
Exploiting Parallelism in Cyclic Pipeline Computer

with an Optimizing Compiler

最適 化 コンパ イ ラに よる

循 環パ イプラ イン ・コン ピュ ータに お ける並列 化 の研 究

佐 藤 三 久

Exploiting Parallelism in Cyclic Pipeline Computer
with an Optimizing Compiler

by

Mitsuhisa Sato

A Dissertation Submitted to
Department of Information Science,
Faculty of Science,
The University of Tokyo
in Partial Fulfillment of the Requirements for the Degree of Doctor of Science

December, 1990

ABSTRACT

In a pipelined computer, instruction dependencies involving both data and control infor­
mation often limit its potential performance. A cyclic pipeline computer allows multiple
instruction streams to share these pipeline stages in time to remove the data and control
dependencies. These multiple instruction streams in the cyclic pipeline computer exploit
more parallelism in the parallel program of scientific applications.

In this thesis, we define the basic model of a cyclic pipeline machine to examine the
performance improvement of various configurations of cyclic pipeline machines compared
to the same degree of pipelining of conventional architectures with single instruction
stream. The simulation results indicate that pipelining within each instruction stream
of a cyclic pipeline machine increases the performance to maximize the utilization of
resources in a highly pipelined machine.

FLATS2 is an experimental cyclic pipeline computer with two instruction streams.
FLATS2 FORTRAN compiler is an optimizing compiler for FLATS2. It enables us to
exploit parallelism in parallel programs with the multiple instruction streams in FLATS2.
The BL addressing of FLATS2, which integrates memory addressing and range check­
ing, exploits the microarchitectural parallelism to reduce the execution time for array
computation. The compiler generates optimized code using the BL addressing.

While the degree of pipelining in many conventional processors is usually limited on
mature silicon technology, the cyclic pipeline computer provides alternative architectural
solution for new technologies such as GaAs and Josephson logic device, which prefer a
highly pipelined architecture.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Professor Eiichi Goto for suggestions,
advice, and continuous encouragement. I am also grateful to my colleagues Norihiro
Fukazawa, Shuichi Ichikawa, Paul Spee, Shu Kawakami and Wong Weng Fai at the com­
puter architecture group of GOTO Quantum Magneto Flux Logic Project of Research
Development Corporation of Japan (JRDC) for valuable help and discussion. Spee and
Wong helped by carefully proofreading this thesis. I would like to thank the other mem­
bers of FLATS2 project, Noriyuki Kato and Yasuo Wada at JRDC, Dr. Takashi Soma,
Nobuyui Inada and Masayuki Suzuki at the Institute of Physical and Chemical Research,
the members at Mitsui Engineering and Ship-building Corporation and Mitsui Zosen Sys­
tem Research Incorporated.

Most of this research has been supported by the Research Development Corporation
of Japan.

Contents

Introduction
1.1 Cyclic Pipeline Computer
1.2 FLATS2 .
1.3 FLATS2 FORTRAN Compiler ..
1.4 Parallel Programming Model ..
1.5 FLATS2 project .
1.6 Scope of Study in This Thesis

Highly pipelined Model
2.1 Models of Highly Pipelined Machines

2.1.1 The base machine
2.1.2 Superpipelined machine ..
2.1.3 Cyclic pipeline machine ..
2.1.4 Superpipelined cyclic pipeline machine .

2.2 Parallel Programming Model .
2.2.1 FORTRAN parallel directives
2.2.2 Implementation of Parallel Directives .

2.3 Simulation..
2.3.1 Simulation Environment
2.3.2 Workloads.
2.3.3 Simulation Results ...

2.4 Discussion.............
2.4.1 Latch overhead of pipelining .
2.4.2 Memory system design of cyclic pipeline machine
2.4.3 New technology for a highly pipelined computer

A Cyclic Pipeline. Computer, FLATS2
3.1 The architectur~of FLATS2 .

3.1.1 Memory and Registers
3.1.2 Instructions.
3.1.3 BL Addressing .
3.1.4 Cyclic Pipeline Architecture of FLATS2

3.2 Programming on FLATS2
3.2.1 Numerical Computation
3.2.2 Run-Time Checking in Lisp

7
7
8
8
9
9

10

11
11
11
12
13
14
15
15
16
18
18
18
20
25
25
26
27

28
28
28
28
30
33
33
33
34

3.3 Programming Environment .
3.3.1 FLATS2 System .
3.3.2 CPX Operating System Kernel .
3.3.3 FLATS2 instruction-level simulator

35
35
36
36

37
37
40
41
41
42
42
44
44
46
47

. 49
49
50
51
52
53
53
54
58

4 FLATS2 FORTRAN compiler
4.1 Overview .
4.2 Code Expansion Phase ..
4.3 Translation into Static Single Assignment Form

4.3.1 Build program flow graph
4.3.2 The graph for DO loop
4.3.3 Translate to SSA Form

4.4 Redundancy Elimination .
4.4.1 Elimination of Trivial Assignments and Common Subexpression
4.4.2 Loop Invariant Code Motion.
4.4.3 Alias Analysis in Loop ...
4.4.4 Normalization of SSA form.

4.5 Code Reconstruction
4.5.1 Combining Instructions ...
4.5.2 Instruction Reorganization .

4.6 Register Allocation
4.6.1 Global Register Allocation .
4.6.2 Register Allocation on FLATS2
4.6.3 Local Register Allocation with Global Approximation ..
4.6.4 Inserting Spill Code.

78
78
78
79

62
62
62

. 63
63
64
65
66
68
69
71
74
74
75
76

Experiments on FLATS2
6.1 The performance of FLATS2 .

6.1.1 Speedup with BL addressing.
6.1.2 Speedup by two instruction streams.

Loop optimization with BL Addressing
5.1 Addressing mode for Numerical Computation

5.1.1 The ature of Numerical Computations
5.1.2 Autoincrement Addressing Mode
5.1.3 BL addressing ..

5.2 Optimal Induction Variable Elimination
5.2.1 Induction Variable Elimination .
5.2.2 Cost and Saving Estimates
5.2.3 Induction Variable DAG ..
5.2.4 Optimal Induction Variable Elimination
5.2.5 Inserting Increment for Transformed Induction Variables

5.3 BL Code Gener'ation
5.3.1 DO Loop with Range Checking Instruction ..
5.3.2 Induction Variable Elimination for BL code
5.3.3 Code Generation for BL addressing

6.2 The Experiments on the FLATS2 Pipeline
6.2.1 The FLATS2 pipeline ...
6.2.2 Single Instruction Stream Pipeline.
6.2.3 Load/Store Instruction Set
6.2.4 Experiments............
6.2.5 Analysis and Discussion

Summary and Conclusions

81
81
83
83
84
84

88

A RUN-TIME CHECKING IN LISP BY INTEGRATING MEMORY AD-
DRESSING AND RANGE CHECKING 90

B Benchmark programs in Parallel FORTRAN 99

List of Figures

2.1 Pipeline of base machine
2.2 Pipeline of superpipelined machine
2.3 Pipeline of cyclic pipeline machine.
2.4 Pipeline of superpipelined cyclic pipeline machine
2.5 An example of parallel program .
2.6 Speedup of inner product.
2.7 Speedup of Linpack ...
2.8 Speedup of FEMJ3AND .
2.9 Speedup of FEMJCCG ..

3.1 Memory space of FLATS2 .
3.2 Basic instruction format of FLATS2 .
3.3 Register fields for BL addressing modes .
3.4 CAR/CDR operations by BL addressing
3.5 System configuration of FLATS2

4.1 Organization of FLATS2 FORTRAN compiler .
4.2 Flow graph of DO loop .
4.3 Renaming of variable in SSA form ...
4.4 Redundancy elimination
4.5 Alias computation
4.6 Dependency DAG .
4.7 Function REFREG . . .
4.8 Function GETREG
4.9 Function DEFREG ..
4.10 Example of register allocation .
4.11 Available registers computation
4.12 Modified values propagation .
4.13 Inserting spill ~ode

5.1 Optimized code of array computation.
5.2 Optimized code with autoincrement .
5.3 Optimized code with BL addressing .
5.4 Basic induction variable in SSA form
5.5 Induction variable DAG .
5.6 Function ONESAVE
5.7 Inserting increments ...

12
13
14
15
17
21
22
23
24

29
29
32
35
36

38
42
43
46
49
52
56
56
57
59
60
60
61

63
63
64
69
70
72
73

5.8 BL code . 74
5.9 BL code after induction variable elimination . 75
5.10 BL code after code reconstruction. 77

6.1 Performance of Livermore loops with BL addressing in FLATS2 . 80
6.2 FLATS2 pipeline 82
6.3 Bypass in FLATS2 pipeline ... 82
6.4 Pipeline of Load/Store machine 83

List of Tables

2.1 Latency of instructions ...

3.1 BL addressing mode of FLATS2 ..

6.1 Speedup with BL addressing in FLATS2 .
6.2 Speedup of Linpack by Two instruction streams in FLATS2
6.3 Instruction counts in FLATS2 and single stream FLATS2 .
6.4 Instruction counts in L/S machines .

20

31

79
79
85
86

Chapter 1

Introduction

1.1 Cyclic Pipeline Computer

Pipelining is a very appealing design technique hecause it offers a theoretical speedup of
N when N pipeline stages are used. An operation in a pipelined machine may take several
cycles to complete, but a new operation can be started on eacb cycle, so throughput re­
mains high. There are, however, practical constraints that limit the possible performance
increase.

Instruction dependencies involving both data and control information limit perfor­
mance because they reduce the amount of the potential paralJelism that is actually re­
alized. It is well known that instruction-level parallelism is limited to a relatively small
amount [Jou89].

The technology used to implement computer systems affects its architectural design.
GaAs technology has recently shown rapid increases in maturity, and GaAs computer
system design has already generated considerable interest. A highly pipelined architec­
ture is extremely promising for this technology [MFH86]. A new Josephson devices, QFP
(Quantum Flux Parametron) [HNM+87] forces the entire system to be heavily pipelined.
On mature silicon technology, the degree of pipelining in many conventional processors
is usually limited. Traditional computer designs use resources inefficiently, resulting in
machines whose performance is disappointing when compared to the raw speed of their
components. Even in silicon VLSI technology, asynchronous system designs such as mi­
cropipelines [Sut89] and self-timed systems offer a highly pipelined system.

The pipelined memory is an attractive component for a highly pipelined system. A
conventional memory chip consists of the address decoder, the memory cell array, the sense
amplifier, and multiplexer. By positioning latches between them, the memory access is
easily pipelined so that the cycle time rather than the access time is minimized. For data
fetch, a processor can issue several memory requests concurrently as a pipelined functional
unit.

The disadvantage of a pipelined memory system for a highly pipelined computer is
that the increased pipeline depth places strict requirements on the optimizing compiler.
For example, branch delays are longer, and early compiler efforts to replace the Nap
instruction in the fill-in slots are most successful for short branch delay [MFHL87].

One way to remove the data and control dependencies in a highly pipelined system is

to share these pipeline stages between different instruction streams. A cyclic pipeline ma­
chine [SGI89] issues instructions periodically from a fixed number of instruction streams.
The cyclic pipeline machine provides identical functionality as a true multiprocessor with
shared memory. In a true multiprocessors system, contention for synchronization locks
and delay waiting for synchronization events can substantially increase the running time
of a parallel program. Among the multiple instruction streams in a pipelined processor,
however, the synchronization cost can be reduced because its pipelined memory access
causes no memory access conflict.

1.2 FLATS2

FLATS2 is an experimental cyclic pipeline machine implemented using silicon ECL tech­
nology. FLATS2 serves as an example of a cyclic pipeline computer system design in
this thesis. The main memory is not pipelined because the pipelined memory chips were
not available in market. Ten pipeline stages are time-shared by two instruction streams
[Ich90].

To get high performance per instruction stream, the instruction set is designed to
allow rather complicated operations in the instruction as well as overlapped execution
of instructions. For example, an instruction can take up to two memory operands, and
perform operations of both the integer arithmetic function unit and the floating point
function unit in one instruction.

FLATS2 provides the BL addressing and the address tag to support faster execution
in each instruction stream. The BL addressing is a memory addressing mechanism which
integrates memory addressing and range checking. The effective address is checked against
the specified pair of base and limit addresses in registers during memory access. An
address tag is a bit in a word, which indicates the capability for memory access. Combining
them together, the test for terminating the loop of an array computation can be overlapped
with its computational operation to reduce the execution time. We can also make use of
these facilities to reduce the cost of run-time type checking in Lisp [SIG89].

Each instruction stream is called a virtual processor. The term "processor" means that
the processor of each instruction stream has a different set of program counter, registers
and processor status including the privileged mode bit. Each processor can be used to
execute independent tasks under a multiprocessor operating system.

1.3 FLATS2 FORTRAN Compiler

The FLATS2 FORTRAN compiler implements most of the optimization techniques of the
better traditional Fortran compilers. Code optimization includes common subexpression
elimination, constant folding, code motion and strength reduction. To facilitate optimiza­
tions, the compiler converts code into static single assignment (SSA) form [CFR+89] for
machine independent optimizations. The internal code is represented in register transfer
language (RTL) [DF84], which enables machine dependent optimizations such as peep
hole optimization to be done in a machine independent way.

While these optimization would be essential in a commercial compiler, they are also
essential to prove this thesis. Without highly optimized code, the speedup found by
machine-specific features might be highly suspect, since the speed-up found by machine­
specific features might be strongly biased by the code that otherwise would have been
optimized away.

For a loop of array computation, the FLATS2 FORTRAN compiler automatically
generates the code using the BL addressing when it finds the code to which BL addressing
can be applied. With the optimizing compiler, the BL addressing reduces the execution
time of scientific workloads by 10-30% in average.

For simulation of highly pipelined machines, the FLATS2 FORTRAN compiler gen­
erates the optimized code using the subset of FLATS2 instruction set for the Load/Store
architecture. The Load/Store architecture allows us to simplify the model of a highly
pipelined processor. The additional code scheduling phase in the code generator handles
interlocks due to the data dependency to generate optimized code for different pipeline
configurations.

1.4 Parallel Programming Model

The cyclic pipeline computer provides the identical functionality as the true multiprocessor
with shared memory.

We use the Force [Jor87] as the parallel programming model. In the Force, many
processes executes a single program. The number of processes is arbitrary, but fixed
at run-time. Each processes can be synchronized by barriers and critical sections. The
synchronization is specified by the parallel directives. The parallel directives are placed
in a source program to make use of multiple processes provided by the cyclic pipeline
computer.

The DO loop is a major source of parallelism in scientific workloads. Two types of
parallel DO is provided to distribute the work of the loop whose iterations can be executed
in parallel. A self-scheduled parallel DO allows each iteration to be assigned dynamically
for processors. A pre-scheduled DO specifies to partition iterations at the beginning of
the loop. If the work of each iteration is load-balanced, a pre-scheduled DO can execute
the loop efficiently because of its low synchronization cost.

1.5 FLATS2 project

The FLATS2 project was started around 1986 by the computer architecture group of
Goto Quantum Magneto Flux Logic project in Research Development Corporation of
Japan (JRDC), which aims a future supercomputer with Josephson technology. The
FLATS2 FORTRAN compiler is one result of that project.

The architecture of a cyclic pipeline computer was proposed suited for Josephson
devices [SGI89]. FLATS2 was built as a prototype of a cyclic pipeline computer with
silicon ECL technology. The basic idea of a cyclic pipeline computer and BL addressing
is due to Eiichi Goto, the project leader. Shuichi Ichikawa was a main designer of FLATS2.
Mitsui Engineering and Ship-building Corporation built the hardware of FLATS2.

In early stage of the project, I was charged with implementing the FLATS2 instruction­
level simulator to develop the systems software. Norihiro Fukazawa worked on systems
software including a assembler, a linker and a down-loader for FLATS2. Paul Spee retar­
geted the Gnu C compiler to FLATS2, which makes use of an address tag to detect the
illegal usage of pointers. He also designed and implemented the optimization using the
BL addressing for array computation. My code generation is quite different from his, but
I definitely profited from his effort.

The CPX operating system, which was developed for FLATS2, was designed by Paul
Spee, Norihiro Fukazawa and me. Spee did the actual implementation on FLATS2.

I worked on the FLATS2 FORTRAN compiler and parallelizing the scientific appli­
cations with the compiler. I also proposed the Lisp system for FLATS2 using the BL
addressing. I did most of the experiments, collecting the program in our workloads, par­
allelizing them with the compiler, and coaxing them through the compiler, the simulator
and FLATS2.

1.6 Scope of Study in This Thesis

We are interested in the performance improvement obtained by general cyclic pipeline
computers and a real cyclic pipeline computer, FLATS2, compared to conventional archi­
tectures. The cyclic pipeline architecture is a single processor architecture, while it allows
the multiple instruction streams. In this thesis, the cyclic pipeline computer is compared
to other single processor architecture such as superpipelined architecture.

The FLATS2 FORTRAN compiler can generate optimized code for various configu­
rations of architectures. With the compiler, we can parallelize scientific applications to
exploit parallelism provided by a cyclic pipeline computer. The compiler also exploits
the microarchitectural parallelism of the BL addressing in FLATS2. For simulation, the
additional instruction pipeline scheduler of the compiler can generate optimized code of
pipelined machines with single instruction stream.

In Chapter 2, we define some models of a highly pipelined machine to examine the
performance improvement of a cyclic pipeline machine compared to the same degree of
pipelining of a conventional machine with single instruction stream.

In Chapter 3, we describe the architecture and the programming of FLATS2. Chapter
4 gives the overview of the FLATS2 FORTRAN compiler and several algorithms used to
optimize the code. In Chapter 5, the optimization for the BL addressing is presented.
Chapter 6 reports and analyzes our experiments results on FLATS2 and the simulator.

Finally, Chapter 7 pr.esents our summary and conclusions.

10

Chapter 2

Highly pipelined Model

In this chapter, we introduce the machine models for a highly pipelined processor. A
cyclic pipeline machine is defined as one of the models. We examine the performance
improvement of various configurations of cyclic pipeline machines compared to the same
degree of pipelining of a conventional highly pipelined processor with single instruction
stream [SIG90l. The simulation results indicate that pipelining in each instruction stream
of a cyclic pipeline machine increases the performance to maximize the utilization of
resources in a highly pipelined processor.

Recently, several techniques have been developed to exploit the parallelism of programs
for multiprocessors [ACK87] [PoI89]. Scientific applications are often dominated by highly
parallel codes, and a parallel computer would improve these application performances.
The cyclic pipeline machine provides identical functionality as the true multiprocessor
with shared memory. By using pipelined memory, there is no memory access conflict in
a cyclic pipeline machine. As a result, the synchronization operation is very cheap. The
cyclic pipeline machine can exploit such parallelism in a highly pipelined processor.

In Section 1, we define the model of the cyclic pipeline machine used as a basis for
our simulations. In Section 2, the parallel programming model is described. Section 3
describes the simulation environment we used to measure the performance, and presents
the detail of benchmarks and the result of our simulations. In Section 4, discussion on a
cyclic pipeline machine is presented.

2.1 Models of Highly Pipelined Machines

There are several different ways to execute instructions in a highly pipelined machine. In
this section, we define the basic model of a cyclic pipeline machine.

2.1.1 The base machine

We start with a typical pipeline composed of four stages: the instruction fetch (IF), the
instruction decode (ID), the instruction execution (EX), and the write back (WB). For
simplicity, we assume a register-register machine; this simplifies the pipeline and also
makes it easier to quantify execution time. In this type of machine. instructions are

11

classified into a small set of simple operations such as integer add/sub, logical ops, load,
store, branch and floating-point ops.

An operation latency is the time (in cycle time) until the result of an instruction is
available for use as an operand in a subsequent instruction. If the operation latency is
one, the next instruction can use the result immediately.

To examine increases in performance due to highly pipelined structure, we define a base
machine which has a non-pipelined execution pipe stage. 10 the base machine, instructions
are issued at each machine cycle, and the latency of all operations are exactly one. Since
the result of an instruction is always available for the successive instruction without delay,
there are never any operation-latency interlocks in a base machine. Figure 2.1 shows a
pipeline diagram for the base machine.

IF ID EX W8
key: _ I

ij

2 3 4 5 6 7 8 9 10
cycle time of base machine

Figure 2.1: Pipeline of base machine

Because of the non-pipelined execution stage, only one instruction is in the execution
stage at anyone time. If the write-back stage can bypass the result to other pipe stages,
it does. not affect the operation latency. And perfect branch slot filling and/or branch
prediction can save the control latency of branch instructions.

Actually, the time required for different classes of operations is not the same. For
example, the time for register-register move is less than the time for floating-point ops.
Although one could build machines whose cycle time was much longer than the time
required for operation, i~ would be a waste of execution time and resources.

2.1.2 Superpipelined machine

Superpipelined machines exploit instruction-level parallelism by pipelining instruction
execution stages [Jou89]. Each stage is divided into smaller pipeline segments. A super­
pipelined machine of degree m is a machine whose execution stages have parallelism of
m. An existing example which has pipelined functional unit is CDC 7600.

Instructions are issued at every machine cycle, but the cycle time is 11m of the base
machine. The operation latency is m in its cycle time. When an operation takes a whole

12

cycle in the base machine, given the same implementation technology it must take m
cycles in the superpipelined machine. Figure 2.2 shows the execution of instructions by a
superpipelined machine.

2 3 4 5 678
cycle time of base machine

9 10

Figure 2.2: Pipeline of superpipelined machine (degree 3)

In a superpipelined machine, the cycle time granularity affects machine performance.
The operation latency varies with complexity of the operation and cycle time granularity.
The actual latency of the functional unit are rounded up to the nearest multiple of the
machine cycle time. For example, the CRAY-1 has a floating point adder latency of 7
cycles. If the clock period is twice as long, it would takes 4 clock periods, which results
in 8 cycles of CRAY-I cycle time.

2.1.3 Cyclic pipeline machine

Cyclic pipeline machines exploit parallelism by multiple instruction streams time-sharing
pipeline stages. A cyclic pipeline machine shares the same pipeline structure as a suo
perpipelined machine. The difference is that a cyclic pipeline machine of degree n issues
an instruction from n independent instruction streams at every n machine cycles. For
each instruction stream, private resources such as a program counter, a status register,
and registers set, are duplicated. Within one instruction stream, the operation latency
is the same as that of the basic machine. Total throughput of a cyclic pipeline machine,
however, is n times larger.

Figure 2.3 shows the execution of instructions by a cyclic pipeline machine.
Each instruction stream in a cyclic pipeline machine appears to be identical to a real

processor in the multiprocessor. The number of processors provided by a cyclic pipeline
machine is limited by the pipelining factors.

By using pipelined memory for main memory or cache, memory access can also be
pipelined so that several memory requests can be outstanding at the same time. It should
be noted that pipelined memory access enables each processor to share the main memory
without memory access conflict. Furthermore, no extra switching network is necessary

13

2 3 4 5 6 7 8 9 10
cycle time of base machine

Figure 2.3: Pipeline of cyclic pipeline machine (degree 3)

between the processors and the main memory. Unlike true multiprocessors, multiple
instruction streams of a cyclic pipelined machine can execute parallel programs without
overhead for memory access to shared data.

FLATS2 is an experimental cyclic pipeline machine with two instruction streams.
HEP is a resource-shared pipelined machine [Kow85]. It issues an instruction in queues

dynamically from the arbitrary instruction streams. It has several process execution
modules (PEM) and complicated memory access mechanisms.

2.1.4 Superpipelined cyclic pipeline machine

Since two independent instructions in a instruction stream of a cyclic pipeline machine can
be overlapped in the execution pipe stages, we can have a superpipelined cyclic pipeline
machine. A superpipelined cyclic pipeline machine of degree (m,n) has a cycle time limn
that of the base machine, and issues instructions periodically from n instruction streams.
There are m operations of each instruction stream in progress at the same time. Figure
2.4 shows the execution of instructions by a superpipelined cyclic pipeline machine.

A cyclic pipeline machine can achieve high throughput for highly parallel code. If the
applications are dominated by highly parallel code, they can be divided into several pro­
cesses executed in parallel. To perform a single task with multiple processes, some parts
must be executed sequentially and process synchronization is inevitable. Even if there is
no overhead to access the shared resources, such as lock and shared data, delays to wait
for synchronization of events can substantially increase the running time of a parallel pro­
gram, and seriously degrade processor utilization. For example, if other processes await
an event set by one process, the execution time of the process to reach the event point
dominates the total execution time. Even in highly parallel codes, the performance for

14

~l,i"~

~li"~

2 3 4 5 6 7 8 9 10
cycle time' of base machine

Figure 2.4: Pipeline of superpipelined cyclic pipeline machine (degree (2,2))

one instruction stream affects the total performance as well as high throughput. Pipelin­
ing within the individual instruction stream can improve the performance of instruction
stream.

On the other hand, instruction-level parallelism, which can be exploited by pipelining,
is limited to a small amount. Highly pipelining in a superpipelined machine can not
drastically improve the performance.

Consequently, a trade-off of the degree of pipelining in each instruction stream and
the number of instruction streams for a. cyclic pipeline machine is required to maximize
the performance on various parallel programs.

2.2 Parallel Programming Model

For a parallel program, the programmer needs tools to express the parallelism, either in the
form of subroutine libraries or language extensions. Our language extension of FORTRA
is from the Force [Jor87]. The Force is based on the shared memory multiprocessor model
of computation. The cyclic pipeline machine provides the identical functionality as the
true multiprocessor with shared memory.

2.2.1 FORTRA~ parallel directives

In the Force, multiple processes execute a single program. The number of processes is
arbitrary, but fixed at run-time. The parallel constructs of our FORTRAN are:

Data allocation - All data in COMMON block are allocated globally, and can be
referenced from any process. The local data is allocated in registers or stack area
priva.te for each process.

critical, end_critical - Specify the critical section which contains codes that are exe­
cuted by all processes one at a time. It is often used for reduction operations such

15

as summing into a global variable.

barrier, end_barrier - Specify the code which is executed by only one process and
synchronize all process at the end of the code. The Force uses the generalized
concept of a barrier. All processes stop at a barrier point until the last one has
arrived. The last process then executes the code up to the end_barrier. Once the
process has reached this point, all processes continue executing at the line following
the end_barrier.

parallel DO - Two types of parallel DO loops are used to distribute the work of the loop
whose iterations can be executed in parallel. A self-scheduled parallel DO specifies
each iteration is dynamically assigned to the process. A pre-scheduled parallel DO
specifies to partition iterations ahead of time so that each process will do a certain
set of loop indices, no matter how long each one takes.

SYNC function - The function SYNC forces the process to wait until the synchroniza­
tion data of the specified location is non-zero. This function is used to synchronize
on the data between processes. Writing non-zero value to the synchronization data
by other processes releases the waiting process on the data. Although this function
can be implemented by the loop reading the synchronization data, this function
prevents the optimization such as loop invariant code motion.

IPill function - The function IPID returns the process number of the process execut­
ing this function, starting from zero.

These directives are placed in the source program as comments starting with "*$".
In compilation, these are ignored as comments when parallel directives are disabled. The
statement starting with "*%" is used only for parallel execution. Figure 2.5 shows the
complete program which computes an inner product.

The choice between the two types of parallel loops depends on both the characteristics
of applications and the cost of synchronization. If the work is naturally load-balanced,
then pre-scheduling is preferred. In a cyclic pipelined machine, self-scheduling is also
efficient because of its low synchronization cost.

Note that the parallel program without the function IPill works on any number
of processes. For such a program, the number of processes may be given dynamically
at the beginning of the execution. The function IPID is sometimes used for parallel
programming with a particular knowledge about the number of processes.

2.2.2 Implementation of Parallel Directives

No special hardware is assumed for synchronization. As an atomic operation, the load­
and-store instruction, which swaps the value between the private register and a global lock
variable, is provided. Waiting for a synchronization event is implemented by "spinning"
in a software loop, repeatedly reading a synchronization variable until it become available.
Since there is no memory access conflict in a cyclic pipeline computer, the hot spot problem
does not arise.

16

c
c parallel version of inner product.
c

PARAMETER(N = 100)
DOUBLE PRECISION X (N) ,Y (N)

c global data
COMMON /XOATA/X, Y, XY

c set sample data
*$ pre sched do

DO 10 I = 1,N
XII) = I
Y(I)=I+1

10 CONTINUE
c call parallel functions

CALL IP(N,X,Y,XY)
*$ barrier

WRITE(6,920) XY
920 FORMAT('IP = ',E16.8)

STOP
*$ end barrier

END

SUBROUTINE IP (N, OX, DY, XY)
DOUBLE PRECISION DX(l) ,DY(l) ,DTEMP,XY

INTEGER N
DOUBLE PRECISION DDTEMP
COMMON /TDATA/DDTEMP

c
*$ barrier

DDTEMP - 0.000
*$ end barrier

DTEMP = O. ODO
*$ pre sched do

DO 30 I = 1,N
DTEMP = DTEMP + DX(I)*DY(I)

30 CONTINUE
*$ critical

DDTEMP = DDTEMP + DTEMP
*$ end critical
*$ bar;ier

XY = DDTEMP
*$ end barrier

RETURN
END

Figure 2.5: An example of parallel program

17

2.3 Simulation

2.3.1 Simulation Environment

The simulation system, originally designed for FLATS2, consists of an optimizing FOR­
TRAN compiler (including assembler, linker and debugger) and a FLATS2 instruction­
level simulator. In the simulation, a subset of FLATS2 instruction set is used, includ­
ing loads, stores and arithmetic instruction between register operands 1. To specify the
pipeline structure and functional unit, we classified the instructions so that instructions
in the same class are likely to have identical behavior in any machine.

To investigate the effect of operation latency, we specify an operation latency for eam
instruction class at compile-time. The compiler includes a pipeline instruction scheduler
using the algorithm in [GM86J..The scheduler reorganizes the instructions in a basic
block to minimize the execution time. If an instruction requires the result of a previous
instruction, the scheduler inserts NOP's or schedules the other independent instructions to
avoid data dependency interlock until the result is available. Since the machine never stalls
by data dependency interlock, the number of executed instructions gives the execution
time in machine cycle.

Since scheduling is limited in a basic block, the instruction-level parallelism measured
is limited within a basic block. Although particular compilation techniques such as trace
scheduling and software pipelining can exploit the interblock instruction-level parallelism,
the evaluation of these elaborate compilation techniques is beyond the scope of this thesis.

We assume that control instructions sum as branch take one cycle for any pipeline
structure in the simulation. The cost of control instructions depends on the instruction
fetch logic. A clever instruction issue logic and good branm prediction can reduce the
branch performance penalty to flush the incorrect instructions in pipeline stages. ote
that if we took these costs into account, the performance would decrease in a higher degree
of superpipelined machines.

