ANOMALOUS TRANSPORT BY KELVIN-HELMHOLTZ INSTABILITIES

Akira Miura

Geophysics Research Laboratory, University of Tokyo
Bunkyo-ku, Tokyo, 113, Japan

ABSTRACT

Simulation of magnetohydrodynamic Kelvin-Helmholtz instabilities
has been performed for parallel (QO"XO) and transverse (QolXo)
configurations, modeling high latitude <(or downstream flanks) and
dayside low latitude magnetospheric boundaries. In the parallel
configuration, a super-Alfvénic and trans-sonic shear flow develops
into small eddies, which strongly compresses, twists, and hence
amplifies the magnetic field by the dynamo action with an
amplification factor Mp/2. In the nonlinear stage, however large the
initial Alfvén mach number Mj may be, the magnetic field amplified and
twisted by the hydromagnetic flow vortices reacts back upon the flow
evolution, and the flow vortices cascade into smaller structures. In
the transverse configuration the instability leads to the formation of
a fast shock discontinuity from an initially sub-fast shear flow.
Anomalous tangential stress by the instability in the transverse
configuration reaches 1% of the magnetosheath momentum flux, but for
the parallel configuration, the anomalous transport is 2-3 times
larger than the anomalous transport in the transverse configuration.
The anomalous transport for both configurations satisfies the
requirement of the viscous-like interaciton at the mangetospheric
boundary.

1. INTRODUCTION

The Kelvin-Helmholtz (K-H) instability is important in
understanding a variety of space and:astrophysical phenomena involving
sheared plasma flow. Of particular interest in the space plasma is
the consequence of the Kelvin-Helmholtz instability in the
hydromagnetic interaction between solar wind and magnetosphere at the
magnetosphere boundary (Figure 1): It has long been suggested that at
the magnetospheric boundary the Kelvin-Helmholtz instability is
excited by velocity shears and leads to a "viscous-like" interaciton
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(Axford and Hines, 1961) at the boundary, i.e., the net transport of
solar wind momentum and energy into the wmagnetosphre, 1in order to
drive the large-scale plasma convection inside the magnetosphere.
Most of theoretical attempts in the past on the Kelvin-Helmholtz
instability have been directed to the linear analysis and have been
successful in showing that the magnetospheric boundary is linearly
unstable for the Kelvin-Helmholtz instability: however, there has bheen
no self-consistent nonlinear treatment of the instability, which could
answer what nonlinear state is realized and how much momentum and
energy is tranfered by the instability into the magnetosphere, a
question being particularly of interest in understanding energetics of
the solar wind-magnetosphere interaction.
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Figure 1. Solar wind-magnetosphere interaction in the equatorial
plane.

In this paper we study by means of magnetohydrodynamic (MHD)
simulation the MHD Kelvin-Helmholtz instability in a compressible

plasma as an initial wvalue problem. By such a self-consistent
nonlinear treatment, we will be able to elucidate the basic nonliear
dynamics of the instabilities (Miura, 1982) in the basic

configurations of sheared plasma flow and magnetic field and answer
how much momentum and enrgy of the solar wind is transfered into the
magnetosphere by the Kelvin-Helmholtz instabilities at the
magnetospheric boundaries. ‘

2. BASIC EQUATIONS AND MODELS

The conservative form of the ideal MHD equations, which describe
the hydromagnetic Kelvin-Helmholtz instability are:
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here.p,x,g. and p are the plasma mass density, bulk velocity of the
plasma, magnetic field and plasma pressure, and ¢ is the energy
density defined by

1 2 R e P
2 pve 2o BT + 7-1 (5)

We show 1in Figure 2 the two basic configurations of the
instability in a uniform magnetic field B, investigated in the present
simulation. The parallel configuration models the magnetospheric
boundary at high latitudes in the noon-midnight meridian plane or the
downstream flanks, where the magnetic field has a large component
parallel to the sheared plasma flow. The +transverse configuration
models the magnetospheric boundary at the dayside low latitude near
the equatorial plane, where the magnetic field is almost transverse to
the sheared plasma flow. The parameters which appear in the following
simulation are the sound mach number Mg=V,/cg and the Alfvén mach
number Mp=V,/vp, where Vo is the total jump of the velocity across the
shear layer, c¢g5 and v, being the sound speed and Alfvén speed,
respectively. Regarding stability of the velocity shear layer in the
parallel configuration we should notice that +the tension of the
magnetic field lines sets the following instability condition for K-H
instability

My > 2 (6)

By using these simple configurations and parameters, we will be able
to elucidate the basic nonlinear dynamics of the instability involved
in the above two basic configurations and their parametric dependence,
which are applicable not only to magnetospheric boundary but also to
wide regions of space and astrophysical problems. For the wvelocity
profile we assume a hyperbolic tangent form,

Voy(x) = - (V4/2) tanh(x/a) (7)

characterized by a total wvelocity jump V, and velocity shear scale
length a.



