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Abstract
Image compression has been a field of intensive research already for a long time.

In recent years, progressive transmission of images has attracted considerable

attention. Progressive transmission encodes and transmits an image in such a

way that the receiver can get the best overall impression at an early time. This can

lead to a net increase in bandwidth especially for slow transmission lines, bUl is

usually obtained at the cost of a highly increased computational complexity or a

much lower compression ratio than straightforward compression at a fixed rate.

In this thesis, progressive transmission is viewed in a more general way.

Rate distortion theory applied to progressive transmission shows that in many

cases, progressive transmission is theoretically possible without any overhead. As

a new result, it is proved that in the high rate case, the cost of progressive trans­

mission will in any case not be more than 1.8753 db (in terms of the mean square

error). Also, the analysis of the requirements for an image compression algo­

rithm shows that progressiveness of a compression method is a highly desirable

property for most applications, especially in a heterogeneous environment.

Based on these requirements, a new method for image compression and

progressive transmission is proposed. The basic principle of this method is the

combination of hierarchical subdivision in the spatial domain (sampling) and in

the gray scale domain (quantization), called hierarchical sampling restricted

quantization (HSRQ).

The resulting image structure is captured in the bitwise condensed quadtree

(Be quadtree) and the gray scale depth first expression (GDF). By dividing the

image information into components based on the level in the spatial and in the

gray scale hierarchy, it is possible to increase both spatial and gray scale resolution

concurrently in a way well adapted to the human visual system.

The selection of the representatives for a given gray scale interval and the

definition of the exact component sequence allow to optimize performance and

to adapt transmission to the properties of the image, the needs of the user, and

the possible bottlenecks in sender, transmission line, and receiver with a flexibi­

lity uncommon for other transmission methods. Additional performance gains

are possible by optimizing the gray scale hierarchy or by using arithmetic coding.

A wide variety of experiments show that the new method in the present

implementation performs comparable to methods like vector quantization and

nonadaptive transform coding while being considerably less complex. Additional

improvements are possible and are pointed out throughout the thesis. This new

method of image compression and progressive transmission may therefore well

become one of the methods of choice for a wide area of applications.
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1

Introduction

1.1 Motivation

In image processing and computer vision, image compression forms one of the

basic applications and one of the basic tools for other, higher level tasks. As a tool,

compression helps to reduce the amount of data that has to be processed at higher

levels like enhancement, matching, recognition, etc. As an independent applica­

tion, compression is very useful in reducing bandwidth on communication

channels and storage requirements for mass storage.

Image compression, and data compression in general, have a long history,

and the amount of literature on the subject can not be overviewed easily any

more. On the other side, the field has not at all reached its theoretical boundaries.

Also, storage and computation capacity grow at unchanged speed, but are hardly

able to keep up with the imagination of man devising new applications, and with

the economic pressure to realize long foreseen ones.

Besides these outside motivations, there is, I believe, an inner motivation

that attracts researchers to the field of data compression. Man has always been

fascinated by the power of a poet to say much with few words. To separate the

important from the meaningless is a truly human activity. To find ways to do

something similar, even if at a much lower level, and to try to do it in a simple

and straightforward manner, seems clearly worth the time and effort.

Owing to the large amount of research in the field of image and data

compression, much work has concentrated on investigations for particular

applications, with their particular image characteristics, quality requirements, and

abilities or needs with regard to hardware and software.

However, recently, there is an increasing trend towards integration. Multi­

media applications integrate data and operations of all kinds. Local, wide area,
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and global networks connect computing facilities all over the world. This trend

towards increasing integration is already considerable, but compared with the

developments that can be expected in the future, it is only a first small step.

This has important consequences for the development of image coding

methods. Instead of trying to develop algorithms suited for a very specialized

application, general algorithms are necessary. An ideal coding algorithm should

be usable both in hardware and in software, and on a wide variety of machine

configurations. Also, to be usable on networks with different bandwidth, the

coding method has to be progressive.

The present thesis proposes a new basic method of image coding. It is much

more flexible in several aspects than previous methods, while being surprisingly

simple and efficient. Although there exists nothing such as an ultimately optimal

coding method, even for clearly defined requirements, I think that the proposal

of this thesis is a definitive step towards better coding methods usable in a

heterogeneous en vironmen t.

Nonetheless, some restrictions have to be made. First, the main subject of

this work are gray scale still images; binary images, color images, and image

sequences are discussed only marginally. Second, it is generally assumed that the

channels and storage media work reliably and without error. Third, when not

mentioned otherwise, it is assumed that the image is clear and free of noise, put

to the extreme, that it cannot be enhanced anymore by any known technique.

This is an assumption frequently made, but rarely mentioned.

During the development that led to the work presented in this thesis, it was

many times an algorithm or a data structure in search of an application, rather

than a method developed to answer clearly defined requirements. On a day to

day basis, the progress of my research has been motivated, or directed and

influenced, as follows:

The initial motivation has clearly been some inefficiency that intrigued me

in the G-quadtree [Kni86l, [Ma087] (Subsection 1.2.2.5). This lead to the deve­

lopment of GDF and the BC quadtree (Sections 4.1 and 4.2), first described in a

report for the lecture of Prof. Kawai in Spring 1988, and later in [Diir88]. At that

time, GDF was intended as a method for loss less compression.

Also, in winter 1987/88, the algorithm later published as [Diir89c] (Section

5.3) was devised and later implemented. The fact that overall compression ratios

were not extremely high let to the consideration of GDF and the BC quadtree for

progressive transmission (Section 4.3). Implementation in fall 1989 for a first

publication [Diir89d] showed fairly good results.

The investigation of some discontinuities during the reproduction of the

transmitted images in April 1990 revealed how additional improvements could

be obtained (Section 5.1). This motivated me to study source coding theory and

rate distortion theory and to try to apply it to progressive transmission in an

effort towards unifying straightforward compression and progressive

transmission (Chapter 2). It also led to the formulation of the HSRQ principle for

combined hierarchical sampling and quantization (Section 4.4). Experiments

showed that the gap between complex coding methods with fixed rate and simple

methods for progressive transmission could be smaller than generally assumed

(Chapter 6).

1.2 Historical Background and Related Work

The historically oriented overview in this section is divided into three

subsections. The first subsection discusses image compression in general. The

second subsection is devoted to the quadtree and related data structures. The third

subsection treats progressive transmission. In the framework of this thesis,

progressive transmission is treated as a natural consequence of a good

compression scheme, but historically, progressive transmission was considered to

be antagonistic to compression, and so it is discussed separately here.

1.2.1 Image Compression

The large amount of literature on image compression has already been

mentioned. This subsection intends only to give a very short overview of the

available methods and their performance; the interested reader is referred to the

bibliography at the end of Chapter 5 in [Ros82J, and some newer overviews like

the review of Jain [Jal81] and a Special Issue of the Proceedings of the IEEE [IEE85].

1.2.1.1 Pulse Code Modulation

More than a form of data compression, pulse code modulation (PCM) is first and

foremost the basic way in which images are digitized, stored in a computer, and

displayed on a CRT display or printed on a printing device. The originally analog

image is sampled with a square or rectangular grid. Then the samples at each grid

location (picture elements, pixels, or pels) are quantized to a certain number of

bits and represented in array form. This array is usually denoted as the canonical

form of the image [Knt85].

Throughout this thesis, it will be assumed that this canonical form is the

original. This provides a clear base of reference; in fact, with the current trend

towards digital electronics, a persistent analog form of the image may not exist.
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The main problem that has to be solved for PCM is the selection of the correct

number of samples and gray levels that are necessary for a faithful and efficient

representation of an image.

One way to determine the necessary spatial resolution (the number of

samples in each direction) and gray scale resolution (the number of gray levels) is

to set them somewhat higher than the maximal resolution capabilities of the

human visual system. However, spatial and gray scale resolution are actually not

independent. Spatial resolution is used to compensate for lacking gray scale

resolution in applications like dithering and digital halftoning. On the other

hand, gray scale fonts have recently become popular to balance the low spatial

resolution of CRT screens.

The complexity of the relation between spatial and gray scale resolution has

been pointed out by Huang [Hua65). He showed that the relation between spatial

and gray scale resolution considered optimal by a human viewer depends on the

image contents, and is in no ways linear (different relations are preferred at

different levels) or even convex {increase of resolution is not always perceived

as an improvement in image quality). Huang attributes this mainly to the

fact that a lower number of gray levels can increase contrast and thus

enhance image quality.

Although a long time has passed since Huang's work, the relation between

spatial and gray scale resolution is not really clear even now. Recently, some

theoretical work has started in this area [Bru87), [Pe189)' but it is difficult to find a

way to a practical application of it.

Besides reducing the necessary memory by restricting sampling and

quantization, there have been other attempts to compress an image based on

PCM. The first mentioned here is block coding, devised by Kunt [Knt78). It

consists in assigning very short codes to very frequent block patterns, for example

completely white or completely black blocks. It is therefore especially suited

for binary images, and has been used for gray level images mainly by coding each

bit plane separately.

Block truncation coding [DeI79) also splits an image into blocks, and then

uses two representative values in each block. These representatives are chosen so

as to conserve mean and variance, or some other moments, inside the block. The

representatives and the selection of the representative for each pixel are

transmitted. Block truncation coding achieves good results at a rate of usually 2

bits/pixel with very low complexity.

The most general approach to PCM is vector coding or vector quantization. A

statistic of all blocks of a training sequence of representative images is made.

Then a number of representative vectors, optimally distributed in the multidi­

mensional sample space, is determined. The set of representative vectors is called

the codebook. The number of the best-fitting vector for each block is transmitted.

Encoding with general codebooks is very time consuming, and so in many

cases tree structured codebooks are used [Ris90). Vector quantization can on the

limit achieve the theoretical bounds for compression (see Chapter 2), but it is

limited by the size of the codebook. Vector quantization in the context of image

compression can also be used in many other situations than PCM [Nas88).

1.2.1.2 Differential Pulse Code Modulation

Differential pulse code modulation (DPCM) [Hun79) is based on the observation

that neighboring pixels of an image frequently have similar values. A a concen­

tration of the histogram can thus be achieved when not the pixels themselves,

but their differences, are transmitted.

DPCM is the term used for such techniques in the field of signal processing.

In image processing, the term predictive coding is more popular. It is due to the

fact that in most variants, not the difference to a previous pixel, but the difference

to the predicted value of the present pixel is used for coding.

Predictive coding has the advantage that it is usable in a range from

satisfactory quality with 1 bit per pixel (so called delta modulation) to perfect

(error-free) reproduction with usually about three to five bits/pixel. Also, it is

easily implemented with a minimum of memory. On the other hand, in its basic

form, it is the typical example of a nonprogressive transmission method. At the

receiver, the image is displayed line by line and pixel by pixel.

1.2.1.3 Transform Coding

Transform coding is based on the theory of linear systems. The linear dependence

in a block of pixel values is eliminated by an orthogonal transform (geometri­

cally, a rotation of the sample space). The resulting values are requantized and

transmitted. Compression is achieved because the variance of each coefficient

after transformation, and its contribution to the quality of the image,

varies greatly with its order. Thus a different number of bits can be used

to quantize each component.

Several transforms have been proposed, but at present, the discrete cosine

transform is the most used. It comes closest to the theoretically optimal

Karhunen-Loeve transform while being separable [Ahm74). Transform coding

achieves good results, but requires a considerable amount of calculation.



Introduction Chapter 1 Section 1.2 Historical Background

1.2.1.4 Hybrid and Adaptive Coding

To combine the advantages and reduce the disadvantages of the basic coding

methods, a wide variety of hybrid coding methods has been proposed. Also, for

most methods of image compression, improvement is possible by adapting some

parameters of the method to the local statistical variations of the image.

1.2.1.5 Advanced Coding Methods

In recent years, a number of advanced methods for the coding of images has been

developed. Their common feature is that they do not see the image as a simple

heap of numbers that are statistically related in some way. Instead, they

incorporate knowledge of the human visual system, the "final destination" of a

coded image. A good overview of the human visual system and these methods

can be found in the review by Kunt [Knt8S].

The main property of the human visual system used by these methods is the

the fact that a relevant part of the vision process seems to be based on the

extraction of edges and directional information from the image. Thus good

approximation and com~ression of an image can be obtained by detecting edges

and regions, coding the 'edges as line or circle fragments, and approximating the

gray levels in the regions with constants or two dimensional polynomial

functions. Related methods use combinations of low pass filters and directional

filters. For a more detailed explanation, please see [Knt8S].

Recently, coding rates of 150:1 and more have been reported for these

methods [NZZ90]. This does not mean that the same quality as with the

traditional methods is achieved; the appearance of the reproductions is in many

cases rather sketchlike. It however means that these methods may give a usable

approximation of the image at such low rates, something which is hardly possible

with traditional methods.

Besides the necessary high amount of computation needed, these methods

may have other problems. They are not really useful for obtaining more accurate

approximations of the image. It is also not clear whether it is advisable to have

the computer simulate and maybe preempt some of the processing which the

human visual system is best suited for.

The Gabor transform, proposed for image coding by Daugman [Dau88],

may be seen as a combination of the visual system oriented techniques

and transform coding.

1.2.1.6 Fractals

Image compression using deterministic fractals has recently attracted great

attention [Bar88], [Zor88]. Compression factors of 10,000 to 1 and higher are

promised. However, for the time being, the amount of resources necessary to

code and decode images, both in terms of manpower and computing time, is

high, and the decoded images "resemble impressionistic renderings of their

originals, rather than photographic copies" [Zor88]. It is impossible to foresee if,

how, or when better results will be obtained. Fractals can therefore not at the

moment be considered a serious alternative for image compression.

1.2.2 Quadtrees

An overview of quadtrees, with concentration on its application to gray scale

images, is included here for two reasons: First, it should provide the necessary

background for those readers not familiar with hierarchical data structures like

the quadtree. Second, quadtrees were the starting point of the research that led to

the results described in this thesis. In some aspects, it can actually be seen as part

of a greater effort to identify principles and techniques for the design of efficient

quadtree data structures and algorithms [Diir90b), [Dur90a].

The new method presented in this thesis is not in any way limited to the

quadtree as a spatial hierarchy. However, the quadtree is the simplest and most

popular hierarchy to which the new method can be applied. It is therefore used

throughout most parts of this thesis.

1.2.2.1 What is a Quadtree?

The term quad tree was first used by Finkel and Bentley [Fin74] for what is now

called the point quadtree: A recursive subdivision of space that uses the data

points to determine the locations of the subdivisions. Nowadays, the term

quad tree is mainly identified with the recursive, regular, and rectangular

subdivision of a square area of interest called the universe. In this thesis, the

word quadtree will always be used in this sense.

A very simple example of a gray scale image and its quadtree is shown in

Figures 1.1 and 1.2. A broad overview over quadtrees and related data structures

can be found in the reviews by Samet [Sam84,88a,b,90a,b].

()()() 001 all all

001 001 all all

010 all 100 100

010 all 101 110

Figure 1.1. Example image

(left: gray scale image; right: corresponding binary array)
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Figure 1.2. Quadtree for the image of Figure 1.1

The image of Figure 1.1 has a spatial resolution of ,=2 and a gray scale resolution

of b=3 bits per pixel, and thus a side length of 2'=4 and a size of 2'·2'= 4·4 = 16

pixels and 8 gray levels. The quadtree of this image is obtained by recursively

dividing the image into four squares called quadrants or subquadrants, down to

the pixel level, and representing this subdivision hierarchy by a tree with

outdegree four.

The root of the tree (level 0) corresponds to the whole image, and the leaves

(level,) correspond to the individual pixels. Usually, the quadtree is condensed

by merging the children of a node whenever they all contain the same value, and

replacing them with a leaf node. The quadtree for the image of Figure 1.1 is

shown in Figure 1.2. The children of each node are arranged top to bottom and

left to right. This kind of quad tree is usually called region quadtree because it

represents regions of equal value.

1.2.2.2 Advantages and Disadvantages

Quadtrees, and their higher-dimensional analogs, octrees (three-dimensional)

and 2d-trees (d-dimensional), are not only used in image processing, but also in a

wide variety of other fields such as computer graphics, solid modeling, and

geographic and geologic information systems.

Compared to the many other hierarchical subdivision schemes and spatial

indexing methods proposed in the literature, the quadtree has the following

advantages: Calculations are simple because square side lengths are always a

power of two. Also, the position of division lines or planes is not object

dependent, so that corresponding parts of two quadtrees match easily. On the

other side, quad trees are still flexible enough to adapt to different resolution

requirements in different areas of the universe, and thus to concentrate

processing on the most interesting parts.

Also, algorithms working on quad trees are neither trivial but time

consuming, nor do they need complicated heuristics and are overly difficult to

analyze. Basic techniques like neighbor finding [Sam84] and quadtree plane sweep

[Sam85aJ, [Sam88cJ, [Dur90a] can be used for most problems. They lead to

algorithms that use either average linear time (neighbor finding) or worst case

1 Because in the quad tree, all interior nodes have a fixed outdegree of four,

the relation between the number of leaves n/, the number of interior nodes nj,

and the total numbe~ of nodes nt, is given by

nj = (nl-1)!3 and nt = nj+nl = (4n/-1)!3 (1.1)

and so we have O(nl) =O(nj) =O(nt)·

1.2.2.3 Quadtree Representations

The quad tree, as shown in Figure 1.2, is a conceptual construct. There exist many

different ways to represent this structure in the main or secondary memory of a

linear time (plane sweep). In both cases, the complexity of the problem is

measured as the number of nodes of the tree l . The calculation of the Euler

number and related functionals from a 2d-tree of arbitrary dimension in linear

time [Dur90a] is a particularly interesting example.

Quadtree data structures and algorithms can in most cases easily be extended

to three and more dimensions. This is important as the use of higher dimensions

can in many cases lead to a better understanding of a problem and to the

discovery of new applications. In computer animation, for example, the use of

the fourth dimension (time) let to the introduction of the operation of motion

comparison [LeeM90].
The quad tree also has some disadvantages. Because of the fixed location and

orientation of the subdivisions, translations, rotations, and scalings are not very

efficient. This is important in applications such as solid modeling, where these

geometric transformations are frequent, but not in image processing, where such

transformations are rather rare and difficult even when carried out on the

underlying grid of pixels.
Also, the definition of a certain quad tree variant in terms of the types of

allowable leaf nodes is very important for the efficiency of a quad tree. If the leaf

definition is too restricted, the number of leaves grows too fast, and efficiency is

reduced. On the other side, if the leaf definition is too general, the number of

leaves is reduced, but the algorithms working on each leaf become too complex.

A good example for this is the definition of the polytree, a combination of

octree and boundary representation (B-rep) used in solid modeling. The initial,

too restricted definition let to resolution problems, known as black holes, near

some vertices and edges [Dur88a,b]. This can be solved by generalizing the leaf

node definition, taking care that this does not affect the involved algorithms

[Dur89a]. The careful examination of these algorithms lead to some new results

in computational geometry [Dur89b] and to an additional generalization of the

leaf definitions [Dur90b].

010 011 010 011 100 100 101 110000 001 001 001
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30 and refined in [Ma087]. Figure 1.3 shows the three G-quadtrees for our

example image.

o~~
10 10 10 11

b) 4 gray levels c) 2 gray levels

010 all 010 all 100 100 101 110

a) 8 gray levels

000 001 001 001

Figure 1.4. The natural gray scale hierarchy

The motivation for the development of the G-quadtree can be seen twofold. On

one side, there were the needs of the application (the analysis of autoradiographs

of rat brains) for fast automatic and human-guided image analysis with functions

like thresholding, averaging, and so on. On the other side, there were the

limitations of the hardware, like memory restrictions and the fact that the display

was accessible only with a bandwidth of 9600 bits/second. Both sides suggested the

use of a coarse representation, refinable by the user. As the original quadtree

would have had too many nodes, the resolution was reduced by reducing the

number of gray levels.

Figure 1.3. G-quadtrees for the image of Figure 1.1

The G-quadtree is the first combination of the spatial hierarchy of the quad tree

with the natural gray scale hierarchy (shown for our example image in Figure

1.4). It was some of its efficiency problems that led to the research on quad trees for

gray scale images which resulted in the work presented in this thesis. It is

therefore worth to analyze the strengths and problems of this representation.

computer. Each ·representation has its advantages and disadvantages; for a more

detailed discussion, see [Sam89] and [Oiir90b (Part IV)].

The pointer quad tree allows fast access and changes through pointers. The

linear quad tree [Gar82] stores the size, position, and contents of the leaf nodes in a

linear sequence. The depth first expression (in this paper denoted by OF) [Kaw80]

is a sequence of symbols resulting from a preorder depth first traversal of the tree.

One symbol, usually "(", is used for interior nodes, and others for the different

kinds of leaf nodes. The explicit quadtree [Wo082], [Bum83] stores a full quadtree

with fixed structure. It is especially suited for cases where condensation is rare,

like gray scale images.

The representation of the quad tree influences both memory requirements

and accessibility. Memory requirements are considerably lower for OF than for

the other representations (d. [Tam84a]). Accessibility is best for the pointer

quadtree and the explicit quadtree, and worst for OF.

A variant of the quad tree is the bintree [Kn080]. Binary subdivision in each

of the coordinate directions are alternated, and represented by a binary tree.

1.2.2.4 Quadtrees for Gray Scale Images

After this general introduction to quad trees, we concentrate on the uses of

quad trees for image processing. Some of the early works on quad trees were

mainly concerned with gray scale images (e.g. [Kli76]). However, for gray scale

images, it is rare that even four neighboring pixels have exactly the same gray

value. Condensation is much higher for binary quad trees, and thus the research

on quadtrees mainly concentrated on this field.

There were several attempts to solve this problem. Klinger et al. [Kli76] tried

to allow condensation based on statistical attributes like the standard deviation.

Oliver et al. [Oli83] placed average values in interior nodes. Kawaguchi et al.

[Kaw83], after converting pixel values to a Gray code, coded each bit plane

separately. Based on bintrees [Kn080], Tamminen [Tam84b] developed a coding

suited for so called "maps", images that consist of rather large areas of unique

color, but where there is no relation between the colors of adjacent areas.

Woodwark [Wo084] proposed a similar scheme based on quad trees. First

proposed in [Kaw80J, Oliver et al. [Oli83] and Kunii et al. [Kni86] presented

slightly different variants of an extension of the (originally binary) OF to

gray scale images.

1.2.2.5 The G-Quadtree

In [Kni86], a family of quadtrees called G-quadtrees was also introduced. Each G­

quadtree uses a different number of most significant bits, changing the amount of

condensation based on the needs of the application. This work was extended to
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In general, the G-quadtree achieved its goals, but there are some efficiency

problems that are overlooked easily. First, a dual representation is used to store

the current quad tree (using pointers) and the remaining lower bits (as an array).

This makes conversion of these representations necessary on almost any request

from the user. Much better efficiency, both in terms of space and time, can be

obtained by using the explicit quadtree (see Subsection 4.1.2).

Second, the variant of OF used to store a G-quadtree (with 2k gray levels) on

external memory, called SKF, uses k+l bits for any of the only 2k+l symbols (the

2k gray levels and the parenthesis). With this, about one bit per symbol is wasted,

and the worst case upper bound for an image of b·22, bits is 4/3·(b+l)·22, bits.

Even worse, if the user sets a different gray scale resolution for different areas of

the image or different parts of the gray scale (non-uniform G-quadtree), the

highest necessary number of bits is used for all symbols [Ma09Da]. Actually, better

performance is easily achievable with small changes (compare [Kaw8DJ).

Third, the reason for the slight overall compression that has been achieved

despite the problems mentioned above has been attributed to the G-quadtree; in

reality it is mainly due to the fact that almost half of the area of the images used is

uniform background. Much higher compression is possible using this fact

efficiently. On the other hand, this shows that the G-quadtree is not able to

achieve any compression on images without uniform background. A particularly

striking example of this problem is the use of the triangular quadtree to construct

a three dimensional translucent display of a rat brain [Ma09Db]. A check by the

author of this thesis revealed that there was no condensation at all in the object

areas. This suggests that a straightforward calculation, using arrays, should

perform much faster, besides being simpler to implement.

Whereas the above three problems are rather easily detected and solved, it is

another point that is of most interest: The high condensation achieved on the

more significant bits when using a low number of gray levels is completely lost

when increasing the number of gray levels. Trying to find a solution for this

problem let to the BC quadtree and GOF as described in Chapter 4.

1.2.3 Progressive Transmission

This subsection gives an overview of the different methods proposed to achieve

progressive transmission. An overview of the various applications for

progressive transmission is given is Subsection 3.1.3. These applications are

basically independent of the method used. Some of the methods mentioned here

are compared conceptually with the new method presented in this thesis in

Section 4.6; some experimental results can be found in Chapter 6.

The basic principle used by all progressive transmission methods is to rearrange

the image information so that the most important components of the image are

transmitted first; this is usually combined with a transformation of the image

data in one or another way, both to achieve compression and to make data items

independent to allow their rearrangement.

The various methods proposed up to now for progressive transmission

differ by what parts of the image information they consider most important, and

by what kinds of transforms they use; this affects both the complexity of the

method and the quality of the result.

1.2.3.1 Spatial Resolution Techniques

Trying to isolate the most important information in an image easily leads to

identifying this with the components of the image with low spatial resolution

(low frequency). There is thus a large number of methods that increase spatial

resolution to achieve progressive transmission. In his review of progressive

transmission, Tzou [Tz087] called these methods pyramid-structured, as some of

them use a pyramid data structure.

Progressive transmission was first proposed by Sloan and Tanimoto [SI079],

[Tan79]. Their basic proposal worked as follows: For an image of 2'·2' pixels, they

recursively constructed images with reduced spatial resolution, having 2'-1. 2'-1

pixels, 2,-2. 2,-2 pixels, and so on, with the final image containing only one pixel.

The smaller images were formed by taking the average of four pixels of the larger

image. All these images can be arranged as a pyramid, with the single pixel image

at the top and the full resolution image at the bottom.

Transmission of the image started at the top and proceeded down the

pyramid. A rough, but in many cases useful, approximation of the image was

obtained at an early stage. The overhead for sending the whole pyramid was 33%,

but Sloan and Tanimoto argued that this could be well offset by the gains in

efficiency achieved by the early approximations.

They also proposed ways of reducing the overhead. One possibility was to use

the sum, and not the average, in the smaller images. Then only three out of four

pixels of a lower level had to be transmitted. The fourth was regained by a sub­

traction operation. This left an overhead of 8.3% for an image with b=8 bits/pixel.

Knowlton [Kn08D] eliminated the previously mentioned overhead by using

a lookup table transforming two pixel values to their approximate average and

difference with exactly the same number of bits/value. Hill et. al. [HiI83] later

replaced the large table with a simple procedure. Knowlton [Kn08D] also showed

that it was possible to achieve overall compression because differences near to

zero were much more frequent than large differences. Several prediction schemes



14 Introduction Chapter 1 Section 1.2 Historical Background 15

Figure 1.5. The subsampling scheme of Endoh et al.

Sloan et al. stress that in this way, any overheads are eliminated, and no

calculations are necessary. Dreizen makes up for the inaccuracy of simple

subsampling by first subdividing areas of the image where there are strong

changes of gray values. This is nicely combined with a simple prediction scheme

that achieves good overall compression.

On the other side, Endoh et al. use recursive linear interpolation and

prediction, both based on the hierarchy of sampling points shown in Figure 1.5.

This burdens the receiver, especially in the initial phases. Using cubic splines or

cubic convolution for interpolation has been proposed by Sanz et al. [San84].

were investigated by Fanelli et a!. [Fan84] for the progressive transmission of

newspaper images.

The theoretically optimal construction of a low resolution image is not

simple averaging of nonoverlapping areas, but the use of Gaussian filters. A

pyramid based on this principle has been proposed by Burt and Adelson [Bur83].

They call it the Laplacian pyramid because the difference images between two

levels of the pyramid, which are transmitted to increase resolution, are basically

Laplacians. This form of pyramid formation has the advantage that the size of

subsequent levels is not restricted to increase by a factor of two [Hof86].

Compression is achieved because the Laplacians have a very condensed

histogram. A somewhat similar method has been proposed by Yasuda et a!.

[Yas79,80]. Other filters proposed for progressive transmission include the 2-D

quadrature mirror filter (QMF), but its computation cost is extremely high (see

[Tz087] for additional references).

The other extreme, namely simple subsampling, has been proposed by Sloan

et al. [51079], Dreizen [Dre87], and Endoh and Yamazaki [End87]. Sloan et a!. and

Dreizen use one of the pixels of a subblock, for example the top left, as a

representative. Endoh et a!. devised an interesting subsampling scheme that

increases the number of pixels by two (instead of four) for each level of the

pyramid (see Figure 1.5).

·-.......

1.2.3.2 Gray Scale Resolution Techniques

Achieving progressive transmission by increasing the gray scale resolution,

transmitting one bit plane after the other, is such a general idea that it is difficult

to attribute it to any individual researcher. Tzou [Tz087] calls this, and some

related methods, spatial domain techniques, but this is somewhat misleading, as

the methods based on the increase of spatial resolution also work in the spatial

domain. Basically, this approach is simple, but not very efficient. At least one bit

per pixel is necessary for the first approximation. This can however be improved

dramatically by using compression methods for binary images (see also

Subsection 1.2.3.5).

Several papers that use methods described in Subsection 1.2.3.1 to achieve

progressive transmission mention on the fly that improvements are possible by

initially restricting the number of bits per pixel [Loh82](for Knowlton's method),

[HiI83], [San84]. Although this very easily limits the number of bits per pixel in an

initial step, none of these papers propose a way to transmit the additional bits

efficiently. The only method that can increase both spatial and gray scale

resolution is that of [End87]; the differences between this method and that

presented in this thesis will be discussed in Subsection 4.6.3.

1.2.3.3 Transform Coding Techniques

Sloan and Tanimoto [51079], [Tan79] mentioned the possibility of using transform

coding for progressive transmission. However, they also pointed out the

difficulties when using such methods, like the large amount of computation

necessary and the need for additional storage.

There are several aspects that make transform coding suited for progressive

transmission. First, it provides very good basic compression rates. Second, the

transformed coefficients are independent of each other and can be transmitted in

any desirable sequence. Third, the transformation usually results in band split­

ting. Starting transmission with the low frequency coefficients easily allows to

increase spatial resolution progressively.

There are basically two ways to transmit the transformed coefficients. The

first is to choose a fixed bit allocation scheme based on the desired final quality,

and then to transmit one component after the other. Different transmission

sequences have been investigated by Ngan [Nga84], and for TSC coded images

by Dubois and Moncet [Dub86].

When transmitting one component after the other, fast transformations like

the FFT are not usable. However, Lohscheller [Loh82] showed how to reduce

computation by taking advantage of the fact that in the case of the discrete cosine

transform, many of the contributions of a coefficient to the retransformed pixels
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are equal. Takikawa [Tak84] proposed another way to reduce computation, in his

case for the discrete Fourier or the Hadamard transform, namely by recursively

transmitting only the top left quarter of the coefficients.

Lohscheller [Loh82,83,84] also showed that additional performance could be

gained by measuring the visibility threshold of each component, and eliminating

coefficients that are below this threshold. He also introduced an adaptive scheme

based on a class division. Performance is improved further, but this scheme can

hardly be called progressive any more. The transmission of the classification

information overly delays the early transmission of actual image data.

The second way to transmit the coefficients is to quantize all the coefficients

incrementally finer and finer, i.e. to allocate more and more bits to each

component. Optimal bit allocation schemes can be adapted from nonprogressive

applications. With this, not only the spatial, but also the gray scale resolution is

successively increased.

Tzou and Elnahas [Tz086] use embedded coding and show that this approach

leads to about the same reproduction quality with a rate half as high as when

transmitting one component after the other. Instead of embedded coding, Wang

and Goldberg [Wan88] proposed to requantize the quantization errors, and com­

bine this with vector quantization. They showed that by repeatedly quantizing the

residual errors of the coefficients, the coding error will approach zero. However,

this is only true when numerical errors are ignored and the operations on real

numbers are implemented exactly in the same way in the sender and the

receiver. This is difficult to guarantee in a heterogeneous environment.

