
3. Results

Results in the thesis are presented according to the main division of spatial patterns ,

firstly presenting fi ndings obtained in regular and followed by findings in random and

clustered point populations. Results regarding the measured population of saplings are

presented in a separate chapter. Surveying forests by c-tree sampling gives information

on both the density and spatial pattern of individual trees. On the other hand, the Mean

of Angles method is only applicable to indexing spatial patterns of individual trees.

Since it is known that c-tree sampling yields biased density estimates, with the amount

of a bias being different in populations exhibiting different spatial patterns and different

density estimators, results in the thesis are ordered by firstly presenting spatial pattern

indices and than followed by density estimates. Density estimates are presented by

plotting calculated relative errors:

Relative Error=((estimated density-true density) ×100)/ true density  (7)

50



3.1. Regular spatial patterns

Spatial pattern indices:

Arithmetic mean of 100 measurements (Equation 2) in the regular-triangle point

population (Figure 2.1.a) was approximately  155°and  in the regular-square point

population (Figure 2.1.b) was approximately  139°.  In both populations, all observed

angular values were larger  than 90°.  In the lattice-regular point population (Figure 2.1.d),

the majority of angular values were larger  than 90° and the MoA was approximately

105°.The  MoA may suggest that the regular-triangle point population is departing

greatly from the CSR with a higher state than the regular-square point population or

especially the lattice-regular point population (Figure 3.1.). Frequency of 50 angular

measurements in the lattice-regular point population was not significantly different to

that of the uniform distribution (Kolmogorov-Smirnov test). Increasing the number of

measurements to 100, the Kolmogorov-Smirnov test has revealed a significant

difference in the observed data from that of the theoretically uniform frequency

distribution. In the other hand, arithmetic mean of angles in the rectangular point

population (Figure 2.1.c) was approximately  74°and  that could classify this point

population as a clustered. Examining frequency distribution of angular measurements in

this rectangular point population can also reveal the presence of the regularity in the

distribution of points in plane. The majority of observed measurements was also smaller

than 90° but with absence of measurements being smaller  than 20°(Figure 3.1.).
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Figure 3.1. Cumulative frequency distributions of measured angles in simulated

theoretically most significant regular point spatial patterns

Arithmetic means of measured angles (Equation 2) in the regular-cluster point

population (Figure 2.2.) were nearly equal  to 90°.  Increasing the sample to 200

measurements has revealed the significant difference of the simulated regular-clusters

point population from that of the random point population. However, if using the

Kolmogorov-Smirnov test, the sample size of 100 angular measurements may not be

large enough to significantly differentiate the observed data from the uniform frequency

distribution. Therefore, measuring only the angles may not give us a correct insight into

exhibited spatial pattern in certain populations having regularly distributed trees inside

clusters.

The Lp spatial pattern index, standing alone, may not be sufficient enough to serve

as a measure of the degree of the regularity or clustering. However, it can serve to
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distinguish from regular and clustered populations. In contrary to the use of angles in

indexing spatial patterns, the use of the Lp spatial pattern index regarded the rectangular

point population as a regular. Furthermore, the Lp spatial pattern index has indexed the

regular-clusters point population to as the clustered (Figure 3.2.).

Figure 3.2. Spatial pattern indices in regular point populations by the use of the Lp

spatial pattern index

Density estimates.

The (c-0.5) estimator (Equation 4) and the GM estimator (Equation 6) have

produced very proximate density estimates at the regular-triangle and the regular-square

point population. The (c-1) estimator (Equation 3) and the Pollard estimator (Equation

5) tends to produce biased density estimates; the (c-1) estimator tends to underestimate

while the Pollard estimator tends to overestimate the true density (Figure 3.3.).
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Figure 3.3. Relative errors of density estimates with c-tree sampling at the

regular-square point population

The observed relative error with the Pollard estimator when applying the 5-tree

sampling procedure was insignificant in this regular-square point population (Figure

3.3.) but it overestimated the true density of the regular-triangle point population for

approximately 5 percent. When applying 3-tree sampling, the (c-0.5) estimator has

produced a very accurate density estimate in this regular-square point population

(Figure 3.3.) but that was not the case in the regular-triangle point population where it

overestimated the true density for approximately 15 percent. It is important to

emphasize that applying any of evaluated estimators, the increase in the c value tend to

produce density estimates with a smaller amount of a relative error. At the

regular-triangle and the regular-square point population, the (c-0.5) estimator or the GM

estimator was the most reliable producing smaller relative errors than being compared to

the (c-1) estimator or the Pollard estimator.

At the lattice-regular point population (Figure 2.1.d), the Pollard estimator and the
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(c-1)estimator have produced density estimates following the same trend as in the

regular-triangle and regular-square point populations. In this poilt population, it is

important to emphasize different trends in density estimates with the(c-0.5)estimator

and the GM estimator. The(c-0.5)estimator tends to highly overestimate density of

lattice-regular point populations and that was largely exhibited when applying small c

values. In　the lattice-regular point population, obtained density estimates with the GM

estimator were the most accurate among other evaluated estimators for c-tree sampling.

Observed relative errors with the GM estimator applying c≧5were not noticeable

(Figure 3.4-)and it performed unbiased properties at the lattice-regular point populatiorL

Figure　 3.4. Relative errors ofdensity estimates with c-tree sampling at the

lattice-regular point population

The trend exhibited in regular-triangle, regular-square and lattice-regular point 

populations did not applied for the rectangular point population (Figure  2.1.c). Spatial

pattern indices have shown that the rectangular point population is a special case of

populations having regularly distributed points and it can also be regarded as a clustered
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population composed by linearly distributed clusters. Here as well, increase in the c

value tends to reduce the bias. The (c-1) estimator overestimated the true density with

2-tree, 3-tree and 4-tree sampling. However, when applying these small c values, the

(c-1) estimator has produced the smaller amount of relative errors observed in this

rectangular point population. For the same applied small c values, other evaluated

estimators tend to produce greater relative errors, highly overestimating the true density

(Figure 3.5.).

