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PREFACE

Chaoshas developed into a mature field of contemporary science. The study of
chaos revealed that a deterministic system can generate in some sense unpre-

dictable orbits. In other words, stochastic-like behavior of a system can appear not
due to our lack of knowledge but as an intrinsic characteristic in the system. However,
this might not be the only significance of chaos. We often find in natural systems at the
same time phenomena which seems incompatible, for instance, stability and instabil-
ity, order and disorder, or coherence and irregularity. The study of chaos suggests the
possibility that these are compatible.

This thesis studies collective motion in a network of chaotic elements, which is a
dynamical system with a huge number of degrees of freedom. Ordered motion appears
as a macroscopic dynamics of the system out of disordered motion of microscopic
chaos. We will study how compatible the macroscopic dynamics is with microscopic
chaos from the dynamical system and thermodynamical viewpoints. We will see that
both the coherence and irregularity of chaos is essential for such collective motion.
We will also find in this study a suggestion about the relationship between some stable
property and unstable property of chaos.

The title “Collective Chaos” means that a low-dimensional chaos appears in a
macroscopic variable of the system with effectively high-dimensional chaotic motion.
Using the method that will be presented in this work, the existence of the collective
chaos was confirmed in the network of chaotic elements. This is the first case that the
existence was confirmed within the present meaning of collective chaos. This disserta-
tion does provide new insights to the study of high-dimensional chaotic systems.

Professor Kunihiko Kaneko introduced me into such a chaotic world. I like to
express my special gratitude to him for invaluable advice, stimulating discussions and
essential supports since the beginning of my research. Most of this thesis comes from
the collaborative studies with him. Through these research, I have studied many things
from his great insights entangling broad range of fields around chaos.

I am grateful to Professor Shin-ichi Sasa for a huge number of stimulating discus-
sions about not only the topics in this thesis, but widespread topics in physics. Particu-
larly, it was a great experience for me to collaborate with him about thermodynamics of
chemical energy transduction, which is motivated by bio-molecular motors. Through
these studies, I became aware the importance of thermodynamics.

A part of this thesis comes from research collaborated with Dr. Tsuyoshi
Chawanya, to whom I am greatly indebted to his essential contribution to this research,
and to his tolerance for exhausting discussions with me. I also thanks Dr. Satoru
Morita, and Dr. Naoko Nakagawa for illuminating discussions on the collective mo-
tion of globally coupled dynamical systems.

I like to appreciate the people of and around the group of the studies on nonlinear,
nonequilibrium, and complex systems at Komaba for many discussions and supports.





I like to thank Professor Takashi Ikegami, and Dr. Takashi Hashimoto for their illumi-
nating discussions and encouragement.

I like to express my gratitude to all the people who have directly or indirectly helped
me on this research endeavor. Their questions, comments and discussions associated
with this research play important roles for the accomplishment of this thesis. I hope
that some of their questions are settled in this thesis.

January 1999,

Tatsuo Shibata
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CHAPTER I

INTRODUCTION

This thesis has been constructed from two viewpoints. One is the viewpoint of
collective chaos, and the other is the viewpoint ofa network of chaotic elements.

From the former point of view, we ask how macroscopic chaotic motion is possible out
of essentially very high-dimensional dynamical systems such as fluid systems. On the
other hand, from the latter point of view, we ask what is universal phenomena observed
in network systems consisting of a huge number of dynamical elements.

In this chapter, we will provide some of the phenomenology of chaos, and introduce
some of the more basic concepts on the chaos. Reviewing the chaos, we propose a
notion of collective chaos. Next we introduce a network of chaotic elements, where we
are interested in the collective chaos.

I.1 Deterministic Nonperiodic Flow
Lack of periodicity is quite common in natural systems. What is responsible for the

non-periodicity? In order to study nonperiodic phenomena, especially in atmospheric
systems, Edward N. Lorenz studied Rayleigh-Bénard convection, in his seminal paper
entitled ‘Deterministic Nonperiodic Flow’ (Lorenz1963).

The Rayleigh-B́enard convection has been observed in fluid systems, where the
bottom of a vessel containing water is maintained at a higher temperature than the
temperature at the top. As a result, the water subjected to gravity expands near the
bottom and buoyancy produces a tendency of this fluid to rise, whereas the water near
the top has a tendency to fall. If the temperature difference between the bottom and top
is beyond a certain value, aperiodic motion is observed in a macroscopic observable,
as is often in nature.

By extracting the three most important Fourier modes of the fundamental equa-
tion describing the Rayleigh-B́enard convection, Lorenz obtained ordinary differential
equations, given by

Ẋ = −σX + σY,

Ẏ = −XZ + rX − Y, (I.1)

Ż = XY − bZ,

with dimensionless parametersσ, r andb. He solved these equations numerically and
obtained the remarkable trajectory depicted in Fig.I.1. The evolution of this system
was not periodic any more.

In order to elucidate the mechanism underlying this nonperiodic flow, Lorenz ex-
tracted a discrete time map from this continuous time system (Eqs.(I.1)). Fig.I.2 shows
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Fig. I.1: Nonperiodic flow obtained numerically from the Lorenz system (Lorenz 1963).
(σ, b, r) = (10.0, 8.0/3.0, 470.0/19.0).

the value ofZ of the Lorenz system as a function of time. Whereas the phase of oscil-
lation seems nearly periodic, the amplitude of oscillation shows a complicated change
in time. Lorenz focused his notice on this point. He recorded successive maximal
values, and then made a return map plotted the maxima as a function of the previous
maxima. In this way, he obtained a one-dimensional map as is shown in Fig.I.3, which
is embedded in the nonperiodic flow of the Lorenz system.

Lorenz proceeded to analyse this one-dimensional map closely. He adopted the tent
map as an approximation of this one-hump map. The tent map is piecewise linear map
with the slop two,

f(x) =
{

2x, 0 < x < 1
2 ,

2− 2x, 1
2 < x < 1.

(I.2)

He studied the trajectories of this map starting from rational numbers and irrational
numbers, and showed that no repetitions occurs in the trajectory starting from a ir-
rational number, whereas the trajectory starting from a rational number is periodic.
Hence, almost all the trajectories are not periodic.

He also pointed out the orbits of the Lorenz system unstable. The map illustrated
in Fig.I.3 has a slop whose magnitude is everywhere greater than unity. Consider two
nearby trajectories. It is easily understood that the distance between these trajectories
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Fig. I.2: The value ofZ of the Lorenz equation (I.1) is plotted as a function of time (Lorenz
1963).
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Fig. I.3: Maxima versus previous maxima ofZ, illustrating the embedded one-dimensional map
in the Lorenz system (Lorenz1963).

diverges exponentially. Thus, the evolution of the system is highly sensitive to initial
conditions (sensitive dependence on initial conditions). In this way, he has found the
remarkable fact that in spite of the deterministic nature of the system, the behavior of
the system is in some sense unpredictable. This deterministic nonperiodic flow is now
calledchaos.

Remembering that it is the fluid system that show just this behavior, we should
notice that a very large collection of highly interacting molecules is underlying in this
behavior. It has been long supposed that chaotic behavior may exist in such micro-
scopic motions of molecules, which is responsible for macroscopic behavior of the
system. Thismicroscopic chaoshas been calledmolecular chaos. On the other hand,
since the Lorenz system describes the observable fluid flow at a macroscopic level,
the nonperiodic flow of the Lorenz system should be calledmacroscopic chaos1. And
the existence of such macroscopic chaos has been confirmed experimentally in the
Rayleigh-B́enard convection (Libchaber & Maurern.d., Brandsẗater et al.1983).

Now the study of chaos has developed into a mature field of the contemporarily
physics (Berǵe et al.1984, Echmann & Ruelle1985, Ott 1993). The macroscopic chaos
has been observed experimentally not only in fluid systems but also in physical (Gibbs
et al. 1981, Testa et al.1982), chemical (Simoyi et al.1982, Roux et al.1983), and
biological systems (Olsen & Degn1977, Markus et al.1985, Chialvo et al.1990, Cole
1991). Before the chaos study, one might suppose that stochastic nature obserbed in
these systems is extrinsic property generated by something at the outside of the system.
The chaos has revealed, however, that a certain system itself can generate stochastic
orbit as intrinsic property2. In the Lorenz’s work in 1963, the essence of such chaos
has been already shown clearly.

1 The word “chaos” is commonly used for this macroscopic chaos. In this thesis, “chaos” without adjec-
tives is also used in this way.

2 One may still ask the question what is the origin of randomness.
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− µZ + XZ). (Rössler1976).

I.2 Chaotic Behavior and Information Flow
Chemical reaction has also been an important field to study chaos theoretically and

experimentally. Otto E. R̈ossler considered a simple reaction systems in 1976 (Rössler
1976). The R̈ossler system also consists of three nonlinear differential equations,
whose evolution indicates chaotic behavior, as is illustrated in Fig.I.4.

In a dissipative system, in contrast to Hamiltonian systems, the phase space vol-
ume continues to contract onto a lower dimensional surface with increase of time. The
Rössler system as well as the Lorenz system is a dissipative system, and the orbits are
considered on a lower dimensional surface embedded in the three dimensional phase
space. On this two dimensional surface, the orbits diverge exponentially. The exponen-
tial divergence is characterized by a positiveLyapunov exponent, which is the rate of
growth of two nearby trajectories. How is such divergence made possible in a bounded
three-dimensional phase space?

The R̈ossler system clearly indicates what makes it possible for nearby orbits,
though bounded, to diverge exponentially. In Fig.I.4, a (quasi-) two-dimensional sheet
containing many orbits goes round the origin. The sheet is expanded along its width
and folded over on itself around the maximal value ofZ. Since the orbits never cross
in the phase space, the sheet has a certain thickness, containing infinitely many two
dimensional surfaces. A particular orbit is realized on one of these surfaces.

It is so possible that orbits are bounded despite tha fact that nearby orbits diverge
exponentially. The sheet containing infinitely many two dimensional surfaces contin-
ues to contract along its thickness until the folding. The folded sheet contracts again.
This repetition of the contraction and folding leads to construction of the structure that
hold a similar pattern in each scale. This structure is calledstrange attractor, which is
characterized by the concept offractal.

The reduction from the three-dimensional flow of the Rössler system to a one-
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Fig. I.5: Return map, generated by intersections at the surface of sectionX = 0 within the
projected R̈ossler attractor onto theXY -plane. The surface of section is indicated in
Fig.I.4. (Shaw1981).

dimensional map is displayed in Fig.I.5 (Shaw1981). Since the map in Fig.I.5 has
regions where the slope has a magnitude less than unity, it is not obvious whether the
orbit is chaotic or not. However, the map is similar to the logistic mapf(x) = 1−ax2,
which shows chaotic motion via period-doubling bifurcation (Feigenbaum1978, Collet
& Eckmann1980). Indeed, the R̈ossler system shows a similar route to chaos. Thus, on
the one hand, the map generated from the flow is considered to approximately preserve
the chaotic nature of the R̈ossler attractor. On the other hand, the reduction to a one-
dimensional map is approximation, and should be regarded to have a finite thickness.
In fact, Fig.I.5 has a finite thickness, reflecting the folding of the flow, though the
contraction rate is so strong that it may be difficult to see the structure.

The exponential divergence suggests that infinitesimal structures appear in a macro-
scopic scale after a certain time, whereas the contraction and folding implies that a
large scale structure is embedded into a microscopic scale. Robert Shaw has discussed
this process as information flow between macroscopic and microscopic scales, or as
a communication process from the present to the future, according to the information
theory (Shaw1981, 1984). Then, he has claimed that in a dissipative system with
chaos, the separation between macroscopic and microscopic scales breaks down, and
chaos transfers information from the microscopic into macroscopic scale.

Remembering that the R̈ossler system is a reaction system, the set of ordinary
differential equations only describe the average rate of reaction. A huge number of
molecules underlying the chemical reaction should also constitute a huge dimensional
phase space, though one may be hardly imagine such a huge dimensional phase space
whose dimensionality varies in time. Whereas the chaos appears in the macroscopic
scale as in Fig.I.4, information is generated in the microscopic scale at a huge di-
mensional phase space. Shaw has considered chaotic dynamical systems as sources
of information, which originates in the microscopic scale beyond experimental res-
olution (Crutchfield et al.1982). However, if such high-dimensional information is
transfered into the macroscopic scale, how is it possible to realize low-dimensional
chaotic motion?





From Microscopic to Collective Chaos

According to the metaphor from the communication theory, the chaotic dynamical
system should be considered as a channel of information. Then one may argue that
the dimensionality of the channel determines the dimensionality of macroscopic ob-
servables. Still, we ask how such a channel is constructed out of the motion with an
effectively huge number of degrees of freedom.

I.3 From Microscopic to Collective Chaos
Studies on the relation between macroscopic and microscopic scales have a long

history over a hundred years, though in these studies statistical aspects might be dis-
cussed rather than dynamical aspects which we are concerned with.

Recently, the existence of the microscopic chaos, which is responsible for the
macroscopic properties, has been studied experimentally byGaspard et al.(1998). In
this case, the macroscopic motion is not chaos but a stochastic process of Brownian
motion. They have recorded the position of Brownian motion with time, and have
measured a sort of a mean pattern entropy per unit time of the time series generated by
the collisions with molecules. Although there may be a room for discussion whether
their experiment was successful to verify the existence fo microscopic chaos, this is
one direction to study the relevance of macroscopic properties to microscopic dynam-
ics from the viewpoint of dynamical system (Gaspard & Wang1993, Gaspard et al.
1998).

As for the study of construction of macroscopic chaos from a microscopic scale,
we first mention the chaos in reaction systems. The chaos in chemical reaction sys-
tems has been one of the most successful examples observed experimentally. In order
to study underlying dynamics in rate equations of chemical reactions, a mesoscopic
description has been adopted, which is given by a set of transition probabilities among
chemicals. In such a description, the underling dynamics of macroscopic motion is
stochastic processes, and the evolution of probability distribution of each chemical is
investigated (Fox & Keizer1991)3.

When the underling dynamics of macroscopic motion is effectively high-
dimensional chaos, in the sence that the Lyapunov dimension or the Kolmogolov-Sinai
entropy is proportional to the system size, is it really possible to realize macroscopic
low-dimensional chaotic motion? In this Thesis, let us call such macroscopic chaos out
of effectively high-dimensional chaos ascollective chaos.

So far, from such a point of view, spatially extended systems have been investigated
in its fully desynchronized state. However, existence of the collective chaos in such sys-
tems has often been suspected (Bohr et al.1987, Grinstein1988, Bennett et al.1990)4.
In fact, in spatial extended systems, only quasiperiodic oscillation of a certain macro-
scopic variable has been observed, as a time dependent macroscopic motion (Chat́e &
Manneville1992).

In this Thesis, however, we will present that the collective chaos ispossiblein
certain coupled dynamical systems, where many chaotic elements organize a huge net-
work.

3 Discussion on the macroscopic description of chaos and large-scale fluctuations in chemical reaction
systems is given inNicolis & Balakrishnan(1992) andKeizer & Fox(1992).

4 They have discussed a correlation length scale in spatially extended chaotic systems. The correlation
length scale is finite. This is the reason why they have suspected the existence of the collective chaos.





Network of Chaotic Elements

I.4 Network of Chaotic Elements
We have acquired the viewpoint to describe natural phenomena as a collection of

various elements. It may be quite difficult problem in effect to partition some system
into subsystems. However, considering a certain unit in the system as an element, it
would be practical to explore the consequences of interactions among these elements.

For example, in order to discuss thermodynamic properties of nonequilibrium sys-
tems, in many cases, we partition the system into subsystems, in each of which equi-
librium properties are locally assumed (Glansdorff & Prigogine1971). Then the sys-
tem is described as a many-body system of these subsystems so as to study the entire
nonequilibrium process. In a similar way, we can study the system far away from
equilibrium, supposing a certain property of the subsystems and the interaction among
them. For instance, we postulate that local subsystem in a spatially extended system
has chaotic property such as the Lorenz system, and the subsystems diffusively interact
each other. Then spatiotemporal phenomena has been studied by partial differential
equations (Nicolis & Prigogine1977), or coupled map lattice (Kaneko1984, 1993).

The viewpoint of the interacting elements also provides a strong tool to understand
living systems. For instance, many living systems consist of a huge number of sub-
systems of cells. The cell is considered as a huge network of interacting metabolic
reactions. Whereas various of proteins catalyze the reactions in the metabolic network,
the proteins are many-body systems of twenty types of amino acid. Let us go back to
the cellular systems, which constitute various kind of organs which organize a living
system (Godin & Buchman1996, Buchman1996). In individual organisms that live in
social groups, interactions among group members often produce behavioral organiza-
tion (Cole1991, Miramontes et al.1993).

These systems consist of many subsystems with not simple interaction, and show
as a whole interesting macroscopic phenomena, whose spatiotemporal scales is over
the scale of the subsystems. In such complex systems, even if we know properties of
the subsystems and mechanism of its interaction, it would be worthwhile to discuss
properties of the entire system (Simon1981).

Each subsystem itself is also considered to consist of interacting subsystems.
Hence, the system forms a hierarchical structure. For such a hierarchical system, we
need to discuss not only the interaction among subsystems, but alsointeractions be-
tween5 the system and its subsystems. An comprehensive discussion on this topic is
found inSimon(1981).

A common approach to such complex phenomena is to construct a model of the
individual phenomena. However there are two difficulties in such an approach.

The first lies in the construction of the model. Many people have discussed what a
good model is, and there are often many different models for the same phenomena. A
model will depend on the choice of what is important for understanding and describ-
ing the phenomena. How do we compare different models? And what might these
comparison mean?

The second difficulty lies in how to understand the behavior in a model. For this,
properties found over individual systems should be discussed. With the theories for
such properties, since these theories are abstract entities, one may comprehend some
concepts relevant (or applicable) to various of fields over individual systems. (These
two difficulties in understanding phenomena entangle with each other. The choice of
what is important in individual models is relevant to what should be developed into the

5 Neither top down nor bottom up.
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concepts.)
Throughout this thesis, we study an abstract model of networks consisting of dy-

namical elements. The dynamical elements often show chaotic dynamics as is seen in
the previous sections. Since the model is so abstract, we have believed that the con-
cepts developed in the model is relevant to a variety of natural systems, which consist
of many dynamical elements. In particular, we are interested in the collective chaos
obserbed in the network of chaotic elements.

I.5 This Thesis
In a network of chaotic elements when the strength of the interaction among ele-

ments is small enough, motion of elements seems to be independent each other. Ac-
cordingly, the system is in a high-dimensional chaotic state. However, a certain macro-
scopic quantity shows some dynamical property, rather than fluctuations. This has been
calledcollective motionin a network of chaotic elements. The purpose of this Thesis is
to study the nature of such collective motion, and to present a mechanism for the origin
of such collective dynamics.

We will first introduce globally coupled chaotic elements, called globally coupled
map in ChapterII . We will provide some of the phenomenology of the collective
motion. With the change of the control parameters, the collective dynamics shows
some sort of bifurcation. Such a bifurcation is calledTongue-like bifurcation structure
of the collective motion. Some scaling properties of the collective motion against the
change of parameters are also presented.

