stochastic shocks differs from the distribution that would realize when there are no stochastic

shocks.

As the top left panel shows, gt increases exogenously. Inflation occurs in the short run, but

the size of inflation is smaller than the size of the increase in gt. Thus, combined with equation

(54), consumption increases, as the middle right and bottom left panels show. The size of the

increase in consumption is comparable to the size of the increase in gt.
17 In other words, the

real effect of monetary policy is large. Such a result is in sharp contrast to Caplin and Spulber

(1987) who argue that the real effect of monetary policy is null. In our model, firm distribution

is non-uniform. The fraction of firms that are about to change prices, called marginal firms

by Midrigan (2011), are less than the fraction of firms that just reset their prices or enter the

market. Thus, a change in the extensive margin and in the aggregate price level are mitigated

in response to a monetary policy shock. This generates the real effects of monetary policy.

Such a result is consistent with Proposition 1 in Section 3.1 as well as Midrigan (2011) who

points out the importance of a smaller number of marginal firms in obtaining a sizable real

effect of monetary policy.

However, two adverse effects dampen consumption in the long run. First, the rate of product

substitution falls, as shown in the middle left panel. The growth rate of consumption and the

level of consumption are thus lowered. Second, when a monetary easing policy is conducted,

the price increases in product substitution become larger. These effects dominate in the long

run. The level of consumption falls below that in the benchmark in the long run.

To understand the mechanism in more detail, we decompose inflation rate movements as

follows:

17Note that g is shown in an annualized scale. Thus, to compare the level of consumption, we need to divide
by 4 (quarterly) or 52 (weekly).

27



πt = (1− µt(gt−1)) ·
∫
dξt−1

∫
dq · Γt−1 · log

(
F (ξt−1e

−gt , q, gt)

ξt−1e−gt

)
+ µt(gt−1) ·

(∫
dΩq · log

(
F (∞, q, gt)

qe−gt

)
−
∫
dξt−1

∫
dq · Γt−1 · logξt−1

)
.

= gt

− µt(gt−1) ·
∫
dΩq · logq (56a)

− (µt(gt−1)− µ) ·
∫
dξt−1

∫
dq · Γt−1 · log

(
F (ξt−1e

−gt , q, gt)

ξt−1

)
(56b)

+ (µt(gt−1)− µ) ·
(∫

dΩq · logF (∞, q, gt)−
∫
dξt−1

∫
dq · Γt−1 · logξt−1

)
(56c)

+ (1− µ) ·
∫
dξt−1

∫
dq · Γt−1 · log

(
F (ξt−1e

−gt , q, gt)

ξt−1

)
(56d)

+ µ ·
(∫

dΩq · logF (∞, q, gt)−
∫
dξt−1

∫
dq · Γt−1 · logξt−1

)
. (56e)

This equation suggests that four factors drive inflation rate changes : (i) the money growth

rate gt (the first term on the right-hand side of the equation); (ii) the change in firm entry-exit

rate (terms (56a)-(56c)); (iii) the change in real prices for existing firms, (56d); and (iv) the

change in real prices due to firm entry, (56e). Figure 6 shows the decomposition of the impulse

responses dividing the four factors.

Factor (iii) contributes to the positive short-run effect. This term would be zero if the prices

were perfectly flexible, because real prices ξt would stay constant at the level of qt(j). If the

prices are sticky and the number of marginal firms is not too large, real prices for existing firms

tend to fall when gt > 0. As gt increases and moves away from g, the size of the fall in real

prices increases, and yields the positive effect on consumption, as highlighted in Section 3.1.18

For factor (ii), the second term on the right-hand side of the equation specifically indicates

the real growth rate. Note that, in a deterministic case, this is equal to a = µlogq. The

monetary easing shock lowers µt, and, in turn, the growth rate of consumption, as highlighted

in Section 3.2. This constitutes the first adverse effect of monetary easing.

