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An automatic term extraction system consists of a term candidate extraction subsystem, a ranking 

subsystem and a selection subsystem. In this paper, we experimentally evaluate two ranking methods and 

two selection methods. As for ranking, a dichotomy of unithood and termhood is a key notion. We 

evaluate these two notions experimentally by comparing Imp based ranking method that is based directly 

on termhood and C-value based method that is indirectly based on both termhood and unithood. As for 

selection, we compare the simple threshold method with the window method that we propose. We did the 

experimental evaluation with several Japanese technical manuals. The result does not show much 

difference in recall and precision. The small difference between the extracted terms by these two ranking 

methods depends upon their ranking mechanism per se. 

1. Introduction 

As widely known, automatic term extraction is definitely useful in various areas including (1) Automatic 

index extraction from a volume of text, (2) Terminology extraction from one academic field, and (3) 

Keywords extraction from documents for IR purposes. Especially (1) and (2) have so far been done 

manually and cost too much.  Therefore, an automatic term extraction technology would be great help 

for these purposes. Kageura and Umino (1996:259-289) refer to two essential aspects of the nature of 

terms, namely unithood and termhood. 

 

Unithood refers to the degree of strength or stability of syntagmatic combinations or collocations. For 

instance, a word has very solid unithood. Other linguistic units having strong unithood are compound 

words, collocations, and so forth. 

 



 

 

Termhood refers to the degree that a linguistic unit is related to domain-specific concepts. Termhood is 

usually calculated based on term frequency and bias of frequency (so called Inverse Document 

Frequency). Even though these calculations give a good approximation of termhood, still they do not 

directly reflect termhood because these calculations are based on superficial statistics.  

 

According to these two aspects, we have a dichotomy of term extraction methods, namely term extraction 

based on unithood and that based on termhood. Obviously, terms that have high termhood should be 

extracted as terms. However, to directly measure termhood of the given term candidate is extremely 

difficult because only the writer of a document knows which terms are important terms. Many researchers 

have tried to work out the way to approximate termhood by some score that is often calculated based on 

unithood so far. Therefore, the question we would like to ask is how directly the given extracting method 

measures termhood even though it is based on unithood. The accompanying question is what 

characteristics the terms extracted by each method have. In fact, they are tough questions to answer 

theoretically. The best thing we can do at this moment is to compare experimentally the performance of 

several term extraction methods. Since it is still difficult to compare many methods, in this paper, we 

compare only two methods: C-value based method (Frantzi and Ananiadou 1996:41-46) and Imp based 

method (Nakagawa 1997:598-611). 

2. Overview of a Term Extraction System 

A term extraction system, in general, consists of three subsystems, namely 1) candidate extraction, 2) 

ranking, and 3) selection, as shown in Figure 1. 
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Figure 1: Structure of Term Extraction System 

 

In the following, we sketch each of these three subsystems along with the previous works. 

 



 

 

Term Candidates Extraction subsystem 

There are two major types of term candidates in terms of linguistic structure. One is an N-gram of 

characters. The other is a word. Much work has been done on character based N-gram, especially in some 

Asian languages like Japanese (Fujii and Croft 1993:237-246) and Chinese (Lam et al. 1997:68-80).  

Since all of these aim at extracting terms for information retrieval, character based N-grams give us 

enough quality as keywords for IR. However, for non-IR purposes like (1) and (2) above, character based 

N-grams are not suitable because back of the book indexes or terminologies of one academic field are not 

superficial sequences of characters but are words bearing semantically coherent information. Therefore, 

in this paper, we concentrate on terms based on words. 

 

Term candidates that consist of words are nouns or compound nouns. To extract promising term 

candidates of compound noun and at the same time to exclude undesirable strings such as is a or of the, 

the most frequently used method is to filter out the words being members of the stop-list. In these days, 

more complex structures like noun phrases, collocations consisting of nouns, verbs, prepositions, 

determiners, and so on, become focused on (Smadja and McKeown 1990:252-259; Frantzi and 

Ananiadou 1996:41-46, Zhai and Evans 1996:17-23; Hisamitsu and Nitta 1996:550-555, Shimohata et al. 