206 A. Miura

Parallel Configuration
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Figure 2. Two basic configurations of the MHD Kelvin-Helmholtz

instability. The magnetic field is either parallel to the
flow (parallel con-figqration) or perpendicular to the flow
(transverse configuration). The wvelocity profile is

characterized by a total velocity jump V, and a scale
length 2a.
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3. NUMERICS

Simulations are performed in the x-y plane where the initial flow
velocity vy has a shear profile in the x direction. We impose a
boundary condition such that there 1is no mass flow (vy=0) across
boundaries at x=%x; and all quantities are periodic in the vy
direction. It then follows from (1)-(4) that By and derivatives with
respect to x of the remaining quantities (p.vy,vz,By,BZ,p) must vanish
at the boundaries (x=txp). This boundary condition means that the
flow Kkinetic energy flux and the poynting flux across the boundaries
vanish. Therefore, there is no inflow and outflow of energy across
the Dboundaries. For the present simulation we have placed the
boundaries at x=t10a, which is far enough from the shear region to
make boundary effects negligible. 1In the following time is normalized
by t=2a/V,, and we use a mesh system with a (100,100) mesh.

In the present simulation we have given a linearly unstable
perturbation at the initial stage (t=0) as an initial seed of the
growing perturbation. Such a linearly unstable perturbation was
obtained by linear eigenmode analysis by the initial value code (Miura
and Pritchett, 1982), which follows the linearized MHD equation
numerically to produce the linear eigenmode. We have used the two-
step Lax-Wendroff scheme (Richtmyer and Morton, 1967) to solve
equations (1)-(4) and a mesh system with a (100,100) mesh. Al though
the Lax-Wendroff scheme includeds an artificial viscosity term
implicitly, it +turned out during the computation that the artificial
viscosity only by the Lax-Wendroff scheme was not enough to smooth the
final MHD solution and a 1large mesh oscillation was actually
observed. Therefore, we have added additional artifical viscosity
term following Lapidus (1967) in order to smooth the solution and
provide a dissipation mechanism, which is necessary to resolve a fast
shock discontinuity generated by the K-H instability. Namely,
following Lapidus (1967), we have added artificial viscosity term to
the MHD variables first by smoothing those variables in x direction
and then smoothing them in y direction as follows:

1 . At x 1 ol 1 ol
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where u=vy, v=vy, U=(p,vy,vy,v;,By,By,B,.P), V' and V? are added
artificial viscosity terms, suffixes 1-3 represent one cycle of each
time step, and « is a constant of order of unity. We have to be
specially careful in such a smoothing process, however, since we try
to elucidate the anomalous momentum transport or the anomalous
viscosity induced by the Kelvin-Helmholtz instabilities, which is due
to the finite large amplitude K-H mode. Therefore, by trial and
errors, we have made those artificial wviscosity terms as small as
possible.

4. NUMERICAL RESULTS
4.1 Parallel configuration
First, we show results of a simulaiton run performd for .the

parallel configuration. Solid and dashed curves in Figure 3 marked by
the symbol # show the time evolution of normalized peak amplitudes
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Figure 3. Time evolution of maximum normalized transverse velocity
(solid curves) and maximum normalized compressional
component of the magnetic field (dashed curves) for the
parallel  configuration with Mg=1.0, Mp=2.5 and the
transverse  configuration with  Mp=Mgq=2.0. Time is
normalized by 2a/V,.



ANOMALOUS TRANSPORT BY KELVIN-HELMHOLTZ INSTABILITIES 209

Vyx max/VN and By pax/By. where By=B, and Vpn=V,, for the parallel
configuration with Mg=1.0, Mp=2.5. In the early stage, the amplitude
grow linearly with the predicted linear growth rate. At t/7t=90 the
instability saturates, Vy pay/Vy reaches 30 %, and the magnetic field
perturbation (transverse component) becomes comparable to the initial
beckground magnetic field intensity.
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Figure 4. Flow velocity (left) and magnetic field (right) at t/7t=20
and 40 for the parallel configuration (Mg=1.0, Mp=5.0).