Figure 3.5. Relative errors of density estimates with c-tree sampling at the rectangular

point population

The regular-clusters point population (Figure 2.2.) is also a special case where a

particular caution needs to be considered when obtaining density estimates with c-tree

sampling. In this point population, the GM estimator was the most efficient; the GM

estimator produced a smaller amount of a relative error when applying 2-tree, 3-tree,

4-tree and 5-tree sampling. Applying larger c values, the (c-1) estimator produced the

most accurate density estimates; the true density was underestimated by less than 1%
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(Figure 3.6.).

Figure 3.6. Relative errors of density estimates with c-tree sampling at the

regular-clusters point population
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3.2. Random spatial patterns

Spatial pattern indices:

The MoA in the simulated random population from 500 random sampling points

nearly equaled 90°and the frequency of angular measurements was not significantly

different from that of the uniform distribution (Kolmogorov-Smirnov test; p=n.s.).

This was taken as a confirmation of a spatial randomness. This also suggested that the

use of random number generators is applicable in producing spatially random point

populations. In all simulated random point populations, regardless of the relative density,

the Mean of Angles method has proved applicable in revealing a spatial randomness.

The Lp spatial pattern index has also proved applicable in revealing the spatial

randomness. In the presented random point population, applying 500 measurements, the

Lp spatial pattern index was highly reliable in revealing spatial randomness, regardless

of the applied c value and for c≧2(Figure 3.7.).

Figure 3.7. Spatial pattern indices in the random point population by the use of the Lp
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spatial pattern index

Density estimates:

In the simulated random point population, measuring distances from 500 random

sampling points, relative errors observed with the (c-1) estimator, the GM estimator as

well as in the Pollard estimator can be regarded as insignificant with  C≧5  sampling;  C≧

5 sampling tended to underestimate the tme density of the random population by

approximately 2%.  The(c-0.5)estimator produced heavily biased density estimates,

highly overestimating the true density. The (c-1) estimator applying smaller c values

produced significantly higher relative errors of density estimates;  C=3  sampling

underestimated the true density by  7.1% and c=2  sampling underestimated the true

density by 13.2%.  The GM estimator was also more accurate than the (c-1) estimator,

and for applied small c values. The Pollard estimator, thought to be unbiased in random

populations, here underestimated the true density but the bias was constant and nearly

equal for all applied c values. That makes the Pollard estimator preferable for the use in

random populations (Figure 3.8.). It has to be emphasized that the same trend was

observed in other simulated random point populations having different relative density.
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Figure 3.8. Relative errors of density estimates with c-tree sampling at the random

point population

The c-tree sampling method yields variable circular plot areas or distances (circular

plot radiuses) in a statistically continuous measurement scale. Frequency distributions

of variable circular plot samples (squared plot radiuses) in random point populations

were not significantly different from the gamma frequency distribution

(Kolmogorov-Smirnov test of observed data sets for  C≧2  sampling;P=n. s.).

Frequency distributions of variable circular plot samples applying  C≧5  sampling were

also not significantly different from the normal frequency distribution

(Kolmogorov-Smirnov test; p=n.s.).  Therefore, according to the produced density

estimates at the random point population (Figure 3.8.), it is likely that (c-1) estimator,

GM estimator and the Pollard estimator are all applicable if frequency distributions of

variable circular plot samples (squared plot radiuses) fit the normal frequency

distribution. The variance of density estimates in random populations for  C≧5  sampling

can be assessed by the standard deviation involved in the normal frequency distribution.
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On the other hand, moments involved in the gamma frequency distribution need to be

assessed (Kumar 2006).

Also interesting finding is that frequency distributions of variable plot radiuses in

measured random populations and applying  c≧2  sampling were not significantly

different from the normal frequency distribution (Kolmogorov-Smirnov test; P=n.s.).

This clearly explains the applicability of the Pollard estimator , and its smaller variance

ofdensity estimates, in populations consisted of randomly distributed individuals since

it accounts fbr measured distances rather than variable plot areas .
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3.3. Clustered spatial patterns

Spatial pattern indices:

As expected, the majority of angular values in the Matern-clustered point population

(Figure 2.4.) were smaller than 90゜. Arithmetic mean, approximately amounting to 13゜,

may regard this clustered point population as highly departed from the CSR in the

direction of clustering  (Figure 3.9).

Similarly to results obtained from the simulated Matern-clustered point

population, the Mean of Angles method revealed clustering in point populations

simulated by the Gap-process. At the 10mGAP point population  (Figure 2.5.) the MoA＝

80゜ , at the 20mGAP point population  (Figure 2.6.) the MoA＝50゜ and at the 30mGAP

point population  (Figure 2.7.) the MoA＝20゜.  Therefore, we can regard the 10mGAP,

the 20mGAP and the 30mGAP point populations as point populations having clustered

spatial patterns. Furthermore, according to the MoA (Equation 6), clustering involved in

the 30mGAP point population can be regarded as higher than that involved in the

20mGAP or in the 10mGAP point population  (Figure 3.9.).
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Figure 3.9. Cumulative frequency distributions of measured angles in simulated

clustered point spatial patterns

The Lp spatial pattern index has also proved applicable in revealing spatial

clustering. However, its use in indexing clustered spatial patterns was questionable. That

was particularly exhibited in indexing clustered populations simulated by the

Gap-process, where the 20mGAP population was indexed as the most highly departed

population from randomness. In particular, applying c values smaller than 10 has regard

the 30mGAP population as a population being less clustered than the 20mGAP

population. Furthermore, simulated Matern-clustered point population was assigned

with indexes being less departed from the random spatial pattern than point populations

simulated by the Gap-process (Figure 3.10.).