The results with this method are of high quality, but the computational

requirements are extremely high. To be really able to use the good approximation

quality at low bit rates, the retransformation for a whole image has to be

carried out in times of one second or less. If at all, this is possible only with

specialized hardware.

1.2.3.4 Miscellaneous Methods and Techniques

Vector quantization, if tree structured, can be used for progressive transmission

[Tz087J, [Ris9D]. Vector quantization can neither be grouped with the tech­

niques increasing spatial resolution nor with those increasing gray scale

resolution. Theoretically, it will improve resolution in the optimal way with

every bit transmitted.

Vector quantization can achieve good results at limited complexity [Tz087].

On the other hand, vector quantization also has its problems. Training of the

quantizer for different types of images is necessary, and storing the codebook

may take a considerable amount of memory. Also, the range of rates at which

vector quantization can be used is limited by the size of the codebook. If a

small block size is used, the initial rate is increased. For a large block size, the final

rate is restricted.

Various authors, starting with Sloan and Tanimoto [S1079] and Knowlton

[Kn08D], have proposed to allow feedback from the receiver. The viewer can then

indicate the area of the image that is of most interest, and this can accelerate

transmission of the necessary information. Algorithms to determine the area of

interest at the sender in advance, based on statistical properties of image parts,

have been proposed by Sanz et al. [San84].

A method of image coding and transmission somewhat akin to progressive

transmission has been developed by Prusinkiewicz et al. [Pru8S]. With this

method, not only initial substrings, but in a hologram-like way any substring of

the encoded image provides a description of the image at a lower resolution. the

price to be paid is the high overhead.

1.2.3.5 Progressive Transmission for Binary Images

The main interest of this thesis is the coding and progressive transmission of gray

scale images. Methods for binary (black and white) images can give an important

additional insight into this problem.

One of the methods originally proposed by Sloan and Tanimoto [S1079],

[Tan79] is to form a pyramid by taking a popular gray value (instead of the

average) as a representative. Pixels on any level not equal to this value are then

transmitted by indicating their size, coordinates, and value. This method is suited

almost only for binary images.

A related idea is the use of forests of quad trees to approximate a binary

image, as proposed by Samet [Sam8Sb]. This allows to slightly reduce the number

of nodes when compared with a standard quad tree. However, the overhead due

to the fact that locations and sizes have to be transmitted is large. Also, in the way

the approximations are ordered, the first passes over the image contain most of

the information and thus take a long time to transmit, whereas later passes only

make some additional corrections. In addition, the approximation is very

irregular. Some areas are approximated to the finest detail in the first pass,

whereas other areas remain very coarse.

Besides the better known method for the progressive transmission of gray

scale images, Knowlton proposed a method for binary images in the same paper

[Kn08D]. Knowlton uses what is now known as OF (see Subsection 1.2.2.3),

reordered breadth first. Also, he uses gray to indicate undetermined areas of the

image, and the information about neighboring areas to increase performance.
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Growth-geometry coding has also been proposed for the progressive transmission

of binary images [Fra80]. However, when compared with the necessary amount of

computation, the achieved compression rate, especially for the first stage, is not

very impressive, and the example used in [Fra80] is too small to judge the

applicability of this method.

1.3 Outline of the Thesis
Chapter 2 and 3, together with the overview of Section 1.2, form the introductory

part of this thesis. Chapter 2 concentrates on the theoretical aspects of the

problem, giving theoretical arguments and bounds that allow to compare

progressive transmission with transmission at a fixed rate. Chapter 3 then

analyses the requirements of a wide variety of image transmission and storage

applications and provides a framework for later reference.

The main part of this thesis is formed by Chapters 4 and 5. Chapter 4

introduces the basic principles of the new method of data compression presented

in this thesis. Chapter 5 provides several ways to improve and optimize the

performance of this method. Some of them are closely related to the basic

method, whereas others may require a lot of additional work to be implemented

successfully.

Chapters 6 and 7 then provide results of experiments (Chapter 6) and

proposals for the extension of the method to other applications like color images

(Chapter 7).

2

Rate Distortion Theory for

Progressive Transmission

In this chapter, data compression and progressive transmission are discussed

from a theoretical point of view. The main problem is: Does the fact that a

transmission method is progressive mean that it will be less efficient overall than

a nonprogreSSive transmission method, and if yes, by how much?

The first section of this chapter shortly introduces the basic concepts of

probability and information theory that are necessary for the later development.

The second section then is devoted to rate distortion theory in general. Section 2.3

shows how rate distortion theory can be applied to progressive transmission.

Section 2.4 gives an upper bound for the distortion when using progressive

transmission at high rates. This upper bound comes fairly near to the upper

bounds available for the general (nonprogressive) case.

2.1 Mathematical Foundations
This section gives a short overview of the concepts of probability and

information theory necessary to understand the later development. The main

purpose of this section is to refresh the existing knowledge and to introduce the

notation used. For a thorough introduction, the reader should consult a basic

textbook on the subject, such as [Jons79] or [Ros82, chapter 2].

2.1.1 Probability

The probability of a certain outcome ai of an experiment A, denoted P(ai), is

usually defined as the expected relative occurrence of ai if the experiment A is

repeated a large number of times. The probability of any outcome is thus greater

or equal to zero, and as different outcomes are mutually exclusive, and the expe-
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riment always has an outcome, the probabilities of all outcomes of an experiment

add up to one. An example of an experiment would be the selection of a pixel

value in a certain location of an image, or of an image from an image database.

An event is defined by saying for each outcome whether or not the event

occurs. The probability of an event is the sum of the probabilities of the outcomes

for which the event occurs. New events can be constructed by combining existing

ones; these are defined by set theoretic operations on the underlying outcomes. A

set of mutually exclusive events whose probability adds up to one is called a

system (of events). The same notation as for experiments and outcomes will be

used for systems and events. Also, sometimes events will be treated as letters

drawn from a certain alphabet.

The probabilities of several systems of events can be combined. The

probability of the combined occurrence of event ai in A and bj in B is denoted by

P(ai bj)' Given a complete table of the probabilities for all combinations from A

and B, there are several ways of looking at these probabilities.

First, the probabilities P(ai bj) themselves are called joint probabilities. They

of course add up to one. Second, the probabilities P(ai) and P(bj) are called

marginal probabilities or marginals. They can be obtained as

P(ai) =Ij P(ai bj) and P(bj) =Ii P(ai bj)' (2.1)

A third concept is conditional probability. The probability of ai conditioned on bj,

denoted P(ai I bj), is the probability of ai given that bj occurred, and can be

calculated as
P(ai b-)

P(ai I bi)=~. (2.2)

If P(bj) = 0, this means that P(aibj) =0, and in this case P(ai Ibj) is defined to be O. A

useful property when working with conditional probabilities is that general laws

valid for unconditioned probability remain valid if all probabilities are

conditioned by the same outcome or event. This becomes obvious when we

remark that all probabilities are conditioned in some way, even if only by

assuming that the experiment takes place in this universe.

If for all ai and bi' P(ai bi) = P(ai)·P(bi), then A and B are called independent,

which means that the outcome of A does not depend on the outcome of B or vice

versa. The concepts of joint, marginal, and conditional probabilities, as well as

independence, can easily be extended to more than two variables (see also

Subsection 2.1.5).

2.U Random Variables, Processes, and Fields

A random variable is a variable that assumes a (real) value at random, according

to some probability distribution. Random variables can be constructed by

assigning a value to each outcome of an experiment, or by taking a function of

another random variable. As with traditional variables, random variables can be

grouped, leading to random vectors and random matrices. Random variables can

also be classified by whether they can assume continuous values or are restricted

to a finite set of discrete values.

The expectation E(A) of a random variable A is defined (in the discrete case)

as the average of its values weighted by the respective probabilities:

E(A) =Ii P(ai)·ai· (2.3)

Note that the same notation as for experiments is used. The difference is usually

evident from the context. If A can assume more than a discrete set of values, the

sum in (2.3) is replaced by an integral.

Taking a series of random variables indexed over time, for example a

random variable describing the outcome of an experiment at regular time

intervals, results in a random process, denoted At or A(t). If time is discrete, this

is a discrete time random process (also called random sequence); if time is

continuous, this is a continuous time random process. As an example, the pixel

values of an image when transmitted line by line can be seen as the realization of

a discrete time discrete value random process.

Subsequent variables of a random process can be dependent (having

memory) or independent (memoryless). Also, they can have identical probability

distributions or different probability distributions. When working with

independent and identically distributed (ij.d.) random processes, the index twill

usually be omitted.

A random process is called (strictly) stationary if the probability distributions

of all the random variables that can be defined on any subset of the process are

unaffected by shifting the time origin. Weaker versions of stationary processes

can also be defined. Another related property of a random process is ergodicity.

Roughly speaking, it refers to the fact that the process does not have infinite

memory, or that dependence between two of its variables is decreasing with

increasing time difference.

Replacing the time parameter of a random process by two or more

parameters produces a random field. Images, before being digitized, can be seen as

realizations of two-dimensional continuous parameter continuous valued
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random fields. Sampling makes the parameter space discrete, and quantization

has the same effect on the values.

2.1.3 Information and Entropy

Random variables (and processes) can be viewed as sources of information. The

information obtained when the random variable A assumes value aj, called self­

information and denoted [(aj), depends on the probability of aj as follows:

](aj) =- log P(aj). (2.4)

It can be shown that this definition is the only one that exhibits all the properties

conveniently assumed to hold for a measure of information. The base of the

logarithm does not have to be specified supposed that it is always the same; it

affects the result only by a constant factor. Taking the natural logarithm leads to

information being expressed in units of nats; using base 2 logarithms gives bits.

The entropy H(aj) of a random variable A is its expected or average

information:

H(A) = E(I(aj) =- Li P(aj) . log P(aj). (2.5)

Here and in the following, a·log x is defined to be zero irrespective of whether

log x or x itself are defined. Joint and conditional entropies are defined

accordingly:

H(A B) = - Li,k P(aj bt) . log P(aj bt) and

H(A I B) =- Li,k P(aj I bj) . log P(aj I bj)' (2.6)

Using formula (2.2), it is easy to show that

H(A B) =H(A) + H(B I A) =H(B) + H(A I B), (2.7)

Le. the information (per symbol) conveyed by the combination of A and B is the

information contained in A plus the information of B when A is already known

(resp. vice versa).

2.1.4 Mutual Information

The most important measure of information in the context of coding and data

transmission is mutual information. The mutual information I(A;B) between

two random variables A and B is the information contained in A about B or in B

about A, and is calculated as
P(ajb-)

](A;B) = Li,j P(aj bj) . log~

= H(A) - H(A I B) =H(B) - H(B IA). (2.8)

An important property of mutual information is that it is never negative, as

expressed in the following theorem (For a proof, see for example [Jons79, p.22]):

Theorem 2.1: Mutual information is greater or equal to zero, with equality

only in the case of independence.

If the source random variable A is transmitted over a communication

system or channel resulting in the random variable B at the output, then I(A;B) is

the information about A transmitted by the channel. Channel coding theory,

which will not be discussed further here, says that I(A;B) is also the capacity of the

channel that is necessary to produce an output B statistically related to the source

A with joint probabilities P(aj bj)'

On the one hand, if A and B are independent, and thus [(A;B) =a, no trans­

mission is necessary; B can just be produced by a random number generator. On

the other hand, if we want B to reproduce A exactly, then the channel capacity

necessary is I(A;A), which can be shown to equal H(A), as P(aj aj) = P(aj) if i=j, and

P(aj aj) =a otherwise.

2.1.5 Mutual Information for Three Variables

Several kinds of mutual information can be defined for three (and more)

variables. These kinds of information measures will play an important role in

Section 2.3.
The mutual information between a random variable A and the combination

of two random variables Band C, written I(A; B C), is very naturally defined as

" P( b ) I P(aj bi q) (2.9)
I(A; BC) = L,i,j,k aj j q . og P(aj).P(bj q)

The mutual information between A and B when conditioned on C, denoted by

I(A;B I C), similarly is
P(ajbj I cD

I(A;B I C) =LkP(q)'Li,j P(ajbj Iq)·log P(aj Iq).P(bj Iq)

= LkP(q).I(A;B I Cf). (2.11)

The conditional probabilities P(aj Iq), P(bj Iq), and P(ajbj Iq) together behave like

ordinary probabilities, and so with Theorem 2.1, ](A;B I Ct) ~ a. Also, P(q) ~ a for

all k, from which it follows directly that I(A;B I C) ~ a. Q.E.D.

Another theorem relates mutual information and conditional mutual

information:
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Theorem 2.3: leA; BC) = leA; B) + I(A;C I 8).

For a proof, see for example [Jons79, p. 28]. The theorem says that the infor­

mation that both Band C together convey about A is equal to the information

that B gives on A plus the information that C gives on A after B is known. The

next theorem, which concludes this section, will be used in Section 2.3:

Theorem 2.4: I(A; B) + I(A;C I B) ~ leA; C), with equality if and only if A and

B are independent when conditioned on C.

Proof: Using theorem 2.3, we have

leA; BC) = leA; B) + I(A;C I B) = I(A; C) + I(A;B IC), (2.12)

and so, as from theorem 2.2, I(A;B IC) ~ 0,

I(A; B) + I(A;C I B) ~ leA; C),

with equality if and only if I(A;B I C) = O. Q.E.D.

2.2 Rate Distortion Theory
Consider the following problem: Given an image, how well (Le. how near to the

original image) can it be transmitted with a given number of bytes if the best

possible coding is used? The investigation of this relation between transmission

rate and reproduction quality (or distortion) is the subject of rate distortion

theory. In this section, we give a short introduction to rate distortion theory as far

as necessary for the development in the following sections. The reader interested

in a more detailed treatment is referred to [Ber71] or [Gra90].

2.2.1 The Model of Transmission

The transmission system considered by rate distortion theory is shown in Figure

2.1. From a source random process Xt, the transmission system produces an out­

put Yt. In the following, we will assume that the source is discrete and LLd.

Extensions to more complex cases are possible (see [Ber71, Chapter 7]). The

transmission system is composed of a source coder, which for each x selects some

value'1, a channel that takes 1 as input and outputs y, and is able to transmit at

rate R, and a source decoder which transforms yto y.
The channel may be composed of a channel coder, a noisy transmission line,

and a channel decoder, but is assumed to work errorfree, so that we can assume

1 =y. Also, the decoder works deterministically, and so we can assume that it just

copies its input to its output, so that y =y. Then the responsibility of optimiZing

transmission is fully assumed by the source coder. This is why this field of coding

theory is called source coding, in contrast with channel coding, which is mainly

concerned with error detection and error correction codes.

Figure 2.1. Transmission system model

2.2.2 The Rate Distortion Function

The rate distortion function R(O) for a given distortion 0 is defined as the mini­

mum rate necessary to transmit y so that the distortion is smaller or equal to O.

Here, distortion is measured by assigning to each pair of x and y a value d(x, y)

that indicates the cost or distortion of the output y in view of the source value x.

Greater values of d(x, y) indicate less desired combinations of x and y. The

distortion of the overall transmission is measured as the average distortion per

letter, or
dist(Q) =Ljk Qjk d(xj, yk! where

Qjk =P(Xj Yk). (2.13)

Q is called the transition probability matrix. The distortion measure of (2.13) is

the so-called single letter fidelity criterion, and we will assume this fidelity

criterion for the following discussion.
The rate distortion function R(O) can now be formally defined as follows: U

we define the set of acceptable transition probabilities as

Qo = (Q I dist (Q):O; OJ, then

R(D) =min leX; Y), (2.14)

where the minimum is over all QE Qo. Many general properties of the rate­

distortion function are known, such as convexity (u), continuity (except maybe at

the point of maximal distortion Omax), and the fact that the slope of R(O) tends to

-00 as 0 approaches zero [Ber71, chapter 2].

Figure 2.2 shows a typical rate distortion curve. Unfortunately, in most cases

it is impossible to find R(O) analytically. However, an efficient numerical

algorithm to compute points on R(D) is available [Bla72]. It works parametrically,
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(2.16)

approximating the point on the rate distortion curve with a given slope. This

algorithm was of great help when checking the results of Subsection 2.3.

R(D)

transmission
possible

transmisson
impossible

D

Figure 2.2. A typical rate distortion curve

The relation between transmission system input and output is given in terms of

joint probabilities, but for the actual implementation, block coding is usually

assumed. A block code of length n works by repeatedly taking n letters of the

source, and assigning to this block a code word according to some rule. The

number of code words is chosen so that it matches the capacity of the channel.

The most important property of R(D) as defined by (2.14) is expressed in the

source coding theorem and its converse, originally due to Shannon [Sha59]:

Theorem 2.5 (Source Coding Theorem): Given a discrete memoryless source
X and a single letter fidelity criterion d(x, y), denote the corresponding rate distor­

tion function with R(D). Then, for any 00 and any D~O, an integer n can be found

so that there exists a code of block length n, distortion $D+£ and rate <R(DJ+£.

Theorem 2.6 (Converse Source Coding Theorem): There are no source codes
that achieve rate less than R(D) with distortion less than D.

For a proof of the above two theorems, we refer the reader to [Ber71] or

[Gra90]. Theorem 2.5 is valid for block codes only, but similar coding theorems
are possible for other kinds of codes.

The two theorems together exhibit the full meaning of the rate distortion

curve: Performance above and arbitrarily near the rate distortion curve is

possible, at the expense of maybe very long and complicated codes, but

performance below the rate distortion curve is impossible. The rate distortion

curve therefore can provide a good yardstick when designing codes. If we are

fairly close to R(D), it might not be worthwhile to search for additional

improvements. Also, we will never attempt to design a code that performs below

R(D).

2.2.3 The Rate Distortion Function for a Composite Source

A composite source [Ber71, Chapter 6.1] is the combination of a certain number of

subsources. Each subsource is an ordinary source as discussed in the previous

subsection, and the sources are independent of each other. For each time instant,

one of the subsources is selected at random, based on a known probability

distribution, and the letter it produces has then to be coded. Depending on

whether the coder or the decoder are informed of the sequence of subsource

selections, there are four different variants.

For the development in the next section, the only case of interest is that both

the coder and the decoder know which subsource has been selected. In this case,

the rate distortion function of the composite source is constructed by combining

the rate distortion functions of the individual sources. For each rate distortion

function, let the region of achievable rate distortion combinations, including the

rate distortion curve itself, be called the achievable region. Then the following

theorem holds:

Theorem 2.7: For a composite source with both coder and decoder informed

about the selection of the subsource, the achievable region of the composite
source is the Minkowski sum of the achievable regions of the subsources

weighted with the respective probabilities of the subsources.
Proof (informal): Minkowski addition of two sets of points is defined as the

set of points formed by the vector addition of any two points of the original sets

[Min03], [Had57]. The definition of scalar multiplication and of the sum of more

than two terms is obvious. A good introduction to the properties of Minkowski

addition can be found in [Gia88].

If the subsources are so that they can be, individually, transmitted at rates

R1, ... , Rk, ... , R n , with distortions D1, ... , Dk,. .. , D n , and the probability of each

subsource being used is denoted by P(Sk), then for a single letter distortion

measure, the average distortion is

D = L..k P(Sk)Dk, (2.15)

and the average rate will be

R = L..k P(Sk)·Rk·

This corresponds directly to the definition of the Minkowski sum. That the

boundary of the resulting achievable region of points (D, R) is indeed the rate

distortion function of the composite source, in the sense of the source coding

theorems 2.5 and 2.6, is proved in Berger [Ber71, pp.183/4 and pp. 55-7]. The
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specification of the rate distortion curve used there, namely to combine points of

the original rate distortion functions with equal slope, exactly corresponds to the

slope-matching rule for the outlines of Minkowski sums as explained in [Gui831.

The properties of the composite rate distortion function, as given in [Ber71, p. 57],

are also easily recognizable as properties of Minkowski addition. Q.E.D.

2.3 Lower Bounds

2.3.1 Successive Refinement

Rate distortion theory has been developed for transmission at a fixed rate; the rate

distortion curve shows the relation between rate and distortion when using a

transmission scheme that does not necessarily allow to obtain intermediate

results as transmission is proceeding. In other words, we are getting from the

point of no transmission (Omax, 0) in one step to a point (01, R(OI».

Rate distortion theory does not explicitly say whether we can, in a second

step, achieve the point (02, R(02», Le. reduce the distortion to 02 with the

additional rate of not more than R(02) - R(OI) (Figure 2.3 (left». Whether this is

possible or not is of great importance for progressive transmission. If the point

(02, R(02» can be achieved from the point (01, R(OI», this shows that

theoretically, progressive transmission is possible at the same rate and with the

same distortion as transmission that does not care about intermediate results.

(0 max' 0) 0 (0 max' 0) D

Figure 2.3. Rate distortion curves for progressive transmission

On the other hand, there are cases where the way the information was

transmitted to reach the point (01, R(O!» precludes that further points on the

original rate distortion curve can be reached (Figure 2.3 (right». This means that

in this case we have to pay something if we want to make transmission

progressive. Also, it makes theoretical analysis much more complicated, as the

rate distortion combinations achievable in this case depend on the size of the

steps.
The question of which of the two cases in Figure 2.3 applies has been

investigated in a recent thesis by Equitz [Equ89], [Equ901. He used the term

"successive refinement" for the case where there is no loss with progressive

transmission l . He found necessary and sufficient conditions for successive

refinement to be possible, defined in terms of Markov conditions on the

transition probabilities at the points (01, R(OI» and (02, R(Ov)·

Equitz's derivation of these conditions relies on previous results on the so

called multiple description problem. The author of this thesis obtained

equivalent conditions for discrete sources independently before getting notice of

Equitz's work. The presentation of the conditions will therefore take a form

somewhat different to that in [Equ891. Although it is less formal, it is hoped that it

will be somewhat easier to understand for readers not very familiar with rate

distortion theory.

2.3.2 Conditions for Successive Refinement

Assume a source random variable A, with an alphabet of size m, and two decoder

outputs Band C, both with the same alphabet of size n. The distortion matrix is

given as d(aj, bj) =d(aj, Cj) (O<;i<m, O<;j<n). The transition probabilities P(ajbj) and

P(ajCk) are chosen so as to yield points (01, R(OI» and (02, R(02», respectively, on

the rate distortion curve, with R(02»R(OI)· The rates and distortions will be

indexed with the letters used for the decoder outputs (i.e. OFOB, R(OI)=RB,

02=OC, and R(Ov=Rc).

Based on the transmission of source A with output B, we will now try to

construct a new output equal to C with rate RC-RB. Although the relation

between A and B is defined in terms of conditional probabilities, the channel and

the decoder work deterministically, so that both the coder and the decoder know

B. Thus we can construct a composite source as discussed in Subsection 2.2.3 by

using B to select the appropriate subsource. The probability of each subsource is

P(bj), with source output probabilities P(aj I bj)' The distortion matrix remains

unchanged. As the subsources are independent of each other, the resulting rate

distortion function will be the actual rate distortion function when starting from

point (OB, RB)·

1 It would probably be more appropriate to speak of "lossless successive

refinement", but we will use "successive refinement" in the following.
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This is a very natural result: When transmitting data progressively, any initial

parts of the data are included in the data transmitted up to the current point.

We denote the overall output resulting from this composite source by C. To

decide whether successive refinement is possible, we have to compare C with C,

which can be done by setting the slope of the rate distortion function at (Dc, RC)

(and thus the slopes of all the subsource rate distortion functions) equal to the
slope at (DC, Re).

If for this slope, there is only one point (Dc, Rd, with only one set of
transition probabilities, then either

DC=Dc, (2.17a)

RC=Rc, and (2.17b)

P(ajC'k)=P(aiq) for all i and k. (2.17c)

In this case successive refinement is possible. Otherwise (DC, RC) will not lie on

the rate distortion curve, which means that successive refinement is impossible.

If there is more than one set of transition probabilities, then if successive

refinement is possible, one of these sets has to fulfill condition (2.17c). If the rate

distortion curve contains a linear segment, then successive refinement can be

tested by approaching both endpoints of this segment.

For the above three conditions, it can be shown that (2.17c) implies (2.17a), as

DC =DCIB =LjP(bj)DClbj

= Lj P(bj)' Lik P(aic'k I bj)·d(ai, c 'k)

= Lik P(ajc'k)·d(ai, C'k) = Lik P(aiq)·d(ai, q)

= DC·

On the other hand, using (2.17b) and (2.17a), we have

RC = I(A; C), and in addition

RC = RB + RCIB

= I(A; B) + Lj P(bj).I(A;C I bj)

= I(A; B) + Lj P(bj).I(A;C I bj)

= I(A; B) + I(A;C IB), so that

I(A; C) I(A; B) + I(A;C 18). (2.18)

Using theorem 2.4, the condition for successive refinement to be possible can

now be deduced directly and formulated as follows:

Theorem 2.8: Successive refinement of source A from decoder output

B to decoder output C is possible iff A and B are independent when condi­

tioned on C, or

I(A;B IC) =o. (2.19)

Therefore they will not provide any additional information about the source if

again sent separately.

Formula (2.19) can be expressed in terms of the individual probabilities using

(2.10) as follows:

P(aibj I q) = P(ai I Ck)·P(bj I Ck), respectively (2.20)

P(aibjq) = P(aiq)·P(bj I q) or (2.21)

P(ajbjq)·P(q) = P(aiq)·P(bjq) (2.22)

for all i, j, and k. Now given the points (DB, RB) and (Dc, Rd, the marginal

probabilities P(ajbj) and P(aic0 are known, but else, there are no conditions for the

joint probabilities P(ajbjC0. Summing (2.21) over k leads to

P(aibj) =Lk P(ajq)·P(bj I q). (2.22)

This is a system of mn linear equations where the P(aibj) and P(ajc0 are given,

and the P(bj Iq) are the unknowns. This system can be separated into n systems,

one for each bj, with m equations and n unknowns each. If the solutions to these

systems are all nonnegative, i.e. if they indeed represent probabilities, then

successive refinement is possible; else it is not. This condition also can be

expressed geometrically: If for all bj, the vector of probabilities pea bj) lies inside the

angle spanned up by the vectors of probabilities pea q), then and only then

progressive transmission is possible.

Depending on m and n, the following cases can occur: If both the source

alphabet and the reproduction alphabet have equal size (m=n), there is in general

a unique solution for each system, which can be checked for negative values. If

the source alphabet is smaller than the reproduction alphabet (m<n), in general

the solution will be underdetermined; all possible solutions lie on a lineal

manifold of dimension n-m. Whether a solution without negative values exists

can be checked by using methods similar to linear programming. In the third

case, when the source alphabet is larger than the reproduction alphabet (m>n), in

general there is no solution. If m>n, it is therefore easy to find counterexamples

to successive refinement.

If successive refinement is possible, formula (2.22) not only allows to check

whether successive refinement is possible, but if so also allows to calculate the

transition probabilities of all the subsources. As these subsouIce have source

distributions different from the original source A, this may allow to calculate the

rate distortion functions of large classes of source distributions comparatively

easily by just solving a system of linear equations.
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(2.23)

2.3.3 Discussion

The development in the previous subsection shows that there are indeed cases

where theoretically, using progressive transmission is as efficient as using

nonprogressive transmission. From the geometric explanations in the previous

subsection, we can deduce the class where both source and reproduction alphabet

contain two letters (m=n=O) as a simple example. On the other hand, (2.22) lets

assume that in most cases where m > n, successive refinement is not possible.

Equitz [Equ89], [Equ90] investigated several other types of sou.rce distributions

and distortion functions. He showed that for any discrete source with Hamming

distortion measure (also called probability of error distortion measure), any

Gaussian source with squared difference distortion measure, and any Laplacian

source with absolute difference distortion measure, successive refinement is

possible.

In addition, Equitz proved that successive refinement is always possible for

discrete sources and small distortion. In general, successive refinement seems to

be more frequent for small distortions, which can easily be explained by the

geometric argument at the end of the previous subsection. For small distortions,

the probability vectors come closer and closer to the coordinate axes and span up

the whole first (hyper)quadrant. This is in accordance with the general tendency

that rate distortion problems are easier to treat at small distortions.

Besides the practical reasons that advocate the use of progressive

transmission (see Chapter 3), which will be discussed in Chapter 3, the above

results represent an additional incentive that makes the study of progressive

transmission worthwhile. However, in principle, these results are valid only

under the assumptions of rate distortion theory.

The rate distortion function is the boundary of the region of possible rate

distortion combinations, achievable only as the number of symbols transmitted

grows towards infinity. In the case of successive refinement, the total block length

necessary to reduce the distance to the rate distortion curve below a certain level

will certainly grow with the number of refinements used. The results of the

experiments of Equitz [Equ89, Chapter 7], for example, suggest that in the case of a

Gaussian source, the necessary total block length will increase proportionally to

the number of refinements.

In the case of finite length messages like single images, which are our main

interest, the increase of total block length proportional with the number of

refinements means that the number of refinements is limited by image size if we

want to transmit with a certain efficiency. Cases where several images are

transmitted together are very rare (see Subsection 3.1.3.1)

However, the reasoning developed in the previous subsection is strictly valid

only in the case where we are actually on the rate distortion curve. The fact that

we used a higher rate than actually necessary to achieve a given distortion does

not mean that this was completely useless. An extreme example is receiving a

cryptographically encoded message: Although the rate increases continuously,

distortion does not decrease until the key is received.

The above reasoning made obvious that in addition to investigating lower

bounds to the combinations of rate and distortion achievable with progressive

transmission, as done in this section, realistic upper bounds could help greatly in

assessing the possibilities of progressive transmission.

2.4 An Upper Bound

2.4.1 High Rate Vector Quantization Advantages

In this section, we will obtain an upper bound for the additional amount of

distortion we have to "pay" for a progressive coding method. In order to obtain a

numerical result, 'some simplifying assumptions are necessary. First, we choose

the mean square error per symbol as the distortion measure. This is more or less

the only mathematically tractable error criterion. Second, we use the so-called

high rate assumption, i.e. we assume that the transmission rate is high enough

that the probability over the region of the source represented by a given code

vector is nearly constant, and that boundary effects can be neglected.

The high rate or high resolution assumption is used frequently when

investigating the approximative behavior of coding algorithms. For this case, the

individual components that contribute to the advantage of vector quantizers

over scalar quantizers, including their magnitude, have been investigated

recently by Lookabaugh et al. [Lo089]. These components are called space filling

advantage, shape advantage, and memory advantage. The memory advantage

results from the fact that subsequent signals are not independent. The shape

advantage depends on the distribution of the individual signals. The space filling

advantage is due to the fact that in higher dimensions, the Voronoi regions

around each coding vector can be made to resemble the optimal sphere.

For the high rate case, Zador [Zad82] showed that the expected minimal

distortion for a k-dimensional block or vector code with a code book of M vectors

is given by

E (k, M, p) = Gk M -2/k (JRk p(x)k/(k+2)dxyk+2)/k
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The boxes of the bintree at each level are not congruent if the bintree is used in its

classical form with all edge lengths equal to powers of two (see below). However,

according to the original intentions of Knowlton [Kn08D], who used rectangles

with aspect ratios of 2:3 and 4:3, the boxes can easily be made congruent. The side

lengths for the box P, denoted by ao, al,. .. , ak.1, are given as:

ai = 2aqi where q=21/ k. (2.25)

In two dimensions, the standard paper sizes like A3, A4, AS, ... are constructed in

this way. G can be calculated for this box as follows: We start by placing the center

at the origin, so that ~ is eliminated and the numerator in (2.24) takes the form

U(P) = fp Ilx 11 2dx. (2.26)

Then we express IIx 11 2 as a sum, getting

U(P) = r [IX?]dX. (2.27)
jp .=0

(2.28)

(2.29)

k-1

" [a i2
]V(P)L..J 3'

i=O

U(P) =

U(P)

The integral and the sum can be exchanged
k-1

I.UpXi2dX]
i=O

and the multiple integral replaced by a simple one and evaluated
k-1

I [V(p) ai ]-- fx-2dx.
2aj -OJ I 1

i=O

where p(x) is the probability density function of the source vector x and Gk is the

coefficient of quantization, which depends only on k. Zador also provided upper

and lower bounds for Gk.