In ChapterIII we shall demonstrate how such collective motion is possible. First
stationary states of the macroscopic quantity is shown to be unstable. The characteristic
time scale of the collective motion are much longer than the time scale of individual
elements. Next we shall present a certain bifurcation structure in individual elements
makes the longer time scale of the collective motion possible. Some bifurcations of the
collective motion are also presented.

We will introduce globally coupled map with some heterogeneity in ChapterIV. In
such a system ordered collective motion is clearly found, ranging from quasiperiodic
motion to low and high dimensional chaos. The collective motion in the globally cou-
pled map with heterogeneous chaotic elements suggests the existence of the collective
chaos.

An algorithm to characterize collective motion is presented in ChapterV, with
the introduction ofcollective Lyapunov exponent, as the orbital instability at a macro-
scopic level. By applying the algorithm to a globally coupled map with heterogeneouse
chaotic elements, existence of low-dimensional collective chaos is confirmed, where
the scale of high-dimensional microscopic chaos is separated from the macroscopic
motion, and the scale approaches zero in the thermodynamic limit.

Effect of microscopic external noise on the collective motion is studied in Chap-
ter VI . With the increase of external noise intensity, the collective motion is succes-
sively simplified. The number of effective degrees of freedom in the collective motion
is found to decrease as− log σ2 with the external noise varianceσ2. It is shown how
the microscopic noise can suppress the number of degrees of freedom at a macroscopic
level.





CHAPTER II

COLLECTIVE MOTION OUT OF

DESYNCHRONIZEDSTATES IN A

NETWORK OFCHAOTIC ELEMENTS

Collective behavior is studied in globally coupled maps. Several coherent motions
exist, even in fully desynchronized state. The macroscopic variable is found to

show some kind of ordered motion distinguishable from noise, ranging from torus to
high-dimensional chaos. To characterize the collective behavior, we introduce scaling
transformation of parameters, and detect in parameter space atongue-like bifurcation
structurein which collective motions is possible.

II.1 Introduction
Whereas the research of low dimensional chaos provided us with important notion

of unpredictability in deterministic systems, it was soon realized that many natural sys-
tems show much more complicated behavior than low dimensional chaos. One of the
important features in natural systems is high dimensionality. Although deterministic
aspects remain in the high dimensional chaos, the present nonlinear dynamics tools are
not sufficient to distinguish it clearly from noise. Hence, the study of high-dimensional
chaos is important both from a theoretical and from a practical point of view.

Globally coupled dynamical systems, consisting of many dynamical elements in-
teracting all-to-all, are good examples using which we can develop notions in high
dimensional systems. This class of dynamical systems is seen in physical, chemical
and biological systems. In physics, coupled Josephson junction arrays (Watanabe &
Strogatz1994) are a coupled nonlinear oscillator circuit with global feedback. In non-
linear optics with multi-mode excitation (Bracikowski & Roy 1991, Arecchi 1991)
many modes are often coupled globally through energy currency. In bioscience and
medical science, neural (Aertsen & M. Erb1994), cellular (Ko et al.1994, Kaneko &
Yomo 1994), and vital (Godin & Buchman1996, Buchman1996) organizations, that
are known to exhibit complex chaotic behaviors, are described in terms of a network
of active elements. Several examples in ecological and economic systems are also seen
in terms of a network of active agents. Among these complex networks, a globally
coupled dynamical system is the simplest case.

So far, study of globally coupled dynamical systems has revealed novel concepts
such as clustering, chaotic itinerancy, and partial ordering (Kaneko1990a). In partic-

This Chapter is partly based onShibata & Kaneko(1998b, Section 2, 3, 4, 5, 8 and 9).
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ular, the study of collective dynamics has got much attention (Kaneko1990b, 1992,
Perez & Cerdeira1992, Chat́e & Manneville 1992, Perez et al.1993, Pikovsky &
Kurths1994b,a, Just1995, Kaneko1995, Ershov & Potapov1995, Morita 1996, Chat́e
et al.1996, Shibata & Kaneko1997, Ershov & Potapov1997, Nakagawa & Komatsu
1998, Chawanya & Morita1998, Shibata & Kaneko1998b,a). When the interactions
between elements are small enough, each element oscillates independently, without
synchronization between them. Thus the number of degrees of freedom of the system
is effectively proportional to the system size. If each element has chaotic dynamics,
the system is in a high dimensional chaotic state. Even in such a case, a macroscopic
variable shows some kind of complicated dynamics rather than noise, ranging from
low-dimensional torus to high-dimensional chaos (Shibata & Kaneko1997, Pikovsky
& Kurths 1994b,a). This may imply that any weak interaction between active elements
necessarily brings about some sort of correlation1 between the elements.

This Chapter is organized as follows. In SectionII.2, the globally coupled logistic
map is introduced and its characteristic behavior is presented as a brief review. In
SectionII.3, an overview of different kinds of collective dynamics is presented. In the
macroscopic dynamics, a lower dimensional motion and a much longer time scale than
those of microscopic dynamics are observed. We focus on the thermodynamic limit
of such collective behavior. The time scale and the amplitude of collective motion
are studied in the large system size limit. In SectionII.4, a global phase diagram in
the parameter space is presented. Because the phase diagram shows a complicated
structure, we introduce a scaled nonlinearity parameter so thattongue-like bifurcation
structuresare clarified. Collective dynamics with a larger amplitude exists in each
tongue structure that corresponds to a periodic window in the single logistic map. Since
windows of the single logistic map exist in any neighborhood in the parameter space,
the clarification of the collective dynamics with such bands is necessary to understand
the collective dynamics in general. A scaling relation between the growth of tongue
structure and the coupling strength is given in SectionII.5.

II.2 A Simple Network Model of Chaotic Elements on
Globally Coupled Map

Here we adopt one of the most simplest model among networks of chaotic ele-
ments. The model consists ofN elements iterated by an internal dynamics with a
global coupling among elements. The present globally coupled map (GCM) is given
by the equation,

xn+1(i) = (1− ε)f(xn(i)) +
ε

N

N∑
j=1

f(xn(j)), (i = 1, 2, 3, · · ·N), (II.1)

wherexn(i) is the variable of thei’th element at discrete time stepn, andf(x) is the
internal dynamics of each element. For the internal dynamics we choose the logistic
map

f(x) = 1− ax2, (II.2)

wherea is the nonlinear parameter. The logistic map has been studied in detail as a
typical of dissipative chaos (Collet & Eckmann1980, Ott 1993). The nonlinear param-

1 This means that two point mutual correlation does not vanish in the limit ofN →∞.
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etera, , the coupling strengthε, and the total number of elementsN are the control
parameters of the present GCM.

The GCM can be considered as a mean-field extension of the coupled map lat-
tice (CML), in which elements are located at discrete spatial coordinates and interact
with their neighbors (Kaneko1984, 1989b, 1990c). It is given by

xn+1(i) = (1−ε)f(xn(i))+
ε

2
{f(xn(i− 1)) + f(xn(u + 1))} (i = 1, 2, 3, · · ·N).

(II.3)
It is easy to extend the spatial dimension of CML tod-dimension. A GCM can be also
considered as a CML in which the number of spatial dimensions goes to infinity.

In the GCM model, two opposite tendencies coexist: all-to-all coupling tends to
synchronize elements, while chaotic instability in each element tends to desynchronize
them. Depending on the balance between the two tendencies, a rich variety of phenom-
ena has been found (Kaneko1990a). When the coupling strength is strong enough, all
elements are synchronized each other and the dynamics is nothing more than the single
logistic map as is calledcoherent phase. As the coupling strength is smaller or the non-
linearity larger, elements split into some groups, in each of which they are synchronized
each other. This regime is calledordered phase, while the phenomena are calledclus-
tering. The clustering is common characteristics in globally coupled systems, including
globally coupled oscillator systems (Okuda1993, Nakagawa & Kuramoto1993).

In the region, calledpartially ordered phase, where the two opposite tendencies
are somewhat balanced, some part of the elements makes a few clusters, while the
rest elements do not form clusters and their oscillations are desynchronized. In the
phase space, there are a lot of ‘attractor ruins’ with lower dimensionality, at which
the trajectory is attracted and stays over some duration, but then the trajectory goes
out from them into much higher dimensional phase space, till they are again attracted
to another attractor ruin. In this phenomenon, calledchaotic itinerancy, the number
of effective degrees of freedom changes with time (Kaneko1990a, Ikeda et al.1989,
Tsuda1992, Kaneko1997, 1998).

If the coupling strengthε is small enough, none of the elements take the same
values, and the correlation between elements gets smaller. This parameter regime is
calleddesynchronized phase. The motion of each element seem to be independent from
the 01.4.19others. Even in such cases, however, the motion in macroscopic variables
counterintuitively does not vanish in the thermodynamic limit (N → ∞). This has
been studied ascollective motionin GCM (Kaneko1990b, 1992, 1995, Pikovsky &
Kurths 1994b,a, Perez et al.1993, Ershov & Potapov1995, Morita 1996, Ershov &
Potapov1997, Shibata & Kaneko1997, Chawanya & Morita1998, Shibata & Kaneko
1998b,a, Nakagawa & Komatsu1998, Shibata et al.1998), which implies some sort of
coherence between elements.

In the desynchronized phase, the microscopic motion shows high dimensional
chaos in the sense that the Lyapunov dimension is proportional to the number of el-
ementN . In almost all the parameter values, however, the mean field motion shows
some coherence ranging from quasiperiodic-like motions to higher dimensional mo-
tions distinguishable from random motions (Shibata & Kaneko1998b), wheras the
macroscopoic motions are believed to be infinite dimensional motions even when the
torus like structure is observed (Ershov & Potapov1997, Chawanya & Morita1998,
Shibata & Kaneko1998b,a, Shibata et al.1998).

In the next section, we will show some phenomena of macroscopic dynamics in the
desynchronized state.
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Fig. II.1: Mean square deviation (MSD) of the mean field distribution〈(δh)2〉 = 〈h2〉 − 〈h〉2
are plotted as a function of the system sizeN .

II.3 Phenomenology of Collective Motion
The system in the desynchronized state is high-dimensional in the sence that the

Lyapunov dimension is proportional to the system sizeN Thus, we may expect the
existence of a certain macroscopic variable in the thermodynamic limit (N → ∞),
which involves almost all the variables ofxn(i). Here, we adopt the mean-field

hn =
1
N

N∑
i=1

f(xn(i)) =
1
N

N∑
i=1

xn+1(i), (II.4)

as a macroscopic observable. Since there seems to be no mutual synchronization
among elements, one might imagine that the mean-field would be effectively the same
as noise and, therefore the mean-field would go to a constant with the increase ofN .
One might expect that such a high dimensional dynamics is not distinguishable from
noise. Such a case could be expected as an application of the law of large numbers.

In fact this isnot the case. First we measure the mean square deviations (MSD) of
the distribution of the mean field values. The MSD is given by

〈(δh)2〉 = 〈h2〉 − 〈h〉2, (II.5)

where the bracket〈·〉 denotes the temporal average. Then we can check whether the
fluctuation of the mean field obeys the central limit theorem of the standard probability
theory. Fig.II.1 shows the MSD of the mean field values as a function of the system
sizeN for several parameters. The values seem to converge to some limit forN →∞.
These show the distinction of the mean-field dynamics from pure noise and suggest
the exsitence of some coherence among elements. This phenomena have been called
‘collective motion’ in GCM.

Fig.II.2(a) shows an example of the time series of the mean field values as a func-
tion of time stepn at every two steps, and the corresponding return map of the mean
field for N = 105. The coupling strength is too small to synchronize any two elements.
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Fig. II.2: Time series and return map. Time series are plotted at every 2 steps after transients are
discarded.a = 1.5449205, ε = 0.0005. (a)N = 105, (b)N = 107. Corresponding
return maps(hn, hn+10) are plotted over 50000 steps after transients are discarded.

The trajectory of the mean-field has some fluctuation due to the finite system size. With
the increase of the system size toN = 107, however, the trajectory shows some co-
herent motion as is shown in Fig.II.2(b). The trajectory is rather close to quasiperiodic
motion, although the points are scattered around the torus-like motion.

In Fig.II.3, power spectra for the time series of a single element and for the mean-
field are shown. The time scale of the mean-field dynamics is much longer than the
time scale of the single element dynamics.

Note that the width around the closed curve remains finite even ifN is further
increased. The collective dynamics is not really on a two-dimensional torus, and it
indeed is not represented by low-dimensional dynamics as will be demonstrated in the
next section. On the other hand, since the mean-field dynamics does not approach a
point with the increase ofN , it is also different from noise. Hence the collective motion
has some structure, although it is high-dimensional. (We will see this in SectionII.5).

Another set of examples is given in Figs.II.4 and II.5, which are the time series
plotted at every seven steps and the first return maps2. In Fig.II.4(a), quasi-periodic-
like motion is not detected in the mean field dynamics, but some structure exists in the
return map, whereas in the time series, a characteristic time scale seems to exist. With a
slight increase ofa, the dynamics of the mean field is changed as in Fig.II.4(b). In this
case, the return map does not show a clear structure, and the variation of the mean field
remains at the same magnitude with the further increase ofN . With a much slighter

2 The choice of plotting only every second or seventh step in the above figures (Figs.II.2, II.4, andII.5) is
not arbitrary but there is a reason for it, which will be clarified in the following chapters.
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Fig. II.3: Power spectrum of time series of a single elementxn(i)(upper) and the mean field
hn(lower), a = 1.5449205, ε = 0.0005, N = 107. While the spectrum for a single
element has a peak at the frequency 0.5, continuous component is much larger than
that of the mean field dynamics. Hence, the mean field dynamics is more regular than
the dynamics of each element. The slow dynamics of the mean field is shown by the
peak at the frequency 0.025269.

increase ofa, the mean field comes to oscillate more regularly, whereas the motion is
scattered around torus motion. In Fig.II.5, the mean field values are plotted with the
change ofε for the same value ofa. The amplitude of the motion gets smaller and
smaller with the decrease ofε.

Figs.II.2, II.4, andII.5 indicate that the mean field dynamics plotted in the return
maps shows some structures, ranging from lower-dimensional structures, such as a
torus, to higher-dimensional stochastic structures. In order to characterize the mean
field dynamics, the MSD of the distribution of the mean field values is useful as a
measure of the amplitude of the mean field dynamics3.

As we have shown in Fig.II.1, the MSD of the mean field converges to a certain
value in the thermodynamic limit. Accordingly, the amplitude of the mean field dy-
namics has a converged value.

The collective motion, detected in the return map (Figs.II.2, II.4 and II.5), has
some low-dimensional-like structure but the width of scattered points around the ‘torus’
remains finite in the thermodynamic limit. This may suggest high dimensionality of the
collective motion. In order to measure the number of degrees of freedom of the mean
field dynanics, we have measured the correlation dimension (Grassberger & Procaccia
1983a,b) of the mean-field time series.

In Fig.II.6, the change of slope in the correlation integrald log C(r)
d log r is plotted as

3 When the mean-field does not have clear structures as in the case of Fig.II.4(b), the MSD is useful
to measure the variation around a fixed point. On the other hand, when the mean field dynamics shows
quasiperiodic motion as shown in the previous section, it would be reasonable to define the amplitude dis-
tinguished from “noisy component”. As we will see in the next subsection, however, such separation is
impossible, because the “noisy component” does not get smaller with the increase of system sizeN . Even
in this case, the MSD can roughly measure the size of the collective motion.
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Fig. II.4: Time series and return map. Time series are plotted at every seven steps. The parame-
ters(a, ε) are (a)(1.69620, 0.008), (b) (1.69755, 0.008), (c) (1.69844, 0.008).

a function of the scale size with increasing the system sizeN . For a smaller system
size, the correlation dimension increases monotonically for decreasing the scale as for
random variables. For a lager system size, curves have a plateau at a value less than the
correlation dimension two, which seems to correspond to the collective motion. In a
smaller scale, however, the correlation dimension becomes large. At this smaller scale,
the motion is hard to be distinguishable from noise. If the scale of this regime would
get smaller with the sizeN , one could conclude that the collective dynamics is low-
dimensional in the thermodynamic limit. As shown in Fig.II.6, this is not the case. The
slope function converges to a certain curve with the increase ofN where the plateau
region does not get wider. Thus, the mean field dynamics does not converge to lower
dimensional dynamics in the thermodynamic limit.

The characteristic time scale of the collective motion is much slower than the time
scale of a single element. In order to show how the time scale of the mean field dynam-
ics depends on the system sizeN , we measure the rotation number of the mean field
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Fig. II.5: Time series and return map. Time series are plotted at every 7 steps. The parameters
(a, ε) are (a)(1.86, 0.1), (b) (1.86, 0.01), (c) (1.86, 0.001).

dynamics as a function of the system sizeN . Here, the rotation numberR is defined as

R = lim
t→∞

1
t

t∑
n=1

∆θn

2π
, (II.6)

where∆θn is the angle variable formed by the two vector(hn−〈h〉, hn+1−〈h〉), and
(hn+1 − 〈h〉, hn+2 − 〈h〉) defined around the average mean field〈h〉 over time.

In Fig.II.7, the rotation number is plotted as a function ofN . In most cases, the
rotation number seems to converge to a certain value. It is suggested that the mean
field dynamics approaches certain dynamics, independently of the system size for large
enoughN . In Fig.II.8, the power spectra of the mean field dynamics have some peaks.
The low frequency components correspond to the collective dynamics, while the high
frequency component represents the element dynamics. The power spectra seem to
converge to a certain function, and the peaks do not sharpen any more even with the
increase ofN . This may corresponds to the previous observation that the correlation
dimension of the mean field dynamics as a function of obserbed scale seems to con-
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Fig. II.7: Rotation numberR of the mean field dynamics, plotted as a function of system sizeN .

verge to a certain function, as is shown in Fig.II.6.
In Summary, the correlation dimension shows a plateau within the middle scale in

Fig.II.6. This plateau corresponds to the lower dimensional dynamics, that is shown in
the return maps (Figs.II.2, II.4 andII.5). For larger values ofN , the amplitude and the
characteristic time scale seemingly converge to certain values, which are characteriza-
tions of the collective motions.

Fig. II.8 (following page): Power spectrum for the mean field dynamics with the increase of the
system sizeN . The paramtersa, andε are (a)(1.5439343, 0.0001),
(b) (1.698440, 0.008) and (c)(1.6962, 0.008).





Phenomenology of Collective Motion

105

106

107

108

109

10-3 10-2 10-1 100

P
ow

er
 S

pe
ct

ru
m

Frequency

(c)
N=103

104

105

106

107

104

105

106

107

108

10-3 10-2 10-1 100

P
ow

er
 S

pe
ct

ru
m

(c)

(b)
N=103

104

105

106

107

102

103

104

105

106

107

10-3 10-2 10-1 100

P
ow

er
 S

pe
ct

ru
m

(c)

(b)

(a)
N=103

104

105

106

107





Tongue Bifurcation Structures of Collective Motion

1e-05

0.0001

0.001

1.7 1.705 1.71 1.715 1.72 1.725 1.73 1.735 1.74

M
S

D

a

 

0.020
0.015
0.010

Fig. II.9: Mean square deviation (MSD) of the mean field dynamics is plotted as a function ofa.
ε = 0.02, 0.15, 0.01. N = 216.