1997:476-481).  All of these are good term candidates in a document or a specific domain because all of 

them have a strong unithood.  Needless to say, but as for complex terms like compound words or 

collocations, we have the following basic assumption: 

 

Assumption  Complex terms are to be made of existing simple terms. 

 

A structure of complex term is another important factor for automatic term extraction. It is expressed 

syntactically or semantically.  As a syntactic structure, dependency structures that are the results of noun 

phrase parsing are focused on in many works.  Of course, we need heuristics or statistics to select 

plausible dependency structures (Zhai and Evans 1996:17-23). 

 

Since we focus on these complex structures, the first thing to extract term candidates is morphological 

analysis including part of speech (POS) tagging. In English, POS tagging has been one of the main issues 

in natural language processing, i.e. (Brill 1994a:722-727), and recently high quality POS taggers such as 

(Brill 1994b) are available.  In Japanese that is an agglutinative language, morphological analysis 

segments out words from a sentence, and does POS tagging, too (Matsumoto et al. 1996). After POS 

tagging, the complex structure mentioned above is extracted as a term candidate. The previous works 

proposed many promising ways for this type of term candidate extraction. Zhai and Evans (1996:17-23) 

focus on noun phrases. Ananiadou (1994:1034-1038) proposes the way to extract word compounds as 

terms. Hisamitsu and Nitta (1996:550-555) and Nakagawa (1997:598-611) concentrate their efforts on 



 

 

compound nouns. Smadja and McKeown (1990:252-259), Daille et al. (1994:515-521), Frantzi and 

Ananiadou (1996:41-46) and Shimohata et al. (1997:476-481) try to treat more general structures like 

collocations. 

 

Ranking subsystem 

In order to extract domain specific terms from term candidates extracted in Term Candidates Extraction 

subsystem, we have to rank them according to their termhood. This ranking has been developed as 

keyword weighting like tf･idf which is widely used in IR. As written in (Kageura and Umino 

1996:259-289), the frequency information about a word, like tf･idf , is an approximation of termhood. 

Obviously, a notion of termhood implies a semantic weight. Then, the basic idea is that frequency 

information about a word is probably reflected from the semantic importance of the word. Bilingual 

co-occurrences, namely alignments in bilingual corpus, are used to catch semantic importance of words 

(Daille et al. 1994:515-521). However, from the viewpoint of term extraction, ranking methods based on 

unithood are also intensively studied.  For instance, various kinds of statistic information about words 

co-occurrences which are used to extract promising term candidates that are in the form of collocation 

(Smadja and McKeown 1990:252-259; Frantzi and Ananiadou (1996:41-46); Shimohata et al. 

(1997:476-481), are of this type. Among them, C-value (Frantzi and Ananiadou 1996:41-46), entropy 

(Shimohata et al. 1997:476-481), and Mutual Information (Church and Hanks 1990:22-29) are promising. 

Selection subsystem 

As for the selection from ranked candidates, we find a very general scheme such as likelihood test 

(Dunning 1993:62-74). However, we do not find much work that directly treats a term selection process. 

At the first glance, a selection by the predetermined threshold is, seemingly, simple and powerful. 

However, the real problem is the way to determine the threshold that works equally well on unseen 

documents.  Since the method using a simple threshold is not the only method, it is a challenging 

problem to find another promising selection method. 

Target of This Paper 

In this paper, we report on our experimental results of two automatic term extraction methods. Roughly 

speaking, “term” means an open compound (Smadja and McKeown 1990:252-259), which is defined as 

an uninterrupted sequence of words. One extraction method we focus on here is C-value based term 

extraction (Frantzi and Ananiadou 1996:41-46). The other method we focus on here is based on a certain 



 

 

kind of statistics about compound word formation (Nakagawa 1997:598-611). Both methods propose the 

way to rank collocations or compound words according to the importance of each of them. Once all of the 

term candidates are ranked, then we need a method to select real terms from those ranked candidates.  In 

our experiments, we use a simple threshold selection method and a window method that is introduced later 

in this paper. Finally we compare and evaluate the results of every combination of these two ranking 

methods and these two selection methods. 