2.3.2 Workloads

To investigate the performance of various superpipelined and cyclic pipeline machines on
scientific workload, we chose the following programs as workloads:

Inner product computation - The inner product computation is one of the most
basic computations in scientific applications. The parallel version is shown in 2.5.
Each iteration of the loop is distributed to compute the partial result of the inner
product. At the e~-d of the loop, these partial result is added to the final result in
critical section.

Linpack benchmark - This benchmark program solves a linear equation system, which
is one of the most typical scientific computations.

'The register set of FLATS2 consists of 32 global registers and 32 local registers which are switched
on procedure call, and 4 floating point registers. Since procedure calls are rarely used in scientific
computation, the local registers do not contribute to the performance much.

18

19

FEMJ3AND - The finite element method using the band matrix, taken directly from
Mori[Mas86J. The band matrix is solved by the modified Cholesky decomposition.
The program solves the following Poisson's equation in a square region:

where t. is an element right hand side vector with respect to the boundary side of
the natural boundary condition.

The program consists of two subroutines: MATGE and SOLV. The)'IATGE:\
computes an element matrix for each element to arrange the global matrix in band
form, which is solved by SOLV.

In the parallel version of MATGEN, each element matrix is computed in parallel
independently. When the element matrix is added to the global matrix, the ad­
dition is done in the critical section to make sure that the other processes do not

O~x~l

O~x~l

O~y~l

O~y~l1

-(~+~)=-l
u(x,O) = 0,
u(x,l) = x,

~(O,y) = -~(O,y) = 0,
a;;(l,y) = -a;:(l,y) = 0,

The benchmark program consists of two subroutines: dgefa and dgesl (double
precision). Dgefa factors a dense matrix by gaussian elimination into its LV com­
ponents. Dgesl solves the equation system by factored matrix. The time needed
to factor a matrix of order N is proportional to N 3

, while the time for the forward
elimination and back substitution only increases as N 2

• It is known that for matri­
ces with N> 100, LV decomposition accounts for over 90% of the execution time.
In our simulation, the order of matrix is 100.

Transforming the matrix into diagonal form is accomplished by making N transfor­
mation passes over the matrix. A pass, J(pass is divided into two parts: the first
finds the J(th pivot element and performs a row exchange if necessary, and divides
the element below the diagonal by the pivot to produce a set of multipliers. Then
the second multiplies the part of the pivot row to the right of the diagonal times
each multiplier and subtracts the product from the correspondinging part of each
row to make the J(th column consist of all zeros, except for the diagonal element.

In the parallel version, each processor can perform the second part for different rows
independently. The pre-schedule parallel DO loop construct is used to distribute
to iteration on each row to each processor. The parallelism of this part contributes
the significant performance improvement in the parallel version. At the end of this
part, all processors are synchronized by a barrier. Since the cost of synchronization
is very low in a cyclic pipeline machine, finding the pivot element and computing
the multipliers in the first part are also distributed to each processor.

For solving the diagonalized system, each step on row for the forward elimination
and back substitution must be serialized. Only computations on columns in each
step are distributed. At the end of each step, all processors are synchronized by a
barrier.

modify the matrix simultaneously. In SOLV, the modified Cholesky decomposition
decomposes the positive definite matrix faster than the LU decomposition. Like the
LU decomposition, transforming the matrix into diagonal form is accomplished by
making N transformation passes over the matrix. In a pass of transformation, the
pre-schedule parallel DO loop construct is used to distribute to iteration on column
to each processor. Since the transformation on column uses the result on the pre­
vious column, we introduce the additional vector to synchronize the data on each
column.

For solving the decomposed matrix, the synchronization vector is also used to dis­
tribute iterations on row to processors. Because the width of the band matrix is
relatively small, the synchronization on the data is effective to get more parallelism.

Appendix B contains the parallel version of programs.

2.3.3 Simulation Results

We ran the workloads to measure the execution time on different configuration and de­
gree of pipelining. The operation latencies were estimated based on CRAY-1 instruction
timing. The latencies on each degree of superpipelined processors is shown in Table 2.1.

branchstore FP
operations

load

20

Table 2.1: Latency of instructions

"1
1
1
1
1
2

register ALU
move operations

Degree of
Pipelining

FEMJCCG - The finite element method using the matrix in list vector form, also
taken from Mori [Mas86]. The matrix is solved by the ICCG (Incomplete Cholesky
decomposition and Conjugate Gradient) method. The problem to be solved is the
same as FEM..BAND. Like FEM_BAND, the program consists of MATGEN and
SOLV. MATGEN of FEM-lCCG is similar to that of FEM..BAND except that the
matrix is stored in list vector form.

In the CG method, finding the solutions and updating of the matrix are repreated
until the expected precision is obtained. In the parallel version, the part to update
of the matrix is parallelized because it consists many simple vector operations such
as inner product. As the SOLV in FEM..BAND, the decomposing and solving of
the matrix use the synchronization vector on row. Note that we can not exploit
parallelism on column because the number of elements on row is at most 3.

It is assumed that the memory system can accept a new request at each clock cycle.
The effects of cache misses and page faults are ignored.

We show the simulation results in Figure 2.6, 2.7, 2.8, 2.9. The line (N,I) indicates
the superpipelined processors. Note that loops in these programs are not unrolled. Loop
unrolling will increase the instruction-level parallelism.

10 Speedup (size = 1DO)

/f
'/

1/
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

degree of pipelining 0 N

'0 Speedup (size = 1000)

iHtBl
(l.N)

(4.N/4)

(SoN/S)

/
4 5 6 7 8 9 10 11 12 13 14

degree of pipelining 0 N

Figure 2.6: Speedup of inner product

We ran the inner product computation for 100 and 1000 in size. The execution time
for the setup of the loop and adding the partial product is the same for both sizes. The
performance of the size 1000 is improved more than that of the size 100 because the
parallelized part is larger. Note that the performance improvement of (I,N) can not
exceed the improvement of the superpipelined processor when the size is 100. The inner
product computation is used in our other workloads. The cyclic pipeline machine (I,N)
cannot improve the performance over the superpipelined machine for small vectors.

In Figure 2.7, the speedups of a superpipelined machine are limited to about two times
by the instruction-level parallelisms of these subroutine. These results match the results
reported in [Jou89].

For dgefa, nearly linear speedup can be achieved in the cyclic pipeline machine. The
reason is that the amount of codes executed in parallel is very large and delay times for
waiting at a barrier is relatively small. The number of row operations required in each
iteration decreases steadily, since only the columns that have not yet been diagonalized
need to be manipulated. For each pass, the number of row operations done per processors
is nearly balanced.

21

'0 Speedup dgefa

/_-----(N,')

/

degree of pipelining , N

'0 Speedup TOTAL

/

(l,N)

(2,NI2)
(3,NI3)

(4,N/4)

(6,N/6)

(4,N/4)

(6,N/6)

10 Speedup dgesl

(3,NI3)

(~:~~l
-~---'(2,NI2)

(l,N)

/
2 3 4 5 6 7 8 910

degree of pipelining, N

degree of pipelining, N

Figure 2.7: Speedup of Linpack

22

'0 Speedup SOLV
/

//
I (3,NI3)

/
1 14,N/4j

~:~I~

./ ~~~~~(N~.l:L)-""(l,N)

(4,N/4)

(l,N)

(6,N/6)

'0 Speedup MATGEN

degree of pipelining, N degree of pipe lining, N

'0 Speedup TOTAL

(3.NI3)

(~,NI~)

(6,N/6)

-L-~~--(l,N)

2 3 4 5 6 7 8 9 10

degree of pipelining, N

Figure 2.8: Speedup of FEMJ3AND (size = 16*16)

23

degree of pipelining, N

10 Speedup SOLV

(I,N)

24

(3,NI3)

(3,NI3)

(2,NI2)

(4,N/4)

(6,N/6)

l~:~;~l
(6,N/6)

(I,N)

Figure 2.9: Speedup of FEM...ICCG (size = 16*16)

degree of pipelining, N

degree of pipelining, N

Speedup MATGEN

/

o 1 2 3 4 5 6 7 8 9 10

10 Speedup TOTAL

For dgesl, only vector operation on columns in each step can be executed in parallel
by processors. The vector machine can execute dgesl very well. Since processors reach a
barrier in a smaller number of instructions than in dgefa, the performance is dominated
by the execution time of codes executed by one processor and the synchronization over­
head. Therefore the cyclic pipeline machine can not improve the performance comparing
to dgefa. The speedup of the cyclic pipeline machine without pipelining in an individ­
ual instruction streams is increases the performance less than that of a superpipelined
machine.

The computation of the program is dominated by dgefa. The performance of dgesl
does not contribute the total performance so much as a result.

. For FEM-BAND and FEMJCCG, the performance of each MATGEN is improved
than that of SOLV. MATGEN computes element vectors in each processors independently.
The nearly linear speedup is obtained for cyclic pipelined machines. The cyclic pipeline
machines can not exploit parallelism so much in SOLV because the synchronization cost
is large. The length of rows in the sparse matrix is so small that the granularity of
parallelism become small. Since the SOLV of FEMJCCG includes some vector operation
of longer length, the performance is not degraded according to the degree of pipelining
comparing to the SOLV of FEMJ3AND.

For relatively less parallel programs such as dgesl and SOLV, the cyclic pipeline
machine with the pipelining degree of 2-3 in instruction streams provides the best perfor­
mance. The reason is that this configuration can utilize the resources of a highly pipelined
machine the most efficiently. In a superpipelined machine, the performance increases lin­
early up to the degree of 2-3 in all programs. The linear speedups in performance imply
that the machine can utilize the resources of pipelines without loss when the degree of
pipelining increases. In a cyclic pipeline machine, pipelining of the degree which provides
the linear speedups of the performance in each instruction stream can achieve the best
performance. Therefore, exploiting the instruction-level parallelism given the operation
latency is important in a cyclic pipeline machine as well as decreasing the latency.

Finally, note that the curve for the parallel code for a cyclic pipeline machine start off
from the almost same point of the superpipelined machine of the same pipelining degree
if the synchronization cost is small. Since the parallel codes still include synchronization
codes even if they are executed in one processor, this difference indicates the overhead to
execute synchronization codes itseU.

2.4 Discussion

2.4.1 Latch ove~'head of pipelining

To increase the degree of pipelining, the pipeline latch registers must be inserted to keep
the information for each pipestage. Latch overhead limits the performance of pipelin­
ing. Kunkel and Smith [KS86] studied the effect of latch overhead in various degrees of
pipelining via simulation of CRAY-1S.

Latch propagation delay occurs in gate used to construct latches. A latch typically has
a propagation delay from clock to output of at least two gate delays. It involves significant
delay in pipelining system when the clock period becomes very short. To reduce the delay,

25

we can use the latch which performs useful logic functions. The so-called Earle latch and
the polarity hold latch can perform any combinational logic function as well as the latching
function. One of the authors proposed a new latch design, G-series gates base on EeL
[GHHKJ, which can perform any three-input logic function efficiently in gate level. II
logic functions are performed with this latch, the propagation delay can be essentially
eliminated.

The clock frequency is also limited by physical characteristics of signal propagation.
Data skew is the difference between the maximum and minimum signal propagation times
through combinational logic between pipeline stages, and in the latches that separate the
stages. The clock period must be long enough to ensure reliable latching data.

. In a synchronous system, global clock signal must be controlled to reach all latches at
the same time. When designing real processors, however, there is always some uncertainty
in the clock signal. For example, differences between maximum and minimum delays in
clock fun-out logic and differences of propagation time in different length of wire for clock
signals cause an unintentional variation in the arrival time of the clock at succeeding
latches in a pipeline. This clock signal skew also increases the clock period.

Micropipelines [Sut89] using self-timed logic are very attractive for a highly pipelined
system. Since no global clock is needed in self-timed logic, there is no problem with
clock skew. Each pipestage is connected with the two-phase bundled data convention,
and communicates with each other. Micropipelines can achieve the speed of control event
signal propagation, and provide very high throughput.

2.4.2 Memory system design of cyclic pipeline machine

The pipelined memory system is a key design in a cyclic pipeline machine. Pipelining
is a technique that can be employed for both instructions and data. Given sufficient
jobs which can be executed independently, pipelined memory allows a cyclic pipeline
machine to achieve maximum throughput even without any cache because the pipelines
are fully utilized. But for parallel programs executed by many processes, the performance
of individual instruction stream reduces the delay time to await a synchronization event.
Since caches are used to reduce the impact of memory latency on the performance of
instruction stream, they are also effective in a cyclic pipeline machine.

When a processor is highly pipelined and the clock period becomes very short, it is
necessary to issue instructions as fast as possible to achieve high throughput, so a highly
pipelined machine requires high memory bandwidth. When the instruction fetch can be
pipelined, the cycle time of memory is more essential than the access time. While the
interleaved memory and. the bank parallel memory achieve maximum throughput when
there is no access conflict, pipelining is a very effective method for achieving performance
increases with relatively small costs. If the memory access can not be pipelined to fetch
instructions, independent instruction caches for each instruction stream could provide the
same function as the pipelined instruction memory. For instruction cache, even if the
memory is pipelined, multiple pipelined caches for different instruction streams help the
increase of throughput in a cyclic pipeline machine when the cycle time of the pipelined
cache is larger than the clock period.

For data memory, a pipelined memory enables the processor to give the cache several

26

memory requests concurrently before getting any data back. In the pipelined system,
the entire system operates at maximum throughput rate of its slowest pipestages. If the
cycle time of the pipelined memory was larger than the clock period, the pipestages of
data fetch limit the throughput of pipelining, because the successive memory requests
were blocked. One way to reduce the performance degradation due to the difference of
throughput is to place queues between processor and memory. If data from cache does
not arrive in the expected time due to extra memory latency such as cache miss, the entire
processor must block to await the data.

Note that the disadvantage of a cyclic pipeline machine is that random memory access
pattern of different instruction streams decreases locality of memory reference. More

.instruction streams in a cyclic pipeline machine would need a larger cache. To balance
the number of instruction streams and the cache size, a trade-off is required between
them.

2.4.3 New technology for a highly pipelined computer

The cyclic pipeline machine was originally proposed as an architecture suited for a new
Josephson logic device DCFP. One of the distinct characteristics of Josephson logic is that
each basic logic device acts as a latch. Therefore, in this technology, high pitch, shallow­
logic pipelining can be used without the delay time and cost of pipeline latch registers.
By using the Josephson devices for the processor and the main memory (or cache), the
over all system can be naturally pipelined with the same clock time.

A highly pipelined architecture is also extremely promising for GaAs technology. The
high electron mobility of GaAs transistors results in very fast electron transit times across
their active regions and hence generates the potential for extremely short gate propagation
delay. This characteristic of GaAs devices offers high system clock rates compared to
silicon devices. A signal processor implemented with GaAs technology can often be deeply
pipelined and thus can exploit high system clock rate [GNST86].

One of the most critical differences between silicon technology and GaAs technology
is that the GaAs wafers have a higher density of defects. This results in a very low chip
yield, indirectly limits individual chip area and transistor counts. The limitation needs
the system to be divided into small components such as cache and co-processor. In GaAs
technology, the ratio of off-chip memory access speed to on-chip memory access speed
is larger than in silicon technology. The penalty for accessing off-chip memory forces
the architects to minimize the number of off-chip access, or, alternatively, to minimize
the penalties for going off-chip. The longer GaAs memory system delay does not result
from the lower raw speed.of the memory itself, but from longer relative propagation delays
between the processor and the memory. Breaking the instruction fetch stage into multiple
stages, pipelined instruction fetch can reduce these penalties.

Another major difference between silicon and GaAs is the more limited fan-in/fan-out
capability of GaAs. This characteristic of GaAs prefers the simple and regular arithmetic
functional unit design such as the ripple-carry adder. Pipelining of arithmetic functional
units can not improve the latency, but can improve the bandwidth [HF72].

27

Chapter 3

A Cyclic Pipeline Computer,
FLATS2

FLATS2 is an experimental cyclic pipeline machine implemented using silicon ECL tech­
nology. In this section, we describe the FLATS2 machine from programmer's point of
view. Its implementation and detailed description are given in [Ich87, Ich90].

3.1 The architecture of FLATS2

3.1.1 Memory and Registers

FLATS2 provides 32-bit single virtual space, as shown in Figure 3.l.
The lower half of the space is the D-space, which stores data. The upper half is divided

into the space for instructions (I-space) and the space for memory-mapped registers (GV­
space). In FLATS2, every data word has a one bit tag called the address tag, which
indicates whether a word is an address or not. The D-space is byte-addressed. Each word
(32 bits) word-aligned in memory has a bit for an address tag. The load/store operations
transfer the entire 33 bit word between memory and registers.

FLATS2 has 64 general purpose registers and 6 floating point registers. Each general
purpose register is 33 bit long, 32 bit for data and one bit for the address tag. The general­
purpose registers are divided into two groups: 32 global registers and 32 local frame
registers. They are mapped into the GV spaces by the Global Frame Pointer (GFP) and
the Current Local Frame Pointer(CFP) respectively. Local frame registers are switched
by call/return instructions to make function calls faster. The call instruction switches the
local frame by incrementing CFP and saving the previous processor status including CFP
and the program counter (PC) into the current local frame. Floating-point registers are
64 bits long.

3.1.2 Instructions

The instruction of FLATS2 is 64 bits long. The basic instruction format is shown in
Figure 3.2.

28

0.00000000

D-space

Ox80000000

I-space

O.COOOOOOO

GV-space

L- -l OxFFFFFFFF

Figure 3.1: Memory space of FLATS2

Gv-op(14)~

~

Figure 3.2: Basic instruction format of FLATS2

29

FLATS has two functional units: GV unit and SP unit. The GV unit performs
simple integer operations between general purpose registers and load/store operations.
The SP unit performs integer multiply and divide operations and floating point operations.
The GV-op and SP-op fields control the GV unit and the SP unit respectively. Most
instructions in FLATS2 are implemented to be executed in one machine cycle.

The sl, s2, s9 fields specify the general purpose registers to be accessed. The GV-op
field specifies the operations between general purpose registers or addressing modes with
the short displacement dl, d2 from -128 to 127. The displacements can be extended to
long displacements (32 bits) in the next instruction words. The displacement field may
be used as an immediate operand. The field jl specifies the relative location for in-word

.branching. It is also used for the exceptions of the BL addressing mode, to be explained
later.

GV instructions use the GV unit only. This set of instructions is basically a Load/Store
instructions set, which performs simple operations between general purpose registers,
load/store between general purpose registers and memory and control operations such as
branch and call/return. These instructions use the SP-op field for other purposes.

SP instructions use both the GV unit and the SP unit. The GV-op field specifies
addressing modes of operands, and the SP-op field specifies an arithmetic operation to be
performed by the SP unit. This set of instructions performs operations between registers
or memory operands, and stores the result to either registers or memory. They can
perform arithmetic operations directly on memory for both the read and write operands
to achieve the full through-put of memory in one machine cycle.

3.1.3 BL Addressing

The FLATS2 memory addressing called BL addressing provides architectural support for
array computations in numerical applications and run-time checking in Lisp. The BL
addressing is the integration of memory addressing and range checking. The effective
address is checked against base address and limit address in a register pair during mem­
ory access. It allows memory access and range checking to be performed in parallel by
hardware. If the effective address is within the range between the given base and limit ad­
dresses, memory access completes successfully, otherwise an exception occurs. FLATS2's
addressing modes are listed in Table 3.1.

In Table 3.1, b specifies the base and limit addresses as a pair, which is called a BL pair.
A BL pair is formed by an even/odd register pair. With BL addressing, an additional label
can be specified in each instruction. If the label is specified, control transfers to the target
specified by the label when memory access completes successfully. When an exception
occurs, the next instruction is executed to handle the exception. The BL addressing is
often used at the end of a loop to terminate the loop where the label specifies the address
of the first instruction of the loop. If a label is not specified, the exception of the BL
addressing causes a trap.

Both base and limit of a BL pair must have address tag, as well as words used to
calculate the effective address. If non-address word is used as an address entity in ad­
dressing, an exception also occurs. Only load effective address instruction and memory
access instruction can calculate an address. Thus, the calculated effective address can

30

Notation Effective Address Side Effect
xxx (Immediate)
grn, vrn (GV register)
P,Q,R,S,T,U (SP register)

b:disp(p)
b:>disp(p)
b:<disp(p)
b@i
b@>i
b@<i
b@disp
b@>disp
b@<disp
b@:disp(i)
b:disp(p)i

p + disp
P + disp
P
b + i
b + i
b
b + disp
b + disp
b
b + i + disp
P + i + disp

p += disp'
P += disp2

b += i'
b += i 2

b += displ
b += disp2

OTE: b specifies odd/even register pair as BL.
In effective address and side effect,

b denotes the base register of BL.
i specifies a register as index register.
p specifies a register as address register.
disp specifies a constant as displacement.
1) pre-modify
2) post-modify

Table 3.1: BL addressing mode of FLATS2

31

never be outside of the given range.
Note that the BL addressing works as memory protection mechanism in FLATS2's

single virtual space. At the beginning of the execution of a program, the BL pair of
the entire program space is given by the operating system. During the execution, no
address outside of the initial BL pair can be produced to avoid the memory access to
other program spaces. We call this protection scheme BL scheme.

As default, the compiler use the adddressing mode which calculates the effective ad­
dress of a memory operand by adding the address in a register and a displacement. For
the default addressing mode, the BL addressing modes which add the pointer and a dis­
placement is used with the BL pair of the entire program space as default. Figure 3.3

.illustrates the register fields in BL addressing mode.

I s1 +d1
s1 +s3

"'-51+d1

53 memory memory

l
area area

~S2+d2

s2+d2
s2+s3

Figure 3.3: Register fields for BL addressing mode

The fields 51, 52 specify pointers for each operand respectively, and the 59 field specifies
the BL pair for both operands. Both BL pairs must be equal when the instruction takes
two memory operands. If the BL pairs for memory operands are different, the fields 51,
52 specify each BL pair, 59 may specify the index for one of the operands. Because the
fields are limited for specifying the registers to be fetched, combinations of two memory
operands are restricted and not orthogonal.

BL addressing modes can involve post-modify and pre-modify side effects. The post­
modify (pre-modify) side effect is to change the base register or pointer register after
(before) the effective address calculation has been done according to the address modes.
For example, the post-modify index mode specifies the base address of BL pair as effec­
tive address and updates the base register incrementing it by the index register. Unlike
autoincrement addressing modes in conventional processors such as VAX or 68000, the
BL addressing can modify registers by any displacement in both direction. When the
modified address is outside the range of the BL pair in post-modify mode, the address

32

tag of the modified register is set to zero so it cannot be used as an address any more.
Since the address whose most significant bit is one is an address in I space or GV

space, it is treated as illegal data address in the memory addressing.

3.1.4 Cyclic Pipeline Architecture of FLATS2

The cyclic pipeline architecture of FLATS2 implements two instruction streams, which
share ten pipeline stages. The main memory is not pipelined. Each instruction stream
is called a virtual processor. The term "processor" means that the processor of each
instruction stream has a different set of program counter, registers and processor status

'including the privileged mode bit. Each processor can be used to execute independent
tasks under a multiprocessor operating system.

To synchronize among instructions streams, Load and Store (LAS) instruction is pro­
vided as an atomic operation; the LAS instruction exchanges a value between a register
and memory cell. With this instruction, several synchronization primitives such as locks
and barriers can be implemented.

A privileged instruction is also provided to cause an interrupt on every instruction
stream. The operating system uses this instruction to schedule instruction streams for
user processes.

The external interrupt from I/O devices is taken by only one virtual processor. When
interrupt or exception traps occur on a virtual processor, the processor saves the current
status in the memory. The memory area to save the status is different for each processor,
because the main memory is shared by virtual processors. ote that it is necessary
to minimize the information of the processer status in internal paths and simplify the
pipeline control to facilitate saving and restoring of the processor status. In FLATS2,
most instructions are designed to restart by retrying the instruction execution.

3.2 Programming on FLATS2

3.2.1 Numerical Computation

Numerical computations have two forms of parallelism: low-level parallelism and higher­
level parallelism. Low-level parallelism can be found between address calculations and
floating points operations, and among several floating-points operations during computa­
tions of long expressions. This kind of parallelism is sometimes called "instruction-level"
parallelism. Higher-level parallelism is exploited by multiple instruction/data streams.
For example, subsequent· loop iterations may be independent and can therefore proceed
in parallel. Each instruction stream can then execute each iteration independently. Using
the FLATS2 FORTRAN compiler, a programmer can express such parallelism to make
use of multiple instruction streams provided by the cyclic pipeline architecture.

For low-level parallelism, the BL addressing exploits a limited form of parallelism
between address calculations, loop control operations and floating point operations in
array computations. For example, the fragment of a program shown below,

DO 10 I = l,N

33

10 S = S + A(I)

can be executed by the following code using BL addressing:

; the variable S is allocated in the register T
mov" address of A(1), grO
mov" address of A(N), gr1

L: add3.d.j T,grOill<8,T,L

'The fragment computes the sum of the array. Before entering the loop, the BL pair for the
array is formed by the address at the initial element and the address at the last element.
In the loop, the BL addressing performs the following operations:

1. Check the address tags of BL pair.

2. Check whether the effective address is between base and limit of the BL pair.

3. Fetch the memory operand from the location specified by the addressing mode. In
this case, the operand at the base address of the BL pair.

4. Modify the base register as a side effect. If the modified address is outside of the
BL pair, the address tag of the base register is cleared.

5. Branch to the first instruction of the loop if memory access completes successfully.
Otherwise, execute the following instruction to terminate the loop.

At the last iteration, the address tag of the base register is cleared. The BL addressing
in the subsequent iteration detects the invalid base register to terminate the loop. Note
that all of above operations are performed in one instruction cycle. As a result, the sum
of the array is computed by one-instruction loop. The FLATS2 FORTRAN compiler
automatically optimizes such array processing code with BL addressing.

3.2.2 Run-Time Checking in Lisp

We can make use of BL addressing and address tag to reduce the cost of run-time checking
in Lisp. In Lisp, an object is represented as a pointer or an immediate value. An address
tag distinguishes a pointer object from an immediate data type such as fixnum. Lisp
generic arithmetic instructions of FLATS2 check the address tags of operands to perform
the operation accordingfo its data type.

By allocating the same types of objects in a segment, BL addressing checks the type
of a pointer object during memory access by testing which segment the pointer points
into. In dynamically typed languages such as Lisp, APL, and Icon, all data objects are
allocated dynamically at run-time, and their types must be checked at run-time. Objects
in memory are referenced indirectly through pointers. The objects can be allocated in
the heap space associated with its type. We call the heap space corresponding to each
type, a type segment. The type of the pointer can then be checked by testing which type
segment the pointer points into.

34

The compiler knows the expected data type and how to access the object in memory
through the pointer. By using BL addressing mode with the BL pair of the type segment,
the type can be checked in parallel with data access. For example in Figure 3.4, a cons
cell in Lisp is represented by two words in the cons cell segment, where BL-cons indicates.
The primitive operations car, cdr on a pointer p to the cons cell are performed by loading
from memory with BL addressing mode respectively as follows:

car(p) := BL-cons: (p)

cdr(p):= BL-cons:4(p)

Here the size of a word is 4 bytes. If p points outside of BL-cons, a trap occurs.
The predicate on list data type, listp, is implemented simply by range checking on a

pointer with the BL of cons cell segment.

I cons cell
segment

SL-cons car (p)

l
cdr 4(p)

Figure 3.4: CAR/CDR operations by BL addressing

We can check data type by range checking instead of tag checking found in the tagged
architectures such as FLATS[SHS+S7]. This scheme are not specific to Lisp, so that it
can be used more generally than other tagged architecture.

We can also make use of this scheme to check the number of arguments and multiple
return values. The design of a Lisp system using BL addressing is described in Appendix
A.

3.3 Programming Environment

3.3.1 FLATS2 System

The configuration of FLATS2 is illustrated in Figure 3.5.

35

FLATS2

ethernet

Figure 3.5: System configuration of FLATS2

FLATS2 is a back-end processor, which is connected to the host computer via Ethernet.
A user program is compiled and linked on the host, and is down-loaded into FLATS2 to
execute. The service processor (SVP) is connected to FLATS2 through the external bus
to perform I/O operations including paging and boot strapping, requested by the FLATS2
processor. The hardware debugging facility is also provided by the SVP.

3.3.2 CPX Operating System Kernel

Since a cyclic pipeline machine is equivalent to a multiprocessor from user's point of view,
FLATS2 needs a multiprocessor operating system to manage user programs.

CPX [SSFG89b, SSFG89a] is a operating system kernel designed for FLATS2. To
exploit parallelism in the operating system, CPX provides an object oriented interface for
its operating system functions. Currently, a simple operating system is implemented on
CPX to execute down-loaded programs on FLATS2.

3.3.3 FLATS2 instruction-level simulator

We have also developed an instruction-level simulator for FLATS2. All cross development
tools on host such as assembler, linker and compiler, were developed using the simulator.
The FLATS2 debugger, which is similar to the UNIX debugger adb, provides the same user
interface to both the simulator and FLATS2 machine. As well as debugging programs, the
simulator can be used to measure the performance of various configurations of the FLATS2
architecture. For example, the number of instruction streams can vary as a parameter
given by users. The simulator can measure the precise count of executed instructions.
The results of several experiments in this thesis was measured in the simulator.

36

Chapter 4

FLATS2 FORTRAN compiler

The FLATS2 FORTRAN compiler implements most of the optimization techniques in­
cluding common subexpression elimination, constant folding, code motion, and strength
reduction. To facilitate optimizations, the compiler converts the code into Static Sin­
gle Assignment (SSA) form[CFR+89] to perform machine independent optimizations ef­
ficiently and simpler. The internal code is represented in register transfer language
(RTL)[DF84], which enables machine dependent optimizations such as peep hole opti­
mization to be done in a machine independent way. The compiler generates simple code
from the intermediate code of the front-end, and then these codes are improved to more
compact instructions of FLATS2 by an extensive peep hole optimization called code recon­
struction through the optimization. For register allocation, we present a global register al­
location algorithm, which allocates registers locally using the approximation of the global
register allocation by the priority coloring algorithm. While the registers are allocated
globally, the local register allocation of our algorithm can select the good instruction to
reference the variable in memory. The algorithm can allocate variables in a small number
of floating-point registers in FLATS2 as well as the general purpose registers. In this
chapter, we describe the overview and algorithms of the FLATS2 FORTRAN compiler.

4.1 Overview

Figure 4.1 shows the organization of FLATS2 FORTRAN compiler.
The front-end does the lexical analysis, parsing, and symbol table maintenance. Like

many retargetable compilers, it compiles source code into an intermediate code, which is
similar to the PCC intermediate code [Joh81]. The front end of the FLATS2 compiler
is similar to UNIX FORTRAN 77 compiler, except that it produces special code for BL
checking in a DO loop. The BL optimization requires special handling for loop variables.
Constant folding and associative-low simplifications are also done during this pass.