Figure 4 shows flow vectors (left panels) and magnetic field
vectors (right panels) at t/7=20 and 40 for a simulaiton run with
Mg=1.0 and Mp=5.0. System length in the y direction Ly in this case
is equal to Ly=15.7a, which corresponds to the wavelength of the
fastest growing mode. In the early state (t/r=20), the sheared plasma
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flow wundulates slightly with the development of the instability (top
left panel). Since the magnetic field is frozen into the plasma, the
above undulaiton of the plasma flow leads to a slight bending of the
magnetic field lines as seen in the top right panel. The shear flow
is extremely disturbed, however, by the saturation stage t/t=40, and a
pair of eddies is formed inside a large vortex at 7a<y<15.7a. In the
center of the large vortex, the flow is almost stagnant. A stagnation
region also appears in between the large vortices., and the plasma flow
toward this stagnation region induced by vortices is forced to diverge
along a layer formed tangent to the vortices. The initially uniform
magnetic field is slightly sheared and compressed inside the velocity
shear layer at t/r=20 and eventually at t/7=40, a strong compression
of the magnetic field occurs at 0<y<7a along the layer formed tangent
to vortices. On the other hand at 7a<y<15a the magnetic field line is
stretched and twisted strongly as a consequence of the wrapping-up of
the field 1lines by the differential rotation associated with each of
the twin vortices. In this case, the total magnetic energy in . the
whole calculation domain increased by 26 % of the initial total
magnetic energy at the expense of the initial flow kinetic energy.

Shown in the upper panels of Figure 5 are 3-D views of the
pressure distributions for this case. Initially the pressure was
uniform, but with time, the pressure decreases along the region where
the mangnetic flux tube is compressed on both sides. A substantial
depletion of the plasma pressure is seen for later stage along the
compressed flux tube formed tangent to vortices. This is because the
flux tube is compressed on both sides by the 1incoming plasma flow
induced by the vortex motion causing the plasma inside to be squeezed
out of the flux tube.

In the bottom panel of Figure 5, we summarize plasma dynamics
involved in the parallel configuration for the present case of Mp=5.0,
which has 1led to a strong compression and twisting of magnetic field
lines and the formation of a slow rarefaction layer. Illustrated also
in this figure is an amplification of the magnetic field at the site
of small eddies by the dynamo action, E-J=v-:(JxB)<0, where E and J are
the electric field and current induced by eddy motion and field line
twisting. At the site of the slow rarefaction 1layer, the magnetic
field is also amplified by slow magnetosonic rarefaction due to
accumulation of magnetic field lines by flux transfer associated with
frozen-in vortex motion. Both of these processes, i.e., twisting and
compression of magnetic field lines, contribute to a dynamo mechanism,
whereby the flow kinetic energy is converted into magnetic energy by a
deceleration of the flow by the JxB magnetic force.

In order to see the dependence of the instability consequences on
the Alfvén mach number M,, we have performed simulation runs for
Mpa=2.5 and 10.0 and for a fixed sound mach number Mg=1.0. We show in
Figure 6, flow velocity wvectors at the saturation stage of the
instability for Mp=2.5,5.0,10.0 from the top. For Mp=2.5, the tension
of the magnetic field line is large in comparison with the inertial
term and therefore the flow is only slightly undulated with twin eddy-
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like circulations developed in a large vortex. With the increase of
the mach number Mp. the flow is disturbed more and more and for
Mp=10.0, a large vortex initially formed cascade into smaller eddies
and the flow is more "turbulent" in the sense that the flow
perturbation is now of much smaller scale size. The three pPanels in
Figure 7 show magnetic field vectors corresponding to those flow
vectors in Figure 6. For Mp=2.5, the magnetic field lines oscillate

Pressure (ll case)

(b)