 

3. Ranking Methods 

3.1. C-Value Based Method 

One of the famous approaches based on statistics about linguistic structure is the ranking method based 

on C-value (Frantzi and Ananiadou 1996:41-46). They recently updated the definition of C-value and 

introduced NC-value that is the combination of C-value and the context factor (Frantzi and Ananiadou 

1999:145-179). Of course, the new C-value or NC-value might show the better performance. But we 

adopt the method described by (Frantzi and Ananiaodu 1996:41-46) because the original C-value reflects 

their original intention. Their term extraction system first extracts all candidates of collocation. Then, it 

uses the measure they call C-value defined by the following formula: 
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where a is a collocation, freq(a) is the frequency of occurrence of a in the corpus, t(a) is the number of 

occurrence of candidates of collocation that contain a, and c(a) is number of the distinct candidates of 

collocations that contain a. First of all, C-value(a) primarily depends on freq(a) which means how 

frequently a is used. Thus, if a is a multi-word collocation, C-value shows how stable the collocation a is 

used. In this sense, C-value(a) indicates unithood of a. But, in fact, things are more complicated. For 

instance, the collocation “Wall Street” seems to be ranked high in the corpus about finance and business. 

However, if “Wall Street” almost always appears as a part of “Wall Street Journal” in the corpus, the latter 

should be ranked higher and the former should be ranked much lower. C-value implements this idea. 

Precisely speaking, the greater the number of distinct extracted candidate terms that contain a string a, the 

bigger the C-value of a is. Note that the range of C-value is still confined between the frequency of 

occurrence of a and zero. Since this characteristic reflects how the writers treat a to some extent, C-value 

is regarded to indicate termhood as well. Consequently, C-value indicates the combination of unithood 



 

 

and termhood. Thus, henceforth, we regard C-value based term extraction method as a method indirectly 

based on both unithood and termhood. 

3.2. Compound Noun based Statistics 

Obviously, the relation between simple terms and complex terms in which they are included is very 

important. To my knowledge, this relation has not been paid enough attention so far. Nakagawa 

(1997:598-611) shows a new direction that focuses on the method to use this relation. Here we focus on 

compound nouns among various types of complex terms. In technical documents, the majority of domain 

specific terms are complex terms, more precisely compound nouns. In spite of huge number of technical 

terms being compound nouns, relatively small number of simple nouns contribute to make these 

compound nouns.  Considering this fact, we propose a new scoring method that measures the 

importance of each simple noun. This scoring method for a simple noun measures how many distinct 

compound nouns contain the simple noun as their parts in a given document or a set of documents. Pre 

(simple word) and Post (simple word) are introduced for this purpose, and defined as follows. 

 

Definition 1 

In the given text corpus, Pre(N), where N is a noun appearing in the corpus, is the number of distinct 

nouns that N adjoins and make compound nouns with N, and Post(N) is the number of distinct nouns that 

adjoin N and make compound nouns with N. 

 

The key point of this definition is that Pre(N) and Post(N) do not count the number of total occurrences of 

words that are adjacent to N, but the number of distinct words that adjoin N or N adjoins. It means that 

Pre(N) and Post(N) do not measure surface statistics of compound nouns containing N, but do measure 

how the writer of the technical document interprets N and uses it in the document. If a certain word, say 

W, expresses the key concept of the system that the document describes, the writer of the document must 

use W not only many times but also in various ways that include forming and using many compound 

nouns that contain W.  This kind of usage really reflects the termhood of that word. In this sense, Pre 

and Post very directly measure termhood. Figure 2 shows an example of Pre and Post. 

 

1  dictionary             manager  1 

•          •.             •        • 

•          •.     file     •        • 

•          •.             •        • 

ｍ       user             system   ｎ 

 

Pre(“file”) = m and Post(“file”) = n 

 



 

 

Figure 2: An example of Pre and Post 

Next, we extend this scoring method to cover compound nouns. For the given compound noun N1N2….Nk 

where Nis are simple nouns, the scores of importance of N1N2….Nk, which is called Imp(N1N2….Nk), 

would be defined, for instance, in the following ways. 
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Imp1(N) directly depends on the length of compound noun N. Imp2(N) is normalized by the length of N, 

and does not depend on the length of N. 