II.4 Tongue Bifurcation Structures of Collective Motion
We have seen that the collective motion seems to strongly depend on the parame-

ters. In this section, we will study the dependence of the amplitude of the collective
motion on the parametersa andε. Accordingly the global phase diagram of the collec-
tive motion will be shown.

In Fig.II.9, the MSD are plotted as a function of the parametera for several coupling
strengthε. Here the system size is chosen to be large enough, to see the behavior of the
MSD converged in the thermodynamic limit. Two points should be noted here. First,
the change of the MSD is not monotonic witha, but is rather complicated. Second,
although the change of the MSD is complicated with fine structures, these structures
still keep some similarity against the changes of the coupling strengthε. For example, a
similar but slightly different structure is visible fora ≈ 1.7025 for ε = 0.01, a ≈ 1.715
for ε = 0.015, anda ≈ 1.73 for ε = 0.02.

In Fig.II.10 the parameter dependence of the MSD is plotted on the 2-
dimensional (a, ε) plane. First, regimes with larger amplitude form tongue-like struc-
tures, each of which starts at some point or intervals of parametera atε = 0, and grows
with ε. Second, the growth of the edge in a tongue-like structure has a nonlinear de-
pendence on the parametersa andε. Third, for almost all parameter values, the MSD
of the mean-field remains finite in the thermodynamic limit.

To see the structure in the parameter space closely, we introduce rescaling of the
parameters. For it, we note that each element obeys the following dynamics,

xn+1 = (1− ε)(1− ax2
n) + εhn (II.7)

wherehn is the mean-field value at time stepn, which can modify the nonlinearity of
each element effectively.
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Fig. II.11: Mean square deviation (MSD) of the mean field dynamicshn are plotted as functions
of the effective nonlinearity parameterA.

Usually, the deviation of the mean field around the mean-field average〈h〉 =
limt→∞

1
t

∑t
n=0 hn is small. Hence it seems reasonable to normalize the variablexn

so as to separate〈h〉 from hn. Introducing scaled variable,

Xn =
xn

1− ε + ε〈h〉
, (II.8)

the dynamics of each element is given by,

Xn+1 = 1−AX2
n + κ · δhn (II.9)

whereδhn = hn − 〈h〉, andA andκ are calledeffective nonlinear parameterand
effective coupling strengthrespectively, given by

A = (1− ε)(1− ε + ε〈h〉)a, (II.10)

κ =
ε

1− ε + ε〈h〉
. (II.11)

In Fig.II.11 we have plotted the MSD by adopting the effective nonlinearity param-
eterA instead ofa. Note that similar structures with a different value ofa in Fig.II.9 are
overlapped around a certain value ofA in Fig.II.11. For smallerε, finer structures can
be seen in a broader structure for largerε. In Fig.II.12(a) the parameter dependence
of the MSD is plotted on the 2-dimensional (A, κ)-plane. Regimes with the collec-
tive motion with a larger amplitude (i.e. larger variance) form tongue-like structures
(called “tongue bifurcation structure”), each of which starts at some point or interval
of parameterA atκ = 0, and grows withκ.

When the effective coupling strengthκ approaches 0, each tongue structure cor-
responds to a window of the single logistic map (Fig.II.12(b)). For instance, between
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Fig. II.13: Scaling relation of tongue structure for period-2 (a), period-3(b), and period-5(c).
εδh are plotted as functions ofδA, whereδh =

√
MSD andδA indicate the deviation

from (a) the band merging point (A = 1.5436890126), (b) the crisis bifurcation
point of period-3 window (A = 1.7903274919), and (c) the crisis bifurcation point
of period-5 window (A = 1.6333587036) of the logistic map, respectively. Line in
each figure is proportional toδA. Hence, the edge ofA in a tongue structure varies
linearly with εδh. The width of a tongue structure increases proportional toεδh.

A ≈ 1.75 andA ≈ 1.79 a tongue structure can be clearly seen in Fig.II.12(a), cor-
responding to the period-3 window of the single logistic map. Although there is a
countably infinite number of windows in the parameter space of the logistic map, it
is difficult to detect the windows for a longer period numerically. However, it is re-
markable that a lot of tongue structures are visible in our model, corresponding to the
windows with a longer period4.

Fig.II.13 shows the scaling structure of the width of each tongue. In Fig.II.13,
the tongue bifurcation structures correspond to the crisis bifurcation pointA0 in the
limit ε → 0 of the period-2 window (band merging point), period-3 window, and
period-5 window of the logistic map. The amplitudeδh =

√
MSD is plotted as a

function ofδA = |A−A0|. In Fig.II.13 the lines constitute a region5,

A0 −A1ε · δhAsmall
< A < A0 + A1ε · δhAlarge

, (II.12)
4 Similar structure has been also obserbed in a globally coupled tent map (Nakagawa & Komatsu1998)
5 See also Fig.III.12 in ChapterIII .
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structure) with a different coupling strengthε. In this figure, the collective motions
belong to the period-2 tongue structure.

whereAsmall and Alarge increase linearly withεδh. As a result, the width of the
tongue structure grows linearly withεδh.6

In each tongue structure, further internal structures exist. For instance, the tongue
corresponding to period-3 window of the logistic map betweenA ≈ 1.75 andA ≈
1.79, has three internal structures, roughly speaking. In order to understand the inner
structure in each tongue, in ChapterIII we shall study the dynamics of each element
and its distribution.

Multiple attractors of the collective motion are found in hysteresis phenomena, that
can be observed in the parameter space at the edge of the tongue bifurcation structures.
In Fig.II.14, the hysteresis curve of the MSD is obtained by increasing or decreasing
the control parametera. For calculation, the final state of a simulation at the previous
value ofa is used for the next initial condition. Thus ina − 1.69848 ∈ [0, 0.0001],
two different collective motions exist depending on the initial condition. Hence, at least
two different attractors coexist depending on the initial condition. In Fig.II.15, the time
series and the return map for each attractor are shown7.

II.5 Scaling of Tongue Structures
In this section, we study the growth of the amplitude and the width of scattered

points withε → 0. In addition to these points, we study how the characteristic time
scale of the mean field motion changes withε.

6 We should note the coupling strengthε is so small thatκ ∼ ε and the dependence onκ can be replaced
by the dependence onε.

7 The topic on the multiple attractor of the collective motion shall be revisited in ChapterVII .
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In Fig.II.16, the return maps of the mean field time series of the period-2 tongue
structure are plotted for several values of the coupling strengthε. The scaled parame-
terA for each is almost same and the difference is not significance. In these parameters,
the mean-field dynamics shows clear quasiperiodic-like motions.

With the increase of the coupling strengthε, the amplitude of the motion becomes
large. Although the width around the quasiperiodic-like motions remains finite as
is mentioned in SectionII.3, the width decreases with the decrease of the coupling
strengthε.

In Fig.II.17, δh =
√

MSD in a tongue structure is plotted as a function ofε for
several tongue structures. The growth ofδh obeys a power law relation,

δh = εα, (II.13)

with the scaling exponentα < 1, which depends on each tongue structure8.
As to the growth of the amplitude of the mean field, it has been pointed out the

linear scaling ofδh with ε for the globally coupled logistic map, i.e.,δh ∼ ε (Kaneko
1992, Ershov & Potapov1997), while the present result indicates the deviation from
the linear scaling withε. This deviation is considered to be due to the following distinc-
tion. Whereas we have payed attention mainly to tongue structures corresponding to
windows of the logistic map, such window structures in the logistic map are out of con-
sideration inErshov & Potapov(1997)9. Possible differences between the collective
motions originating will be discussed at the end of this Chapter again.

8 We should note that it is possible to take a proper limit ofε → 0 in a tongue structure, sustaining the
high-dimensional chaotic motion. For example, take the limit as the scaled parameterA keeps the vaule at
the crisis bifurcation point of the logistic map. In this way, the above scaling behavior is checked keeping
the high-dimensional chaotic motion.

9 Our analysis is based on the rescaled parameterA. Although in the previous studies (Kaneko1992,
Ershov & Potapov1997) a was used, the difference will not be essential for smallε.
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Next we consider the width around torus-like motion. In Fig.II.18, the width around
the quasiperiodic-like motions is plotted as a function ofε for several tongue structures.
First we should note that not only quasiperiodic-like motions but also a variety of the
mean field motion exist as is shown in SectionII.3. However, here we focus only on
the quasiperiodic-like mean field motions, where the width around the quasiperiodic-
like motion can be relatively easily measured10. As is shown in Fig.II.18, the width
decreases with the decrease ofε. And the growth is scaled in proportion toε1. Re-
membering that the amplitude of the collective motion is growth as Eq.(II.13) with the
scaling exponentα < 1, in the small coupling regime, the torus-like motion becomes
finer with the decrease ofε.

The much longer time scale of the mean field dynamics than the dynamics of an
element is an important characteristic of the collective motion, as is shown in Fig.II.3.
Asymptotic behavior of these time scales withε → 0 is also an interesting problem. In
Fig.II.19, the frequency of the slow component is computed from the peak of the power
spectrum, and is plotted as a function ofε for each tongue structure11. The shorter time
scales are independent ofε, and are not shown in the figure. The longer time scales get
even longer withε → 0, as∼ ε−β , where the exponentβ > 0 depends on each tongue
structure. Hence, it is implied that the characteristic time scacle becomes arbitrary long
with the coupling strengthε goes to zero.

Is there any relation between the scaling relation of the amplitude and of the char-
acteristic time scale? The exponents ofα for the amplitude andβ for the characteristic
time scale are plotted in Fig.II.20. The exponents seems to indicate a cetain relation as
β = −0.5α + 0.5. However, further studies will be needed to clarify this relation.

10 The method to measure the width around the torus-like motion will be described in ChapterV.
11 Here the valueA for each tongue structure is chosen so thatδh is maximized for a givenε, although

dependence of the frequency onA is not significant.
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Fig. II.19: The longer time scales of the mean field dynamics are plotted as a function ofε. They
are obtained from the power spectrum for the parameter with maximum MSD value
in the period-2, 3 and 5 tongue structure for a givenε.

II.6 Summary and Discussion
In this Chapter, we have studied collective motion in the desynchronized state of the

globally coupled logistic map. It is shown that collective motion with a much longer
time scale and lower dimension can emerge at a macroscopic level. The dependence
of the amplitude of the collective motion ona and ε is studied. After some change
of variables and parameters, tongue structures are clearly seen in (A, κ)-plane. Each
tongue structure corresponds to a periodic window of the logistic map.

With the increase of the coupling strengthε, each tongue structure grows in pro-
portion to ε · δh, whereδh is the amplitude of the mean field variation. Hence the
width of each tongue would increase withε2, if δh ∝ ε would hold. In contrast with
earlier studies (Kaneko1992, Ershov & Potapov1997) supporting this linear scaling,
our calculation suggests that the scaling may obey a different power law. (See also the
arguments below)

The tongue structure is based on the underlying windows of the single logistic map.
Windows exist in any neighborhood of the parameter space of the single logistic map.
The tongue bifurcation structures expands with the increase ofε from each window
of the single logistic map atε = 0. So, the tongue structure is expected to occupy
a relatively large region in the parameter space. This is one of the reasons why we
have focused our attention on the collective behavior in the tongue structures. Still,
we have to note that there is a positive measure in the parameter space of the logistic
map, corresponding to chaos. Hence, at least for small coupling in the GCM, there
are parameters with a positive measure which do not belong to any tongue structure.
Indeed, we have observed that the amplitude of the mean-field variation drops less than
to 0.1 (see Fig.II.11), at the parameter where the tongue structure disappears. Although
no clear structure in the return map is detected there, this motion still indicates some
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coherence among elements and is distinguishable from noise12.
Analytical estimation of the mean field dynamics obtained by S. V. Ershov, et

al. (Ershov & Potapov1997) is based on singularities of distributions. Only the fluctu-
ation due to singularities of the probability distribution function is taken into account
by neglecting regular parts of the probability distribution function. Our result may im-
ply that the regular parts, which are relevant to the windows of local mapping, should
be taken into account for the collective motion. Careful analysis of both the regular
and singular parts may be required. This might be the reason why the scaling ofδh is
different from Ershov’s estimation. We will see in the next chapter the relation beteen
the mean field fluctuation and the singularity in the distribution function.

However, as we have noted above Ershov’s analysis is applied to the collective
dynamics originated in the chaotic regime of the single logistic map. In Fig.II.21, the
square root of MSD of the collective motion originated in the chaotic regime is plotted
as a function of the coupling strengthε. The nonlinear parametera is chosen such
that the scaled nonlinear parameterA gives agreement with the nonlinear parameter of
the logistic map, which corresponds to chaotic points13. The plot suggests the linear
scaling of the amplitude with the coupling strengthε, that agrees with the Ershov’s
estimate.

Accordingly, we may outline a scenario as follows. On one hand, the finite interval
in the parametera for a givenε corresponds to the tongue structures. In this parameter
region, the scaling relations depends on each of the tounge structure. On the other
hand, there are points in the parametera which do not belong to any tongue structure.
In this regime, the scaling relation of the amplitude obeys the linear scaling of the
coupling strengthε. Since such parameters do occupy not a finite domain but points in
the parametera, such regime may constitute boundaries of the toungu structures.

Even if the elements are completely desynchronized from each other, for some
12 Kaneko called this coherence ‘hidden coherence’ (Kaneko1990b, 1992).
13 Indeed, the parameter in the logistic map generating a chaotic orbit does not have width, while such

parameters have a positive measure (Collet & Eckmann1980).
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case, some kind of predictability may emerge in the macroscopic variables, although
all the Lyapunov exponents are positive. It might be also important to study how the
predictability of the collective motion reflect onN -dimensional phase space structure
or on microscopic quantities, such as the Lyapunov spectrum. With such study, the
mechanism for the collective motion must be clearly distinguishable from the self-
organization mechanism (Nicolis & Prigogine1977) or the slaving principle (Haken
1978). Although we have presented a heuristic way to extract such dynamics in the
present paper, it is hoped that a systematic method to characterize collective motion
shall be developed. So far, we have no conventional tool for detecting the lower di-
mensional collective signals out of high dimensional signals. In ChapterV, we will
develop a tool to distinguish and characterize several collective dynamics in GCM.





CHAPTER III

INSTABILITY OF STATIONARY STATE

AND

GENESIS OFCOLLECTIVE MOTION

Stability of the stationary state of the globally coupled map in the fully desynchro-
nized state is studied. It will be shown that the fixed point solution of the mean

field dynamics is unstable. Based on this analysis, the scaling relation of the amplitude
will be studied. Next, we shall demonstrate the origin of the slow motion of the col-
lective motion. The mechanism of the bifurcation of the collective motion will be also
investigated.

III.1 Introduction
As we have seen in the preceding Chapter, the mean field dynamics of globally cou-

pled map (GCM) given by Eq.(II.1) oscillates, instead of converging to a fixed point.
This implies that the distribution function of the elements does not also remain station-
ary but depends on time. The probability distribution function in the thermodynamic
limit (N →∞) is defined as

ρn(x) = lim
N→∞

1
N

∑
i

δ(x− xn(i)). (III.1)

In Fig.III.1, the evolution of the probability distribution function is shown, using
numerical calculation. Indeed, the figure indicates that the distribution function is not
stationary but oscillates in time. Thus, the collective motion indicated by the mean
field dynamics means that the stationary state of the distribution function isunstable.
As is shown in the preceding Chapter, the collective motion is quite common in GCM.
Hence, the instability of the stationary distribution function may be a general charac-
teristic of GCM.

In the next Section, we shall study the linear stability of stationary states in GCM. In
general, it is quite difficult to discuss the stability of the distribution function. However,
focusing our attention only on a characteristic structure of the distribution function,
which is a common structure of the present GCM, we will study the stability of the
mean field dynamics around a stationary fixed point.

The parameters for Fig.III.1 belong to the tongue structure in the period 3 window.
Since the mean field dynamics has a component of period 3, the density in the figure is

This chapter is partly based onShibata & Kaneko(1998b, Section 6 and 7).
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Fig. III.1: The distribution dynamics is plotted as a function of time. The density is shown with
the use of a gray scale. The darker region indicates the higher density. The parameters
area = 1.8445,ε = 0.015, N = 105.

plotted every third step in order to see the slow modulation ofρn(x). Due to the chaotic
oscillation of each element (the mixing property of the mapping), the distribution func-
tion spreads overx ∈ [−0.8, 1.0]. However, the distribution is not monotonous, and
has some structure. The density is relatively large in the three regions aroundx ≈ 1.0,
x ≈ 0.0 andx ≈ −0.8. This numberthreeis the period of the window in the logistic
map for the corresponding tongue structure. The number of elements in each of the
three regions oscillates in time, and the phase of each oscillation is mutually different.
In SectionIII.4 we will briefly describe how the collective motion is formed, focusing
on the tongue structure.

III.2 Instability of Stationary State
First we study the linear stability of stationary states of GCM (II.1).
In the present GCM (II.1), since the coupling among the elements is given by the

mean field,

hn =
∫

f(x)ρn(x)dx, (III.2)

the evolution of the distribution functionρn(x) is written as

ρn+1(x) =
∫

dy δ (Fn(y)− x) ρn(y), (III.3)

with Fn(x) = (1 − ε)f(x) + εhn. Eq.(III.3) is called (Self-Consistent) Perron-
Frobenius equation1 (Kaneko1992, Pikovsky & Kurths1994b).

For the GCM of the logistic map, the stability of the stationary solution of this
equation has been discussed byKaneko(1995), andErshov & Potapov(1997). (Perez

1 Sometimes, it is called Frobenius-Perron equation.
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& Cerdeira(1992) also discussed the instability of the stationary state, though their
analysis was not based on the Perron-Frobenuis equation). For the globally coupled
tent map case, where the local mapping is given byf(x) = 1 − a|x|, the stability of
the stationary state has also been discussed more theoretically byJust(1995), Ershov
& Potapov(1995), Morita (1996), andChawanya & Morita(1998).

Here, we will study the linear stability of the mean field values of the GCM of
logistic map, according toChawanya & Morita(1998) (which is studied for the tent
map case, though). Although shape of the distribution function depends strongly on
the parameters, we focus only on a characteristic structure of the distribution function
of the present GCM. The characteristic structure of the present GCM is the inverse
square-root singularity. This means that we discuss the asymptotic behavior of a small
displacement of the mean field value around a fixed point with increasing time.

The fixed point of the mean field value is given byh0 =
∫

f(x)ρ0(x)dx, where
ρ0(x) is a fixed point solution of Eq.(III.3), i.e.,ρ0(x) =

∫
dyδ(F (y) − x)ρ0(y) with

F0(x) = (1 − ε)f(x) + εh0. If we consider small deviationηn of hn from h0, i.e.,
ηn = hn − h0, the evolution ofηn is given by

ηn =
∞∑

τ=1

Lτηn−τ + O(η2), (III.4)

whereLτ is a linear coefficient to give the linear response of the mean field value atn
step to the displacement atn− τ step.