Field Lines and
Twin Vor tices

—— Magnetic Field Lines
—-—=~ Stream Line
:D Outward Flow

¢ Initial Velocity
Shear Scale Length

Figure 5. Upper panels; three-dimensional plots of the pressure (top
surface) at t/r=20 and 40 for the parallel configuration.
Lower panel; plasma dynamics in the parallel
configuration.
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Flow Velocity (Il case : Ms = 10.0)
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Figure 6. Flow velocities . for .fhree different Alfvén mach numbers
(Mp=2.5,5.0,10.0, and Mg=1.0) in the parallel

configuration.
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Figure 7.
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Magnetic fields for three different Alfvén mach numbers
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back and forth slightly owing to the frozen-in vortex motion inducedby
the instability. However., with the increase of Mj. the magnetic field
line is more strongly compressed and twisted by the flow vortices and
for Ma=10.0, the magnetic field is amplified six times of the initial
magnetic field in the slow rarefaction layer, and twisted several
times. Notice regarding the present numerical scheme that in the
middle and bottom panels, regions of magnetic field reversal are
formed, but they are not subject to reconnection by the numerical
resistivity. This fact provides us with a proof of the soundness of
the present numerical scheme for the ideal MHD plasma.

By a compression and twisting of the magnetic field line, the
magnetic energy in the whole calculation domain has increased (dynamo
action). In order to see this increase of the magnetic energy, we have
plotted in Figure 8 the time evolution of the relative magnetic energy
increase [Wg-Wg (t=0)]/Wg (t=0) and the relative decrease of the flow
kinetic energy [Wp-Wy (t=0)1/Wy (t=0). It is obviously seen in these
plots that the total magnetic energy in the whole calculation domain
increases exponentially with time at the expense of the flow Kinetic
energy. This provides a solid evidence of the dynamo action by the K-
H instability 1in the parallel configuration. Both compression and
twisting of magnetic field lines contribute to a dynamo mechanism,
whereby the flow Kinetic energy is converted into magnetic energy.
This dynamo process is caused by a deceleration of the flow by the JxB
magnetic force; that is, the magnetic field gains its energy from the
vortex flow by Ve (JxB)<0 For the present parameter (Mg=1.0), it is
obvious from Flgure 7 that the magnetic field amplification by slow
rarefaction process contributes most to the increase in the magnetic
field. The efficiency of the magnetic field amplification using this
process depends on the Alfvén mach number Mp or the plasma
B(BaMg/Mg). If we assume a quasi stationaly state, the amplification
factor of the magnetic field, i.e., Bf/Bi, where B; is the initial
uniform magnetic field (=By) and By is the final magnetic field
strength 1inside the slow rarefaction layer, may be calculated as
follows: The lower panel in Figure 5 shows that the slow rarefaction
layer is formed as a consequence of the compression of the magnetic
flux tube by the incoming plasma flow induced by vortices. The
pressure balance between the inside and outside of the slow
rarefaction layer becomes

BOUt B%n

P +p V2 + —— ~ Pin + — a2
out out Yout ‘2”0 ‘1n TR o
where vg,t is the velocity of the incoming plamsa flow, which is
almost normal to the slow rarefaction layer. From simulation results,
we found that Pout-Pin<<foutVdut - Therefore, the above pressure
balance condition gives simply

2
2 .~ oin (13)
fout Vout ~ 7,

This relation means that the dynamic pressure by the incoming plasma
flow is nearly balanced by the magnetic pressure inside the
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rarefaction layer. If we usc the empirical fact obtained from
simulation results

Vo
Vout ~ Vx max ~ 3~ (14)
(13) can be rewritten as
Yo, _ Bin
Pout 3 2, (15)

Thus, we can conclude that the amplification factor of the magnetic
field is

Po(Vy/3)2

,B B%$/2u
_f.-_- ( '%__Q )1/2 —— )1/2 ~1MA (16)
We show 1in Table 1 the amplification factors, obtained from

simulations and calculated from (16), of the magnetic field for three
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Figure 8. Tinme evolutions' of total magnetic and kinetic energies in
the whole calculation domain.
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different values of Mp in the saturation stage. Although the above
calculations are based on a crude argument ., the calculated
amplification factor has agreed very well with the simulation results,
suggesting that a simple dynamo relation (13) by slow magnetosonic
rerefaction is well satisfied in the actual simulation results.
Summarized also in Table 1 are the value of the initial plasma 8 and
that of the plasma § within the slow rarefaction layer at the
saturation stage for three different wvalues of Mj. Although the
initial plasma B8 is much larger than unity for all cases. the plasma 8
at its saturation stages becomes 1-2 for all cases., owing to the
squeezing Process. Because of this large decrease of the plasma 8
within the rarefaction layer,Vp and JxB forces become almost
comparable, and hence the flow is strongly affected by the magnetic
field, even though the initial (seed) magnetic field satisfying B8>>1
is too weak to affect the plasma motion.