Gersho [Ger79] then conjectured that for an optimal quantizer, the Voronoi

regions around each code book vector are congruent to the space-filling convex k­

dimensional polytope P with minimal corresponding quantization coefficient

G(P). In this case, G(P) can be evaluated as the dimensionless and normalized

second moment of P:

1 fp IIx-~1I2dx
G(P) = k V(p)(k+2}/k (2.24)

Here V(P) is the volume of P, ~ is the centroid of P, which is used on the decoder

side to represent source vectors that fall into P, Ilxli denotes the Euclidian norm

(the length) of x, and the numerator of (2.24) is the (unnormalized) second

moment, also denoted by U(P). Note that even if the conjecture of Gersho might

not hold, (2.24) provides an upper bound for G.

The optimal polytope for k=l is the interval with G1 = 1/12 = 0.08333 ..., for

k=2 it is the hexagon with G2 =0.08018 ... , for k=3 the truncated octahedron with

G3 =0.07854... , and so on. Further results are given in [Con82]. For k~oo, both the

upper and the lower bounds of Zador converge to the case where P is a k-dimen-
1

sional sphere and G ~ 2n e =0.05855. These figures directly express the above

mentioned space filling advantage for each dimension.

(2.30)

(2.31)

(2.32)

1 1 a2

k V(p)2Ik 22/k_l'

k-1
I12aq i
i=O

a2 V(P) q2k.1
-3- 0

G(P) =

V(F)

Using (2.25), we then get

U(P) = Vr) I a2q2i

i=O

This leaves us with
1 V(P) a2

k V(p)(k+2}/k 221k_l

The volume V(P) can be calculated as
k-1

I1 2a i
i=O
2kakqk(k+1}/2

Combining this with (2.31), we obtain
21/ k

G(P) = 8k (41/k-1) . (2.33)

That a is eliminated shows that indeed G(P) is unaffected by scaling P. For k=l,

(2.33) evaluates to 1/12 as expected. For k~oo, the numerator approaches 1. The

2.4.2 The Space Filling Disadvantage For Progressive Transmission

In the case of progressive transmission, the shape advantage and the memory

advantage remain unaffected. On the other side, the space filling advantage

cannot be used because the optimal polytopes (with the exception of k=l) are not

recursively dividable. This problem could be avoided by again using the high-rate

assumption to eliminate boundary effects. However, this would mean that each

polytope had to be divided into far more than 2k smaller polytopes, which would

correspond to the transmission of more than 1 bit/symbol and make the

progressive transmission steps much too coarse.

The only recursive subdivision that seems to be available for higher

dimensions is the regular binary subdivision of the bintree or the 2d-tree [Kn080l,

[Tam84al, [Jac83l, [Diir90a]. For the 2d-tree, the polytope is a hypercube, which

corresponds to coding each dimension separately, and G is therefore equal to

G1 =1/12. However, even in this case, the number of bins for one subdivision step

is 2k, with a corresponding incremental rate of 1 bit/symbol.
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progressive transmission) leads to values much below the curve of optimal

progressive quantization.

The curve for the case where all edge lengths of the bintree are powers of two

(uniform progressive) is a good example of this. Once in a while, the scalar

quantization curve is reached, but between these points and on average,

performance is worse than for optimal progressive transmission.

(2.34)

(2.35)

. D!l
lim g'(x)

h __1_
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limit of the denominator can be found by setting h = l/k for convenience and

using L'Hopital's rule:
. M
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so that
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Figure 2.4. Relative quantization error for different polytopes.
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2.4.3 Discussion

When compared to the memory and shape advantages that can be as high as

10 db [Loo89], the above space filling disadvantage for progressive transmission is

clearly not very high. What is much more important is that such a constant

bound exists at all. It suggests that something like a progressive rate distortion

(2.37)

(2.33)G(P) =

This finally leads to the following theorem:

Theorem 2.9: Under the high rate assumption, the space filling disadvantage

of progressive transmission for k4 00 is
1

G(P) = 8In(4) 0.090168.... (2.36)

Therefore the space-filling disadvantage of progressive transmission compared

with scalar quantization is 2/3·ln(4) =0.9242 or -0.3424 db. Compared with the

best known lattice quantizer, based on the lattice A16 [CheT90], it is 0.7574 or

-1.2071 db, and compared with the optimal quantizer for k4 00 , it is 0.6493 or

-1.8753 db. As the gain per additional bit per symbol is a factor of 4.0 or 6.02 db

[Jay84, p. 1,25], the progressive transmission disadvantage can also be expressed in

terms of bits per symbol. This leads to an additional 0.057 bits, 0.200 bits, and 0.312

bits per symbol necessary to achieve the same distortion when compared with the

above three cases.

It may be of interest to investigate the case where all edge lengths of the

bintree are powers of two as mentioned above. In this case, if we denote by g the

number of smaller edges, the side lengths of the box P are given as:

aj = a (O~i<g) and aj = 2a (g~i<k).

Evaluation of (2.24) in the same way as above leads to
~ 4n-3g
12n . 4(n-g)/n'

For g=O and g=n, this evaluates to 1/12, as in these cases, all edges are of the same

length. The maximum is attained for g = n· [4/3 - 1/ln(4)] = 0.612n with

G(P) =0.1053.

This and the above results are summarized in Figure 2.4. Note that

compared with the previous rate distortion diagrams, the axes have been

exchanged, and the distortion logarithmized and turned upside down to be

compatible with the graphs used in Chapter 6. The values on the coordinate axes

are relative values, they should not be taken absolutely.

In Figure 2.4, only the lowest two curves are progressive; the three upper

curves are just collections of points each reachable independently, but not

successively during the same transmission. In fact, once a point on one of these

curves has been reached, additional finer quantization (corresponding to
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function might indeed exist, and shows that in the high-rate region it is placed

only slightly above and in constant distance from the "one shot" rate distortion

function. This is of course under the condition that we reach the high-rate region

without additional losses.

Also, it is important that the above result is obtained with an incremental

transmission rate of one bit per vector (not per symbol), the smallest incremental

rate practically realizable. This is in contrast to Section 2.3 and the work of Equitz,

where considerably higher incremental rates have to be assumed. In addition,

quantization according to (2.25) is easily realizable for continuous variables; it is

simply a locally scalar quantization with slightly different scales for each variable.

At a larger incremental rate of g bits/block (between 1 bit/symbol and

1 bit/block), the optimal polytope will be the Cartesian product of k/g copies of

the g-dimensional box as described by (2.25). As (2.33) approaches the limit of

(2.36) quite quickly, there is not much to be gained using this polytope and

reducing the number of passes (see also Section 3.2.2.3).

That the limit of (2.36) is approached from below might suggest that there is

an advantage of using smaller block sizes. This is not true, as the memory and

shape advantages increase considerably with block size. In fact, these advantages

can be about a factor of 10 larger than the space filling advantage. This suggests

that an efficient coding method should concentrate on memory and shape

advantages, which do not affect progressive transmission, but may easily

"sacrifice" the shape filling advantage in favour of the advantages of progressive

transmission (see Section 3.1.3).

As in the case of the conjecture of Gersho [Ger79l, the results obtained above

are upper bounds, but it is not sure whether using the polytope of (2.25) is actually

the optimal solution for a progressive transmission quantizer with an

incremental rate of one bit per block. Here some arguments are given that suggest

that this is indeed the case.

When quantizing at an incremental rate of one bit per block, the previous

polytope will be cut into two parts by a hyperplane. As the original polytope is

convex, the dihedral angle between the cutting hyperplane and the original

polytope boundary will be smaller or equal to 90°. Angles greater than 90° will

lead to high second moments and thus inefficient quantization. Therefore a

subdivision scheme that keeps all angles at 90° can be conjectured optimal.

The results in this Section can also be applied to tree structured vector

quantization [Ris901. Tree structured vector quantization is used mainly as a tool

to reduce the complexity of encoding, which is a limiting factor to the

performance of vector quantization.

3

Requirements

In this chapter, the wide range of applications of image compression and

progressive transmission is overviewed in Section 3.1. In Section 3.2, the requi­

rements for a generally usable or "ideal" compression method are analyzed. The

mains aims of this chapter are to give an overview over the many application

fields of image compression and progressive transmission, to clarify the relation

between image compression and progressive transmission, to provide the

motivation for several aspects of the new method presented in Chapter 4 and 5,

and to allow its evaluation and comparison with other methods.

3.1 Application Overview
In this section, the wide range of possible applications for image compression and

progressive transmission is reviewed from several viewpoints.

3.1.1 Applications of Image Compression

The applications where digitally stored images are used, and thus image

compression is desired, grow more and more numerous. In the following, some

of the more important application areas are discussed shortly; this list is not

intended to be complete:

- Satellite imagery: This was the first field where image processing and

compression by computers were used on a large scale. Satellite images are

used for astronomy, telemetry, weather forecast, intelligence, land use

planning, agriculture, and so on. Special properties of these images include

the use of three and more color or false color components and the highly

varying image quality and content.

- Medicine: A greater and greater variety of new technologies that produce

digital images, like computerized tomography, nuclear magnetic resonance,

ultrasound, and digital radiography, combines with the trend to digitize
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existing X-ray images for easier storage and accessibility. Properties of medical

images include the very rare use of colors and the extremely high resolution

requirements, for both space and gray scale, especially in the case of X-ray

images. Radiologists have well trained eyes and are probably the best critics of

image compression algorithms.

- Television and video: This includes areas like high definition television

(HTV), video editing systems, teleconferencing ahd picture phones, digital

cameras, and so on. In these applications, consideration is usually given to

the complicated relationship between analogue and digital representations,

although there is a strong trend to complete digitalization.

- Business applications: The use of images is increasing both for internal

documentation and in the contact with the customer. At the moment, the

use of graphs and diagrams in presentations and reports is state of the art, but

it can be expected that in the near future, no decent business presentation or

report will lack some impressive images. Also, digital images will be used

more and more as parts of catalogues, estimates, contracts, and so on.

- Computer graphics: The number of computer generated images increases

fast, and as the generation of such images may take much time, they should

be stored carefully. For images generated by the computer, high compression

rates are often possible. It may also be noted that in computer graphics, there

is a technique somewhat similar to progressive transmission, namely the

progressive refinement of an image from a scene description by increasing

the amount of calculation [Berm86].

- Personal computing: The increased availability of graphics displays and

scanners at low prices makes it possible to use images "just for fun" in the

personal computing environment. Bulletin boards like CompuServe already

provide a wide selection of images for download, and the exchange of images

among users is increasing.

3.1.2 Channel Structure

In Figure 2.1, a simple model of the transmission system was presented.

However, the channel connecting sender and receiver is rarely just one direct

line, as in the case of a phone line. The structure of the channel, i.e. the way in

which the sender(s) and the receiver(s) are connected, can vary greatly in several

aspects.

3.1.2.1 Storage and Transmission

The aim of storing an image is to keep it over time, to be able to see the same

image days, months, or years later. As time is fixed, compression tries to optimize

the use of space. On the other hand, transmission makes the images overcome

space. Here, compression is used to reduce time.

Although in some applications, the main aim may be transmission (e.g.

remote surveillance) or storage (e.g. digital photography), in most applications,

these two aspects are combined, as an image, to reach its destinations, has to cross

both space and time. In an image database application, for example, the image is

first stored to be available whenever needed, and then transmitted on the request

of an user. In a heterogeneous environment, an image may even be stored on

different media and transmitted over different channels many times. Although

not absolutely necessary, it is clearly desirable for the same compression

technique to be used during the whole "life" of an image.

The technical terms used for storage and for transmission unfortunately

differ in many ways. In this thesis terms of both fields will be used, and will in

most cases include both storage and transmission.

3.1.2.2 Number of Senders and Receivers

Depending on the application and the individual image, the number of senders

and receivers and their relation may differ greatly. Some images may be stored

with only a small chance of ever been looked at. Other images may be viewed by a

large number of people. For some images, the destination is fixed from the begin­

ning, but in other cases, an image may play very different and unforeseen roles.

For an individual image, there is always exactly one sender, but the number

of receivers varies. For a collection of images, the case of one receiver and several

senders is possible in applications like remote control and surveillance. However,

in general there will be one central sender and several distributed receivers. The

receivers can all receive the same image in the same form and at the same time

in a broadcast application, or each can work independently as in an image

database application.

3.1.2.3 Open and Oosed Systems

Many applications of image transmission at the moment are closed. A fixed set of

images is viewed by a fixed set of users using a fixed and uniform combination of

hardware and software. The reasons for this are the optimization of a system

towards a specific application, security considerations, and the fact that the

number of systems and users is still small. Thus applications using images are
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mostly islands in a sea of traditional applications like text processing and

numerical calculation.

There is however an increasing tendency towards open and heterogeneous

systems. To justify the relatively high costs of acquisition and storage of images,

they should be accessible by as many users as possible, or, in the case of medical or

similar applications, at least by all persons authorized to see the image. The lower

hardware costs make this extension of the user base possible. A large group of

users will usually be spread over various locations. This, together with the

variety of the data, implies a heterogeneous environment. The users will access

the data over various communication channels and use different types of

hardware. Compared with fixed standalone applications, this makes it necessary

to formulate completely different requirements for image compression methods.

3.1.3 Applications of Progressive Transmission

In Subsection 3.2.1, the various application fields for image compression have

been listed up. Here the applications specific to progressive transmission and the

relation between progressive transmission and image compression are discussed.

An overview of the methods used for progressive transmission is given in

Subsection 1.2.3.

3.1.3.1 Traditional Applications

The situation for which progressive transmission has traditionally been proposed

is the transmission of images over a low capacity line to a user directly viewing

the transmitted image. Bandwidths proposed include 1200 bps (bits per second)

[51079], [Tan79], [TzoS7], 2400 bps [YasSO], 4S00 bps [LohS2], [KnoSO], and 9600 bps

[EndS7]. With these bandwidths, the transmission of an image in canonical form

may take from about one minute up to more than half an hour, depending on

the size of the image. This can be somewhat reduced by compression, but the user

still has to wait a long time.

In most cases, the user receiving the image is not primarily interested in its

complete reception. Rather, he or she has to carry out some task or take some

decision based on the image. Even if in some cases, the complete reception

of the image may be necessary to complete the task at hand, in most cases

this is not necessary.

In other cases, the complete reception of the image may be necessary to finish

the task, but the task may be started with an image of lower resolution, and so be

completed faster. This is due to the fact that many tasks consist of a sequence of

decisions. The first decision will assess the general relevance of the image. This

includes the rejection of erroneously transmitted images and images of too low

quality. Later, the user may decide which parts of the image are relevant, and

then take some measurements or decisions directly related to the overall task.

Progressive transmission was therefore proposed to reduce the long time the

user has to wait for the image to develop on the screen. The image is transmitted

and displayed initially at a low resolution. This can be done very fast. Then the

resolution is gradually or stepwise increased until it reaches a level where the

task can be completed. At this point the user can interrupt transmission. This

leads to a reduction of the effective bandwidth.

Typical applications where a low data rate is combined with decisions that

can be taken based on a low resolution of the image include the following:

- Telebrowsing [KnoSO] in remote image databases: The user may want to get a

rough overview over the stored images. Also, he or she may formulate a

query which is evaluated based on the textual descriptions stored. This is

usually not enough to isolate the desired image(s), so that several images

have to be rejected until the desired one is found.

- Teleconferencing [KnoSOl, teleconsulting [FraSO], and remote teaching

[DreS7]: A speaker often speaks first about the outline of a diagram or the

general structure of an image, and then discusses the details.

- Security applications: Person identification, security monitoring,

remote surveillance.

- Electronic shopping (mail order houses, travel arrangements) [Loh84].

- Transmission from a sender threatened with destruction [KnoSO], for

example a satellite: This is one of the rare examples where it may make sense

to transmit several images interleaved, and where therefore rate distortion

theory can fully be applied (see Subsection 2.3.3)

3.1.3.2 Progressive Transmission with Higher Bandwidths

The advent of broadband wide area networks and high capacity storage may to

some extent alleviate the problem of long transmission times. Thus one might

conclude that on the long term, there is no need for progressive transmission.

However, as technology advances, screen size and gray scale depth and with this

image size are increasing.

Also, a method that can reduce the effective transmission time from 10

minutes to 1 minute for a slow network can as well be used to reduce the

transmission time from several (tens of) seconds to a few seconds or less. It is well

known that the efficiency of work carried out with the computer depends
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critically on the response time of the system. Only average viewing times of less

than a second make true browsing through image collections and image databases

possible in the same way as browsing through a book. Progressive transmission is

therefore useful over a wide range of bandwidths, provided that there are

algorithms that are able to work at the necessary speed.

3.1.3.3 Progressive Transmission for Image Compression

Progressive transmission can be of great help to reduce the time a user has to wait

to see and use an image. However, it was long believed that progressive

transmission and efficient compression exclude each other or compete with each

other. In Sections 2.3 and 2.4, theoretical arguments showed that this may not be

the case. This means that progressive transmission may be made more efficient

than it was until now.

The progressiveness of a compression method is however also useful when

the only aim of compression is the reduction of storage requirements. The main

reason for this is that if an image compression method is progressive, there is a

clear and direct relation between rate and distortion, which may make it worth to

include progressiveness in any compression algorithm possible.

It is well known that in general, variable rate coding methods perform better

than fixed rate methods. This is due to the use of adaptivity and entropy coding.

However, there are cases where it is important that an image be coded with a

given number of bits. One case is television broadcast, or the assignment of

different bandwidths on a common transmission line for different sources, which

may change depending on the importance of each source. Another case is the

need to fit one image or a certain number of images on a given storage unit like a

floppy disk or a memory chip card.

Using a nonprogressive, but parametrizable variable rate coding method, the

best image reproduction possible with the given rate can be found by trial and

error, maybe guided by binary search. However, this will greatly increase the

amount of computation necessary for coding. On the other hand, if the coding

method is progressive, adaption to the memory available is possible just by

interrupting coding at the given rate.

In the opposite case, namely when a given maximum level of distortion has

to be maintained, progressiveness is also helpful. In many parametrizable coding

methods, the parameter(s) are in some way related to the distortion, but this

relation may not be clear. Thus again trial and error has to be used. This is also

necessary if quality is selected by the user, because he or she will not in general be

able to translate the quality requirements into the corresponding parameter

values. Progressive methods avoid this problem. In addition, many progressive

methods update a given pixel only a few times, and thus a distortion measure

like the mean square error can easily be calculated and checked on the fly.

The above two cases can be unified by assuming that a user or a system has a

certain preference for quality and high compression rates. Microeconomic theory

shows that the curves of equal preference are usually convex; if using the

coordinate system of Figure 2.2, they will be monotonically decreasing and

convex n. If the rate distortion curve of a progressive transmission method is

indeed convex (u) similar to the theoretical rate distortion curve, then the

optimal coding point is easily found. Note that using a single preference function

is more general than the approach of Bruckstein [Bru87], who proposes

independent additive cost functions for rate and distortion.

3.2 Requirement Analysis
In this section, the requirements for image compression and progressive

transmission methods are analyzed. Rather than focussing on a particular

application or hardware configuration, the requirements for an ideal

compression algorithm are discussed.

First of all, an ideal algorithm should be efficient, delivering the best

compression with least distortion and least computational complexity. This is

discussed in more detail in Subsection 3.2.1. However, to be usable in a

heterogeneous environment, an ideal compression method also needs a large

degree of flexibility. This is treated in two parts, the flexibility regarding the user

and the image (soft flexibility) in Subsection 3.2.2, and the hardware related

flexibility (hardware flexibility) in Subsection 3.2.3.

3.2.1 Efficiency

3.2.1.1 Rate, Distortion, and Complexity

Traditionally, individual coding methods are evaluated by their location in the

triangle shown in Figure 3.1. The three goals of low bit rate, low distortion, and

low complexity obviously exclude each other to a certain degree. The relation

between bit rate and distortion, without regard to complexity, is bounded by the

rate distortion function as discussed in Sections 2.2 and 2.3. On the other hand,

the relation between the distance to the rate distortion curve and the coding

complexity is based on experience; it changes slightly with many smaller and

sometimes bigger steps.
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Figure 3.1. Diagram to characterize a compression method

The relation between image compression and progressive transmission has

already been discussed in Subsection 3.1.3.3. In view of Figure 3.1, we can say that

progressive transmission, instead of realizing only one point, allows to move

from high distortion and low rate on the left to low distortion and high rate

on the right. This is responsible for the advantage of using a progressive

compression method.

Depending on the method used, this will be done at low complexity and far

from the rate distortion curve (top) ·or at high complexity and near the rate dis­

tortion curve (bottom). However, with better compression method;, it may be

possible to reduce complexity without compromising the result. The first requi­

rement for an ideal compression method can therefore be formulated as follows:

Requirement 3.1: An ideal compression method is progressive and follows

the rate distortion curve as close as possible with a complexity as low as possible.

Here it is interesting to observe another connection between progressive

transmission and image compression: For progressive transmission frequent

recalculations and updates may be necessary, and hence researchers concerned

with progressive transmission usually prefer simple algorithms; this can lead to a

reduced complexity of image compression in general. The new method presented

in this thesis is a good example for this. On the other hand, researchers originally

working only on image compression tend to propose methods with high

complexity. This is especially the case for transform oriented methods.

The formulation of Requirement 3.1, taking the rate distortion curve as a

reference, may be simple and theoretically correct. However, it turns out that

human viewers usually tend to discretize the distortion dimension, even if they

are aware of its continuity. Distortions frequently used as points of reference are

the point where the image contents is barely recognizable (see Section 6.5), the

"acceptable" distortion, the point where no distortion is recognizable, and the

point where the image is completely (Le. up to the last bit, lossless) reproduced.

low rate L- ...CI low distortion

3.2.1.2 Lossless or Lossy Compression

Data compression methods are sometimes divided into the two categories

approximate (lossy) compression and error-free Oossless) compression. Approx­

imate compression reduces the amount of data as much as possible with a

tolerable quality reduction. Error-free compression encodes the canonical form of

an image so that it can be reproduced exactly.

In some way, the requirement of losslessness for an ideal compression

algorithm is already included in Requirement 3.1. However, there is some

disagreement in the literature as to whether lossless reproduction is necessary. It

is therefore worth to discuss this problem in somewhat more detail. Lohscheller

[Loh82], considering television applications and using transform methods, denies

it. Other authors [Kn08D], [Dre8?], [Sek89] argue that exact reproduction is strictly

required for certain applications like medicine, law, satellite images, and research,

and indispensable for basic services like image databases and image data

exchange, which must not affect the data they manipulate.

The decision whether to use a lossless or a lossy compression method is of

some importance because traditional compression methods for both cases differ

greatly. However, if necessary, this gap can be filled. For most lossy methods, the

coding error will tend to zero if the error images are repeatedly recoded. This has

been proved by Wang et al. [Wan88] for the case of transform coding. For practical

reasons, they also proposed to code the residual errors with a simple lossless

coding technique after a certain number of steps.

It is therefore possible to transform a lossy method into a lossless method,

but this requires an additional effort in software or hardware. Also, it may use a

nonprogressive method and thus reduce progressiveness in the later part of

transmission. On the other hand, some authors propose to transform a lossless

method into a lossy one by using cutoff values to increase performance [Yas8D],

[Dre8?]. For an optimal progressive method, this will obviously not be possible, as

information is already transmitted exactly by decreasing relevance.

The above discussion leads to the following requirement:

Requirement 3.2: The ideal transmission method should be lossless, and this

should be achieved with a finite number of steps, all using the same algorithm,

and without relying on the accuracy of the hardware.

3.2.2 Soft Flexibility

3.2.2.1 Image Type

Many image compression algorithms are optimized to fit certain kinds of images,

or can be trained for this, as in the case of vector quantization. An image
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compression method for a heterogeneous environment, however, has to be able

to deal with various kinds of images, and the cost of adaption should be as low as
possible. Therefore,

Requirement 3.3: An ideal image compression method has to be flexible to
easily adapt to different kinds of images and different individual images.

3.2.2.2 Spatial Resolution and Gray Scale Resolution

Progressive transmission is achieved by increasing the resolution of the image.

There are basically two aspects of image resolution: Spatial resolution and gray

scale resolution. In Subsection 1.2.3, we have seen that many methods either

increase spatial resolution or gray scale resolution; combinations are rare and

restricted in their flexibility.

That gray scale resolution can globally be traded for spatial resolution has

been mentioned in Subsection 1.2.1.1. However, results on the properties of the

human visual system [5ak77], [Knt85] show that in addition to this, there is an

important local relation between spatial resolution and gray scale resolution. In

areas with high spatial resolution (high frequency), only a few gray levels can be

distinguished. On the other hand, in areas with slow gray level changes (low

spatial resolution/low frequency) the visual system is very good at recognizing

small gray level differences, and even differences in the first derivative (Mach

banding effect). This stands in analogy to the uncertainty principle, where either

velocity or position, but never both, can be measured with high accuracy.1

Although implicitly, this is already contained in the distortion mentioned in

Requirement 3.1, it may be useful to formulate the relation between spatial and
gray scale resolution explicitly:

Requirement 3.4: The optimal progressive transmission method increases

both the spatial and the gray scale resolution smoothly, continuously, and in a

local and global optimal balance adapted to the properties of the human visual
system and the needs of the user.

3.2.2.3 Stepwise Improvement of the Image

The optimal way to achieve requirement 3.4 obviously is to display an image as if

slowly adjusting focus and gradually increasing contrast on an analog device.

This is however hardly possible, and so the improvement has to be stepwise. This

means that the sizes of the steps and the change in the step size during the
transmission has to be discussed.

1 Wilson [WiI84] mentions the uncertainty principle in the context of data

compression, but it is not dear whether this is meant in the same sense as above

or differently. Daugman [Dau88] also refers to the uncertainty principle. '

There are different opinions on how large the steps should be. Hofmann et al.

[Hof86] advocate the use of as few steps or passes over the image as possible,

which should carefully be chosen to meet the requirements of the users. This is

necessary because with their method, the overhead cannot be ignored; it lies

between 2 to 4% per pass. However, it is rather doubtful whether the resolution

necessary for each image and user can be predicted at all; Hofmann et al. do not

give an example where this was actually possible. Also, if an image is seen by

many different users, they may have different requirements. It would then be

necessary to recode the image for each user.

In most other cases, the size of the passes is fixed by the method proposed.

However, Hill et al. [HiI83) and Sanz et al. [San84) combine two passes of the

bintree to one pass to avoid displaying rectangles (d. Subsection 5.2.3.3). In tree

structured vector quantization, additional steps can be introduced by using

pruned tree structured vector quantization [Ris90); this leads to faster

improvement of the image.

A large number of passes is however preferable to come as close to the ideal

of progreSSive transmission as possible. A large number of passes also distributes

the increase in image quality better over the whole image. This is important

because it affects the overall subjective image quality, which is not just the sum of

the local image qualities. Section 2.4 also showed that at least in the high rate case,

the steps can be as small as 1 bit per image without significant overhead.

Another problem is the relative size of the different passes (in bits per

image), which is rarely discussed explicitly. Quadtree- or pyramid-based methods

lead to exponential increases. On the other hand, transform based methods,

especially if they transmit the information bitwise, use constant size passes to

maintain the balance between transmission and calculation. The general form of

the rate distortion curve suggests that an exponential or similarly nonlinear

increase of the step size is preferable, as this leads to perceptually equal

increases of image quality. This also allows to use the same pass sizes for a

wide range of bandwidths.

This subsection can be summarized as follows:

Requirement 3.5: The incremental steps of an ideal progressive transmission
method should be small, particularly in the initial part of the transmission.

3.2.2.4 Continuing Transmission or Transmission on Demand

Related to the problem of step size, some authors assume that each step is

transmitted at the user's request, whereas others assume that transmission just

continues until it is interrupted by the user. Basically, a continuing transmission

is preferable, but there are two exceptions.
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The first exception is the case where the transmission line is shared, and charges

are calculated based on the amount of information transmitted and not on the

time connected. In this case, the system should stop the transmission at least

once, at the level of acceptable distortion or where no distortion is recog­

nizable any more.

The second exception is the case where the decoding algorithm interferes

with local calculations the user may initiate upon globally recognizing the image.

In this case, the decoding algorithm, with the exception of the interface to the

network, should run at a low priority.

Requirement 3.6: In principle, transmission should continue until

interrupted by the user.

3.2.3 Hardware Flexibility

3.2.3.1 Bottlenecks

In most discussions about progressive transmission, it is assumed that the low

bandwidth transmission line is the only bottleneck. There are however other

bottlenecks, which become more important if progressive transmission is used

for higher bandwidth channels as proposed in Subsection 3.1.3.2. Also, in a

heterogeneous environment, the importance of these bottlenecks may change

with every transmission.

Besides the bandwidth of the transmission line (or the storage capacity in the

case of compression), the main bottlenecks are the amount of calculation

necessary for coding and decoding, the amount of memory used by the

algorithms, and the number of times the frame buffer is accessed or changed.

The amount of calculation can differ widely for different coding methods.

Authors describing complex coding methods usually assume that specialized

hardware will be used. However, although the design and production of special

purpose hardware components is becoming cheaper and faster, in a hetero­

geneous environment it cannot easily be assumed that such hardware exists on

all machines. Therefore, it is important that a method can both be implemented

in hardware and in software. Actually, that a coding method works at tolerable

speed in software is an important prerequisite for the wide distribution necessary

to justify a hardware implementation.

Adaption to these bottlenecks can assume different forms. One possibility is

that the sender or the receiver adapt to the abilities of the other side. With the

exception of broadcast situations, usually the sender will adapt to the abilities of

the receiver. For example, in a central database, images may be stored using a

basic coding method and backend entropy coding. If the computation abilities of

the receiver are too small, the entropy coding may be decoded at the sender,

possibly using specialized hardware. A good performance, relative to the means

available, may still be possible.
The other possibility is to use the same format for all communications and to

allow the sender or the receiver to produce or interpret the data depending on its

abilities. At first sight, this may seem impossible or inefficient, but in Sections 5.1

and 5.2, examples of this kind of flexibility will be shown.

This subsection can now be summarized as follows:

Requirement 3.7: An ideal coding method should be implementable both in

software and in hardware and be adaptable to the different bottlenecks in the

transmission line, the receiver, and the sender.

3.2.3.2 Scalability

Different output devices at the receiver may have different resolutions, both in

space and in gray scale. Endoh et al. [End87) therefore proposed to use progressive

transmission to first transmit an image at a lower resolution for the display on a

monitor, and then to increase resolution if a printout on a high resolution

printer is desired. Also, they proposed to store the initial parts of all images as

samples in a local database to allow the user to quickly select desired images, and

then to obtain the remaining parts of the image description from a central

database if needed.
A certain degree of scalability is inherent in every progressive transmission

algorithm, but there are large differences regarding the degree to which the initial

approximations are good reproductions of the final image at the appropriate size.

Methods based on Gaussian filters will produce the best approximations for this

purpose, whereas averaging and simple subsampling, in this sequence, lead to

less pleasing results.
The change from an image for a monitor (low spatial, but high gray scale

resolution) to an image for a printer (high spatial, but low gray scale resolution) is

not possible simply by taking the appropriate subsamples or bit planes from an

image at a very high resolution, as Endoh et al. [End87) seem to assume. Also, if

the sizes of samples and original images in local and remote database differ by a

factor of 24 or more in each direction (this may be necessary to use this idea

efficiently), it might be better to use a high quality method independent of

progressive transmission to produce the sample.
With these restrictions in mind, the last of the requirements for an ideal

method for image compression and progressive transmission can be formulated:

Requirement 3.8: An ideal progressive transmission method should

include scalability.