Let us first estimate the coefficientLτ . From Eqs.(III.2) and (III.3), Lτ is given by

Lτ = ε

∫
dx

dF (τ)(x)
dx

ρ0(x), (III.5)

whereF (τ)(x) ≡ F ◦ · · · ◦ F︸ ︷︷ ︸
τ

(x) with

F (x) = (1− ε)f(x) + εh0. (III.6)
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Fig. III.3: The linear coefficient̃Lτ is plotted as a function ofτ . The parameter is (a)a =
1.5443690 or (b) a = 1.839286755. For the numerical calculation, first we con-
structed the partition with the partition points given by{0, f−1(0), · · · , f−p(0)}.
Then, the transition matrix among the partitions is obtained fromf(x). In this
way, the markov partition is approximately constructed. Using this markov partition,
df (τ)(x)/dx andρ0(x) is obtained numerically.p is indicated at the right hand side
of the figures.

Whenτ is small,Lτ may strongly depends on the parameters. On the other hand,
for sufficiently largeτ , as will show in the following, it is expected that the value ofLτ

shows similar behavior asymptotically.
For τ � 1, the value ofF (τ)(x) oscillates along thex-axis quite frequently. Con-

sider the partition ofx at the points such thatF (τ)(x) = 0 (see Fig.III.2). Denoting

the typical value of|dF (τ)(x)
dx | by d(τ), the interval of partitions is estimated at1/d(τ).

With the increase ofτ , the number of points such thatF (τ)(x) = 0 grows quite rapidly,
and1/d(τ) decreases exponentially. Ifρ0(x) is constant in a partition, the integration
of Eq.(III.5) in this partition is zero (see Fig.III.2). Hence, the partitions whereρ0(x)
changes drastically contribute to the estimation ofLτ much more than the partitions
whereρ0(x) does not change so much.

In the present case, the most drastic change ofρ0(x) comes from the inverse square-
root singularity, which is the characteristic structure of distribution function for the
logistic map. The integration in the partitions containing the characteristic structure is
estimated at∫ c+1/d(τ)

c

dF (τ)(x)
dx

ρ0(x)dx ≈
∫ c+1/d(τ)

c

d(τ)|x− c|− 1
2 dx ∼

√
d(τ), (III.7)

wherec is a certain point ofx. On the other hand, sinced(τ) is considered as the
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average of expansion rate,d(τ) is roughly estimated at2

d(τ) ∼ eλmτ , (III.8)

whereλm is the Lyapunov exponent of the mappingF (x). Consequently, the coeffi-
cient of responseLτ to the perturbation grows exponentially with the rate1

2λm as3

Lτ ∼ O(ε e
1
2 λmτ ). (III.9)

In Fig.III.3, instead ofLτ , the coefficientL̃τ =
∫

dxdf(τ)(x)
dx ρ0(x) obtained nu-

merically is plotted as a function ofτ . (See also the caption of Fig.III.3 for the method
of numerical calculation in detail). Although thẽLτ is obtained fromf(x) instead
of F (x), notice thatLτ is essentially given byLτ = ε

1−ε L̃τ when ε is small4. In

Fig.III.4, |L̃τ | is plotted. |L̃τ | grows exponentially with the rate12λm asymptotically,
though some deviation from Eq.(III.9) is obserbed for smallτ . Thus, the above esti-
mation (III.9) is here numerically confirmed.

Let us back to Eq.(III.4). In order to study the linear stability of the stationary
state, we need to analyse the eigenvalues of the coefficients{Lτ}. If there exists the
eigenvalue larger than unity, the stationary state is then linearly unstable. From the
above estimation, the value of

∑∞ |Lτ | diverges exponentially. Consequently, it is
expected that the eigenvalue larger than unity exists, and the stationary state is linearly
unstable even if the coupling strengthε is arbitrary small.

III.3 Scaling of Fluctuation
In the preceding Section, we estimate the growth rate of an infinitesimal perturba-

tion around a stationary state. In the estimation, we take the contribution into account
only from the singular part of the distribution function. Based on the above discus-
sion, we can consider a rough estimation of the asymptotic amplitude of the mean field
motion.

Due to a perturbation applied to the mean field, the displacement in the distribution
function is expanded exponentially. The growth rate of this expansion is considered as
the Lyapunov exponent of the local mapping. After the magnitude of the displacement
in the distribution function reaches the order of unity, however, the displacement starts
to decay and the information of the perturbation disappears. When the magnitude of
the perturbation isεη, such a time scaleτc is estimated atτc = − log (εη)/λm. Thus,
the exponential growth of the perturbation given by Eq.(III.9) may be valid within the
order ofO(τ) time steps.

Then, from Eq.(III.4), the displacementηn is estimated atηn ∼ O(√εηn−τc
).

Considering to average over the possible displacements, the asymptotic amplitude〈η〉
of the mean field motion is given by〈η〉 ∼ O(ε).

This rough estimation gives agreement with the result given byErshov & Potapov
(1997). Moreover, in the preceding Chapter, we have presented the scaling relation of
the amplitude, obtained numerically, whose scaled nonlinear parameter corresponds to

2 Here we neglect the fluctuation of the expansion rate.
3 This relation (III.9) can be generalized for the globally coupled logistic type maps withf(x) = 1 −

a|x|α (α ≥ 1), asLτ ∼ O(ε e(1− 1
α

)λmτ ). (T. Chawanya 1998, private communication)
4 We can also consider thatf(x) in L̃τ is given by1−Ax2 with the effective nonlinear parameterA =

(1− ε)(1− ε + ε h0)a.
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Fig. III.5: The distribution functions at timen = 0(∗), 20(•), 40(◦) are shown.

the chaotic regime of the logistic map (Fig.II.21). This numerical result suggested the
linear scaling withε. The present estimation also agrees with this numerical result.

Notice again that in this estimation we consider the contribution only from the sin-
gular part of the distribution function. Remember that the deviation from this linear
scaling has benn obserbed within the tongue structure, in which the coherent motion
with lower-dimension-like structure such as torus is often found. The deviation im-
plies that it is not enough to evaluate only the singular part for considering such low-
dimensional slow motions.

III.4 Collective Behavior
Through Self-Consistent Dynamics

It is interesting to study the collective dynamics as an interference between mean
field dynamics and individual elements. Before we present a scenario for slaw collec-
tive motion, we show the formation of self-consistent dynamics between the mean field
dynamics and individual elements.

For simplicity, we adopt the case, in which the effective nonlinear parameterA
is near the period-two band merging point. The time series and the return map are
given in Fig.II.2. The distribution function is given in Fig.III.5 every twentieth step.
In this case, distribution of elements can be divided into two regions aroundx∗ ≈
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0.54. During these forty time steps the density at the left region (x < x∗), given in
Fig.III.5(b), decreases with time, whereas the density in the other region plotted in
Fig.III.5(c) increases with time. Although the change of the distribution is quite small,
there is a systematic oscillation (cf.Fig.III.10).

Consider the density dynamics in each of the two regions. In Fig.III.6(a), the
density in each region,NL andNR are plotted as a function of time.NL denotes
the probability in the region smaller thanx∗ in Fig.III.5, andNR(= 1 − NL) , i.e.,
NL =

∫
x<x∗

ρn(x)dx, andNR =
∫

x>x∗
ρn(x)dx = 1−NL. (The definition for each

region is given below in detail). The distribution in each region oscillates in time. In
Fig.III.6(b), the mean field time serieshn−1 andhn are plotted at every two steps, since
the mean field has a period-two component. The mean field also oscillates in time with
the same period asNR, andNL, but the phase of the mean field oscillation is different
from that of the population dynamics in Fig.III.6(a).

To see how the mean field dynamics and the distribution dynamics interfere with
each other, we have constructed a return map of the above two quantities. Fig.III.7
gives a return map of the distribution dynamics and the mean field dynamics. This
figure implies that a self-consistent dynamics is formed as follows,{

h̃n = h̃(h̃n−1, Ñn−1),
Ñn = Ñ(h̃n−1, Ñn−1),

(III.10)

where each̃h andÑ is a function ofh̃n = hn−1 − hn andÑn = NL − NR. If the
mean field would be an external force for each element, the population would respond
to the mean field value. Since the distribution organizes the mean field dynamics, the
collective motion can be described as a self-consistent relation between the distribution
dynamics and the mean field dynamics.
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From the above viewpoint, we demonstrate now how the distribution is modified as
the mean field varies slowly.

If the mean field would be an external force for each element, we could study the
dynamics of each element as the logistic map with an external force. This is valid if
the mean field varies slowly. In this case, the equation of motion for each element is
given by,

xn+1 = Fn(xn), (III.11)

with
Fn(x) = (1− ε)(1− ax2) + ε〈h〉+ εδhn. (III.12)

If we would not takeδhn into account, the dynamics of each element would be
the same as the dynamics of the logistic map. Since each tongue structure has good
correspondence with a window of the logistic map as shown in SectionII.4, we focus
on the window structure of the logistic map. In the single logistic map, the periodp
window starts at the tangent bifurcation point of thep’th iterate of the map, and then
the period doubling bifurcation proceeds with the increase ofa, until the window ends
up by crisis (see Fig.III.8). In this case, the probability distribution is stationary, and
hence, the probability that an element takes a value out ofp distinct regions is1p .

Now, takeδhn in Eq.(III.12) into account as an external force. The bifurcation of
the perturbed logistic map (III.12) has a crucial difference from usual bifurcation of the
logistic map. In Fig.III.9, examples of the third iterates of the map with external force
are shown. In Fig.III.9(a) the region aroundx ≈ 0 can attract the elements, while the
two regions aroundx ≈ 0.95 andx ≈ −0.75 cannot. In Fig.III.9(b)(c), while three
regions cross the liney = x, one or two of the regions collapses due to crisis. At the
tangent bifurcation, the mapy = F

(3)
n (x) is tangential toy = x at only one point.

This is in strong contrast with the logistic map without external force, where tangent
bifurcation or crisis occurs at 3 points ofx at the same value ofa andε for the period
3 window.
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Fig. III.8: Behavior of the third iterate of a logistic map. (a) After tangent bifurcation at three
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In general, consider a periodp window. In the presence of the external force, for
each of thep points in thep’th iterate of the map (III.12), the tangent bifurcation, or
crisis occurs at different value ofa andε. Hence, the number of distinct attractors can
be less thanp, and depending ona and ε. Even if the elements are attracted intop
distinct regions, the probability for each ofp distinct regions is not equal to1p .

As we have seen in the previous section, slow modulation of the mean field leads to
the dynamics of the distribution. With the slow modulation ofδhn in time, the behavior
of each element changes as well. In other words, with the change ofδhn, bifurcation
can occur in the effective map for each element,

F (p)
n = Fn ◦ Fn−1 ◦ · · · ◦ Fn−p+1, (III.13)

which is thep’th iterate of the map Eq.(III.12). Sinceδhn changes over time, such
bifurcation occurs in time. To distinguish this bifurcation from the notion of bifurcation
in parameter space, this type of bifurcation is calledinternal bifurcation5.

To characterize the effective map at everyp time steps, we introduce the invariant
measureP (p)

n (x) at timen determined by the solution of the Perron-Frobenius equa-
tion,

P (p)
n (x) =

∫ 1

−1

P (p)
n (y)δ(x− F (p)

n (y)))dy. (III.14)

If P
(p)
n (x) changes slowly, the differenceρn(x)− P

(p)
n (x) decreases with time.

On the other hand, a change in the distribution functionρn(x) can lead the mean
field hn =

∫
f(x)ρn(x)dx to a certain critical value, at which the internal bifurcation

occurs in the effective map Eq.(III.13). For instance, a small difference of the mean
field induces the effective map to be tangential to the liney = x at one point, or it
induces one region of the effective map to be collapsed by crisis. As a result, the

5 In the next Chapter, we shall study a GCM in which the nonlinearity parametera is distributed over
elements. In that case, some sort of differentiation of dynamics over elements enabled the collective mo-
tion. To characterize the differentiation, the notion ofinternal bifurcationwill be introduced as a snapshot
representation of one system.
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Fig. III.9: Behavior of the third iterate of a logistic map with period 3 external force. In contrast
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the other regions cannot attract orbits due to the the crisis.
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nature of the invariant measureP (p)
n (x) of the effective map changes qualitatively.

This drastic change inP (p)
n (x) occurs, beforeρn(x) approachesP (p)

n (x). So,ρn(x)
cannot be close toP (p)

n (x).
With this internal bifurcation, the distributionρn(x) does not actually approach

P
(p)
n (x), because 1) the velocity of changeρn(x) is finite, and 2) the change ofρn(x)

results in the qualitative change ofP
(p)
n (x). Consequentlyρn(x) oscillates in time.

This qualitatively explains why the mean field does not approach a fixed point at the
thermodynamic limit.

Let us look again at the example in SectionIII.4 and try to describe the dynamics
under the above scenario. Since the effective nonlinearity parameterA is near the band
merging point of the single logistic map, it is useful to define the two regions shown
in FigIII.6, that correspond to the two bands of the logistic map near the band merging
point. The effective dynamics is given by the second iterate of map,

F (2)
n (x) = (1− ε)

(
1− a

{
(1− ε)(1− ax2) + εhn−1

}2
)

+ εhn. (III.15)

The linesy = F
(2)
n (x) andy = x cross at three points withinx ∈ [−1, 1] whena < 2

andε > 0. The middle of these points is denoted byx∗n. R andL denote the regions
wherex > x∗n andx < x∗n respectively.6

Consider the case whereA is near the band merging point of the single logistic
map. If the mean field would be on an unstable fixed point, these two regions would
collapse due to crisis. As we have discussed above, however, the dynamics of the
mean field modulates the effective map Eq.(III.15). As a result, for this parameter
regime, there are two cases: 1) the modulation of the map is large enough, so that theR
region is an “unstable region”, while theL region is a “stable region” (and vice versa),
and 2) the modulation of the map is small, so that both theL and theR regions are
“unstable regions”. Here, we use the term “stable” and “unstable” as follows. Consider
a trajectory starting from a region obtained by the iteration of the mapy = F

(2)
n (x) at

a certain time stepn. If the trajectory stays within the region, we call the region “stable
region”. If the trajectory leave the region, we call the region “unstable region”. By
analyzing the mapy = F

(2)
n (x), we can always determine the “stability of regions” at

each time step.
In Fig.III.10, the oscillation of population in these two regions is shown asÑn =

NL − NR (see also Fig.III.6 and Fig.III.7). In Fig.III.10, the deviation of invariant
measureP (2)

n (x) in two regions, i.e.̃In = IL − IR, whereIL =
∫

x∈L
P

(2)
n (x)dx and

IR = 1−IL, is also plotted as a characterization of effective map (16). During the time
stepsn ∈ [6, 46], ρn(x) approachesP (2)

n (x), until the change ofρn(x) inducesP (2)
n (x)

to change qualitatively at time stepn = 46. This qualitative change inP (2)
n (x), and

consequently the qualitative change in the effective map is due to crisis in theL region.
In this way, the stability of the regions changes and some elements in theL region
move to theR region. As a result, the distributionρn(x) approachesP (2)

n (x) again,
until the next crisis enables a flow from theR region to theL region.

To sum up, the distribution functionρn(x) changes slowly, in this way approaching
Pn(x) until the modulation of the mean field changes the internal bifurcation structure
qualitatively. In this example, the qualitative change in the internal bifurcation structure
is due to local crisis. As a result of the change of the internal bifurcation structure in

6 Note that if we would notδhn into account, i.e.hn = 〈h〉, x∗ would be independent of time andx∗

would denote the period-1 unstable fixed point of the single logistic map.
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the two regions, the elements are attracted to a different region. With the repetition of
this stability change of the regions, the mean field oscillates quasi-periodically. This
mechanism of change in each band holds for any period-p band(window) regime where
elements are attracted to and repelled from each band region successively with the
internal bifurcation.

III.5 Bifurcation of Tongue Structures
As we have seen in Fig.III.10 in the previous Section, one of the two regions in the

second iterate of the effective map Eq.(III.15) collapses due to crisis and the stability
of the regions changes in time. In this Section, we will show that with the increase of
A, the time interval during which the regions are unstable becomes longer.

There are three kinds of time intervals. In one case, both of the two regionsR and
L, define in the previous Section, are stable.P

(2)
n (x) is positive for the two regions but

there is no connection between the two positive regions. In the second case, only one
of the two regions is unstable, andP (2)

n (x) is positive for one region and zero for the
other. In the third case, both of the two regions are unstable.P

(2)
n (x) is positive for the

two regions and there is continuous connection between them. The ratios of these time
intervals are plotted in Fig.III.11 as a function ofA − A0, whereA0 is the parameter
for the band merging point of the logistic map. ForA − A0 ≤ −0.6 × 10−6 crisis
never occurs in both the two regionsL andR, whereas forA − A0 > −0.6 × 10−6,
the time interval during which the regions are unstable gets longer. For the parameter
beyondA−A0 = 3.6×10−6, the two regions are unstable due to crisis bifurcation for
every time step. Hence, the period-2 tongue structure starts at the parameterA−A0

∼=
−0.6 × 10−6, where one of the two regions of the effective map Eq.(III.15) becomes
unstable for some time steps. It ends at the parameterA − A0

∼= 3.6 × 10−6, where
both the two regions become unstable all the time due to the crisis.
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Consider an internal bifurcation condition of Eq.(III.13) (for instance, crisis or tan-
gent bifurcation in each element.). Forε = 0 the bifurcation condition holds at a single
parameter value. Forε > 0, due to the oscillation of the mean field, within the param-
eter intervalAsmall(ε) < A(ε) < Alarge(ε) in the (A, ε)-parameter space, the internal
bifurcation condition is satisfied for some steps. Hence, the edge of a tongue structure
starts atε = 0 from tangent bifurcation point and crisis bifurcation point. It is extended
into the parameter space forε > 0, where each bifurcation condition is satisfied during
some time steps (see Fig.III.12 for period-2 tongue structure). The scaling of the width
of the tongue structure will be discussed in SectionII.5.

III.6 Bifurcation in a Tongue Structure
Even within one tongue structure, we can observe different types of collective mo-

tion. With the change of the parameterA andκ, in the collective dynamics a kind of
bifurcation occurs. Since the collective dynamics remains high-dimensional, it is not
described as a standard bifurcation in low-dimensional dynamical systems. Here we
study a mechanism of such change in the collective dynamics.

In SectionII.3, it is shown that a slight increase ina induces a qualitative change
of the collective dynamics (Fig.II.4). To see this quantitatively, it may be convenient
to measure the rotation number of the collective dynamics. In Fig.III.13, the rotation
number is plotted as a function ofA. In the regime plotted in the figure, a period-seven
tongue structure is observed betweenA−A0 ∈ [−0.744×10−3, 1.499×10−3], where
A0 denotes the tangent bifurcation point of the period-7 window of the logistic map.
Typical examples of the collective dynamics are shown in Fig.II.4.