4. Term Selection Subsystem 

We have already explained ranking methods in Figure 1 in the previous section. Then, in the whole 

system of term extraction depicted by Figure 1, we need to define a selection process, which selects real 

terms from ranked candidates. As a selection process, we think of two methods: the simple threshold 

method and the window method. 

4.1. Simple Threshold Method 

It is easy to use a predetermined threshold about the score, like C-value or Imp, on ranked candidates to 

select real terms. Namely, the candidate terms whose C-value or Imp score are over that threshold are 

selected as the real terms and other candidates are abandoned. This selection method is quite simple, but 

the real difficulty we face in this type of selection is the way to determine the optimum threshold. We do 

not have a solid theory to determine the threshold which works equally well for various documents at this 

moment, because each document has distinct characteristics in text length, number of vocabularies, 

distribution of length of collocation, and so forth. Even in the case where we treat documents of one 

academic field, we have not yet had any theoretical way to determine the threshold. Then, the only way is 

to use statistics over a set of documents we are focusing on. As statistics, an average µ and a standard 

deviation σ  of C-value or Imp score are essential. Since we have not yet known any thing theoretical 

about the relation between the threshold th, µ, σ  and the contents of documents, the easiest way to 

determine the threshold th with µ andσ  is given by the following formula: 

 

σµ ⋅+⋅= bath                                         (5) 

 



 

 

where constants a and b are determined to give the best threshold th in terms of recall and precision. 

Actually, the best a and b depend on individual document. But, if µ and σ  express enough amount of 

information about the given document, we can expect that a and b that are optimized for one document or 

a set of documents work equally well for other documents. In fact, the best a and b are not heavily 

different for five Japanese software manuals we use for our experiment. 

4.2. Window Method 

 

The simple threshold method described in the previous section uses the global statistics like µ and σ  but 

does not use local statistics at all.  Then, we focus on the statistical value within the window on ranked 

candidates as local statistics.  In this method, which we call window method henceforth, a window with a 

certain width is moving from the position of the highest ranked term candidate down to the position of the 

lowest ranked term candidate.  For instance, a window of width=3 is depicted in Figure 3. 
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Therefore, RTR is likely to be less dependent on the length of document. We also pay attention to the 

compound noun ratio in a window, CNR in short, defined as follows. 

( )
  widthwindow

 windowin thenoun  compound#CNR =                                                (7) 

The reason why we pay attention to CNR is that the majority of real terms in technical documents are 

usually compound nouns in the Japanese technical documents we investigated. By considering the nature 

of RTR and CNR, we reach the following expectation: In the window whose corresponding Imp value is 

high, the majority of simple and compound nouns within the window are real terms, and at the same time, 

the majority of them are compound nouns, too. Therefore, we expect high relevance between them. In 

Table 1, we show the correlation coefficients between RTR and CNR for Imp1 and Imp2 of five Japanese 

technical manuals shown in Table 2. 

 

Table 1: Correlation Coefficients between RTR and CNR in a case of a window of width=5 
Manual         Coefficient  
 Imp1 Imp2 
JUMAN .753 .682 
SAX .628 .591 
EGG .808 .788 
HV-F93 .737 .705 
Play-Station .738 .692 

 

Since almost all correlation coefficients between CNR and RTR are higher than 0.6, they are high enough 

to use CNR value instead of Imp values themselves for selection by the given threshold. And from the 

value of these coefficients, we confirm that among simple and compound nouns having high Imp values, 

the majority of terms are compound nouns. Therefore, what we have to do is to find an optimum, or at 

least a sub-optimum, threshold of CNR to select the real terms. In the selection process, the term 

candidate that is located at the center of the window is selected as real term if CNR of the window is 

larger than the pre-determined threshold; otherwise that candidate is not selected. 

5. Experiments 

As described previously, we focus here on two ranking methods and two selection methods described in 

the previous sections, respectively. Then, we made experiments for every combination of ranking method 

and selection method, namely 1) Imp + simple threshold (Imp+Sth), 2) Imp + window method (Imp+Win), 

3) C-value + simple threshold (Cval+Sth), and 4) C-value + window method (Cval+Win) . In the rest of 

this section, we compare the results of these combinations and evaluate these combinations. 