4

The New Method

In this chapter, the new method for image compression and progressive

transmission and the concepts related to it will be developed. The data structure

aspect of the new method is captured in the bitwise condensed quadtree (BC

quadtree, Section 4.1). The gray scale depth first expression (GDF, Section 4.2)

expresses the same structure as a sequence of symbols. Syntactical aspects of this

symbol sequence are discussed in Section 4.5 using the concept of traces.

In Section 4.3, the image information condensed so far is divided into

several components based on spatial and gray scale resolution; this allows

progressive transmission adapted to the properties of the human visual system.

A new approach to sampling and quantization suited to the method, the concept

of hierarchical sampling restricted quantization (HSRQ, Section 4.4), is also

presented. finally, the new concepts and the new method are compared with

previous methods and concepts of data compression and image analysis.

In several sections, implementation details are interleaved with the

conceptual discussion. This should provide additional insight into the concepts

discussed. Also, showing that efficient implementation is possible is important to

demonstrate the usability of the concepts and methods introduced. Nevertheless,

readers interested mainly in the conceptual aspects may skip the corresponding

subsections (Subsections 4.1.2, 4.1.3, 4.2.2, and 4.3.5).

4.1 The Bitwise Condensed (BC) Quadtree

4.1.1 The Concept of the Bitwise Condensed Quadtree

Our new method of image compression and progressive transmission is based on

the concept of the bitwise condensed quadtree (BC quadtree), as first presented in

[Dur88j. The BC quadtree combines gray scale and spatial hierarchies in a single
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Figure 4.2. BC quadtree for the image of Figure 1.1

a

Figure 4.3. The explicit quadtree for the BC quadtree of Figure 4.2

In place of the common bits, the interior nodes in the explicit quadtree contain

the bit position of the last common bit at that level, and 0 if there are no common

bits. The bit position of the first common bit in a given node of the BC quadtree is

then found by incrementing the entry in the parent node of the explicit quadtree

by one. The root node does not have a parent node, but we can assume a parent

node containing the value O. For the leaf nodes, the last "common" bit is always

bit b, and so there is no need to store it.

For an image with n pixels and b bits per pixel, this representation

needs not more than

(n-1)/3 . flog(b+1)1 bits (4.1)

in addition to the memory necessary for the original image. In many cases, b=8,

and then it is simplest to arrange the explicit quadtree so that each node uses one

byte. The total storage necessary then amounts to

4/3 ·(n-1) bytes. (4.2)

As for each interior node, only four of eight bits are used, it is possible to

duplicate the entry in the parent node; this may accelerate some operations.

There are several ways to arrange the nodes of the explicit quad tree in

memory. The variant of Burton et al. [Burn83] is a quaternary version of the heap

2 3 2 1

~.~~~
()()() 001 001 001 all all all all 010 all 010 all 100 100 101 110

Both Woodwark [Wo082] and Burton et al. basically store the same information

in both leaf nodes and internal nodes. In the case of the BC quadtree, it is not

advisable to store all the information shown for a node in Figure 4.2 in the same

location. The number of bits to be stored may be very small, but the control infor­

mation to indicate the number of bits and their position is difficult to organize.

The following approach, shown in Figure 4.3, is therefore used: In the leaf

nodes, the full pixel values are stored, but no control information. This has the

advantage that in most cases, the frame buffer can directly be used to hold these

values, and no additional memory is necessary. The higher levels of the explicit

quad tree do not store any of the common bit values. In the explicit quadtree, it is

always easily possible to find any leaf below the current node, and any of these

leaves will contain the necessary common bits.

1
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~
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Figure 4.1. Quadtree for the image of Figure 1.1

For gray scale images, the condensation achievable with the (region) quadtree is

not very high. It is rare that four neighboring pixels have the same gray values.

However, neighboring pixels have mostly similar values. Thus in many cases

their leading bits are the same.

Therefore to achieve a high degree of condensation without loosing any

information, it is best to combine the spatial and the gray scale hierarchy and to

condense the quad tree not based on the whole gray values, but bitwise. Starting

from the most significant bit, whenever all the first bits of all the children of a

given node are the same, these bits are removed and a corresponding bit is added

to the entry of their parent node. For our example, the BC quadtree is depicted in

Figure 4.2.

tree in a simple and efficient way. It can be best explained by recalling the example

image of Figure 1.1 and its quadtree, which is again shown in Figure 4.1.

4.1.2 Internal Storage

The BC quad tree is a conceptual construct, and it is not very efficient to

implement this tree as a pointer quad tree or as a linear quadtree. The data

structure most suited for the internal representation of the BC quadtree is the

explicit quad tree of [Wo082], [Burn83]. In the explicit quadtree, each node has a

fixed location, and so references from a node to its parent or children are simple

and fast. 0 overhead is needed to store any pointers or location codes.
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4.2.1 DF and GDF

4.2 The Gray Scale Depth First Expression (GDF)

The BC quad tree described in the previous section allows the condensation of the

information about the given image. To transmit or store this information

efficiently, this section develops the gray scale depth first expression (GDF) and its

binary coding.

I(

~
00 00 01 10

Ol(

~
o I 0

011OO(

~
o I

For binary quadtrees, the depth first expression (DF) was proposed by Kawaguchi

et al. [Kaw80]. It is produced by traversing a quadtree in depth first preorder

sequence, and outputting (for an interior node, 0 for a white leaf node, and 1 for a

black leaf nodel .

A gray scale image can be coded in a way similar to DF, called gray scale depth

first expression (GDF). GDF results directly from a preorder depth first traversal of

the BC quadtree. The symbols 0 and 1 are used for individual bits instead of leaf

nodes, whereas the symbol ( is used to denote the end of an entry in an interior

node instead of the interior node itself. The term bit selection symbol will be used

later to denote both 0 and ~ For our example, GDF is

( OO( 0 1 1 1 011 Ol( 0 1 0 1 l( 00 00 01 10.

Blanks have been added for legibility. The parentheses used in GDF can also be

added conceptually to the BC quadtree, as shown in Figure 4.4.

Figure 4.4. The BC quadtree with parentheses

Algorithms for the coding and decoding of GDF have been given in [Dl1r88c].

However, it is not necessary to construct GDF, and transmit the information in

the BC quad tree, in depth first order. Actually, the fact that other transmission

sequences are possible is crucial for the use of the BC quad tree for image

compression and progressive transmission. Therefore, the term GDF will be used

4.1.3 Construction of the BC Quadtree

structure used in the heap sort algorithm. This structure was used in some early

implementations of the new method. The variant of Woodwark [Wo082] is not

very useful because neighboring nodes are scattered in memory.

Another variant, shortly mentioned in [Wo082], is to arrange the nodes on

each level in scan line order. This makes the calculation of the location of related

nodes somewhat more difficult, but has the advantage that it coincides with the

order the pixels are arranged in most frame buffers. Also, when using the BC­

quad tree for progressive transmission, it leads to a straightforward top to bottom

update of the display for each pass, which may be visually more pleasing than the

update according to the Morton sequence, the sequence of the subquadrants of a

given size in a depth first traversal of the quadtree [Sam84].

The construction of the BC quad tree is extremely simple; most of the operations

used are simple bitwise logical operations. The BC quad tree, in the form of the

explicit quadtree described in the previous section, is constructed bottom up from

the pixel array. This can either be done in a post order depth first traversal or

level by level.

If for a given interior node, let PI, P2, P3, and P4 denote any pixel in each of

its four subquadrants, and the symbols" I", "&", and "1\" bitwise logical OR,

bitwise logical AND, and bitwise logical exclusive or (XOR). Then a value q can be

calculated for any interior node on the first level above the pixel level as follows:

q = (PI IP21 P3 IP4) 1\ (PI &P2&P3&P4) (4.3)

This q will have all those bits set that are not common in PI, P2, P3, and p4. The

entry for the explicit quad tree can now easily be found from q by table lookup. For

all 2b possible bit combinations of q, this table will contain the number of

contiguous zeroes starting from the most significant bit. Another possibility is to

store q, or an unified version of it, for example with all lower bits set, directly in

the explicit quadtree. For interior nodes at higher levels, the intermediate results

of their children have also to be considered. Denoting them by ql, q2, q3, and q4

leads to

q = [(PI IP21 P3 1P4) 1\ (PI&p2&p3&P4)] I (qll q21 q31 q4). (4.4)

There are several other possible forms for the formulas (4.3) and (4.4). It is easy to

see that the construction of the BC quadtree can be done in time linear to the

number of pixels in the image, with a very low constant due to the extremely

simple operations used.

1 The bold letters to, and 1 will always be used for the symbols of DF or GDF,

whereas the letters 0 and 1 will denote bit values.
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later for any sequence of Os, 15, and (5 derived from the BC quadtree, even if this is

not in accordance with the original meaning of GDF.

It is of course necessary to show that GDF uniquely describes the image it has

been derived from to show that Requirement 3.2 can be fulfilled. A proof that the

original image can be reconstructed from its GDF was given in [Dur88c]. In this

thesis, general conditions will be given in Section 4.5 for the orders of the

symbols in GDF for which reconstruction of the image is possible. Also, it will be

shows that the depth first form of GDF satisfies these conditions.

4.2.2 Binary Coding of GDF

Kawaguchi et al. [Kaw80] propose several ways to code the three symbols 0,1, and

( with the two digits of the binary system. On the lowest level of spatial

subdivision, there are no (, and so coding is very simple. On the other levels, it is

not clear which of the three symbols is the most frequent and therefore should be

assigned a one-bit code. Contrary to Kawaguchi but in accordance with Knowlton

[Kn080] and Tarnrninen [Tam84bJ, here ( is coded with one bit. This preserves the

symmetry between the bit selection symbols 0 and 1 and so simplifies program

code and size calculations (see Section 5.3). Also, in this way, the maximal length

of a "bad" image is shortest, namely (for an image of 22r·b bits)

22r·(b+1/3) bits. (4.5)

Adapting "10" (on higher levels) or "0" (on the pixel level) for 0, "11" or "1" for 1,

and "0" for (, and coding the GDF of our example image gives the following

binary sequence. For comparison, we also give GDF again.

GDF: (0 0 ( 0111 0 1 1 0 1 ( 01011 ( 00 00 0110

Binary coding: 0 10 10 0 0111 101111 10 110 0101 11 0 000001 10

Over all, for this example 36 bits are used instead of 48, a saving of 25%. This

shows that GDF is useful for the loss less compression of gray scale images.

Results for actual images can be found in Section 6.2.

4.3 Image Components
Depth first transmission of the symbols in the BC quadtree is not suitable for

progressive transmission. The symbols of GDF have to be reordered in some way

so that more important symbols are transmitted first. A method to achieve this is

to partition the symbols into several components which are transmitted one after

the other. Inside each component, the original sequence is retained. In this

section, a simple way to split the image information into components is

presented. Other, more elaborate ways of forming components will be discussed

in Subsection 5.2.3.

4.3.1 Partitioning of the Image into Components

Each symbol in the BC quad tree or in GDF can be assigned a spatial levels

(0:-::; 5 :-::; r) and a gray scale level c (1 :-::; c :-::; b). The spatial level is the level in the BC

quadtree occupied by the symbol. The gray scale level is the level of the symbol in

the gray scale hierarchy, equal to the bit position (1 for the most significant bit, b

for the least significant bit). In Figure 4.5, the BC quadtree of our example is again

depicted, indexing every symbol with its gray scale level. Contrary to [Dur88cJ,

parentheses have been indexed with the gray level of the first noncommon bit.

Figure 4.5. The indexed BC quadtree

The symbols of the BC quadtree can now be divided into (r+l)·b components

depending on their spatial levels and their gray scale level c. The components for

our example image are shown in Table 4.1.

1 2 3

0 (

1 0001 011( (l(

2 0001 0111 0101 0010

Table 4.1. Components of the example image

(rows: spatial level 5; columns: gray scale level c)

Components with low spatial levels correspond to big squares and thus low

spatial resolution. Components with high s represent small squares and thus

high spatial resolution. Similarly, components with low and high gray scale level

c can be associated with low and high gray scale resolution.

As a more realistic example, Table 4.2 gives the size, in number of symbols,

for each component of the image "Girl". This well known test image, as well as

some others used in later chapters, is part of the Japanese standard image database

(SIDBA) [On079]. It has a spatial resolution of r=8 (256·256 pixels) and a gray

scale resolution of b=8 (256 gray levels). The original can be seen in Figure 4.6

or Figure 6.1.
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1 2 3 4 5 6 7 8

0 1 0 0 0 0 0 0 0

1 4 0 0 0 0 0 0 0

2 16 2 0 0 0 0 0 0

3 56 18 5 3 0 0 0 0

4 184 122 44 37 0 0 0 0

5 456 510 273 244 31 1 0 0

6 1160 1772 1616 1512 535 83 9 0

7 2560 4910 7150 8870 6274 2911 889 228

8 4424 10760 21432 39112 53748 61980 64624 65232

Table 4.2. Size (number of symbols) of components for image "Girl"

(rows: spatial level s; columns: gray scale level c)

Tables 4.1 and 4.2 show that the distribution of the symbols into components

follows a general pattern, which was also observed for other images. First,

components at low spatial resolution contain only very few symbols. This is due

to the fa'ct that the description of an image at low resolution is much more

concise than at higher levels, and to the fact that condensation, even for

the most significant bit, seldom can be achieved for the whole image or very

large parts of it.

Second, the size of components at intermediate spatial levels first grows with

increasing bit position, but then shrinks again for bits with low significance.

Obviously, more significant bits have already been condensed at higher levels of

the spatial hierarchy, whereas less significant bits change too irregularly for

a large amount of condensation to be achieved on the present level of the

spatial hierarchy.

Third, most symbols are concentrated on the lowest level of the spatial

hierarchy. Therefore, it might seem that the BC quadtree and GDF are not very

efficient in condensing image information. It should however be noted that these

symbols affect only a single pixel, whereas symbols on higher levels affect large

squares. Also, all symbols on the lowest level of the spatial hierarchy can be coded

with one bit, whereas symbols on higher levels may need more than one bit.

The increasing size of the components also meets Requirement 3.5 (increasing

size of passes).

4.3.2 Increasing Gray Scale Resolution

Progressive transmission can be realized increasing either gray scale resolution or

spatial resolution. Using the BC quad tree and the component partitioning,

progressively increasing gray scale resolution is realized by first transmitting all

the components with gray scale levell, next those with gray scale level 2, and so

on. The result is shown in Figure 4.6; the last image shows the original.

Figure 4.6. Progressive transmission increasing gray scale resolution

(bytes transmitted: 1385,4206,8679, 15513, 23424, 31653, 39872, 48064)

This way of transmitting the image corresponds exactly to a transmission by bit

plane as described in Subsection 1.2.3.2. Due to the properties of the quadtree,

compression is achieved, especially in the more significant bit planes. Stored in

canonical form, each bit plane occupies 8192 bytes, and the whole image together

occupies 65536 bytes. Note also that the components in each bit plane are

transmitted starting with the lowest spatial resolution. With this, an additional

progressive transmission effect is obtained that is not visible in Figure 4.6.

Compression in all bit planes except the most significant could be increased

by taking advantage of codes like the Gray code [Knt78], [Kaw83] or the unit­

distance-equalized significance (UDES) code [Knt78]. These codes reduce the

number of bits differing from one gray level to the other and thus lead to

additional condensation if each bit plane is treated separately. However, in this

case, the structure information, captured by the parentheses of GDF, cannot be

shared by different bit planes. Experiments presented in Section 6.2 show that

GDF is more efficient than the individual application of DF to each bit plane of a

Gray coded image as proposed in [Kaw83].

4.3.3 Increasing Spatial Resolution

Using the partitioning of the image introduced in Subsection 4.3.1, progressive

transmission by increasing spatial resolution can also be realized easily. The

components are transmitted in order of increasing spatial resolution s, as shown

in Figure 4.7.
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Figure 4.7. Progressive transmission increasing spatial resolution

(bytes transmitted: 1,3, 15, 80, 331, 1490, 7900, 48064)

This method of increasing spatial resolution is clearly different from the methods

mentioned in Subsection 1.2.3.1. For each square, instead of an average value or

the gray value of a specific pixel, only the value of the common most significant

bits is displayed.

This has the consequence that the images in the upper row of Figure 4.7

contain much less visual information than images at the same resolution

produced with other methods. On the other hand, the number of bytes

transmitted is also much lower. In general, decreasing the spatial resolution by

one level reduces the necessary number of bytes by about a factor of four; here,

this factor is larger.

4.3.4 Increasing Both Spatial and Gray Scale Resolution

The most important consequence of partitioning GDF as in Subsection 4.3.1 is

that this not only allows to progressive transmission increasing gray scale

resolution or spatial resolution. It becomes possible to combine the increases in

spatial and gray scale resolution in many different ways. This can be used to adapt

the sequence of components to the properties of the human eye and the image

according to Requirements 3.3 and 3.4.

There are some restrictions on the possible sequences of components, but

these restrictions can be formulated in a very simple way. To be able to transmit a

given component x, all the components that have smaller or equal resolution in

both aspects (spatial and gray scale), i.e. all components for which both s~x and

c~x, have to have been transmitted already.

This says nothing more than that spatial resolution, for a given bit plane,

and gray scale resolution, for a given subquadrant size, have to be increased step

by step. Transmitting components with higher resolution before those with lower

resolution is any way inefficient to achieve progressive transmission, and so the

above restrictions are not very stringent.

A first example of combining the increase of spatial and gray scale resolution is

shown in Figure 4.8. More examples can be found in Chapter 5 and 6. The

sequence of components used is included in Appendix A. It was determined by

having a human observer compare several variants of component sequences

using the image "Girl". This sequence was found to perform well for various

other images of different classes, too. Ways to determine optimal component

sequences and the problems that can be encountered when this is done are

described in Section 5.2.

Figure 4.8. Increasing both spatial and gray scale resolution

(bytes transmitted: 300, 600, 1200, 1800, 2400, 3600, 4800, 9600)

4.3.5 Transmission Algorithms

In this subsection, outlines of the actual algorithms that implement progressive

transmission based on the BC quadtree and GDF are presented. The data structure

used by both the sender and the receiver is the explicit quadtree as explained in

Subsection 4.1.2. The sender's algorithm can then be outlined as follows:

1. As a preliminary step, construct the explicit quadtree from the image data as

described in Subsection 4.1.3.

2. Decide the order of the components and send this information.

3. Transmit each of the components. For the component with spatial level s

and gray scale level c, traverse the nodes of level s and apply step 4 to each

node.

4. If the gray scale level recorded in the current node of the explicit quad tree

(the index of the last common bit) is one smaller than c, then output a

parenthesis. Else, if c is greater or equal than the recorded gray scale level and
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smaller than the gray scale level recorded in its parent, then output the

corresponding bit in the frame buffer in the form of the corresponding bit

selection symbol. If none of the above conditions apply, no output is

necessary.

Step 2 can be omitted if the order of the components is fixed. Otherwise, a small

improvement is possible if the identification for each component is sent just

before the component itself.

The receiver does not need to keep the index of the last common bit of each

internal node if it does not intend to use the BC quad tree structure at the receiver

for purposes other than the progressively refined display of the transmitted

image. A one-bit flag for each interior node, and a second one-bit flag for the

nodes on the second-lowest level of the explicit quad tree, is all that is needed,

reducing the storage besides the frame buffer to (d. (4.1»

(n-l)/3 + n/4 =(7n-4)/12 bits. (4.5)

The flag denotes whether a node is currently receiving symbols or not. The

additional flags on the second-lowest level are used for the pixel level. On this

level, it suffices to have one bit for every four pixels, as all four pixels in a two by

two square will change their state at the same time. Then the outline of the

algorithm on the receiver's side is as follows:

1. As a preliminary step, clear all flags except that of the root node, and

initialize the frame buffer.

2. Receive the information concerning the order of the components.

3. Receive each of the components. For the component with spatial level sand

gray scale level c, traverse the nodes of level s and carry out step 4 for those

nodes whose flag is set.

4. Receive one symbol. If this is a parenthesis, then set the flag of this node to 0

and the flags of its children to 1. Else, if this is a bit selection symbol, then

paint the square corresponding to the present node with the appropriate gray

value.

Step 2 can be adapted according to step 2 of the sender's algorithm. The

"appropriate gray level" mentioned in step 4 will be discussed in further detail in

Section 5.1.

The extraordinary simplicity of both algorithms, especially the one on the

receiver side, should be noted. No multiplications are necessary, and the only

additions used occur for address calculations. In many graphics displays and

workstations, a square can be painted with a single command. If this is not the

case, then variants of the algorithm to reduce the number of times the frame

buffer is accessed can be used (see Section 5.1).

The small amount of memory needed besides the frame buffer makes it easy to

implement the algorithms in hardware. It may even be desirable to integrate the

receiver's algorithm into the frame buffer. This is especially true if the grid of the

quadtree is aligned with the addressing of the frame buffer. Much more complex

additions to frame buffers are already in use. For a summary of the latest

developments, see [Fuc89].

4.4 Hierarchical Sampling Restricted Quantization
(HSRQ)

In the previous sections, the concept of bitwise condensation has been used to

construct the BC quadtree and GOF, proceeding bottom up. In this section, the

principle of Hierarchical Sampling Restricted Quantization (HSRQ) will be

introduced as the top down counterpart of the BC quad tree and GOF. The

examples in this section will be one-dimensional. This makes it possible to show

both the spatial dimension and the gray scale dimension. This section also

intends to show that the BC-quadtree, GOF, and HSRQ can be applied to data

other than images, such as sound and three-dimensional density data.

4.4.1 Sampling and Quantization with PCM

Given a smooth function g =t(t) (10$1$11), how can we represent it more or less

accurately by a finite number of bits? This is usually done by sampling the

function at regularly spaced sampling points and quanlizing the sampled values

to a fixed number of representative values. This way of coding a function is called

PCM (see Subsection 1.2.1.1). This process is shown in Figure 4.9.

Coding the function in this way needs 64·4 = 256 bits. This number can be

reduced by reducing the number of sampling points or quantization levels, but

this will lead to problems. In areas where high frequency components dominate

(the left part of Figure 4.9), the number of sampling points cannot be reduced too

much, whereas in areas where low frequencies dominate, the number of quanti­

zation levels cannot be reduced too much without severely affecting repro­

duction quality.
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Figure 4.9. Sampling and quantizing a function

(top: original function g = f(t); middle: function sampled at 64 regularly

spaced sampling points; bottom: function quantized to one of 16 levels)

4.4.2 Interval Coding

Instead of performing sampling and quantization as two independent steps, and

approximating the function by a number of points, it is also possible to

approximate the function by intervals in both the sampling dimension (space or

time) and the quantization dimension (gray value, voltage, etc.). In Figure 4.10,

the same function as in Figure 4.9 has been roughly approximated by ten two­

dimensional intervals.

Figure 4.10. Approximating a function by intervals

The intervals in Figure 4.10 have been selected more or less arbitrarily, but so as

to give a good idea of where the function passes. The facts that the intervals

completely contain the function, and that they are tight, should allow a fairly

good reproduction of the original function. IT the interval boundaries are coded at

the same resolution as the samples of Figure 4.9, then the interval representation

needs (4+6)·2·10 = 200 bits.

It should be noted that the intervals have different aspect ratios in different

areas. The intervals in the high frequency area are narrow and high, whereas the

intervals in the low frequency area are wide but low. This shows that the interval

representation is able to adapt to parts of the function with different

characteristics.

4.4.3 Hierarchical Intervals

Arbitrary intervals as those in Figure 4.10 represent one possibility to appro­

ximate a function, but they do not easily allow to refine this approximation. To

allow progressive transmission or compression at any rate, it is better to use a

hierarchy of intervals. Starting with one interval that includes the whole domain

and range of the function fCt), this interval is successively replaced by more and

smaller intervals.

Actually, in many cases the domain of the function may be very large, and so

it may be advisable to start with a number of intervals of a certain size. This is

especially important if the domain is not known in advance, as for example

when coding sound. For image compression some small savings are also possible

by starting with squares smaller than the whole image, because it is very rare that

even the first bit can be condensed over the whole image. Squares of 64·64 or

32·32 pixels seem to perform best. This may also allow a certain parallelization if

the method is implemented in hardware.

When going from large to small intervals, there are two steps: The splitting

of a larger interval into two or more smaller intervals that together cover the

same area, and the reduction of the size of an interval, eliminating parts that are

not passed by the function. Basically, both of these steps can be carried out in both

dimensions, as shown in Figure 4.11.

However, as general functions do not have an inverse, the natural way is to

apply splitting to the sampling dimension and interval reduction to the

quantization dimension. In this case, splitting of an interval in the sampling

dimension can simply be called sampling, whereas reduction of an interval in the

quantization dimension is called quantization. The subsequent samplings of the

original interval define a sampling hierarchy.
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Figure 4.11. Two ways of splitting and reducing intervals

For the reduction of intervals in the quantization dimension (quantization),

several not necessarily nonoverlapping subintervals may be provided. If this may

lead to ambiguities, the priority of the subintervals has to be specified clearly. The

simplest solution, which is adopted here in consistency with the bitwise

condensation of the Be quad tree, is to use the two halves of an interval as

subintervals. This leads to the three possibilities for the refinement of a given

interval shown in Figure 4.12. These three possibilities correspond exactly to the

three symbols of GDF.

Figure 4.12. Interval refinement, and corresponding symbols of GDF

4.4.4 Quantization Restricted by Hierarchical Sampling

Obviously an interval can be sampled even when quantization is possible.

However, this is inefficient, as the two sampled subintervals will have to be

quantized in the same way. On the other hand, it is not possible to quantize an

interval if sampling has not progressed enough and the function still passes both

the upper and the lower half of the interval. Thus quantization is restricted by the

sampling hierarchy. This is the principle of hierarchical sampling restricted

quantization, or HSRQ.

HSRQ can be carried out in several steps, using several rules to decide on the next

interval to be sampled or quantized, and eventually additional rules that decide

what variants of sampling and quantization are allowed. These rules may,

corresponding to Section 4.3, be given in the form of a component sequence, each

component consisting of the intervals of a given length and height. Other

variants are discussed in Section 5.2. Several steps of applying HSRQ to the

function of Figure 4.9 are shown in Figure 4.13.

Figure 4.13. Approximating a function by HSRQ

Again, the aspect ratios of the intervals adapt to the local properties of the

function. Ways to approximately reconstruct the function even for large intervals

will be discussed in Section 5.1.

Please note that not all intervals have been completely quantized, especially

in the area of high frequencies, and that the function many times passes a

horizontal and a vertical grid line at the same time, which cannot be expected

from arbitrary smooth functions. If the function is already represented in

canonical form, and HSRQ is used only for resampling and requantization, then

this poses no problems.
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Otherwise, this leads to resolution problems that can be compared with the "black

hole" phenomenon [Oiir88a,b,89a], which can appear in the polytree, a variant of

the octree for the representation of polyhedral objects. The solution in this case is

to provide more possibilities for refinement. The smallest set of refinements that

avoids resolution problems is shown in Figure 4.14.

Figure 4.14. A set of refinements not leading to resolution problems

That the sampling and quantization intervals' completely contain the original

function means that some typical problems of the classical sampling approach are

eliminated. One of these problems is aliasing. Using interval sampling, high

frequencies may be ignored at initial stages, but they do not produce false low

frequencies. Aliasing can be eliminated with filters, but this introduces another

problem: The high frequencies just vanish. In the case of HSRQ, this is not the

case; in some sense, we always know how much we know.

4.5 Traces
Kawaguchi et al. [Kaw80,83] have used a context free grammar to describe and

analyze OF. Unfortunately, a grammar for GOF is not context free. It is possible to

formalize GOF with an attributed grammar, using the positions in the spatial and

gray scale hierarchy as attributes. However, this is overly tedious and not very

rewarding. The concept of traces introduced in this section provides a lighter and

more productive tool to treat some formal aspects of the BC quad tree and GOF.

Traces will be used in Subsection 5.1.4 to describe methods of reproducing the

image at intermediate stages, and in Subsection 5.2.3 to define other ways of

splitting the image information into components.

4.5.1 Traces for Pixels

Traces can best be defined based on the BC quad tree. The trace of a pixel is the

string of symbols encountered on the way from the root of the BC quadtree down

to that pixel. The traces for our example image are shown in Figure 4.15.

<00<0 (00(1 <011 (011

(00(1 <00(1 <011 (011
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Figure 4.15. Traces for the example image of Figure 1.1

The name "trace" is used for this concept because of the similarity to the processes

traces used by Hoare [Hoa85] to describe communicating sequential processes

(CSP). In the same way a process trace records all the events encountered by a

process, and is used to reason about processes, a (pixel) trace records all the sym­

bols affecting a pixel, and can be used to reason about the BC quadtree and GOF.

4.5.2 The Trace Tree

To get an overview over the possible traces, they can be arranged in the form of a

trace tree (the more correct expression would be trace trie). The trace tree for our

example image is shown in Figure 4.16.
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Figure 4.16. The trace tree for the example image

In the trace tree, all equal traces are merged. The maximum number of leaves in a

trace tree can be calculated from the number of bits per pixel, b, and the resolution

of the image, r, as follows: In a trace, there are exactly b bit selection symbols and

at most r parentheses, in any order. Traces with less than r parentheses can be
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uniquely extended by adding the missing parentheses at the end. This extension

will be assumed frequently below, without always mentioning it. It simplifies

argumentation about traces in many cases. The two bit selection symbols can

appear in any order and frequency. Thus the number of possible traces is

(b+r)! .2b. (4.6)
b !.r!

This evaluates to 80 for our small example and to 3,294,720 for images such as

that used in Section 4.3. However, the number of traces of an actual image is

much smaller in any case. First, it is limited by the number of pixels, 22r. Second,

it is reduced by the coherence of the image. Third, all traces of an image will start

with the same symbol, the first symbol of the GDF of the image.

The trace tree can be used to count the numbers of pixels in an image for

each trace, and to calculate other properties as explained in Chapter 5. It can easily

be constructed by a depth first traversal of the BC quadtree.

4.5.3 Subtraces

Traces cannot only be defined for pixels (leaf nodes in the BC quadtree), but also

for larger squares (interior nodes in the BC quadtree). Obviously, they are the

strings of symbols encountered from the root of the BC quad tree down to the

corresponding nodes. Traces for general squares are one kind of subtraces, a

general way of constructing new traces. If traces are interpreted as strings, the trace

of a large square is by definition the initial substring (called initial subtrace) of the

trace of any of the pixels, or subquadrants, in that square.

Turning this the other way round, any trace of a node in the BC quadtree

contains as initial subtraces all the traces of its ancestors. As the entry for an

internal node in the BC quadtree always ends with a parenthesis, these substrings

also end with a parenthesis, and the number of parentheses they contain

corresponds to the size of the square (less parentheses for larger squares

and vice versa) and the level in the spatial hierarchy.

Contrary to the entries of the BC quad tree itself, the corresponding traces

contain information about various levels of the tree. This is somewhat similar to

a proposal by Klinger, who suggested that it would be of interest to investigate

the expressive power of hierarchical structures like the quadtree whose

condensation or splitting rules consider more than just one or two levels

of the hierarchy [Kli89].

That traces contain information about ancestors means that they also contain

some information about neighbors. This is important because it is essential to see

an image not just as a set of pixels, but to consider the neighboring relations of

these pixels. Traces provide an efficient way to do this.

There are other ways of forming subtraces. For example, it sometimes provides

useful to extract the bit selection symbols from a trace a 1 . This is denoted by bi(a)

and called the bit selection subtrace of a. It is not a substring in the original

sense of the word because the bit selection symbols in a may be separated

by parentheses.

Extracting the parentheses and so forming the parenthesis subtrace of a trace

a is also sometimes useful. However, a simple string of parentheses does not

contain very much information. The following convention is therefore adopted:

To form the parenthesis subtrace pa (a), the bit selection symbols are not

eliminated but replaced by the symbol 0, called the neutral bit selection symbol.