As we have already introduced in SectionIII.4, the invariant measureP (7)
n (x) of

the effective map,
F (7)

n = Fn ◦ Fn−1 ◦ · · · ◦ Fn−6, (III.16)
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may be useful to see the change of the dynamics with the increase ofA. In Fig.III.14,
three examples ofP (7)

n (x) are plotted as a function of time. For the parameter of
Fig.III.14(a), the parameterA is close to, but smaller than, the tangent bifurcation
point of the period-7 windowA0. Therefore, if the fluctuations of the mean field would
be ignored, none of the seven regions could attract the elements because the seventh
iterate of the logistic map Eq.(III.16) would not cross the liney = x. With the influence
of the mean field dynamics, on the other hand, the effective map Eq.(III.16) is modified
to cross the liney = x at a few regions whereP (7)

n (x) > 0 (for instance betweenn =
2000 and2100 in Fig.III.14(a)). These two or three regions can attract the elements
until these regions come to be destabilized by crisis (for instance atn ≈ 2100). After
the crisisP

(7)
n (x) spreads over the whole region because none of the seven regions

of the map Eq.(III.16) cross the liney = x. Then the regions attracting the elements
switch to different positions. This process continues successively.

With the increase ofA, the number of regions attracting the elements due to the
tangent bifurcation of the map Eq.(III.16) increases (Fig.III.14(b)). In Fig.III.14(b),
5,6,or 7 regions are stabilized successively.

With the further increase ofA, all the seven regions of the map Eq.(III.16) al-
ways cross the liney = x, while some of these seven regions are destabilized by
crisis (Fig.III.14(c)). With the increase ofA, for each of the seven regions, the time
interval during which the region is unstable increases. The tongue structure ends at the
parameterA − A0 = 1.499 × 10−3, where all the seven regions are destabilized by
crisis during every time step. Thus, the collective dynamics of the period-seven tongue
structure ends. As a result, the amplitude of the mean-field dynamics reduces to about
0.1 (see Fig.III.13).

Although we have explained the bifurcation in the internal tongue structure for the
period-7 case, this kind of bifurcation structure is common to a band region in any
period. For instance, in Fig.II.12(a) with the period-3 tongue structure (starting from
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Fig. III.13: Mean square deviation and rotation number of the mean field dynamics are plotted
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1.69844 are indicated as (a), (b) and (c), corresponding to the parameters in Fig.II.4
and Fig.III.14.

A ∈ [1.75, 1.79032] at ε = 0) and in the period-5 tongue structure(starting fromA ∈
[1.6244, 1.6333] at ε = 0), similar bifurcation structure is observed, where the change
in the number of coexisting stable regions corresponds to such bifurcation structure.

III.7 Summary and Discussion
In the present Chapter, we have first studied the linear stability of the stationary

state of the mean field motion. The estimation considering the contribution from the
singularity of the distribution function suggests that the perturbation grows exponen-
tially and the stationary state is unstable. Based on the estimation, we have next studied
the scaling relation of the amplitude of collective motion. It indicates the linear scal-
ing with the coupling strengthε. Although this agree with the scaling in the chaotic
parameter regime, the deviation exists within the tongue structures.

Then, focusing on tongue structures, we have demonstrated how such a collec-
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Fig. III.14: Invariant measure of the effective map Eq.(III.16) P
(7)
n (x) is plotted as a function

of time. The horizontal axis is time and the vertical axis isx. In this figure, the
region withP

(7)
n (x) > 0 is plotted by a solid line. When the whole region is filled

by a line, none of the seven regions of the map Eq.(III.16) cross the liney = x, and
all the regions are connected as a single attracting set. In (a) and (b) some of the
seven regions of the map Eq.(III.16) cross the liney = x, while the other regions do
not. In (c), on the other hand, all seven regions of the map Eq.(III.16) cross the line
y = x, while some of the seven regions are destabilized by crisis. The parameters
correspond to those of Fig.II.4.

tive motion emerges. The dynamics of the mean field and each element form some
self-consistent relationship, so that collective motion is possible. This self-consistent
dynamics is formed by the following repetition: accumulation of elements into some
regions leading to change in the mean field dynamics, which introduces a stability
change of the regions, and accumulation of elements into a different region occurs,
which, again..... This gives internal bifurcation in elements and in time.

The bifurcation is also seen in the parameter space. Since the nature of the internal
bifurcation varies with the nonlinearity parametera in a tongue structure, the number
of coexisting regions inx changes, which makes the collective motion qualitatively
different. Hence, in a tongue structure, different kinds of collective motions have been
observed. A schematic figure of tongue structure is presented in Fig.III.15.

Here, we should note a future problem. In order to connect the statistical approach
in SectionIII.2, and the studies after SectionIII.4, we need a futher study about the
eigenvalues of Eq.(III.4).
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within the range fromτ = 1 to p indicated at the right hand side of this figure.
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Fig. III.17: Absolute value of the eigenvalue of Eq.(III.4) for several coupling strengthε is plot-
ted as a function of the argument of the eigenvalue. The values ofε are indicated
outside the figure. (a)a = 1.5443690 and (b)a = 1.83928675. The summation in
Eq.(III.4) is taken within the range fromτ = 1 to 30(a) or 28(b).

Fig.III.16 indicates the absolute value of eigenvalues of Eq.(III.4), which are ob-
tained numerically. For numrical calclation, it is hardly to take the summation in
Eq.(III.4) through sufficiently largeτ to obtain the converged eigenvalues. Then, we
consider a finite number of terms included in the summation in Eq.(III.4). Within our
numerical result, Fig.III.16 may suggests that with the increase of the number of terms
included in Eq.(III.4), the absolute value of eigenvalues increases, and the relative re-
lation among the values does not change so much.

Expecting these properties, next we study the behavior of the eigenvalues for two
cases, which we have seen in Fig.III.4. In Fig.III.4(a) some large deviation from the
scaling relation of Eq.(III.9)(b) exists in the smallτ regime, while in Fig.III.4(b) such
a large deviation seems much smaller. This is the difference of these cases, though
we expect that the coefficients of both cases grow similarly as Eq.(III.9) in the largeτ
regime. The corresponding plot of eigenvalues of each case is depicted in Fig.III.17,
where the absolute values of eigenvalues for several coupling strengthε are plotted.

In Fig.III.17(a), the behavior of the eigenvalues suggests Hopf-like bifurca-
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tion7. The eigenvalue with the largest absolute value might correspond to the lower-
dimensional-like collective motion. On the other hand, in the case of Fig.III.17(b),
the eigenvalue with the largest absolute value is around the argument ofπ for smallε.
Such a case might correspond to the collective motion without low-dimensional like
motion. Indeed, the mean field behavior of the parameters of Fig.III.17(b) does not
show low-dimensional structure.

This implies that low-dimensional structure of the collective motion might be rel-
evant to the behavior ofLτ of small τ regime. Remember that the behavior ofLτ

within the smallτ regime reflects the nature of larger scale structure of the distribution
function, which strongly depends on the parameters. Therefore, on the one hand, the
dependence of the eigenvalues onLτ of the smallτ regime should be studied. On the
other hand, it should be investigated howLτ depends on the large scale structure of the
distribution function. As a result, it will be clarified which characteristic of GCM is
relevance to the low-dimensional-like slow collective motion.

7 In Fig.III.17(a), the absolute values of all eigenvalues for small coupling strength are smaller than unity.
However, we expect that the value increase beyond unity if we include sufficiently many terms in the sum-
mation of Eq.(III.4).





CHAPTER IV

HETEROGENEITYINDUCED ORDER

Collective behavior is studied in globally coupled maps with distributed nonlinear-
ity. It is shown that the heterogeneity enhances regularity in the collective dynam-

ics. Low-dimensional quasiperiodic motion is often found for the mean-field, even if
each element shows chaotic dynamics. The mechanism of this order is due to the for-
mation of an internal bifurcation structure, and the self-consistent dynamics between
the structures and the mean-field.

IV.1 Introduction
Up to the present Chapter, the system consists of homogeneous elements. In other

words, identical elements are coupled with each other. However, in many systems ele-
ments are heterogeneous. In Josephson junction array, each unit is not identical. In an
optical system, the gain of each mode depends on its wavenumber. In a biological sys-
tem, each unit such as a neuron or a cell is heterogeneous. So far the study of a coupled
system with distributed parameters is restricted to synchronization of oscillators (Ku-
ramoto1975). Thus it is important to check how the notions constructed in globally
coupled dynamical systems can be applicable to a heterogeneous case. In the present
Chapter we demonstrate that the collective motion emerges in a heterogeneous system
through self-consistent dynamics between the mean-field and internal differentiation of
dynamics.

Here we adopt a globally coupled map with a distributed parameter,

xn+1(i) = (1− ε)fi(xn(i)) +
ε

N

N∑
j=1

fj(xn(j)), (i = 1, 2, 3, · · · , N), (IV.1)

wherexn(i) is the variable of thei’th element at discrete timen, andfi(x(i)) is the
internal dynamics of each element. For the dynamics we choose the logistic map
fi(x) = 1 − a(i)x2, where the parametera(i) for the nonlinearity is distributed be-
tween[a0−aw, a0+aw] asa(i) = a0+ aw(2i−N)

N . (In the following, the parameters are
indicated bya = a0 ± aw). We note that the essentially same behavior is found when
a(i) is randomly distributed in an interval or the couplingε(i) is distributed instead of
a. In this case, the mean field is given by,

hn =
1
N

N∑
j=1

fj(xn(j)). (IV.2)

This chapter is based onShibata(1996) andShibata & Kaneko(1997).
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Fig. IV.1: Mean square deviation of the mean field is plotted versus coupling strengthε. a0 =
1.9, aw = 0.025. The number of elements is varied fromN = 24 to 218. Collective
motions are clearly seen in some parameter regimes such asε ≈ .018, .038 < ε <
.058, .083 < ε < .1, .105 < ε < .12, and.13 < ε < .15.

When elements are identical withaw = 0, the present model reduces to a globally
coupled map (GCM) studied in the previous Chapters.

When elements are not identical, one might expect that collective dynamics would
be destroyed and the mean-field become stationary. On the contrary, the collective mo-
tion is found ranging from low-dimensional torus, and low-dimensional chaos to high-
dimensional chaos, as will see in the next Section. In the homogeneous case, even if we
observe a quasiperiodic-like mean field motion, the motion is still high-dimensional,
as is indicated by the finite width around the torus-like structure (SectionII.3). On the
other hand, in the heterogeneous case, the width of scattered motion around a certain
motion seems to decrease with the system sizeN . Thus, in the latter case, the collective
motion shows complete low-dimensional coherence. This is an important distinction
between the homogeneous systems and the heterogeneous systems.

In the next Section, we shall provide some of the phenomenology of the heteroge-
nous GCM. The exsitence of the complete low-dimensional collective motion is sug-
gested. In SectionIV.3, we show that the formation of a self-consistent dynamics
between the mean field dynamics and the internal bifurcation structure makes the col-
lective order possible. This Chapter concludes in SectionIV.4.

IV.2 Effects of Heterogeneity on Collective Motion
First we begin with the behavior of the mean field fluctuation in our system.

Fig.IV.1 shows the MSD plotted as a function of the coupling strengthε with the in-
crease of the system size. Roughly speaking the MSD measures the amplitude of the
mean field motion (see the discussion on the MSD in SectionII.3). As the system size
increases, the MSD decreases up to a certain size and then stays constant or increases
to a certain constant within wide parameter region in which power spectrum has delta
peaks1. This result implies the existence of some structure and coherence in the mean
field dynamics. As will see in the next, such collective behavior is rather general in our
heterogeneous system and is observed more clearly than in the homogeneous GCM.

1 Each of such a region may have some correspondence with the tongue structures shown in SectionII.4.
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Fig.IV.2 shows the return map of the mean field values of GCM (IV.1). The mean
field dynamics indicates a clear quasiperiodic motion, though the elements never syn-
chronize with each other and the system is in a high-dimensional chaotic state. The
width around the torus-like structure seems to decrease with increasingN .

To check whether the width of scattered points around the torus motion de-
crease withN , we have measure the correlation dimension (Grassberger & Procac-
cia 1983a,b) of the mean-field time series. Within the numerical result, the width of
scattered points around the tours converges to zero in the thermodynamic limit. Corre-
sponding plots of slopes are given in Fig.IV.3, where the plateau at the value unity is
expanded withN , and thenoise regionis shrank to the scaler ≈ 0. Accordingly, the
mean field dynamics converges to dynamics on a two-dimensional torus. This is an im-
portant difference2 from the homogeneous case as is shown in Fig.II.6 of SectionII.3.

With the change ofa0, aw, or ε, the mean-field dynamics shows the bifurcation
from torus to chaos accompanied by phase lockings. Further bifurcation proceeds to

2 In the heterogeneous case, the law of large numbers is recovered around the torus motion.
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Fig. IV.6: Snapshot pattern ofxn(i) plotted versusa(i). Here the mean-field is locked to period-
3 (to be more precise period-6).a0 = 1.9, aw = 0.05, ε = 0.055. Time step 5000
(a), and 5001 (b). At the next iterate, the coherent structure ofxn(a) for a < 1.88
moves tox ≈ 1, while another iterate leads to the structure of (a).

higher-dimensional chaos (while some structure is still kept). Several routes to chaos
are observed, including that through the doubling of torus (Figs.IV.4 andIV.5). There
are two cases for the collective motion, although for both cases each element oscillates
chaotically without mutual synchronization. In one case (given in Fig.IV.4) there are
negative Lyapunov exponents3 (78 for (b), forN = 500; whose number decreases with
ε). In the other case (given in Figs.IV.2 andIV.5), all exponents are positive. Hereafter
we show how thisheterogeneity-induced orderis possible (mainly for the former case).

IV.3 Internal Bifurcation
The scenario to be presented for theheterogeneity-induced orderconsists of two

parts. First, we demonstrate the formation ofinternal bifurcation structure4, made
possible by the distribution of parameters, which leads to the self-consistent relation
between each dynamics and the mean-field. Second, it is shown that the repetitive
change of internal bifurcation structure makes possible to form the low-dimensional
collective motion in the mean-field. The organization of the low-dimensional bifurca-
tion in sub-systems from a high-dimensional system is a key concept for the collective
dynamics.

First we study the formation of theinternal bifurcation structure. In our system
nonlinear parameters are distributed over elements. Dynamics of thei’th element de-
pends on the parametera(i). Hence it is relevant to draw the motion versus the pa-
rametera. Fig.IV.6 gives snapshot patterns ofxn(a) for the period-3 locking5 in the
mean-field (Fig.IV.4(a)). It looks like an ordinary bifurcation diagram plotted against
the change of external parameters, but the patterns of Fig.IV.6 are just snapshot rep-
resentations of one system consisting ofN elements. Still, successive plots of the
pattern show that the dynamics of elements changes witha(i). In Fig.IV.6 elements
with 1.85 < a(i) < 1.887 show period-3 oscillation with almost synchronization.

3 Still the extensive property in terms of the Lyapunov dimension is expected.
4 In ChapterIII , the notion ofinternal bifurcationhas been introduced, in order to specify the bifurcation

in an effective map of each element, which takes place in time. In the present Chapter, as we will show
below, we extend the notion of the internal bifurcation to the heterogeneous case.

5 The period can be3× 2k, although this doubling is irrelevant to the following arguments. For example,
the period is six for Fig.IV.4(a)
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to Fig.IV.8.

With the increase ofa(i), tangent bifurcation occurs at one point6 arounda ≈ 1.85.
For largera(i), period-doubling and crisis are observed in the snapshot pattern, if it
is viewed as the transition of attractor with the change of control parameters. As the
parametera is larger, successive bifurcation occurs beyond which elements fall into a
fully chaotic state. Hence we call the structure as internal bifurcation. We also note
that the clustered motion (at smalla(i)) and fully desynchronized motions coexist.

If the mean-field were an external parameter for each element, those bifurcations
would occur in each sub-system according to their nonlinear parameters. The mean-
field dynamics, in our case, is organized self-consistently from each element dynam-
ics according to the internal bifurcation. The internal structure consisting of period-3
synchronized motion and desynchronized motion forms the period-3 oscillation of the
mean-field. On the other hand the period-3 mean-field motion plays the role of ex-
ternal forcing which causes the period-3 clustered motion and desynchronized motion
according to the each element’s parametera(i).

When the coupling strengthε is smaller (Fig.IV.4(b)), another tangent bifurcation
occurs. This bifurcation leads to the formation of the second clustered motion. As
the second clustered motion is formed, the mean-field is varied, which changes the
effective map for each element. Then the period-3 locking in the mean-field collapses,
when we need the second scenario for the self-consistent dynamics between the internal

6 In the single logistic map, the third iterate of the mapy = f(f(f(x))) is tangential toy = x at three
points corresponding to the periodic points. On the other hand, for the mappingfδn (x) = 1−ax2+δn with
a time-dependent parameterδn as in the present case, the third iteratey = fδ3(fδ2(fδ1(x))) is tangential
to y = x only at one point, unless there is certain restriction to the external fieldδ. In other words one
specific phase of the period-3 oscillation is selected in accordance with the external parameter.





Internal Bifurcation

(a) (b) (c) (d)

0 200 400 600 time steps

h h h(h    )n-2 n  n-1n-3

-0.3

-0.1

0.1

0.3

0.5

M
ea

n 
F

ie
ld

Fig. IV.8: Time series of the mean-fieldshn(hn−3)(solid line), hn−1(long dashed line),
hn−2(dashed line) are plotted every 3 steps(n = 3m). The average of the 3 steps
hn+hn−1+hn−2

3
(dotted line) is also plotted. The steps shown as (a), (b), (c), (d) cor-

respond to those in Fig.IV.7 respectively.

bifurcation structure and the mean-field7.
As the simplest example, we discuss the case the quasiperiodic mean field motion

shown in Fig.IV.4(b). Fig.IV.7 shows the snapshots ofx(a) corresponding to this case.
We note that two clusters of coherent motions are formed for some parameter values of
a(i) and collapse successively, along with the quasi-periodic change of the mean-field.

To see our scenario here, we need to clarify (a) how the internal structure deter-
mines the mean-field and (b) how the mean-field modifies the stability of these internal
bifurcation structure.

The step (a) is rather simple. The mean-field is determined by

hn−1 =
1
N

N∑
i=1

fi(xn−1(i)) =
1
N

N∑
i=1

xn(i). (IV.3)

On the other hand, the stability of clustered motion is determined by the effective map
for each element:

x3n = Fh3n−1(Fh3n−2(Fh3n−3(x))), (IV.4)

which is the 3rd iterate ofFhn
(x) = (1 − ε)(1 − ax2) + εhn. Change of the mean-

field modifies the shape of Eq.(IV.4), which induces the change in the stability of each
clustered motion. Then the internal bifurcation structure is modified. Thus the process
(b) is obtained. To sum up (a) and (b), the following feedback process exists:

1: Change in the Internal Bifurcation Structure
⇓ ⇑

2: Change of the Mean-Field
4: Change of the stability

in the structure
⇓ ⇑

3: Change in the Map for each element

(IV.5)

(The 2nd, 3rd and 4th processes occur simultaneously which determine the dynamics
in each element. )

7 Within a small parameter region between locking state (Fig.IV.4(a)) and quasi-periodic
state (Fig.IV.4(b)), the two attractors coexist depending on the initial conditions.
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It should be noted that the time scale of the change of the structure is longer than
the oscillation of each element (see Fig.IV.8). For the above case, the oscillation of
each element is near period-3, while the modulation (to change the phase of period-3
oscillations) takes170×3 steps. For the case of Fig.1a the distribution of elements has
a 7-banded structure (roughly speaking), where the modulation to change the phase has
a longer time scale (25×7 steps). Such slow modulation of the mean-field dynamics is
formed by the above feedback diagram. This separation of time scales is necessary to
have a low-dimensional collective order; otherwise high-dimensional chaotic dynamics
remains.