The next phase expands the intermediate code into register transfer language (RTL)
code [DF84], a representation roughly equivalent to assemble code. For a non-optimizing
compilation, assembly code is generated directly during this phase instead of RTL code. In
RTL code, the instructions to be output are represented in an algebraic form that indicates
what the instruction does. It has a textual form that is used for printing debugging dumps.
Like Lisp lists, the textual forms uses nested parentheses to indicate the pointers in the

37

mized
e

Source program

t
Front-end

•
Code expansion I

I

•
Translation to SSA form

• Non-opti
cod

Redundancy elimination

Loop optimization

Redundancy elimination

•
Normalization

•
Code reconstruction

Register allocation

Code reconstruction

•
Final code generation,

Optimized code

Figure 4.1: Organization of FLATS2 FORTRA compiler

38

internal form. For example, if the instruction is represented by the assembly code

movw <DX,rO

which loads the register with the memory cell labeled X, then it might be represented
with the RTL code in list form

(set (reg 0) (name "X"))

or, in expression form

rcO] = m[X]

Any RTL code is machine specific, but the form of RTL code is machine-independent.
Most optimization is done in RTL code. The RTL code representation allows the optimizer
to optimize machine-specific code in a machine-independent way. For example, a machine­
independent algorithm can identify machine-specific common subexpressions in RTL code.
After several optimizations, it is easy to translate RTL code into machine assembly code.

In optimizing compilers, the choice of data structure directly influence the power and
efficiency of practical program optimization. To facilitate optimization, the FLATS2 FOR­
TRAN compiler changes RTL code into static single assignment (SSA) form [CFR+S9].
There is only one assignment for each variable in static single assignment form. This
transformation introduces many new pseudo register variables for each separate variable
in the original program, at least one pseudo registers variable for every assignment. The
phase single assignment is used for programs that assign to each variable only once when
running. Dynamically, a program with loops may assign to the same variable many times,
even if only one assignment appears in the program text. To attain SSA form, a new type
of assignment statement is added at join nodes of the program so that there is a dominat­
ing assignment. These pseudo-assignment will be of the form X = q,(Y,Z), which means
that if control enters along one inedge, X is assigned the value of Y, and if control enters
along another inedge, X is assigned the value of Z.

After a program has been transformed into static single assignment form, lexically
identical expressions always have the same value, no matter where they occur. A trivial
assignment in SSA form can be thought as an assertion that the two variables represent
the same value. These properties make several redundancy elimination algorithms such
as common subexpression elimination, copy propagation and constant propagation more
simple. Loop optimization performs transformation that preserves the consistency of this
representation. Without SSA form, data flow information might have to be recomputed
each time code motion occurs. After the redundancy elimination phase cleans up redun­
dancies generated by the"loop optimization, the normalization phase removes q,-functions
in join nodes.

The reconstruction phase replaces sequences of RTL codes with equivalent singletons.
The code expansion phase may emit "worst case" code, which is subsequently improved
by this phase. It makes the code expansion simpler even for the complicated instruction
set of FLATS2. This phase enables a clean separation of the code selection from the
machine-independent optimization and register allocation.

The register allocation phase maps an unlimited number of pseudo register variables
onto a finite set of registers provided by the hardware, introducing spill codes where

39

needed. After the register allocation, the reconstruction phase is executed again to com­
bine spill codes with other instructions. The final code generation phase translates opti­
mized RTL code into assembly code.

The following sections describe the compiler phases in detail except the induction
variable elimination, which is described in the next chapter.

4.2 Code Expansion Phase

The code expansion phase translates the expression trees of intermediate code produced
by the front-end into RTL code. The code expansion process is similar to the code
generation of PCC. A set of templates is given to describe the effect of the target machine
instructions. The code expansion is done by matching the tree of codes and its context
with the templates. If a template is found to match the tree and context, the associated
instruction is generated. The tree is then rewritten, as specified by the template, to
represent the effect of the generated instruction. If no template match is found, the
matching routine is called recursively for a subgoal of the computation by default rewriting
rules.

The template matching process performs case analysis for code selection. Some ma­
chines may have special-case instructions like increment and decrement instruction that
are cheaper than adds and subtracts, and autoincrement addressing mode which derefer­
ences a pointer and automatically advances it to the next item. For a "large" instruction
set, we often need different patterns for different classes of operands and instructions.

Because some FLATS2 instructions are non-orthogonal in operands, a code generator
would need to store and check contextual data to yield good code. For example, the
FLATS2 floating-point instruction can take both of read memory operands and write
memory operand for a restricted combination of addressing modes. The right choice for
any particular instruction depends on which of its operands is available in a register, and
which combination of these memory addressing modes can be used. Such machine-specific
context checking requires much case analysis, and works against a clean separation of the
instruction selection from the register allocation.

Our compiler leaves most of such case analysis to the subsequent phase. Code quality
is achieved through optimization, so the templates for code expansion need not describe
the full set of instructions. This makes the code expansion phase simpler, and reduces the
number of templates. The templates of the FLATS2 instruction set includes an orthogonal
subset with simple addressing modes.

The compiler also leaves register allocation to the optimizer. Registers are chosen
from an infinite set, and 'register assignment is performed by the register allocation phase.
The front-end and the code expansion phase allocate user-specified local variables and
compiler-generated temporaries to pseudo registers. References to global variables in the
source program is converted to reference to the labeled memory cell. In RTL code, we
consider a pseudo register to be a variable. In FORTRAN, there are no explicit pointer
variables to local variables. Only subroutine call statement must take care of aliasing
and side effects on local variables passed to other subroutines. Thus, all variables can be
thought to be unaliased in the subsequent optimizations.

40

For non-optimized compilation, register allocation is done locally in each statement,
since actual instructions are generated at this phase.

4.3 Translation into Static Single Assignment Form

In this section, we describe the basic data structure used in the compiler and the trans­
lation into SSA form.

4.3.1 Build program flow graph

The low level representation upon which optimizations are performed consists a double­
linked list of machine instructions. Each instruction entry in the list contains the RTL
code associated with the machine instruction as well as additional information required
by the optimizer and the assembly code generator.

After code expansion, the instructions in the list are partitioned into basic blocks.
These comprise the basic unit for which local data :flow information is calculated. The
control flow graph is built with a node for each basic block and an edge for each transfer of
control. We assume that all nodes are reachable from the node representing the program
entry, and that each node has at most two outedges. These assumptions are not crucial,
but they are convenient in several places1 . A join node is a node that has two or more
inedges. For simplicity, the number of inedges is reduced to one or two by inserting
dummy nodes.

A backedge of the flow graph is any edge whose destination is an ancestor of its source
in the tree defined by depth-first search [Tar70] rooted at the program entry node. (In
a reducible graph, the set of backedges does not depend on the arbitrary choices made
during depth-first search [HU74].) With backedges ignored, the graph becomes a DAG
and may be topologically sorted. Throughout this chapter, the topsort order will be the
reverse of the order in which subsearches terminate.

A loop header is any node that is the destination of a backedge. Given a loop header
h reached by backedges from nodes 51, ... , 5k, the corresponding loop body consists of all
nodes u such that there is a path of the form h:... u:... 5i that traverses no backedges.
An edge from a node in the loop body to a node not in the loop body is an exit edge of
the loop. The destination of an exit edges is an exit node of the loop.

There are several ways to compute the loop body and loop exit edges for each loop
without tracing path. (In a reducible graph2 , the edges that enter the loop are just the
inedges of the header that are not backedges.) We first determine the nodes within the
loop with header h by searching the graph, starting at the sources of the backedges to h.
The search proceeds backwards (from destination to source), and ignores backedges. The
search is terminated at each branch that reaches h or previously visited node. During the
search, each node visited is marked as being in the loop body for h. Exit edges can be

1Except for the computed GOTO statement, a multi-way branch can be reduced by a two-way branch
in FORTRAN.

2We assume only reducible graphs for optimization. The current version of the compiler does not
optimize for nonreducible flow graphs.

41

determined by examing nodes in the loop body for any outedges that do not go the other
nodes in the loop body.

4.3.2 The graph for DO loop

Several transformations require to move instructions "before the header". We therefore
give each loop L a landing pad representing the entry to the loop from outside. The
landing pad has only the header as successor, and all edges which formerly entered the
header of L from outside L instead enter the landing pad. Edges from inside loop L to
the header are not changed. Because landing pads are new nodes added for every loop
header, no node will be both a landing pad and a loop header. Initially, the landing pad
is empty, but transformations on L may place instructions in it.

Landing pad insertion is illustrated in Figure 4.2 for a DO loop.

Figure 4.2: Flow graph of DO loop

The front-end duplicates the TEST node, and make the loop look like an until loop
guarded by a TEST. A while loop, whose header has an outedge that is an exit from the
loop, can be converted to an until loop by duplicating the TEST header node [CLZ86].
Making DO and while look like until enables more extensive optimizations.

4.3.3 Translate to SSA Form

In RTL code, each statement is an instruction expressed in RTL. We rename variables
throughout the program to put it into static single assignment (SSA) form. In SSA form,
each variables is assigned to exactly once in the program text. Special statements called

rP-functions are added at join nodes to indicate that a variable is assigned the value of one
variable (if control enters along one inedge) or another variable (if control enters along
another inedge).

Each mention of a variable V will be replaced by a mention of one of the new names
for V. After renaming, every use for a variable V will be reached by exactly one definition
of the variable. For convenience, the various new names will be denoted Vi where i is an
integer. The example of renaming is illustrated in Figure 4.3.

X,= "(X,,X,)

Y = x + 1 Y , = x, + 1

Figure 4.3: Renaming of variable in SSA form

Algorithm 4.1 computes SSA form for the reducible flow graph. This algorithm is
essentially from [RWZ88], where live variable information is not used. Live variable in­
formation prevents irrelevant rP functions at the loop header.

Algorithm 4.1. Translation to SSA form.

Input. A flow graph with live variable information.

Output. A SSA form.

Method.

1. At the start of the program, all variables are undefined.

2. Visit the nodes in topsort order, performing the following steps for each node:

(a) ·If the node is a loop header, then insert a rP function for each live-in variable
V. The target of the assignment is a new name generated for V. The first
operand of the rP function is the name of V that reaches the node from the
landing pad. Another operand for the backedge will be filled in later.

(b) If the node is a join node and it is not a loop header, then insert a rP
function for each live-in variable V for which two different names reach
the inedges of the node. The new assignment has the form Vk = rP(Vi, Vj),
where Vi,Vj are two names of V that reach the left and right edges of the
node and Vk is a new generated name for V.

(c) For each assignment of V, generate a new name for V to replace it. This
name is the one that reaches the point p immediately after the assignment,
and an other point q such that every path from p to q is free of assignments
to the name of V.

(d) For each use of V in a statement, replace it with the name for V which
reaches the statement. If the name of V is undefined, it means that an
undefined value will be used.

(e) If the node is the source of a backedge, then the names that reach the
bottom of the node are used to fill in the operand of ¢> functions at the
destination of the backedge.

This algorithm computes SSA form in time O(E*V) for a flow graph with E edges that
describes a program with V variables. Although it sometimes uses extraneous ¢> functions
in loop headers, such redundancies are removed in the redundancy elimination phase.
Cytron [CFR+89] proposes a more efficient algorithm using dominance frontiers.

The representation of simple data flow information (de/-use chains) is more compact
through SSA form. If a variable has D definitions and U uses, then there can be D*U
def-use chains. When similar information is encoded in SSA form, there can be at most
E def-use chains, where E is the number of edges in the flow graph [WZ84].

4.4 Redundancy Elimination

In this section, we present several redundancy elimination algorithms to optimize code
on SSA form. The SSA form makes conventional optimizations simpler than the conven­
tional representation of code without SSA form. The redundancy elimination includes
the following optimizations:

• Constant propagation and constant folding.

• Global common subexpression elimination.

• Copy propagation.

• Loop-invariant code motion.

4.4.1 Elimination of Trivial Assignments and Common Subex-
pression

Assignment statements that have trivial right-hand side (a single variable or a constant)
have a special meaning in SSA form. Assignment statements whose right-hand side is a
variable can be thought of as assertion that the two variables represent the same value.
A trivial assignment statement, X = c with a constant c, means that the value of X
is c at any use. Given a trivial assignment X = Y, we replace every occurrence of one
variable (including those in ¢> function) with the other. This simple process works as copy
propagation, while the standard copy propagation needs the data-flow computation for
copy assignments.

44

Thanks to SSA form, identical computations in the text produce the same value. It
makes the global common subexpression elimination more simple. The matching compu­
tations are really equivalent in SSA form. If statement 51 appears on every path from
the entry to statement 52 in the flow graph, 51 dominates 52. If there are two statements
X = E and Y = E where E is a common expression, we replace Y = E with Y = X when
statement X = E dominates Y = E in the flow graph.

The initial list of trivial assignments to be removed includes any statements that
appear originally in the program. There may also be several computations that happen to
have identical right-hand sides initially. Renaming of operands in expressions may make
the right-hand side become identical with the right-hand side of another computation.
Elimination of common subexpression creates a trivial assignment to be removed, which is
added to the worklist of trivial assignments. Removal of trivial assignment and elimination
of common expression feed each other until the worklist are empty.

Renaming of the operands of </> functions may create a trivial assignment as follows:

• X= </>(Y, Y) is replaced by X= Y.

• X= </>(X, Y) is replaced by X= Y.

In both cases, the new assignment is added to the worklist of trivial assignments.
To facilitate these replacements for trivial assignments, we maintain a list of uses of

each variable in the program. After the replacement, the use list of the replaced variable
is concatenated to the use list of the other variable. A definition statement DEF(X) of a
variable X is an assignment statement where X is defined. By the definition of SSA form,
X is defined by exactly one statement. A use list USE(X) is a set of statements where X
is used as operand.

Algorithm 4.2. Elimination of trivial assignment and common subexpression in
SSA form.

Input. A flow graph in SSA form with DEF(X) and USE(X) for each variable.

Output. A revised flow graph.

Method. Removal of a trivial assignment from the worklist W is performed until
W is empty, starting with the initial list of trivial assignments. The algorithm
is sketched in Figure 4.4. Common subexpressions are searched in each use list,
when removal of trivial assignments changes the use list. The details of eliminating
common expression,s are as follows:

1. Find statements which have identic:al computations in right-hand side within
the use list, say Vi = E where E is a common expression and i runs from 1 to
n.

2. Replace each of the statement by a trivial assignment of the form Vj = Vi if
the assignment of Vi dominates the assignment of Vj'

3. Put these trivial assignments on the worklist W for removal.

45

W=0
/* collect initial trivial assignment */
for each variable X do

eliminate common subexpressions in USE(X)
if DEF(X) is a trivial assignment then W = W + DEF(X)

end

while W is not empty do begin
take a statement X = Y from W;
for each statement S in USE(X) do

replace X with Y;
USE(Y) = USE(Y) +USE(X);
USE(X) = 0;
delete DEF(X);
eliminate cornmon subexpressions in USE(Y);
for each statement S in USE(Y) do begin

do constant folding on S if possible
if S is a trivial assignment then put S into W

end
end

Figure 4.4: Redundancy elimination

The 1> functions distinguish values of variables transmitted on distinct incoming control
flow edges. It enables a global value numbering algorithm to track redundant computations
access flow graph paths. The redundancy elimination by Rosen [RvVZSS] eliminates global
redundancies involved in a loop using the global value numbering approach. Our algorithm
is rather conservative one and eliminates such redundancies in loop invariant code motion
of the separate phase explained in the next subsection.

4.4.2 Loop Invariant Code Motion

Code motion is an important transformation which decreases the execution time. This
transformation takes an expression that gives the same result at eyery iteration of a loop
and places the expression in the landing pad.

A loop invariant stat~'ment is a statement whose operands are either constant or have
all their reaching definitions outside the loop .. Our algorithm starts with assuming that
all variables are invariant. Since each variable has exactly one definition in SSA form, we
can find loop variant variables by marking all variables defined in the loop as "variant".
The variable without mark is the loop invariant variable. Once we find the statement
whose operands are loop invariant, the statement is moved into the landing pad and the
variable defined by the statement is unmarked.

Algorithm 4.3. Loop·invariant code motion in SSA form.

46

Input. A Loop L in SSA form.

Output. A revised loop.

Method.

1. Mark "variant" those variables defined within L.

2. Repeat the following step until at some repetition no code is moved to the
landing pad of L:

(a) Find loop-invariant code for each statement of the form X = E. If all
operands of E are either constants or unmarked variables, E is a loop in­
variant expression 3.

(b) If Xis a variable, move the statement in the landing pad. After movement,
the variable is unmarked.

(c) If X references memory, generate a new name Y to replace the expression.
Put a new statement Y = E in the landing pad.

This algorithm may increase the execution time a bit when some nodes where state­
ments are moved do not dominates all exit nodes of L. To prevent this situation, we have
to add the condition that the moved statement dominates all exit of L.

When loops are nested, loop-invariant code motion is performed from the inner loop.
Since the algorithm does not use data-flow information such as use-def chains, it is not
necessary to maintain data-flow information for each loop. The SSA form nicely sum­
marizes the conditions relevant to code motion. An advanced constant propagation algo­
rithm is proposed to delete branches to code proven unexecutable at compile-time [WZ84].
Without SSA form, data-flow information may have to be recomputed each code motion
occurs.

Loop invariant information computed in this phase is also used for the loop induction
variable elimination, described in the next chapter.

4.4.3 Alias Analysis in Loop

If an expression includes a memory reference, we need alias analysis to determine whether
the expression is invariant in the loop. For example, in the following loop

DO 10 I = 1,N
10 S = AU) + B(I)

AU) is a loop-invariant memory reference. The value can be referenced instead in the
register loaded from the memory reference in the landing pad.

In RTL code, reference to a global variable is represented as reference to the memory
cell. If the global variable has no alias in the loop, it can be assigned to a register in the
landing pad to reference its value in the register within the loop.

3Some division statements must not be computed in the landing pad as an invariant code. For example l

if a division x/y in a loop preceded by a test to see whether FO, the division moved in a landing pad
may cause a division by zero unintentionally.

47

Although the presence of pointers usually makes data-flow analysis more complex, the
SSA form enables us to track the effect of pointer assignments across the flow graph. We
make some assumptions about arithmetic operations on pointers. If p points to a memory
area, addition or subtraction by an integer produces a pointer value pointing somewhere
in the same memory area. Other arithmetic operations on pointers produce a value that
is not pointer, and sometimes meaningless. Although the programmer can move a pointer
from one array a to anther array b by adding to the pointer, such action would depend
on the particular implementation to make sure that the array b follows a in storage. The
optimization assumes the programmer does not depend on the particular order for data in
memory. In FORTRAN, data is grouped in the memory area of a common block labeled
with its block name.

If p receives the value pointing to a memory area, the SSA form makes sure that p

points to the memory area at every use of p. The </> function implies that the variable may
have both values of operands transmitted on distinct inedges. The following algorithm
computes the set REF(p) of memory area to which the pointer p may point.

Algorithm 4.4. Alias computation in SSA form

Input. A flow graph in SSA form with DEF(p) for each pointer.

Output. REF(X) for each pointer.

Method. We use the recursive function FINDREF(p) of Figure 4.5, which com­
putes REF(p) for each pointer p. Before each call of FINDREF(p), all pointers are
unmarked "visited" to terminate recursive calls.

During computation we can use REF(p) for search on p to save the time if REF(p)
is already computed. While the algorithm computes REF(p) in time O(E * V) where E
is the number of edges and V is the number of pointers.

An indirect assignment by p may modify the memory area of REF(p). The set
of modified memory area in the loop is the union of the memory area modified by all
statements. If p is a loop-invariant variable and the memory area of REF(p) is not
modified in the loop, then the memory reference by p gives the same value at every
iterations. As the code motion of loop-invariant variables, the memory reference to the
memory area which is not modified in the loop can be moved in the landing pad. It
sometimes enables other expressions to move in the landing pad. Since unlike variables in
SSA form, the memory area can be modified by more than one assignments in the loop,
the data-flow computation is needed to move an assignment to memory.

If no alias is found for a global variable within the loop, it can be assigned to a register.
The reference to the glooal variable is replaced with a compiler-generated variable, and
codes are inserted to load its value into the register in the landing pad and update the
global variable at each exit node. This transformation reduces expensive memory access
for the global variable in the loop. Since reference to an array element with constant
index is represented as reference to the memory cell as same as the global variable, above
transformation can be applied for such memory reference.

Alias analysis across procedure calls requires interprocedural information; interproce­
dural analysis is not performed in our compiler. If the loop contains calls, we assume that
they could modify any memory area.

48

function FINDREF(p)
begin

if p is "visited" then return 0 /* empty set */
mark p "visited";
if DEF(p) is a formp = A± c

where A is a label of memory and c is an integer offset then
return {A};

if DEF(p) is a form p = q ± c
where q is a pointer and c is an integer offset then
return FINDREF(q)

if DEF(p) is a form p = q,(q, r) then
return FINDREF(q) U FINDREF(r)

else
the pointer p is meaningless;

end

Figure 4.5: Alias computation

4.4.4 Normalization of SSA form

After optimization on SSA form, the normalization phase eliminates q, functions. Every
computation of the form X= q,(Y, Z) is replaced by an assignment X= Y on one of the
entering branches, and by X= Z on the other. Each assignment is placed at the end of
the code.

Many variables can be merged together by using their live range information. If two
variables have disjoint live ranges, then they can be merged into one variable. If each live
range for the variables in X= q,(Y, Z) is disjoint to each other, this variables is replaced
with one variable so that no additional statement is placed. An induction variable in the
loop is often the case. The live range information is also used for coalescing the source
and target in statement to recognize the simple increments of variables.

4.5 Code Reconstruction

While the object code optimizer is machine independent and general, peephole optimiza­
tion is often machine spedfic and ad hoc. The RTL code avoids machine dependencies in
peep optimization.

The FLATS2 instruction set is too complicated to emit optimal code by simple pattern
matching in the code expansion phase. This phase replaces sequences of instructions with
equivalent "larger" instructions to achieves code quality. Because most instructions are
executed in the same time in FLATS2, larger instructions are executed faster than the
sequence of simpler instructions. Since final instructions are reconstructed from simpler
instructions, we call this phase code reconstruction. This phase is called before and after

49

the register allocation phase.

4.5.1 Combining Instructions

The code reconstruction phase seeks a pair of instructions in RTL code that can be re­
placed with singletons. It symbolically simulates these instructions to learn their combined
effect and searches for an instruction with this combined effect by machine-dependent rou­
tines, called instruction recognizer. If it finds one, it replaces the original instructions with
the singleton. The code reconstruction phase computes the combined effect of two instruc­
tions by substituting the values assigned to cells in the first for occurrences of those cells
in the second. For example, consider the following instructions;

r[1] = m[r[O]]
r[2] = r[2] + r[1]

where r[1] is dead at the second. Their combined effect is computed by replacing the
r[1] in the second instructions with the value assigned to r[1] in the first, and then
concatenating the two effect. This yields

r[2] = r[2] + m[r[O]]

If r[1] is live after the second instruction, its replacement cannot be performed. A
conventional peep hole optimizer correct only those sequences that match a few hand­
written, machine-specific patterns. The code reconstruction phase combines all related
pairs in machine-independent manner.

This replacement must treat an assignment to the program counter as a special case.
Since operations for these registers such as branch or push/pop on the stack are defined as
operators in RTL code, the program counter and stack pointer does not appear explicitly.
The condition codes can not be used explicitly.

For autoincrement addressing modes, we treat a simple increment instruction specially.
For example, the following codes can be combined into an autoincrement addressing mode.

r[2] = r[2] + m[r[1]]
r[1] = r[l] + C

yields

r[2] = r[2] + m[r[1]]; r[lJ = r[l] + C

where these assignments are done in parallel 4. Such a simple increment is recognized in
the normalization phase of SSA form by live range information.

Some FLATS2 instructions can perform operation directly on memory operands, and
store the result in memory in some operands combinations. The code expansion phase

4In RTL code, the code for autoincrement addressing is expressed as mer [1] = r [lJ + cJ.

50

emits code using only one memory operand to simplify code expansion process. The
reconstruction phase combines a store operation with other instructions. It also combines
an increment with memory addressing in other instructions to make use of autoincrement
addressing mode of the BL addressing. Even though the available operand combinations
of the BL addressing modes are non-orthogonal because of a fixed length of the FLATS2
instruction, the case analysis is done in machine-independent manner.

Davidson and Fraser's YC compiler [DF84] uses a similar approach on peephole opti­
mization by using the table which is automatically generated by the machine description.
We used a function instead, which is given by a compiler writer, to recognize the instruc­
tion. This phase is retargeted by supplying a machine-dependent instruction recognizer.
As well as adjacent instructions in text, the code reconstruction phase moves an in­
struction as needed to increase the chance of combination using a machine instruction
dependency graph.

4.5.2 Instruction Reorganization

Since a related pair of instructions may be separated by other instructions, instruction
reorganization increases the chance of combination for such a pair. The reorganization
problem has been discussed by many researchers [HC83] [TTT81], related to compile-time
pipeline scheduling and compacting of microcode. Like peephole optimization, microcode
optimization improves the code by compacting the vertical microoperations into horizontal
microinstructions where these operations do not overlap in resource utilization. The
peephole optimization, however, often deals with vertical aspects of instruction ordering,
involving data dependencies between instructions. It works as a part of the compiler like
pipeline scheduling. Possible combinations of peephole optimization is not dynamic, while
pipeline reorganization concerns interlocks whose effect is dynamic since the context of
a particular instruction determines whether or not that instruction is legal in its current
position.

Clearly, instructions in a program cannot be reordered arbitrarily. Certain instruction
must remain ahead of other instructions in the resulting code sequence for the overall effect
of the program to remain unchanced. To express the constraint to rearrange instructions
without compromising correctness, we construct for each basic block a directed acyclic
graph (DAG) whose nodes are the instructions in the block and whose edges represent
serialization dependencies between instructions. An edge from instruction i to instruction
j indicates that i must be executed before j to preserve correctness. The DAG takes into
account all serialization constraints, including register dependencies, memory dependen­
cies, control transfer instructions such as calls and branches. If the variable which is live
at the end of the block, we allocate a special node as the successor to represent the liveness
of the variable. An example code sequence and its dependency DAG are shown in Figure
4.6.

We serialize definition vs. definitions on any particular resource such as a register to
simplify selecting an order without dead lock. Our DAG is the same as that used for the
reorganization for pipeline scheduling proposed by Gibbsons [GM86].

As long as the instructions in the basic block are reordered in some topological sort
order of the dependency DAG, the overall effect of the block is the same as its execution

51

(1) r[i] = m[X]
(2) r[i] = r[l] + 1
(3) r[Z] = r[i]
(4) r[2] = m[Y]
(5) r[3] = r[i] + r[2]
(6) reX] = r[3]

m[Zj-r[lJ

(a) code (b) dependency DAG

Figure 4.6: Dependency DAG

in the original order. The algorithm reorders the instructions to find a related pair of
instructions to be combined with dependency DAG.

Algorithm 4.5. Code reconstruction with dependency DAG.

Input. A basic block with its dependency DAG.

Output. A revised basic block.

Method. Repeat the following steps until all instructions are reordered:

1. An instruction is a candidate for reordering if all its immediate predecessors in
the DAG have been reordered.

2. Among the candidates, select an instruction. (We can select the instruction
which is executed first in the original order.)

3. Combine the selected instruction with its successor in the DAG if possible.
Since the definition is dead after all its uses, the definition have to be used
by only one successor. If the instruction is combined to the other instruction,
delete it from.the DAG. Otherwise, reorder the instruction.

Since the dependency DAG is computed in O(N) where N is the number of instructions
in the basic block, the algorithm reorders the instructions in O(N).

4.6 Register Allocation

The global register allocation is successful in the machine where the instruction set is
regular and a large number of registers are available. FLATS2 has a few floating-point

52

registers and their usage is restricted. Our register allocation algorithm allocates these
registers locally in each basic block using the approximation given by the proceeding global
register allocation. The local register allocation can select the instruction to reduce spill
code for the registers. Then it inserts spill codes to keep consistency between basic blocks.
It can allocate a large register set as well.

4.6.1 Global Register Allocation

Register allocation can be viewed as the process of mapping an infinite number of variables
into the finite set of registers provided by a hardware. An elegant formalization of this
problem is the graph-coloring approach first used by Chaitin [Cha82]. In this method,
the nodes in an interference graph represent variables that must be assigned to registers.
Two nodes in the graph are connected by an edge if the variables interfere with each other
in such a way that they must reside in different registers. A coloring of a graph is an
assignment of a color to each node of the graph in such a manner that each two nodes
connected by an edge do not have the same color. In coloring the interference graph, the
number of colors used for coloring, r, is the number of registers available for use in register
allocation.

The standard coloring algorithm to determine whether a graph is r-colorable is NP­
complete. Many graphs cannot be colored because the minimum number of colors required
(the chromatic number) is greater than the number of available registers. A practical
register allocator does not look for an optimal coloring, but rather for a correct and
feasible one. When a graph's chromatic number exceeds the number of hardware registers
by causing some variables to reside in memory, rather than a register, the allocator decides
which variables to spill to enable a coloring.

The allocator operates on RTL code, which is machine-dependent, rather than a
machine independent intermediate representation. We refer to both user-defined and
compiler-generated temporaries as "variables" in this section, because RTL code makes
no distinction two, which are represented by pseudo-register variables.

The FLATS2 FORTRAN compiler uses a graph-coloring algorithm called priority­
based coloring, developed by Chow [CH84]. Each variable is assigned a priority that is
the estimated additional cost if the variable resides in memory rather than in a register.
Variables with more than r are assigned to registers in decreasing order of priority. A
variable that cannot be assigned to a register because ror more of its neighbors have been
colored must be spilt and spill code introduced. A variable is spilt by dividing the set of
blocks in which the variable is live into two sets and allocating separately in each.

4.6.2 Register Allocation on FLATS2

Tbe global register allocation is successful for a large register sets. FLATS2 has 64 general
purpose registers (GV registers), which consists of 32 global registers and 32 local frame
registers. Four registers of the local frame registers hold a return address and procedure
status informations. The register allocator uses 15 of the 32 global registers. Integer and
address variables are allocated to GV registers.

53

Because the local frame registers are saved/restored by the CALL/RETURN instruc­
tions, a variable whose live range includes procedure calls should be assigned to a local
frame register. Such variables belong to a different class of registers. The coloring algo­
rithm can easily extend to the case of multiple register classes. The interference graph
will only give interferences between variables of the overlapped classes.

The FLATS2 register set has the following problems on register allocation:

1. A BL pair must be allocated in an even/odd GV registers pair. The conventional
global register allocator does not take into account allocating overlapping registers
of different sizes.