4.2 Transverse configuration

Solid and dashed curves in Figure 8 marked by the signt show the
time evolution of normalized peak amplitudes vy ax/VN: Bz pax/Bn  fOr
the transverse configuration with Mg=Mp=2.0 (Mg=1.44), where Mg is the
fast magnetosonic mach number defined by Mg=Vgy/(ci+vi)!/2. Both
amplitudes grow linearly with the predicted 1linear dgrowth rate 7=
0.09-2a/V,. In the saturation stage, both normalized amplitudes reach
25%. In this case, the total magnetic field energy increased only
slightly, by 1.6 % of the initial total magnetic field energy by the
fast compression.

We show 1in Figure 9 simulation results of the transverse
configuration with its time evolution shown in Figure 3. The system
length Ly in this <case is equal to 17.9a, which is equal to the
wavelength of the fastest growing mode 1. Left panels show flow
pattern at t/r=25,55. The initially laminar sheared plasma flow is
disturbed slightly at t/t=25, and it develops into a flat vortex cell
at t/r=55. This time evolution may be regarded in the magnetospheric
inertial frame as a spatial evolution along the magnetospheric
boundary from upstream to downstream over a distance of 55tx1/2V4~31
where 1 is the wavelength of the fastest growing mode. The transverse
vortex size at t/t=55 becomes much larger than the initial thickness
of the wvelocity shear layer (2a), and therefore a large scale mixing
of plasma is accomplished by a vortex motion. It is seen that the
initial laminar shear flow is accelerated and decelerated periodically
in the y-direction, since the perturbed vortex motion periodically
changes the direction of rotation. Notice that the wultimate energy
for this acceleration is provided by the inertial force po(avy/ax)vX
due to the wvelocity shear. An 1interesting consequence of the
instability found for this case is the formation of a pair of fast
shock structures aligned side by side across the velocity shear layer,
even though the initial maximum flow speed was less than the .
magnetosonic speed (vy max=Yo7/2=0.71 Vg). The right panels in Figure
9 show a 3-D view of the pressure distribution. It is seen that at
t/t=55, the pressure gradient presents a clear-cut discontinuity,
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which appears at the strongly accelerated flow region in the bottom
left panel. The physical picture leading to this fast shock formation
is as follows: Initially, the plasma was uniform and the maximum flow
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Figure 9. Flow velocity at t/r=25 and 55 (left panels) and three-
dimensional plots of the pressure distribution (right

panels) at t/t=40,45,50,$5 for ﬁhe transverse configuration
(Mg=Mp=2.0). ‘

speed was below the magnetosonic speed. As the instability grows,
however, the vortices are excited and the flow 1is accelerated and
decelerated periodically in the y direction by the perturbed vortex
motion.  Therefore, the decelerated flow 1is overtaken by the
accelerated flow causing. the pressure gradient to steepen more and
more with time. Eventually, the accelerated flow speed exceeds the
local magnetosonic speed, and a fast shock discontinuity is formed.
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In order to resolve the fast shock structure, we show in Figure 10
profiles in the y direction of pressure (p), density (p), and
temperature (T) normalized by their initial values PN=Pg,0N=Pg, TN=Tg,
and profiles of Vy, and the magnetosonic speed (cj+v})!/? normalized by
Vo at x=3.0a in the saturation stage (t/r=55). At y=10a, those
quantities present clear-cut discontinuities, across which the flow
speed changes from super-fast (Mg=1.09) in the upstream side to sub-
fast (Mg=0.7) in the downstream side, consistent with the shock
condition (Landau and Lifshitz, 1959). Notice that in the present MHD
scheme the dissipation mechanism necessary for the formation of the
fast shock discontinuity 1is provided by the artificial viscosity
implicitly included in the Lax-Wendroff scheme and that introduced
following Lapidus (1967).
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Figure 10. Profiles in the y-direction of pressure (p), density (p),
temperature (T) normalized by their initial values Py, #p,
Ty and profiles of vy and the magnetosonic - speed
normalized by V, for: the  transverse configuration
(Mg=Mp=2.0) at x=30a and T/7=55.