 

Now we explain the details of our experiment. We use five technical manuals written in Japanese shown 

in Table 2. 



 

 

 

 

 

 

Table 2: Manuals written in Japanese used for this research 
Manual Number of sentences Size (KB) Number of real terms 
JUMAN(software) 
 Morphological analyzer 

436 31 106 

SAX(software) 
 Parser 

433 28 207 

EGG(software) 
 Kana-Kanji converter 

628 30 108 

Home use VCR 
 Mitsubishi HV-F93 

1461 69 259 

Video Game Machine 
 SONY Play-Station 

131 7 39 

 

Terms that are to be extracted, namely real terms are extracted manually in the following way. Three 

people who use or know well these softwares or hardwares extract manually real terms which, they think, 

are important to understand and/or characterize the contents of those five manuals. Term Candidates 

Extraction process shown in Figure 1 is done as follows. Firstly the morphological analyzer JUMAN 

segments out words from the sentence, and assigns each word a POS tag. Secondly every noun sequence 

that may contain Japanese particle NO (“of” in English) is extracted as a term candidate. Using both of 

these term candidates and the real terms above mentioned, we evaluate the previously described 

combinations, namely Imp+Sth, Imp+Win, Cval+Sth, and Cval+Win, by recall, precision and F-measure. 

 

As for Imp function, we compare Imp1 and Imp2, and finally select Imp2 because it gives the better 

performance in terms of F-measure: 
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where β indicates how much a user is interested in recall as precision. We choose 1.0 as the value of β in 

our experiment. 

 

As described earlier, our window method has two parameters, which is to say CNR threshold and window 

width. We tune a CNR threshold and a window width to optimize F-measure. We choose the following 

four window widths, namely 5, 10, 20 and 30. Then we apply the following 19 CNR thresholds, namely 

0.05, 0.1, 0.15, 0.2, and 0.95 for each of those four window widths. Considering the results we get with 

all the combinations of window width and CNR threshold, we select the combination of the window size 

and the CNR threshold that gives the best F-measure. 

 



 

 

As for the simple threshold method, on the other hand, for the simplicity of threshold selection, we fix a 

= 1 and tune b in the previously described formula of threshold: 

σµ ⋅+⋅= bath                                                                (9) 

to minimize F-measure. 

 

In (Frantzi and Ananiadou 1996:41-46), C-value is calculated for word n-grams where n ≥  2.  Here, 

we decide to use a C-value of uni-gram to rank every n-gram based on C-value in order to compare Imp 

based method with C-value based method.  To apply C-value to uni-gram, we change the definition of 

C-value into the following: 
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Under these experimental conditions, we apply our window method and the simple threshold method to 

two groups of candidates that are ranked based on Imp and C-value, respectively. 

 

We show the results of term extraction of four cases, that is to say Imp+Win, Cval+Win, Imp+Sth and 

Cval+Sth, in Table 3, 4, 5 and 6, respectively. They are the best ones in terms of F-measure. Each table 

shows the parameters of the selection subsystem such as b, window width and the threshold of CNR 

(Th-CNR), precision (P), recall (R) and F-measure(F) that correspond to the case which gives the best 

F-measure for each of these five manuals. 

 

Table 3: The results of Imp+Win 
Manual Window width Th-CNR R P F 
JUMAN 20 0.6 0.491 0.658 0.562 
SAX 30 0.1 0.507 0.507 0507 
EGG 30 0.6 0.472 0.405 0.436 
HV-F93 5 0.3 0.602 0.495 0.544 
Play-Station 20 0.4 0.615 0.5 0.552 
Average   0.537 0.513 0.520 

 

Table 4: The results of Imp+Sth 
Manual b R P F 
JUMAN -0.3 0.519 0.509 0.514 
SAX -0.75 0.541 0.5 0520 
EGG -0.2 0.556 0.345 0.427 
HV-F93 -0.7 0.629 0.452 0.526 
Play-Station -0.95 0.615 0.5 0.552 
Average  0.572 0.461 0.508 