2. Some instructions operate only on registers. A pointer used in addressing mode must
also be in a register. To ensure that it is always possible to load the temporary to
a register, the allocator needs to reserve registers for this purpose [LH86].

3. For the floating-point registers, there are several restrictions on their combination
of operands. The register usage is also constrained due to hardware restriction. For
example, the target of the multiplication instruction must be P register or Q register
in the floating-point register set, or memory. The floating point registers are divided
to different classes according to their restrictions. As a result, each register class
contains one or two registers. If the class contains only one register, the variable
allocated by global register allocation must be spilled out frequently at each time
other instruction uses other variables in the same class.

4. The floating-point instructions can operate on memory operands directly. Since
most floating-point instructions are executed in one cycle even with memory operands,
variables can sometimes reside in memory. Because memory operands depend on
the operand combination of each instruction, the global register allocation can not
take code selection into account.

While the global register allocation can make good use of a large registers set, it often
fails for a small registers set. If only one registers is available and two variables need
the register, the conflict between these register should then be resolved locally. The local
register allocation can select "better" instructions to reference the variable efficiently on
register or memory.

4.6.3 Local Register Allocation with Global Approximation

The global register allocation can be thought as an approximation of register allocation.
The global register allocation is performed by the priority coloring algorithm before reg­
isters are allocated actually by the local register allocation. For each variables, the global
register allocation returns the register assigned globally at each basic block.

Our algorithm allocates registers to variables locally in the basic block according to
the approximation given by the global allocation phase, and then inserts spill codes to
keep consistency between basic blocks. During the local allocation process, we maintain
two tables to keep track of the status of registers and variables. The register status table
keeps track of which variable is currently in each register. We consult this table whenever

54

a new register is needed. We assume that at the beginning of the block the registers
contain the value of variables allocated in the global allocation phase. For each variable,
we maintain the variable status table that keeps track of the location where the current
value of the variable can be found at run time. The location might be a register, a stack
location or a memory cell. Before register allocation, the home location is allocated for all
variables to make sure that the program is executable without using the optimizer. The
status includes other information needed to update the home location of the variable.

The local allocation phase assigns a register for each variable, and computes the fol­
lowing information used to keep consistency between basic blocks in the subsequent phase:

• available_expeeted[nJ - a set of variables whose values the local allocation phase
expects to be available in the registers assigned in the global allocation phase at the
beginning of block n.

• available_gen[nJ - a set of variables which reach at the end of block n and whose
values are available in the registers assigned in the global allocation phase at the
end of the block.

• available-ihrough[nJ - a set of variables whose values are available in the register
assigned in the global allocation phase at the beginning of block n, and which do
not reach the end of the block or whose values still reside in the register at the end
of the block.

• modified_gen[nJ - a set of defined variables in block n which reach the end of the
block and whose home locations are not updated with the modified value.

Actually, since these are subsets of variables, we can use a bit vector representation
for these sets, and the amount of space used will not be prohibitive.

Algorithm 4.6 Local register allocation with global approximation.

Input. A basic block and its global register allocation.

Output. A revised basic block with registers allocated locally, and available_expected[n},
available_gen{n}, availabldhrough[n} and modified-gen{n}.

Method.

1. If a variable v is assigned to the register r in the global allocation phase at
the beginning' of the basic block, set the variable status of v and the register
status of r to indicate that the value of v resides in register r. And then mark
v "expected" in the variable.

2. For each instruction i, perform the following actions:

(a) For each use of v in i, find the location of v. If v is found in a memory cell
and the instruction can perform direct operation on the memory operand,
replace the use of v with the memory operand. Otherwise, find the reg­
ister r for v by calling REFREG(v) to determine the register where the

55

function REFREG(v)
begin

if v is found in a register r' then begin
if v is marked "expected" then

add v to available_expected[n];
r = r'
end else begin

v is found in a memory cell mj
r = GETREG(v);
insert the load instruction "MOVm, r"

before the current instructionj
end
return r

end

Figure 4.7: Function REFREG

function GETREG(v)
begin

if v reside a register r then return rj
if v is assigned to r' in the global allocation phase

then r = r '
else begin

choose an appropriate register r" for Vj
r = r"

end
if r is used by other variable v' then begin

if v'is marked "modified" then
update the memory cell for V/j /* spill out */

clear the status and mark for r and 'v
end
update the tables for v and r to associte r with Vj
return r

end

Figure 4.8: Function GETREG

56

function DEFREG(v)
begin

if v is found in a register r' then begin
if v is marked "expected" then

unmark v "expected";
r = r'

end else begin
/* v is found in the home location */
r = GETREG(v)

end
mark v "modified" j

return r
end

Figure 4.9: Function DEFREG

instruction should be performed, and then replace the use of v with r. The
function REFREG calls the function GETREG which returns the register
to hold the value of v for the instruction. The function GETREG updates
the tables to keep track the current status for variables and registers.

(b) If the use of v is the last use and its value resides in the register r, update
the tables to indicate that r is not used any more. If the variable is marked
"expected", put it in available..through[n]

(c) For a definition of v in i, find the location of v. If v is found in a memory cell
and the instruction can perform direct operation on the memory operand,
replace the definition of v with the memory operand. Otherwise, find the
register r for v by calling DEFREG(v) and then replace the definition of
v with r. The function DEFREF is slightly different from REFREG.

3. At the end of the basic block, if the value of a variable does not reside the reg­
ister assigned in the global allocation phase and the variable is marked "modi­
fied", update the corresponding home location with the register content. If the
variable is dead on exit, the register for the variable is removed in Step 2(b).
Then, compute available_gen[n] and modified_gen[nJ. If the value of a vari­
able resides in the register assigned in the global allocation phase, the variable
is in available_gen[n). The variable marked "modified" is in modiJiecLgen{n}.
If the variable is still marked "expected", put it in available_through[n].

If a variable is not allocated to registers in the global allocation phase, the function
GETREG must choose an appropriate register for the variable. We may choose the
least frequently used register or the least recently used register as a candidate [Fre74J.
The function GETREG returns the register assigned in the global allocation phase if
any. Although we may not follow the approximation by the global register allocation, the
globally optimal solutions sometimes belong to the local optimal solutions.

57

4.6.4 Inserting Spill Code

Once the local register allocation is done for each basic block, we insert load/store codes
to keep consistency between basic blocks. A live range of a variable is an isolated and
contiguous group of nodes in the flow graph in which the variable is defined or referenced.
We define an available range of the variable as a subset of the live range in which the
value of variable resides in the register. The following sets of variables are computed to
find the available range for each node:

• available...in[nJ- a set of variables whose value is available in the register assigned
in the global allocation phase at the beginning of block n .

• available_out[n] - a set of variables whose value is available in the register assigned
in the global allocation phase at the end of block n.

These sets can be computed by the following data flow equation, which is similar to
that for available expression computation:

available-Out[n]

(available..in[n] n availabldhrough[n] n live-Out[nJ)

Uavailable_gen[n]

available..in[n] = n available-Out[m]
m a predecessor of n

for n is not an entry node

available..in[n] = 0
for n is an entry node

The live variable information, live_out[n]' is used to remove the variable in avail­
able_through[n] which does not reach the end of the block.

If the value of the variable is changed in the intervening code where it resides in
register, the home location of the variable must be updated with the register contents
at the end of the code segments unless it is dead on exit. The live range of the variable
may be split into severaravailable ranges. Figure 4.10(a) shows a region of code in which
variable X and Yare to be allocated in the register. Figure 4.10(b) and (c) show possible
allocation result and its available ranges with spill codes.

If the local allocation expects the variable to be loaded at the entry of the available
range, the load instruction is needed to load the value into the register. If the modified
variable in register is live at the exit of the available range, the value must be spilled into
the home location. If the available range of the variable covers the whole live range and
the variable is used locally in the procedure, no spill code is needed because the variable
is dead at every exit.

58

y

x

Y

X

Y

!X spilled

1Y spilled

store X

load X store Y

load Y

(a) live range (b) possible allocation (c) available range

Figure 4.10: Example of register allocation

The local allocation phase can compute local information only in the basic block. If
the value in the register is changed in some block, its value may be spill out at the exit
of the available range to which the node belongs. The following set is computed to know
where the value in the register should be store into the home location:

• modified_out[n] - a set of variables whose values are available in the registers
assigned in the global allocation phase at end of block n and its values are different
from the values in the home locations.

The set modified-out[n] is computed by propagating modified_gen[nJ along with the
path of the available range.

Algorithm 4.7. Available values in registers

Input. A flow graph with available_gen[n], available-.through[n] and
modified_gen[n] computed by the local allocation phase for each node n, and live
range information.

Output. availablein[n] and modified-out[n] for each node n.

Method. Execute the program in Figure 4.11 and Figure 4.12.

The next algorithm inserts spill codes to keep consistency between basic blocks. By
the set available..expeeted[n], it checks whether the value in the register is actually needed
Or not. If the global allocation phase allocated the variable in different registers for two
blocks, the value on the register must be reloaded to the other register.

Algorithm 4.8 Inserting spill codes at basic block hounary.

59

/* for entry node no */
available..in[no] = 0;
available_out[nol = available_gen[nol

for each n '" no do
available_out[n] = available_gen[n] U available_through[n];

change = true;
while change do begin

change = false;
for n '" no do begin

available..in[n] = nm is a predecessor of n available_out[m];
out = available_out[n];
available..out[n] =

(available..in[n] n availabldhrough[n] n live_out[nJ)
Uavailable_gen[n];

if available_out[n] '" out then change =true
end

end

Figure 4.11: Available registers computation

for each n do
modified_out[nJ = modified-gen[n];

change = true;
while change do begin

change = false;
for n do begin

in = Um is a predecessor of n modified_out[m];
out = modified..out[n];
modified_out[n] =

(in n available..in[n] n availabldhrough[nJ)
Umodified_gen[n];

if modified..out[n] '" out then change =true
end .

end

Figure 4.12: Modified values propagation

60

Input. A flow graph with available_in[n], and modified_out[n] for each node n. In
each block, registers was allocated locally by Algorithm 4.6.

Output. A flow graph after register allocation.

Method. For each block of node n and each variable n, execute the program in
Figure 4.13.

save = false;
load = false;
if v is in available..in[n] then begin

if v is in available_expected[n] or
v is in availabldhrough[n] then begin

find register r for v at the beginning of n;
for each m a predecessor of n do begin

find register r' for v at the end of m;
if r # r' then begin

save = true;
load = true;

end
end

end
if v is not in available_through[n] then save = true

end else begin
save = true;
if v is in available_expected[n] then load = true

end
if save then

for each m a predecessor of n do
if v is in modified_out[m] then begin

insert the store instruction to
update home location of v;

remove v from modified..out[m]
end

if load then
insert the load instruction to load the value into the register

end

Figure 4.13: Inserting spill code

61

Chapter 5

Loop optimization with BL
Addressing

In this chapter, we describe the code generation for the BL addressing, which FLATS2
provides to reduce the execution time of array computation in numerical workload by
integrating memory addressing and range checking. To make use of the BL addressing,
we need an extensive induction variable elimination to access an array by incrementing
the pointer by a constant. Although it may generate too many temporaries for induction
variables, our induction variable elimination finds optimal induction variable elimination
by taking into account the cost for spilling these temporaries to memory.

5.1 Addressing mode for Numerical Computation

5.1.1 The Nature of Numerical Computations

In typical numerical computations, the absolutely predominant data structure is the array.
The critical loops in numerical computation perform Boating-point operations on the
elements of arrays. In the majority of the cases, the array elements are accessed in regular
sequence. There are a few "working locations" in the array, and their addresses change as
arithmetic progressions. The step is quite often equal to one element size, the column size
or some other constants. The arithmetic operation performed on integer scalar variables
used as loop-counters and array-indexes is simple and corresponds to the above "regular
sequence" of array accesses: increment by a constant, compare and branch.

Address computations for multi-dimensional arrays require integer multiplication. Most
of the times, the optimizing compiler can replace those integer counter/indexes by actual
memory pointers by induction variable elimination. For example, in the code shown
below,

DO 10 I = 1,N
10 S = S + A(I)

an optimizing compiler will generate the code shown in Figure 5.1

62

1* base address of A *1
1* limit address of A */

(1) B1:
(2)
(3) B2:
(4)
(5)

r[p] = A - 8
r [q] = A - 8 + 8*N
reS] = reS] + m[r[p]]
rep] = rep] + 8
if r [p] <= r [q] then goto B2

Figure 5.1: Optimized code of array computation

The numerical computations are usually floating-point operations. Counter/address
calculations and floating-point operations are often executed in parallel, especially when
the programs perform a certain computation on all elements of a vector or an array.

5.1.2 Autoincrement Addressing Mode

If an induction variable is a pointer, we call the induction variable an induction pointer.
For the induction pointer, Autoincrement addressing modes can sometimes be used to
increment the pointer when the pointer is allocated to a register within the loop. These
addressing modes dereference a pointer and automatically advance it to the next element.
For example, instruction (3) and (4) in Figure 5.1 can be executed in one instruction. In
this case, the execution time for the increment is absorbed into the addressing operations.

(1) B1 : rep] = A - 8 /* base address of A */
(2) r[q] = A - 8 + 8*N /* limit address of A */
(3') B2: reS] = reS] + m[r[p]];

rep] = r[p] + 8 /* autoincrement */
(5) if rep] <= r [q] then goto B2

Figure 5.2: Optimized code with autoincrement

FLATS2 has several autoincrement addressing modes. These addressing modes may
reduce the number of cycles for array computations. Some conventional machines such as
VAX and 68000 also have autoincrement addressing modes.

5.1.3 BL addressing

In the BL addressing of FLATS2, the effective address is checked by comparing the address
with the base address and the limit address (BL pair) whenever the operand in memory
is accessed. It enables memory access and range checking to be performed in parallel.
If the effective address is in the range between given base and limit addresses, and the
memory access completes successfully, then a branch is taken to the specified target.

63

Otherwise, the next instruction is executed. The branch of the BL addressing can be
executed without delay in the FLATS2 pipeline due to the cyclic pipeline architecture.

In FLATS2, every word has an address tag. The address tag of the register modified
by post-increment addressing mode is set to zero when the modified address goes outside
the given range. The value in the register can never be used as an address any more.

A base address of BL pair may also specify the effective address for memory access. In
this case, the post-increment addressing mode modifies the base address of BL pair. Range
checking is done against the previous BL pair. If the modified base address is outside of
the range of the previous BL pair, the address tag of the base address is cleared, so that
the BL pair cannot be used for memory addressing.

(1) B1:
(2)

(3' ,) B2:

rEp] .base = A - 8 1* base address of A *1
rEp] . limit = A - 8 + 8*N 1* limit address of A *1
if address tag of r [p] .base == 0 then goto next;
rES] = rEs] + m[r[p] .base];
t = rEp] .base + 8;
if not BL(t,rEp]) then address tag of rEp] .base = 0
rEp] .base = t
goto B2 1* BL addressing *1

Figure 5.3: Optimized code with BL addressing

For a loop of array computation, the range checking of the BL addressing can terminate
the loop if the first instruction in the loop uses the post-increment addressing mode to
access the element of an array in regular sequence. The base address of the BL pair
specifies each element of the array in each iteration by using post-increment addressing
mode. When the last element is accessed, the address tag of the base address is cleared.
Next time the instruction is executed, range checking of the BL addressing finds the base
address cleared to terminate the loop.

In Figure 5.1, the addresses of the first element and the last element of an array A

form the BL pair for A in a pair of registers. By using the BL addressing mode with
post-increment for memory access in instruction (3), instructions (3),(4) and (5) are
executed in one instruction. As a result of this transformation, the loop becomes one­
instruction loop, as shown in Figure 5.3. The function BL in the Figure returns true if the
first operands is within the range of the second operand.

As mentioned before, array computation is often dominant in numerical computation.
The BL addressing integrates memory addressing and range checking to reduce the over­
head of iterations for many cases. The transformation by the compiler is described in
later section.

5.2 Optimal Induction Variable Elimination

In this section, we describe an induction variable elimination algorithm that finds near­
optimal induction variables with given addressing modes and registers. The algorithm can

64

be parameterized to cater to different memory addressing characteristics and the number
of registers among machines.

5.2.1 Induction Variable Elimination

Induction variable elimination is an important and effective loop optimization, especially
for scientific application where loop is the most frequently used control structure. This op­
timization may replace some multiplication operations within a loop by simple additions.
A multiplication is automatically generated as a part of the array accessing mechanism.
The optimization known as reduction of opemtor strength or strength reduction is to elim­
inate such multiplications whenever possible. Strength reduction replaces an expensive
operation by a cheaper one, such as a multiplication by an addition.

A loop induction variable is a variable whose value is changed within the loop by a
constant amount. A region constant is a variable whose value is not changed within the
loop. A constant in the program is also included in this class. An obvious example of an
induction variable is the DO-loop variable. Some other induction variable whose value is
a linear function of the DO-loop variable is the actual pointer used to access the array.
Often, the only use of a DO-loop variable is in the test of loop termination. We can then
get rid of the DO-loop variable by replacing its test by one on the pointer. A DO-loop
variable is a basic induction variable, which is a variable whose only assignment within
the loop is an increment of the variable. An induction expression is any expression which
is a linear function of the other induction variable. The value of an induction variable is
computed by the induction expression.

Induction variable elimination converts a nontrivial subscript expression (typically
involving one or more multiplications) inside DO-loop as a temporary containing the
exact address of the array element referenced on each iteration and a simple increment
of this value at the end of the loop. It increases the chance to make use of array access
mechanism provide by hardware such as autoincrement addressing and BL addressing.

The standard induction variable elimination algorithm does not take into account the
cost and saving involved in the optimization. By cost, we refer to the cost for induction
variables being incremented by constants in temporaries. By saving, we refer to the gain
in execution speed due to the induction variable being computed by a simple increment
instead of the induction expression. The standard algorithm is based on the assumption
that keeping the value of induction variables in temporaries is cheaper than the compu­
tation of any induction expression. If a machine has an "index addressing mode", the
induction expression which computes the address by adding the offset to the base of the
array can be absorbed into memory addressing 1. For autoincrement addressing mode,
the increment of an induction variable may be combined into memory addressing when
the induction variable is available in registers.

The transformation of induction variable elimination sometimes generates too many
temporaries needed for a collection of subscript expressions, so that some of these tem­
poraries must be spilled out into memory. If the induction expression is simple enough
to compute the value as needed, the spill cost may be larger than its computation cost.

1In CISC machines, it is not clear that index addressing is faster than addressing with the pointer
computed by the addition.

65

Therefore, the number of available registers also affects on the optimal induction variable
elimination. Minimizing the number of temporaries need for a related collection of sub­
script expressions is discussed in Sites [Sit79J. It does not take into account the effect of
spilling induction variables and the computation cost of induction expressions.

5.2.2 Cost and Saving Estimates

An induction variable is either a basic induction variable or a variable J for which there is
an induction variable such that each time the variable is assigned in a loop L, J's value is
computed by an linear function of the other induction variable. We assume that the linear
function is performed by an instruction. Introducing a temporary which holds the value of
the induction expression, the linear function can be replaced by a simple increment. For
example, if the linear function is a multiplication, it can be done by a cheaper addition.

If the linear function is an addition, an increment, however, may not be faster than
the addition on some machines. When the value of the induction expression is used only
for memory addressing, some addressing mechanisms can execute the simple addition
efficiently as a part of memory addressing. An increment on the temporaries for the
induction variable can also done in memory addressing such as autoincrement addressing
if the temporary resides in register. If the temporary can not reside in a register during
loop, its value must be saved in memory at each iteration. This extra move operations
between registers and memory increase the execution time for the temporary. The saving
by induction variable elimination depends on how the value of the induction expression
is used and where the temporary for the induction variable resides. Thus, we define the
following parameters, which vary among target machines:

COMPSAVE - The amount of execution time for the instruction computing an in­
duction expression, which may be the execution time of memory addressing if the
value of the induction expression is used only once for memory addressing and is
computed as a part of the addressing mode.

I NCRCOST - The cost of an increment of the temporary for an induction expression,
when the temporary resides in register. If the value of the expression expression is
used only for memory addressing, a special memory addressing mechanism such as
autoincrement addressing gives the cost.

SPI LLCOST - The cost of spilling the temporary of an induction variable to memory,
which holds the value at each iteration.

The standard inducti~n variable elimination works on each induction variable locally.
For each induction variable, say i, the saving that can be achieved by the transformation
can be estimated by:

LOCALSAVEi = COMPSAVEi - INCRCOSTi - SPILLCOST *Wi

where Wi is either 0 or 1. The parameter, Wi depends on whether the temporary for
i resides in register within the loop. If LOCALSAVEi is positive, the transformation
on the induction variable can reduce the execution time. The strength reduction always

66

replaces a multiplication by an increment, because it is faster on most machines even if
spill is needed.

When the total cost for a related collection of induction variables is considered, the
transformation may reduce the cost even if the local saving for an induction variable is
negative. Once the transformation has been performed, some induction variables will no
longer be needed. Even for their uses within a conditional branch instruction, the linear
function test replacement can eliminate all code involving such an induction variable if
the test can be replaced by the test of a generated temporary. Thus, the saving for an
induction variable j which is a linear function of an induction variable i, can be estimated
by:

SAVEj = LOCALSAVEj + (INCRCOST; + SPILLCOST *w;) x U;j

where U;j is 1 if j can be removed after the transformation, otherwise O. Even if the linear
function is an addition with the same cost as an increment, the induction variable is eligible
for the transformation when it gets rid of other induction variables. The parameters U;j

are determined by the relation among induction variables.
The total saving for a set of induction variables is estimated by:

TOTALSAVE= L SAVE;
i an induction variable

The TOTALCOST depends on each of W; and U;j. The value W; is determined by the
number of registers available for the temporaries generated for induction variables.

Let M AXSAVE(n) to be the maximum saving by induction variable elimination with
n temporaries for induction variables. Because a simple increment is one of the fastest
operations on most machines, we assume that COMPSAVE, is greater or equal than
INCRCOST;. The quantity MAXSAVE(n) represents the maximum possible saving,
assuming an infinite number of registers are available for the transformation:

MAXSAVE(n) = L (COMPSAVEi - INCRCOST; * U;)
i an induction variable

where U, is 1 if the value of i is needed after the transformation, otherwise O. The
number of induction variables which have the value U, of 1 is n.

Actually, some of temporaries must however be spilled when the number of temporaries
are greater than one of actual registers. Thus, the actual saving after the transformation
is gives as:

TOTALSAVE = MAXSAVE(n) - SPILLCOST x (n - r)

where r is the number of available registers. To maximize the total saving, we must
minimize the spill cost as well as maximing the saving. The spill cost may decrease the
total saving even if the COMPCOST is greater than the INCRCOST for a particular
induction variable. We prevent "over reduction" of induction variable elimination by
maximizing the quantity TOTALSAVE.

67

5.2.3 Induction Variable DAG

In this subsection, we describe the data structure for our algorithm. One of the first
subtasks of the induction variable elimination is to find induction variables and region
constants. We assume that the previous optimization phase such as loop invariant code
motion has determined the set of region constants. A basic induction variable of a loop
L is a variable whose only assignments within L are of the form I = I ± C, where C is a
region constant.

A labeled DAG, called an induction variable DAG is used to represent a related set of
induction variables. Nodes are labeled by the associated induction variables. The label
on a root node is a basic induction variable. The induction expressions are also specified
for interior nodes. The operands of an interior node are given by the label in the parent.

Algorithm 5.1 Constructing an induction variable DAG.

Input. A loop L in SSA form with the set of region constants.

Output. An induction variable DAG.

Method.

1. Find all basic induction variables by scanning the statement of L. We use
the set of region constants here. The root node labeled with the variable is
associated with each basic induction variable. In SSA form, a basic induction
variable is represented with three variables in Figure 5.4. Both vi and v2 are
basic induction variables for the node. Repeat the next step until no induction
variable is found.

2. Search for variable k with a statement within L having one of the following
forms:

k = j ± b, k = b ±j,k = j ± i, k = j *C, k = c * j, k = jib

where b is a region constant, and i and j are induction variables, basic or
otherwise. Create an interior nodes for k whose parent is associated with j.
For statement k = i ± j, the node has two parents for i and j. Note that due
to SSA form there is no other assignments for k in the program.

Figure 5.5 shows the example of an induction variable DAG. An induction variable
DAG often becomes a tree. If a node for j has the node for a basic induction variable i
as its ancestor, we say that j belongs to the family of i. The basic induction variable i
belongs to its own family.

Once the induction variable DAG is constructed, we first assign the cost and saving
for each node, given by the machine. We take its usage into account to determine the
cost; if the value of an induction variable is used once for memory addressing, and its
computation can be done as a part of addressing, then its cost could be less than that
of computational cost by an instruction. For example, the cost of increment for such
variables is zero in FLATS2 because the execution time for increment of a pointer is
completely absorbed into autoincrement addressing. The addition of a base pointer with
an offset can also be performed by index addressing.

68

Figure 5.4: Basic induction variable in SSA form

5.2.4 Optimal Induction Variable Elimination

The problem here is to optimize the total saving for induction variables, given the num­
ber of register for temporaries of induction variables. The optimization problem can be
shown to be NP-complete even when an induction variable DAG is a binary tree; this is
done using partially ordered knapsack problem [GJ79]. To find the transformation which
maximizes the quantity TOTALSAV E, we need to compute MAX SAV E(n) for each n.
Suppose that all increment cost is the same, the quantity MAX SAVE(n) is computed
by:

MAXSAVE(n) = ",£COMPSAVE; - INCRCOST x n

The partially ordered knapsack problem is as follows:

Given: Finite.set U, partial order < on U, for each u E U, value v(u),
positive integer k

Problem: Find a subset of U, U' such that

1. the number of u E U' is k,
2. if u E U' and u' < u, then u' E U',
3. LUEU'v(u) is maximal.

Because the computation of children nodes uses the result of its parent node, we can
define the partial order on the nodes with the tree in the transformation. If each induction

69

70

Figure 5.5: Induction variable DAG

r[4J~r[3l+B-8

r[3]-r[Ol*8

r[l] = r[0]*8
r [2] = r [1] + A - 8
r[3] = r[0]*8
r[4] = r[3] + B - 8
rET] = m[r[2]]
rET] = r[T]*m[r[4]]
rES] = rES] + rET]
r[O] = r[O] + 1;
if r [0] <= N then goto B2;

(b) induction variable DAG

(a) code

r[ll~r[Ol*8

r[2]=r[1]+A-8

(1) B2:
(2)

(3)
(4)

(5)
(6)
(7)

(8)
(9)

variable in the interior nodes is used only in operands of the expressions of its children
nodes in the binary tree, one temporaries is need to remove the induction variable by the
transformation. We can perform the transformation on n variables with n temporaries.
The COMPSAVE for each node is associated with the value in the problem. Thus, the
choice of the nodes to be transformed for maximizing the total value with n temporaries
is equivalent to the partial knapsack problem.

Since this optimization process will be a part of each compilation and optimal induction
variable elimination is very expensive, we will concentrate on "good" solution rather than
on optimal one. The basic heuristics are as follows:

Algorithm 4.2 Optimal induction variable elimination.

Input. An induction variable DAG for a loop with cost and saving for each node, and
the number of registers available for temporaries to hold the values of the induction
variables.

Output. A set of induction variables to be transformed by induction variable elimi­
nation.

Method.

1. Initially, root nodes are marked "reduced" because basic induction variables
are to be assigned to registers. The number of available registers is decreased
by the number of root nodes.

2. Repeat the following steps until no node is marked "reduced".

Ca) Compute the saving for each node whose parent nodes are marked "re­
duced", assuming one register is available. We use the recursive function
ONESAVE(n) to compute the saving.

(b) Find node n with the maximum saving, s.

(c) If a register is available and s ?: 0, mark n "reduced" and decrement the
number of available registers.

(d) If no register is available and s - SPI LLCOST ?: 0, mark n "reduced".

Using the COMPCOST of each node, we can find the node with the minimum compu­
tation cost for test replacement. Since the loop optimization is done from the inner loop
to the outer, the number of available registers is decremented by the register used in the
inner loops.

5.2.5 Inserting Increment for Transformed Induction Variables

The increment for a transformed induction variable is placed before the tail of the loop
because the tail is executed at every iteration. In the landing pad, we place the code to
set the initial value to the temporary and compute the step incremented in each iteration.
The transformation for the initial value and step of the induction variable is described in
Aho [ASU86].

71

function ONESAVE(n)
begin

saving = 0;
for each child m of n do begin /* count for children */

s = ONEsAVE(m);
/* don't count negative saving */
if s >= 0 then saving = saving + s - SPI LLCOST;

end
/* count for n */
if n is needed after reduction then

/* increment cost is needed for n */
saving = saving - INCRCOST"

else
/* one of children can reside in a register */
saving = saving + SPI LLCOST

/* minimum saving is COMPSAVE(n) - INCRCOST(n) */
return max(COMPSAVE(n) + saving,COMPSAVE(n) - INCRCOST(n))

end

Figure 5.6: Function 0 ESAVE

If an induction variable is used only for memory addressing, the increment instruction
for the variable may be combined with the memory addressing of other instructions in the
same basic block in the instruction reconstruction phase. In our compiler, if the loop is
the most inner loop and exit only from the tail, we place the increment in the same block
of its last use as possible to increase the chance of combining with memory addressing.
Such a loop is called a "hammock" loop. Only one increment must be placed after its use
in every path form the header to the tail in the loop. Since more than one increments
may be generated, code size may become larger but the execution time is not increased.
If more than two increments are placed in the flow graph, the q, function is generated to
keep the code in SSA form.

Algorithm 5.3 Finding positions of increment for induction variables.

Input. A hammock loop L in SSA form and a variable to be incremented in the
loop. "

Output. A set of nodes in the flow graph to place the increments and the q, functions.

Method. We assume the initial value is computed in Va in the landing pad. Variable
VI represents the value of the induction variable at the beginning of the loop header.

1. Compute whether the variable may be incremented in each node. Perform the
following step for node n in the loop in reverse topsort order:

72

(a) If the variable is used in the node, mark the node "used".

(b) If either of the successors is marked "used", mark the node "used".

2. Perform the following step for node n in the loop in topsort order:

(a) If the node is a loop header, VI reached the beginning of the block.

(b) If Vi reaches the end of the block of all predecessors, Vi reaches the begin­
ning of the block.

(c) If Vi reaches the end of the block of one predecessor and vi reaches the end
of the block of another predecessor, generate a new variable Vk to place
Vk = 4>(Vi, Vi) at the beginning of the block. If Vi is VI, generate a new
variable Vi to place the increment Vi = VI + C at the end of the block of
the predecessor. Variable Vk reaches the beginning of the block.