Still, when taking the length of pa(a) with Ipa(a) I, this will be defined as the

number of parentheses only. Parenthesis subtraces do not say anything about the

gray value of a pixel or quadrant. However, they provide valuable information

about the degree of activity or flatness around that pixel or quadrant.

4.5.4 General Conditions for Decodability

After having introduced the trace concept, GDF can be seen as a sequence of the

traces of the pixels in the image it describes. Various traces are interleaved, and if

all the traces of the pixels in a given subquadrant have the same initial sub trace,

then this subtrace is included only once and shared by all the pixels affected.

Therefore, for a string of symbols (GDF) to represent an image, may be at a

lower resolution than the original, it has to fulfill the following conditions:

- The symbols contained in GDF have to appear in the original order.

- The trace(s) to which a symbol belongs have to be apparent to the receiver

from the previously received symbols (or from side information sent

beforehand).

It is easy to see that the depth first form of GDF fulfills these two conditions. The

first condition is guaranteed by the top-down progression of a depth first

traversal. The second condition is also guaranteed: Receiving a parenthesis

indicates that a common initial subtrace ended and the following symbols belong

only to a subquadrant of the present node. That a trace is completed, and we

therefore have to pass from the present node to the next child of the first (bottom

up) ancestor that still has some children, is detected by counting the number of bit

selection symbols of the present trace.

1 Greek letters are used to denote traces in accordance with the general
notation for strings.
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Figure 4.17 Comparison of transform coding and HSRQ

HSRQ also has a transforming effect. Value combinations whose average differs

strongly from the general mean are quantized early using one of the bit selection

symbols. Quantization of value combinations which differ greatly, but whose

average therefore lies near the general mean, is delayed.

On a higher level, the splitting of the components according to spatial

resolution in HSRQ can be compared with the frequency splitting effect of

transform coding. However, contrary to traditional transforms, the frequencies in

HSRQ are are distributed in octave steps; this seems to be more in accordance

with the human visual system [Dau88].

4.6.1.3 Vector Quantization

HSRQ can be interpreted as a kind of tree-structured vector quantization with

fixed tree structure, but variable vector size. A fixed tree structure, especially if it

is as simple as in the case of HSRQ, greatly reduces the overhead for storing

codebooks and for finding the nearest representative.

As vector quantization is optimized and trained to a certain class of images, it

is difficult for HSRQ to achieve better results. However, the fixed vector size

limits good performance of vector quantization to a certain range of rates. High

rates, up to those necessary for loss less reproduction, are restricted by the

codebook size, and rates lower than one bit per vector are not possible. Thus it is

possible for HSRQ to outperform vector quantization; an example of this is

discussed in Section 6.4.

The above discussion suggests that vector quantization may be improved by

initially using large vectors, and then successively changing to smaller vectors.

This has actually been proposed by Gersho and his group [Vai871, [H088]. The

results obtained are good results, but the complexity of these methods is high.

In the same way, it is possible to show that the conditions for the component

sequences mentioned in Section 4.3 are necessary and sufficient for correct

transmission. Necessity follows from the first of the above conditions. Sufficiency

is fulfilled if we assume a fixed ordering of all the subquadrants at any given level

of spatial resolution.

4.6 Comparison with Other Methods
This section gives a conceptual comparison of the BC quadtree, GDF, and HSRQ

with some other (image) compression methods. For a comparison of com­

pression rates, the reader is referred to Chapter 6. Besides providing deeper

insight into the new method, the comparisons in this section may also lead to the

combination of some aspects of the new method with other methods.

4.6.1 General Coding Principles

It turns out that HSRQ possesses some similarities with most of the important

coding methods and principles. This may not be very surprising, as the principles

that can be used for coding are limited, and any good coding method will take use

of them in some way. More surprising is that with HSRQ, such a combination is

possible at a very low complexity.

4.6.1.1 Predictive Coding

Predictive coding takes advantage of the fact that neighboring data values are

highly correlated. This is also used by HSRQ, the difference being that HSRQ is

limited by the arbitrary subdivisions of the spatial and the gray scale hierarchy.

On the other hand, HSRQ can sometimes use coherence in the leading bits over a

much larger part than predictive coding, which basically works from pixel to pixel

and from line to line. How additional prediction can be introduced into the BC

quadtree is shortly described in Section 5.1.5.

4.6.1.2 Transform Coding

The relation between transform coding and HSRQ can best be shown using

Figure 4.17. Transform coding takes advantage of the correlation between

neighboring data values by transforming a set of values so that correlation is

eliminated. For two correlated values, the transformation usually results in the

average and the difference of the values. As the average has more variance, it is

usually transmitted with higher priority, and using more bits, than the difference.

Symbols
ofGDF

Correlated
sample points

Coordinates after
transformation

First value
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4.6.1.3 Adaptive Coding

It has been mentioned in Subsection 1.2.1.4 that for most coding methods,

adaption to the local image statistics allows additional improvements. However,

this usually results in a considerably increased complexity. One reason for the

good performance of HSRQ, which will be demonstrated by the experiments in

Chapter 6, is that it already includes adaption, in the sense that it automatically

uses different sampling strategies for different regions of the image.

Whereas traditional adaptive algorithms use a class division, adaptive

coding based on quad trees is also becoming popular [Far90], [Str90], [Vai87].

However, in these cases, the quad tree is .just used to define a partition of the

image into squares of different sizes. The quad tree and the actual coding method

are not directly related as this is the case with the BC quad tree.

4.6.2 Image Complexity

One goal of the research in computer vision and image processing is to capture

the structure of an image and the complexity of parts of an image, and to find

ways to continuously reduce this complexity. In the framework of this thesis,

only a very short comparison with such work can be given, but a more extensive

investigation of this area may lead to interesting new discoveries.

4.6.2.1 Scale space

The theory of scale space (see [Lin90] for an introduction and additional

references) defines image complexity by the number of local minima and

maxima. It then tries to find ways to continuously reduce the (spatial) resolution

without at any point increasing image complexity. In the spatially continuous

case, this leads uniquely to Gaussian kernels of different sizes.

Applying this to the BC quadtree and HSRQ, it is of course not possible to

increase resolution continuously. However, it may be possible to apply the theory

of scale space to HSRQ as follows: As HSRQ only defines intervals of gray scale

and space that are passed by the original function, the least complex function (in

the sense of scale space) that passes these intervals can be selected. Scale space

theorems can then be developed based on these functions. Note that in this case,

the scale space parameter (resolution) cannot be specified by a single parameter.

4.6.2.2 Picture Information Measures

Chang [Cha89, Chapter 4] discusses information measures that indicate the

complexity of an image or picture, and outlines the properties that such a

measure should fulfill. Based on DF, Kawaguchi et al. define a measure for the

complexity of binary images [Kaw80]. In the terminology of this thesis, it is

defined as the number of bit selection symbols necessary to represent a given

subquadrant, divided by the number of pixels in this subquadrant. In [Kaw831, this

measure was used to simplify noisy parts of lower bit planes of a gray scale image.

Similar information measures can be defined based on GDF. However, the

advantage of the BC quadtree is that it uses a very simple rule, namely the

equality of leading bits in all corresponding pixels, to very easily obtain a rough

estimate of image complexity. This can then be used efficiently for progressive

transmission, whereas other picture information measures are more complex

and therefore less suited for progressive transmission.

4.6.3 Quadtree Oriented Methods

While some of the differences between the BC quad tree and other progressive

transmission methods using quadtrees are obvious, it may be necessary to point

out some less obvious differences.

4.6.3.1 The BC Quadtree: Quadtree or Pyramid

In the field of progressive transmission, the terms quadtree and pyramid are used

interchangeably in most cases. However, it may be interesting to analyze whether

the BC quadtree is indeed a quadtree, or rather a pyramid.

According to Samet [Sam90a, Preface1, the quadtree is a variable resolution

representation, whereas the pyramid is a multiple resolution representation. In

this statement, Samet of course refers to spatial resolution. The BC quad tree

obviously incorporates aspects of both variable spatial resolution and multiple

spatial resolution. In its variable resolution aspect, it adapts the spatial resolution,

for a given gray scale resolution, to the local properties of the image. On the other

hand, multiple spatial resolution is present for different levels of gray scale

resolution. Indeed, the BC quadtree goes beyond the simple multiple spatial

resolution that allows to arrange pyramids (in the sense of image descriptions) as

pyramids (in the geometric sense), as it incorporates a large number of different

ways to increase resolution.

In analogy to Samet, introducing the concepts of variable gray scale

resolution and multiple gray scale resolution is useful to show the differences

between the BC quadtree and the G-quadtree [Kni861, [Ma087]. The G-quadtree is

clearly a variable gray scale resolution representation. It provides different

resolutions with different members of a G-quadtree family, or variable gray scale

resolution in one and the same tree in the case of the nonuniform G-quadtree

[Mao90a]. On the other hand, the BC quad tree incorporates all different gray scale

resolutions in one and the same data structure. It is therefore a multiple gray

scale resolution representation.
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4.6.3.2 Knowlton's Progressive Transmission of Binary Images

It is interesting to compare the method proposed by Knowlton to transmit binary

images progressively (introduced in Subsection 1.2.3.5) with the progressive

transmission achieved when using the BC quad tree. It turns out that the

reproduction achieved when applying the new method to an image with b=1 bits

per pixel is the same as with Knowlton's method, with some small exceptions.

The differences are that Knowlton uses bintrees and starts with cells of 2·3

pixels at the second lowest level, mainly to equalize the aspect ratios at different

levels of the bintree. He then adds the number of black (or white) pixels in such a

cell as an intermediate level of refinement, using this to select between several

gray levels. He also proposes an elaborate variant that increases compression by

using prediction. It seems that the bintree is better suited for such a prediction

scheme, as the number of cases that have to be treated is smaller.

The equality of the two methods in the binary case suggests that progressive

transmission based on the BC quadtree is also highly efficient when transmitting

images that contain mainly binary information, like text and line drawings. This

is confirmed in Section 6.3.

4.6.3.3 Dreizen's Method

Dreizen's method [Dre87], described in Section 1.2.3.1, is similar in complexity to

the present one, and incorporates some aspects of combined increase of spatial

and gray scale resolution by first subdividing areas of the image where there are

strong changes of gray values. Therefore, in the experiments of Chapter 6, the

new method is mainly compared with Dreizen's method.

Dreizen uses the difference between the minimum and the maximum pixel

value in a subquadrant to decide whether to split or not. This is obviously a more

flexible criterion than bitwise condensation, as it is not influenced by the arbitrary

splitting of the gray scale hierarchy. On the other hand, the cost of calculating the

minima and maxima is slightly higher than the cost of the bitwise logical

operations used when constructing the BC quad tree.

That Dreizen's method is less efficient than progressive transmission based

on the BC quad tree (see Chapter 6) is due to the fact that he uses full quantization

in all cases. This is partially compensated by using prediction, but prediction is

not very efficient in the first stages where transmission is concentrated on the

areas with large gray scale variances.

Although it is possible in the framework of his method, Dreizen never

considers interleaving transmission of small squares with strongly differing gray

values and larger squares with slightly differing gray values. This might

somewhat increase the performance of this method.

4.6.3.4 The Method of Endoh et aI.

The method of Endoh et a!. [End87} is the only previously existing progressive

transmission method that allows the independent increase of spatial and gray

scale resolution. Similar to Section 4.3, the image information is split into

components, each with different spatial and gray scale resolution. However, these

components just consist of the corresponding bits at appropriate subsampling

locations, and so basically always have the same size. This method does not

capture the structure of the image in any way.

To achieve compression, the above method relies heavily on prediction and

entropy coding using run length coding. This greatly increases complexity, but

leads to somewhat better compression than the BC quadtree because prediction is

fully utilized. A simpler version of their approach, not using prediction, will not

produce acceptable results.

Also, the method uses interpolation to smooth the image. This increases the

computation load at the receiver, especially in the initial stages of transmission. It

is difficult to imagine the method without interpolation. The subsampling

scheme used (see Figure 1.5) alternatingly produces squares and diamonds on the

screen, which will greatly disturb the user. Also, whereas many displays can easily

paint a square, painting other polygons is supported by a smaller number of

display architectures, and even if supported, it usually takes longer.

However, the most important difference between the method of Endoh et a1.

and the work presented in this thesis are the component sequences considered.

They propose component sequences corresponding to those in Subsections 4.3.2

(increasing gray scale resolution) and in Subsection 4.3.3 (increasing spatial

resolution)!. For special applications like printout on a high-resolution printer,

they also propose to additionally increase the spatial resolution after having

increased the gray scale resolution for output to a display.

Their component sequences can therefore by characterized by a repeated

selection of an increase in either gray scale or spatial resolution. If the gray scale

resolution is increased, then this is done for all spatial levels already transmitted,

and vice versa for spatial resolution. When the components are arranged as in

Table 4.2, the area of the components transmitted therefore always forms a

rectangle in the upper left corner.

! The result of increasing spatial resolution in the case of Endoh et a!.

is similar to that for Knowlton [Kn08D] and cannot directly be compared

with Figure 4.7.
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On the other side, as explained in Subsection 4.3.4, the sequence of components

when using the BC quadtree is less limited. Consequently, in the case of Endoh et

al. gray scale resolution and spatial resolution can be increased independently,

whereas in the case of the Be quadtree, gray scale resolution and spatial

resolution are increased concurrently. 5

Optimization

The basic principles of the BC quadtree, GDF, and HSRQ have been introduced in

the last chapter. In this chapter, various ways to optimize image compression and

progressive transmission based on these principles are discussed. Section 5.1 deals

with the selection of representative gray levels. This then allows to find rules to

determine the best component sequence in Section 5.2. To achieve better overall

compression, a deterministic algorithm is proposed in Section 5.3, and compres­

sion using arithmetic coding is treated in Section 5.4.

5.1 Gray Level Reproduction

With other image coding and progressive transmission methods, reproduction

values are usually specified exactly for each stage and each pixel. Even when the

gray scale resolution of an image is reduced, the remaining gray levels are usually

reproduced at equal intervals. In the case of HSRQ, however, the gray levels are

only restricted to intervals that are repeatedly subdivided. During the whole

transmission, intervals of various sizes coexist.

In this section several rules and methods are proposed to specify the exact

gray level with which each gray scale interval is represented (see also [Diir91)).

The proposed methods differ in complexity and in the quality of their results, and

their choice is basically independent of the sender; this offers flexibility for the

receiver in accordance with Requirement 3.7.

5.1.1 Black to White Reproduction

Each bit selection symbol of GDF specifies an additional bit for a square of a

certain size. It is therefore possible to reproduce the image by changing only one

bit of each pixel of a square at a time. This is especially advantageous if the frame

buffer is organized so that equivalent bits of neighboring pixels can be accessed
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together. In this case, the access rate to the frame buffer can be reduced by a factor

of b for an image with b bits per pixel.

As the lower bits of a pixel are not changed for a long time, they have to be

initialized carefully. One way of doing this is to initialize the image to black

(00000000). Now when receiving a 0, no change to the frame buffer is necessary.

When a 1 is received, the corresponding bits are set, and the corresponding square

appears lighter. As a result of this, the access rate to the frame buffer is again

reduced by a factor of 2, as we can assume that the number of Os and 15 is more or

less the same. This reduction is possible for all frame buffer organizations.

Figure 5.1 shows the results of this method. Compared with the methods

discussed in later subsections, the information content of the developing image is

rather low, because half of the bit selection symbols do not lead to a change of the

display. To estimate this effect, this method was included in the experiments

described in Chapter 6.

Figure 5.1. Black to white reproduction

(bytes transmitted: 300, 600, 1200, 1800,2400,3600,4800,9600)

On the other hand, starting with a black screen has the advantage that the image

intensity is increasing monotonously. This eliminates a slightly disturbing effect

that can appear, in one form or the other, with most other methods: A large area

of the image quickly increases and decreases in intensity. This appears like

blinking if fast enough. If slower, viewers may get the impression that some gray

levels are unnecessarily changed back to their original value, as it is difficult for a

human observer to remember absolute gray values. The monotonously changing

intensity is also advantageous when displaying image sequences (see Section 7.3).

It is also possible to display an image starting with a white background, but this is

visually less pleasing (see, however, the comment to Figure 6.5).

Reducing the number of accesses to the frame buffer is of importance

especially in the early stage of the transmission, when for every few bits received,

a large square has to be painted. If the access to the frame buffer is a bottleneck

only at this stage, it is possible to use the black to white reproduction method for

the initial stage and another reproduction method for later stages. The com­

bination of other methods is possible, too.

It has however to be pointed out that it is not necessary that the rate at which

the largest squares can be written into the frame buffer is exactly as high as the

rate at which the information to paint these squares is received. Most of the

squares painted will be rather small, and so it is possible to queue some of the

commands to paint large squares. The queue will be reduced as soon as infor­

mation for smaller squares arrives. The delay in painting large squares may have

no effect on the transmission time at all, as a certain amount of detail is needed

in any case for the user to get an initial idea about a transmitted image.

Another possibility to reduce the frame buffer access in the initial stages is to

first display a smaller copy of the image, as this has been proposed in [Hof86).

Displaying the image with half the final side length is possible as long as no

component of the lowest level of the spatial hierarchy (the pixel level) is

transmitted. However, as the most significant bit component on the pixel level

may not affect very many pixels, it may be necessary to start building up the full

size image earlier. The same argument applies to earlier stages.

5.1.2 Random Background Reproduction

Instead of starting with a black background, it is possible to start with a random

background. In this case, both Os and 15 are written to the frame buffer and affect

the displayed image. The distribution for the original background has to be

uniform on the whole gray scale; the uniform distribution is the only one whose

basic shape is not affected when derandomizing leading bits.

The result of this method is shown in Figure 5.2. The random noise has the

effect of blurring the sharp boundaries of the subdivision and the flat areas of

large squares. This leads to a subjective quality improvement in the early stages.

This can be explained by the fact that the human eye is better in detecting shapes

from a noisy pattern than from an arbitrarily smoothed one. The effect of the

random pattern can be compared to dithering. An investigation of different kinds

of pseudorandom patterns may lead to interesting results.

This method of gray level reproduction is very well suited for frame buffers

where corresponding bits of neighboring pixels are stored together. On the other

hand, if this is not the case, the access rate to the frame buffer is increased as the

lower bits of each pixel have to be conserved. Each pixel value therefore has to be

read one by one, the correct bit set or cleared, and the pixel value written back to

the frame buffer. This problem can be circumvented by using a precomputed
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pseudorandom pattern, which does not have to have the size of the whole image,

but can be used repeatedly. This also eliminates the time necessary to calculate the

initial background.

Figure 5.2. Random background reproduction

(bytes transmitted: 300, 600, 1200, 1800,2400,3600,4800,9600)

The random background method is also not suited for low quality displays such

as TV monitors. The random pattern introduces' high frequencies which lead to

flickering that can badly disturb the viewer. This method was therefore not used

in the experiments described in Chapter 6.

HSRQ, different areas of the developing image are quantized with different

numbers of gray levels leads to some problems. A typical one-dimensional

example is shown in Figures 5.3 and 5.4.

Intermediate
reproduction

Figure 5.3. Smallest spatial intervals quantized with one level

In Figure 5.3, a slightly decreasing linear function is finely quantized in all spatial

intervals but the smallest ones. On the other hand, only one quantization level is

used for the smallest intervals. This produces a fairly nice approximation of the

original function.

Figure 5.4. Smallest spatial intervals quantized with two levels

What happens if the quantization for the small intervals is increased to two

levels is shown in Figure 5.4. This quantization introduces some false high

frequency components into the image reproduction. In two dimensions the effect

occurs mainly between light and dark areas and leads to false contours. On low

quality displays, these high frequencies introduce flickering.

5.1.3 Center Value Reproduction

The traditional method used when transmitting an image bit plane by bit plane

or with a reduced gray scale resolution is to display the gray value in the center of

the corresponding gray scale interval. For example, if the first three bits are 011,

then for an eight bit frame buffer the value chosen is 01101111 or 01110000. The

image is thus initialized to 01111111 or 10000000. This is the method that has been

used for the figures in Chapter 4 (see especially Figure 4.8).

Center value reproduction has the advantage that it is easy to understand

and implement and leads to fairly good results. If the frame buffer is addressable

by bit plane, only one or two out of the b bits per pixel have to be changed for each

arriving bit selection symbol. For example, if the pixel value is 01101111 as in the

last paragraph, and a 0 is received, the pixel value is changed to 0110Qlll; if a 1 is

received, the new pixel value is 0111Qlll (changed bits underlined).

