APPENDIX

1.

Seawater density ρ can be expressed as a function of salinity *s* (psu), water temperature *t* (°C) and pressure *p* (bar) as follows.

$$\rho(s,t,p) = \frac{\rho(s,t,0)}{1 - p/K(s,t,p)}$$

 $\rho(s, t, 0)$ is a density at p = 0 and expressed as follow.

ρ	(s, 1	(, o) =						
	+99	9.842 594				+ 6.793 952	\times 10 ⁻² \times T	
	_	9.095 290 ×	$\times 10^{-3} \times T^2$			+ 1.001 685	$\times 10^{-4} \times T^{3}$	3
	<u> -</u>	1.120 083 ×	$\times 10^{-6} \times T^4$			+ 6.536 332	$\times 10^{-9} \times T^{-9}$	5
	+	8.244 93 ×	$\times 10^{-1}$ \times	S		-4.089 9	\times 10 ⁻³ \times T	$\times s$
	+	7.643 8 ×	$\times 10^{-5} \times T^2 \times$	S		- 8.246 7	$\times 10^{-7} \times T^{2}$	$s \times s$
	+	5.387 5 ×	$(10^{-9} \times T^4 \times$	S		- 5.724 66	$ imes 10^{-3}$	$\times S^{3/2}$
	+	1.022 7 ×	$10^{-4} \times T \times$	$S^{3/2}$		-1.654 6	\times 10 ⁻⁶ \times T	$^{2} \times S^{3/2}$
	+	4.831 4 ×	(10^{-4}) ×	S^2 .				
K	(s, t	(, p) =						
	+ 19	652.21						
	+	148.420 6	$\times 7$	7		-2.327 105	× T	2
	+	1.360 47	$7 \times 10^{-2} \times 7$	-3		- 5.155 288	\times 10 ⁻⁵ \times T ⁴	oppose 1877
	+	3.239 90	8	$\times p$		+1.437 13	\times 10 ⁻³ \times T	$\times p$
	+	1.160 92	$ imes 10^{-4} imes 7$	$r^2 \times p$		- 5.779 05	\times 10 ⁻⁷ \times T	$^{3} \times p$
	+	8.509 35	$ imes 10^{-5}$	$\times p^2$		- 6.122 93	\times 10 ⁻⁶ \times T	$\times p^2$
	+	5.278 7	$\times 10^{-8} \times 7$	$r^2 \times p^2$				
	+	54.674 6			$\times s$	- 0.603 459	$\times T$	$\times s$
	+	1.099 87	$\times 10^{-2} \times 7$	-2	$\times s$	- 6.167 0	$\times 10^{-5} \times T^{3}$	$\times s$
	+	7.944	$\times 10^{-2}$		$ imes S^{3/2}$	+1.648 3	\times 10 ⁻² \times T	$\times S^{3/2}$
	<u>(1</u>)	5.300 9	$\times 10^{-4} \times 2$	Γ^2	$\times S^{3/2}$	+ 2.283 8	$\times 10^{-3}$	$\times p \times S$
		1.098 1	$\times 10^{-5} \times 2$	$T \times p$	$\times s$	- 1.607 8	\times 10 ⁻⁶ \times T ²	$\times_p \times_S$
	+	1.910 75	$ imes 10^{-4}$	$\times p$	$ imes S^{3/2}$	- 9.934 8	$\times 10^{-7}$	$\times p^2 \times S$
	+	2.081 6	$\times 10^{-8} \times 2$	$T \times p^2$	$^{2} \times S$	+9.1697	$\times 10^{-10} \times T^2$	$^{2} \times p^{2} \times S$

Appendix

2.

Potential water temperature θ can be expressed as a function of salinity *S* (psu), water temperature *t* (°C) and pressure *p* (bar) as follow.

$$\theta (S, t, p) = t - p (3.6504 \times 10^{-4} + 8.3198 \times 10^{-5}t - 5.4065 \times 10^{-7}t^{2} + 4.0274 \times 10^{-9}t^{3}) - p (S - 35) (1.7439 \times 10^{-5} - 2.9778 \times 10^{-7}t) - p^{2} (8.9309 \times 10^{-7} - 3.1628 \times 10^{-8}t + 2.1987 \times 10^{-10}t^{2}) + 4.1057 \times 10^{-9} (S - 35) p^{2} - p^{3} (-1.6056 \times 10^{-10} + 5.0484 \times 10^{-12}t)$$

308