(d) If the node is marked "used", the variable that reach the beginning of
the block must be VI' If the successor is marked "used", generate a new
variable V n and place an increment Vn = VI + C at the end of the block.
The variable V n reaches the end of the block, otherwise the variable at the
beginning of the block reaches the end of the block.

3. A variable, say v" reaches the end of the tail. Place VI = 4>(Vo, VI) at the
beginning of the header.

Figure 5.7: Inserting increments

73

Figure 5.7 shows the example of inserting increments for an induction variable. Al­
though the algorithm may generate the redundant increment for some flow graphs, the
redundancy elimination phase eliminates unused increments after the loop optimization.
For most cases, the register allocation phase allocates these variables for an induction
variable in the same register.

5.3 BL Code Generation

The BL addressing pedorms range checking during memory access. Range checking is
also implemented as an individual instruction. We call BL code the code using range
checking. In this section, we describe the code generation for instructions involving range
checking.

5.3.1 DO Loop with Range Checking Instruction

We can make use of the range checking instruction to terminate a DO loop. The front-end
generate the BL code optionally. Figure 5.8 shows an example of BL code.

(1) B1:
(2) B2:
(3)
(4)
(5)

(6)
(7)

(8)

(9)

r[i] = MKBL(1,N) /* make BL pair for counter */
r[2] = r[1]. base*8
r [2] = r [2] + A - 8
r[3] = rei] .base*8
r [3] = r [3] + B - 8
reT] = m[r[2]]
r [T] = r [T] *m [r[3]]
reS] = reS] + reT]
t = r[i] .base + 1;
if not BL(t ,r[1]) then goto next;
r[i] .base = t;
goto B2 /* ACBL instruction */

Figure 5.8: BL code

The operation MKBL IT.'akes a BL pair for the range of the DO-loop variable in the node
entering the loop header. At the end of the loop, add and compare, branch on BL(ACBL)
instruction terminates the loop 2. The base register of the BL pair holds the current
value of the DO-loop variable at each iteration. The ACBL instruction increments the
base register and branches if the modified value of the base is within the previous range,
otherwise the control transfers the next instruction. Note that fetching the value for
both increment and compare is done in parallel by hardware. The branch is taken after

2FORTRAN does not allow DO-loop variables to be assigned within the loop.

74

all operations of the instruction. As the BL code modifies the base register at every
iteration, the range becomes minimal at the last iteration.

It should be noted that the BL code can be applied efficiently even if the step for
the DO loop variable is specified by a variable at run-time. Without range checking, the
code for the variable step must switch the compare instruction for the DO loop variable
according to the sign of the step value, resulting in inefficient complicated codes. The BL
code allows the same DO loop code to be generated for any step.

5.3.2 Induction Variable Elimination for BL code

Induction variable elimination for BL code is slightly different from conventional one. Like
other basic induction variables, the DO-loop variable involving BL code is recognized as a
basic induction variable. The first operand of MKBL operation for the DO loop variable is
used to set up the initial values of induction variables in its family. For example, the first
operand of the MKBL operation is used as an initial value to perform the transformation
of induction variable elimination. This enables constant folding for calculation of the
initial value of other induction variables if the initial value of the basic induction variable
is a constant.

The test replacement on BL code generates the BL pair for the induction variable
which is used to terminate the loop instead of the DO-loop variable. The limit of the BL
pair is calculated with the second operand of MKBL operation of the DO-loop variable.
The MKBL operation to form the BL pair placed in the landing pad. In this case,
the original MKBL is removed by redundancy elimination because it is used no longer
after induction variable elimination. Figure 5.9 shows the code after induction variable
elimination.

1* ACBL instruction *1

1* make BL pair for A *1
1* make BL par for B *1

(1') B1:
(1' ,)

(6) B2:
(7)
(8)

(9')
(9)

r[2'] = MKBL(A-8,A+N*8-N)
r[3'] = MKBL(B-8,*)
reT] = m[r[2'] .base]
reT] = r[T]*m[r[3'] .base]
reS] = reS] + reT]
r[3'] .base = r[3'] .base + 8
t = r [2'] .base + 8;
if not BL(t,r[2'J) then goto next;
r[2'] .base = t;

gote: B2

Figure 5.9: BL code after induction variable elimination

If the BL pair does not test the termination of the loop, the BL pairs may omit the
calculation of its limit to reduce the cost for setup before the loop; the maximum address
can be used for the limit if the value of the induction variable increases at each iteration,
otherwise the minimum address can be used for the decreasing induction variable. If the

75

step for the induction variable is variable, we must calculate its proper limit for the 8L
pair. In Figure 5.9, the limit of the 8L pair for B is the maximum address.

5.3.3 Code Generation for BL addressing

For a loop with 8L code, we generate the 8L addressing mode for memory operand
addressed by an induction pointer. Although 8L addressing modes require more regis­
ters for 8L pairs than conventional addressing modes, our induction variable elimination
algorithm optimizes the cost involving the limited number of registers.

As mentioned in chapter 3, the combination of addressing modes in FLATS2 is re­
stricted because two addressing modes share register fields in the fixed-length instruction
format. The front-end generates code using the default addressing mode, which calculate
the effective address by adding the pointer with an offset. The 8L pair for the default
addressing mode is the default 8L pair (the entire program space). When both memory
operands access arrays, we can use the addressing modes with different 8L pairs. In this
combination of addressing modes, we can increment both base addresses in one instruction
to optimize array computations. If either addressing mode is for an array and that is not
used for range checking, the addressing mode may be converted to the default addressing
mode using the base of the 8L pair as a pointer.

The transformation for the 8L addressing is performed as follows:

1. Make a 8L pair for the induction pointer in the loop which is used only for memory
addressing in the induction variable elimination phase. The base address of the 8L
pair is used to access the array element. The limit may be the maximum/minimum
address as mentioned in the previous subsection. And convert these default address­
ing modes of the induction pointer to the 8L addressing modes using the 8L pair
as base.

2. If the first instruction in the loop accesses memory with the above 8L addressing
mode and the 8L pair can be used for the test of termination, calculate the limit of
the 8L pair from the limit of the original DO loop variable to replace the test with
it. Otherwise, the induction variable with cheaper computation is chosen.

3. Combine the increments of induction pointers with memory addressing modes in
the code reconstruction phase.

4. If the first instruction in the loop accesses the memory with the post-modify 8L
addressing mode for the array and the test uses the 8L pair of the 8L addressing
mode at the first in'struction to terminate the loop, move the instruction before the
loop and combine the instruction with the test.

For array access, a base address of the 8L pair specifies the effective address for
memory access, and the base register is incremented by the post-increment 8L addressing
mode at each iteration. The effective address is checked by comparing the address with
the given 8L pair in parallel with memory access. The branch is taken to a specified
target for the next iteration if the memory access completes successfully. The address tag
of the modified base register is set to zero when the modified address is outside the given

76

range. Then, the value in the register can never be used as an address any more at the
last iteration. Next time the BL pair is used to access the memory, the BL addressing
terminates the loop to detect no address tag of the BL pair.

In the code reconstruction phase, the first instruction is moved to both the end of the
landing pad and the end of the loop as shown Figure 5.10. For the DO loop, the test
before the loop ensures that the loop is executed at least once, so that the memory access
of the instruction in the landing pad complete successfully.

/* autoincrement */

/* BL addressing */

/* make BL pair for A */
/* make BL par for B */

(1') B1 :
(1")

(6')

(7') B2:

(8)
(6' ,)

r[2'J = MKBL(A-8,A+N*8-N)
r[3'J = MKBL(B-8,*)
r[TJ = m[r[2'J .baseJ;
t = r[2'J .base + 8;
if not BL(t,d2'J) then address tag of r[2'J .base = 0

r [2' J .base = t /* BL addressing */
r [TJ = dTJ *m [d3' J .baseJ ;
d3'J .base = r[3'J .base + 8
r[SJ = dsJ + r[TJ
if address tag of r [2J .base == 0 goto next;
r[TJ = m[d2'J .baseJ;
t = d2'J .base + 8;
if not BL(t.r[2'J .base) then address tag of r[2'J .base = 0

r [2 'J .base = t
goto B2

Figure 5.10: BL code after code reconstruction

The BL addressing reduces the overhead to control the loop. Although the execution
time for the test of loop termination is relatively smaller than the time for the loop body,
it is effective for basic array operations such as inner product because the body consists
of a few instructions.

Chapter 6

Experiments on FLATS2

In this chapter, we report several experiments on using the FLATS2 FORTRAN compiler
to evaluate FLATS2.

A cyclic pipeline architecture exploits the parallelism with multiple instruction streams
which share the same pipeline in time. In chapter 2, we have demonstrated the perfor­
mance improvement of a cyclic pipeline machine with the highly pipeline model. '.

In FLATS2, the degree of pipeline in execution stages is limited to a relatively small
number. No pipelined memory access is allowed in FLATS2. The performance of an
individual stream is improved with microarchitectural parallelism as well as overlapped
execution in an individual instruction stream.

The question addressed by this chapter is: Is a cyclic pipeline architecture still effective
given a set of scientific workloads and a set of technology constrains of FLATS2?

In Section 1, we report the result of experiments on the real FLATS2 machine using
some benchmark programs. In Section 2, we consider the architectural alternatives based
on the FLATS2 pipeline to evaluate the FLATS2 arcltitecture.

6.1 The performance of FLATS2

In this section, we report the performance measured on FLATS2. We chose the Livermore
loops [McM84] and Linpack benchmarks [Don79] as our benchmarks. The cycle time of
FLATS2 is 65 ns. The instruction is issued at every 2 cycles.

6.1.1 Speedup with BL addressing

We have examined the 'speedup using the BL addressing in an individual instruction
stream. Table 6.1 shows the speed by BL addressing for each benchmark.

The Livermore benchmark is a collection of kernel loops which frequently appear in
scientific workload. For the Livermore benchmark, the average is shown in Table 6.l.
Figure 6.1 shows the speedup for each loop in various spans of iterations.

The BL addressing can be applied only when the first instruction of the loop accesses
the array in regular sequence; loop 15,16 and 17 have no such a loop. The BL addressing

'The estimated performance is optimistic due to the lack of cache models in the simulation.

78

Program -0 -OB
(MFLOPS) (MFLOPS)

Speedup

Linpack 1.96 2.66 1.36
Livermore loops (average) 1.47 1.74 1.18

Key: -0 - optimized without BL addressing.
-OB - optimized with BL addressing.

Table 6.1: Speedup with BL addressing

can reduce a few instructions, so the speedups become large in loop 1,3,5,10,11 and 12
where the loop bodies are small. Even if the BL addressing can be applied, the speedup
is relatively small for the large body of the loop as Loop 13. In code generation, the
compiler may place the first instruction which does not access the memory in regular
sequence. For example, in loop 21 the compiler generates the loop invariant memory
access as the first instruction. The performance would be improved if the source program
is modified explicitly to make use of the BL addressing,

For the BL addressing, we need extra registers and computations to make BL pairs.
Due to this overhead, the performance may be degraded in smaller span in some loops.
Since available operand combinations of BL addressing modes are different from that of
the conventional addressing mode in FLATS2, the optimization of BL addressing affects
the code selection.

6.1.2 Speedup by two instruction streams

We have measured the speedup by two instruction streams for the Linpack benchmark to
parallelize the program. The speedup of the benchmark is shown in Table 6.2. The BL
addressing also increases the performance in the parallel version.

Compile
option

One instruction
stream

(MFLOPS)

Two instruction
streams

(MFLOPS)

Speedup

Table 6.2: Speedup of Linpack by Two instruction streams

Key: -0 - optimized without BL addressing.
-OB - optimized with BL addressing.

79

1.89
1.87

3.70
5.00

1.96
2.66

-0
-OB

MFLOPS 1\1 code without BL addressing

o code with BL addressing

MFLOPS

MFLOPS

27 1011001
1 1 1

21101995
7 7 7

83264
131313

15101101
2 2 2

14 1()()100
8 8 8

271011001
141414

27101'001
3 3 3

15 101 101
9 9 9

15101101
151515

271011001
4 4 4

15 101 101
10 10 10

15 40 75
161616

27 1011001
S S S

2:l 1011001
111111

15 101 101
17 17 17

3264
6 6

26 1001000
121212

14100100
181818

span
KERNEL

15101101 26 1001000 20 50 101
191919 20 20 20 212121

15 101 101
22 22 22

14 100 100 27 1011001 span
23 23 23 24 24 24 KERNEL

Figure 6.1: Performance of Livermore loops with BL addressing

6.2 The Experiments on the FLATS2 Pipeline

In this section, we report several experiments on the simulator to evaluate the FLATS2
pipeline. The architecture design parameters we have examined are the number of in­
struction streams and the microarchitecture of the pipeline structure.

While FLATS2 issues the instruction from two instruction streams, an instruction
can be issued from only one instruction stream with the same pipeline by changing the
instruction issue logic.

FLATS2 provides microarchitectural parallelism to increase the performance. The
Symmetric instruction set architecture [AAD90] treats register operands and memory
operands symmetrically, and performs direct computation on memory. For example,
the FLATS2 floating-point instruction can perform direct operation on memory. In
Load/Store instruction-set architecture, on the other hand, computational instructions
can only use registers as operands. The instructions that access memory are LOAD and
STORE instructions only.

Varying these design parameters creates four variants of the FLATS2 pipeline in this
two dimensional design space. To make sure that these machines are feasible, all pipelines
are based on the FLATS2 pipeline.

6.2.1 The FLATS2 pipeline

The pipeline of FLATS2 consists of ten stages as follows:

IF - Instruction Fetch. Fetches the next instruction to execute from the instruction
memory.

ID - Instruction Decode. Decodes the instruction and fetch the long immediate word
from the instruction memory.

GVR - GV memory Read. Reads registers from the register memory.

GVEX - GV unit EXecution. For the GV instructions; Executes the instruction. For
the load and store; Calculates the memory address.

DMR - Data Memory Read. For memory operand, reads the operands in the data
memory.

GVW/EXl - GV memory Write and EXecute 1 in SP unit. Writes the result for the
register memory. For the SP instruction; starts the execution.

EX2, EX3, EX4 - EXecute in SP unit. For the SP instruction; executes the instruc­
tion.

DMW - Data Memory Write. Writes the result in data memory.

Figure 6.2 shows the FLATS2 pipeline.
Each stage is executed in one cycle. The instruction is issued every 2 cycles from

two instruction streams. As a result, the instruction of an individual instruction stream

81

time
t

IIF lID GVR IGVEX I:M1
GVW

rMN
EX1 EX2 00 EX4

IF 110 GVR GVEX
I:M1

GVW

EX41
rMN iEX1 EX2 00

IF 10 GVR GVEX
av1R

GVW

EX2loo IEX1

Figure 6.2: FLATS2 pipeline

is issued every 4 cycles. The SP unit executes the floating points operations and some
integer operations such as MUL. The floating point registers are placed in the SP unit.
The integer and address values are stored in the register memory. The GV instructions
which perform the simple integer operation are executed in the GVEX stage. The GV
instructions perform the computational operation only on register operands.

In each instruction stream, two computational instructions interlock when the instruc­
tion reaches the DMR stages and one of its source operands is not ready because it is
the destination of a previous instruction that has not reached the DMW stage yet. If
the instruction is about to enter DMR then the previous instruction is already done with
EX4 and the result to be stored in DMW can be used as soon as it becomes available.
The output of the EX stages can be written into bypass registers, which can be read in
DMR. They allows the destination operand of a computational instruction to be used as
the source of the next instruction. Physically, special hardware is used to detect that this
memory operand is to be from the bypass registers not from the memory. The bypass
registers eliminate the interlock due to data dependency. The bypass in the FLATS2
pipeline is shown in Figure 6.3.

-figure 6.3: Bypass in FLATS2 pipeline

Resource conflict never occurs because each stages is executed by only one instruction
at any time. Some integer computational instructions are executed in the SP unit. For
example, the integer MUL instruction is executed in the SP unit, and the result must be
written into the register memory, Since the next cycle is taken to write the result, these
instructions always take two cycles.

In the FLATS2 pipeline, the compare-and-branch instruction can be executed without
delay. Since the comparison is performed in the GVEX stages, the IF stage can select
the next-PC according to the result of the comparison. The BL addressing is thought as

a variant of the compare-and-branch instruction because the GVEX stage calculates the
effective address and compare with the BL pair to branch at the next cycle.

6.2.2 Single Instruction Stream Pipeline

Changing the instruction issue logic allows the instruction issued from a single instruction
stream. We call this machine the single stream FLATS2 machine.

In the pipeline, there are two types of interlocks: an interlock between two SP instruc­
tions (interlock delay) and an interlock between a load instruction and a computational
instruction (load delay). The two SP instructions interlock when the source operand of
the instruction is not ready because it is the destination of the next instruction which has
not finished its execution stages yet. The other interlock occurs when a load instruction
loads a register from memory and the next instruction read this register. When the next
instruction use this register for address calculation, this interlock is known as an AG
(Address Generation) interlock. For both interlocks, the pipe is stalled for one cycle. We
assume that the operand written by the GV instruction except the load instruction is
bypassed to the source operand of the next instruction because the operand is ready after
the GVEX stage.

The compare-and-branch instruction is not provided for the single stream machine.
The separate compare instruction sets the conditional flags and the next conditional
branch instruction computes the branch-target and selects the next PC according to the
flags. Since the compare instruction evaluate the condition at the GVEX stage, the branch
instruction can use the flags at the ID stages. The branch instruction is executed without
delay.

6.2.3 Load/Store Instruction Set

The Load/Store architecture is identical to the Symmetric architecture except for the
Symmetric model's extra capability to operate directly on memory. Figure 6.4 shows the
pipeline of the Load/Store machine based on the FLATS2 pipeline.

time •
jlF liD GVR GVEX [)v'R GVW f1vT'N

EX1 EX2 EX3 EX4
IF ID GVR GVEX CM'l GVW f1vT'N

EX1 EX2 EX3 EX4
IF ID GVR GVEX CM'l GVW

EX41f1vT'N1EX1 EX2 EX3

Figure 6.4: Pipeline of Load/Store machine

The set of GV instructions of FLATS2 is a Load/Store instruction set. The execution
of SP unit starts after the GVR stage, because there is no memory operand for the SP

83

instructions. As a result, the instruction is executed in 8 stages. We call this machine
LIS machine.

Consider the interlocks in the L/S machine. As in FLATS2, the SP instructions and
a load instruction may cause the interlocks when its destination operand is used as the
source operand of the next instruction. Then the pipe is stalled for one cycle. In the
L/S machine, we assume that the register MOV instruction between the floating point
registers never cause an interlock.

We can think a version of L/S machine with two instruction streams. We call this
machine two streams LIS machine. In this machine, there is no interlock between instruc­
tions.

For both L/S machines, the compare-and-branch instruction and BL addressing are
not provided. In the pipeEne, there is no resource conflict because each stage is executed
by exactly one instruction at any time. As in FLATS2, the SP instruction which takes
the GV register as a destination operand always takes two cycle.

6.2.4 Experiments

Since we assume that there is no hardware interlocking mechanism, the code generation
phase of the compiler handles interlock due to the data dependencies. The execution time
can be estimated by:

Program execution time = path-length x CPI x cycle-time

where path-length is the number of instructions executed, and CPI is the average
number of cycles per instruction. Suppose there is no hardware interlocking or hardware
data dependency resolution mechanism, the code generator inserts NOP codes to handle
all the interlocks. In this case, path-length is increased by the number of NOP codes,
while CPI is always one. We define the path-length as the instruction count without NOP
codes. The instruction count includes the executed NOP codes to give the execution time.
For multiple instruction stream machines by a cyclic pipeline architecture, the instruction
count is the total number of instruction executed in all instruction streams.

In the simulation, we used the same workloads in Chapter 2. The results are shown in
Table 6.3 and 6.4. The values in these table are the instruction counts. The path-length
is computed from the single stream version.

Note that the code reordering is not done in this simulation. The code reordering
would improve the performance by about 10 % in the single stream L/S machine.

6.2.5 Analysis and Discussion

For the single instruction stream execution, the interlocks degrades the performance by
20%-60% from the path length; the path length indicate the ideal execution time without
interlock delay. Since there is no interlock in cyclic pipeline machines, the performance
degradation is caused by the synchronization overhead and the time waiting the other
processes.

84

Program size path FLATS2 FLATS2 FLATS2
length single stream without BL with BL

(ratio) (ratio) (ratio)

Inner product 100 444 748(1.68) 818(1.84) 526(1.19)
1000 4044 7087(1.752) 6218(1.54) 3226(0.80)

Linpack 100 x 100
dgefa 1308232 2051575(1.57) 1351441(1.03) 1009172(0.77)
dgesl 44165 66659(1.51) 85750(1.94) 57536(1.30)

TOTAL 135297 2118234(1.56) 1437191(1.06) 1066708(0.79)
FEM-BAND 16 x 16

MATGEN 327183 4366797(1.34) 359781(1.10) 334377 (1.02)
SOLV 357022 543556(1.52) 678909(1.90) 686502(1.93)

TOTAL 684205 980353(1.43) 1048690(1.53) 1020879(1.49)
FEM-13AND 32 x 32

MATGEN 1320519 1770581(1.34) 1427269(1.08) 1385929(1.05)
SOLV 3640710 5851324(1.67) 6631005(1.82) 6554342(1.80)

TOTAL 4961229 7621905(1.54) 8058274(1.62) 7940271(1.60)
FEMJCCG 32 x 32

MATGEN 2783292 3446593(1.24) 3208541(1.15) 3126960(1.60)
SOLV 5991694 7640083(1.28) 9981139(1.67) 9669397(1.61)

TOTAL 8774986 11086676(1.26) 13189680(1.50) 12796357(1.46)
FEM-13AND 16 x 16

SOLV(BL) 357022 543556(1.52) 514931(1.42)
TOTAL 684205 980353(1.43) 849308(1.44)

Ratio: a ratio to the path length.

Table 6.3: Instruction counts in FLATS2 and single stream FLATS2

The performance improvement obtained by N processors is given as follows:

1
Speedup(N) = 1 _ a + a/N Overhead(N)

where a is the ratio of the total execution time of parallel code. While the execution
time of parallel codes is reduced by the number of processors, The synchronization cost
Overhead(N) decreases the speedup for the parallel execution. If the overhead is negligible
small, the speedup with two instruction stream is 2/(2 - a). For example, to obtain the
performance improvement by 50%, a must be 2/3.

For the inner product computation, the parallel execution becomes less for the smaller
vector. If the size is less than 100, then the performance of two instruction streams can
not exceed that of single instruction streams in both of FLATS2 and L/S machines.

The reason that the L/S machine increase the performance more than FLATS2 in the
two instruction stream compared to the single stream machine is that the path length in
the loop is shorter in FLATS2 while the path length to setup iterations before the loop

8·5

Program size path L/S machine L/S machine
length single stream two streams

(ratio) (ratio)

Inner product 100 1049 1255(1.20) 1234(1.18)
1000 10049 12055(1.20) 10234(1.02)

Linpack 100 x 100
dgefa 3359007 4444457(1.32) 3421009(1.02)
dgesl 106033 138236(1.30) 129244(1.22)

TOTAL 3464040 4582693(1.32) 3550253(1.03)
FEMJ3AND 16 x 16

MATGEN 477734 598662(1.25) 533629(1.12)
SOLV 747725 886378(1.19) 1075745(1.44)

TOTAL 1225459 1485040(1.21) 1609374(1.31)
Ratio: a ratio to the path length.

Table 6.4: Instruction counts in L/S machines

is still the same. We observe the same situation in Linpack and FEMJ3AND. Since the
optimization of the loop reduces the path length of the loop, the performance improvement
for the optimized code would be less than that of the non-optimized code in parallel
programming. If the simpler instruction set architecture makes the cycle time shorter
than a complicated instruction set, it would obtain better performance.

The two instruction stream machines can execute the program of Linpack better than
the single instruction stream machines because the routine dgefa involves large parallel
codes. For dgesl, the average of vector length is less than 100 and then its performance
is not improved as the inner product of the size 100.

Unfortunately, the performance of SOLV in both FEMJ3AND and FEMJCCG can
not be improved by the two instruction stream machines. Since the size of the loops in
the computation is small, the iterations over rows are distributed to each stream. These
streams synchronize each other with the synchronization vector of rows. Because the
synchronization cost is large compared to the performance improvement obtained by two
instruction streams, its performance can not exceed the performance of single instruction
stream machine even if the size is large. More instruction streams would increase the
performance as shown in Chapter 2.

In MATGEN, each element vector is computed by each instruction streams indepen­
dently and each stream seldom waits at the critical section to add it up to the global
matrix. Since the execution time is dominated by SOLV for larger size, the contribution
of MATGEN become smaller for the total execution time.

For the inner product and Linpack, the BL addressing eliminates the overhead to
iterate the loop. Since the code to control the loop does not do effective jobs in the
computation, the code can be thought as a part of sequential code. The BL addressing
can reduce the execution time in parallel execution as same as in sequential execution. In
FEMJ3A D and FEMJCCG, the BL addressing can not be used because the synchro-

86

nization code is the first instruction in the most loops to synchronize the data. Although
the BL addressing mode is used for some loop, its contribution is small. In another ver­
sion of SOLV shown as SOLV(BL) in Table 6.3, the program is modified to make use of
the BL addressing. Since it uses the process number, the program works only on two in­
struction streams, while the original SOLV is independent from the number of processors.
SOLV(BL) can improve the performance over that of the single stream machines. Thanks
to the two instruction stream, FLATS2 can implement the BL addressing without delay.
As a result, BL addressing exploit microarchitectural parallelism in the cyclic pipeline
architecture effectively.

87

Chapter 7

Summary and Conclusions

In this thesis, we have presented an evaluation of cyclic pipeline machines for a highly
pipelined processor. Although the performance of a highly pipelined processor is limited
by instruction-level parallelism in application programs in a conventional approach of
single instruction stream, a cyclic pipeline machine enables multiple instruction streams
to exploit more parallelism in the parallel program of scientific workload even in a single
highly pipelined processor. The simulation results indicate that effective pipelining in the
individual instruction stream of the cyclic pipeline machine increases the performance to
maximize the utilization of resources in a highly pipelined processor.

New technologies such as GaAs and QFP prefer a highly pipelined architecture to
make use of the raw speed of components efficiently. A cyclic pipeline machine provides
an alternative architectural solution of a highly pipelined system. Even in silicon VLSI
technology, it may be an interesting architecture, especially for asynchronous self-timed
systems.

We have evaluated an experimental cyclic pipeline computer, FLATS2 with FLATS2
FORTRAN compiler. The FLATS2 FORTRAN compiler implements several optimization
algorithms with static single assignment (SSA) form to generate quality code. FLATS2
has two instruction streams in its ten pipeline stages. The parallel directives of our
FORTRAN enables us to exploit parallelism in parallel program with multiple instruc­
tion streams. While the performance of Linpack benchmark is 1.96 MFLOPS with one
instruction stream, the performance is increased with two instruction stream to 3.iO
MFLOPS.

In FLATS2, we can exploit the microarchitectural parallelism with the BL addressing,
which integrates memory addressing and range checking. With the BL addressing, the
test for termination of t~e loop of array computation can be overlapped with the compu­
tational operation. The FLATS2 FORTRAN compiler generates optimized code with BL
addressing to reduce the execution time for array computation. Since array computation
often dominates scientific workloads, we reduce the execution time of scientific application
by 10-30%. In a parallelized program, the BL addressing reduces the execution time of
the loop which is distributed to each instruction stream. The cyclic pipeline computer can
implement the BL addressing to remove the interlock due to control dependency involved
in the BL addressing.

We have examined the FLATS2 pipeline compared to the single instruction stream

88

pipeline with the same structure by the simulator. For highly parallel programs such as
Linpack, FLATS2 can obtain the performance improvement over the single instruction
stream pipeline. But for less parallel program, the synchronization overhead between
instruction streams is larger than the overhead due to interlocks in single instruction
stream.

FLATS2 exploits the microarchitectural parallelism by rather complicated instruc­
tion set, which allows the memory operands to be accessed for both load and store in
one instruction. It reduces the number of instructions to be executed. If we use the
Load/Store instruction set in the modified FLATS2 pipeline, the performance improve­
ment contributed by the two instruction streams is larger than that of FLATS2. The
reason is that the execution time of parallel loop is large compare to the sequential code in
Load/Store architecture. Nevertheless, we can obtain the better performance in FLATS2
than the Load/Store architecture because the number of instruction to be executed is less
in FLATS2. If the simpler instruction set makes the cycle time shorter, it would obtain
better performance.

The cyclic pipeline architecture is a single processor architecture, while it allows the
multiple instruction streams. We expect further research to study the multiprocessor
system with cyclic pipeline processors. As the cyclic pipeline architecture reduce the
impact due to memory access latency by pipelined access, it can reduce the impact due
to the network latency [Mor90]. In a cyclic pipeline computer, the number of instruction
stream is fixed and they are scheduled statically. To schedule the instruction streams
dynamically, we would have to place several queues to handle the activity of the instruction
stream, as HEP and data flow computers.

Since there is no memory conflict among instruction streams of a cyclic pipeline com­
puter, the synchronization operation is very cheap. Although the parallelism of programs
may be expressed explicitly in the form of language extension as in our simulations, au­
tomatic parallelization compilers, including automatic program restructuring, is expected
to exploit parallelism for a cyclic pipeline machine with minimum programming efforts.

89

Appendix A

RUN-TIME CHECKING IN LISP
BY INTEGRATING MEMORY
ADDRESSING AND RANGE
CHECKING

This paper presents the design of a Lisp system using the BL addressing of FLATS2. The
paper was published in the conference proceedings of 16th International Symposium on
Computer Architeeture[SIG89].

90

RUN-TIME CHECKING IN LISP
BY INTEGRATING MEMORY ADDRESSING AND RANGE CHECKING

Mitsuhisa Sa.to-. Shuichi khikawa- and Eiichi Goto-"

- Research Development Corporation of Japan (JROC),
5-64 Tsukiji, Chou-ku. Tokyo 104, Japan

.. University of Tokyo, Department of Wormation Science.
7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

Abstract
Thi5 paper describe> the BL addressing mode and the

addrus tag in FLATS2 machine, which is a general-purpose
MIMD computei' now Wlder construction. The BL addressing
mode integrate. memory ac«ssing and range checking by
hardware. Address tag is a bit in word, which indiC&1e$ the
capability for memory access. Combining them IOgether,
efficient memory protection is provided at run-time. It roduct&
the cost of run-time type checking in Lisp by checking the
address tag and the addreu of a poinlc:r against the range of the
region associated to a type, in parallel with the memory access.
The uithmetic instructions check the addrC" tags of operands
to support the generic arithmetic in Lisp. We can also make
use of lhi.s scheme to check the nwnber of argwnents and.
multiple return values and to check array-bounds to support
faster execution of Corrunon Lisp program. These facilities are
not specific to Lisp, so that they can be used more generally
than other tagged architectures.