63



Figure 3.10. Spatial pattern indices in clustered point populations by the use of the Lp

spatial pattern index

Density estimates:

The c-tree sampling method produced highly unreliable density estimates at the

simulated Matern-clustered point population regardless of density estimator applied. In

particular, density estimates with c=2 sampling have produced extremely high relative

errors; the (c-1) estimator overestimated the true density by 135.8%, the (c-0.5)

estimator by 253.7%. With c=2 sampling, the GM estimator was the most accurate

and overestimated the true density by 13.6% while the Pollard estimator

underestimated the true density by 15.2%.

The (c-0.5) estimator with c=3, c=5, c=7 and c=9 sampling has produced

relatively accurate density estimates at this Matern-clustered point population.

Relatively high errors produced by the (c-1) estimator tend to reduce with the increase

in c value, where an approaching trend to the true density was observed  (Figure 3.11.).

That can be explained by the regular nature of the simulated Matern-clustered point
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population (each of clusters containing two points) as well as exhibited frequency

distributions of the distances (plot radiuses) and variable circular plot areas involved in

c-tree sampling. The distances (plot-radiuses) in this simulated point population fitted

the normal frequency distribution  (c≧2)  but the distribution of variable circular plot

areas was significantly different from it. Observed variable circular plot areas with the c

=2 sampling procedure well fitted the exponential frequency distribution , being the

reason of produced highly biased density estimates with the (c-1) estimator and the

(c-0.5) estimator. Sampling procedures applying  c≧3  produced variable circular plot

areas well fitting the gamma frequency distribution (Kolmogorov-Smirnov test; p=n.s.).

It is also likely that increase in the c value would produce variable circular plot areas

fitting the normal frequency distribution and, theoretically, produce less biased density

estimates with c-tree sampling.

Figure 3.11. Relative errors of density estimates with c-tree sampling at the

Matern-clustered point population
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At simulated clustered point populations applying the Gap-process, the true density

in the 10mGAP population was 736.8 points/ha, in the 20mGAP it was 293.2 points/ha

and in the 30mGAP, 65.6 points/ha. The Pollard estimator as well as the GM estimator

tends to grossly underestimate while the (c-0.5) estimator overestimated the true

density similarly like in here presented results obtained in 30mGAP point population

(Figure 3.12.).

Figure 3.12. Relative errors of density estimates with the (c-0.5) estimator, the GM

estimator and the Pollard estimator at the 30mGAP point population

The (c-1) estimator, when applying small c values like c=2 or c=3 sampling, has

produced density estimates with the smaller amount of relative error when compared to

other evaluated estimators. In the simulated 10mGAP population and measuring

distances from 500 random sampling points, c=3 sampling was the most accurate

underestimating the true density by only 1.7%. The c=2 sampling procedure

underestimated the true density by 10.0%, and c=4 sampling overestimated the true
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density by 1.8%, while  c≧5  sampling overestimated the true density by approximately

5% (Figure 3.13.). In simulated 20mGAP population the c=2 sampling procedure was

the most accurate, underestimating the true density by only 3.1%. The c=3 sampling

procedure overestimated the true density by 5.1%. The amount of bias tended to

increase with the increase in the c value and it was higher with c=10 sampling where

the true density was overestimated by 21.5% (Figure 3.13.). In the simulated 30mGAP

population, measuring distances from 500 random sampling points, the c=2 sampling

procedure was also the most accurate but here it overestimated the true density by 5.0%.

In a similar way to the density estimates obtained in the simulated 20mGAP population,

the bias in the simulated 30mGAP population tended to increase with the increase in the

c value. The size of the bias was highest when applying the c=10 sampling procedure,

where the true density was overestimated by 31.0% (Figure 3.13.).

Figure 3.13. Relative errors of density estimates with the (c-1) estimator in clustered

point populations created by the Gap-process
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In the highly clustered 30mGAP population, and when applying  c≧5  sampling,

observed frequency distributions of samples were not significantly different from the

exponential frequency distribution  (Kolmogorov-Smirnov test;p=n.s.).  Observed

frequency distributions in clustered populations when setting small c values, such as  C=

2 or c=3,  seems to follow the Pareto principle; the Pareto principle states that 20% of

the population would hold approximately 80% of the sample wealth.  The c=2 or c=3

sampling procedures also tend to produce smaller bias in clustered populations than

setting some higher c values (Figure 3.13.). Observed frequency distributions are

characterized by a long tail, which also characterizes the Pareto frequency distribution.

However, our observed data sets were significantly different from that of the Pareto

frequency distribution (Kolmogorov-Smirnov test;  p<0.01),  which is usually

characterized by a much longer tail. Observed frequency distributions in these simulated

clustered point populations fitted the generalized Pareto frequency distribution (for

example, Choulakian and Stephens 2001). Estimating the variance involved in the

generalized Pareto distribution, defined by the function  F(x)=1-(1-kx/б)1/k  where б

is a positive scale parameter and k is a shape parameter, is influenced by the accuracy of

estimated parameter values and the method used; the variance reported by Choulakian

and Stephens (2001) is s2=б2/{(1+k)2(1+2k)}.  Furthermore,  k=0  yields the exponential

distribution,  k=1  yields the uniform distribution and  k<0  yields the Pareto distribution.

This suggests that the shape parameter should be accurately estimated which may not be

feasible in all theoretical cases (Luceno 2006).

Using the bootstrap statistical technique, estimating density for 100 times by a

randomization of variables, have shown that applying smaller c values has produced a

higher variance. The reduction of the variance can be achieved by increasing the sample.

The variance involved in highly clustered populations was also likely to be higher that

that involved in moderately clustered populations (Table 3.1.).
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Table 3.1. The variance of density estimates per hectare in simulated clustered point

populations obtained by the bootstrap for c=2 and c=10 sampling. Each value of the

squared root variance* is obtained from 100 density estimates; where λi is the ith density

estimate with the (c-1) estimator (Equation 3) and m is a number of density estimates

and here equals to 100.