Let us consider the above scenario in detail along Fig.IV.7, which are shown
through3n steps, because the clustered motion is period-3.

Two-clustered motion is formed atx = 0 (denoted byc0) and atx = 1 (denoted by
c+) (Fig.IV.7(a)). Thec0-clustered motion breaks down ata ≈ 1.918 by crisis and the
elements with largera(i) than this value leave the cluster. The 2nd tangent bifurcation
occurs nearx = 1.0 anda = 1.92, and thisc+-clustered motion attracts elements
which have left thec0-cluster. This makes the mean-fieldhn−1 increase due to the
Eq.(IV.3) ((a)(b) in Fig.IV.8). At the same time,hn andhn−2 decrease, as is expected
by successive mappings ofc0 and c+ from stepn. This change of the mean-field
modifies the map Eq.(IV.4).

The modification of the map Eq.(IV.4) destabilizes thec0-cluster and stabilizes the
c+-cluster (Fig.IV.7(b)(c)). Thec0-cluster starts to collapse from smaller values ofa
successively, and with this process thec+-cluster grows from lagera to smaller. This
makes the mean-fieldhn−1 andhn−2 increase, andhn decrease ((b)(c) in Fig.IV.8).
This change of the mean-field modifies the map for each element, and a new clustered
motion is formed nearx = −0.7 (denote asc−), besides the cluster atx = 1 (c+).
The same process as above continues, by changing the roles of clusters untilc+-cluster
collapses andc0-cluster is formed (Fig.IV.7(d)). In this way the feedback (IV.5) is
repeated.
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IV.4 Summary and Discussion
We have shown the formation of low-dimensional collective dynamics in a coupled

chaotic system with heterogeneity. The mechanism of the formation is due to the in-
ternal bifurcation structure afforded by heterogeneity, and the self-consistent feedback
dynamics between the mean-field and synchronization of elements. We note that this
mechanism is expected to be quite general, as long as each local dynamics allows for
bifurcations with the change of some parameters, distributed by elements. Thus our
scenario for the collective order can be observed in coupled systems such as Josephson
junction arrays, and multi-mode laser systems, as well as in biological networks.

In SectionIV.3, although we have explained the above scenario for the period-3
window case due to its simplicity, this mechanism is generally applied to our system,
since each (logistic) dynamics contains a variety of windows and bifurcations.

We note that the above feedback process in SectionIV.3 between the mean-field
and the internal bifurcation structure is possible, since the value ofa is non-identical.
The role of elements is differentiated as to the synchronization and desynchronization,
which temporally changes as in the case for chaotic itinerancy (Kaneko1989a, Ikeda
et al.1989, Tsuda1992). We also note that a slow modulation of the mean-field dy-
namics is formed by the feedback. This separation of time scales is necessary to have
a low-dimensional collective order; otherwise high-dimensional chaotic dynamics re-
mains in the mean-field.

In some cases the window structures in the internal bifurcation are not clearly vis-
ible. Such an examples is shown in Fig.IV.9, which corresponds to the mean field
dynamics given in Fig.IV.2. In this case, it will be necessary to consider effects of the
heterogeneity on the distribution function seriously. As a result, the distinction between
the heterogeneous and the homogeneous cases will be clarified.

In the next Chapter, the mean field orbits of the heterogeneous GCM will be charac-
terized, introducingcollective Lyapunov exponent. Then, the existence of the collective
chaos is clarified.





CHAPTERV

COLLECTIVE CHAOS

An algorithm to characterize collective motion is presented, with the introduction
of collective Lyapunov exponent, as the orbital instability at a macroscopic level.

By applying the algorithm to a globally coupled map, existence of low-dimensional
collective chaos is confirmed, where the scale of high-dimensional microscopic chaos
is separated from the macroscopic motion, and the scale approaches zero in the ther-
modynamic limit.

V.1 Introduction
Low-dimensional chaotic motion often arises from a system with many degrees of

freedom. A classical examples is chaos in a fluid system such as Rayleigh-Bénard con-
vection and Couette-Taylor flow, in chemical reactions such as Belousov-Zhabotinskii
reaction, and in biological systems such as EEG patterns in brains and metabolic re-
actions in cells. In these systems, whereas some observables show low-dimensional
chaotic motion, very high-dimensional chaotic motions should underlie at a micro-
scopic scale. It is interesting to ask how macroscopic chaos coexists with such a mi-
croscopic chaotic motion (See also the discussions in ChapterI).

A canonical answer for the condition to have low-dimensional chaos at a macro-
scopic level is given by separation of scales distinguishable from a microscopic level.
Still it is not clear how such separation is possible, since chaos can lead to the amplifi-
cation of a small-scale error.

To address the question, we consider a certain dynamical system that shows some
lower dimensional motion for a certain macroscopic variable (e.g., average of micro-
scopic variables), whereas microscopic variables keep high dimensional chaos. There
the number of positive Lyapunov exponents is proportional to the system size, and di-
verges in thethermodynamics limit(infinite system size limit). In this Chapter, in order
to characterize such macroscopic motion, Lyapunov exponent at a macroscopic scale is
introduced, which specifies the growth rate of a certain small displacement between the
macroscopic orbits. By studying the dependence of the exponent on the length scale in
macroscopic phase space and the system size, it is shown how thecollective chaosis
compatible with microscopic chaos, and how they are separated at the thermodynamic
limit. Here chaos in the variables of the dynamical system is referred to asmicroscopic
chaos.

In the next Section, the collective Lyapunov exponent is introduced by ex-
tracting some macroscopoic information from a finite-size Lyapunov exponent. A

This chapter is based onShibata & Kaneko(1998a).
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method to detect the collective Lyapunov expinent is also presented. In SectionV.3,
heterogeneity-induced order which is studied in ChapterIV is revisited in order to
demonstrate our method. Then, the existence of thecollectice chaosis clarified in the
heterogeneous GCM. This chapter concludes in SectionV.4.

V.2 Collective Lyapunov Exponent
First note that the conventional Lyapunov exponents for the dynamical system are

not relevant to the characterization of collective motion. In order to calculate the Lya-
punov exponent for the collective motion, an infinitesimal limit of disturbance to a
trajectory should be taken at a ‘macroscopic’ level. Rigorously speaking, the macro-
scopic level appears in the thermodynamic limit (system sizeN → ∞). Thus, it is
necessary to take the thermodynamic limit first and then the limit of disturbance scale,
to characterize the collective dynamics. However, in the conventional computation of
the Lyapunov spectrum we first take the infinitesimal limit of disturbance applied to
the orbit, and see the asymptotic behavior of the spectrum in the thermodynamic limit.
Hence, the exponent cannot characterize the collective motion. This problem can be
resolved by noting the order of limit to define the Lyapunov exponent.

Since we are concerned with a system of a large but finite size, the above order of
limit implies that we have to keep the disturbance amplitude finite, so that the distur-
bance is studied at a macroscopic level (roughly speaking the disturbance at a macro-
scopic variable should be larger than1/

√
N ). To study such orbital instability, the

finite-size Lyapunov exponent introduced by Vulpiani et al. (Paladin et al.1995, Aurell
et al.1996) is useful. It is given by

λδ0(∆) =
〈

1
τ

log
∆
δ0

〉
, (V.1)

whereτ is the maximum time such that|x′n−xn| < ∆ for trajectoriesxn andx′n start-
ing fromx0 andx′0 = x0 + δ0 respectively, while〈·〉 is an average over the trajectories
starting from different initial values. The length scale∆ can be considered as the scale
of observation.

Here we consider measurement of the finite-size Lyapunov exponent for macro-
scopic variables with a certain finite size disturbance at a macroscopic level. As long as
the system size is finite, this finite-size Lyapunov exponent reflects not only the macro-
scopic motion but also the microscopic chaos. On the other hand, if low-dimensional
macroscopic dynamics has a characteristic time scale separated from the microscopic
dynamics, it will be possible to extract the growth rate of perturbation in the collective
motion from the finite-size Lyapunov exponent for the macroscopic variable(s). To do
so, we postulate the following assumptions that are expected to hold if the collective
dynamics is low-dimensional chaos or on a torus.

First note that in the limit∆ → 0 andδ0 → 0, the finite-size Lyapunov exponent
λδ0(∆) for macroscopic variable in finite system size is expected to converge to the
maximum Lyapunov exponentλm, which is determined by the conventional Lyapunov
exponents for the microscopic variables directly.

Considering that the collective dynamics appears by coarse-grained macroscopic
variables, we postulate that in the macroscopic phase space there are length scales∆ ∈
[∆m,∆C ], where the macroscopic variable is characterized bycollective Lyapunov
exponentλC . Below ∆ < ∆m the microscopic chaos dominates, while the orbit is
out of the attractor for∆ > ∆C at a macroscopic level. To have low-dimensional
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Fig. V.1: Schematic representation of the collective Lyapunov exponent.

collective dynamics, it is postulated thatλC is independent ofN (as long as it is large
enough), and that∆m should approach zero withN →∞while∆C remains finite (see
Fig.V.1).

Based on the above assumptions, we can have a form of the finite-size Lyapunov
exponent as a function of the scale∆. Let δn denote the distance from the original
trajectory at time stepn. For the scale∆ < ∆m, δn increases proportionally with
eλmn, i.e., δn = δ0e

λmn. Henceτ(∆) = 1
λm

log ∆
δ0

follows, independently of the
collective dynamics.

On the other hand, for the scale∆m < ∆ < ∆C , δn grows in proportion to
eλCn for a chaotic case withλC > 0, or δn grows in proportion tonκ for a torus
case with a certain constantκ. Considering the microscopic time scale denoted by
τm = 1

λm
log ∆m

δ0
, δn = ∆meλC(n−τm) for a chaotic case, orδn = ∆m(n − τm)κ/C

for a torus case with a certain constantC. The constantC may specify a property of the
phase diffusion, and may reflect the macroscopic dynamics accordingly. Correspond-
ing to each collective motion,τ(∆) and the finite-size Lyapunov exponentλδ0(∆) are
given by

τ(∆) =


1

λC
log ∆

∆m
+ 1

λm
log ∆m

δ0
(chaos)

C
(

∆
∆m

) 1
κ

+ 1
λm

log ∆m

δ0
(torus)

, (V.2)

and

λδ0(∆) =


λmλC log ∆

δ0

λC log ∆m
δ0

+λm log ∆
∆m

(chaos)
log ∆

δ0

1
λm

log ∆m
δ0

+C( ∆
∆m

)
1
κ

(torus)
, (V.3)

where∆m, andλC , or κ andC are fitted parameter to data1, λm is the maximum
Lyapunov exponent, andδ0 is the value of initial disturbance. In order to obtain the
values of parameters∆m, andλC , or κ andC easily, it is convenient to transform
Eq.(V.3) to removeδ0 dependence of the data. For it, we definet(∆) as t(∆) =
τ(∆)+ 1

λm
log δ0, which characterizes the time for amplification of error from a certain

scale independent ofδ0. From Eq.(V.2), we obtain

t(∆) =


1

λC
log ∆ +

(
1

λm
− 1

λC

)
log ∆m (chaos)

C
(

∆
∆m

) 1
κ

+ 1
λm

log ∆m (torus)
. (V.4)

From data, we can easily obtaint−∆ plot (t− log ∆ or log t− log ∆ plot), in which
1 Here we userC in this equation forC1/κ in the previouse notation.





Heterogenity Induced Order: Revisited

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5

h n
+

1

hn

(a)

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5

h n
+

1

hn

(b)

Fig. V.2: An example of return map for chaotic collective motion. The parameters area =
1.92 ± 0.044, ε = 0.1 and (a)N = 104, and (b)N = 107. Points(hn, hn+1) are
plotted over3× 104 steps after transient are discarded.

∆m appears as a shift of constant, andλC or κ is given by a slope in a suitable plot2. In
order to confirm the existence of the low-dimensional collective motion, it is necessary
that∆m decreases withN as1/

√
N for a constantλC .

V.3 Heterogenity Induced Order: Revisited
To demonstrate our method and to show the existence of some lower dimensional

macroscopic motion, we study a certain coupled dynamical system, which shows col-
lective motion. Here we adopt aheterogeneousglobally coupled map (GCM) with a
distributed parameter,

xn+1(i) = (1− ε)fi(xn(i)) +
ε

N

N∑
j=1

fj(xn(j)), (V.5)

wherexn(i) is the variable of thei’th element (i = 1, 2, 3, · · · , N ) at discrete timen,
and fi(x) is an internal dynamics for each element. For the internal dynamics we
choose the logistic mapfi(x) = 1 − a(i)x2, where the parametera(i) for the non-
linearity is distributed between[a0 − aw, a0 + aw] asa(i) = a0 + aw(2i−N)

N . (In the
following, the parameters are indicated bya = a0 ± aw). As a macroscopic variable,
we adopt the mean field,

hn =
1
N

N∑
i=1

fi(xn(i)). (V.6)

in which the collective motion is contained.
As we have studied up to the present Chapter, when the couplingε is small enough,

oscillation of each element is mutually desynchronized, and the effective degrees of
freedom increase in proportion to the number of elementsN . Still, a macroscopic

2 For our present purpose,C is not an important constant.
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Fig. V.3: λδ0(∆) is plotted for the model (V.5) (�, a = 1.92 ± 0.044, ε = 0.1; ×, a = 1.9 ±
0.025, ε = 0.098; 4, a = 1.9 ± 0.025, ε = 0.11; 2, a = 1.69755 ± 0, ε = 0.008).
N = 107. Initial perturbation amplitudeδ0 is fixed at1.0 × 10−7. For computation,
displacementh′0 = h0+δ0 is created by perturbing the orbit asx′0(i) = x0(i)+

1
N

δ0×
σ, whereσ is a random number in[−1, 1]. Each point is obtained by averaging over
100 samples. Specific choice of this perturbation scheme is irrelevant to our results,
as long as the collective variable is perturbed. Adopting the algorithm to be presented,
the collective motion is shown to be torus (4), low-dimensional chaos (� and×), and
high-dimensional chaos (2).

variable is found to show some kind of ordered motion distinguishable from noise,
ranging from torus to high-dimensional chaos.

For instance, Fig.V.2 gives a return map of the mean field dynamics of the
GCM (V.5). With the increase of the system sizeN , the mean field dynamics shows
some pattern that may suggest low-dimensional chaos. As is shown in the previous
Chapter, the mean field dynamics shows some bifurcation from quasiperiodic motion
to chaos (Figs.IV.2, IV.4, andIV.5). In these cases, microscopic motion keeps high
dimensional chaos, i.e. all of theN Lyapunov exponents are positive, even if there ap-
pears quasiperiodic motion for the collective variablehn asN goes to infinity. Here we
demonstrate the existence of low-dimensional collective motion by the above collective
Lyapunov exponentλC and by theN dependence of∆m.

Fig.V.3 gives the finite-size Lyapunov exponent for the mean field dynamics of the
GCM (V.5). Here we perturb the orbit to give rise to a change fromh0 to h′0 = h0 + δ0

(see the caption of Fig.V.3 for detailed description). In Fig.V.4, t is plotted as a function
of ∆. As is shown in Fig.V.4(a), the slope of the semi-log plot is independent of
N . The Lyapunov exponentλC , characterizing the collective motion, is given by the
inverse of the slope, and is estimated as0.02, which is much smaller than the maximum
Lyapunov exponent of the system (see the caption of Fig.V.5). Note also that no plateau
is visible in the finite-size Lyapunov exponent in Fig.V.3 corresponding toλC . On the
other hand,∆m, given by the shift of the plots, decreases withN , while ∆C does
not show significant change3 Thus the scale for the collective motion∆m < ∆ < ∆C

increases withN . In Fig.V.5, N dependence of∆m is plotted, which gives∆m ∼ 1√
N

,
whose form is expected from the central limit theorem. Hence the emergence of low-
dimensional collective chaos at the thermodynamic limit is confirmed.

3 In this Chapter, we did not measure the scale∆C explicitly, because we need only the existence of such
upper bound (for the perturbation), within which Eq.(V.4) can be fitted, and which does not decrease with
N . Still, we can estimate∆C around 0.2, by extending our method to the regime∆ > ∆C .





Summary and Discussion

0

50

100

150

200

250

300

350

400

0.0001 0.001 0.01 0.1

t

∆

(a)
N=104, δ0=10-16

N=104, δ0=10-11

N=104, δ0=10-7

N=105, δ0=10-16

N=105, δ0=10-11

N=105, δ0=10-7

N=106, δ0=10-16

N=106, δ0=10-11

N=106, δ0=10-7

N=107, δ0=10-11

N=107, δ0=10-7
107

106

105

N=
104

100

101

102

103

104

10-5 10-4 10-3 10-2 10-1

t

∆

(b)
N=107,δ0=10-15N=106,δ0=10-7

N=106,δ0=10-11

N=106,δ0=10-16

N=105,δ0=10-7

N=105,δ0=10-11

N=105,δ0=10-15

N=104,δ0=10-7

N=104,δ0=10-11

N=104,δ0=10-15

N=103,δ0=10-7

N=103,δ0=10-11

N=103,δ0=10-15

0

20

40

60

80

100

120

140

160

0.001 0.01 0.1

t

∆

(c)

N=104

N=105

N=106

N=107

Fig. V.4: The normalized time stepst(∆) are plotted forN = 104, 105, 106, and107, with the
fitted curves Eq.(V.4). (a)chaotic case(with a semi-log plot), fora = 1.9±0.025, ε =
0.098. (b) torus case(with a log-log plot), fora = 1.9 ± 0.025, ε = 0.11. The
maximum Lyapunov exponentλm =0.41(a), 0.39(b) are obtained directly from the
GCM (V.5). The parameters obtained by a least square fitting algorithm give (a)λC =
0.02, and (b)κ = 0.5. (c)high-dimensional case, which does not obey Eq.(V.4), (with a
semi-log plot), fora = 1.6962±0, ε = 0.008. In this case, while the return map shows
some structure,t for N = 106 and107 are not separated any more. For (c), the data
from δ0 = 10−7, 10−11, 10−16 are plotted by the same symbol, since the difference
by δ0 is not observed as in (a) and (b).

We have also applied the present algorithm to the case with a collective torus mo-
tion. Fig.V.4(b), (t−∆ plot), shows thatκ, the inverse of the slope, is 0.5, independent
of N . Indeed this exponent1/2 is expected from the diffusion of phase on the torus.
The decrease of∆m with N is also plotted in Fig.V.5, which again shows the expected
decrease of∆m ∼ 1√

N
. Hence the collective torus motion is demonstrated.