It is obvious in Figure 10 that the initial uniform flow velocity
(vy) 1is perturbed and steepened to form a fast shock discontinuity
where this velocity exceeds the local magnetosonic speed. The maximum
perturbation of v, becomes about 20 % of V,, which is almost
comparable to the maximum velocity in the x-direction of the vortex
motion. Therefore, if we assume (AVy)pay~Vy pax In the saturation
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stage, the condition for the fast shock formation can be simply
written as

1 Vo + (AVyIpay ~ = Vg + Uy pax > ( cd + v} )1/2 (17)

2 2

If we use the fact that vy ;154<0.25 V,, we obtain from the above
equation

Mg > 1.3 (18)

as a rough condition for the fast shock formation. Therefore, for a
fast magnetosonic Mach number less than some critical value, say 1.3,
the acceleration of the initial flow is not expected to be strong
enough to form the fast shock discontinuity.

4.3 Anomalous transport

Let us now investigate anomalous momentum and energy transport by
the instabilities. If we take a spatial average of the y-component of
(2) in the y-direction, we obtain for the two-dimensional case
(3/3z=0) using the periodicity of perturbations in the y-direction

o

%E {pvy> = - %; <pvyvy - > (19)
where the brackets denote the spatial average over the wave period.
From (19) we find that the instability can exert an anomalous
tangential stress <pvyvy-ByBy/#,> on plasma, where the first term is
the hydrodynamic Reynolds stress and the second term is the
hydromagnetic Maxwell (magnetic) stress. In order to calculate the
change of momentum flux in a rectangular volume extending from x=0 to
x=e and surrounded by a unit surface at x=0, we integrate equation
(19) from X=« to X=0 to obtain

3 0
3t [ <pvy> dx = - <puyvy - ByBy/Kgdx=p (20)

This indicates that across the surfact at x=0 (magnetospheric
boundary) there 1is a net transfer of momentum in the y-direction by
the instability, which is equal to the anomalous tangential stress at
Xx=0. In the magnetospheric inertial frame, where the velocity changes
from zero to V,, the net energy flux across velocity shear layer is
given by the tangential stress multipliéd by V,.

We show in Figure 11 anomalous stresses (upper panel) normalized
by povg and velocity shear profiles (lower panel) for the two basic
configurations ; the time evolutions for these cases are shown 1in
Figure 3 and the velocity shear profiles are those at their saturation
stages. For the transverse configuration (Bgylv,) assuming two-
dimensionality where 8/39z=0, i.e., the field line is not allowed to
bend, the Maxwell stress vanishes and only the Reynolds stress at
t/7=30 is plotted (dot-dash curve). The anomalous Reynolds stress
peaks at x=0, and the peak stress becomes 0.006 p,V}, which is 0.6 %
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of the flow momentum flux far from the shear layer. This anomalous
momentum transport by the Reynolds stress leads to a finite diffusion
of momentum shown as a relaxation of the velocity profile from dashed
curve to dot-dash curve in the lower panel. In the parallel
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Figure 11. Spatial averages of vy at t=0 and in the growing phases
(lower panel) for the parallel (Mg=1.0, Mp=2.5) and
transverse (Mg=Mp=2.0) configurations. Spatial averages of
anomalous stresses for the +two configurations. ‘(upper
panel). The hatched area corresponds to the momentum
transport for the transverse case.

configuration, the Maxwell stress (solid curve) at t/t=50 is much
larger than the Reynolds stress (dashed curve), and the Maxwell stress
reaches ~0.5 % of the flow momentum flux at this time far from the
velocity shear layer. Note that the anomalous Maxwell stress is
strongly confined within the region of the velocity shear where the
magnetic field 1line is bent most strongly; this causes a very strong
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relaxation and widening of the initial velocity shear (solid curve in
the lower panel), which in turn leads to dynamo amplification of
magnetic field. Since the net transfered momentum is proportional to
the area between the initial velocity shear profile and the velocity
shear profile at the saturation stage (shown by the hatched area for
the transverse case), it is seen from the lower panel that the
parallel configuration has a larger (about 3 times) momentum transport
than the transverse configuration. This means that the hydromagnetic
Maxwell stress is more efficient than the hydrodynamic Reynolds stress
in the momentum transport. If we define the anomalous viscosity by

Vano = AN' <ByBy/ig = pVyxVy> (d<vy>/dx) 1 (21)

we obtain for the parallel case (Mg=1.0, Mp=2.5) at t/r=50,
Vano=2.6x107%aV, at x=0, which is mainly due to magnetic stress
(magnetic viscosity; Eardley and Lightman, 1978). For the transverse
case (Mg=Mp=2.0) we obtain vyp,=1.2x107%aV, at x=0. t/7=80.