5.1.4 Average Reproduction

5.1.4.1 The Problem

The methods for the reproduction of gray levels discussed in the previous

subsections are simple and produce acceptable results. However, the fact that with

~~~:~-:r:.:1.=:t:_:..~_.~.~.. ~..~.. ~~i,-4;;;;;;;j;;;;;;~~ .....i
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Space coordinate Sampling and quantization
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For Figures 5.3 and 5.4, the center of each gray scale interval has been chosen as

the representative gray level according to Subsection 5.1.3. Similar effects appear

with the reproduction methods of Subsection 5.1.1 and 5.1.2, although there is no

fairly nice intermediate stage as in Figure 5.3. These effects are especially visible in

Figure 5.1, top right and bottom left.

5.1.4.2 A Statistical Example

There are several solutions to this problem. The theoretically correct solution, if

the mean square error is used as the distortion measure, is to reproduce the

squares of a given size and gray scale interval by the average of the values

quantized. The following analysis shows that the average actually differs from the

center value of the interval.

Most images are smooth in most locations, and on average, neighboring

pixels do not differ very much. So in a small square, for example of size 2·2,

pixels will have gray values very near to the center of the whole gray scale if

neither all of its pixels have gray levels in the upper nor in the lower half of the

gray scale. Thus the average of the pixels with gray values in the upper half of the

gray scale that lie in a two by two square that also contains pixels in the lower half

of the gray scale will be very close to the center value of the whole gray scale, and

not near the center value of the corresponding interval.

To explain this phenomenon using an actual example, these averages are

calculated in Table 5.1 for some components of the image "Girl". The first

column in the left (right) half of Table 5.1 shows the percentages (perc.) of all (not

necessary aligned) squares with side length size for which all pixels have values

in the lower (upper) half of the gray scale. The next column shows the gray level

averages (av.) for these squares.

The averages of the squares with side length size that are not part of a square

with side length 2·size are calculated as the weighted averages of the squares with

side lengths size and 2·size, taking the weight of the larger squares negatively.

For the exact formula, see (5.6) below. The resulting averages usable for the

reproduction of squares of side length size when receiving their most significant

bit (rep. av.), are shown in the last column of both parts of Table 5.1.

Table 5.1 clearly shows that the averages for squares of different sizes vary

greatly, and that the smaller the squares are the closer these averages move to the

center of the whole gray scale. On the other hand, for large squares the averages

tend to be even farther away from the center of the whole gray scale than the

centers of the corresponding subintervals. In fact, a large square that has an

uniform most significant bit will not contain many pixels near the center of the

gray scale, because such pixels have a high probability of being accompanied by a

pixel with different most significant bit in their neighborhood.

A similar relation between the size of the leafs in a quad tree and their

histogram was observed by Wu et al. [Wu82] and used for image segmentation.

size $127 ~128

perc. avo rep. avo perc. avo rep. avo

1 88.347 62.5282 111.57 11.652 155.922 138.56

2 84.828 60.4939 93.18 8.370 162.730 150.41

4 79.091 58.1230 78.16 4.821 171.800 164.86

8 69.021 55.1996 64.62 1.708 184.453 182.40

16 52.388 52.2086 56.02 0.166 203.539

32 27.359 48.7213

Table 5.1. Reproduction averages for image "Girl"

5.1.4.3 Reproduction Averages for Traces

In Chapter 4, we introduced the concept of traces to analyze the BC quadtree and

HSRQ. Traces are also a tool to describe and estimate reproduction averages, for

two reasons: First, the average depends on the location in the spatial and in the

gray scale hierarchy, information which is contained in a trace. Second, the

receiver can easily reconstruct the trace of a square or a pixel and then use it to

decide the reproduction value.

We will now present some rules that relate averages of different traces. With

this, we intend to demonstrate the advantages of the trace formalism and to give

the reader a better understanding of traces and averages. Some of the rules apply

to single images as well as to random field models of images, whereas others are

strictly true only for random fields that exhibit the necessary degree of stationarity

and ergodicity.

We denote the average of all pixels with trace a by av(a), and the frequency

of occurrence of pixels with trace a by oc(a). We will also use av(A) and oc(A) for

the set of traces A with the obvious meaning. Laws formulated on sets of traces

apply to single traces, too.

First, averages of mutually exclusive sets of traces can be added by weighting

them with their occurrences:

Iff oc(AuB) =oc(A) + oc(B), then

oc(AuB)·av(AuB) = oc(A)·av(A) + oc(B)·av(B). (5.1)
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Note that in the previous formula, it is not possible to use AnB = 0 as a condi­

tion, as A could contain subtraces of traces in B or vice versa. A special case of

(5.1) is the average of a common subtrace. As

oc(a) = oc(aO + oc(aO) =oc(aO + oc(aO) + oc(al), (5.2)

it follows that

oc(a)·av(a) =oc(aO·av(aO + oc(aO)·av(aO)

= oc(aO·av(aO + oc(aO )·av(aO) + oc(al)·av(al). (5.3)

The law (5.1) was also applied in the previous subsection. As size = 2(r-s), the first

column on the left side contains oc«(a I a=(*<s>O)), where (*<s> denotes the string

of up to s (including 0) copies of (. The second column contains the corresponding

average av«(a I a=(*<s>O)). The third column contains the average for a single

trace, namely av«<s>O), where «s> denotes exactly s repetitions of (. Obviously,

oc«(al a=(*<s>O)) =oc«(al a=(*<s-1>O)) + oc«<s>O), (5.4)

and so

oc«(a I a=(*<s>Oj)·av«(a I a=(*<s>O))

= oc«(a I a=(*<s-l>Oj)·av«(a I a=(*<s-1>Oj)

+ oc«<s>O)·av«<s>O), (5.5)

and av«<s>O) can thus be calculated as follows:

av«<s>O) = [oc«(a I a=(*<s>Oj)·av«(a I a=(*<s>O))

- oc«(al a=(*<s-l>Oj)·av«(a I a=(*<s-1>O})]

/ [oc«(al a=(*<s> 0)) - oc«(al a=(*<s-1>O))]. (5.6)

Exchanging 1 for 0 in (5.5) and (5.6) gives the corresponding formulas for the right

part of Table 5.l.

For some cases, exact averages are known. Especially, if all bit selection

symbols are known, the average, in binary notation, is the gray scale value of the

corresponding bit selection subtrace:

U Ibi(a)1 = b, then av(a) = bi(a). (5.7)

Here, lal denotes the length of trace a. On the other side, we note that aV(E) is the

average ofthe whole image, where E is the empty trace. Defining ra1and LaJ as

the highest and lowest full bit selection trace that contains the bit selection

subtrace of a, i.e.

LaJ =bi(a)o<b-lbi(a)l> and (5.8)

ra1= bi(a)l<b-lbi(a)I>, (5.9)

the average of a given string can obviously be limited by

LaJ $ av(a) $ ra l. (5.10)

As raD 1< LaD, we can deduce

av(aO) < av(al). (5.11)

For well behaved images and image models, this can be extended to

av(aO) < av(aO < av(a1), (5.12)

and further, as we have already noted in the previous subsection, to

av(aO) < av(a( 0) < av(aO < av(a( 1) < av(al). (5.13)

The most important aspect of the last two formulas is perhaps that they clearly

show that transmitting a ( is not a useless overhead of GDF, as it seems at first. Is

fact, a ( contains information that can be used to obtain a faster approximation to

the original image.

5.1.4.4 Calculation and Transmission of Averages

The previous subsection discussed various relations between averages of

different traces and sets of traces. In this subsection, we discuss ways to calculate

and transmit the actual averages. The trace tree introduced in Subsection 4.5.2

allows to calculate averages for all traces and subtraces. However, the number of

possible traces in an image is high, and therefore it may be advisable to find trace

sets that have similar averages and similar structure. The following discussion

applies both to individual traces and to sets of traces.

The first possibility to obtain averages for the reproduction of the image at

the receiver is to assume fixed averages for all traces, based on the relations given

in the previous subsection. This is especially useful for applications where all

images are statistically similar or can be divided into a certain number of types. It

is also possible that the receiver updates these averages after each image received;

a receiver that disposes of the necessary computing power may thus obtain a very

accurate statistical model of trace averages independent of the sender.

A second possibility to calculate trace averages is to calculate some

characteristic values of the image, such as average, standard deviation, autocorre­

lations, etc., at the sender. These values are transmitted to the receiver, which

uses them to calculate the average for each trace.

An example is to assume a Gauss Markov model for the image, as this is

frequently done (The most famous example is perhaps [Ahm74]). As this model

determines the probabilities of all pixel combinations, all the averages can

theoretically be calculated. However, if this requires numerical integration or

Monte Carlo simulation, this approach may not be very practical.

Also, the complexity of the model that allow a reasonable approximation of

the actual averages has to be taken into account. If the number of characteristic

values needed to describe the trace averages to a certain degree of accuracy is low,

these values can just be sent to every receiver and be ignored if another

reproduction scheme is used. Otherwise, the independence of the sender from

the receiver (as postulated in Requirement 3.7) is lost.
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A third method to obtain trace averages is to try to deduce them from the already

received image components. For example, a main distinction can be made

between images with flat areas and sharp edges, and images with a generally

smooth change of intensity. The fine quantization of large and middle-sized areas

will indicate to which category the transmitted image belongs, and this

information can then be used to predict the reproduction values for the small

squares. Also, as explained in Section 5.2, the optimal component sequence differs

according to the type of the image, so that suitable trace averages may be deduced

from this sequence.

A last possibility is to calculate the average for each trace or trace set at the

sender and transmit it to the receiver. A variant of this method was used in the

experiments in Chapter 6. This was done to estimate the effect of average value

reproduction on the quality of the developing image while using a very simple

model. It can be expected that with the other methods mentioned in this sub­

section, similar results can be obtained with less or no calculations at the sender.

The traces were grouped according to their number of parentheses s = Ipa(a)1

and their bit selection subtrace bi(a). In this way, for each component as defined

in Section 4.3, at most (b-c)·2c bits, where c=lbi(a)l, have to be transmitted. Here,

the first term, b-c, indicates the number of remaining bits and the second term, 2c,

the number of different bit selection subtraces for this component. This added

about 0.3% to the total transmission rate.

Figure 5.5. Reproduction using trace averages

(bytes transmitted: 300, 600, 1200, 1800, 2400, 3600, 4800, 9600)

The result of this scheme, for our example image, is shown in Figure 5.5. Figure

5.5 shows that reproduction by average values leads to a smoother and better

looking image when compared to the previously presented methods, may be

with exception of the initial stages of the random background method. Because

different gray values are used for different subquadrant sizes, the block

boundaries are eliminated early.

The reproduction scheme used for Figure 5.5 has the advantage that it works

with the same amount of memory for the BC-quadtree as the decoding algorithm

of Section 4.3. However, it is far from being perfect. Transmitting averages for the

least significant bit is really not necessary, as using the "wrong" reproduction

value in this case has almost no effect on the visual appearance of the image.

On the other hand, significant deviations from the averages for the

individual traces occur in the case of s=r and c=2. Both traces of the form ««««01

(we assume r=8) and traces like «««(0(1, «««0«1, etc., are assigned the same

average. Actually, the average for the former lies close to 01111111, whereas the

averages for the later lie close to 01000000. In this case, a finer grouping of the

traces seems necessary (see also the comment to Figure 6.6).

5.1.5 Global and Predictive Reproduction

The four reproduction methods discussed in the four previous subsections only

change the pixel values in the square for which an additional symbol is received,

based only on information about the current square. This leads to a simple and

fast implementation and fairly good results, but such a limitation is not necessary

if additional computing power is available.

Some improvement of reproduction quality can be expected if the

information of neighboring pixels is considered. This can be done both globally

and locally. In the first case, the image is reprocessed completely by the decoder at

determined points of time, for example after the transmission of each

component. An example of this is the use of cubic splines or cubic convolution

for interpolation by Sanz et al. [San84]

In the second case, the pixels of the current square are changed taking into

account the information available for neighboring squares and pixels, predicting

the exact pixel values in the current square. The neighboring squares or pixels

may then in turn be adjusted based on the information just received for

the current square.

One goal of this method is to improve image quality by smoothing the image

to eliminate block boundaries. On the other hand, if sophisticated enough, it can

also detect and strengthen edges that are not parallel to the quadtree grid. The

actual techniques used can range from simple decision rules to complex filtering

and smoothing procedures. A simple way to ameliorate the problem described in

Subsection 5.1.4.1, for example, is to restrict the reproduction values for the small

spatial intervals by the gray values of the neighboring larger intervals.
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On the other hand, it is not clear to what extent traditional filtering techniques

can be applied to the nonuniform sampling and quantization in the case of

HSRQ. In the case of regular subsampling, optimal reconstruction filters, and

optimal sampling kernels for given reconstruction methods, are known [Chi89].

The problem of signal reconstruction from irregularly spaced samples has been

studied [CheD87J, but mainly to find the best of several sampling patterns.

In our case, sampling and quantization are not only nonuniform, but also

specify intervals and not points. The reconstructed function will have to lie

completely inside the intervals. This is a binary valued condition that is much

more difficult to work with than for example the well used mean square error.

Numerical methods that combine a variety of constraints, such as [Ma189J, or

morphological filters [Gia88J, may be a solution to this problem.

A good reconstruction and interpolation is also desirable to achieve

scalability as demanded by Requirement 3.8. The best reproduction of the original

image at a smaller scale is obviously obtained easier from a good reproduction at

the full scale than from a bad one.

5.2 Optimizing Component Sequence
Section 4.3 showed how changing the component sequence influences the

appearance of the image reconstruction process and thus the efficiency of

progressive transmission and the compression ratio for lossy compression. A

more detailed discussion of the problem of determining a good (or even optimal)

component sequence has been delayed up to this section because the optimal

component sequence depends to some degree on the chosen reproduction

method. In addition, the third subsection of this section discusses alternative

ways to split GDF into components.

5.2.1 The Optimal Component Sequence

Assume that we are given a distortion function d(·,.), a reproduction method,

and the division of the image into components that will be transmitted one after

the other. How can an optimal transmission sequence be defined, and does such a

sequence indeed exist?

The optimal component sequence may be defined as follows: If a component

sequence is optimal, then it achieves distortion equal or lower to that achieved by

any other component sequence at any time during transmission. If such a

component sequence does exist, it should dearly be used for transmission.

On the other hand, it is easily possible that there is no such component

sequence. In this case, to be able to define the optimal sequence, the simple

distortion function that compares the original with the reproduced image is not

sufficient to decide which transmission sequence to choose. The distortion

function has to be integrated in a suitable way over time.

There are several reasons that such an integration might be necessary. First,

there are restrictions on the possible component sequences, as given in Section

4.3. As these restrictions require nothing more than to transmit large squares

before small squares, and more significant bits before less significant bits, it could

be assumed that they do not restrict the optimal component sequence. However,

this may not be true. The number of bits for the same number of squares is much

lower on the pixel level, which makes these components more efficient. Also,

there are components with many parentheses and others consisting almost only

of bit selection symbols. Compared with bit selection symbols, parentheses do

not affect the image directly, and so components with many parentheses

perform somewhat worse.

Second, it is possible that some components worsen image quality rather

than improve it. This depends heavily on the reproduction method chosen (see

Figures 5.3 and 5.4). A good reproduction method is thus an important condition

for an optimal component sequence to exist. On the other hand, the optimal

component sequence depends on the reproduction method chosen.

5.2.2 Component Sequence Heuristics

Even if we are given a suitable distortion measure and a way to integrate it over

time, it is not easy to find the optimal component sequence, as the number of

possible sequences is extremely high. In the case of the image "Girl", for example,

the number of allowed sequences is as high as 54.1012.

A considerable simplification of the problem is obtained by assuming that

the distortion measure is additive. This means that the change of distortion due

to transmitting a given component is independent of exactly what other

components have already been transmitted. This excludes almost all distortion

measures which are not single letter distortion measures. On the other side,

well used distortion measures like the mean square error are additive. Due

to the restrictions on the component sequence, exchangeable components

affect different pixels.

For each component, the quality improvement tid(·,.), the necessary

number of bits tibits, and thus the efficiency of each component, expressed by

tJ.d(·,.)/ tJ.bits, can be calculated. Then the components can be ordered by decreas­

ing efficiency. If this order satisfies the restrictions on the component sequence

given in Section 4.3, we have found the optimal component sequence.
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This will not generally be the case, and so heuristics have to be used. One simple

heuristic is to postpone "bad" components, Le. components with negative or very

low contribution, as long as possible. This leads to good initial results and is thus

appropriate in applications like person recognition, where rarely much more

than the initial stages of a developing image will be used. On the other hand, a

sudden deterioration of quality in a late stage of image reproduction may destroy

the confidence of the viewer into the transmission scheme used. This may do

much more harm than can be measured numerically.

Other heuristics include the combination of a bad component with the

component it delays, treating these two components as one, or transmitting bad

components as soon as possible, favorizing a regularly improving reproduction

over a good initial result. An important point is also that heuristics should

concentrate on the larger components.

Such a heuristic, but still numerical approach, which tries to find the best

sequence for a given image (or image model) by calculation of actual distortion

improvements, can be complemented or replaced by a more rule-based approach.

For fixed applications, it may be sufficient to use the same component sequence

for all images. For all these images the reproduction quality for the chosen

component sequence will differ only slightly from the optimal sequence. This has

the additional advantage that the component sequence need not be transmitted.

However, the number of bits needed to specify the component sequence is

bounded by (r+l)·Hlog bl and thus practically negligible.

Large image databases will have stored some textual information for each

image, and the component sequence may be selected using this information, as

the optimal component sequence will largely depend on the type of the image.

The component sequence may also be adapted to the user's queries or the

user itself. For form- or shape-oriented queries spatial resolution is more

important than gray scale resolution, and so the component sequence may be

adapted to such a query. On the other hand, if the user remembers an image

mainly from the general distribution of light and shadow, gray scale resolution

should be increased first.

Also, as an example, the same X-ray image may be viewed once by an

orthopedist interested in the sharp outlines of the skeleton, and another time

by an oncologist looking for the diffuse shades of a tumor. An intelligent

transmission system can in such a case automatically adapt the component

sequence to the user.

5.2.3 Other Ways to Define Components

Until now, division of the image information into components was assumed to

be based on the level in the gray scale and in the spatial hierarchy, as defined in

Section 4.3. However, there are several ways to increase the number of

components and thus to achieve a smoother development of the image.

5.2.3.1 Components based on Traces

One way of increasing the number of components is to define components based

on traces. This is directly based on the BC quad tree and HSRQ and thus not

possible with other methods of progressive transmission. Starting with the empty

trace, we transmit as a single component all those symbols that have the present

trace as prefix. For example, when transmitting the component based on trace

««0(1, all the symbols that expand this trace to either ««O(1~««0(10, or ««0(11
are transmitted.

This can lead to improvements in the following ways: First, the human

visual system is more sensitive to contrast in the dark rather than in the light

areas of an image [Mann74]. Thus, it is advantageous to transmit traces with low­

valued bit selection subtraces somewhat earlier than those with high-valued bit

selection substrings.

Second, as already explained in Chapter 3, the gray scale resolution necessary

in areas with high frequency is not as high as in slowly changing areas. The basic

way of defining components in Chapter 4 has been guided by this observation, but

does not fully use it. The problem is that initially, areas of high activity are

correctly sampled finer and quantized coarser than areas of low activity. As

resolution is increased, additional quantization is necessary mainly in areas of

low activity to eliminate Mach banding and similar effects, but actually,

quantization is increased at the same pace in areas of high activity, where this is

much less necessary.

To give a concrete example, a trace of ««««011 suggests that we are in an

area of high activity, so that additional quantization is not really necessary. On

the other hand, a trace like ««Ol«(H although it has the same number of

parentheses and the same bit selection symbols, belongs to an area of low activity

and should therefore be quantized further with high priority.

It is not possible to deduce the amount of activity in a given area from a

single trace with absolute certainty. To further improve the sequence of trans­

missions, neighboring traces can also be considered. This is similar to considering

neighboring gray values when deciding on the reproduction value (see

Subsection 5.1.5). However, this greatly increases the complexity of the algorithm.
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The advantage of traces is that they provide a maximum of information about

the current area in an efficient and seemingly local way.

5.2.3.2 Local Priorities

Letting the user choose parts of the image to be transmitted with higher priority

(before the start of the transmission or based on the intermediate image) has been

proposed first in [Kn080]. This can easily be implemented with most methods, the

preferred region usually being a rectangle.

With the new method, smoother solutions are possible. First a priority

function for each pixel or small square is defined. Then the priority for internal

nodes of the BC quad tree are calculated as the maximum of its children.

Components are then formed based on spatial resolution, gray scale resolution,

and priority. Compared with defining priorities for large squares in a fixed grid

[San84], this has the advantage that the reproduction can be adapted to the image

and the human field of vision with a very small transmission overhead.

Note that in contrast to [San84], there is no need to let the sender calculate

the importance of different areas of the image, because HSRQ automatically

concentrates on those areas with high activity.

5.2.3.3 Bintrees

Another way to increase the number of components is to Use a bintree instead of

a quadtree as the spatial hierarchy. The bintree alternately leads to rectangles and

squares, instead of displaying squares all the time, which is visually not so

pleasing. Most authors therefore, even when actually using bintrees,

avoided the display of the rectangular stages [Hi183], [San84], or treated the lowest

level differently to obtain rectangles with more or less equal aspect ratios in

all stages [KnoSO].

In this respect, the unequal development of the image and the early

elimination of visible block boundaries when using reproduction averages may

hide the visual disadvantage of the bintree. On the other hand, with the simpler

reproduction methods, neighboring squares are frequently quantized to exactly

the same gray scale value, a fact which also hides rectangles, whereas this is not

the case for methods based on averaging or subsampling. In general, it seems that

the combination of the arbitrary subdivisions in the gray scale and the spatial

hierarchy do not increase, but decrease blocking effects.

In addition, it may be possible to split some of the squares in horizontal

direction and others in vertical direction. Whereas this distracts the viewer even

more than the usual bintree if the image is developed regularly, it probably

makes the use of the bintree completely invisible in the case of HSRQ.

5.2.3.4 Exact Transmission Sequence inside a Component

There are basically three ways of transmitting the symbols of each component.

The first is to exactly follow the Morton sequence defined by the quadtree. The

second is to scan the image at the present spatial resolution, line by line. The

third is to use a pseudorandom sequence.

With regard to visual quality, the last solution is probably the best, as it leads

to a smoother, less localized increase of resolution. The viewer is not seduced to

concentrate on the location where the image is improving currently, and so will

view the image as a whole, which leads to better recognition. The second solution

comes next. At least this restricts the head movement of the user to up and

down movements, and so is highly predictable. It was used in the experiments

described in Chapter 6.

5.2.3.5 Algorithmic Aspects

The algorithms for progressive transmission in Chapter 4 basically scan the

appropriate level of the explicit quadtree. If the number of components increases,

scanning a whole level of the quad tree for each component becomes highly

inefficient. In this case, the solution is to connect all the nodes in the same

component into a linked list.

As the pixel level is treated separately in any case, an index size of two bytes

is sufficient for images up to 512·512 pixels. Although this increases the necessary

amount of memory compared to the algorithms of Subsection 4.3.5, the

additional memory needed is still smaller than the original image. The trace tree

can be used to store the root of each list. This method also reduces processing

time. It is no more necessary to decide whether a symbol should be sent for the

present node or not, it only necessary to decide which symbol to send.

5.3 Optimizing the Gray Scale Hierarchy

5.3.1 Basics

In most parts of this thesis, the quadtree is used as spatial hierarchy. However,

HSRQ and GDF can easily be adapted to trees with outdegrees other than four. Of

particular interest for image processing are bin trees [Kn080] and octrees

[Sam88a,b]. In general, any tree structure is possible as long as the encoder and the

decoder agree on it. The same applies to the gray scale hierarchy. In this section,

we concentrate on increasing compression by optimizing the gray scale hierarchy.

We present a dynamic programming algorithm that, with respect to a given

image and a given binary coding of the symbols of GDF, optimizes the gray scale
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hierarchy. This algorithm has previously been published as [Dur89c]. It calculates,

in time 0(217+g3), the gray scale hierarchy that leads to the highest overall

compression. 22T is the number of pixels in the image, and g=2b is the number of

gray levels. The example image we will use, and its unoptimized gray scale

hierarchy, are shown in Figure 5.6.

Now we can calculate the number f; of independent trees in the quad tree that

contain leaves in the interval form i to j. Each leaf in such a tree can be

considered originally as an independent tree, and each internal node connects

four subtrees to one tree and thus reduces the number of trees by three.
Therefore,

5.3.3 Finding the Optimum

The number of symbols (excluding parentheses) needed to code all trees in a

given interval, denoted by S~, can now be expressed as follows: For an interval

with only one gray level, there is no information necessary to distinguish this

gray level from others, and so

S~ = O. (5.18)

(5.16)

(5.17)

and soN~ =- 3· N~

(5.14)

f; is also the number of root nodes of independent trees with the corresponding

interval and thus the number of nodes with that interval whose parent does not

fit in that interval.

Actually, Land N can be integrated from the start into N" so that

N< = Lj - 3 . N~ and (5.15)

N" needs OCg2) storage and can be obtained in a simple first-depth traversal of the

quadtree using 0(217) time and OCr) storage. For each quad tree node, the

corresponding N~ is incremented by 1 for leaf nodes and decremented by 3 for

internal nodes. These values can be adjusted for trees or nodes with outdegrees

other than four. T can be calculated from N" in time OCg2). New space is not

needed as the values of T can overwrite those of N". Figure 5.7 shows the values

of N" and T for the example image of Figure 5.6, together with some values

introduced in the next subsection. There is no pixel with gray value 6, and so this

gray value has been eliminated.

Figure 5.6. Example image for optimization

(left: image; right: gray scale hierarchy)

At first, it may seem difficult to find an efficient algorithm for the problem at

hand because of the complicated relationships between the spatial and the gray

scale hierarchy. The key idea of the algorithm is to consider all possible gray scale

intervals. First, the quadtree is traversed. For each node, the gray scale interval it

covers is calculated, and the number of nodes of each interval is counted. Next,

nonexistent gray levels are eliminated and the number of independent trees for

each interval is calculated. The actual optimization then decides the best division

point for each interval working bottom-up.

In the next two subsections, the formal basis of the algorithm is presented,

along with the actual values for the example image of Figure 5.6. The following

three subsections then discuss binary coding, display, and related work. The

reader should easily be able to understand the example and to implement the

algorithm from the description given here.

5.3.2 Interval Statistics

To formalize the algorithm, we first note that the number of parentheses is

independent of the gray scale coding and therefore parentheses can be ignored in

the optimization algorithm. Then we denote by Lj the number of leaves of the

(full) quadtree with gray level i, and by N~ (i5) the number of nodes whose

children's smallest gray level is i and whose largest gray level is j. N can be

represented as a triangular matrix.

Inspecting L, gray levels that are not used at all can be eliminated in time

OCg). As the number of actually used gray levels is bounded by g, we will continue

to use g for simplicity.
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For larger intervals, S~ depends on the division point D~ (isrl;<j) of the interval,

defined as the top gray value of the lower subinterval. Setting k=rl;, S~ can be

calculated as

~ = st + S~+I + 'rf + T'k+l (5.19)

where the first two terms represent the number of symbols to code all the trees of

the two subintervals independently, and the later two terms correspond to the

number of symbols, one for each independent tree of the subintervals, to code the

subinterval the tree belongs to.

3 3 ·3 3 ·3 2 0 3 0 5 0 6 0 1

3 0 9 1 13 2 17 2· 24 3 29 2 (25

330506080907

- 13 1 10 1 151·241·30 128

2203050604
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Figure 5.7. Values of N', T, 0, and R in optimization algorithm

Optimization is carried out by selecting rl; so that S~ is minimized. The optimum

values of S~ are calculated for small intervals first, so that they are available when

deciding the splitting values of larger intervals. The number of symbols needed

for the whole tree is obviously S~-I. The optimal gray scale hierarchy can be

constructed from a subset of 0, starting with D~·l. The number of additions in

(5.19) can be reduced by introducing

R~ = d; + r'; so that (5.20)

d; = Rt + R~+I' (5.21)

Again, the R values can overwrite the T values, but separate space is needed for

D. The time for this step is dominated by the number of the evaluations of (5.21),
g

which is of the form 'l)·(g-k) and thus O(g3), so that the whole algorithm
k=1

optimiZing the gray scale hierarchy uses time O(22r+g3). 0 and R are shown in

Figure 5.7. A star indicates that there are other division values that lead to the

same optimal coding for the interval. The value in parentheses is S~, the number

of symbols (without parentheses) needed for the optimal coding of the example

image, and not R~, which has no meaning. The optimized gray scale hierarchy is

shown in Figure 5.8.

Figure 5.8. Optimal gray scale hierarchy for image of Figure 5.6

Below are the GDF based on conventional (upper row) and optimal (lower row)

gray scale hierarchy. For this example, five symbols are saved. As the gray levels

not used (g bits) and the structure of the optimized gray scale hierarchy «2g bits)

have also to be transmitted, optimization does not payoff in this case. However,

we will see in Section 6.2 that this is different for actual images.

GDF (original): (oo(UlUl( 011 ill100101 0(00 10 Ul10 100

GDF (optimized): (00(UlUl1(00 11 Ul 10 0(00 1 Ul1 1Ul

5.3.4 Considering Binary Coding

Above, only the number of symbols was considered, regardless of the fact that a

symbol, depending on its position, may be coded with one or two bits (see

Subsection 4.2.2). The algorithm can be modified to take into account the number

of bits per symbol as follows. First, imagine that separate statistics are collected for

nodes at each level in the spatial hierarchy, and that (5.19) is extended, summing

over the levels, each level weighted appropriately. The weighting factors can then

be propagated to the first step similar to (5.15). The resulting increments for N'

are 1 for pixel nodes, -2 for the next higher level, and -6 for all other nodes. In this

way, the later steps of the algorithm, and thus its complexity, remain unchanged.

The gray scale hierarchy is not limited to a binary tree. Of particular interest

are ternary trees because they permit the four symbols 0, 1, 2, and ( to be coded

with exactly two bits. Finding the optimal gray scale hierarchy in this case is still

possible in time O(g3). First, 0 is calculated for the binary subdivision. When

deciding on the division of an interval into three subintervals, extensive search

is necessary only for one division point. The optimal second division point is

identical to the binary division point for the remaining interval, as there are just

two terms more in (5.19) or one more in (5.21).
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Generalizing this, it is possible to find the optimal n-ary gray scale coding with

O(g3.log n) time and O(g2·log n) space, and all gray scale codes up to n-ary with

O(g3· n) time and O(g2· n) space. It is also possible to combine binary (for the

lowest level of the spatial hierarchy) and ternary (for the upper levels) trees. The

details of this are left to the reader.

A fractional number of bits for each symbol, as in the case of arithmetic

coding, is also possible. However, the algorithm is limited in the sense that each

binary coding has to be optimized separately, and all symbols except ( have to be

coded with the same number of bits. Another possibility is to introduce weights

depending on other aspects of the image, like the difference to neighboring pixels,

and so on. In this way, not the overall compression rate, but the increase of

reproduction quality over the whole transmission may be optimized.

5.3.5 Display

When receiving image data compressed using the above optimization algorithm,

basically all the reproduction methods described in Section 5.1 can be used.

However, it is not anymore possible to just change one or two bits according to

simple rules; table lookup has to be used to determine the appropriate

reproduction values.

To be able to show the result of using the gray scale hierarchy optimization

algorithm without having to build too complicated a table structure, the

following approach was used: Each node in the gray level hierarchy is represented

by exactly one gray level. For leaf nodes, the correct gray value has to be used in

any case. The gray values for internal nodes are assigned so that no two internal

nodes have the same gray value. A simple way to do this is to assign to each

internal node the value of the highest leaf node in the lower subtree.

Figure 5.9. Progressive transmission with optimized gray scale hierarchy

(bytes transmitted: 300, 600, 1200, 1800, 2400, 3600, 4800, 9600)

In this case only a single table is needed, with three entries for each gray value.

The first two entries contain the gray value of the children if this gray value is

used as an internal node. The last entry contains the level of the internal node in

the gray scale hierarchy to avoid gray values used for leaf nodes being remapped

to the children of the internal node with the same gray value. The result of this

simplified approach, already very encouraging, is shown in Figure 5.9.

5.3.6 Related Work

Optimizing the gray level hierarchy can be compared to the normalized or

optimal quadtree of [Li82] and [Gr083l, an optimization of the spatial hierarchy.

However, there only the position of the quad tree grid is optimized, which will

not give substantial savings if there are no big rectangular blocks, whereas we are

optimizing the structure of the gray scale hierarchy.

Trying to optimize the structure of the spatial hierarchy will lead to

something like the k-d-tree [Ben75]. But for usual images, the resolution r and the

number of bits per pixel b are of about the same order, and so the gray scale

hierarchy (g = 2b leaves) is much smaller than the spatial hierarchy (2 2r leaves).

Thus to improve compression, changes to the gray scale hierarchy are more

promising than changes to the spatial hierarchy.

Some dynamic programming problems can be speeded up from O(g3) to O(g2)

by utilizing the convexity inherent in the problem [Ya082]. Unfortunately, this is

not possible in our case. The cost function for a given combination of subtrees in

a given interval is not defined only by cost values associated to the trivial inter­

vals, and the additional costs for true intervals can be both positive and negative.

The optimization algorithm presented above also can lead to a new approach

to segmentation. The first bit of the optimized gray scale divides the image into

two parts, a lighter and a darker one. This is done so that the dividing line

between the two parts is short and the two parts themselves are as homogeneous

as possible. This is exactly what a good segmentation algorithm is supposed to do.

Examples of this effect are shown in Figure 5.10. The originals in the top row

have been processed with the algorithm developed in this section. The top eight

bit planes of the resulting images are displayed in the bottom row using the

standard gray scale. The rightmost image shows that the algorithm can have