V.4 Summary and Discussion
In this Chapter, we have proposed an algorithm to characterize the collec-

tive (chaotic) motion, and applied to it to a GCM. We have introduced the collective
Lyapunov exponent, to characterize the growth rate of perturbation in the collective
motion. The microscopic chaotic motion exists at a small scale of the macroscopic vari-
able, but such scale∆m is shown to decrease as1/

√
N . Hence, the macroscopic mo-

tion is separated from the microscopic motion and the emergence of low-dimensional
collective motion withN →∞ is confirmed4.

4 The existence of low-dimensional torus motion is detected, as a plateau of the correlation dimension
within a certain range of scale (see in SectionIV.2 and Fig.IV.3). In the case of collective chaos, the plateau
is not clearly visible in the plot, although the plot may suggest some signature of low-dimensionality.
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Fig. V.6: ∆m of the quasiperiodic-like collective motion of GCM with identical parameter is
plotted as a function ofN . The parameters area = 1.86, ε = 0.1 (2), a = 1.5690, ε =
0.01 (•), anda = 1.6962, ε = 0.008 (×).
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Existence of low-dimensional collective chaos in the presence of microscopic chaos
has often been suspected (Bohr et al.1987, Grinstein1988, Bennett et al.1990). Indeed
for a GCM with homogeneous elements (i.e., witha = a0 ± 0), such low-dimensional
collective chaos has not been observed, and the collective motion there is believed to
be high-dimensional as we have seen in the previouse Sections. (In the next Chap-
ter, number of the dimension of the mean field motion will be directory studied.) In
Fig.V.4(c), we have also applied our algorithm to this case. The separation of scales is
not clear and the data cannot be fitted with Eq.(V.4). The shift of the plot gets smaller
with the increase ofN . At least∆m does not decrease as1/

√
N . When the collective

motion shows torus-like structure as is seen in ChapterII , it is possible to measure the
scale∆m of each system size. In Fig.V.6, such∆m is plotted as a function ofN . ∆m

decreases withN as1/
√

N up to a certain system size. However,∆m stays a certain
constant5 even with the further increase ofN . Hence, the scale of the macroscopic
motion in GCM witha = a0±0, is not well separated from the microscopic dynamics.
This gives a crucial difference between theheterogeneousGCM andidenticalGCM.

Thet−∆ plot provides a tool to distinguish low-dimensional collective chaos from
high-dimensional one. In the former case, the plot shifts aslog (

√
1/N) with N , while

for the latter case such shift is not observed. This distinction generally holds, even if
the approximation to get Eq.(V.4) may not be very good (Cencini et al.1998).

Our present algorithm to extract macroscopic motion is applicable to any system
subjected to microscopic chaos, including spatially extended systems from coupled
map lattice to partial differential equations, and coupled oscillators systems (Naka-
gawa & Kuramoto1994, Chabanol et al.1997). It is also expected to be applied even
if we do not know the equation of motion, since the method of (Paladin et al.1995,
Aurell et al.1996) is based on Wolf’s algorithm (Wolf et al.1985) developed for the es-
timate of Lyapunov exponents from experimental data. Thus, we hope that our method
developed in this letter is applicable to data obtained from experiments.

5 Such converged∆m is plotted as width of the torus-like motion in Fig.II.18, in which we discuss the
asymptotic behavior of the width with the coupling strengthε.





CHAPTERVI

NOISELESSCOLLECTIVE MOTION OUT

OF NOISY CHAOS

Effect of microscopic external noise on the collective motion is studied for a globally
coupled map in fully desynchronized state. Without external noise a macroscopic

variable shows high-dimensional chaos distinguishable from random motions. With
the increase of external noise intensity, the collective motion is successively simpli-
fied. The number of effective degrees of freedom in the collective motion is found to
decrease as− log σ2 with the external noise varianceσ2. It is shown how the micro-
scopic noise can suppress the number of degrees of freedom at a macroscopic level.

VI.1 Introduction
Chaotic motion has been observed experimentally in physical, chemical and biolog-

ical systems. Since the evolution of these systems is subjected by external fluctuations,
the observability of deterministic chaos depends on how the external fluctuations in-
fluence on it (Oono & Takahashi1980, Crutchfield1983). Motivated by this point,
extensive studies have been carried out about an enhancement of predictability and
unpredictability of chaotic motion (Crutchfield1983, Matsumoto & Tsuda1983).

So far such studies are restricted to low-dimensional dynamical systems. Low-
dimensional chaotic motion often arises as a macroscopic motion out of microscopic
chaos with many degrees of freedom. Let us consider external fluctuations imposed on
the microscopic level rather than the macroscopic level. Such a situation is probable
in natural systems, such as fluid turbulence, or neural systems with a large number
of neurons. Since chaos can amplify a small-scale error, it would be natural to ask
a question how such a low-dimensional macroscopic chaos is possible out of high-
dimensional chaotic system subjected by external fluctuations (see also the discussion
in ChapterI).

In the present Chapter, in order to address this question, we focus on the effect of
noise on the collective motion of the globally coupled map (GCM).

The present GCM consists ofN elements iterated by a local dynamicsf(x) with
a global coupling among elements and an external noise. Eachi’th element obeys the
equation

xn+1(i) = (1− ε)f(xn(i)) +
ε

N

N∑
j=1

f(xn(j)) + ξn(i), (VI.1)

This chapter is based onShibata, Chawanya & Kaneko1998.
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Fig. VI.1: A return map of the collective motion in GCM (VI.1) without noise.a = 1.86, ε =
0.1, σ = 0.0, N = 107.

at time stepn. Here, we adopt the logistic mapf(x) = 1 − ax2 for the local dy-
namics, and Gaussian random process forξn(i), with 〈ξn(i)〉 = 0 and〈ξn(i)ξm(j)〉 =
σ2δnmδij . The variance of Gaussian distribution is denoted byσ2. In order to bound
the system within a finite region, cut off ofξ is introduced, so thatf(f(1 + ξ) +
ξ) > f(1 + ξ). In this Chapter, however, we study smallσ regime, where the cut off
effect is irrelevant for numerical calculation.

Fig.VI.1 gives an example of the collective motion in GCM (VI.1) without external
noise (σ = 0). We adopt the mean field,

hn =
1
N

N∑
i=1

f(xn(i)), (VI.2)

as a macroscopic observable. While the microscopic motion shows high dimensional
chaos in the sense that the Lyapunov dimension is proportional to the number of el-
ementN , the macroscopic motion shows quasiperiodic-like motion as is shown in
Fig.VI.1. As we have already seen in the previous Chapters, in almost all the parameter
values, the mean field motion shows some coherence ranging from quasiperiodic-like
motions to higher dimensional motions distinguishable from random motions. How-
ever, even if the macroscopic motion looks like quasiperiodic, scattered points around
the torus-like structure depicted in Fig.VI.1 does not vanish even in the thermodynamic
limit (ChaptersII , andV), which indicates high dimensionality of the collective mo-
tion. So far, the mean field motion is believed to beinfinite dimensionalmotion even
when the torus like structure is observed (Ershov & Potapov1997, Chawanya & Morita
1998, Shibata & Kaneko1998b,a).

The addition of noise may, however, destroy such coherence among elements. It has
been shown that the microscopic external noise leads the mean square deviation (MSD)
of the mean field distribution decreases in proportion to1/Nβ with β ≤ 1, whenσ is
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larger than a certain constant (Kaneko1992). It is also reported that, the external noise
sharpens the peak in the power spectrum of the collective motion (Perez et al.1993).
In this Chapter, we clarify an effect of noise on the collective motion in GCM.

In the next Section, we will provide some of the phenomenology of the collective
motion in the noisy GCM. Then, the effect of noise is characterized by the Lyapunov
dimension of the collective motion, which is obtained by calculating the Lyapunov ex-
ponents of the collective motion. The result suggests that the number of degrees of
freedom of the collective motion decrease as− log σ with increasing noise intensityσ.
In SectionVI.3, a kinetic approach to the linear stability of the mean field dynam-
ics is presented. Then, we obtain an argument of the logarithmic dependence of the
dimension upon the noise intensity. This Chapter concludes in SectionVI.4.

VI.2 Effect of Noise on Collective Motion

Consider the one-body distribution functionρn(x) to study the behavior of the
collective motion in the thermodynamic limitN →∞. Since the mean field value

hn =
∫

f(x)ρn(x)dx, (VI.3)

is applied commonly for each element, and the additive noise can be represented as a
deterministic diffusion process of the distribution function in the thermodynamic limit,
the evolution ofρn(x) obeys Perron-Frobenius equation written as

ρn+1(x) =
∫

dy
1√
2πσ

e−
(Fn(y)−x)2

2σ2 ρn(y), (VI.4)

with Fn(x) = (1− ε)f(x) + εhn.
Fig.VI.2 gives an example of return map of the mean field value obtained nu-

merically in GCM with the external noise. The parametersa and ε are the same as
in Fig.VI.1. Numerical calculation was carried out through integration of Eq.(VI.4)
using a sufficiently large dimensional vector as an approximation ofρn(x). As is
shown in Fig.VI.2, the motion has a clearer structure than the motion without noise.
By increasingσ, motions on a torus, locking states and lower dimensional chaos are
observed. With further increase ofσ, the collective motion collapses to a fixed point.
Hence, with the increase of the noise a sort of bifurcation to lower dimensional motions
is observed.

To clarify this point, it seems straightforward to measure the number of effective
degrees of freedom in the collective motion. We calculate the Lyapunov dimension of
the dynamics ofρn(x). The Lyapunov exponents are given by growth rates of tangent
vectors around the orbit, obtained by Eq.(VI.4). For numerical calculation,ρn(x) in
Eq.(VI.4) is approximated by a sufficiently large dimensional vector, and its linear
stability around the orbit is studied.

In Fig.VI.3, the Lyapunov dimension denoted byDC is plotted as a function of the
noise varianceσ2. For sufficiently largeσ, only the stationary state is observed and
DC is zero accordingly. With the decrease ofσ we have found the low dimensional
collective motion (DC ∼ O(1)) ranging from the motion on a torus to low dimensional
chaos. With the further decrease ofσ, the dimension grows as

DC ∝ − log σ2. (VI.5)

This implies thatthe number of effective degrees of freedom goes to infinity in the zero
noise limit, as is expected from the analysis of the collective motion in GCM.
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Fig. VI.2: A return maps(hn, hn+1) of the collective motion in GCM (VI.1) with noise. a =
1.86, ε = 0.1. The noise variances are indicated in each figure. Numerical calculation
was carried out with integration of Eq.(VI.4) using a sufficiently large dimensional
vector as an approximation of the distribution function.
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Fig. VI.3: The dimension of the collective motion is plotted as a function of noise intensity, ob-
tained by the Lyapunov dimension. The Lyapunov exponents are calculated as growth
rates of the tangent vector around the orbit, obtained by Eq.(VI.4). For numerical
calculation,ρn(x) is approximated by a sufficiently large dimensional vector, and the
tangent vectors are orthonormalized at each time step.

VI.3 Strength of Noise and Complexity of Collective
Motion

In the largeσ regime a variety of bifurcations appears, which may strongly depend
on the parameters. However, the above result suggests that the scaling relation (VI.5)
will be a characteristic common to the high-dimensional collective motions in the small
σ regime.

Although the evolution rule is originally given for the microscopic variables, our
main interest is on the behavior of macroscopic variables which would be the only
possible observable in typical cases. Thus, it is highly desirable to obtain a closed
description of the behavior of the macroscopic variables, which could be written as

hn = h(hn−1, hn−2, · · ·), (VI.6)

for an idealized example. In most cases, however, it is quite difficult and may well be
impossible to obtain such a description. Thus, we examine the linear response of the
system against infinitesimal perturbation on the macroscopic variables, and obtain the
variational equation describing the evolution of the small deviation of the macroscopic
variables in a neighborhood of a trajectory1.

In the present case, since the elements interact only through the mean field value,
it is quite natural to expect that the behavior of the mean field value can be consis-
tently described by itself. We expect that the effective number of the dimension of
the collective motion gives substantial agreement with the Lyapunov dimension of the

1 In SectionIII.2, we have seen the linear stability analysis around the fixed point of the mean field value.
The following discussion is similar to the linear stability analysis of fixed point, though we are going to study
the linear stability of the orbits.
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macroscopic dynamics estimated in the above mentioned way. We concentrate on the
smallσ regime and give qualitative explanation for the scaling relation (VI.5).

If we consider small deviationsηn of hn, thenηn is regarded as a function of
{ηn−1, ηn−2, · · ·}. The evolution ofηn from the unperturbed orbithn is given by,

ηn =
∞∑

τ=1

Lτηn−τ + O(η2), (VI.7)

whereLτ is a coefficient to give the linear response of the mean field value atn step to
the displacement atn− τ step. The number of the Lyapunov dimension of the mean
field dynamics is estimated from the eigenvalues of this linear equation.

We should note that such estimation does not hold if the effects of perturbations at
different time steps could cancel out completely, as in the case thatρn(x) contracts into
a δ-function. In the present case, however, as long asρn(x) has a continuous support,
as is expected from the microscopic high-dimensional chaos, the effect ofηn does not
disappear completely by the perturbation at the other time step.

First we estimateLτ from the dynamics of the distribution function given by
Eq.(VI.4). In the small noise limit (σ → 0), from Eqs.(VI.3) and (VI.4), Lτ is
given by

Lτ = ε

∫
dx

dF
(τ)
n (x)
dx

ρn−τ+1(x), (VI.8)

whereF
(τ)
n (x) ≡ Fn ◦ Fn−1 ◦ · · · ◦ Fn−τ (x).

For τ � 1, dF
(τ)
n (x)/dx in Eq.(VI.8) changes its sign quite frequently inx. Con-

sider the partition ofx at the points such thatF (τ)
n (x) = 0 (see Fig.III.2). Denoting

the typical value of
∣∣dF (τ)(x)/dx

∣∣ by d(τ), the interval of partitions is estimated at
1/d(τ), which decreases rapidly withτ . Since the integration in a partition becomes
zero ifρ(x) stays constant in that partition, the partitions whereρn(x) changes drasti-
cally inx contribute to the estimation ofLτ much more than the partitions whereρn(x)
does not changes so much.

In the case of small noise limit (σ → 0), the most drastic change part ofρn(x)
comes from the inverse square-root singularities, which is the characteristic structure of
distribution function for the logistic map. Hence, the integration in the partitions con-
taining the characteristic structure inρn(x) is estimated atO(

√
d(τ)) (see Eq.III.7).

d(τ) is roughly estimated ateλmτ for τ � 1, whereλm is the Lyapunov exponent of
the local mapping2. Consequently, the responseLτ to the perturbation grows exponen-
tially with the rate1

2λm.
Even in the presence of finite amplitude of the noise, the above order estimation

for Lτ is still valid for τ smaller thanτc ≡ − log σ/λm, where the typical width of the
partitions becomes comparable with the typical amplitude of the noise, i.e.1/d(τ) ∼
e−λmτ = σ.

For largerτ > τc, however, the effect of noise in smoothening the distributionρ(x)
appears so thatLτ will start to decay withτ .

Partially integrating (VI.8), we obtain

Lτ = −ε

∫
dxF (τ)

n (x)
dρn−τ+1(x)

dx

= −ε

∫
dxF̃ (τ)

n (x)
dρn−τ+1(x)

dx
, (VI.9)

2 Here we neglect the fluctuation of the expansion rate.
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Fig. VI.4: The linear coefficient|〈L̃τ 〉| is plotted as a function ofτ . 〈·〉 denotes time average.
The parameters are (a)a = 1.95, ε = 0.1, and (b)a = 1.56905, ε = 0.01. The noise
varianceσ2 is indicated at the right of the figure. The line indicatese

1
2 λmτ , in which

the Lyapunov exponentλm of f(x) = 1−Ax2 is obtained numerically.

with F̃
(τ)
n (x) = F

(τ)
n (x) − F

(τ)

n , whereF
(τ)

n is the average value ofF (τ)
n (x) over

the support ofρn(x). With the increase ofτ , F̃
(τ)
n (x) becomes a rapidly oscillating

function about zero-mean inx, and the integration of̃F (τ)
n (x) over any finite range

within the support ofρn(x) will approach to zero3. Since|dρn−τ+1(x)
dx | is uniformly

bounded due to the existence of the noise,Lτ converges to zero. Hence, we conclude
thatLτ ∼ e

1
2 λmτ for τ < O(τc) whereasLτ ∼ 0 for τ > O(τc).

In Fig.VI.4, the time average of the coefficientL̃τ =
∫

dx
dF (τ)

n (x)
dx ρn−τ+1(x),

instead ofLτ , obtained numerically is plotted as a function ofτ . Notice that the local
dynamicsf(x) should be considered as1 − Ax2, rather than1 − ax2, whereA is the
effective nonlinear parameter shown in ChapterII . In Fig.VI.4, |〈L̃τ 〉| seems to grow
exponentially until its saturation after a certain time step. As the decrease ofσ2, such a
time step becomes longer. The coefficients of|〈L̃τ 〉| for several noise intensity seems
to constitute an envelop, whose slope is1

2λm.
Hence, as far as the linear stability is concerned, the mean field value is not sensitive

to the mean field values before sufficiently long time step (beforeO(τc) steps). Thus
we can consider a dynamics ofhn as a function of the mean field values of the past

3 Here we assume the mapF (τ)
n (x) has mixing property, which seems natural when the distribution is

connected.
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O(τc) steps at least in the neighborhood of the orbit. Since we have to consider the
contribution only from the latestO(τc) steps, the dimension of this dynamical system
is alsoO(τc). Hence, the dimension of the mean field dynamics is within the order of
τc. Accordingly the number of effective degrees of freedom of the mean field dynamics
grows as− log σ with the decrease ofσ, and can grow arbitrary large asσ approaches
zero.

VI.4 Summary and Discussion
In the present Chapter, we have shown that the noise in a microscopic level re-

duces the complexity of the collective motion, which is characterized by the number
of degrees of freedom. It is shown numerically that the dimension of the dynamics of
Perron-Frobenius equation Eq.(VI.4) satisfies the scaling relation (VI.5). On the other
hand, analytic estimate of the mean field dynamics also supports Eq.(VI.5). Hence, the
number of effective degrees of freedom of the collective motion in the present GCM is
concluded to satisfy the scaling relation (VI.5).

Such a relation is expected to hold when the collective motion keeps high dimen-
sional motion with microscopic chaos. Such a high dimensional collective motion is
supported by the exponential growth of the linear response coefficient. When the distri-
bution function has peaks of the heightδρ(x) within the widthδx, such an exponential
growth is expected untilτ ∼ log δx and thus a high dimensional collective motion ap-
pears. Even when the local mapping is a higher-dimensional non-hyperbolic mapping
or a flow system, the present argument on the collective motion is expected to hold.
Hence, the logarithmic dependence of the dimension upon the noise intensity given by
the scaling relation (VI.5) will be observed in a broad range of systems.