Factor (iv) represents the second adverse effect of monetary easing. See the top right panel

of Figure 2. As gt(> 0) increases, the lower bound of no price revision s declines, while the

reset price ξ∗t is irresponsive. Because real prices generally lie between s and ξ∗t for gt > 0, this

suggests that, given qt(j), the average real price falls as gt increases. Intuitively speaking, under

18Interestingly, we find asymmetric responses to a monetary policy shock. When a monetary policy shock is
negative, its short-run effect on consumption is again positive. This arises because the Ss band is widened for
gt < g, as shown in the top right panel of Figure 2. Marginal firms decrease sufficiently to make the real prices
fall, and, as a result, consumption increases.
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sticky prices, old replaced products are on average sold below their optimal markup prices that

would prevail under flexible prices. Thus, even though quality is improved by new products,

price increases become larger and dampens the consumption level permanently.

Summing up these factors, we draw Figure 6. The four panels in the left column display

the decomposition of the inflation rate into (i) to (iv). The panels in middle and right columns

display the decomposition of the real growth rate and the difference of consumption from that

in the benchmark, respectively, into (ii) to (iv). Because the real growth rate at equals gt− πt,
factor (i) is completely deducted when it comes to the effect on the real side of the economy

and factors (ii) to (iv) affect the real side of the economy with the opposite sign to which they

do the inflation rate. The figure, in particular, the right columns, demonstrates that factor

(ii), that is, the decline in the firm entry-exit rate, has the largest effect on the real economic

activity in the long-run.

Finally, it is worth noting that permanent monetary easing decreases the level of consump-

tion further. If a permanent monetary easing is conducted and this policy is anticipated by

the public, such a policy is interpreted not as the transitory easing shock but as a permanent

increase in g. Then, as Figure 1 shows, not just the level, but the growth rate of consumption

as well decline in the long run. This is harmful to welfare.

5.3.3 Robustness

We checked the robustness of our results. For different timings, sizes, and duration of shocks,

our results do not change qualitatively. When we use a larger menu cost, the frequency of

price changes becomes closer to that in Nakamura and Steinsson (2008) and other results do

not change qualitatively. When we use a smaller menu cost, as reported in Midrigan (2011),

that is, κ = 0.022, the frequency of price changes moves away from that in Nakamura and

Steinsson (2008), but other results do not change qualitatively. However, when we use an

even smaller menu cost than reported in Levy et al. (1997), that is, κ = 0.007, the transition

path qualitatively changes. For the monetary easing shock, the level of consumption increases

not only in the short run but also in the long run. However, in this calibration, the weekly

frequency of price changes increases to 0.23 and the role played by monetary policy diminishes.

6 Concluding Remarks

In this study, we illustrated a tradeoff between the short-run positive and long-run negative

effects of monetary easing using a dynamic stochastic general equilibrium model. The model

reveals that monetary easing increases the level of consumption due to price stickiness. How-
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ever, it lowers the frequency of creative destruction (product substitution), and, in turn, the

growth rate of consumption, because inflation reduces the reward for innovation via menu cost

payments. Moreover, the price increases in product substitution become larger by monetary

easing shock, which results in a fall in consumption. Although monetary easing increases con-

sumption in the short run, such adverse effects, in particular the fall in creative destruction

rate, dominate in the long-run and lower consumption permanently.

As the direction of future research, our analysis should be improved to match actual price

data, namely, the frequency of price changes, the size of price changes, the rate of product

substitution, and the size of price changes when products are substituted. In terms of model

setup, combining the features in Golosov and Lucas (2007), Nakamura and Steinsson (2010),

and Midrigan (2011) will be a promising direction although this could make numerical compu-

tation hard.

Another direction is firm dynamics and the reallocation efficiency on growth paths. Because

a monetary shock has different impacts on incumbents and potential entrants in this model,

monetary policy may affect firm size distribution and the decomposition of real growth if we

allow firms to have multiple product lines as in Klette and Kortum (2004) and Lentz and

Mortensen (2008).
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