other effects than segmentation. Because in this image the white area dominates,

the algorithm expands the gray scale for these gray levels to permit coding them

with less bits.
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Figure 5.10. Segmentation by optimizing the gray scale hierarchy

(images: Girl, Couple, Moon, Fax data)

5.4 Arithmetic Coding
An alternative to the algorithm presented in the previous section to improve

compression is arithmetic coding [Wit87]. Compared to the well known and used

Huffman coding, arithmetic coding has attracted wide attention only recently, but

is clearly superior to Huffman coding. The first reasons for its superiority is the

use of "fractal bits" that allow coding nearer to the entropy limit for a given set of

symbols and its probability distribution. The second reason is the easiness with

which the probability distribution can be changed, allowing a clear separation of

the source model and the coding procedure.

The algorithms for arithmetic coding have long been believed to be

somewhat slow if the number of symbols is high. Although new algorithms

alleviate this problem Uonw88], [Mof90], the coding of binary symbols remains

the best application for arithmetic coding. Compatible hardware and soft­

ware implementations have been studied in great detail by Pennebaker,

Mitchell, et al. [Pen88].

Arithmetic coding is therefore very well suited as an entropy coding method

for GDF. To investigate the range of savings possible, we implemented arithmetic

coding in the form proposed by Witten et al. [Wit87]. This implementation was

also used instead of Huffman coding for some other compression algorithms in

the experiments described in Chapter 6.

The model used was adapted to the trace grouping used to define trace

averages as explained in the second half of Subsection 5.1.4.4. The first bit of the

binary representation of each symbol, which distinguishes between parentheses

and bit selection symbols, was modeled with decreasing cumulative frequen­

cies. The total number of symbols in a given component is known from

the previously transmitted components. So if the number of parentheses

is transmitted, the number of bit selection symbols can be calculated in the

receiver. The frequency of each kind of symbol is then decreased by one for each

such symbol received.

For the bits distinguishing between the two bit selection symbols, a

cumulative frequency model was used, with independent frequencies for each

internal node of the gray scale hierarchy. When reaching a total frequency of 4096

symbols, the individual frequencies were halved to allow adaption. Obviously,

this value should be selected much lower.

With this model, some additional compression was achieved. Detailed

results can be found in Section 6.2. The approach taken here was guided by

simplicity considerations. An optimization of the frequency model, including

short time adaption capabilities, can be expected to lead to much better results.

Still better compression can be achieved using multistate (predictive) models

that are very efficient in coding binary images [Arp88]. The amount of

compression possible with such models may be estimated from the results of

[Kn080], [WiI84], and [End8?], who combine hierarchical approaches with

prediction. The frequency model should also be integrated with a reproduction

model as discussed in Subsections 5.1.4 and 5.1.5.

Despite all the possibilities for optimization described in this and the previous

sections, it should be kept in mind that the real advantage of the BC quadtree and

HSRQ over other compression methods is that it provides relatively good

performance, including progressiveness, at very low complexity. Before

introducing complex optimization procedures, the advantages and costs have to

be evaluated carefully.
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Experiments

This chapter presents experiments that evaluate the new method of this thesis

and its variants, and compare them with existing methods. In Section 6.1, each of

the methods used in later sections is described shortly. Section 6.2 is devoted to

lossless compression. Section 6.3 shows results of coding various frequently used

images to allow visual comparison with previous methods. Section 6.4 measures

the improvement of image quality over transmission time analytically. Section

6.5 presents results of a recognition experiment where the number of bits

transmitted necessary to recognize a person's face was measured.

6.1 Compression Methods Used

In this section, the various compression methods and variants used in the

different experiments, and the details of their implementation, are briefly

explained. Please note that not all methods have been used in all experiments.

6.1.1 Previously Existing Methods

6.1.1.1 Predictive Compression

Predictive Huffman coding [Ros82,pp.181-188] is a simple and efficient lossless

compression technique, a variant of DCPM (see Subsection 1.2.1.2), which

however is not suited for progressive transmission. It has been implemented in

its simplest form, comparing each pixel with its left neighbor [Ros82,p.182,(172)].

To entropy code the difference values, Huffman coding was replaced by

arithmetic coding with a simple adaptive model, as used for character coding in

[Wit8?]. This has the advantage that only one pass over the data is necessary.

6.1.1.2 Lempel-Ziv Compression

Lempel-Ziv compression, in the variant known as LZW [WeI84], is a frequently

used lossless compression method. It is well known for the fact that it compresses
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6.1.2 GDF Variants

Figure 6.0. Component sequences 02,03, and 04

(left to right)

Component sequence 03 was constructed on the assumption that in the case of

the mean square error a difference of one level corresponds to a factor of four in

both the spatial and the gray scale hierarchy. In the case of 02, the gray scale

carried out by enlarging the tree by one node at a time and transmitting the
information for the corresponding vectors.

6.1.1.7 Block Truncation Coding

Block truncation coding (see [DeI79) and Section 1.2.1.1) is a simple image coding

method that leads to relatively good coding results at a rate of 2 bits per pixel.

Because it works very locally, it cannot be used for progressive transmission.

0) 0 o OJ o 0 o 0
11111 1111411 11 If 11
2 2 2 2 2 2 2 2

lillY IY li4 I~ 1< 1111
414 4 4~ 4 4 4 4
I~I~ I~ 1:t4I~ I~ I~ I~

1l' 11b 16:1b41l'5j6~ Ib Ib
7ft 7j. 7j. 7) 7/. 7) 7} 7

8118.118t!8jJ8)118Pl8118,tj

0
)'1)' I) 1

-
~J4

6} }I
- IA~

//// /
,7!'"QJl!

The following aspects of the new method proposed in this thesis have been

varied in the experiments: The way of compressing GDF, the method used to

decide the reproduction values, and the sequence of the components. Additional

compression of GDF was either not used (sometimes denoted by plain), achieved

by optimizing the gray scale hierarchy as described in Section 5.3 (optimized), or

by arithmetic coding as explained in Section 5.4 (arithmetic). Reproduction values

were selected according to Subsection 5.1.1 (black to white), Subsection 5.1.3

(center values), or as explained in Subsection 5.1.4.4 (averages, av.).

The component sequences used can be described as follows: One component

sequence, denoted bi, simply transmits the components bit plane by bit plane.

Three component sequences, 02,03, and 04, were constructed by arranging the

components in a rectangle similar to Table 4.2, and then selecting the

components starting in the upper left comer according to a rating function whose

lines of equal value are shown in Figure 6.0. The full component sequences are
included in Appendix A.

most data better than or comparable to other methods. LZW was used as

implemented in the UNIXTM command compress. Before using compress, the

pixels were reordered to satisfy the requirements of [Lem86], although the

Morton sequence [Sam84) was used, and not the Peano-Hilbert curve as

proposed in [Lem86).

6.1.1.3 Bitwise DF with Gray Code

Kawaguchi et al. [Kaw83) transform pixels values to a Gray code and then use DF

for each bit plane separately. Originally, they eliminated noisy regions in lower bit

planes, which leads to approximate compression. However, this approximate

compression is both difficult to implement and not applicable to progressive

transmission. Therefore, here only the lossless version of this method is used.

6.1.1.4 Dreizen's Method

Of all methods described in the literature about progressive transmission, the

method of Dreizen [Dre87) (see Subsection 1.2.3.1) is the most efficient method

with low complexity and the one closest to the newly proposed method in several

aspects. It directly includes lossless compression. Its complexity is very

comparable to that of the new method (see Subsection 4.5.3.3). It concentrates the

increase of spatial resolution to regions with high gray scale differences, which

can be compared to the combined increase of spatial and gray scale resolution. A

comparison of the two methods is therefore of great interest.

Dreizen's method was implemented exactly as described in [Dre87], with only

one modification. The original fixed Huffman code was replaced by the more

flexible and universal arithmetic coding with the cumulative frequency model

described in [Wit87).

6.1.1.5 Dreizen's Method, Homogeneous Variant

The implementation of Dreizen's method as described above was also used in its

homogeneous variant, i.e. with only one pass over the data, splitting the nodes in

simple breadth first order. This can be seen as a good representative of the

classical uniform spatial subdivision approach to progressive transmission.

Averaging, as opposed to the simple subsampling used here, might provide

slightly better results.

6.1.1.6 Pruned Tree Structured Vector Quantization (PTSVQ)

Tree structured vector quantization is a variant of vector quantization using a

tree structured codebook that greatly simplifies encoding. Progressive

transmission is achieved by transmitting one layer of the tree for each pass.

Pruned Tree Structured Vector Quantization (PTSVQ) [Ris90) forms an embedded

hierarchy of optimal subtrees of the original tree. Progressive transmission is
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resolution is increased faster, and in the case of 04, the spatial resolution is

increased faster. These three sequences were constructed to test whether the

balance assumed for sequence 03 was more or less correct, and by how much a

deviation from this balance would affect the reproduction results. The last row

has been set off because the visual system is much less sensitive to high

frequencies than to middle and lower frequencies [Mann74].

Only certain combinations of additional compression, reproduction value

selection, and transmission sequence were used. The transmission sequence bi

was combined with center value reproduction to approximate simple

transmission bit plane by bit plane, with the reproduction value selection mostly

used in this case. The black to white reproduction method was combined with the

transmission sequence 04. A long delay of components of high spatial resolution

would in this case have lead to ringing effects.

Sequences 02,03, and 04 were used with average value reproduction, and

with or without arithmetic compression. With arithmetic compression, they

represent the best variants of the newly developed method implemented so far;

without additional compression, they represent the best variants when the

receiver is not fast enough to decode arithmetic codes.

6.2 Overall Compression

One aspect of the performance of a compression scheme that can easily be

measured is the overall compression rate. For many progressive transmission

applications, this may not be of primary importance. However, for applications

where no loss of information is tolerated and large amounts of image data are

stored, but seldom retrieved, overall compression is very important.

Also, overall compression can give an indication of the performance at

intermediate stages. Transmission methods that use similar ways to approximate

an image can be expected to perform similarly if they have about the same overall

compression rate.

The images used in the experiments in this section have been taken from

version 1 of the Japanese Standard Image Data Base (SIOBA) [On079J, and are

shown in Figure 6.1. All images have 256·256 pixels with 8 bits per pixel. Table 6.1

shows the overall compression rates for those compression methods described in

Section 6.1 that allow lossless compression. Results from [Oiir88c] and [Oiir89e]

are combined with some newly calculated ones. Smaller values in Table 6.1

indicate better compression, and a value above 100% shows that in this case, no

compression is possible.

Figure 6.1. Originals of the images from the Standard Image Data Base

Girl Couple X-ray Moon Aerial Fax data

Sequential 64.43 61.28 65.97 70.13 77.98 5Q.48

OF (Gray code) 77.19 68.50 83.13 96.61

LZW 76.73 74.36 94.16 106.73

Oreizen 70.66 65.39 80.88 74.39 85.48 53.39

GOF (plain) 73.34 64.81 84.99 82.03 88.57 60.09

GOF (optimized) 59.52 57.47 57.38 71.76 82.33 47.09

GOF (arithmetic) 61.50 58.55 58.23 75.04 83.70 50.27

Table 6.1. Overall compression rate for various images and methods
.. size of compressed image

(compressIon gIven as size of full image %)

Table 6.1 can be interpreted as follows: OF using a Gray code and LZW clearly

perform worse than the other methods. For OF, this is due to the fact that

parentheses are needed for every bit plane, even if the structure of adjacent bit

planes is similar. In fact, Kawaguchi et al. [Kaw83] did not propose this method

for lossless compression. LZW, on the other hand, theoretically can perform as

well as any other method if the image conforms to some statistical assumptions

[Lem86]. However, it obviously takes too long to adapt to the characteristics of an

image. This is clearly due to the fact that gray levels are just interpreted as

unrelated symbols!.

! A recent paper [She90] gives successful experimental results for binary

images constructed according to a Markov model. However, it is doubtful

whether these results can be extended to natural gray scale images.
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The other methods may approximately be ranked in the order Sequential, GDF

(optimized), GDF (arithmetic), Dreizen, and GDF (plain). The performance of the

sequential method can easily be improved by using a better predictor. However,

this method is not predictive.

That GDF (optimized) and GDF (arithmetic) perform better than the

sequential method in some cases is due to the fact that in these images, not all

gray levels are used. This fact is directly used in these optimizing algorithms.

However, it is effective only towards the end of the transmission, and up to a rate

of two or three bits per pixel, the additional compression achievable with

arithmetic coding is in no case larger than 10%.

GDF, without any entropy coding, performs almost as well as the method of

Dreizen, which uses entropy coding. On the other hand, if even a simple entropy

coder is added to GDF, or if the gray scale hierarchy is optimized, then GDF leads

to better overall compression rates. When optimizing the arithmetic coding of

GDF and introducing prediction (see Sections 5.1.5 and 5.4), compression rates

will easily increase further.

6.3 Visual Evaluation
Sections 4.3, 5.1, and 5.3 already provided examples of results achievable with the

new method of data compression and progressive transmission proposed in

this thesis. This section provides additional results using some of the example

images of Section 6.2.

---:-~ ~.", .g" .~-,,--.-. .... ...'

. "'. '" .. ~./1. .... LI. •.... .~....... '

, nt, ~,glSj
~ ~ ~l ."!.oLi

Figure 6.2. Transmitting the image "Girl" with Dreizen's method

(bytes transmitted: 300, 600, 1200, 1800,2400,3600,4800,9600)

Figure 6.2 gives the result of applying Dreizen's method to the image "Girl". The

reader is asked to compare the result with those shown in Section 4.3 (Figures 4.6,

4.7,4.8), Section 5.1 (Figures 5.1, 5.2, 5.5), and Section 5.3 (Figure 5.9). Compared to

these figures, Figure 6.2 differs especially in the rather low amount of detail in

initial stages and the still clearly visible large squares in areas of slow intensity

change at later stages.

Figure 6.3. The image "Girl" using eight different methods

(bytes transmitted: 600)

ill Section 6.5, an experiment comparing eight transmission methods is described.

It is therefore of interest to present some results of applying these eight

transmission methods to some of the example images used in the previous

Section. These methods are Dreizen, Dreizen (homogeneous), sequential, 04

(black to white), bi (center value), 02 (av., arith.), 03 (av., arith.), and 04 (av.,

arith.), shown in Figure 6.3.

Figure 6.4. The image "X-ray" using eight different methods

(information transmitted: 8192 bytes = 1 bit per pixel)

Here the difference between all these methods is clearly visible, although a

ranking cannot easily be established in all cases. Figure 6.4 shows the application

of the eight methods to the image "X-ray". The images in the bottom row are

difficult to distinguish, but all show much clearer lines than the method of
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Dreizen (top left), a fact that is important in medical applications. The black to

white reproduction shows more contrast than the original image, an effect that

may be desirable in some cases.

Dreizen mentions the fact that his nonhomogeneous method adapts better to

images that are close to binary images than methods which homogeneously

increase spatial resolution. Figure 6.5 shows that in this case, the new method

performs even better. However, in this case, using averaging to select repro­

duction values performs somewhat disappointingly.
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Figure 6.5. The image "Fax" using eight different methods

(information transmitted: 1024 bytes = 0.125 bits per pixel)

The reason for this is that subquadrants that contain both background and

foreground usually contain more background than foreground. Therefore the

averages for the reproduction are close to the background. Due to this, the letters

are shrunk and so hardly readable. On the other side, the black to white

reproduction enlarges the letters. This, combined with the additional contrast,

makes them easily readable. It also shows that the uppermost part of the image

contains additional detail, an information that the user may use to concentrate

transmission to that part of the image.

Note that if the text were white on a black background, the best reproduction

method would be white to black, although this has been discouraged in Sub­

section 5.1.1. This example clearly shows that selecting the reproduction method

based on the type of the image can easily improve the efficiency of transmission.

Another image used by many authors for image compression experiments is

"Lena". It is the only 512·512 pixel image used for the experiments. Results at

various rates are shown in Appendix B. Interested readers can compare these

results with other results published, but should be aware of the following two

points: First, the method presented in this thesis is a low complexity method, and

comparisons with methods that have high computational requirements, such as

transform coding methods, should be made with care. Second, no smoothing is

used. Especially at initial stages, the images are much better visible when viewed

from a greater distance.

6.4 Analytical Evaluation

To thoroughly evaluate the performance of the various methods and variants, a

criterion that can readily be calculated and is related to image quality has to be

used. The most popular such criterion is the average mean square error, mostly

used in the form of the peak to peak signal to noise ratio (PSNR), measured in

dB. The PSNR is defined as
(2b-l)2

PSNR = 10 log1O £«x-x)2) db, (5.13)

where the numerator is the maximally possible energy per pixel for an image

with a gray scale resolution of b bits per pixel. The numerator is used to scale the

denominator, which denotes the average energy of the noise, the difference

between corresponding pixels of the original image and the image reproduction.

The PSNR for the example image "Girl" and the eight methods used in

Section 6.3 is shown in Figure 6.6. In the initial stage, the methods behave

somewhat unpredictably; this part will be analyzed below. The steepness of the

curves in the final part of the transmission is due to the fact that the quantization

error reaches zero.

Between rates of about 1.5 bits per pixel and 4 bits per pixel, the behavior is

very similar to that shown in Figure 2.4 for the case of a bintree with edges of

sidelengths of powers of two. This is due to the fact that for all pixels, the sizes of

the quantization intervals are powers of two. Because of the original

quantization, it is difficult to change this directly. An improvement is however

possible if the number of components is increased as proposed in Subsection 5.2.3.
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Figure 6.6. PSNR of the image "Girl" for eight methods

Some variants of the newly proposed method show a reduction of PSNR in some

parts of the transmission. As already mentioned in Subsection 5.1.4.4, for the

component with 5=8 and c=2, the actual trace averages and the used reproduction

values differ. This leads to a deterioration of the image. How transmission can be

optimized by changing the component sequence is shown in Figure 6.7, using the

manually optimized sequence 05. When constructing the sequence 05, the "bad"

component with 5=8 and c=2 was delayed as long as possible, and as a result, 05

performs as good as any of the other sequences up to a rate of about 1 bit per pixel.

Figure 6.7. PSNR of the image "Girl" for component sequence 05

Besides the sequential method, used for reference, the methods used so far for

comparison are basically designed for progressive transmission and not intended

for pure data compression. It is therefore of interest to compare the newly

developed method to some methods primarily used for compression. Table 6.2

compares several variants with block truncation coding, for which the results

have been taken from [Gri87].
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PSNR (Lena)

! Perkins uses a different power to normalize the SNR; 5.687 db have to be

added to his results to allow comparison.

compression, improvements of the new method are also possible. Also, it has to

be noted that vector quantization depends on training the quantizer to a certain

kind of images.

Figure 6.9. PSNR for the image "Lena"

HSVQ also compares well with some other compression methods. For "Lena",

Westerink et al. [Wes88] give a value of about 29.2 db PSNR at a rate of 0.63 bits

per pixel using subband coding combined with vector quantization; with the new

method, 29.48 db are achieved at the same rate. Perkins [Per88] gives values of

about 30 db, 34.5 db, and 39 db! at rates of 1, 2, and 3 bits per pixel for the discrete

cosine transform with marginal bit allocation. As can be seen from Figure 6.9, the
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Couple Moon Fax data

Block truncation 32.9 db 32.7 db 28.2 db

Dreizen 33.0 db 30.7 db 42.1 db

bi (center values) 37.9 db 30.7 db 38.4 db

04 (black to white) 32.4 db 24.8 db 35.0 db

04 (av., arith.) 38.6 db 34.8 db 46.4 db

Table 6.2. PSNR for various images and methods at 2 bits per pixel

In Table 6.2, it is interesting to see the great discrepancy of the results for different

images. In the case of "Moon", average value reproduction and arithmetk

compression is necessary to improve on block truncation coding. It may be that

this image contains a high amount of noise, which overly inhibits condensation

in the case of the hierarchical methods. Improvements can be expected when the

image is separated into two components similar to [Yan77]. For the other two

images, block truncation coding can easily be improved upon.

The differences for the "Fax" image are particularly large. At first, it seems

that block truncation coding is specially suited for nearly binary images. However,

the problem of block truncation coding is that only two gray levels for each block

are used. On the boundary between letters and background, there are however

dark, light, and intermediate gray values. The hierarchical methods can spend

much of their rate in these areas, as they work very efficiently in the large areas of
the background.

Block truncation coding is not a very flexible method, and improvements

compared to it had to be expected. On the other hand, vector quantization,

especially in the form of PTSVQ, is a flexible and efficient coding method. Due to

the cooperation of Dr. Eve A. Riskin, it was possible to make a direct comparison

of HSRQ and GDF with PTSVQ. Figure 6.9 shows the PSNR for the image "Lena"

(for the original, please see Figure B.5 in Appendix B). The values for PTSVQ

have been taken from [Ris90l, Figures 4.8 and 4.9.

Here, the new method performs better at rates up to 0.15 bits per pixel, but is

then overtaken by PTSVQ. PTSVQ reaches 32 db, but cannot continue com­

pression because the codebook is exhausted. On the other side, the new method,

after a step back similar to those visible in Figure 6.7, reaches 32 db around 1.5 bits

per pixel and then steadily improves at about 6 db per bit.

In the case of PTSVQ, additional performance of about 2 db is possible by

using prediction [Ris90]; this however eliminates the possibility of progressive

transmission. On the other hand, using components based on traces as proposed

in Subsection 5.3.2.1, true trace averages, and a better model for arithmetic
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new method reaches 30 db already at 0.8 bits per pixel; for 2 and 3 bits per pixel,

the values are 35.5 db and 41.5 db, and all this without arithmetic coding. On the

other hand, highly sophisticated adaptive coding methods can perform about 5 to

7 db better at a rate of about 0.7 bits per pixel [Pea90i.

In [Ris90], PTSVQ was also used for medical images, in particular MR images.

Figure 6.10 shows the average results for a five image test sequence. The values

for PTSVQ are taken from [Ris90], Figures 4.2 and 4.6. As in [Ris90], instead of the

peak to peak SNR (PSNRl, the SNR based on the standard deviation of the

images is used. The original images contain 9 bits per pixel. As the BC quad tree

was only implemented for 8 bits per pixel, the most significant eight bits of each

pixel have been used. At the rates shown in Figure 6.10, this affects the SNR only

marginally.

SNR (brain scans)

The results shown in Figure 6.10 are surprisingly favorable for the new method.

As already explained in Subsection 4.6.1.3, vector quantization, although

applicable over a wide range of rates, has to concentrate on a particular rate

interval because of the relation between vector size, codebook size, and rate.

However, in Figure 6.10, the new method performs better than PTSVQ over

all rates. For medical images like brain scans, where large areas of uniform

background are combined with areas of high activity, a hierarchical approach is

clearly advantageous.

The difference between PTSVQ and the new method is also shown in Figure

6.11, using the same image as in [Ris90], and partially the same rates, for

progressive transmission. The difference in especially notable in the initial

stages, where at 0.25 bits per pixel, PTSVQ only displays a binary image at a

resolution of 2·2 pixels.

db

Figure 6.10. Average SNR for five brain scans

6.5 Recognition of Faces

Figure 6.11. Progressive transmission of an MR image

(rates used: 0.125,0.25,0.46,0.84,1.17,1.52,2.0, and 8.0 bits per pixel)

As explained in Chapter 3, there exist a wide range of applications for image

coding and progressive transmission. It was impossible to evaluate the new

method with respect to all of these applications, and so for more detailed

evaluation, one such application, the recognition of faces, has been chosen. This

has the following advantages: First, there are previous results in this area that

allow a comparison with other methods (see Subsection 6.5.3). Second, the

problem is well defined and easy to understand, and appears in many possible

applications of progressive transmission. Third, the recognition of faces is an

activity for which the human visual system is particularly suited and trained; the

results in this section therefore complement the analytical criteria used in the
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previous sections. Also, the rate necessary for face recognition is quite low; in

this respect, too, there is a contrast to the analytical methods, which may not

be very appropriate for low rates, and to the results of Chapter 2, which primarily

apply to high rates.

6.5.1 Experiment Setup

The experiment was carried out with the senior (4th grade) students of the

Department of Information Science, Faculty of Science, of the University of

Tokyo. This is a group of altogether 31 students who know each other for about

one and a half years. Two 35mm slide pictures were taken of 23 of the students, a

teaching assistant, and the author of this thesis. The better of the two pictures

was used in the experiment. In addition, slides of 15 well known person­

alities from politics, sports, etc., were taken from photographs in weekly or

monthly magazines.
All the slides were scanned at a resolution of 25~ per pixel with a high

resolution drum scanner. Then the images were scaled by a factor of three in each

direction by a simple averaging algorithm to eliminate noise. A new pixel was

calculated as the average of seven of the nine old pixels, after eliminating the

pixels with the highest and lowest gray level values. The size of the final images

was 256·256 pixels, with 8 bits per pixel. The averaging also allowed to stretch the

histogram so that the whole range of 256 gray levels was used; many of the slides

had been taken somewhat too dark. The images are shown in Appendix C.

In the recognition experiment, altogether 28 of the students and 2 assistants

who knew the students well participated. Each of them was presented all of the 40

images, one after the other. They were instructed to press the return key as soon

as the image developing on the screen was recognized. Then they had to enter a

code number from a list that contained 62 names, those of all the students and of

30 famous personalities. Only correct results were considered for later processing.

When the return key was pressed, transmission was stopped and the image

stayed on the display while the number was entered, but it was impossible to

resume transmission.

For each participant, each of eight methods was used for exactly five images.

The sequence of the images and the methods used for display were randomized

independently to eliminate the influence of the learning effect and of the relation

between methods and images. To reduce the effect of human reaction time, all

methods were tuned so that an answer was possible within 25 to 50 seconds

from the start of the transmission, depending on individual ability and

the image displayed.

6.5.2 Results

The number of bits needed on average to recognize a face are given for each

method in Table 6.3. It clearly shows the improvements possible with the new

method when compared to previously available methods of similar complexity.

Compared with the method of Dreizen [Dre87], the best quad tree based

progressive transmission method up to now, the new method can save about

40% of the bits to be transmitted, and thus the transmission time. This result is

not very much affected even if arithmetic compression is not used for the last

three variants. Compared to sequential transmission, an improvement by about

a factor of 20 is possible. This clearly shows the advantages of progressive

transmission in general.

Method bits transmitted pixels painted squares painted

Sequential 177031 37981 37981

Dreizen (homogeneous) 16641 255114 1488

Dreizen 13107 224435 2227

04 (black to white) 14982 72589 3660

bi (center value) 11561 90986 6015

02 (av., arithmetic) 8917 147170 2945

03 (av., arithmetic) 7914 128844 2713

04 (av., arithmetic) 10158 109901 4522

Table 6.3. Average number of bits necessary to recognize a face

When comparing the different variants of the same method, it is interesting that

the difference between homogeneous and nonhomogeneous subsampling is not

very large. This also indicates that the improvement of the method of Dreizen

over, for example, Knowlton, is not very large, at least for this application. The

reasons for this are that with the prediction scheme used by Dreizen, the homo­

geneous regions of the image can be coded with fewer bits per square than the

nonhomogeneous ones. Also, no additional bits are necessary for node selection.

Another point of interest is that the simple transmission bit plane by bit

plane, if combined with increasing spatial resolution for each bit plane, is more

efficient than increasing spatial resolution, even if done with Dreizen's method.

Comparing different variants of the new method shows that the selection of

the component sequence and the method of reproduction affects the results in a

way similar to what has been observed in the previous section. All component

sequences used with average value reproduction perform better than previously
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proposed methods, but the component sequence clearly affects the result. The

average PSNR for the faces and methods used (with exception of the sequential

method) are shown in Figure 6.12.

PSNR (faces)
db

Table 6.3 also gives the number of pixels and of squares (of any size, induding

pixels) painted on average by each method for the recognition of a face. This gives

an indication of how the performance of each method is affected when the access

to the frame buffer becomes a bottleneck.

If the frame buffer is accessed by bit plane and not by pixel, then the black-to­

white and the center value variant of the new method will perform much better,

as only one or two bits per pixel have to be updated in this case. For the other

variants and methods, such savings are impossible or difficult.

In the last column, the method of Dreizen performs better than the others. It

should, however, be kept in mind that if whole squares can be painted into the

frame buffer, the speed of the frame buffer will be much less of a bottleneck. Also,

the component sequences for the new method have been chosen so as to perform

near the optimum for the bit average. Sequences that completely avoid the early

transmission of the lowest level(s) of the spatial hierarchy will perform better if

the frame buffer access, in numbers of squares, is a bottleneck.

The results in the last column of table 6.3 also can be used to project the

number of pixels written to the frame buffer if smaller images, for example with

64·64 or 128·128 pixels, are transmitted, or if the presently used images are

displayed at a smaller size initially as proposed by Hofmann and Troxel [Hof86].

Figure 6.12. Average PSNR of the faces for each method used

Component sequence 03 shows the best PSNR in the region of interest, but the

difference is not as large as the difference in Table 6.3. That the methods that do

not use trace averages for reproduction achieve recognition with a much lower

PSNR can be explained by the fact that using trace averages is specifically designed

to reduce PSNR. Recognition is obviously also possible if the image is slightly

shifted in space (Dreizen) or in gray scale (black to white and center value).

However, there is nothing wrong with trying to optimize PSNR; the cost

associated with transmitting correct averages is small, and the improvement,

both in terms of recognition time and visual quality, is considerable.

0.00 10.00 20.00
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6.5.3 Comparison with Transform Coding

As mentioned in the introduction, transform coding has also been proposed for

the progressive transmission of images. Particularly Lohscheller [Loh82,83,84]

investigated the use of the cosine transform for progressive transmission. In his

dissertation [Loh82l, he published some results of a face recognition experiment.

Comparison with these results therefore provides an additional way to evaluate

the new method.

The description of the experiments in [Loh82] is not very detailed, but it can

be conduded that they were mainly carried out using the same principles as

described above. The time it took a viewer to recognize an image is comparable.

The number of experiments was considerably smaller, using seven portraits

and between 10 and 15 viewers. The relation between the viewers and the

displayed persons is not clear, but the smaller number suggests that it was

closer than in our case.

A seemingly important difference between the two experiments is the size of

the used images, 512·512 in the case of Lohscheller, and 256·256 here. However,

the minimal amount of information necessary build up an image that allows to

identify a person should be independent of the resolution of the original image,

provided that the original resolution is not extremely low. The results of both
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experiments can therefore well be compared in terms of the number of bits

necessary for the recognition.

Block size

Bit average

Table 6.4. Number of bits for person recognition using DCT

(from [Loh82])

The results obtained by Lohscheller [Loh82, p.89] are given in Table 6.4 for the

different transformation block sizes he used. For a block size of 32·32 pixels, these

results come close, but clearly lie above to those of the new method; for the more

practicable block sizes of 16·16 and 8·8, the results fall way behind those

presented in this paper.

These results are not changed by the subjective adaption as introduced in

[Loh84]. First, the complexity of this adaption makes it necessary to reduce the

block size to 8'8. Second, the adaptive method starts slowly because the class

numbers, transmitted first, do not contribute directly to the image buildup. The

break-even point with the nonadaptive method lies at a rate of about 50,000 bits.

That the theoretically better founded transform coding approach does not

perform better can mainly be explained as follows. The optimal bit allocation to

the individual components usually quantizes the first (DC) component finer than

the original pixels. As computational considerations make bitwise (as opposed to

componentwise) transmission impracticable, image transmission is started with a

low spatial and an overly high gray scale resolution.

6.5.4 Comparison with Perception Experiments

Harmon [Har73] investigated the amount of information absolutely necessary to

identify a face. He gives a bound of 768 bits (a 16·16 grid with eight gray levels).

This is about ten times less than the best result presented in Subsection 6.3. This

difference seems very big, but there are several reasons that can explain it.

First, the pictures for Harmon's experiments were taken by a professional

photographer in a photo studio. All pictures are simple frontal pictures and fill

most of the available area. The background is completely uniform, and the illu­

mination optimally shows the features of each face. Significant improvements of

the results presented in this section can be expected in an application where the

images have been taken with more care.

Second, the viewers did not have any choice between guessing based on the

present image and waiting for a more detailed image. Recognition accuracy in the

case of Harmon was 48 percent, whereas here, it was higher than 90 percent, and

the bit average of Table 6.3 includes only correct answers.

Harmon also reported that recognition efficiency was improved by optimally

placing the image with respect to the grid. This can be expected for the methods

discussed in this section, too. In particular, in the case of the variants based

HSRQ, not only the placement with respect to the spatial grid, but also the place­

ment with respect to the "grid" of the gray scale can be optimized.

Altogether, the results of this chapter clearly show that the new method

presented in this thesis in an improvement over a variety of other methods that

have been used for progressive transmission and image compression. Compared

to other low complexity methods like that of Dreizen, higher compression is

achieved. Compared to considerably more complex methods like transform

coding, the complexity is reduced while obtaining similar compression rates. This

is clearly due to the combination of the increase of spatial and gray scale
resolution using HSRQ.
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Extended Applications

This chapter discusses the application of the basic method to imprecise data, color

images, and image sequences. In all three cases, the discussion centers about how

particular features of the method lead to new approaches and solutions, and in

some cases to new problems that still have to be solved.

7.1 Imprecise Data

The storage and processing of imprecise data by digital computers poses special

problems that are not present if data and operations can be specified exactly. Areas

where imprecise data is of particular importance are geology and geophysics. The

very large amount of data to be stored in a geological information system also

requires special consideration of storage efficiency without unduly decreasing

acceSSibility. The large variety of the data to be stored makes it desirable to use an

unified but flexible approach, where all types of data are stored with basically the

same data structure, and processed with the same basic algorithms.

A special property of geological data is its relation to space. A geological data

base will store data of a large region, but this data is obtained, and later most times

used, on a smaller scale. Also, geological data has spatial continuity, which

means that data for neighboring points and regions is in most cases similar.

To design an efficient geological information system, using these properties

