Appendices

Appendix 1. Molecular phylogenies of the 130 human genes and their putative orthologs obtained from other animal genome sequences (shown as Fig S1-S63). Abbreviations used in these figures are as follows: LPT, long-term potentiation; TT, Taste transduction; OT, olfactory transduction; TCA, TCA cycle; 3R-WGD, third-round whole genome doubling; 3R, orthologous genes group that appears to be duplicated through the 3R-WGD; 1:1, orthologous gene groups that show 1 to 1 orthologous relationships between tetrapods and teleosts.

- Single duplication
 - 3R-WGD
 Tetrapods-fish split
 LTP related-gene in human
 A member of a DCS block in medaka

Fig. S1. A molecular phylogeny of AMPAR (glutamate receptor, ionotropic) inferred from maximum-likelihood analysis (606 amino acid sites were used; JTT $+\Gamma$). Numbers indicate approximate bootstrap values from 1,000 LR-ELW (the Expected-Likelihood Weights applied to Local Rearrangements of tree topology) tests that support for the nodes.

Fig. S2. A molecular phylogeny of AC 1 and AC 8 (adenylate cyclase 1 and 8, EC: 4.6.1.1) inferred from maximum-likelihood analysis (342 amino acid sites were used; JTT $+\Gamma$). Numbers indicate approximate bootstrap values from 1,000 LR-ELW (the Expected-Likelihood Weights applied to Local Rearrangements of tree topology) tests that support for the nodes.

- Single duplication
- 3R-WGD

Tetrapods-fish split
LTP related-gene in human
A member of a DCS block in medaka

Fig. S3. A molecular phylogeny of NMDAR (glutamate receptor, ionotropic, N -methyl D-aspartate) inferred from maximum-likelihood analysis (752 amino acid sites were used; WAG $+\Gamma$). Numbers indicate approximate bootstrap values from 1,000 LR-ELW (the Expected-Likelihood Weights applied to Local Rearrangements of tree topology) tests that support for the nodes.

Fig. S4. A molecular phylogeny of NMDAR (glutamate receptor, ionotropic, N -methyl D-aspartate) inferred from maximum-likelihood analysis (321 amino acid sites were used; $\mathbf{J T T}+\Gamma$). Numbers indicate approximate bootstrap values from 1,000 LR-ELW (the Expected-Likelihood Weights applied to Local Rearrangements of tree topology) tests that support for the nodes.

- Single duplication
- 3R-WGD

Tetrapods-fish split
LTP related-gene in human
A member of a DCS block in medaka

$\stackrel{-1}{0.05}$

Fig. S5. A molecular phylogeny of VDCC (or CACNA1C, calcium channel, voltage-dependent, L type, alpha IC subunit), inferred from maximumlikelihood analysis (530 amino acid sites were used; Blosum62 $+\Gamma$). Numbers indicate approximate bootstrap values from 1,000 LR-ELW (the ExpectedLikelihood Weights applied to Local Rearrangements of tree topology) tests

- Single duplication
- 3R-WGD

Tetrapods-fish split
LTP related-gene in human
A member of a DCS block in medaka

Fig. S6. A molecular phylogeny of mGluR (or GRM, glutamate receptor, metabotropic), inferred from maximum-likelihood analysis (529 amino acid sites were used; JTT $+\Gamma$). Numbers indicate approximate bootstrap values from 1,000 LR-ELW (the Expected-Likelihood Weights applied to Local Rearrangements of tree topology) tests that support for the nodes.

A

PRKACA/CG (1:1)

B

PRKX/Y
(1:1, SD)
 LTP related-gene in human
A member of a DCS block in medaka

Fig. S7. A molecular phylogeny of PKA (protein kinase), inferred from maximum-likelihood analysis (panel A: 295 amino acid sites were used with JTT $+\Gamma$; panel B: 213 amino acid sites were used with JTT $+\Gamma$). Numbers indicate approximate bootstrap values from 1,000 LR-ELW (the Expected-Likelihood Weights applied to Local Rearrangements of tree topology) tests that support for the nodes.

- Single duplication
- 3R-WGD

Tetrapods-fish split
LTP related-gene in human
A member of a DCS block in medaka

Fig. S8. A molecular phylogeny of IPP1 (protein phosphatase 1, regulatory [inhibitor] subunit 1A), inferred from maximum-likelihood analysis (307 nucleotide sites were used; $\mathrm{TrN}+\mathrm{I}$). Numbers indicate approximate bootstrap values from 1,000 LR-ELW (the Expected-Likelihood Weights applied to Local Rearrangements of tree topology) tests that support for the nodes.