The induced regularities by the addition of noise was also reported as Noise-
Induced Order (NIO) in an one-dimensional map (Matsumoto & Tsuda1983). The
induced regularity of our system has some similarity with NIO case, in the point that
the external noise destroys a dynamical structure which causes the irregular behavior.
In NIO, the noise reduces the measure in the instability region where the intermittent
behavior is generated. On the other hand, in the present case, the noise destroys the sin-
gularity of the distribution function, that is the source of high-dimensional instabilities
of the collective motion.

In the case of NIO, however, the motion is not regular, since the noise is imposed
upon the observed variable itself. On the other hand, in the present case, the noise is
imposed on the microscopic variables, whereas observed is the macroscopic collective
variable . Thus, the noise-induced motion isdeterministicand low dimensional in the
limit of N →∞.

We should also mention that our present result may be applicable to experimen-
tal systems, such as fluid turbulence, or neural systems consisting of a huge number
of neurons with nonlinear dynamics. By controlling thermal noise or some external
fluctuation, we hope that the dimensional change or noise-induced low dimensional
collective motion is observed, and hence the existence of the collective chaos will be
clarified.





CHAPTERVII

PERSPECTIVES

AND

CONCLUDING REMARKS

In this Thesis, we have studied the collective motion in globally coupled map (GCM)
from various of angles. The collective motion in GCM with identical elements has

been studied precisely in ChaptersII andIII . The collective motion in the heteroge-
neous systems or in the noisy systems has been also investigated in ChaptersIV and
VI . As we have seen in ChapterV, the existence of the collective chaos has been sug-
gested in the heterogeneous systems, and as in ChapterVI , the noisy systems also show
low-dimensional chaos in the macroscopic variables. In this final Chapter, connections
among these studies are discussed, and future problems on the collective motion of and
beyond GCM are presented.

VII.1 Concluding Remarks
This thesis has been constructed from two viewpoints. One is the viewpoint of

collective chaos, and the other is the viewpoint ofa network of chaotic elements. From
the former point of view, we ask how (low or finite dimensional) chaotic motion in a
macroscopic variable is possible out of essentially very high-dimensional dynamical
systems such as fluid systems. On the other hand, from the latter point of view, we ask
what is universal phenomena observed in network systems consisting of a huge number
of dynamical elements.

When the coupling strength among elements constituting a huge network, the ten-
dency to synchronize with each other is quite weak. The system is high dimensional
state in the sence that the Kolmogolov-Sinai entropy is proportional tot the system size.
However, macroscopic variables do not obey the law of large number, and accordingly
the motion of the variables does not vanish in the thermodynamic limit. This implies a
collective behavior of the system. In ChapterII , the collective behavior was studied in
GCM. Several coherent motions exist, even in fully desynchronized state. The macro-
scopic variable was found to show some kind of ordered motion distinguishable from
noise, ranging from torus to high-dimensional chaos. To characterize the collective be-
havior, we introduced scaling transformation of parameters, and detected in parameter
space atongue-like bifurcation structurein which collective motions is possible.

From the dynamical system point of view, the collective motion suggests that a
stationary state of the distribution function of the elements is unstable. Stability of the
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stationary state was studied in ChapterIII . It was shown that the fixed point solution
of the mean field dynamics is unstable. Based on this analysis, the scaling relation of
the amplitude was studied. Next, we demonstrated the origin of the slow motion of the
collective motion. The mechanism of the bifurcation of the collective motion was also
investigated.

In ChapterIV, the collective behavior is studied in GCM withdistributed nonlin-
earity. It is shown that the heterogeneity enhances regularity in the collective dynamics.
Low-dimensional quasiperiodic motion is often found for the mean-field, even if each
element shows chaotic dynamics. The mechanism of this order is due to the forma-
tion of an internal bifurcation structure, and the self-consistent dynamics between the
structures and the mean-field.

The collective chaosis a low (or finite) dimensional chaotic motion in a macro-
scopic variable of the high-dimensional chaotic systems. In ChapterV, an algorithm to
characterize a collective motion is presented, with the introduction ofcollective Lya-
punov exponent, as the orbital instability at a macroscopic level. By applying the al-
gorithm to a GCM, existence of low-dimensional collective chaos is confirmed, where
the scale of high-dimensional microscopic chaos is separated from the macroscopic
motion, and the scale approaches zero in the thermodynamic limit.

Thecollective chaosis also found in noisy systems. In ChapterVI , effect of micro-
scopic external noise on the collective motion is studied for a GCM in fully desynchro-
nized state. Without external noise a macroscopic variable shows high-dimensional
chaos distinguishable from random motions. With the increase of external noise inten-
sity, the collective motion is successively simplified. The number of effective degrees
of freedom in the collective motion is found to decrease as− log σ2 with the external
noise varianceσ2. It is shown how the microscopic noise can suppress the number of
degrees of freedom at a macroscopic level.

The result in the noisy system implies that the number of degrees of freedom in
the homogeneous GCM is infinity. Thecollective chaosappears under the presence of
heterogeneityor noise.

VII.2 Future Problems on Globally Coupled Map
Strange Coherence The present result indicates that the heterogeneity or noise in
the system makes the collective chaos possible. In the homogeneous GCM, however,
the number of degrees of freedom is suggested to be infinity. It is not clear whether
the macroscopic motion of the homogeneous system should be considered as a chaos.
While the macroscopic motion does not disappear in the thermodynamic limit, it might
be doubted that the macroscopic and microscopic scale is separated. Here we phrase
this macroscopic motion “strange coherence”.

Finite and Infinite System Even when the system indicates the strange coherence, the
macroscopic variable shows some lower-dimensional-like motion. In Fig.II.2, we have
seen that the quasiperiodic-like motion appears as increasing the system size from105

to 107. What happens when the size is increased fromN = 105 to N = 107?
A canonical answer for this might be given by considering the finite size effect and

the motion of the infinite size system. In the motion of the system with infinite number
of elements, infinitely many unstable modes of the macroscopic motion probably exist,
as we have seen in the preceding Chapters (e.g. ChaptersIII andVI). At least quite
many unstable modes exist. In a finite system, we observe shadow of the motion of the
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infinite size system, and the amplitude of the finite size fluctuation becomes smaller
than the characteristic amplitude for a unstable mode as the system size is increased
from 105 to 107. We observed one of the unstable modes with the increase of the
system size from105 to 107.

If it is true, with the increase of the system size, the characteristic amplitude of each
unstable mode and the fluctuation of the finite size effect successively cross over each
other, and unstable modes should appear one after another. However, it has not been
confirmed within our numerical analysis. How can we confirm the above statement?

If the above scenario is probable, what is the sequence of the unstable modes ap-
peared as the increase of the system size? Most probably, the sequence may be deter-
mined by the magnitude of the characteristic amplitude of each mode.

In ChapterVI , we have seen that the number of effective degrees of freedom in-
creases as decreasing noise. This can be regarded as successive appearance of the un-
stable modes with the decrease of noise. Does the sequence of the unstable modes ap-
peared in the noisy system correspond to the sequence of the noiseless system? These
questions may be relevant to the selection rule of the macroscopic motion.

Singularity and Regularity We have seen that the singularity of the distribution func-
tion is an important part for the instability of the macroscopic motion (ChapterIII ).
The singular point evolves according to the local mappingf(x) until the concentration
of the singular distribution essentially decays. In this sence, we can consider that the
microscopic and macroscopic motion are not separated completely in the homogeneous
GCM.

When theheterogeneityor the external noiseexists in the system, however, the
effect of the singularity on the macroscopic motion is expected to be reduced. We
have seen precisely how the existence of noise weakens the effect of the singularity in
ChapterVI .

We should mention thatrandom connection networksof chaotic elements are al-
most the same with the noisy systems. Here the random connection networks means
that arbitrary two elements are randomly chosen to be connected or not connected
with certain coupling strength. The coupling strength is the same over the connec-
tions. Then, the value of coupling term in the evolution summed over connections is
distributed. The variance of the distribution is given according to the ratio of the con-
nections. Thus we expect that the random connection network of the chaotic elements
is essentially the same with the noisy network systems.

On the other hand, it may not be simple how the heterogeneity reduces the effect
of singularity. The distribution of the nonlinear parametera can be regarded as a kind
of static fluctuations. However, within the parameter distribution, there exist many
parameters corresponding to thewindow. This implies that the distribution of the non-
linear parametera is not regarded just as noise. We need further studies of what kind
of effect is brought about by the heterogeneity as a whole on the macroscopic motion.

In these cases, one of the effect of the noise or heterogeneity is certainly to reduce
the influence of the singularity on the macroscopic motion. Accordingly the number of
degrees of freedom of the macroscopic motion decreases.

On the other hand, lower dimensional motions observed in these systems are rel-
evant toregular part of the distribution function. Here, the regular part denotes the
longer range structure of the distribution function inx, for instance, the distribution of
the singular points. Instability of the macroscopic motion brought about by the regular
part is an important future problem (ChapterIII ).
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Fig. VII.1: One of coexisting attractors is shown as a time series of elements. In this case, el-
ements are accumulated to three bands. Time series of 100 elements out of105 are
plotted every third time steps. A lot of attractors exist depending on the population ra-
tio to each band, while elements are desynchronized from each other. The parameters
area = 1.85, ε = 0.018, N = 105.
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Fig. VII.2: Time series of elements for the same parameter in Fig.VII.1 starting from different
initial condition. In contrast with Fig.VII.1, elements spread overx. The mean field
dynamics for this time series shows quasi-periodic-like motion. Time series are plot-
ted for 100 elements at every three steps. The parameters area = 1.85, ε = 0.018,
andN = 105.

Multiple Attractors, and Coexistence of Different Types of Motion Here we study
the coexistence of several attractors of the macroscopic variables that can appear in
the GCM. In SectionII.4, we have seen one of the examples of multiple attractors of
the collective motion in connection with the hysteresis phenomenon. The existence
of multiple attractors of the collective motion brings some mathematical question on
the one hand. On the other hand, some possibilities of application of such multiple
attractors can be considered.

The most straightforward examples areband splittingmechanism of multiple at-
tractors. Here, in thep-band splitting, the distribution ofxn(i) splits intop discon-
nected regions. There is no mixing of elements among disconnected regions. An ex-
ample, forp = 3 is shown in Fig.VII.1. Since the number of elements at each region
does not change in time, the population ratio of elements at each region gives a time
invariant index for an attractor. Depending on the population ratio, there are a lot of
attractors. (See e.g. (Kaneko1995) for the case with a tent map).

The next example of multiple attractors is the coexistence of two types of attractors,
one with a band splitting structure (Fig.VII.1) and the other without a band splitting
structure (Fig.VII.2). In an attractor with a band splitting structure, elements are ac-
cumulated in a few regions. However in an attractor without such structure, elements
spread over the whole range ofx. Moreover for the former type, there exists a lot of
attractors with a different population ratio in each region, as is explained in the first
example.
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Fig. VII.3: Return maps of element motions to show the coexistence of different kinds of
motions. P1(circled) and P2 represent the element motion belonging to a differ-
ent band in the dynamics, respectively. Two kinds of motions (P1, and P2) co-
exist. P1 : P2 in each figure indicates the number of population in each group.
With the change of ratio, two kinds of motions are varied. The parameters are
a = 1.88, ε = 0.04, N = 104.

Another important topic related to the multiple attractor is the coexistence of dif-
ferent kinds of element motions. When the elements are accumulated into few bands,
depending on the ratio of population in bands, the motion of elements in each band is
different. In Fig.VII.3, two kinds of element motions are plotted for attractors with a
different ratio of population splitting into bands. At this parameter, there is a three-band
structure, and elements are accumulated into two groups of these three bands. Note that
while these groups are similar to clusters (cf.Kaneko(1990a)), elementsxn(i) in each
group take different values each other. Depending on the ratio of population in the two
groups, two kinds of element motion coexist.

Theclusteringalso provides a mechanism to form a group, and the motion of el-
ements depend on its group. However, we should notice that above phenomena is
different from the clustering, because the elements do not synchronized each other. As
a grouping mechanism, we may need to extend the concept of clustering. It should
be studied what kind of grouping is possible with globally coupled dynamical sys-
tems. Relevance of such grouping to the problem of cell differentiation is discussed in
Kaneko & Yomo(1994) andFurusawa & Kaneko(1998).
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VII.3 Future Problems beyond Globally Coupled Map
Collective Motion and Slaving Principle As we have mentioned in this Thesis, the
present collective motion cannot be observed in the microscopic variables. Indeed, no
Lyapunov exponent for the microscopic variables exists corresponding to the collec-
tive motion. Thus, we need to observe a certainmacroscopic variableto detect lower
dimensional-like motions such as quasiperiodic motion or low-dimensional chaos.

We can also consider a phenomenological description for such a macroscopic vari-
able. In this case, one may describe the macroscopic motion with a lower dimensional
motion and a stochastic process around the motion. In order to understand the phenom-
ena, we may mainly discuss the bifurcation structure of this phenomenological model,
which is expected to be used only with the macroscopic variable. Here, theslaving pic-
ture may hold in some sence, and the microscopic variables disappear (Haken1978).
From the view point of the collective motion, we deal with the hierarchical structure
of a phenomenon, while from the view point of the slaving, we do not consider such
hierarchical structure.

Imagine an oscillatory phenomenon, whose model we are going to construct. First
we choose a certain description level, for instance, the model that describes the position
of elements constituting the system, or something. Then, if one construct a good model,
it shows some oscillatory trajectory. We can study the model to clarify whether the
oscillatory trajectory is the collective motion of these elements with effectively high
degrees of freedom or the most of the variables are eliminated with the slaving picture.
It might be interesting problem to examine whether the phenomena is the collective
motion or is viewed from the slaving principle without constructing a detailed model.

Beyond Globally Coupling In this Thesis, we have only studied the globally coupled
systems. We should also study the collective motion in systems with another kind of
coupling.

In coupled map lattice, the existence of the collective chaos has been sus-
pected (Bohr et al.1987, Grinstein1988, Bennett et al.1990). They have discussed
the correlation length scale in spaciotemporal chaotic systems. One can easily imagine
that the correlation length scale is finite. Hence, they conclude that the coherent motion
does not exist in the zeroth wave number mode.

However, the present result indicates that the stability of the distribution function
should be discussed rather that the correlation length scale. It is also a future problem of
what condition is necessary to have some coherent motion inmuch longerlength scale
than the correlation length scale, (though such length scale might be much shorter than
infinity).

While the connection relations among elements does not change in time in coupled
map lattice and globally coupled map, a model where the connection relations change
dynamically in time is also presented (Shibata & Kaneko1999). It should also be
studied the collective motion in such systems.

Hamiltonian Systems The element in GCM is at a macroscopic level, and each ele-
ment shows macroscopic chaos, i.e. the logistic map is adopted for the dynamics of
each elelment. Then, if one studies a correspondence of the results of GCM to physical
phenomena strictly, the motion of the macroscopic variable of GCM may be consid-
ered as much larger scale phenomenon than the macroscopic chaos with a certain scale
that we usually suppose.
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In many dissipative systems showing the macroscopic chaos, such as fluid systems,
it is supposed that some Hamiltonian dynamics with large degrees of freedom should
underlie. We also ask the problem of collective chaos from the viewpoint of Hamilto-
nian dynamics at a microscopic level, though the introduction of dissipation is difficult.
This question will be relevant to many important problems in nonequilibrium physics.
Here, we consider one of these problems.

When a lower dimensional collective motion appeares at a macroscopic level from a
high-dimensional Hamiltonian system (with dissipation), it may be possible to harness
such a motion. The energy of the system with such a motion might be transduced into
mechanical work easier than the energy of the system without such a motion. Thus,
the appearance of such collective motion might bring some substantial change to the
system. In order to clarify this point, we need to consider appropriatethermodynamic
entropyand effect of the collective motion on the thermodynamic entropy.

VII.4 Coherent Irregularity
Kazuhisa Tomita has left profound speculation on the significance of the concept

chaos(Tomita 1984a,b), in which he reconsidered the concept of ‘coarse graining’
comparingmacroscopic chaoswith molecular chaos.

The macroscopic description of thermodynamics is possible on the basis of molec-
ular chaos. In order to obtain the macroscopic description on contracting the micro-
scopic information,coarse grainingis necessary. He pointed out that in addition to the
property of ergodicity, a huge number of degrees of freedom and a loss of the dynami-
cal coherence among them (incoherence) are usually indispensable.

On the other hand, in the case of macroscopic chaos, irregularity is not a con-
sequence of the projection of a huge number of components onto a few degrees of
freedom, but the consequence of dynamical feedback with the expansion and folding
of phase space due to the nonlinearity. This does not change even if we improve the
accuracy of measurement. He called this ‘intrinsic coarsening’. For this macroscopic
chaos, an incoherent stochastic picture does not hold as in the case of statistical me-
chanics. Chaotic dynamics has coherence of its own, however, irregular it is. He termed
such property ‘coherent irregularity’.

The collective motion of network of such macroscopic chaos is considered to sub-
stantially reflect these characteristics. Though he pointed out the coherent irregular-
ity of macroscopic chaos itself, we may say that in the network of chaotic elements,
such property appears as coherence between elements even for arbitrary small coupling
strength. Kaneko called this property ‘hidden coherence’ (Kaneko1992).

In the present collective motion, we might say that the coherent irregularity appears
as the recovery of predictable property of the macroscopic motion. In fact, as is seen
in ChapterV, the collective Lyapunov exponent is much smaller than the Lyapunov
exponent of the microscopic motion. This might imply that we must rethink so-called
the ‘butterfly effect’ in high-dimensional dynamical systems such as the atmospheric
system around the earth. High-dimensional dynamical systems are not so simple as are
expected by the butterfly effect.

Kazuhisa Tomita also discussed the possibility of ‘soft phenomenology’ based on
the macroscopic chaos(Tomita 1984b), considering the analogy with themolecular
chaos.

He asked the reason why we havetwo fundamental laws in thermodynamics. In
the process of the energy transfer associated with a change in state, the amount of
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transfered energy and the associated degrees of freedom should be considered on the
basis of the molecular chaos. For these two aspects, on the one hand, requiring the
energy conservation in the process, the associated degrees of freedom can not be re-
stricted within the macroscopy (the first law). On the other hand, supposing that only
the macroscopic degrees of freedom are controllable, the energy conservation within
this degrees of freedom can not be expected (the second law).

On the basis of macroscopic chaos, what kind of phenomenology may we expect?
He developed a similar discussion between the amount of transfered information in-
stead of energy and the associated degrees of freedom as ‘information dynamics’ for
the complex systems of nested hierarchical structure, where small subsystems are em-
bedded in a larger system such as a biological system.

In such complex systems, it is almost inevitable to understand the nature of high-
dimensional dynamical systems. The study of the collective motion in this Thesis
might reveal one aspect of such hierarchical systems. However, it is still unknown what
quantity is important for developing the phenomenology on the basis of macroscopic
chaos. While we expect that the concepts developed in the model is relevant to a
variety of natural systems, in order to discuss the expected phenomenology, we have
to consider the relevance more concretely. It might reveal out the significance of the
collective motion. He claimed that ‘the second law’ of phenomenology on the basis of
macroscopic chaos is much more abundant than that of the thermodynamics.
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