is a simple necessity.

Some contributions towards an approach integrating various kinds of data

while using basically the same data structures and algorithms have been given in

[Diir90bJ. Here those parts of this paper are included which discuss how to store

imprecise density data using the BC quad tree.

Being able to store density data of different degrees of accuracy is important

in geological applications. Using the BC quad tree, this can be done in several

ways. First, the gray scale hierarchy can be changed. Second, several trees
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describing different aspects of an uncertain density function can be stored and

accessed in parallel.
The gray scale hierarchy can be changed by introducing an additional symbol

"''', which indicates that for the present region of the image, there is no further

precision available. The gray scale hierarchy for our example, without and with

this extension, is shown in Figure 6.1. The use of altogether four symbols allows

easy binary coding with 2 bits.

Figure 7.1. Gray scale hierarchy allowing imprecision

(left: original gray scale hierarchy; right: changed gray scale hierarchy)

There are other ways to change the gray scale hierarchy. If one part of the gray

scale is of particular interest, a finer subdivision can be used there, increasing the

number of significant bits in the range of interest. Also, the scale can be shifted

while keeping the number of significant bits constant, for example by using a

logarithmic scale instead of a linear one. If there is a particular density level

that separates valuable ore from useless rock, the most significant bit can be

made to distinguish these two density ranges, while less significant bits

provide more detail. This is particularly interesting in connection with

progressive transmission.

If high precision is needed in combination with uncertainty, two separate

trees can be used. One of them can represent the minimum and the other the

maximum of the expected density, or one of them can represent the mean and

the other the standard deviation. The number of significant bits can be different

for the two trees, particularly in the later case.

With this amount of possibilities, a careful choice becomes important.

Criteria for the decision include the needs of the application, the probability of

changes of critical density values, the ease of implementation in software or

hardware, and time and space considerations.

7.2 Color Images

Progressive transmission can be extended to color as shown in [HiI83], where the

basic method of Knowlton [Kn08D] was applied to each of the color components

of the image. However, more elaborate methods of progressive transmission,

when used in the same way, may not lead to as good results as might be expected

from a simple extension of the gray scale case.

To understand the principles and problems inherent in the storage,

compression, and progressive transmission of color images, the first subsection of

this section gives a short introduction to color science and color spaces. In the

second subsection, an new class of cubic color spaces is then proposed to allow the

efficient and lossless progressive transmission of color images. The third

subsection discusses the result obtained so far, the problems encountered, and

possible improvements.

7.2.1 Basic Color Science

This subsection gives a short introduction to color science, as far as necessary for

the later development. For more details, the interested reader is referred to the

literature [FoI9DJ, [Mey86].

In the human eye, color information is received by three kinds of cones,

which are mainly located in the center of the retina. On the other hand, light

intensity is sensed by the far more numerous, more widely distributed, and more

sensitive rods. The number of kinds of cones suggests that to represent all color

combinations visible to a human observer, three real quantities are sufficient.

This has been confirmed by colorimetric experiments.

For digital representation, these three quantities are usually chosen to

correspond to red, green and blue, in accordance with the phosphors of color

monitors. The resulting color space is called the RGB color space. In this space,

the colors representable on a monitor (a subset of the complete range of colors

perceptible by the human viewer) form a cube. Cuts through this cube,

orthogonal to the green axis, are shown in Figure 7.2. The individual cuts are

taken in even intervals, and the first and last square represent the bottom and top

face of the cube.

Figure 7.2. The RGB color cube
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7.2.2 Cubic Color Spaces

The application of the requirements of Chapter 3 to color images seems

straightforward. Each of the three components of the image is transmitted in

parallel using the basic techniques outlined so far.

However, as pointed out in the last subsection, the resolution of the human

eye is higher for luminance than for hue or saturation. It seems worth to try to

apply these principles to progressive transmission, including all the requirements

defined in Chapter 3. Basically, the image is transformed to the YtIQ color space at

the sender, then the three components are transmitted independently, initially

spending more of the transmission time on the Yt component, and at the

receiver, the original image is reconstructed. Transmitting the luminance

component first has an additional advantage. Not only is the human eye more

sensitive to luminance than to colors, but a black and white image also contains

most of the information of the color image.

The transform of formula (7.1) leads to values for Yt, I, and Q that have to be

requantized. Thus a lossless reproduction of the original image becomes difficult.

To overcome this problem, a new class of color spaces is proposed here. To avoid

any loss of information, and any inefficiencies, the transformed color space is of

the same form as the original RCB color space, namely a cube with 2b*2b*2b

locations (usually b=8). Also, the main axes of the new cube will correspond as

much as possible to the Yt, I, and Q directions of the NTSC color system.

In the YtIQ color space, the I and Q components are translated so that they

have an average of O. For the representation with b bits per pixels, this translation

is obviously of no importance; what is important is the rotation included in (7.1).

The three-dimensional rotation can be approximated by a combination of two­

dimensional rotations.
To approximate the two-dimensional rotations, a newly developed gener­

alization of a technique originally introduced by Knowlton [Kn080] is used.

Knowlton approximated the linear transformation of two values to their average

and difference, which can be understood as a rotation by 45°, by a permutation

using a lookup table.
Hill et al. [HiI83] later discovered the ring structure of this approximation

and implemented it with a simple algorithm. To use the same procedure for

transformation and for retransformation, Hill et al. exchanged the two

variables inside the procedure. However, the exchange can also be performed

outside the procedure.
This ring method can be generalized by making the approximate angle

selectable. An outline of the permutation algorithm, in unoptimized form, is

(7.1)[~] = [

0.299 0.587 0.114] [R]
0.596 -0.275 -0.321 . C .
0.212 -0.523 0.311 B

The first row of the transformation matrix indicates that the contribution to the

luminance signal varies greatly for each of the RCB primaries. This fact will need

our attention in the next subsection.

The RCB color space is well suited for storage, calculation, and display. However,

it has several disadvantages that led to the development of a variety of other

color spaces. First, it is difficult for human users to specify color in terms of RCB

values. The HSV (hue, saturation, value) and HSL (hue, saturation, luminance)

color spaces, which can take the form of (hex)cones, double (hex)cones, or

cylinders, have been developed for this purpose.

Second, if the color coordinates are based on actual colors, it is impossible to

represent all visible colors with three positive values. The cones of the retina

work as inhibitors in certain areas of the spectrum. Thus for colorimetry and

standardization, the CIEXYZ color coordinates are used (CIE: Commission

Internationale d'Eciairage). With them, all visible colors can be expressed by

three positive values.

In all the above color spaces, the distance between two colors does not

correspond to the percepted difference between two colors. This led to the

development of the so called uniform color spaces L*a*b* and L*u*v*.

For bandwidth reduction of the television signal (NTSC), the YtIQ color

space is J.lsed [Bad86]. Its development was directed by the observation that the

resolution power of the human eye is greater for luminance and smaller for color

changes, and by the necessity to make the composite signal compatible with the

already existing black and white television signal and to fit the color signal into

the available bandwidth.

In the NTSC signal, the luminance component is denoted by Yt to

distinguish it from the Y component of CIEXYZ. The I color component is

oriented from reddish-orange to bluish-green. This is the direction of the color

spectrum in which the human eye is most sensitive. The Q component is

oriented orthogonally to the I component, from yellowish green to bluish

magenta. The three components are transmitted using bandwidths of 4.2, 1.3, and

0.5 Mhz, which shows their relative importance to the human eye.

The transformation from the television monitor RCB primaries to YtIQ are

given by

-----

..
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given below. Rotations by multiples of 90° are exact rotations; for other angles,

this is of course not possible. Some rotations produced by the algorithm are

shown in Figure 7.3.

1. Determine the ring i of the two input coordinates.

2. Determine the ring radius r of ring i, which is defined as the distance of the

ring center line from the center of the square (r = i - 0.5).

3. Calculate the shift distance d for this ring from the rotation angle (J. and the

ring radius r (d =Sra./3600).

4. Shift the input values by the number of steps d around the ring.

5. Output the coordinates of the new position.
Figure 7.4. The RCB color cube rotated by 45° about the C axis

Figure 7.5. The RCB color cube rotated by 45° about the B axis
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Figure 7.3. Rotation of a square with the generalized ring method

Steps (2) and (3) can be combined to a simple table lookup once the angle(s) used

are known. The most complicated step of the algorithm is step (4); different cases

have to be distinguished. It can be somewhat simplified by restricting the angles

to the interval [0°,45°]. This is easily possible, as other angles can be realized by a

combination with rotations of multiples of 90°, which can be realized by variable

exchange and subtraction.

Figure 7.4 shows the RCB color cube of Figure 7.2 rotated by 45° in the RB

plane about the C axis. The diagonals appear lighter than their surroundings

because they have been stretched. To actually approximate the transformation to

the YtIQ color space, three two-dimensional rotations are combined. The first

rotation keeps the B value constant, the second rotation maintains the original R

value, and the third rotation the original C value. If for all three rotations, angles

of 45° are used, the result is shown in Figures 7.5 through 7.7.

Figure 7.6. The color cube of Figure 7.5 rotated by 45° about the R axis
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Figure 7.7. The color cube of Figure 7.6 rotated by 45° about the C axis

In Figure 7.7, the coordinate axes can definitely be identified with the Yt, I, and Q

components of the YtIQ color space. The horizontal axis corresponds to I, the

vertical axis to Q, and different squares correspond to different values of Yt. Using

three angles of 45° has the advantage that the original black-white diagonal has I

and Q values of about 2b-1. This simplifies the reproduction of the color image in

the initial stages where only the luminance component is transmitted.

On the other side, with this transform, even fairly light colors are mapped to

the minimum (black) Yt value, and fairly dark colors are mapped to the

maximum (white) Yt value. Partly, this is due to the fact that the cubic shape

of the color space has to be maintained. Partly, however, this is due to the

fact that with this transform, each of the RCB values affects the Yt value by

the same amount, where as in the original transform of (7.1), the influence

of Con Yt is strongest.

This problem can be alleviated by changing the rotation angles, as shown in

Figures 7.8 and 7.9. In Figure 7.8, the rotation that led to Figure 7.5 has been

performed with a rotation angle of only 30°. Figure 7.8 then has been rotated

about the original red axis, but also with an angle of only 30°, to obtain Figure 7.9.

Compared with the luminance distribution in Figures 7.6 and 7.7, the luminance

distribution in the individual squares in Figure 7.9 is more uniform.

In this case, the third rotation was omitted. It is not of primary importance

that the coordinate axes of the transformed color space correspond to the I and Q

components of the NTSC color space. In this way, additional distortions that are

introduced with each rotation approximation can be avoided.

Figure 7.8. The RCB color cube rotated by 30° about the B axis

Figure 7.9. The color cube of Figure 7.8 rotated by 30° about the R axis

7.2.3 Results

The progressive transmission of color images was simulated in the same way as

for gray scale images in Chapter 6, using the color spaces developed in the

previous subsection. At the moment, the results are not completely satisfying.

However, it is expected that their description in this work can shed light on the

problems encountered and lead to new and better solutions.

The main result can be summarized as follows: Using a cubic YtIQ color

space, transmitted images can be recognized at an early stage solely from the

Yt component. This leads to an additional improvement, compared with

gray scale images and relative to the canonical form of the color image, by a

factor of about three. This is a considerable improvement, which however
had to be expected.

On the other hand, an acceptable color image is obtained only at a rate that is

considerably higher than three times the rate necessary for a gray scale image with

comparable quality. This is not very satisfying; a rate lower than three times the
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rate for a gray scale image should be possible according to the explanations in

Subsection 7.3.1.
That the results with color images are not satisfactory has several reasons.

The first is that with HSRQ, the quantization for the two color components

progresses differently. This leads to unpleasant false colors, which greatly reduce

the apparent quality of the image. Obviously, the human visual system is much

better at deducing color for a gray scale image, or just viewing the gray scale image

as it is, than correcting false colors. The second reason is that for the bandwidth

reduction with the NTSC color space to work properly, the color components

should contain low frequencies only.

The third reason is that banding effects in a gradually changing area are

much better visible in color images. The changes of the different color

components do not occur at the same locations, which leads to colored bands. For

high quality computer graphic images, where smoothly changing areas are very

frequent, such effects are observable even with 8 bits per pixel and color [HaI89].

In addition, the reproduction result is affected by the distortions introduced into

the color space by the approximate rotations.

To improve the performance of progressive transmission for color images,

the following solutions may be possible: First, it may be necessary to abandon the

requirement of final lossless reproduction. This will allow the use of a wider

range of color spaces. Also, the importance and semantics of color differ greatly

for different applications, and it may not be possible to find one coding method

that is suited for all applications.

Second, the gradual introduction of color into a gray scale image has to be

studied. It seems desirable to introduce basic colors, like red, yellow, green, and

blue, first. If the NTSC color system is used, the colors that appear on the

screen first are orange, light blue, violet, and yellow-green, which leads

to a very ugly image.

Third, it may be possible to merge the two color component hierarchies to a

single hierarchy to synchronize the transmission of color information.

Algorithms that construct a color hierarchy adapted to an image have been

developed in connection with the quantization of color images to a restricted

number of color values (usually 256) [Hec82]. This has the additional effect that

dependence between the different color coordinates is used for compression.

Fourth, the color components have to be smoothed in the initial stages of the

reproduction, as proposed for gray scale images in Section 5.1. Testing all these

improvements and their combinations, it should be possible to achieve

satisfactory color image quality at 2 bits per pixel (compare [Cam86]) and less.

7.3 Image Sequences

Using progressive transmission methods for video compression is basically a

contradiction. Progressive transmission uses the time dimension to gradually

improve an image, whereas video uses the time dimension to display an image

sequence. However, as already pointed out in Subsection 3.1.3, the progressive­

ness of an image compression method allows fixed rate coding with a basically

variable rate coding method. As variable rate coding generally achieves better

compression, and a fixed rate per frame is necessary for smooth video decoding,

progressive coding techniques are well suited for video coding.

In addition, the flexibility of progressive transmission techniques is very

useful when transmitting sequences of images at a frame rate lower than the

video frame rate. Possible applications include videophones, teleconferencing,

and browsing through subsequent cross-sectional images in medicine, geology
and other fields.

A sequence of similar images is usually coded as a sequence of differential

images. In most cases, blocks of the image are separated into two kinds: Slightly

changed blocks, which are coded by comparing them with the same block of the

previous image (interframe coding), and greatly changed blocks, which are coded

independently (intraframe coding). More elaborate algorithms estimate the

motion of different parts of the image between two frames. Hereby, quad trees are

already used to concentrate coding on the areas of largest activity [Str90].

A combination of such an algorithm with the BC quad tree could lead to
very good results.

The method of image compression and progressive transmission proposed

in this paper is well suited for interframe coding using differential images. As

differential images have a heavily biased histogram, the gray scale hierarchy is

best changed in a way similar to that described in Section 5.3. Image changes are

best reproduced in a way similar to the black-to-white reproduction method

described in Subsection 5.1.1. This results in a monotone change from the old to

the new image, which is important to eliminate flickering.



----------

8

Conclusions

8.1 Summary

The main contribution of this thesis is a new method for image compression and

progressive transmission. The results obtained show that the new method

performs about as well as considerably more complex coding methods like

vector coding or transform coding, and better than existing methods of com­

parable complexity.

The examination of the mathematical base and the requirements of present

and future applications of image compression and progressive transmission led

to the conclusion that the unification of progressive transmission and image

compression is both highly desirable for practical reasons and theoretically

possible in many cases. In particular, it was shown that in the high rate case,

progressive transmission can perform at only 1.8753 db below any pointwise

optimal transmission.

The requirements for an ideal compression method including progressive

transmission have been analyzed, and the new method presented in this thesis in

many aspects fulfills these requirements better than existing methods. It is fully

progressive from the initial very low rates to the point of lossless compression

while maintaining high compression rates and very low complexity. It is flexible

and so can easily be adapted to different kinds of images, the needs of the user,

and the possible bottlenecks in sender, transmission line, and receiver. The

efficiency of the new method has been confirmed by a number of experiments

of various types.

The new method has been developed and analyzed using a number of new

principles, like bitwise condensation, the combined increase of spatial and gray

scale resolution, sampling and quantization using intervals, and traces

incorporating a considerable amount of neighborhood information in an efficient
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way. These principles may prove to be of value by themselves in various areas

related to data compression and image processing.

8.2 Directions for Future Work

The work in this thesis can be continued and extended in several ways. One way

is to examine the various possibilities for additional performance improvements.

They include the definition of components and averages fully based on traces, the

development of models for trace averages and probabilities, the use of prediction

to enhance these models, and the combination of the new method with

other methods of data compression. Considerable improvements in perfor­

mance can be expected, but care has to be taken that there is not too large an

increase in complexity.

The new approach to sampling and quantization, represented by the HSRQ

(hierarchical sampling restricted quantization) principle, can also lead to many

interesting research problems. These include the theoretical analysis of the limits

of performance of HSRQ for different source models, the investigation of various

combinations of splitting and reduction, the reconstruction of smooth functions

from the intervals, and the use of HSRQ for image processing applications other

than pure compression. Some interesting aspects are the connection of

HSRQ with morphological approaches and image information measures.

Another aspect is the fact that HSRQ restricts the absolute deviation of any

reconstruction, which means that the absolute error of further operations

can be bounded exactly.

The new method leads to very good results for the compression of gray scale

images, whereas for color images, the results are not yet satisfactory. The efficient

use of progressive transmission for color images is an important, but difficult

problem, as it is directly related to the problem of what information the human

visual system obtains from color. Another such problem is how the dynamic

improvement of the image during progressive transmission affects recognition

and working efficiency. The application of the new method to image sequences

and higher- and lower-dimensional data should also be studied.

A completely different, but not less interesting task is the implementation of

the new method, in a number of suitable variants, for a single application or a

heterogeneous environment, both in software and hardware.

Appendices

Appendix A: Component Sequences

The component sequences are listed separating different components by commas.

For each individual component, the spatial hierarchy level s is followed by the
gray scale hierarchy level c.

Component Sequence Used for Figure 4.8

This component sequence was optimized by hand for the center value
reproduction.

a 1, a 2, a 3, a 4, a 5, a 6, a 7, a 8, 1 1, 1 2, 1 3, 1 4, 1 5, 1 6, 1 7, 1 8, 2 1, 2 2,

2 3, 2 4, 2 5, 2 6, 2 7, 2 8, 3 1, 3 2, 3 3, 3 4, 3 5, 3 6, 3 7, 3 8, 4 1, 4 2, 4 3, 4 4,

4 5, 4 6, 4 7, 4 8, 5 1, 6 1, 5 2, 5 3, 5 4, 5 5, 5 6, 5 7, 5 8, 6 2, 7 1, 7 2, 8 1, 6 3,

6~6~6~6~6~8~7~8~7~7~7~7~7~8~8~8~8~88

Component Sequence 02

See Figure 6.1 for an explanation of how this and the next two components have
been constructed.

a 1, a 2, 1 1, a 3, 1 2, 2 1, a 4, 1 3, 2 2, a 5, 3 1, 1 4, 2 3, a 6, 3 2, 1 5, 4 1, 2 4,

a 7, 3 3, 1 6, 4 2, 2 5, a 8, 5 1, 3 4, 1 7, 4 3, 2 6, 5 2, 3 5, 1 8, 6 1, 4 4, 2 7, 5 3,

3 6, 6 2, 4 5, 2 8, 7 1, 5 4, 3 7, 6 3, 4 6, 7 2, 5 5, 3 8, 6 4, 4 7, 7 3, 5 6, 6 5, 4 8,

8 1, 7 4, 5 7, 6 6, 8 2, 7 5, 5 8, 6 7, 8 3, 7 6, 6 8, 8 4, 7 7, 8 5, 7 8, 8 6, 8 7, 8 8
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Component Sequence 03

o 1, 1 1, 0 2, 2 1, 1 2, 0 3, 3 1, 2 2, 1 3, 0 4, 4 1, 3 2, 2 3, 1 4, 0 5, 5 1, 4 2, 3 3,

2 4, 1 5, 0 6, 6 1, 5 2, 4 3, 3 4, 2 5, 1 6, 0 7, 7 1, 6 2, 5 3, 4 4, 3 5, 2 6, 1 7, 0 8,

7 2, 6 3, 5 4, 4 5, 3 6, 2 7, 1 8, 8 1, 7 3, 6 4, 5 5, 4 6, 3 7, 2 8, 8 2, 7 4, 6 5, 5 6,

4~3~8~7~6~5~4~8~7~6~5~8~7~6~8~7~8~88

Component Sequence 04

o 1, 1 1, 2 1, 0 2, 3 1, 1 2, 4 1, 2 2, 0 3, 5 1, 3 2, 1 3, 6 1, 4 2, 2 3, 0 4, 7 1, 5 2,

3 3, 1 4, 6 2, 4 3, 2 4, 0 5, 8 1, 7 2, 5 3, 3 4, 1 5, 6 3, 4 4, 2 5, 0 6, 8 2, 7 3, 5 4,

3~1~6~4~2~O~8~7~5~3~1~6~4~2~O~8~7~5~

3~1~6~4~2~8~7~5~3~6~4~8~7~5~6~8~7~88

Component Sequence 05

This component sequence was optimized, starting with sequence 03, to obtain the

highest PSNR in the initial stages of transmission (differences to 03 in italics).

o 1, 1 1, 0 2, 2 1, 1 2, 0 3, 3 1, 2 2, 1 3, 0 4, 4 1, 3 2, 2 3, 1 4, 0 5, 5 1, 4 2, 3 3,

2 4, 1 5, 0 6, 6 1, 5 2, 4 3, 3 4, 2 5, 1 6, 0 7, 7 1, 8 1, 6 2, 5 3, 4 4, 3 5, 2 6, 1 7,

o 8, 6 3, 5 4, 4 5, 3 6, 2 7, 1 8, 7 2, 7 3, 6 4, 5 5, 4 6, 3 7, 2 8, 7 4, 6 5, 5 6, 4 7,

3 8, 7 5, 6 6, 7 6, 8 2,8 3, 5 7, 4 8, 8 4, 6 7, 5 8, 8 5, 7 7, 6 8, 8 6, 7 8, 8 7, 8 8

Appendix B: Results for Image "Lena"

For all the images shown below, the component sequence 02, average value

reproduction, and arithmetic compression have been used. To compensate for

the larger size of the image, the component sequence has been applied to each of

the four quadrants of the images.

Figure B.1. "Lena" at 1/64 and 1/32 bits per pixel

Figure B.2. "Lena" at 1/16 and 1/8 bits per pixel

Figure B.3. "Lena" at 1/4 and 1/2 bits per pixel

Figure B.4. "Lena" at 1 and 1.5 bits per pixel
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Figure B.s. "Lena" at 2 and 8 bits per pixel

(the image on the right is the original)

Appendix C: Images Used in Face Recognition Experiments

Figure Cl. Senior students of the Department of Information Science

Figure C2. Senior students of the Department of Information Science

Figure C3. Senior students of the Department of Information Science

and the teaching assistant

Figure CA. Famous personalities

Figure CS. Famous personalities and the author
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ofGDF 58

image 2, 4,15,17,78,105,121

quadtree 10

search 44

valued condition 92

Bintree 10, 34, 78, 96, 97

Bit 22

allocation

fixed 15

incremental 16

plane 4, 15, 61, 76, 83, 84

selection

subtrace 73, 88, 90, 95

symbol 57,73,76, 81, 84, 93, 95,

104

trace 88

Bitwise

condensation 68
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Bitwise (continued)

condensed quadtree: See BC

OF 108

logical operations 56

Black hole 9, 70

Black to white reproduction 81, 109

Block

boundaries 91, 96

coding 4, 26

length 26

size 17,32,38

truncation coding 4, 109, 118

Blurring 83

Bottleneck 50, 83, 125

Boundary representation 9

Browsing 44

Bruckstein 45

Bulletin boards 40

C

Canonical form 3, 42, 47

Center value reproduction 84, 109

Chang 76

Channel

coder/decoder 24

coding theory 24

structure 24, 40

Chip card 44

CIEXYZ color coordinates 132

Closed application 41

Codebook: See Vector quantization
Coder 24

Coding

adaptive: See Adaptive

advanced methods 6

arithmetic: See Arithmetic coding
block coding 4, 26

block truncation 4

Coding (continued)

by bit plane 61

embedded 16

entropy 44, 104

Huffman 104

hybrid coding 6

interframe 139

intraframe 139

predictive 5, 74

run length 79

sound 67

subband coding 119

transform: See Transform

variable rate 44

Color

images 2, 130-138, 142

science 131

space 131

Common subtrace 88

Communicating sequential processes

(CSP) 71

Component

efficiency 93

sequence 69, 74, 79, 90, 92

bi 109

heuristics 93-94

number of 93

02,03,04109,143-144

05 116, 144

restrictions on 62

size 60

Components

based on local priority 96

based on resolution 58

based on traces 95

Composite source 27

Computational geometry 9

Computer

animation 9

graphics 8, 40

vision 1

Concurrent

increase of both resolutions 80

Condensation g, 60, 72

Cones (on retina) 131

Conditional

entropy 22

mutual information 23

probability 20

Conditions for decodability 73

Context free grammar 70

Continuous

time random process 21

valued random variable 21

Contrast sensitivity 95

Converse source coding theorem 26

Convexity 103

Cost function 45, 103

Cross-sectional images 139

Cubic

convolution 14, 91

splines 14,91

color spaces 133

Cumulative frequencies 104

D

Daugman 6, 75

Decoder 24

Decodability, conditions for 73

Decreasing cumulative frequencies

104

Delta modulation 5

Depth first expression: See DF

DF 10, 12, 57, 76

bitwise 108

for gray scale images 10

Difference 13, 74

Differential pulse code modulation:

See DPCM

Digital halftoning 4

Dimensionless moment 34

Discrete

cosine transform 5, 15, 119

distortion measure 46

Fourier transform 16

source 32

time random process 21

valued random variable 21
Distortion 25

acceptable distortion 46

function 92

measure 25, 86

additive 93

discrete 46

Hamming 32

single letter 93

not recognizable 46

Dithering 4, 83

Division point 98, 100

DPCM5,107

Dreizen 14

Dreizen's method 78, 108, 112, 123, 127

homogeneous 108

Dual representation 12

Dynamic programming 97, 103

E

Edge

detection 6

enhancement 91

Electronic shopping 43
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Embedded coding 16

Empty trace 88, 95

Endoh 14, 79

Entropy 22

coding 44,104

conditional 22

joint 22

Equitz 29, 32, 38

Ergodicity 21, 87

Erroneously transmitted image 43

Error requantization 16

Error-free compression: See Lossless

compression

Euclidian norm 34

Euler number 9

Example image 7

Expectation 21

Explicit quadtree 10, 12,54-56,63,97

F

Face recognition 94, 121-127, 146

False

colors 138

contours 85

low frequencies 70

FFI'15

Fidelity criterion, single letter 25

Field of vision 96

Filter

for reconstruction 92

Gaussian 14,51

quadrature mirror 14

to eliminate aliasing 70

morphological 92

Filtering 91

Flickering 84, 85, 139

Forest of quadtrees 17

Form-oriented query 94

Fractals 6

Frame buffer 50, 55, 64, 65, 79, 81, 83,

102,125

G

G-quadtree 2, 10-12, 77

inefficiencies of 12

Gabor transform 6

Gauss Markov model 89

Gaussian

filter 14, 51

source 32

GDF 2, 12,57-58,68,73,104,112

binary coding 58

Generalized ring method 134

Geologic information systems 8, 129

Geometric transformations 9

Gersho 34

Global

networks 2

reproduction 91

Grammar 70

Gray code 10, 61, 108

Gray level reproduction 81-92, 102

Gray scale

fonts 4

depth first expression: See GDF

hierarchy 11, 53

n-ary 102

optimization 97-104

ternary 101

images 2

quadtrees for 10

intervals 98

level 59

resolution 4, 8, 15, 59, 60, 77, 94, 95

Growth-geometry coding 18

H

Hadamard transform 16

Hamming distortion measure 32

Half size display 83

Hardware 16,42,50,65,67,104, 142

Head movement 97

Heterogeneous environment 2, 16, 41,

42,48,50

Heuristics 8, 93

Hexagon 34

Hierarchical

data structure 7

intervals 67

Sampling Restricted Quantization:

See HSRQ

subdivision 8

vector quantization 75

Hierarchy

gray scale 11

spatial7,11

High

rate assumption 33

frequency 67, 69, 110

Higher dimensions 9

Histogram 5, 87, 98

Hologram 17

HSL color space 132

HSRQ 3, 65, 68-70, 74, 76, 85, 138, 142

HSV color space 132

Huang 4

Huffman coding 104, 108

Human visual system 4, 48, 95, 110,

121,131,138, 142

Hybrid coding 6

Hypercube 34

Hyperplane 38

Ideal compression algorithm 45

Li.d. random process 21, 24

Image

analog 3

analysis 11

array 12

binary: See Binary

canonical form 3

characteristics 89

color: See Color

complexity 76

components 58-65, 79, 90

compression

applications 39-40

overview 3-7

requirements for 45-51

cross-sectional 139

database 41, 43, 47, 94

enhancement 1, 2, 4, 114

erroneously transmitted 43

example 7

in business applications 40

information measures 142

gray scale 2

quadtrees for 10

"life" of 41

medical 39

model 87, 89

of low quality 43

original 3

processing 1,5,8,9,10,39

relevant parts of 43

satellite 39

segmentation 87, 103

sequence 2, 82, 139, 142

stepwise improvement of 48
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Image (continued)

storage 41

transmission 41

type 114,89,94

Implementation aspects 54, 56, 63, 67,

97,104

Imprecise data 130

Increasing

both resolutions 62

gray scale resolution 15, 16, 48, 60

spatial resolution 13, 15, 16,48, 61

Incremental transmission rate 38

Independence 20, 21

of sender and receiver 89

Independent

increase of both resolutions 80

Information

conditional mutual 23

measure 22

mutual 22

systems 8, 129

Initial subtrace 72, 73

Integration 1

Interframe coding 139

Interpolation 14,79, 91

Interval 81, 92

coding 66

statistics 98

Intraframe coding 139

Irregularly spaced samples 92

Joint

entropy 22

probability 20

K

k-d-tree 103

Karhunen-Loeve transform 5

Kawaguchi 10,57,58,70,76, 111

Klinger 10, 72

Knowlton 13, 15, 17,35,58, 77, 130

Kunt 4, 6

L

L'Hopital's rule 36

L'a'b' color space 132

L'u 'v' color space 132

Laplacian

pyramid 14

source 32

Leaf node types 9

Learning effect 122

Lempel-Ziv compression 107

Length of parenthesis subtrace 73

Linear

dependence 5

equations 31

interpolation 14

quad tree 10

Linked list 97

Local

area networks 2

image quality 49

refinement 96

Lohscheller 16, 125

Lookabaugh 33

Lookup table: See Table lookup

Lossless

compression 2, 5, 16, 46, 58, 110

transform coding 47

Lossy compression 47

Low

frequencies 67

false 70

displays 84, 85

images 43

LZW 107, 111

M

Mach banding effect 95

Marginal

probability 20

Markov conditions 29

Mean square error 86, 93, 115

Medical images 39, 114, 120, 139

Memory

advantage 33,38

for progressive transmission 34

chip card 44

requirements 10, 11, 12, 15, 16,44,

50,55,58,64,72,91,97, 100,

102

Memoryless random process 21

Merging 8

Microeconomy 45

Minkowski (sum/addition) 27

Model of transmission system 24

Moment, second 34

Monotonously changing intensity 82

Monte Carlo simulation 89

Morphological

filters 92

methods 142

Morton sequence 56,97, 108

Most significant bit 10, 54, 59, 60

Motion

comparison 9

estimation 139

Multimedia 1

Multiple resolution

gray scale 77

spatial 77

Mutual

information 22

information, conditional 23

Mutually exclusive

events 20

outcomes 19

N

n-ary gray scale hierarchy 102

Nat 22

Neighbor finding 8

Networks 2

Neutral bit selection symbol 73

Nonexistent gray levels 98

Nonuniform

G-quadtree 12,77

quantization 92

sampling 92

Normalized

moment 34

quadtree 103

Not recognizable distortion 46

NTSC 15, 132

Number

of component sequences 93

of passes 38, 49

of Receivers 41

of Senders 41

Numerical errors 16

o

02 109,143

03109,144

04109,144
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05116,144

oc() 87

Octahedron,truncated 34

Octree 8, 9, 97

Oncologist 94

Open applications 42

Optimal

component sequence 63, 90, 92-97,

116

gray scale hierarchy 97-104,109

quadtree 103

reconstruction filters 92

Orthogonal transform 5

Orthopedist 94

Overall image quality 49

Overhead of progressive transmission

13,49

p

paO 73

Parallel processing 67

Parenthesis subtrace 73

Pass size 17, 49

PCM3-5,65

Pel: See Pixel

Peak to peak signal to noise ratio 115

Peano-Hilbert curve 108

Person recognition: See Face

recognition

Personal computing 40

Picture

element: See Pixel

information measure 76

Pixel 3

trace 71

Point quadtree 7

Pointer quad tree 10, 12

Polytope 34

Polytree 9, 70

Prediction 14,78,79,91,105,123,142

Predictive

coding 5, 74, 107

reproduction 91

Preference function 45

Printing device 3, 51, 79

Priority 96

Probability 19

conditional 20

distribution 104

joint 20,26

marginal 20

Progressive transmission

algorithms 63-65

applications of 42-45

conceptual comparison with

previous methods 77-80

confidence into 94

for binary images 17-18

for higher bandwiths 43

increasing both resolutions 62

increasing gray scale resolution 15,

60

increasing spatial resolution 13-14,

61

memory advantage for 34

methods 12-18

of color images 131

overhead of 13, 28, 49

principle of 13

requirements for 45-51

shape advantage for 34

space filling disadvantage 34

traditional applications 42

use for pure image compression 44

using transform coding 15

Pruned tree structured vector

quantization: See Vector

quantization

Pseudorandom

patterns 83

sequence 97

PSNR 115, 124

Pulse code modulation: See PCM

Pyramid 13, 77

Q

Quadrants 8

Quadrature mirror filter 14

Quadtree 12,77, 139

advantages of 8

BC: See BC quadtree

binary quadtree 10

disadvantages of 9

explicit: See Explicit quadtree

for gray scale images 10

forest of 17

linear quadtree 10

node types 9

normalized 103

number of nodes in 9

optimal 103

plane sweep 8

point quadtree 7

pointer quadtree 10, 12

region quadtree 8

representations 9-10

triangular quadtree 12

Quality improvement 93

Quantization 3, 65, 75, 78,85, 142

coefficient 34

in HSRQ 67

nonuniform 92

scalar 38

Quantization (continued)

vector: See Vector

Query 94

R

Radiologist 40

Random

background reproduction 83

field 21, 87

matrix 21

number generator 23

process 21

sequence 21

variable 21

continuous valued 21

discrete valued 21

vector 21

Rate distortion

curve 25, 45

computation of 26

for progressive transmission 28

function 25-28

for composite source 27

properties of 25

theory 3

Receivers, number of 41

Recognition

accuracy 126

of faces 121-127

Reconstruction filters 92

Rectangle: See Aspect ratio

Recursive subdivision 7

Recursively dividable polytopes 34

Reducing spatial resolution 76

Reduction (HSRQ) 67, 142

Region

detection 6

quad tree 8
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Regular subsampling 92

Reliability of channel 2

Remote

control 41

image database 43

surveillance 43

teaching 43

Requirement

adaptability

to different images 48

to hardware bottlenecks 51

to human visual system 48

to needs of users 48

continuous increase of resolution

48

flexibility 48

hardware independence 47

losslessness 47

low complexity 46

number of passes 49

pass size 49

progressiveness 46

scalability 51

uninterrupted improvement of

image 50

Reproduction

average reproduction 84-91

averages 86, 87,96

black to white 81

center value 84

global 91

method 81-92,93,102, 109

predictive 91

random background 83

white to black 82

Resolution

gray scale: See Gray scale

resolution

Resolution (continued)

problems 9, 70

requirements 8

spatial: See Spatial resolution

RGB color space 131

Riskin 118

Rods (on retina) 131

Rotation 133

Rule-based approach 94

Run length coding 79

5

Samet 7,17,77

Sampling 3, 65,142

hierarchy 67

in HSRQ 67

kernels 92

nonuniform 92

strategies 76

Satellite images 39, 47

Scalability 51, 92

Scalar quantization 38

Scale space 76

Second moment 34

Segmentation 87, 103

Self-information 22

Sender

threatened with destruction 43

number of 41

Sequence of decisions 42

Sequential transmission 107, 123

Shape advantage 33, 38

for progressive transmission 34

Shape-oriented query 94

Shared transmission line 50

SIDBA 59, 110

Signal

processing 5

to noise ratio 115

Single letter

fidelity criterion 25

distortion measure 93

Size

of passes 49

of trace tree 72

SKF 12

Slow transmission line 11, 42

Small size display 83

Smooth local refinement 96

Smoothing 83, 91, 142

SNR 120

Solid modeling 8, 9

Source

composite 27

coder / decoder 24

coding theorem 26

coding theory 3

discrete 32

Gaussian 32

Laplacian 32

model 104

random process 24

subsource 27

Space filling

advantage 33

disadvantage for progressive

transmission 34

Spatial

continuity 129

hierarchy 7, 11,53, 96

indexing 8

level 59, 90

resolution 4, 8, 13,59,61, 76, 77, 94

Splitting (HSRQ) 67, 142

Standard image database: See SIDBA

Stationarity 21, 87

Step size 49

Subband coding 119

Subquadrants 8

Subsampling 14, 51, 62, 96, 108

regular 92

Subsource 27

Subtrace 72

bit selection 73, 88, 90

common 88

initial 72

parenthesis 73

Successive refinement 29

condition for 30

expressed geometrically 31

positive examples 32

System of events 20

T

Table lookup 13,56,102, 133

Tamminen 10, 58

Task 42

Telebrowsing 43

Teleconferencing 43

Teleconsulting 43

Television 40, 44

Ternary gray scale hierarchy 101

Time complexity 9, 56, 100, 102

Trace 70-74, 95,104

averages 87, 89, 104, 142

bit selection trace 88

empty trace 88

for pixels 71

occurrence 87

set 87, 89

subtrace: See Subtrace

tree 71, 89, 97
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Training sequence: See Vector

'Transform
coding 5, 46, 74, 119, 125, 127

for progressive transmission 15

lossless 47

discrete cosine 5, 15

discrete Fourier 16

FFT 15

Gabor 6

Hadamard 16

Karhunen-Loeve 5

orthogonal 5

Transmission

line 24

sequence 15, 57, 62

system model 24

Tree structured vector quantization:

See Vector quantization

Triangular

quadtree 12

matrix 98

Truncated octahedron 34

U

Uniform

background 12, 126

color spaces 132

Unit-distance-equalized significance

code 61

Universe 7, 8

v

Variable

rate coding 44

resolution 77

Vector quantization 4, 16,38,49,75,

108, 118, 120

Vector quantization advantages 33

Video 40

Visibility threshold 16

Visual

system: See Human visual system

evaluation 112

Voronoi regions 33

W

Wide area networks 2

White to black reproduction 82, 114

Woodwark 10, 55

y

YtIQ color space 132

Z

Zador 33
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