1.lotrodYdJoa.

Lisp inchJdei a nwnber of features that make Lisp programs
dillic:ult to execute efficiently on conventional machines. One
of these feanues is d'jrtartUc rype checking. Lisp ASsociAte$
type with values ratha than idc:ntifiers. Dynamic type
checking is implemented by adding to each data object a lag
that. cnc:odcl type infonnation. Most of Lisp machines provide
architeehU'al support for tag manipulation, together with other
works related to dynamic type checking Uld generic operations,
to execute lisp programs efficiently.

In this paper, we propose new architectural supports for
run-time checking in Lisp, BL addressing ~ and address
'ago which can be used more generally than tagged Ilchiteeture.
BL addressing mode is integration of memory addressing and
range checking. The effective address is checked against the
specified pair of base and limit address in regis ten during
memory a.ccess. An address tag is '-a bit in a word, which
indicates whether the word is an address or not. It chocks the

Permissiootocopywithoutfeeallorpartofthismaterialisgranted
provided tbat the copies are not made or distributed for direct commer­
cial advantage, the ACM copyright notice and the litle of the publication
and its date appear, and nolice is given that copying is by permission of
the Association for Compuling Machinery. To copy otherwise, or 10

republish, requires a fee and/or specific permission.

91

capability of memory a.ceess.
In Lisp, an object is represented as a pointer or an

inunediate value. Addreu tag disLinguishes a pointer object.
from an inunediate data type such as fixnum. Generic
arithmetic instructions check. the address lag of operand to

perform the operation according to the data type. By allocating
the same type of objects in a segment. BL addressing mode
checks the type of a pointer object during memory access by
testing which segment the pointer poinl.S into. So, we can
check. the chta type by the range checking instead of a tag.
I..i.k.e lag checking of lagged archit.eeture, the range checking
overlaps the memory access.

FLATS2 is an hUMO computer by cyclic pipeline
archileCture(CPA[9D, which exploits these features. It is a
general-purpose computer, not lisp-specific one, because BL
addressing mode and address lag are general architectural
supports, not lisp-specific supports.

One of FLATS2's target languages is Common Lisp [13J.
Conunon Usp is an "induslrial suength" dialect of lisp
providing a wide variety of data types and conlrOl SD'UCbJres.
In this paper, we explain how FLATS2 supporu fUler
execution of Conunon Lisp programs with BL addressing mode
and address tag.

In Section 2, we describe the basic concept of BL
addressing mode and address lag. Section 3 describes the basic
archit.ee11lJe of FLATS2, and in Section 4, we explain the
design of Common Usp using our archi1.eCtUral sUPPOrL In
Section 5, we discuss BL addressing mode and address tag
(compared to other tagged art:hileCtures) and their hardware
implementation of FLATS2.

2. The c.oncept or BL addressJne mode and -.ddrcu t.Iti:

2.1 BL addresslnernode

To access the memory, addressing modes locllLC: operands in
memory. In BL addressing mode, the c:ffectin address is
checked by comparing the address with base address and limit
address whenever the operand in memory is accessed. It
allows memory &CCesS and range checking to be performed in
parallel by hardware. If the effective address is not in the
range between given base and limit. either a tnnch to a
specified location or a uap occurs.

BL addressing modes are specified in the following form:

<ilL> : <addre~1nc modo, <labeb

wheze <.addressIDi: mode> is dLsplMocemenC(address) or
lndex(llddress). (DLsplacement is • consUlJlt. Address and

index may be • variable specified in • register.) <d!L> giva
the base and limit as a pair, which is called BL pajr. <label>
may be omitUd and then • trap occurs instead of bnnc:hin&.

BL addressing mode provides memory protee:tion on small
domain II: run-time. For example., BL addreuin,g mode is wed
for array-bounds checking. It checks the indices &0 make sure
that the reference is inside the given vector specified by BL
pair. It is desirable to check array bounds to improve program
reliability even in statically typed languages such as
FORTRAN, PASCAL.

2.2 Run·Ume data type checldne b1 Bx...addl"tssfnr mode

In dynamically Iypc.d languages such as Lisp, APL. and
Ico~ all dw objects are allocated dynamically &1 run-time, and
their types must be checked at run-Lime. Objects in memory
are referenced indirectly through pointers. Each type of the
objects can be allocated in the heap space associated with its
type. We call a heap space corresponding to each type., type
ugmenJ. The type of the pointer, then, can be checked by
testing which type segment the }X)inter poinl5 inID.

The compiler knows the expected data type and how 10
•.cceu the Object in memory through the pointer. By using BL
addressing mode with the BL p,air of the type segment, the type
can be checked in parallel with data access. For eumple in
Figure I, a cons cell in Lisp is represented by two words in the
cons cell segment, where B~ons indicates. The primitive
operations car I cdr on a pointer p to the CON cell are
performed by loading from memory with BL addressing mode
respectivelyasfoUows:

cU{P) := Bl-<:ons : (P)
ul:(p):= Bl-<:ons :4(p)

Here the size of • word is 4 bytes. If p points outside of SL­
cons, a trap occurs.

The predicate on list data type, listp is implemented simply
by range chocking on a point.c:r with the BL of cons cell
segmenL

I cons cell
segment

BL-cons
car) (p)

l
cdr(4(p)

F'1cure 1. CAR/CDR operations by BL addressing mode

2.3 Addresstag

Even though lh.e address is the most fundamental property
in computation, most of computers have no means to
distinguish the address from just a da1.a. In FLATS2, every
data word on eilher memory or registers has one bit tag which

92

indicates whether a word is an address or noL

Only load ~ffeCli'R oddrt.Ss instruction and memory .ece.u
instructiON can calculate an address, so UW an addrus is
defined in well-defined way. Both of base and limit of a BL
pair mUit have address lags. as well as addrus in <.addresslne
modt>. It a non-address word is wed &S an address entity in
BL addressing mode., the exuption occurs. The calculated
effective address can never be outside of the range between
given base and limit addresses.

At beginning of the uccution of a program. the BL pair of
the entire user's program space ue given by the operating
system. During the execution, no address outside of initial BL
pair can be produced. So BL addressing mode and address tag
work. as memory protection mochanism on the single virtual
space of FLATS2. We c&ll this protection scheme BLscheme.
Combining address tag and BL address chocking can be
thought as a kind of implemenlation of capabilities [16].

J. BasIc arcbltecWre of FLATS2

In this section. we descnbe the basic architecture of
FLATS2 briefly. The cyclic pipeline architecture of FLATS2
implements two instruction/data streams (virtual processorst) in
one hardware. A more detail description is given in (7).

3.1 Memor1 and rt&lsttn

FLATS2 provides the 32·bil single virtual space. The lower
halt of the address spaces is 0 space, which is used to store
daLa. The upper half is divided into the space for instructions
(I space) and the space for register-mapped memory (GY
sp""), FLATS2 has 64 general purpose registm and four
special p.uJX>se floating point registers. Each general purJX>se
registers contain 33 bit word. 32 bits data and one bit for
address tag. The general regist£1'S are divided into two groups:
32 global register and 32 local frame regisLer. They are
mapped on GY spa<:< by Global Frame Poin.... (GFP) and
Local Frame Pointer (CFP). Local frame registers are
savod/restored by CAUJRETURN instruction to make fWlCtion
call faster. CAll.. insll'Uction changes the loaJ frame by
incrementing CFP and saves the old processor starus including
CPF and the program counter (PC) in the new 1oc&l frame.
Floating point registers cont.ain 64 bits floating poinL

D space is byte-addressed. Each word (32 bit) word·
aligned on memory has anothu bit (or an addreu tag. 1ll.e
load/store operations transfer the entire 33 bil word between
memory and registen:.

3.2 Instructfon.

Most of instructions in FLATS2e executed in one
instrUCtion cycle.]15 basic formau is 64 bits in su.e. &5 shown
in Figure 2. The fields sl. sl. sJ specify the general purpose
registers to be fetched. GV·op field specifies the operation
between the general registm, and !.he addressing modes with
the shon displacement dJ, d2 fonn -128 to 127. The
displacement can be extended to the long displacement (32 bit)
in the following instruction word. The displacement field mlY
be wed as I immediate operand. SP·op field controls the

t nw \Qm ...inlMl/ pr«CUOT Ulca.lld n(ll be confwc:d with • vitwal puccuoot
0/ \b~ memory rnUl'gcmtnl iJ:llhc openUnJ .,N:rn. In lhiI paper••~
proccuoru. iNtNetiOll/diu lil'UJ'nin !roD~m.

integ~r and floating points arithmetic unit, called SP IUUI.
n..c instrUctions without SP-op field perfonn address

calculation. byte and short load/store, integer arithmetic
operation. and a few of lisp specific opc:ration. TIU.s let of
instrUctions are basicall)' load/store instruction leL These
instrUctions use SP-op field for other purpose.

SP unit insuuctions (SP instruction) pc:rfonn the floating
and integer arithmetic operation belWeen the general regist.ers.
fioating point registers and memory operands, and store the
result to either memory or regist.ers. We can achieve full
through-put of memory b)' the operation between memory
operands in one insuuctioncycle.

The field jJ specifies !.he relative jump location for in-word
branching. It corurols the exception of BJ...,..addressing mode, as
explained later.

Gv-op(14) I$1(6) I$2(6) I$3(6) I

jl(B) ISP-OP(B)I d1(B) d2(B)

FI,=ure 2, Basic instruction fonnat of FLATS2

3.3 Vulanu or DL addn::!t.~ln& mode

In addition to the basic BL addressing mode described in
previous section. FLATS2 has some variants of BL addressing
mode. FLATS2's addressing modes are listed in Table 1. The
gener:u purpose registers are used as either BL pair, index or
lLCldress register. A BL pair is fonned b)' an even/odd registers
pair. The effective address is checked against BL pair in
register, in an)' BL addressing modes.

Notation Effective Address Side Errect

#= (lrruncdi.«)
grn, vrn, S·,P· (Regisler)

b:dispCp) p +disp
P +:=displb:>dispCp) p +disp

b:<dispCp) p p +:=disp2

b@i b + i
b@>i b + i b +:=;1

b@<i b b +:=;1

b@disp b + disp
b t<= disP Ib@>disp b +disp

b@<disp b b +:= disp1

b@<disp(1) b +; + disp
b:dispCp)i p + j + disp

NOTE: b .pc:citiu oddJevQ'\ repstel' p&it u DL Ia clr~ve .ddRu and A4c

clrCoCl.,bdcnol.athe~ere,"!oCtolDL ilpc.ciJialn:,"lauindurep.la.

P ipcclla I re~ u Iddrul lC,iJ,teI'. rJUp lpecilia I ~ u

dUp1.lcemcnL

-)S'plrel\cwLinEpoWre,utus. 1) PfC"modify 2) poll-modify

Table 1. BL II£l.dressing mode of FLATS2

BL-adJressing modes can involve side effects, which are
called po~;t-modjfy and pre.modify. The side effect of post­
modif)' (pre-modif)') changes the base regiSler or pointer
register after (before) the effective address calculation
according to the Iiddressing modes. For example, the
combina1ion of index mode and post-modify specifies the base

93

address of BL pair as effective address and updaLe the hue
register of BL pair incrementing b)' !.he index register. 1lw:.se
side effects are used as postipre-incremc:ntJdecrcment
addressing mode. in conventional p"occsson: such as VAX or
68000, and each register can hi: modified b)' an)' displacemolt
in both direction. When the modified address is owside of the
range of BL pair, the address tag of the modified register is set
to 0 and then caJUlOt be used as an address an)' more.

The exception handling in BL-addressing mode is different
from the definition described in previous section. Without
specifying the jump target, the exception of BL addressing
mode causes a trap. When the jump field is specified in BL
addressing mode. this jump is executed if the memory access is
completed successfull)', otherwise the next insuuclion is
executed. The following instrUctions handle the exception.

Since the pointer whose most significant bit is I poims into
the I space or GV space, it is a pointer to function code or
local frame. Such a pointer is lIeat.ed specially in BL
addressing mode.

4. ~&O orLLsp on FLATS2

In this section. we describe how FLATS2 supports faster
execution of Common Lisp program by using BL addressing
mode and address tag.

4.1 Data rormau: and wucwn:l of Usp

The fonnats and structures of data types are designed wilh
BL addressing mode and address tag in mind, bGcause the
implementation of type checking depends on the dw
representation. Lisp objects are 33 bits long, 32 bits word and

&n address tag. A type is either an inunedi~ type or a pointer
type. An immediate type objcct has its address tag cleared.
1be type. fixnwn is onl)' an immediate type. 1ne value of
fixnwn is stored in 32 bil word.

All dala types except for fhnum are rderenced through
pointer objects. The word of a pointer object 5J"l=Ci6es a
memory location where the data associaud wilh the pointer
object are st.ored; cons cells. s)'mbols. ratio and flo...ung point
are relX'esented in lh.is way. 1bese fixed lo:ngth objects are
allocated in type. ugm.enl associated with a pointc.r ty~. The
data of fixed· length objects are accessed through a pointer
object b)' BL·addressing mode with COnsULnt offsct and BL of
its type segment.

For variable length object such as vector, arra)' and string,
the fixed-length header, which contains the descriptor of the
variable length data, is st.ored. in its type segmenL The
descriptor is a BL pair of variable length daLA in dala kuJp.
The BL pair of a vector is loaded from its header to acces.s the
elements of vector. BL addressing mode checks the lLC(:<SSCS on
the vector without overhead. Run time checking for vector
access is rather natural usage for BL addressing mode.

4.2 OpentJon$ontistel~ml!nLt

Lists are one of the most frequentl)' used dau str\.lcture in
Lisp. n..c basic operations required Ilfe cuns to add an eh:m~nt

to a list, and car and cdr to access !.he flTSl eh:.mcnt anJ uil of
a lisL Lists are sequences represent.cd in the fonn of linked
cells, called COM cell. Cllr and cdr are ~rfonncd b)' load
operation on a cons cell with BL addressing mode.

Car and cdr are ckrmed in Cumman Lisp not onl)' for a
poinLer to cons cell but also for::. pointer l.) nil. In Common
Lisp as in most Lisp dia.lC:CL'\. lh~ syOlbol nil is u.s¢d 10

t The value of nil Iymbol it ddined u nil iuelf. nu. prcva\ll liD Iymbol.
rtom bcina dcJincd u. funct.ionlW'Tlc:.. NOIot \hltthl:=it DOdQCription in
(13) whc.lhc:JlhefuncLion nlJfW.d-ni1· it pctmi1WItobedcJine.d Olnol. We:1' uyoullhe intunLl 1l,Netlm:U l.Cl\l$eWlu tell innu.d oIlhe function

represent the empty list and the false value for boolean test.
NU is • special object which belongs 10 both list and symbol.
Although it is a symbol like any other symbols, it appears 10 be
treated as a variable when evaluated. The dW structure of a
symbol object consists of several words, including value cell,
the function definition cell property list, print name, package
cell of a symbol and other attributes. The symbol structure is
designed so that its value cell and function cell can be ICCCSsed
by car and cdr opention LS if it is a cons cell The cons cell
type segment adjoins the symbol type segmenL The symbol
nil is located on the intersection of both rype segments. The
BL pair used in car and cdr operation includes the nil symbol
as shown in Figure 3. In case of nU symbol, its value cell and
function definition cell are also till.t

F1ewe 3. Cons cell segment and symbol segment

• .3 COnJiLant symbols and read-only prolKUoQ

Common lisp allows symbols to name a constant value by
de(constant declaration. Once a name has been declared by
de(constant as a constant, any further lSsigrunent to or binding
of that named symbol is an error. In the interpreter, such
binding can be <!eLeCted by <hedwig !he ltIribute of symbols
indicating the named constant with run-time overhead.. The
compiler can replace references to the name of a consWlI by its
value of the constant in source level, and may also choose 10
issue warnings ahout bindings of the lexical variable of the
same name.

However, even in compiled code, it is necessary to check
the bindings to the system-supplied constant such as nU and L

Such read~n1y attributes of these objects can be implemente.d
by selecting BL pair used in store operations. The shallow
bindings to special variables modify the value ceU of a symbol
using BL pair of symbol type segment excluding read~nly

constants.
Rplaca and rplacd operuions modify the list structuTes.

Unlike car and cdr, these use BL excluding DII symbols 10
avoid modifying thevalueofDlI.

BL for
numberp

floating
point

segment

ratio
segment

complex
segment

segment
for other
number

Iypo

U E>pUd. '1P< oper.U....

Type che<:king iJ requiz<d in <he<:kinl Op,...<ioN lpe<iJied
II the source level. JUCh u lhe function atom. 1be predicate
for testing m individuaJ primitive type is implemented by
checking a object pointer against the BL pair of the associated
type5egmen1.

The data types defined in Common Lisp are arranged into a
hierarchy defined by the lubset relationship. For example, a
type number includes integer, ratio, floating.poinl numbefl and
complex as its subtypes. TIle layout of type 5C:gmenlJ in
memory isclet.c:nninedas toma.k.eiteasy totcst 5upertypeJof
basic data types (Figure 4). 'The type 5C:gmen1S of subtypel Ire
placed in the range of supertype. We can lest the. supertype by
checking against the BL of the superrypc:. For example. the
predica1e function Dumberp lests the pointer object against BL
pair including all subtype segment of number type.

We can implement. the intersectional type of (wo~. NU
is an example of intersectional types of cons and symbol. The
predica1eS endp and consp test against the BL excluding till
while the prcd.icate listp uses the BL including nil as C&1 and
cdr.

The range checking for the pointer object is done by load
qfuljve address instruction with the point.c:r mode of BL
addressing modes. 1lUs insb'Uction branches by in-word jwnp
field without delay.

Fli::ure 4. Layout of type segments for number

• .5 GenerlcarithmeUcopfl'atioluand Fbnum.

Lisp generic functions must det.c:nnine the typeI of their
operands at run-time in order to perfonn the appropriate action.

For arilhmetic operations, me most frequent type or
operands is fixnum, which is the only type represented by an
immedim type. To avoid testing the types of operandi
explicitly, the hardware perfonns an address Lag check in
parallel with arithmetic operations. FLATS2 has two kinds of
arithmetic operation; Lisp tuilhmLlic insb'UCtions checks addren
Lags of both operands. Another kind of arithmetic instructions
ignore address Lags to perfonn the arithmetic operation on both
value of data and produce non address resulL

If both operands in Lisp arithmetic have no address tag,
then arithmetic operation is completed just as conventional
arilhmetic operations. 1f either operand has an address Lag, the
inslI'UCtion forces a trap to software. The software dispa1dles
on the types of e&Ch operand to determine if both are nwnbers,
coerces one of them if they have differenl types, and then

BL for
rplaca/rplacd

BL
for reading
symbol cell

symbol
segment

constant
symbols

.... nil

~cons cell
segment

BL for
car/.cdr

8L
for writing
to symbol

94

perfonn the generic arithmetic operations by propa sequence
of machine instructions. When the overflow coMition is
deteCted. a trap also occurs to extend the result to bignwn..

lnere are two equality predicate5 wed frequently in
Conunon Lisp: EQ testing for the identical objeca and EQL
testing for identical objects or equality for nwnbe:n of the same

type. The EQ u., is performed ,imply by eomparing Ihc
objects including address tags. TIle EQL comparison is more
complicated because the pointer objects of nwnhcn which have
the same value may be located in different location. AA Lisp
generic arithmetic, Lisp compare insrruction tests and trap' to
software if either operand has an address tag. U both operands
are non·address words, then comparison is completed as
conventional compare instruction.

Th.ii approach on generic arithmetic operation is simi1&r to

SPUR[14j. We usc on address tag inslUd of SPUR', fixnwn
tag. 'This integer-biased generic arithmetic is based on the
asswnption that the integer is the most conunonly used data
type in aritlunetic operations. 'This approach is very fast for
me integer data types, but Iwldling of other data types can b:
slow. Its perfonnance depends on the ueatrnent of a trap in the
operating system and on how often integer operands are wed.
In the case of non~integer operands, rather large amoW\t of
time can be required for recovering from a trap.

In compile-time analysis, the type declaration and a
sophisticated type inference can be wed to reduce the cost of
using the wrong bias. If compile-time analysis indicates thai: the
operands are probably other than of integer type, the compiler
can generate code that operates with a differeru bias. Even
withoul such lisp-specific arithmetic instrUction. we can
implement the generic arithmetic operation by 4 instructions in
software; 2 instructions for Lesling address tags of bolh
operands, 1 for adding, 1 for checking overflow. This software
approach is also biased to integer rype. but we can avoid the
overhead by recovering from a uap.

4.6 F\mctJonull

lbc stack is -p'ovided in D space for passing argwnents,
reruming values, shallow binding of special variables and
spilling registers. 10e temporary variable whose lifetime is
known to end when a function re[UffiS are allocated in the local
frame registers or on the stack. Because of lexical scope rule,
the local variables which can be referenced by other functions
must be allocated either on slaCk or in closure type segmenL
Switching the local frame registers by CAWRETURN
instructions avoids saving and restoring the temporaries of the
calling function to make the function call faster.

The global registers are used to pass the argwnents and
rerum values. Conunon Lisp allows the variable nwnber of
argwnents to be passed. CO functiON, and provides a variety of
specification on parameters. Called functions must check the
nwnher of arguments to take each argwnent according to the
parameter specifier.

The calling function pushes the arguments onto the stack.
and then wes the global register to pass the BL pair indicating
high and low address of the argwnents on stack instead of the
nwnber of argwnents. The BL pair can be calcula.ted. from the
stack pointer and the nwnber of argwnents in one instruction.
called make BL pair (m.tbl). In order to setup the parameter
variables, the arguments can be accessed by BL addressing
mode in parallel with checking the nwnber of argwnents. The
exceptions may cause a trap for an error, or move the default
value to theparameler.

9.5

Common Lisp aUo allows the function to retw'n the
multiple values. l....ike p&Ssing argument, the eal1cd function
pushes all the returned values on the stack and then returns the
BL pair indicating high and low addre" of the rewm values.
When con1rol relwns to the caller, it takes the return. value
through the returned BL pair to convert the ValOCl to the form
required by tho caller. =king Ihc number of Ihc n:1llm

value can be done during accessing the rewm value on the
stacie.

4.7 Clobal rqlstenandly5Um con5tanb

FLATS2 has 32 global registen. 1be most frequcmly
referenced. system values are kept in global registers. 1bese
system values arc the CONtaru nil value, the stack pointer, and
the BL pair for the entire own memory space. The BL pain; for
checking the most common type such as cons cell are also k.ept
in the global registers. We must choose carefully which BL
pair of type segments should be kept in the global register.

BL pain: of other type segments are pL&ced in memory.
They are loaded into local frame registers or free global
registen whenever needed. The compile-time analysis keeps
such BL pain in registers in the compiled fwu:tion.

4.8 Combln1n& predlcatt andaect$S loobJtd

In Lisp programs, accessing an object often follows the
predicates t.csting its type. For example, car and cdr oft.cn take
place after the check whemu its operand iI a list by the
predic&tC llstp or the complementary predicale atom.

1be compiler can combine such sequence of type checking
and accessing in10 BL addressing mode. The jwnp specifies
the action after the data access, and the successive instrUCtions
execute the action after the type check is failed. 1ne example
of the program in Appendl.x uses this optimization.

11Us optimization is effective to implement the generic
operation on sUlJUnce. which encompasses both lists and
vectors. By checking on list daL.a type first, we CUI do generic
operations on the list sequence without overhead.

TIlls technique is wed also in FLATSl [5], by using uror
jump facility of car/cdr instrUCtion.

4.9 Arra,accus

Bounds checking on array access is straightforward for BL
addressing modes. The indices are checked agaiNt the bounds
by index mode with BL pair of the array. When an amy is
accessed in loop. the compiler keeps the BL pair of its array in
register as possible.

If III array has a fill pointer. it may be reprcseru.cd u an
pointer instead of an index. Its elements are accessed through
the BL pair of the artay's base address and the fill pointer. If
the access failed. the fill pointer is modified by • new address
and then is accessed again. The elemcnl inside of the fill
pointer can be accessed wilhout overhead of checking against a
fill pointer explicitly.

4.10 F1oaUn& point

FLATS2 supports single precisions (32 bits) and doule
precisions (64 bits) of floating points nwnhers, which are
basically compatible La the DEC floating points fonnaL [15]. In
FLATS2, no immediate floaLing·poinl dati types are wed such
as the single pecision dua type in Symbolics 3600 [8],
beeause an irruncdiate object represents only the fixnwn dala
type. All floating point objects are represented through the
pointer.

Most floating arithmetics are perfonned in one instruction
cycle between memory operand and the Boating point registers
b~ SP instruction. Temporary results of floating points
anthmetic can be k.ept either in the regislct or on the ,tack as

c,;o fi.xnwn .ob.ie:cts. ~or ftoating-point operands, the inuger­
blastO gc:nenc anthmetJc operation first ha\le 10 dispatch on the
types of their operands and then use the pointers 10 load the
ftoating point nwnbers from memory to regisla. It either of
the operands is known to be ftoating-point types at compile­
time by the type declaration. the: floating arithmetic instruction
can access the operand on memory in parallel with type
checking against the BL pair of flailing point segmeru. When
the operand is the pointer object of the floating type, we don't
ha\le to loose time for checking dau types. It type check
failed, the Object is con\lened to the floating point data type
and then arilhmetic operation is done again.

".Il DalaaJlocaUonandstougtrnanagtrnent

Allocating storage for an object in a type segment is
accomplished simply by incrementing the free poinlct
associated with that segment. For example, cons operation
which allocates a cons cell, is accomplished by incrementing
the free pointer associlled with cons cell segment. 'W'hen a
free JXlint.c:r for any space is incremented., a check must be

made to see if the free space runs out. If so, the garbage
collector is invoked.

The free area in a type segment is also managed IS the BL
pair of the free pointer and the limit pointer, which points the
end of the free areL For cons operation, the special inslrUction
is pro\lided to store two words to the memory at the bue of
BL to increment the base pointer L5 side effect., and move the
old base pointer to the target register as a newly created cons
object. All these operations are execuled in one instruction,
calJed allocau spaa (aIJocs). To alloclle ot.her types of
objects, the side: effect of BL addressing mode of store
operation increments the base of BL pair pointing the free area.
In either case, when the new base address runs o\ler its limjt
address. the address tag of the base of BL pair is cleared to
notify that the free space runs OlOt. Next attempl for allocating
the object will fail and cause: a trap to reclaim memory. We
minimiu the time for the simple object allOC:a1ions such as
cons cell. floating-point by expanding it inline with a few
instructions.

Storage is reclaimed with a stop-and-copy garbage collector
by the following reasons:

- Copying improves paging performance: because it compacts
objects.

- If (ree space runs out, it is necessary to relocate the object
in the segment into the other bigger segment in order to
enlarge the size of free space. Copying makes it easy to
implement the relocation of segments.

- We have no room for keeping extra bits in the pointer
objecl forincrement.a1 GC.

Garbage collector needs to distinguish pointers from d.at.L
Address tags allow the pointers to be recognized by their tags.

A5 described in section 4.1, the daIa of variable-length daLl
type is &1Jocaled in data heap. All free objects in data heap are
managed by the Cree list.

96

5. Dlsa&ssJoll

In this sec.tion, we discuss the (uDJre of BL addressing
mode compared to Lagged architecrure, and the hardware
implcmenLation of the BL addressing mode in FLATS2. It is
difficult to evaluate the performance of Lisp on I specific
architecture. Jts performance depends on many faclOTs
including compiler quaJiry and the operating system
cnviroMlerllas welt as the ITchitecruraJ support.

5.1 Full tauedarchltedun

Run-time type checking is implemented by adding a tag to
each data objecl to encode the rypc: of that object in either
software or hardware. Most of Lisp machines such as
Symbolic. 3600 [8). 11 Explorer Pl. SPUR [14J and FLATSI
[8J, adopt a tag architecDJre to execute Lisp programs
efficiently. These: machines provides a few of bilS for the lag
to represent the data types. We call such class of tag
arch.itecnue fu./l laggt!d archilt!clU.'t!. The Lisp machines with
lagged archilecNre suppol1 tag checking operaliofU in parallel
with other operations.

In addition to run-time checking, the tagged architocDJre
offers several advantages. In mOSl of Lisp machines except for
SPUR, high. level instructions corresponding to Lisp primiti\le

functions are micro-eoded in finnw81e. Because micro­
programming allows more parallelism, it could be faster than
that of the software implementation on conventional machines.
For example in n Explorer VLSJ processor [1].• tag dispa.1ch
table in chip is used by micro code 10 support generic
arithmetic operations. U the test for the most common integer
case failed, the micro-code dispalChes on the type of operands.
FW1her. language·specific instruction set designed by micro­
program provides the high-le\lel instructions easy to be
compiled into, and compact codes. which increase code density.
However. micro-code requires the additional hlTdware to

control the sequence of micro-instnlctions. It would add on
cycle time and decrease the tow performance.

SPUR is • RISe processor, which incorporates tagged
architecture into RISC. It has I few lisp-specific lnstnlctions
for lag read/write, list access. intege:r-biased generic arithmetic.
However. SPUR does not allow parallel checking on memory
access other than list access, so tags except forlisl are checked
bysoftwarc:.

FLATS2 provides only one bit Lag indicatin, the capability
for accessing the memory. The hardware related to the address
tag is hard-wired. A valid address is Cleated only from the
effective address calculation by BL addressing modes. It
enables the memory protection on small domairu with BL
addressing modes.

5.2 Run·Urne checkJng In fuU ~~l"d archltectun and BL
addruslne: modt

Both of full tag checking and BL addressing modes provide:
dynamic type checking facility on the pointer object during
address ealculation.

In tag checking, the expected tag could be specified in I

register, as an immediate, or in the ope-ode. The hardware
testing is limited to a simple lag check. and is sufficieru for list

accessing. But for vector operation, array oounds checking
would still have to be done in software or firmware.

In BL addressing mode of FLATS2, the BL pairs for type

segment.s must be specified L"l registers. BLs for the rype

segments may ctwlge by relocation 11 run-time. But if & BL
pair CaMot be k.ept in the register. it Lakes more instructions to
load it from memory_ Some of the BL pairs which lie used
frequently, can be kept in global registers_ The compile-time
analysis can keep other BL pain in registers during register
allocation phase. 1ne pair of registers occupy double registers,
so BL addressing mode requires the large nwnber of registers
in order to make BL addressing mode work. effectively.

N well as type checkin'g at run-time, it can be effective in
a number of situa.tions, &S described in the previous section. BL
addressing mode provides more flexible checking mectunism ...
run-time Lhan tag checking does_

The type checking on pointer objects is implemented by the
address range checking in BL addressing mode. Type checking
by BL--addressing mode requires objects of the same <tala type
to be allocated in contiguous area on memory. E\len in full
tagged architeewre. some Lisp systems allocates each objects in
this way to make the storage management easier, so thal it is
not serious restriction on implementing Lisp system.