 

Table 5: The results of Cval+Win 
Manual Window width Th-CNR R P F 
JUMAN 5 0.35 0.319 0.708 0.44 
SAX 20 0.2 0.691 0.464 0.555 
EGG 5 0.35 0.741 0.273 0.399 
HV-F93 20 0.4 0.741 0.339 0.465 



 

 

Play-Station 10 0.3 0.667 0.413 0.509 
Average   0.631 0.439 0.474 

 

 

 

Table 6: The results of Cval+Sth 
Manual b R P F 
JUMAN 0.1 0.425 0.584 0.492 
SAX -0.6 0.696 0.45 0.546 
EGG -0.2 0.556 0.345 0.427 
HV-F93 -0.7 0.629 0.452 0.526 
Play-Station -0.95 0.615 0.5 0.552 
Average  0.572 0.461 0.508 

 

As indicated in Tables 3, 4, 5 and 6, Imp+Win shows the best F-measure. Moreover, Imp based methods 

outperform C-value based methods, whichever selection subsystem is employed. 

 

In actual applications, we have to deal with unseen documents. That means that we could not use the 

optimized parameters described in Tables 3, 4, 5 and 6. To estimate the performance of proposed systems 

for unseen documents, we use the average values of the parameters, and show the results in Tables 7, 8, 9 

and 10.  The general tendency is almost the same as the best F-measure cases shown in Tables 3, 4, 5 

and 6 where P, R, and F stand for Precision, Recall and F-measure, respectively. Precisely speaking, Imp 

based methods outperform C-value based methods. The degradations of F-measure are less than 5% in 

every case except for Cval+Sth whose degradation is 9.6%. This means that all of these combinations are 

expected to work well for unseen documents, at least, for technical manuals. 

 

Table 7: The results of Imp+Win 

Window width=22, CNR=0.376 
Manual R P F 
JUMAN 0.443 0.580 0.503 
SAX 0.372 0.583 0.454 
EGG 0.481 0.374 0.421 
HV-F93 0.521 0.491 0.506 
Play-Station 0.487 0.559 0.521 
Average 0.460 0.512 0.481 

 

Table 8: The results of Imp+Sth 

                 b=-0.58 
Manual R P F 
JUMAN 0.639 0.280 0.390 
SAX 0.598 0.468 0.525 
EGG 0.585 0.383 0.463 
HV-F93 0.564 0.524 0.543 
Play-Station 0.488 0.526 0.506 
Average 0.575 0.436 0.485 

 



 

 

 

 

 

 

Table 9: The results of Cval+Win 

Window width=12, CNR=0.32 
Manual R P F 
JUMAN 0.769 0.251 0.378 
SAX 0.726 0.334 0.457 
EGG 0.726 0.291 0.415 
HV-F93 0.718 0.424 0.533 
Play-Station 0.594 0.475 0.528 
Average 0.707 0.355 0.462 

 

Table 10: The results of Cval+Sth 

                      b=-0.35 
Manual R P F 
JUMAN 0.670 0.311 0.425 
SAX 0.478 0.518 0.497 
EGG 0.722 0.263 0.385 
HV-F93 0.483 0.398 0.436 
Play-Station 0.359 0.378 0.368 
Average 0.542 0.374 0.422 

 

For more precise comparison among four combinations, we show recall-precision relations of Imp+Win, 

Imp+Sth, Cval+Win and Cval+Sth for each of these five manuals in Figures 4, 5, 6, 7 and 8, respectively.  



 

 

 

Figure 4: Recall-Precisions for JUMAN 

 

Figure 5: Recall-Precisions for SAX 



 

 

 

Figure 6: Recall-Precisions for EGG 

 

Figure 7: Recall-Precisions for HV-F93 



 

 

 

Figure 8: Recall - Precision for Play-Station 

In these figures, the window width is 30 and the threshold of CNR, which corresponds to Th-CNR in 

Tables 3 through 10, varies from 0.1 to 0.9 in the window method, and the parameter b of simple 

threshold method varies from -3 to +3. As you know from these figures, Imp based methods are superior 

to C-value based methods. However, the difference between Imp based methods and Cval+Sth is not 

significant in JUMAN, SAX, and EGG. Cval+Sth is far worse than Imp based methods in HV-F93 manual 

and Play-Station manual. Cval+Win is far worse than other three methods in all manuals. We will 

describe the reason for these phenomena later on.  In brief, Imp based ranking method that is directly 

based on termhood slightly outperforms C-value based ranking method that is indirectly based on both of 

unithood and termhood. It is needless to say that these experimental results could not be generalized. The 

best ranking method could depend on many factors including language, academic area, size of corpus, etc. 