*Sq .r.Variance=√s2; s2=[mΣi=1(λ
i-λ)2/(m-1)
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3.4. Study case of naturally regenerated Chamaecyparis spp. saplings

Spatial pattern indices.

Arithmetic mean of angles measured from randomly distributed 500 sampling points

amounts to  60.4° and systematically distributed 115 sampling points amounts to  65.3°.

Those indicate that saplings in a measured forest stand exhibited moderately clustered

pattern. Observing frequency distribution of measured angles may also indicate a

presence of regularity or randomness in certain parts of the forest stand. However,

clustering prevails in this population (Figure 3.14.).

Figure 3.14.  Frequency distribution of 500 measured angles from randomly distributed

sampling points at the saplings population

The Lp spatial pattern index has also revealed spatial clustering of saplings, either

accounting for measurements from 500 randomly distributed sampling points (Figure
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3.15.) or from systematically distributed sampling points. The Lp spatial pattern index

when applying c=2 sampling from 115 systematically distributed sampling points was

2.5. When measuring distances from 99 systematically distributed sampling points, the

Lp spatial pattern index with c=3 sampling was 2.8 while with c=4 sampling it was

3.3.

Figure 3.15. Spatial pattern indices in the saplings populations by the use of the Lp

spatial pattern index randomly distributing 500 sampling points

Density estimates:

The Pollard estimator as well as the GM estimator grossly underestimated the true

density of the saplings population; either applying random (Figure 3.16.) or systematical

sampling procedure (Figure 3.17.). Applying the random sampling procedure, the (c-1)

estimator was the most accurate when compared to the other evaluated density

estimators. Observed relative errors of density estimates with the (c-1) estimator at the

saplings population (Figure 3.16.) were proximate to those obtained in moderately
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clustered point populations created by the Gap-process (Figure 3.13.) Here as well, c=

2sampling underestimated the true density (Relative Error=-10.9 %), c=3 sampling

slightly overestimated the true density (Relative Error=2.7 %) while c=4 sampling

(Relative Error=11.0 %)  has significantly overestimated the true density (Figure 3.16.).

Figure 3.16. Relative errors of density estimates with c-tree sampling from 500

randomly distributed sampling points at the saplings point population

Applying the systematical sampling procedure, the (c-0.5) estimator overestimated

the true density with c=2 and c=3 sampling while the c=4 sampling procedure

produced very close estimate to the true density. The (c-1) estimator underestimated the

true density and the density estimate with c=3 sampling was the most accurate.

Applying c=2 sampling, the (c-1) estimator has also produced the most accurate

estimate of density compared to other evaluated density estimators (Figure 3.17.).

72



Figure 3.17. Relative errors of density estimates with c-tree sampling from

systematically distributed sampling points at the saplings point population

Applying c-tree sampling along a systematical sampling design has also a greater

potential that a simple random sampling design in stratifying populations of interest. In

particular, stratifying the saplings population by its relative density was highly practical

with c=2 sampling (Figure 3.18.).
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Figure 3.18. Distribution of distances with 2-tree sampling from systematically

distributed sampling points at the saplings population

Fixed-area plot sampling applying circular plots  having 1 m and 2 m radii have

underestimated the true density of saplings, either from randomly or systematically

distributed sampling points. Applying random sampling and 500 plots, only 70 saplings

were counted on 1 m radii circular fixed-area sampling plots and the true density was

grossly underestimated by 16.7%. The 2 m radii circular fixed-area plot sampling

design enumerated 315 saplings in total and it was more accurate, underestimating the

true density by 6.2%. Both fixed-area plot sampling designs applying the systematical
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sampling procedure, using circular plots of 1m (Figure 3.19.) and 2m (Figure 3.20.)

radii, grossly underestimated the true density. Estimated density on 115 systematically

distributed 1 m radii circular fixed-area plots was 359.8, underestimating the true

density by 40.4%. Estimated density on ll s systematically distributed2m radii

circular fixed-area plots was 422.1,underestimating the true density by 30.1% .

Figure 3.19. Tree counts on 1 m radii circular fixed-area plots
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Figure 3.20. Tree counts on 2 m radii circular fixed-area plots

The sample of distances measured from 500 randomly distributed sampling points

was not significantly different to the gamma frequency distribution while variable plot

areas (squared radiuses) fitted the generalized Pareto distribution. Observed frequency

distributions of 115 variable circular plot area samples with c=2 sampling and

observed frequency distributions of 99 variable circular plot area samples with c=3 and

c=4 sampling respectively were not significantly different from the exponential

frequency distribution (Kolmogorov-Smirnov test; p=n.s.). On the other hand,

measured distances (plot radiuses) were not significantly different from the normal

frequency distribution (Kolmogorov-Smirnov test; p=n.s.).

Using the bootstrap statistical technique, estimating density for 100 times by a

randomization of variables being obtained by conducting systematical sampling, have

shown that increasing the sample size leads to the reduction of the variance. However,
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observed variance in 100 density estimates with c=3 sampling was even greater than

that performed by the c=2 sampling procedure (Table 3.2.).

Table 3.2. The variance of density estimates per hectare with the (c-1) estimator in the

saplings population obtained by the bootstrap of variables; c=2, c=3 and c=4

sampling from systematically distributed sampling points.

* True density=603 .7 sapljngs/ha

** True density=690 .1 sapljngs/ha

Estimating density for 100 times by a randomization of variables has also shown

that the variance of density estimates with the use of fixed-area plot sampling can be

reduced by increasing the sample size (Table 3.3.). Systematically distributing 30

circular fixed-area plots having 1m radii,8% of samples did not spot any sapling sized

from 1.5 to 5.0 meters in height in this forest stand. However, that was not the case

when increasing the sample to 50 or more or when applying circular fixed-area plots

having 2 m radii and for the sample sized to 30 or more.
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Table 3.3. The variance of density estimates per hectare with the 1m and 2m radii

circular fixed-area plot sampling in the saplings population obtained by the bootstrap of

variables taken from systematically distributed sampling points.