It is sometimes weCuI to dispatch on the type of the object
like in & case staunenl Such type checking is expensive in BL
addressing mode. In fuU tagged architecwre, it is easy to

recogni:z.e data type from the object pointer simply by
extracting !he tag, because the tag in a object describes its data
type. But in our approach, it is necessary to chock: the pointer
address against BL pairs of all type-segments sequentially.t
Sequential type checlting can dc:tect the most common type
faster, but the detection on other data type can be slower.
FOI1un&l.ely, most of type checking in Lisp source program are
performed by the predicate function of an individual data type.
Dispathing on the data type is rarely used in compiled code.

5.3 The Implementation or BL-addnssln~ n'ode In FLATS2 CPC
architecture

Steenkiste and Hennessy [II,12} studied on the cost of tag
checking in respect of software and hardware support in RiSe
architoewre. According to their results. fWl-time tag checking
for primiu\le Lisp opc:rations in software costs aboUI 25 % of
toLal execution time on .\lerage in Gabriel's benchmark:
progranu[3}. By o\ler1apping this tag checking and other
operations in hardware. we can reduce this cost to obtain
substantial speed up of execution.

Ra.thc:r complicated instructions for type checking mwt be
{uter than & sequence of simpler instruction if they are 10 give
perfonnance improvemc:nL. 1llc: proposed hardware schemes
must be e\laluated not only for instrUCtion count or con\lenience
of software, but &150 for potential negati\le factor on the
processor's cycle time.

In thc case of FLATS2, BL addressing modes always take a
BL pair as regisLer operand, and jwnp field as an immediate, so
ra1her long instruction is required. It may decrease code
density and increase paging activity. Additional hardware
required for BL addressing mode consisLS of two comparators
for range checking and some logic for address Lags. To rud
BL pair from register, an additional read poll is required in
register file. The BL range checking on effective address

t u ~ 1)pC namenl wc:n 1llae&Lcd \0 make hi&h4 biu ~ !he .d~
iDdi,..u ahc lypc: lac lhc. us. we t.O.Lld du !he wne oputum .. lhe ru.ll
"uc.duclWc.c:lan:.

97

o\lerlaps load/store operation form/to memory. U such
hardware is added 10 the critical path of execution. it would be

negativcirnpact on the c:ycle time.
FLATS2 has Len pipeline Slages. and each sugu lie

executed in SO os. Each instruction L&kes (wo succeuive slO{ in
pipeline and the entire pipeline is shared by two
instruction/data stream. ConscquenLly. each instruaion of a
single virtual p'ocessor is executed in 200 N. In the CISC of a
conventional pipelined processor, branch dependences cause
delays by & conditional branch such as the e.lceptional
condition of BL addressing mode. Because each pipeline Slages
are shared by two v irtual processor in FLATS2, a dc.Lce:tion of
branch wgets can be determined by the next insuue:tion felCh.
In cyclic pipeline architecture. lhe total throughput can be
acrue\led. though each program can take fixed of l.he IOtal (a
haIr of FLATS2).

Without cyclic pipeline architecture, BL addressing mode
would be implemented with lWO insltUctions; The first
instruction checks the poinIr:rs against the specified BL pair and
jwnps according to the result of the range checking, and the
second instruction accesses the memory. With a "squashed
dclayed branch" in MIPS-X[2), lhese two Uuuuctions CiLO be
overlapped. The branch condition is calculated while the next
instruction is fetched, and the effect or both insU'UCtions is

canceled if lhe branch does occur.
The similar range checking instruction is proposed in (6J lO

support the range check: of data \lalues.

6. ConciulOloo

In this paper, we described lhe archilccwral support of the
integration of memory addressing and range checking in
FLATS2, and how it supports me efficieru utCution of
Common Lisp program. It provides a \lariety of checlUng
required at run·time, such as type checking, gencric arilhrnetic,
array-bounds checking. and the checking on the nwnbc:r the
argument and multiple return value of fWlCtions. We can
reduce the cost of run-time checking by BL addressing mode
and address Lag as by Lagged ucrut.eetures.

FLATS2 provides the large nwnber of registen to check:
many types effic:ieruly. because BL addressing mode requises
the BL pair in registers to be checked. lnc compiler can
opLimi:z.e the register allocation for BL pairs 10 make use of the
BL addressing modes.

In cyclic pipeline architecture of FLATS2. we implement
BL addressing modes in one instruction cycle. 1n con\lenuorW
computers, it would be implemenled wilh two insuue:tions.

As discussed in (4), lncorporating tag archiLeCtW'e into a
general-purpose computer mighl impose high-level language
features thal are essentially ILl odds with the computational
model of statically typed languages. Our architectural support.
howe\ler, is so primitive mechanism that it can be used also for
array-bounds checlc.ing in FORTRAN, and the cktection of
illegalpoinl.er usage in e (10].

FLATS2 is curreruly under con.nnJction. ILS Lisp system is
being de\leloped in lhe instruclion level simuilltor.

ACKNOWLEDGEMEt<rS

We are grateful to Norihiro Fukuawa. Paul Spce and the
members of FLATS2 project for helpful discussions.

jmp L3

un:RENCES

[I) Bo..hut.P. Hew..,C. Chong, M. and Ch.w. K.
"ASS3K·TransislOr USP ProetJ"" Chip". Digesr 19K7
InJe.rnDJionaJ Solid·SlaJe CirCulU Con/euncc. IEEE.
New York, February 1987.

[2) Chow,P.1lld HorowilZ,M. "Architectural Tradeoffs in
liIe Design of MIPS-X". PTocudi." of II.< 14th
ANUUJI lnumaJionaJ SymposiuM on Camp"'u
Architect"'.. ACM,Iun.. 1987.

(3) Galrie~R.P. Camp"'eT Sy,unu Suies. Volwne:
PofOTmanc. and evallUJIion ofliSP systems. The MIT
Press,198S.

(4) Gemin8'" E.F. and Kudy, 1.1- -ragged Architecture:
How Compelling Are its AdvanLagc?", Proae(Jjngs of
1M 12th A1I/J.IU21lnIerflQ1ionaJ SymposUun on Computer
ArcJUJecllUc, ACM. June. 1985.

IS) GolO, E. Soma, T., Inad&, N., Ida, T. Ide>awa. M.,
Hi"ki,. K., Suzuki. M., Shimizu, K.• and Philipov, B.
"De'ign of a Lisp MacIUne • FLATS2". Confere"".
PToceedings of 1982 ACM Sym. liSP and FlUOCtioNJi
Programming. PiusPurgh. August 1982.

(6) Hil~ DD. "A hardware mechanism for SlJpporting
range checks". Compwu Arcmteclwe
News(ACMjS1GARCH), vo!. 9, no. 4, pp. IS-21, Iune
1881.

[7J Ichikawa. S. "A ,nxly on liIe Cyclic Pipeline
Computer. FLATS2". MS Th<sis, February 1987.
University of Tokyo.

18J Moon,D.A. "Architecture of liIe Symbolic. 3600".
Proceedings of 1M 12th AI1IULQ/ InIuNJJiond
Symposium on Compuur ArchiJectlUc, ACM. June
1985.

(9) Shimizu, K. GoIO, E. and Ichikawa. S. "CPC(Cyclic
Pipeline Computer) . M Archit.eenD"e Suited for
Josephson Pipelined.Memory Machines", Proceedings
0/ 4th Riun Symposium on Josephson Electronics,
Wako-shi, March 1987 (10 appear in IEEE Transactions
on Compute:rs).

(10) Spec, P. "Dynamic Type md Rm8e Checking in C
using & Tagged Architecture". Research and
DeveJopmeru Corp. of I apan. 1988.

111J SLeellkiJ~, P. md Hennes.y, I. "USP on a Reduce­
lnstruction·5Ct-Processor". Procudings of 1M 1986
Conference on USP and Fun.cti.onal Programming,
ACM, Bo,lOn, August 1986.

[12J SLeellkiJ~ P. and Henn..,y, I. -rags md Type
Chocking in USP: Hardware and So(rwue
AwoachC$". Procudings 0/ 2nd InJunarionDJ
Confuenu on ArchiJecllVal Sllppor' for ProgrtJlttlning
Languages and OpuaJing SystU1lS, Palo Al~. October
1987.

1l3) Steel.. Ir. G. Common Lisp • TI.< lang""g•. Di8ilol
Equipment Corporation. 19&4.

(14) Taylor, S.T., Hillinger. P.N., Luus, I.R., Pa"""on,
D.A. and Zorn, B.G. "Evaluation of !he SPUR Lisp
Architecture", Proceedings 0/ IN 12th AtuwaJ

98

lnUf1IQJion4l Sy'¥osUun on ConV1Jdu Nchiteauu.
ACM. Iune 1986.

[IS] VAX Archiuct"'. Hondbool:, Digilol Equipmeru Corp.,
198!.

[16J Wilkes. M.V. "Hardware Suppon for Memory
PrOLection: Capabili[)' Implementations". Procudings
o/lnJunoJioMl ConfuQlCe on ArcniJ«llUal SIJPJXWI/or
ProgrtJmmiJtg Langwages and OputJIing Systems, Palo
AlIO. Ca., March 1982.

APPENDIX. An uample of Ilst append rUDCtJOD

; source program of list. append

; (de fun append Ix yl
; (cond «endp xl yl

{t Icons (car x) (append (cdr xl y)) II

; grO-gr32 : global regist.er
; vrO-vr32 : local frame regist.er
; grO/grl : BL for passing argument.

and multiple ret.urn values
: grlO/grl!: BL for cons cell segment..
: grl2/qr13: BL for free area of cons cell segment.
: qr30/qr31: BL for entire space.

; no local variable
; on the stack

movw grlO@O,vrl ; move x to vrl.
movw grlO@4,vrO ; move y to vrO.
movw. j grlO: (vrll,vr2,Ll

; load car (x) to vr2.
: jump Ll if success.
: if failed,
; return y (vrO)

movw grlO:4{vrl),vr3
; load cdr (x) to vr3

movw vrO, >-4ISP) ; push y
movw vr3, >-4 (sp) ; push cdr (x)
mkbl (sp), 4 (sp) ,grO ; make BL to pass

; t.he argument.
; base .. sp,
; limit - spH

call Lappend ; call function
lea 8(spl,sp ; reset. stack
movw qrO@O,vrO ; get return to vrO

alloc.j gr12,vr2,vrO,fe,vrO,L3
; veO - cons (ve2,vrO)
; v2 and vrO are st.ored t.o double word
; specified by the base of gr12,
; and gr12 is increment.ed bye.
: if base> li::l.it,
; then address tag of gr12 is cleared.
; and go to L3.

trap fGC TRAP ; already address tag- ~ ~:l~r~ is cleared

jmp L2 ; again do cons

movw vrO,>-4 (sp)
mkbl (sp), (sp) ,grO

movw fp,sp
<et

Appendix B

Benchmark programs In Parallel
FORTRAN

This appendix contains parallel versions of benchmark programs in FORTRAN.

Linpack from [Don79J:

c
c parallel version of Linpack
c

double precision aa (200,200) ,a (201, 200) ,b (200) ,x (200)
double precision time (8, 6) , cray, ops, total, norma, norrnx
double precision resid, residn, eps, epslon
integer ipvt (200)

c global
common /adata/aa, a,b, x
common lidata/ipvt
common Itdata/tl, t2

lda = 201
ldaa - 200

n ~ 100
c
*$ barrier

call matgen (a, Ida, n, b, norma)

tl = COUNT()
write(6,910) tl

910 format ('dgefa+:' ,e16.8)
tl = COUNT()

*$ end_barrier

call dgefaP (a, Ida, n, ipvt, info)

*$ barrier
t2 ~ COUNT() - tl
write (6, 920) t2

920 format('dgefa-:' ,e16.8)

write(6,950) (ipvt(i), i =1,10)
950 format('pvt:',10I5)

tl ~ COUNT()
write (6,930) tl

930 format ('dgesl+:' ,e16.8)
tl ~ COUNT()

*$ end_barrier
c

call dgeslP (a, lda,n, ipvt,b, 0)
c
*$ barrier

t2 = COUNT() - tl
write(6,940) t2

940 format ('dgesl-:' ,e16.8)

c
c print result
c

*$ end barrier
end

subroutine matgen (a, Ida, n, b, norma)

double precision a (Ida, 1) ,b(l) ,norma

init = 1325
norma = 0.0
do 30 j - 1, n

do 20 i - 1,n
init - mod(3125*init, 65536)
a(i,j) - (init - 32768.0)/16384.0
norma = dmax1(dabs(a(i,j», norma)

20 continue
30 continue

do 35 i - 1, n
b(i) = 0.0

35 continue
do 50 j - 1, n

do 40 i ~ 1, n
b(i) ~ b(i) + a(i,j)

40 continue
50 continue

return
end

subroutine dgefaP (a, Ida, n, ipvt, info)
integer Ida,n,ipvt(l),info
double precision a (lda, 1)

dgefa factors a double precision matrix by gaussian elimination.

double precision t
integer idamaxP, j, k, kp1, I, nm1

gaussian elimination with partial pivoting

info = 0
nml=n-l
if (nml .1t. 1) go to 70
do 60 k - 1, nm1

kpl ~ k + 1

find I = pivot index

1 - idamaxP(n-k+1,a(k,k) ,1) + k - 1
ipvt (k) ~ 1

zero pivot implies this column already triangularized

if (a(l,k) .eq. O.OdO) go to 40
*$ barrier
c
c interchange if necessary
c

if (1 .eq. k) go to 10
t - a(l,k)
a(l,k) = a(k,k)
a (k, k) - t

10 continue

101

c
c compute multipliers
c
*$ end barrier

- t ~ -1.0dO/a(It,It)
call dsca1P (n-It, t, a (1t+1, It), 1)

c
c row elimination with column indexing
c
*$ pre sched do

- do 30 j ~ Itp1, n
t = a (1, j)
if (1 .eq. It) go to 20

a(l,j) = a(lt,j)
a(lt, j) = t

20 continue
call daxpy (n-It, t, a (1t+1, It), 1, a (1t+1, j), 1)

30 continue
* pre sched do end

- go to 50
40 continue

info = k
50 continue
60 continue
70 continue

ipvt (n) ~ n
if (a(n,n) .eq. O.OdO) info - n
return
end

subroutine dgeslP (at Ida, n, ipvt, b, job)
integer Ida,n, ipvt (1), job
double precision a(lda,l),b(l)

dgesl solves the double precision system
a * x = b or trans (a) * x = b
using the factors computed by dgeco or dgefa.

double precision ddot, t
integer k,kb,l,nml

nm1 - n - 1
if (job . ne. 0) go to 50

job = 0 I solve a * x = b
first solve l*y = b

if (nm1 .!t. 1) go to 30
do 20 It = 1, nm1

1 = ipvt (It)
t = b (1)

*$ barrier
if (1 .eq. It) go to 10

bIll ~ b(lt)
b(lt) - t

10 continue

102

*$ end barrier
- call daxpyP(n-k,t,a(k+l,k),l,b(k+l),l)

*$ barrier
* $ end barrier

20 - continue
30 continue

now solve u*x z:: y

do 40 kb ~ 1, n
k=n+l-kb

*$ barrier
b(k) ~ b(k) /a(k,k)

*$ end barrier
- t = -b(k)

call daxpyP(k-l,t,a(l,k),l,b(l),l)
40 continue

go to 100
50 continue

job = nonzero, solve trans (a) * x = b
first solve trans (u) *y = b

100 continue
return
end

c
c sequential version
c

subroutine daxpy (0, da,dx, incx,dy, incy)

constant times a vector plus a vector.

double precision dx (1) ,dy (1) ,da
integer if incx, 10cy, ix, iy,m,mpl, n

if (n .le. 0) return
if (da .eq. O.OdO) return
if (incx. eq.l. and. incy .eq.l) go to 20

code for unequal increments or equal increments
not equal to 1

return

code for both increments equal to 1

20 continue
d030i-l,n

dy(i) ~ dy(i) + da*dx(i)
30 continue

return
end

subroutine daxpyP (n, da, dx, incx, dy 1 iocy)

103

constant times a vector plus a vector.

double precision dx(l) ,dy(l) ,da
integer i, incx, incy, ix, iy, m, mpl, n

if(n.le.O)return
if (da .eq. O.OdO) return
if(incx.eq.l.and.incy.eq.l)go to 20

code for unequal increments or equal increments
not equal to 1

return

code for both increments equal to 1

20 continue
*$ pre sched do

do 30 I = l,n
dy(i) - dy(i) + da*dx(i)

30 continue
return
end

subroutine dscalP (n,da, dx, incx)

scales a vector by a constant.

double precision da,dx(l)
integer i, incx,m,mpl, n, nincx

if (n .le. 0) return
if(incx.eq.l) go to 20

code for increment not equal to 1

return
c
c code for increment equal to 1
c

20 continue
* $ pre sched do

do 30 I = l,n
dx (i) ~ da*dx (i)

30 continue
return
end

c
c parallel version, using cascade sum
c

integer function idamaxP (n, dx, incx)

finds the index of element having max. dabsolute value.

double precision dx (1) , dmax
integer i, incx, ix, n

104

integer idamax
corranon ddmax, idmax

idamaxP = 0
if(n .It. 1) return
idamaxP = 1
if(n.eq.l) return
if(incx.eq.l)go to 20

code for increment not equal to 1

return
c
c code for increment equal to 1
c

20 continue
*$ barrier

idmax = 1
ddrnax - dabs (dx(l»

*$ end barrier
ctmax = ddrnax

*$ pre sched do
do301-2,n

if (dabs (dx(i)) .le.drnax) go to 30
idamax = i
drnax ~ dabs (dx (i»

30 continue
*$ critical

if (drnax .le. ddrnax) goto 40
idmax = idamax
ddrnax ~ drnax

40 continue
*$ end critical
c wait-all
*$ barrier
*$ end barrier

idamaxP = idmax
return
end

105

FEM..BAND from [Mas86]:

* parallel version for BAND

PROGRAM EXFEM
N is the number of points. (NX+l) * (NY+l)
NE is the number of element .NX*NY*2
NBI is the number of points on dirichlet bounary. (NX+l) *2
NB2 is the nubmer of points on natural bounary. NY*2
MBI is the width of band matrix. (NX + 3)
NX-16, NY-16 case
PARAMETER (NX=16, NY-l6)
PARAMETER (N~2B9, NE=S12, MBI - 19)
PARAMETER (NB2~32, NBl-34)
PARAMETER (NPX=2, NPY=2)
FEM DATA (global)
DOUBLE PRECISION X (N) ,Y (N) ,P (N) ,Q (N) ,F (N)
INTEGER KNC (3, NE), KS2 (2, NB2)
INTEGER IB (NBl)
DOUBLE PRECISION BV (NBl)
DOUBLE PRECISION ALPHA(2,NB2) ,BETA(2,NB2)
DOUBLE PRECISION B(N) ,U(N)
common /fdata/X, Y, P,Q, F, KNC, KS2, 18, BV, ALPHA, BETA, B , U
common /idata/IERR

* SOLVER DATA
DOUBLE PRECISION AR(MBl,N)
common /adata/AR
INTEGER ISYNC (N)
common /sync/ISYNC
DOUBLE PRECISION TM,COUNT
common /time/TM

*$ barrier
c

TM - COUNT()
write(6,1000) TM

1000 format ('FEM(BAND,para11el) +' ,E16.B)

c
CALL FMDATA(NX,NY,N, NEt X, Y, KNC, P, Q, F, NBI, 18, BV, NB2, KS2, ALPHA, BETA)

*$ end barrier
CALL FEM(N, NE, X, Y, KNC, P,Q, F ,NSI, 18, BV, NB2, KS2, ALPHA, BETA,

& U, IERR,MBl,AR,B, ISYNC)
*$ barrier
c

TM = COUNT()
write (6, 1001) TM

1001 format (' FEM-:' ,E16. B)

IF(IERR .GT. 0) THEN
WRITE(*,2011) IERR

2011 FORMAT('THE AREA OF THE ',IS,'-TH ELEMENT IS ZERO OR NEGATIVE')

STOP
ENDIF
WRITE (*,2001)

2001 FORMAT('--- FEM ---'I' SOLUTION UtI)')
c print data

DO 10 I = NY+l,l,-NPY

106

JS ~ (NX+1)*(I-1)+1
JE = JS + NX
WRITE(*,2002) (U(J) ,J=JS,JE,NPY)

2002 FORMAT(lX,9F7.3)
10 CONTINUE

*$ end_barrier
END

* sequential
SUBROUTINE FMDATA(NX,NY,N, NE, X, Y, KNC, P,Q, F,

$ NB1, IB, BV,NB2, KS2, ALPHA, BETA)
DOUBLE PRECISION X (N) , Y (N) ,P (N) ,Q (N) ,F (N)
INTEGER KNC(3,NE) ,KS2 (2,NB2)
INTEGER IB (NB1)
DOUBLE PRECISION BV (NB1)
DOUBLE PRECISION ALPHA(2,NB2) ,BETA(2,NB2)

setup element

HX - 1.0DO/NX
HY ~ 1.0DO/NY
DO 10 JY = O,NY

DO 20 IX ~ O,NX
IXY = (NX+1) *JY+IX+1
X (IXY) = HX*IX
Y(IXY) - HY*JY
P (IXY) = 1. 000
Q(IXY) - 0.000
F (IXY) ~ -1. 000

20 CONTINUE
10 CONTINUE

element data

DO 30 JY ~ 1,NY
KE1 - 2*NX* (JY-1)
K1 ~ (NX+1)*(JY-1)+1
DO 40 IX ~ 1,NX

KEI - KE1+IX
KI ~ K1+IX-1
KNC(l,KEI) = KI
KNC(2,KEI) ~ KI+1
KNC (3, KEI) = KI+NX+2
KEI = KEI+NX
KNC (1, KEI) ~ KI
KNC(2,KEI) - KI+NX+2
KNC (3, KEI) - KI+NX+1

40 CONTINUE
30 CONTINUE

bounary data

DO 50 L = 1,NY
KS2(1,L) ~ (NX+1)*L
KS2(2,L) ~ KS2(1,L)+NX+1

107

KS2 (1, L+NY) - (NX+1) * (L-1) +1
KS2 (2, L+NY) = KS2 (1, L+NY) +NX+1
ALPHA(l,L) - 0.0
ALPHA(2,L) = 0.0
BETA(l,L) = 0.0
BETA(2,L) ~ 0.0
ALPHA (l,L+NY) = 0.0
ALPHA (2, L+NY) = 0.0
BETA(l,L+NY) = 0.0
BETA (2, L+NY) = 0.0

50 CONTINUE

dirichlet bounary, 0 if y=O , x if y=l

DO 60 L - 1,NX+1
IB(L) - L
IB (L+NX+1) - (NX+1) *NY+L
BV(L) - O.ODO
BV (L+NX+1) = (1. ODO/NX) * (L-1)

60 CONTINUE
RETURN
END

* finite element method with band matrix solver (paralell)

SUBROUTINE FEM (N,NE, X, Y, KNC, P, Q, F, NB1, IB, BV, NB2, KS2, ALPHA, BETA,
& U,IERR,MB1,AR,B,rSYNC)

DOUBLE PRECISION X (N) ,Y (N) ,P (N) ,Q (N) ,F (N)
INTEGER KNC(3,NE),KS2(2,NB2)
INTEGER IB (NB1)
DOUBLE PRECISION BV (NB1)
DOUBLE PRECISION ALPHA(2,NB2) ,BETA(2,NB2)
DOUBLE PRECISION B (N) ,U (N)

DOUBLE PRECISION AR(MB1,N)
INTEGER ISYNC (N)
DOUBLE PRECISION TM, COUNT
common Itime/TM

*$barrier
c

TM - COUNT()
write(6,1000) TM

1000 format (' MATGEN+:' ,E16. 8)
TM - COUNT()

c
*$ end barrier

CALL FORM (Nt NEt X, Y, KNe, PtQ, F, IERR,MB1, ARt B)
CALL BOUND2 (N, X, Y, NB2, KS2, ALPHA, BETA,MBl, ARt B)
CALL BOUND1 (N,NB1, IB,BV,MB1,AR,B)

*$ barrier
c

TM - COUNT () - TM
write(6,1001) TM

1001 format ('MATGEN-: , ,E16.8)

c

108

*$ end barrier
IF (IERR . GT. 0) RETURN

*$ barrier
TM - COUNT()
write(6,1002) TM

1002 format ('SOLV+:' ,E16.8)
TM - COUNT()

*$ end barrier
CALL CHDCMP (MB1,N,MB1,AR, U, ISYNC)
CALL CHSOLV(MB1, N,MB1,AR, B, U, ISYNC)

*$ barrier
c

TM = COUNT () - TM
write (6, 1003) TM

1003 format ('SOLV-:' ,E16.8)
c
*$ end_barrier

RETURN
END

arrenge upper right part AU and diagonal AD of matrix A
in compact form for ICCG method and arrange right hand side vector B

SUBROUTINE FORM (N, NE, X, Y, KNC, P, Q, F, IERR,MBl,AR, B)
DOUBLE PRECISION X (N), Y (N), P (N), Q (N), F (N)
INTEGER KNC (3, NE)
DOUBLE PRECISION AR(MB1,N) ,B(N)

c local data
DOUBLE PRECISION EA(3, 3), EF (3)

*$ barrier
IERR - 0

*$ end barrier
* -

clear AR

*$ pre sched do
DO 530-1 = 1,N

B(I) - 0.000
DO 540 J ~ 1,MB1

AR(J,I) = 0.000
540 CONTINUE
530 CONTINUE

*$ pre sched do
DO 10 L ~ 1,NE

compute element matix EA and element vector EF

CALL ELMMAT (L,NE,N, X, Y, KNC, P, Q, F, EA, EF, IER)
*$ critical

IF (IER .GT. 0) IERR - IER
*$ end critical

- IF(IERR .GT. 0) RETURN

0020I=1,3

109

IROW = KNC (I, L)
*$ critical

B (IROW) = B (IROW) +EF (I)
*$ end critical

- D030J-1,3
JCOL = KNC(J,L)
IF(IROW .GE. JCOL) THEN

JCOL - MB1 + JCOL - IROW
*$ critical

AR(JCOL,IROW) = AR(JCOL,IROW) + EA(I,J)
*$ end_critical

ENDIF
30 CONTINUE
20 CONTINUE
10 CONTINUE

RETURN
END

* compute element matrix EA and element vector

SUBROUTINE ELMMAT (L, NE,N, X, Y, KNe, P, Qf F, EA, EF I IERR)
DOUBLE PRECISION X (N) , Y (N) ,P (N) ,Q (N) ,F (N)
INTEGER KNC (3, NE)
DOUBLE PRECISION EA(3,3) ,EF(3) ,DXY(2,3)
DOUBLE PRECISION 5,560,515,512

I = KNC(l,L)
J - KNC(2,L)
K = KNC(3,L)
DXY(l,l) = X(K) - X(J)
DXY(1,2) = XlI) - X(K)
DXY(1,3) - X(J) - XlI)
DXY(2,1) = Y(J) - Y(K)
DXY(2,2) - Y(K) - Y(I)
DXY(2,3) = Y(I) - Y(J)

5 = 0.500* (OXY (1, 3) *DXY(2, 2) -DXY (1, 2) *OXY (2, 3»

IF (5 • LE. 0.000) THEN
IERR = L
RETURN

ENDIF

560 = 5/60
QM = 2*560* (Q (I) +Q (J) +Q (K»
515 = 4*560

diagonal element

EA(l,l) - QM+S15*Q(I)
EA(2,2) = QM+S15*Q(J)
EA (3,3) = QM+S15*Q (K)
PM = (P(I)+P(J)+P(K»/(12*S)

non diagonal element

110

DO 10 II - 1,3
DO 20 JJ - 1,3

IF(II .NE. JJ) EA(II,JJ) = QM - S60*Q(KNC(6-II-JJ,L»)
DO 530 KK = 1,2

EA(II,JJ) = EA(II,JJ)+PM*DXY(KK,II)*OXY(KK,JJ)
530 CONTINUE
20 CONTINUE
10 CONTINUE

S12 = 5*S60
EF(l) = S12*(2*F(I)+F(J)+F(K»
EF (2) ~ S12* (F (I) +2*F (J) +F (K)
EF (3) - S12* (F (I) +F (J) +2*F (K)
RETURN
END

: arrange natural boundary condition

SUBROUTINE BOUND2 (N, X, Y,NB2, KS2, ALPHA, BETA,MBl,AR, B)
DOUBLE PRECISION X (N) ,Y (N)
INTEGER KS2 (2,NB2)
DOUBLE PRECISION ALPHA(2,NB2) ,BETA(2,NB2)
DOUBLE PRECISION EAB2 (2,2), EFB2 (2)
DOUBLE PRECISION AR (MBl, N) ,B (N)

IF (NB2 . LE. 0) RETURN
*$ pre sched do

DO 10 L - 1, NB2
compute element matrix and element right hand side vector

CALL SIDE2 (L,NB2,N, X, Y, KS2, ALPHA, BETA, EAB2, EFB2)
DO 20 I ~ 1,2

IROW = KS2(I,L)
*$ critical

B(IROW) - B(IROW) - EFB2(I)
*$ end critical

- DO 30 J ~ 1,2
JCOL = KS2(J,L)
IF (IROW .GE. JCOL) THEN

JCOL = MBl + JCOL - IROW

*S critical
AR (JCOL, IROW) = AR (JCOL, IROW) + EAB2 (I, J)

*$ end critical
- ENDIF

30 CONTINUE
20 CONTINUE
10 CONTINUE

RETURN
END

SUBROUTINE SIDE2 (L,NB2, N, X, Y, KS2, ALPHA, BETA, EAB2, EFB2)
DOUBLE PRECISION X (N), Y (N)
INTEGER KS2 (2, NB2)
DOUBLE PRECISION ALPHA(2,NB2) ,BETA(2,NB2)
DOUBLE PRECISION EAB2 (2,2) ,EFB2 (2)
DOUBLE PRECISION SL, SL12, SL6

111

I = KS2(1,L)
J=KS2(2,L)
IF (I .LE. 0 .OR. J .LE. 0) RETURN
SL = SQRT«X(I)-X(J»**2+(Y(I)-Y(J)**2)
SL12 = SL/12
EAB2(1,1) - SL12*(3*ALPHA(1,L)+ALPHA(2,L»)
EAB2 (1,2) = SL12* (ALPHA(l, L) +ALPHA(2, L)
EAB2(2,1) - EAB2(1,2)
EAB2 (2,2) - SL12* (ALPHA(l, L) +3*ALPHA(2, L»
SL6 = 2*SL12
EFB2(1) = SL6*(2*BETA(1,L)+BETA(2,L»
EFB2(2) - SL6*(BETA(1,L)+2*BETA(2,L»
RETURN
END

arragne dirichlet boundary condition

SUBROUTINE BOUNDI (N,NBl, IB, BV,MBl, AR, B)
INTEGER IB (NBl)
DOUBLE PRECISION BV (NBl)
DOUBLE PRECISION AR (MBl, N) ,B (N)