 

Next, we are going to focus on extracted terms themselves for each ranking method. As an example, we 

show the terms extracted from the manual of JUMAN (Japanese morphological analyzer software). We 

show the terms extracted by both of Imp2 + Window Method and C-value + Window Method, the terms 

extracted exclusively by Imp2 + Window Method, and the extract terms exclusively by C-value + Window 

Method in the following. Since the document itself is written in Japanese, the extracted terms are also 

Japanese. For the convenience of nonnative readers, we show the English translations of these, too. 



 

 

Parts of terms extracted from a Japanese manual by both of Imp2 based and C-value based ranking 

methods 

C Ban (C version) / JUMAN sisutemu (JUMAN system) / Prolog Ban (Prolog version) / Gurahu Kouzou 

(graph structure) / Kosuto (cost) / Kosuto Keisan (cost calculation) / Kosuto Haba (cost band width) / 

Sisutemu Zisho (system dictionary) / Sisutemu Hyoujun Zisho (system standard dictionary) / Sisutemu 

Hyoujun BUnpou (system standard grammar) / Yuuza Zisho (user dictionary) / Imi Zisho (semantic 

dictionary) / Kakutyousi (extension) / Katuyou (inflection) / Katuyou Kankei Zisho (inflection relation 

dictionary) / Kstuyou-kei Mei /(inflection name) Katuyou Zisho (inflection dictionary) / Keitaiso 

(morphology) / Keitaiso Kosuto (morphology cost) / Keitaiso Kaiseki (morphological analysis) / keitaiso 

Kaiseki Puroguramu (morphological analysis program) / Keitaiso Kouzou (morphological structure) / 

keitaiso Zisho (morphology dictionary) / Keitaiso Zisho Fairu (morphology dictionary file) / Keitaiso 

Jouhou (morphology information) / Keitai Hinshi (morph part of speech) / Keitai Hinsi Bunrui Zisho 

(morph part of speech classification dictionary) / Keitai Hinshi Mei (morph part of speech name) / 

Midasigo (entry word) / Go (word) / ....... 

• Total number of extracted terms is 53. 

 Terms exclusively extracted by Imp2 based ranking method 

.jumanrc Fairu (.jumanrc file) / Entori (entry) / Opushon Teigi (option definition) / Gurahu (graph) / 

Hasshu Teeburu (hashing table) / Katuyoukei (inflection form) / Kihonkei (root form) / Gobi (suffix) / 

Hyousou (surface) / Henkan (transformation)/  

• Total number of extracted terms is 10. 

 Terms exclusively extracted by C-value ranking method 

Opushon Teigi Fairu (optional definition file) / Keitaiso Bunpou (morphology grammar) / Kousetu 

Jouhou (postfix information) / Kouzou (structure)/ Soku-Jou (lattice like)/ Takubo Bunpou (Takubo 

grammar)/ Rensetu Kanousei (connection possibility)/  

•Total number of extracted terms is 7. 

 

At the first glance the majority of terms, 75.7%(=53/70), are extracted by both of C-value based ranking 

method and Imp based ranking method. This means that these two ranking methods based on different 

concepts, say directly based on termhood and indirectly based on both termhood and unithood, actually 

give very similar results. It is too early to say, but unithood and termhood has strong correlation in terms 

of ranking candidates of terms, which are collocations or compound nouns. The theoretical background of 

this correlation is, at this moment, an open problem. 