* True density=603 .7 saplings/ha

Systematically distributing 115 circular fixed-area plots having 1m radii, only 13

saplings were counted in total. The total number of saplings being included in the

sample of 115 circular fixed-area plots having 2 m radii was 61. Average number of

counted saplings on 1m and 2m radii circular fixed-area plot samples, being obtained

by the bootstrap from 100 estimates of density (Table 3.4.), was relatively low.

Table 3.4. The mean count of saplings on 1m and 2m radii circular fixed-area plot

samples; 100 estimates obtained by the bootstrap of variables taken from systematically

distributed sampling points.
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4. Discussion

4.1. Spatial patterns of trees

Trees in forests can exhibit a large variety of spatial distributions. It is rather

difficult task to accurately mimic all feasible varieties in spatial distributions of trees in

forests or to easily assess them all. Particularly that is difficult in naturally regenerated

or in largely disturbed forests. In many cases, trees may not be uniformly distributed or

spatial patterns and relative densities of trees can differ according to sizes of the trees ,

ecological properties of tree species, species compositions, respective forest types, scale,

terrain conditions and many other factors.

The difficulty to indexing spatial patterns of trees is further increased by the fact that

spatial patterns of certain forest stands can exhibit both regular and clustered properties ,

such as the case in the rectangular population (Figure 2.1.). Forest plantations are

usually established by planting trees in regular spacing. It is usually preferred to

maintaining regular spatial patterns in order to increase benefits yielded from a timber.

Such planting practices, with later on thinning, are projected to minimize unnecessary

competition between neighboring trees. Maintaining a regular spatial distribution of

planted trees in forest stands throughout their maturing gives an equal amount of

available light to each individual tree and that is likely to maximize a yield in a most

wanted and a highly priced timber. It is shown that a disturbance, such as harvest or a

natural disaster, can lead to spatial distribution of trees exhibiting clustering . That is

feasible also in forest plantations and foresters should be concerned to reducing such

events which highly drives spatial patterns toward clustering.

Supplemental planting inside naturally regenerated forests, being as well conducted

in regular spacing, is also often aimed to accelerate a natural process which drives a
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change in spatial distributions of trees toward regularity. Supplemental planting is also

aimed to mitigate disturbances, either artificially or naturally caused, and prevent

growth of unwanted species. In such cases, along to assessing relative density of

naturally regenerated juvenile trees, it is also necessary to indexing their spatial patterns.

In some naturally regenerated stands, seeds can be randomly dispersed under the

mother-trees' cover. Spatial patterns of mother-trees, influence of a wind , water, gravity,

animals and possibly other factors or combination of these factors can also lead to some

form of dispersed seed pattern exhibiting properties of clustering (Bigwood and Inouye ,

1988). Spatial distribution of germinated seeds can greatly depend on relief and other

site conditions or it can be influenced by grazing or pathogens and succeeded naturally

regenerated trees can exhibit highly variable spatial pattern distributions. Naturally

regenerated juvenile trees are likely to exhibiting clustered spatial patterns; clusters

being irregular in size and shape. As trees grow, it is widely accepted opinion that a

competition between individual trees drives their distribution toward regular spatial

pattern (Moeur 1993). That is a slow process but large sized trees in naturally

regenerated forests can exhibit regularity in their spatial pattern (Ishibashi et al. 1989).

The process is also likely to last longer in the case of larger disturbances which can

increase the degree of clustering.

Here proposed the "Gap-process" can be used to simulate clustered spatial patterns

and it attempts to mimic disturbances in forests. In ecological terms, the Gap-process

can be seen as a disturbance; artificial (for example harvest) or natural (for example

damage caused by strong winds, forest fires etc.). Similar to the Gibbs process (Stoyan

and Stoyan, 1994), a host point population, as a starting point in creating clustered

populations by the Gap-process, can be not only the random point population as

presented in the thesis but also any other point spatial pattern. A host point population,

which could be either regular, clustered or some combined pattern, could potentially
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mimic a spatial pattern of trees before the disturbances while changing patterns and

intensity of disturbances can lead into different spatial patterns. Taking into example

presented point populations clustered by the Gap-process, the increase in the plot area as

well as the increase in the number of plots is likely to increase the level of clustering

until the great majority of points are erased.
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4.2. Spatial pattern indices

Among large number of methods being proposed in the past for the use in indexing

spatial patterns of trees, c-tree sampling and the Mean of Angles method are particularly

suitable. Both are based on measurements from sampling points, positions of trees do

not need to be mapped and required measurements are simple to obtain.

Both the Mean of Angles and the Lp spatial pattern index can serve to testing

whether the trees in forests are distributed randomly or not. For a purpose of testing a

spatial randomness, statistical power involved in the Mean of Angles method may not

be as high as that involved in the Lp spatial pattern index. For example, the Lp spatial

pattern index may not require a large sample to reveal a significant difference between

lattice-regular point population and a population following a complete spatial

randomness. The Lp spatial pattern index has also performed a high statistical power in

revealing clustering being exhibited in the regular-clusters point population (Figure 3.2.).

The Mean of Angles method may need a relatively large sample in order to reveal a

difference between regular-clusters point population from the theoretically random

population. Moreover, distinguishing between lattice-regular and random populations

by the use of the Mean of Angles method may also require obtaining a relatively large

sample.

The use of c-tree sampling in testing randomness is also burden by the variance as it

is its use in estimating a density of trees. However, that shall not pose any constraints

for the use of c-tree sampling and the Lp spatial pattern index in testing whether trees in

forests are distributed at random or exhibiting some form of regular or clustered spatial

pattern. The Lp (Equation 5) value being not significantly different to 1 could suggest

that the trees in forest are distributed at random. We need to bear in mind that increase

in the number of measurements would give us a higher confidence. Results of the study
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have shown that the Lp spatial pattern index can serve to distinguish between regular

and clustered populations. The Lp spatial pattern index was also reliable in revealing a

spatial randomness and for any applied c value larger or equal to two (Figure 3.7.).