These results suggest that the momentum diffusion process is an
intrinsic feature of the Kelvin-Helmholtz instabilities which in turn
leads to the saturation of the instability. It is interesting to note
that the 1importance of the MHD wave, the Alfvén wave or slow
magnetosonic wave in the compressible case, in increasing the
diffusion rate of the magnetic field has been recognized by Petchek
(1964) and Levy et al., (1964). In the present case, the slow
rarefaction wave contributes to the strong diffusion of momentum or
dissipation of vorticity as was seen in Figure 11.

5. SUMMARY AND DISCUSSION

We have demonstrated by a MHD simulation that the MHD Kelvin-
Helmholtz instabilities leads to finite transport of momentum and
_energy across the magnetospheric boundary. For both parallel and
transverse configurations, important results revealed by the present
simulation may be summarized as follows:

Parallel configuration

(1) For super-Alfvénic and transonic shear flow (M5=1,2.5<MA<4), the
instability leads to the oscillation of the velocity shear layer,
which bends the initially uniform magnetic field. ,

(2) For hyper-Alfvénic shear flow (Mpy>4, Mg=1), the instability leads
to formation of eddies trapped in a large vortex, and the initially
uniform magnetic field is strongly compressed, twisted, and hence
amplified with the amplification factor ~Mp/2 by flow vortices and the
total magnetic energy in the whole calculation domain increases by the
dynamo action §°Q=X'(gx§)<0.

(3) The anomalous momentum and energy fluxes across the velocity shear
layer reach to 2% and 4% of those -of the background flow far from the
shear layer and the initial wvelocity shear is strongly relaxed by
those finite transport.
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Transverse configuration
(1) For a magnetosonic mach number larger than a critical wvalue, the

instability leads to the formation of the fast shock discontinuity
from an initially subfast shear flow due to the acceleration of the
flow velocity by a vortex.

(2) The anomalous momentum and energy fluxes across the velocity shear
layer reach to 1% and 2% of those of the background flow far from the
shear layer. ‘

With regard to the transport of solar wind momentum and energy
into the magnetosphere, it has been said that in order to satisfy the
energy consumption in the magnetosphere, the necessary momentum flux
is 1-2% of the solar wind momentum flux. Therefore, the anomalous
momentum flux by the Kelvin-Helmholtz instabilities seems to well
satisfy the requirement of the viscous-like interaction hypothesis
(Axford and Hines, 1961). For a typical condition at the
magnetospheric boundary, a>pjj and Vo~vyj., where ppj and vyj.are
Larmor radius and thermal speed of typical ions at the boundary, the
observed  anomalous  viscosities wvypy~0.02a V, for the parallel
configuration and vgypy,>0.0la V, for the transverse configuration
become comparable to the Bohm diffusion, which is usually regarded as
the upper bound for the anomalous particle transport in the low-8
pPlasma. For typical parameters at the magnetospheric boundary a=250
km, V,=400 km/sec, these anomalous viscosities also become equal to or
larger than the viscosity calculated by Axford and Hines (1961)
Vano™=10!® cm?/sec to account for the magnetospheric convection with a
reasonable intensity. These results based on a MHD simulation of the
Kelivn-Helmholtz instabilities strongly suggest that the Kelvin-
Helmholtz instabilities play an important role in the transfer of
momentum and energy across the magnetospheric boundary, particularly
when the magnetic stress (viscosity) by the tangled magnetic field
lines is involved in the interaction.
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Table 1. The plasma B at the initial stage, the plasma 8 at the saturation
stage of the instability, and the amplification of the magnetic
field for three different Alfvén mach numbers. )

Table 1

f at the Wg-Wg(t=0)

Ma Initial saturation Bf/Bj —
Wg(t=0)
B stage

2.5 7.5 1.6 8.7 %
5.0 30.0 1.7 26 %
10.0 120.0 2.3 6.0 140 %