 

 

 

Focusing on the actual mechanism of these two methods, it is much more important to investigate the 

terms exclusively extracted by each ranking method. Six out of seven terms extracted exclusively by 

C-value based ranking are collocations, in other words, compound nouns in this case. It is a reasonable 

result because C-value is originally developed to rank not simple nouns but collocations. We forced to 

change its original definition in order to score simple nouns. We once again write our new definition of 

C-value here: 
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From this formula, it is known that a simple noun, which is a part of many compound nouns, gets a high 
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aa  of  (11). However, since its length is 1, it does not have a high score when 

compared to longer compound nouns. A simple noun that is not a part of many compound nouns 

obviously does not have a high score by the definition of C-value. This is the reason why C-value based 

ranking does favor longer collocations, in other words it does favor compound nouns.  On the contrary, 

seven out of ten terms extracted by Imp2 based ranking are simple nouns. Imp is calculated with Pre(N) 

and Post(N), which express how important the simple noun N is. Especially for compound nouns, Imp2 

does not depend on the length of a compound noun by its definition. Therefore, simple nouns are treated 

as equally well as longer compound nouns. This is the reason why Imp2 based ranking method favors a 

simple noun more than C-value based ranking method does. In brief, whether simple nouns are preferred 

to compound nouns or not does not depends on the dichotomy of unithood and termhood, but on whether 

a scoring method treats simple nouns and compound nouns equally or not. In this sense, it is said that Imp 

based ranking method has high flexibility because it has many variations for the definition of Imp that is 

defined with Pre and Post. To conclude this section, we answer the pending questions, namely 1) why 

Cval+Win is the worst, and 2) why Cval+Sth is as equally bad as Cval+Win especially for HV-F93 and 

Play-Station manuals. We answer the first question at first. Since C-value is low for simple nouns in 

general, there remain quite a few of simple nouns that are to be selected in low C-value area. Moreover, in 

that low C-value area, there remain very few compound nouns. Then, in that area, if we put high 

threshold of CNR, we fail to select many terms that are simple nouns. On the contrary, if we put low 

threshold of CNR, we end up with picking up many non-real terms, because the majority of candidates in 

that low C-value area are not real terms. In short, the algorithm of the window method does not work well 

in low C-value area.  Next we answer the second question. The users of these two equipments, HV-F93 

and Play-Station, are not engineers but ordinary people. Consequently, many of important terms are 

simple nouns. Thus, C-value based method may fail to give high score to the real terms that are simple 

nouns. 



 

 

6. Conclusions 

We have first explained a dichotomy of unithood and termhood.  We explain C-value based method 

which is a ranking method indirectly based on both of termhood and unithood. Then, we explained the 

ranking method that uses statistics of compound noun structure, called Imp that is directly based on 

termhood. We also explain the simple threshold method and the window method that are used to select 

real terms among ranked term candidates.  We experimentally estimate Imp based method and C-value 

based method for Japanese technical manuals. Both are showing the almost same result in precision, 

recall and F-measure. But the sets of terms extracted by two methods are little bit different.  In this sense, 

how directly an extraction method is based on termhood is not only characteristic of term extraction, and 

still there remain many linguistic features from the viewpoint of term extraction. 

 

We are now conducting the experiment of term extraction from English documents. A term extraction 

process for English documents is basically the same as the Japanese case described above. The difference 

is in the term candidate extraction subsystem. In English document cases, at first we apply the input 

document a part of speech tagger such as (Brill 1994b) to assign a part of speech tag to each morpheme. 

In Japanese case, a compound noun is a consecutive sequence of nouns, which may include particle ＮＯ

(“of” in English) between nouns. However, terms in English often take a pattern of adjective + noun, 

noun + preposition + noun, etc as well as a noun sequence. So, we need a linguistic filter to pick up those 

patterns exclusively. To apply a stop-list is also necessary to exclude words that are not suitable 

components of terms of the target domain.  The easiest way, which we actually try to use, to apply Imp 

function to texts is to pick up sequences of words that are not interrupted by any word in the stop-list. We 

have already applied Imp function based term extraction method to uninterrupted words sequences to 

small English corpus. The result seems to be not bad, but to evaluate our method by processing much 

larger corpus is our future problem. Seeking better definition of Imp function experimentally and 

comparison of other different term extraction methods using larger scale corpora are also our future 

problems. 
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