However, being proposed by Liu (2001) to serve as a measure of the degree of

regularity or clustering, this study have shown that it can not be completely relied on

indices provided only by using the Lp spatial pattern index. In particular , the Lp spatial

pattern index could not reveal a presence of clustering in the rectangular point

population nor it could be reliable enough to serve as a measure of the degree of

regularity or clustering (Figure 3.2., Figure 3.10.).

It may not be much important in forestry and in forest research to assessing whether

trees in forests are distributed at random or not. It is much important to indexing the

degree of regularity or clustering of trees in forest stands. The Mean of Angles method

has revealed a presence of clustering at the rectangular point population and it has

proved reliable in indexing the degree of regularity (Figure 3.1.) or clustering (Figure

3.9.). Its ability to distinguishing between moderately and highly clustered point

populations (Figure 3.9.) also holds a great practical value. According to the results, the

MoA (Equation 6) can serve as a practical index of the degree of regularity or clustering.

However, it can not be completely relied on it in describing all feasible spatial pattern

distributions of trees in forests unless taking relatively large sample of angles and

examining their frequency distributions. This later constraint is shown by the

rectangular (Figure 2.1.) or the regular-clusters point population (Figure 2.2.).

The rectangular and the regular-clusters point populations are emphasized in the

thesis because the practice of planning roads or timber extraction routes in forest

plantations can form clusters where each cluster can be composed by trees being planted

at regular spacing. For example, the rectangular point population is a population

consisted of regularly distributed points in a plane, but it also can be considered as a
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population consisted of regularly distributed linear clusters. In this point population, the

Lp spatial pattern index as well as the arithmetic mean of angles were both correct and in

spite of their completely different indices; the Lp spatial pattern index has indicated the

rectangular point population as a regular while the arithmetic mean of angles to as a

clustered. Moreover, the Lp spatial pattern index has revealed a presence of clustering in

the regular-clusters point population (Figure 3.2.). Therefore, the use of the Mean of

Angles method along with the Lp spatial pattern index can give us a further insight

regarding a spatial distribution of individual trees.
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4.3. C-tree sampling density estimators

The two main statistical approaches can be applied to estimate a relative density of

trees with the use of c-tree sampling. The first consider relation between the tree density

and distances measured from sampling points to constant number of nearest trees;

longer distances would imply a lower tree density. The second approach considering

that circular plots are statistical variables along to setting assumptions about an average

number of trees being included in sampled areas.

The first approach is widely acknowledged in the past as the least-variable (Picard et

al. 2005) but its statistical advantage in estimating the tree density is only in the case if

the trees in measured forests are distributed at random (Pollard 1971). Otherwise it can

produce large bias in estimating the density of trees, with the bias largely driven by

spatial pattern distributions of trees. Its practical use is limited to the only case of

uniformly random populations and when distances (plot radiuses) as well as variable

circular plot areas fitting the normal frequency distribution. In other cases, observed

frequency distributions of distances or variable circular plots different than the normal

frequency distribution could induce a presence of a relatively large bias in density

estimates. It can be claimed that forest stands with the trees exhibiting a spatial

randomness do not represent a significantly large share of the World Forest. Therefore,

density estimators such as the Pollard estimator hold almost only a theoretical value.

Picard et al. (2005) have proposed an approach to estimating density of trees

exhibiting clustering by firstly assessing the density of individual clusters and further

multiplying it to an average number of trees inside those clusters. Picard et al. (2005)

suggested that such an approach could be used to estimating density of coppice forests

and in the case if the clusters are distributed at random. In such a case, the density of

clusters formed by the sprouts can be assessed by the use of c-tree sampling and it can
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be further multiplied with an average number of stems inside the clusters. Such

information can again be biased as it requires investigating spatial pattern distributions

of clusters, since it can not be assumed that the clusters are randomly distributed over

the coppice forest area. However, that is still an interesting approach for the use in

coppice forests where a high precision of estimates is usually not required in a practical

forestry. In the case when a spatial distribution of clusters exhibits regularity or even

possibly clustering, it is feasible to using a more appropriate density estimator such as

the GM estimator or the (c-1) estimator. However, such an approach proposed by Picard

et al. (2005) is clearly not practical in forests being regenerated from naturally dispersed

seeds where defining individual clusters being irregular in size and shape can pose a

great difficulty.

Merits of using the second approach which considers averaging variable circular

plots is often argued by statisticians because of its higher variance involved; a sample of

variable circular plot areas would much vary when compared to the sample of distances

taken from the same population. However, in spite of a larger variance, these density

estimators may not involve as large bias of density estimates as the approach which

accounts for the distances. Increasing a sample size would reduce a variance and that

would not pose a risk to increase a bias when using these density estimators. The use of

this statistical approach is particularly emphasized in populations exhibiting a regular

spatial pattern since here the variation in circular plots is not significantly high. In such

cases, when spatial patterns are indexed by both Lp spatial pattern index and Mean of

Angles to as a regular, the GM estimator can increase a reliability of density estimates.

It is important to emphasize that the increase  in a c value when using c-tree

sampling density estimators in regular and random populations would reduce an amount

of a bias. That would also result into reduced variance in density estimates and thus the

reliability of estimates would be higher. However, instead of increasing the c value what
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is likely to make surveys much difficult, with applying the Pollard estimator in random

and the GM estimator in regular populations it may not be necessary to increase the  c

value to more than three. Of course, that depends upon objectives of surveys, sample

size and a required precision of density estimates.

The (c-1) estimator, being originally proposed by Eberhardt (1967), accounts for

variable circular plot areas and the results of the thesis have demonstrated its

applicability to assessing a relative density of random or clustered populations. The

results have shown that the use of the (c-1) estimator is particularly applicable in

estimating relative density of clustered populations such are populations of naturally

regenerated juvenile trees.

According to the results, in populations exhibiting random spatial patterns and

applying  c≦4  sampling, the variable circular plots fitted the gamma frequency

distribution and not the normal frequency distribution and the true density is likely to be

underestimated. It is also clear that the bias involved in the (c-1) estimator will be

relatively small, and density estimates can be regarded as reliable, if observed variable

circular plots fit the normal frequency distribution. That is certain when  setting c≧5 in

random populations (Figure 3.8.) and that clearly explains findings of Lessard et al.

(1994) regarding the applicability of the (c-1) estimator in forests having nearly random

distribution of individual trees in forests.

Eberhardt (1967) also proposed that the (c-1) estimator can be used in forests where

the distribution of counted trees on fixed-area plot samples yields the negative binomial

frequency distribution; fixed-area plot sampling producing a counts of trees fitting the

negative binomial frequency distribution usually indicate a clustered spatial pattern.

Eberhardt (1967) suggested that increase in the  c  value would give more reliable

estimates of density in clustered populations and result to a reduced variance of density

estimates. The results of this study have confirmed that the (c-1) estimator is a robust
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density estimator and it can be used in populations exhibiting random or clustered

spatial patterns. However, applying small c values such as c = 2 in highly clustered or c

= 3 sampling in moderately clustered populations could be a more appropriate sampling

procedure than applying some higher c values. That was certain in point populations

clustered by the Gap-process in randomly distributed host population (Figure 3.13.) as

well as in the saplings population (Figure 3.16.) but not in the Matern-clustered point

population. The answer to the applicability of c-tree sampling and the (c-1) estimator in

the clustered populations lies in the exhibited frequency distributions of variable

circular plot areas (squared plot radiuses). In the Matern-clustered point population ,

distributions of variable circular plot areas fitted the exponential frequency distribution

or the gamma frequency distribution. According to the results obtained from the other

clustered populations, it is likely that observed frequency distributions being not

significantly different from the exponential frequency distribution would also hold with

the higher bias in density estimates with the (c-1) estimator. Applying the smallest

applicable c value was the most appropriate sampling procedure because it holds a

highest probability that variable circular plot areas would fit the generalized Pareto

frequency distribution.

The distribution of variable circular plot areas in simulated clustered point

populations, being uniform in structure, is likely to change with the increase in the c

value. The change in the distribution is likely to starting from the generalized Pareto

frequency distribution for the small c values through the exponential frequency

distribution and the gamma frequency distribution to the normal frequency distribution

for the large c values. However, to yield the normal frequency distribution in clustered

populations may require increasing the c value to infinity and thus it is clearly

impractical. At least that is impractical in a field surveys and using a conventional field

surveying equipment.
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4.4. Forest regeneration surveys

In most of forest regeneration surveys which attempts assessing relative density of

juvenile trees, assessing relative density of trees by the use of fixed-area plot sampling

requires setting a size of plots prior to conducting the survey. Setting a size of plots is a

difficult decision to make as even a small increase in a plot size can largely influence

later on efforts in the field. The usual practice in forest regeneration surveys is to setting

relatively small sized plots, what is irrefutably very fast surveying approach. The

conventional approach of counting juvenile trees on small sized plots is much faster

than c-tree sampling which requires conducting a search for nearest trees from each

sampling point. However, setting a plot size to some small value is likely to fail in

statistically representing populations of interest unless a sample size is large enough.

Setting a plot size to some small value may also induce that a majority of plots would

contain no trees to count and it was shown that such a sampling design may also

indicate an absence of saplings at the forest stand in the Kiso area. It was also shown

that setting a plot size to some large value may not be practically justified; for example,

setting a plot size to 0.04 ha would require an average count of 26.9 saplings per plot or

that could even require a count of as much as 171 saplings per plot at the forest stand in

Kiso area. On the other hand, fixed-area plot sampling is an unbiased approach to assess

relative density or other forest or forest stand parameters. It is likely that the increase of

the sample size, and applying the random sampling procedure, would produce unbiased

density estimates on the forest or forest stand level.

Results of this study have shown that c-tree sampling can produce reliable estimates

of density of trees in forests and that is at least applicable in forest regeneration surveys

where a relatively small bias can be neglected in obtained estimates of a tree density. It

is shown above that the bias can be effectively reduced if indexing spatial pattern
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distributions of trees, stratifying forest area and choosing an appropriate density

estimator. Several new findings regarding the use of c-tree sampling in estimating

density of trees in clustered populations are probably the most significant contribution

of the thesis. These findings defend a c-tree sampling approach , being widely regarded

to as unreliable, and promote its use in forest regeneration surveys .

Indexing spatial pattern distributions of individual trees plays a crucial role to the

choice of an appropriate density estimator. The Lp spatial pattern index (Lin 2001) was

derived for the c-tree sampling procedure and thus measuring distances, or defining

variable plot areas, can also serve in assessing information regarding a relative density

of trees in forests. Moreover, measuring distances, applying c-tree sampling, can serve

in assessing specific relative densities of juvenile trees , being more site-specific than

estimates on the forest stand level. Those can serve to delineate more specific areas of

forest stands with no regeneration occurred , with moderate density to those having

abundant number of juvenile trees. Furthermore, measurements of distances do not need

to be performed with high precision to bring a practical value to a collected data being

presented in a form of maps (Figure 3.18.). In cases where remote sensing can not detect

juvenile trees, forest stand area can be stratified by the use of these distances and those

can give a higher confidence than the use of small-sized fixed-area plots (Figure 3 .19.).

The use of the Mean of Angles method have a potential to increase a reliability of

density estimates and give a more reliable insight into the degree of regularity or

clustering. However, in cases when a cost of forest regeneration surveys is crucial, the

angles do not necessarily need to be measured. Even if measuring the angles is a very

fast procedure, its introduction to forest regeneration surveys would add an additional

cost. Therefore, its use can be limited to only surveying highly priced forest resources

where obtaining much reliable information can be economically justified. In such cases,

other sources of information could be also considered such as the use of fixed-area plots ,
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separating areas being not regenerated from those with abundant number of juvenile

trees. Fixed-area plot sampling can also be used in stratifying forest stand areas (Figure

Along to easier search for systematically distributed sampling points in the field,

systematical sampling designs are also practical in stratifying forest area; for example,

since it can statistically better represent measured populations. However, systematical

sampling designs can be preferred procedures for practical applications in forestry.

hold a great potential to benefit a management of any particular forest resource.

Random sampling is theoretically more appropriate than systematical sampling

the use of remotely sensed data and subjective appraisements of surveyors as well. All

these information appropriately spatially assigned and stored to an information system

3.19. and Figure 3.20.). However, c-tree sampling has proved more reliable in

representing and stratifying the saplings population (Figure 3.18.) and thus it has a great

practical advantage over applying fixed-area plot sampling. Applying c-tree sampling

assumes that a search for nearest trees needs to be conducted once a sampling point is

defined. That also applies for the Mean of Angles method. For example, setting the c to

two would mean that the distance to the second nearest tree from each sampling point

need to be measured. That may not be necessary in forest regeneration surveys and

when applying systematical sampling designs. Large distances to nearest juvenile trees

induce that there is no regeneration occurred and such spatially based information can

serve to improve managerial decisions such as those regarding a harvest or

supplemental planting.
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5.Conclusion

Many factors can influence spatial distribution of trees inforests .Among the most

significant factors is a competition between individual trees and a disturbance .

Competition between individual trees tend to naturally drive a change in spatial patterns

of trees toward regularity while disturbances backward it toward clustering . Acquiring

information regarding spatial patterns of trees can give us insight into a level of

competitiveness between individual trees as well as into a level of disturbances . Such

information could serve to expand an insight into past management practices or

ecological processes and serve in projecting a future development and growth of trees

associated in respective forest types.

It is not necessary to mapping positions of individual trees in order to reveal a great

variability of spatial patterns. A simple statistical methodology designed to measuring

angles between lines of sight from sampling points to their nearest two neighboring

trees can serve in acquiring a reliable information regarding spatial patterns of trees .

That is also a practical approach to apply in forest regeneration surveys since the

method is simple and robust enough. Moreover , the measurements of angles do not need

to be performed with a high precision. An arithmetic mean of angles can serve as a

simple spatial pattern index and it is applicable to indexing the degree of regularity or

clustering of trees in forests. On the other hand , more complex arrangements of

individual trees can be assessed by analyzing frequency distributions of measured

angles.

Spatial distributions of trees could be a complex association of different tree species

and tree sizes. Spatial pattern indices based on measured angles between lines of sight

from sampling points to their nearest two neighboring trees are not dependent upon a

relative density of trees. The relative density could also largely differ inside respective
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forest stands. Therefore, aspatial variety can be further assessed by combining

measurements of angles with other methods such as conventional fixed-area plot

sampling or to introducing measurement of distances between the trees or between

sampling points and trees.

Measuring distances between sampling points and trees may not give us a reliable

insight into the degree of regularity or clustering. An extensive statistical expertise is

necessary in order to look beyond the indices, what is clearly not appropriate in

supporting practitioners in the field. Furthermore, its use in assessing relative densities

of trees can still produce biased estimates. The choice to use c-tree sampling in forest

inventories should be only in the case when relatively high variance of density estimates

can be accepted, when we can afford an increase in the number of measurements in

order to reduce the variance and, most of all, when we can accept the risk of a bias. The

bias is the biggest limiting factor for the use of distance sampling to estimating density

of trees in forests. Furthermore, the use of c-tree sampling in clustered populations

implies that individual trees being located on outskirts of clusters would have a greater

probability to be included in a sample than those being located inside the clusters.

Therefore, assessing information regarding individual trees with c-tree sampling in

clustered populations can be a biased approach since a selection of individual trees is

not equal. It is not recommended to use c-tree sampling to assessing information

regarding individual trees, unless in forests where trees exhibiting regular or random

spatial pattern. The use of c-tree sampling should not be preferred in cases where

precision is demanded and in cases where biased estimates may lead to a heavy damage

of managed resources. For example, it is clear that the use of a biased method is not

applicable to inventorying highly valued forest resources designed to forest policy and

management decisions on regional or national levels.

The c-tree sampling approach has a remarkable potential use in forest regeneration
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surveys where it can be worthwhile to obtaining measurements of distances between

sampling points and their second nearest trees. That could be the most practical

approach to testing whether trees in forests are distributed at random since, in such a

case, the Mean of Angles method may require a slightly larger sample. Moreover, such

an approach can serve to distinguishing between clustered and regular populations. That

can be used to choose an appropriate density estimator. Applying the GM estimator to

assess density of trees when they exhibit regular spatial pattern, the Pollard estimator in

random and the(c-1)estimator in clustered populations is likely to reduce a bias to an

acceptable value and to fulfill required precision of most forest regeneration surveys. In

general, a bias would not increase with the increase in the number of measurements

(sample size)and thus increasing the sample size would increase a confidence. It is

feasible to derive new estimators being statistically more efficient and the bias could be

further reduced. Applying systematical sampling designs can additionally add to a

practical applicability of c-tree sampling and serve in stratifying forest stand areas by a

relative density of juvenile trees, such as to those abundant, having moderate number or

no regeneration occurred. However, it should be bear in mind that a combined use of

c-tree  sampling with remotely sensed data, fixed-area plots and angles can further

contribute to assessing a potential of juvenile trees to mature into an ecologically sound

and an economically worthwhile forest.
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