IF (NBI . LE. 0) RETURN
DO 10 L - 1,NBl

K = IB(L)
*$ pre sched do

- DO 20 IROW - MAX (l,K-MBl+l) , K-l
JCOL = MBl + IROW - K
B(IROW) - B(IROW) - AR(JCOL,K)*BV(L)
AR(JCOL,K) = 0.0

20 CONTINUE
c
*$ barrier

B(K) = BV(L)
AR(MBl,K) - 1.000

*$ end barrier
*$ pre-sched do

- DO 30 IROW - K+l, MIN (K+MBl-l, N)
JCOL - MBl + K - IROW
B(IROW) = B(IROW)-AR(JCOL,IROW)*BV(L)
AR (JCOL, IROW) - 0.0

30 CONTINUE
10 CONTINUE

RETURN
END

Modified Cholesy decomposition of symmetric band matrix

SUBROUTINE CHDCMP (MDIM,N,Ml, AR, W, ISYNC)
DOUBLE PRECISION AR(MDIM,N) ,WeN)
DOUBLE PRECISION T,TT
INTEGER ISYNC (N)
common /global/TT

M = Ml-l
DO 10 K=l,N

112

10 = MAX(l,K-M)
c clear sync array
*$ pre sched do
*% DO 21 I ~ IO,K-1
*% ISYNC (I) ~ 0
*%21 CONTINUE
*$ barrier
*$ end barrier
*$ pre-sched do

-DO 20-1 - IO,K-1
T = AR(M1+I-K,K)
DO 530 J ~ 10,1-1

*% CALL SYNC (ISYNC (J»
T - T - W(J) *AR(M1+J-I, I)

530 CONTINUE
AR (M1+I-K, K) = T*AR (M1, I)
W(I) = T

c sync
*% ISYNC(I) = 1

20 CONTINUE
*$ barrier

TT - AR(M1,K)
*$ end barrier

- T - 0
*$ pre sched do

- DO 540 I ~ IO,K-1
T - T - W(I)*AR(M1+I-K,K)

540 CONTINUE
*$ critical

TT = TT + T
*$ end critical
*$ bar;ier

AR(M1,K) - 1.0DO/TT
*$ end barrier

10 CONTINUE
RETURN
END

SUBROUTINE CHSOLV (MDIM, N, M1, AR, B, X, ISYNC)
DOUBLE PRECISION AR (MDIM, N) ,B (N) ,X (N)
INTEGER I SYNC (N)
DOUBLE PRECISION T

c
*$ pre sched do
*% DO 100-K - 1,N
*% ISYNC (K) ~ 0
*%100 CONTINUE
*$ barrier
*$ end barrier

M = M1-1
*$ pre sched do

DO 10 K ~ 1,N
T - B(K)
DO 520 I ~ MAX(l,K-M) ,K-1

*% CALL SYNC(ISYNC(I»
T - T - AR(M1+I-K,K) *X(I)

113

520 CONTINUE
X(K) - T

*% ISYNC (K) = 1
10 CONTINUE

*$ barrier
*$ end barrier
*$ pre=SChed_do
*% D0101K~1,N

*% ISYNC (K) - 0
*%101 CONTINUE
*$ barrier
*$ end barrier
*$ pre-sched do

DO 30 K = N,l,-l
T = X(K) *AR(M1,K)
DO 540 I = K+1,MIN(N,K+M)

*% CALL SYNC (ISYNC (I))
T = T - AR(M1+K-I, I) *X(I)

540 CONTINUE
X(K) - T

*% ISYNC (K) = 1
30 CONTINUE

RETURN
END

FEMJCCG from [Mas86]:

* parallel verion for ICCG

PROGRAM EXFEM
N is the nwnber of points. (NX+l) * (NY+l)
NE is the nwnber of element .NX*NY*2
NBI is the nwnber of points on dirichlet bounary. (NX+l) *2
NB2 is the nubmer of points on natural bounary. NY*2
NX=16,NY=16 case
PARAMETER (NX~16, NY=16)
PARAMETER (N~289, NE~5l2, NR - 3)
PARAMETER (NB2-32, NBl=34)
PARAMETER (NPX~2, NPY-2)
FEM DATA
DOUBLE PRECISION X (N) , Y (N) ,P (N) ,Q (N) ,F (N)
INTEGER KNC (3,NE), KS2 (2,NB2)
INTEGER IB (NBl)
DOUBLE PRECISION BV(NBl)
DOUBLE PRECISION ALPHA(2,NB2) ,BETA(2,NB2)
DOUBLE PRECISION B (N) ,U (N)
common /fdata/X, Y, P, Qf F, KNe, KS2, 18, BV, ALPHA, BETA, Sf U, IERR

* ICCG DATA
INTEGER NZU (N) ,NZL (N) , IU (NR, N) , IL (NR, N)
DOUBLE PRECISION AU (NR, N) ,AL (NR, N) ,AD (N)
DOUBLE PRECISION UU (NR, N) ,UL (NR, n) ,UD (N)

DOUBLE PRECISION R (N) ,PA (N) ,RU (N) ,AP (N)
DOUBLE PRECISION EPS
common ladata/NZU,NZL, IU, IL, AUrAL, AD, 00, UL, 00, R, PA, RUt AP, EPS
INTEGER ISYNC (N)
common /sync/ISYNC
DOUBLE PRECISION COUNT, TM
common /time/TM

*$ barrier
c

TM = COUNT()
write (6, 1000) TM

1000 format (' FEM (ICCG, parallel) +:' ,E16. 8)

EPS = 1. OE-5
IERR - a
CALL FMDATA(NX,NY,N,NE, X, Y, KNe, P, Q, F, NB1 , IB, BV, NB2, KS2, ALPHA, BETA)

*$ end barrier
CALL FEM (N, NEt X, Y, KNe, P,Q, F, NB1, 18, BV, NB2, KS2, ALPHA, BETA,

& EPS, U f IERR,NR,NZU, NZL, IU, IL, AU, AL, AD, s,
& UU,UL,UO,R,PA,RU,AP,ISYNC)

*$ barrier
c

TM = COUNT()
write(6,1001) TM

1001 format (' FEM (ICCG, parallel) -: ' ,E16. 8)

IF(IERR .GT. 0) THEN
WRITE(*,2011) IERR

2011 FORMAT ('THE AREA OF THE ',I5,'-TH ELEMENT IS ZERO OR NEGATIVE')

115

STOP
ENDIF
WRITE (*,2001)

2001 FORMAT('--- FEM ---'I' SOLUTION UtI)')
c print data

DO 10 I = NY+l, 1, -NPY
JS = (NX+l) * (I-I) +1
JE = JS + NX
WRITE(*,2002) (U(J) ,J=JS,JE,NPY)

2002 FORMAT (IX, 9F7. 3)
10 CONTINUE

*$ end barrier
END

* sequential
SUBROUTINE FMDATA(NX,NY, N,NE, X, Y, KNe, P ,Q, F I

$ NBl, IB, BV, NB2, KS2, ALPHA, BETA)
DOUBLE PRECISION X (N), Y (N), P (N), Q (N), F (N)
INTEGER KNC (3,NE) ,KS2 (2,NB2)
INTEGER IB (NBl)
DOUBLE PRECISION BV (NBl)
DOUBLE PRECISION ALPHA(2,NB2) ,BETA(2,NB2)

setup element

HX = 1. O/NX
HY - 1. O/NY
DO 10 JY = O,NY

DO 20 IX = O,NX
IXY = (NX+l) *JY+IX+l
X(IXY) ~ HX*IX
Y(IXY) = HY*JY
P(IXY) - 1.0
Q (IXY) - 0.0
F(IXY) = -1.0

20 CONTINUE
10 CONTINUE

element data

DO 30 JY = 1,NY
KEI = 2*NX* (JY-l)
Kl - (NX+l) * (JY-l) +1
DO 40 IX - 1,NX

KEI = KEl+IX
KI = Kl+IX-l
KNC(l,KEI) - KI
KNC (2, KEI) = KI+l
KNC (3, KEI) - KI+NX+2
KEI = KEI+NX
KNC(l,KEI) = KI
KNC (2, KEI) - KI+NX+2
KNC(3,KEI) = KI+NX+l

40 CONTINUE
30 CONTINUE

116

bounary data

DO 50 L - 1,NY
KS2 (1, L) - (NX+1) *L
KS2(2,L) - KS2(1,L)+NX+1
KS2 (1, L+NY) = (NX+1) * (L-1) +1
KS2 (2, L+NY) - KS2 (1, L+NY) +NX+1
ALPHA(l,L) - 0.0
ALPHA(2,L) = 0.0
BETA(l,L) - 0.0
BETA(2,L) - 0.0
ALPHA (1, L+NY) - 0.0
ALPHA (2, L+NY) = 0.0
BETA(l,L+NY) - 0.0
BETA(2,L+NY) = 0.0

50 CONTINUE

dirichlet bounary f 0 if y=O , x if y=l

DO 60 L = 1,NX+1
IB(L) - L
IB (L+NX+1) = (NX+1) *NY+L
BV(L) = 0.0
BV(L+NX+1) (1.0/NX)*(L-1)

60 CONTINUE
RETURN
END

* finite element method

SUBROUTINE FEM(N,NE, X, Y, KNe, P, Qf F I NBl f 18, BV, NB2, KS2, ALPHA, BETA,
& EPS, U , IERR , NR, NZU, NZL, IU, IL,AU, AL,AD, B,
& UU,UL,UD,R,PA,RU,AP,rSYNC)

DOUBLE PRECISION X (N) , Y (N) ,P (N) ,Q (N) ,F (N)
INTEGER KNC (3,NE) ,KS2 (2,NB2)
INTEGER IB (NB1)
DOUBLE PRECISION BV (NB1)
DOUBLE PRECISION ALPHA(2,NB2) ,BETA(2,NB2)
DOUBLE PRECISION B (N) ,U (N)

INTEGER NZU (N) ,NZL (N) , IU (NR, N) , IL (NR, N)
DOUBLE PRECISION AU(NR,N) ,AL(NR,N) ,AD(N)
DOUBLE PRECISION UU (NR, N), UL (NR, N), UD (N)
DOUBLE PRECISION R (N) ,PA (N) , RU (N) ,AP (N)
DOUBLE PRECISION EPS
INTEGER I SYNC (N)
DOUBLE PRECISION COUNT,TM
common Itime/TM

*$ barrier
c

TM = COUNTO
write(6,1000) TM

1000 format ('MATGEN+:' ,E16.8)
TM - COUNT ()

*$ end barrier
CALL FORM (N,NE,X, Y, KNC, P,Q, F, IERR, NR, NZU, IU, AU, AD, B)
IF (IERR .GT. 0) RETURN
CALL BOUND2 (N, X, Y, NB2, KS2,ALPHA, BETA,NR,NZU, IU,AU, AD, B)
CALL BOUND1 (N,NB1, IB, BV, NR,NZU, IU, AU,AD, B)

*$ barrier
c

TM = COUNT() - TM
write (G, 1001) TM

1001 format ('MATGEN-:' ,E1G.8)
c

TM = COUNT()
write(G,1002) TM

1002 format (' SOLV+:' ,E1G. 8)
TM - COUNT()

c
*$ end barrier

CALL ICCG (Nt NR,NZU, NZL, IU, IL, AU, AL, AD, S,
& EPS, U f 00, UL, un, R, PA, RU, AP, ISYNC)

*$ barrier
c

TM = COUNT () - TM
write (G, 1003) TM

1003 format ('SOLV-:' ,E1G.8)
c
*$ end barrier

RETURN
END

arrenge upper right part AU and diagonal AD of matrix A
in compact form for ICCG method and arrange right hand side vector B

SUBROUTINE FORM (N, NE, X, Y, KNC, P, Qf F, IERR, NR, NZU, IU, AU, AD, B)
DOUBLE PRECISION X (N) , Y (N) ,P (N) ,Q (N) ,F (N)
INTEGER KNC (3, NE)
INTEGER NZU (N) , IU (NR, N)
DOUBLE PRECISION AU (NR, N), AD (N), B (N)
DOUBLE PRECISION EA(3,3) ,EF(3)

*$ barrier
IERR = 0

*$ end_barrier

clear nzu, ad, b , iu, au

*$ pre sched do
DO 530-1 - 1,N

NZU(I) = 0
AD(I) = 0.0
B(I) = 0.0
DO 540 J = 1,NR

IU(J,I) = 0
AU(J,I) = 0.0

540 CONTINUE
530 CONTINUE

*$ pre sched do
DO 10 L = 1,NE

compute element matix EA and element vector EF

CALL ELMMAT (L,NE,N, X, Y, KNC, P, Q, F, EAt EF, IERR)
IF(IERR .GT. 0) RETURN

00201=1,3
IROW = KNC (I, L)

*$ critical
B (IROW) = B (IROW) +EF (I)

*$ end critical
- D030J=1,3

JCOL = KNC (J, L)
IF (IROW . LT. JCOL) THEN

CALL GLBMAT(IROW,JCOL,
N, NR, NZU, IU, AU, EA (I, J))

ELSEIF (IROW .EQ. JCOL) THEN
*$ critical

AD (IROW) = AD(IROW)+EA(I,J)

*$ end_critical
ENDIF

30 CONTINUE
20 CONTINUE
10 CONTINUE

RETURN
END

* compute element matrix EA and element vector

SUBROUTINE ELMMAT (L, NE,N, X, Y, KNC, P, Qf F, EA, EF, IERR)
DOUBLE PRECISION X (N) , Y (N) ,P (N) ,Q (N) ,F (N)
INTEGER KNC (3, NE)
DOUBLE PRECISION EA (3, 3) ,EF (3) ,DXY (2,3)
DOUBLE PRECISION S, S60, SIS, S12

I = KNC(l,L)
J - KNC(2,L)
K - KNC(3,L)
DXY(l,l) - X(K) - X(J)
DXY(1,2) - XII) - X(K)
DXY(1,3) ~ X(J) - XlI)
DXY(2,1) = Y(J) - Y(K)
DXY(2,2) = Y(K) - Y(I)
DXY(2,3) - Y(I) - Y(J)

S - 0.5* (DXY(l, 3) *DXY (2, 2) -DXY (1, 2) *DXY (2, 3»

IF(S .LE. 0.0) THEN
IERR = L
RETURN

ENDIF

S60 - S/60

QM = 2*S60*(Q(I)+Q(J)+Q(K»
S15 = 4*S60

diagonal element

EA(l,l) - QM+S15*Q(I)
EA(2,2) = QM+S15*Q(J)
EA (3, 3) = QM+S15*Q (K)
PM = (P(I)+P(J)+P(K»/(12*S)

non diagonal element

DO 10 II = 1,3
DO 20 JJ = 1,3

IF(II .NE. JJ) EA(II,JJ) = QM - S60*Q(KNC(6-II-JJ,L»
DO 530 KK = 1,2

EA(II,JJ) = EA(II,JJ)+PM*DXY(KK, II) *DXY(KK,JJ)
530 CONTINUE
20 CONTINUE
10 CONTINUE

S12 = 5*S60
EF (1) = S12* (2*F (I) +F (J) +F (K»
EF (2) - S12* (F (I) +2*F (J) +F (K»
EF (3) = S12* (F (I) +F (J) +2*F (K»
RETURN
END

arrange off diagnal elements of global matrix

SUBROUTINE GLBMAT (IROW, JCOL, N, NR, NZU, IU, AU, EAV)
INTEGER NZU (N) , IU (NR, N)
DOUBLE PRECISION AU (NR, N)
DOUBLE PRECISION EAV

*$ critical
DO 40 NU = 1,NZU(IROW)

IF(JCOL .LT. IU(NU,IROW» THEN
DO 50 NV = NZU (IROW), NU,-l

IU(NV+1,IROW) ~ IU(NV,IROW)
AU(NV+1,IROW) - AU(NV,IROW)

50 CONTINUE
NZU (IROW) - NZU (IROW) +1
IU (NU, IROW) = JCOL
AU (NU, IROW) - EAV
GOTO 60

ELSE IF(JCOL .EQ. IU(NU,IROW» THEN
AU (NU, IROW) - AU (NU, IROW) +EAV
GOTO 60

ENDIF
40 CONTINUE

NZU (IROW) - NZU (!ROW) + 1
IU (NZU (IROW) ,IROW) = JCOL
AU (NZU (IROW) ,IROW) = EAV

60 CONTINUE
*$ end_critical

RETURN
END

* arrange natural boundary condition

SUBROUTINE BOUND2 (N, X, Y, NB2, KS2, ALPHA, BETA, NR, NZU, IU,AU, AD, B)
DOUBLE PRECISION X (N) , Y (N)
INTEGER KS2 (2, NB2)
DOUBLE PRECISION ALPHA(2,NB2) ,BETA(2,NB2)
DOUBLE PRECISION EAB2(2,2),EFB2(2)
INTEGER NZU (N) ,IU (NR, N)
DOUBLE PRECISION AU (NR, N), AD (N) ,B (N)

IF (NB2 . LE. 0) RETURN
*$ self sched do

DO 10 L-- 1, NB2
compute element matrix and element right hand side vector

CALL SIDE2 (L,NB2,N, X, Y, KS2,ALPHA, BETA, EAB2, EFB2)
DO 20 I = 1,2

IROW - KS2(I,L)
*$ critical

B(IROW) = B(IROW) - EFB2 (I)
*$ end critical

- DO 30 J ~ 1,2
JCOL ~ KS2 (J,L)
IF (IROW . LT. JCOL) THEN

DO 540 NU = I, NZU (IROW)
IF(JCOL .EO. IU(NU,IROW» THEN

*$ critical
AU (NU, IROW) = AU (NU, IROW) + EAB2 (I, J)

*$ end_critical

540
41

*$ critical

GOTO 41
ENDIF

CONTINUE
CONTINUE

ELSE IF(IROW .EO. JCOL) THEN

AD (IROW) = AD (IROW) +EAB2 (I, J)
*$ end critical

- ENDIF

30 CONTINUE
20 CONTINUE
10 CONTINUE

RETURN
END

SUBROUTINE SIDE2 (L,NB2, N, X, Y, KS2, ALPHA, BETA, EAB2, EFB2)
DOUBLE PRECISION X (N) , Y (N)
INTEGER KS2 (2, NB2)
DOUBLE PRECISION ALPHA(2,NB2) ,BETA(2,NB2)
DOUBLE PRECISION EAB2 (2,2), EFB2 (2)
DOUBLE PRECISION SL, SL12, SL6

I-KS2(1,L)
J - KS2 (2, L)

IF (I • LE. 0 . OR. J . LE. 0) RETURN
SL - SQRT «X (I) -X (J» **2+ (Y (I) -Y (J)) **2)
SL12 = SL/12
EAB2(1,1) - SL12*(3*ALPHA(1,L)+ALPHA(2,L»
EAB2(1,2) = SL12*(ALPHA(1,L)+ALPHA(2,L»
EAB2(2,1) = EAB2(1,2)
EAB2 (2,2) - SL12* (ALPHA (1, L) +3*ALPHA (2, L))
SL6 = 2*SL12
EFB2(1) = SL6*(2*BETA(1,L)+BETA(2,L»
EFB2(2) = SL6*(BETA(1,L)+2*BETA(2,L»
RETURN
END

arragne dirichlet boundary condition

SUBROUTINE BOUNDl (N,NB1, IB, BV,NR, NZU, IU, AU, AD, B)
INTEGER IB (NB1)
DOUBLE PRECISION BV (NB1)
INTEGER NZU (N) , IU (NR, N)
DOUBLE PRECISION AU (NR, N) ,AD (N) ,B (N)

IF (NBl . LE. 0) RETURN
DO 10 L = 1,NBl

K - IB(L)
*$ pre sched do

- DO 20 I - 1, K-l
NZUV = NZU(I)
DO 30 NU - 1, NZUV

IF(IU(NU,I) .EQ. K) THEN
B (I) - B (I) - AU (NU, I) *BV (L)

shift element
DO 40 MU - NU,NZU(I)-l

AU (MU, I) = AU (MU+l, I)
IU (MU, I) = IU (MU+1, I)

40 CONTINUE
AU (NZU (I) , I) = 0.0
IU(NZU(I), I) - 0
NZU(I) = NZU(I)-l
GOTO 20

ENDIF
30 CONTINUE
20 CONTINUE

*$ barrier
B(K) = BV(L)
AD(K) - 1.0

*$ end barrier
*$ pre- sched do

- DO 550 NU - 1, NZU (K)
B(IU(NU,K» - B(IU(NU,K))-AU(NU,K) *BV(L)

550 CONTINUE
DO 560 NU - 1, NZU(K)

AU(NU,K) = 0.0
IU(NU,K) - 0

560 CONTINUE
NZU(K) - 0

122

10 CONTINUE
RETURN
END

SUBROUTINE ICCG (N,NR,NZU,NZL, IU, IL, AU, AL, AD, S, EPS, X,
&: UU,UL,UO,R,P,RU,AP,ISYNC)

INTEGER NZU (N) ,NZL (N) , IU (NR, N) , IL (NR, N)
DOUBLE PRECISION AU (NR, N) ,AL (NR, N) ,AD (N)
DOUBLE PRECISION UU (NR, N), UL (NR, N), 00 (N)
DOUBLE PRECISION B (N) ,X (N)
DOUBLE PRECISION R (N) ,P (N) ,RU (N) ,AP (N)
DOUBLE PRECISION EPS
INTEGER I SYNC (N)

CALL CRCONV (N,NR,NZU,NZL, IU, IL, AU, AL)
CALL ICDCMP (N,NR,NZL, IL,AL, AD, UL, 00, ISYNC)
CALL CRCONV(N, NR, NZL, NZU, IL, IU, UL, UU)
CALL CG (N, NR,NZU, NZL, IU, IL,AO, AL, AD, B,

$ EPS, X, 00, UL, un, R, P, RU,AP, ISYNC)
RETURN
END

SUBROUTINE CRCONV (N,NR, NZ1,NZ2, Il, I2, A1, A2)
INTEGER NZ1 (N) ,NZ2 (N) ,Il (NR, N) , I2 (NR, N)
DOUBLE PRECISION A1 (NR, N) ,A2 (NR, N)

*$ pre sched do
DO 540-I = 1,N

NZ2(I) =0
DO 550 J ~ 1,NR

I2(J,I) ~ 0
A2(J,I) ~ 0.0

550 CONTINUE
540 CONTINUE

c
*$ barrier
*$ end barrier

DO 10 I = 1,N
*$ pre sched do

- DO 520 NU~ 1, NZ1 (I)
NZ2 (Il (NU, I» = NZ2 (Il (NU, I» +1
I2 (NZ2 (Il (NU, I», Il (NU, I» - I
A2(NZ2(Il(NU,I»,Il(NU,I» = A1(NU,I)

520 CONTINUE
*$ barrier
*$ end barrier

10 CONTINUE
RETURN
END

SUBROUTINE ICDCMP (N,NR, NZL, IL, AL, AD, UL, 00, ISYNC)
INTEGER NZL (N) , IL (NR, N)
DOUBLE PRECISION AL (NR, N) ,AD (N) ,UL (NR, N) ,UD (N)
DOUBLE PRECISION T
INTEGER ISYNC (N)

123

EPS = 1.0E-6
c clear sync vector
*$ pre sched do
*% DO 101-K - 1,N
*% ISYNC (K) = 0
*%101 CONTINUE
*$ barrier
*$ end barrier
*$ self sched do

DO 10 K-- 1,N

DO 20 MU - 1, NZL (K)
I = IL(MU,K)
MUI - 1
MUK - 1
UL(MU,K) - AL(MU,K)
CONTINUE
IF(IL(MUI,I) .GT. IL(MUK,K» THEN

MUK = MUK+1
ELSE IF(IL(MUI,I) .LT. IL(MUK,K» THEN

MUI - MUI+1
ELSE

c sync
*% CALL SYNC(ISYNC(IL(MUK,K»)
*% CALL SYNC(ISYNC(I»

UL (MU, K) - UL (MU, K) - UD (IL (MUK, K)) *UL (MUI, I) *UL (MUK, K)
MUI - MUI+1
MUK = MUK+1

ENOIF
IF«MUI .LE. NZL(I» .AND. (MUK .LE. NZL(K») GOTO 1

20 CONTINUE
T = AD(K)
DO 530 MU = 1, NZL (K)

T = T - UD (IL (MU, K» *UL (MU, K) **2
530 CONTINUE

IF (ABS (T) . LE. EPS) T - EPS
UD (K) = liT

c sync
*% ISYNC (K) - 1

10 CONTINUE
RETURN
END

SUBROUTINE CG (N,NR,NZU, NZL, IU, IL, AU, AL, AD, 8,
$ EPS, X, 00, UL, un, R, P, RU, AP, ISYNC)

INTEGER NZU (N) ,NZL (N) , IU (NR, N) , IL (NR, N)
DOUBLE PRECISION AU (NR, N) ,AL (NR, N) ,AD (N)
DOUBLE PRECISION UU (NR, N) ,UL (NR, N) ,UD (N)
DOUBLE PRECISION B (N), X (N)
DOUBLEPRECISION R (N) ,P (N) ,RU (N) ,AP (N)
DOUBLE PRECISION RURO, RURl, PAP, RES2
DOUBLE PRECISION BETA, ALPHA, EPS, EPS2, B2
common IgI/RURO, RURl, PAP, RES2, ALPHA, BETA, B2
INTEGER ISYNC (N)
DOUBLE PRECISION T

KENO = N+I0

124

EPS2 - EPS**2
CALL PRODMV (N f NR, NZU, NZL, IU, IL, AU, AL, AD, X, AP)

*$ pre 5ched do
DO 510-1 ~ 1,N

R(I) = B(I) - AP(I)
510 CONTINUE

CALL ICSOLV(N,NR, NZU, NZL, IU, IL, 00, UL, 00, R, RU, ISYNC)
*$ barrier

RURO = 0.000
*$ end barrier

T = 0.000
*$ pre_5ched_do

DO 520 I ~ 1, N
P (I) = RU(I)

RURO = RURO+R(I)*RU(I)
T = T+R(I) *RU(I)

520 CONTINUE
*$ critical

RURO = RURO+T
*$ end critical
*$ barrier

B2 - 0.000
*$ end barrier

T - 0.000
*$ pre_5ched_do

DO 530 I - 1, N
B2 = B2+B (I) **2

T - T + B (I) **2
530 CONTINUE

*$ critical
B2 - B2 + T

*$ end critical
DO 10 K = 1, KEND

CALL PRODMV (N,NR,NZU,NZL, IU, IL, AU,AL, AD, P, AP)
*$ barrier

PAP = 0.000
*$ end barrier

- T = 0.000
*$ pre_5ched_do

DO 540 I = 1, N
PAP - PAP + P(I)*AP(I)

T ~ T + P(I)*AP(I)
540 CONTINUE

*$ critical
PAP = PAP + T

*$ end critical
*$ barrier

ALPHA - RURO/PAP
RES2 = 0.000

*$ end barrier
- T - 0.000

*$ pre 5ched do
- DO 550 I = 1,N

XII) ~ X(I) +ALPHA*P (I)
R(I) = R(I) -ALPHA*AP (I)

RES2 = RES2+R(I) **2

T = T+R(I) **2
550 CONTINUE

*$ critical
RES2 = RES2 + T

*$ end critical
*$ barrier
* $ end barrier

- IF (RES2/B2 . LE. EPS2) THEN
RETURN

ENDIF
CALL ICSOLV (N, NR, NZU, NZL, IU, IL, 00, UL, 00, R, RU, ISYNC)

*$ barrier
RUR1 ~ 0.000

*$ end barrier
- T = 0.000

*$ pre sched do
- DO 560 I ~ 1,N

RUR1 ~ RUR1 + R(I) *RU (I)
T = T + R(I) *RU(I)

560 CONTINUE
*$ critical

RUR1 ~ RUR1 + T

*$ end critical
*$ barrier

BETA = RUR1/RURO
RURO ~ RUR1

*$ end barrier
*$ pre-sched do

- DO 570 I ~ 1, N
P(I) ~ RU(I)+BETA*P(I)

570 CONTINUE
10 CONTINUE

RETURN
END

SUBROUTINE PRODMV (N,NR, NZU, NZL, IU, IL, AU, AL, AD, X,AP)
INTEGER NZU (N) ,NZL (N) , IU (NR, N) , IL (NR, N)
DOUBLE PRECISION AU (NR, N), AL (NR, N), AD (N)
DOUBLE PRECISION X (N), AP (N)
DOUBLE PRECISION APV

*$ barrier
*$ end barrier
*$ self sched do

DO 10 1-= 1,N
APV = 0.000
DO 520 MU = 1,NZL(I)

APV = APV+AL(MU,I)*X(IL(MU,I»
520 CONTINUE

APV = APV+AD(I)*X(I)
DO 530 NU ~ 1,NZU(I)

APV ~ APV+AU (NU, I) *X (IU (NU, I»
530 CONTINUE

AP (I) = APV

10 CONTINUE
*$ barrier
*$ end_barrier

126

RETURN
END

SUBROUTINE ICSOLV(N, NR,NZU, NZL, IU, IL, 00, UL, 00, B, X, ISYNC)
INTEGER NZU (N) ,NZL (N) , IU (NR, N) , IL (NR, N)
DOUBLE PRECISION 00 (NR, N) ,UL (NR, N) ,UD (N) ,B (N) ,X (N)
DOUBLE PRECISION T
INTEGER I SYNC (N)

c clear sync vector
*$ pre_sched_do
*% D0101K-1,N
*% ISYNC (K) = 0
*%101 CONTINUE
*$ barrier
*$ end barrier
*$ self sched do

DO 10 K-- 1,N
T = B(K)
DO 520 MU ~ 1,NZL(K)

J = IL(MU,K)
*% CALL SYNC (ISYNC (J»

T = T - UL(MU,K)*X(J)
c T - T - UL(MU,K)*X(IL(MU,K»

520 CONTINUE
X (K) = UD (K) *T

*% ISYNC (K) ~ 1
10 CONTINUE

c
*$ barrier
*$ end barrier
*$ pre-sched do
*% DO 102-K - 1,N
*% ISYNC (K) - 0
*%102 CONTINUE
*$ barrier
*$ end barrier
*$ self sched do

DO 30 K-- N,l,-l
T - 0.000
DO 540 NU ~ 1,NZU(K)

J - IU(NU,K)
*% CALL SYNC (ISYNC (J»

T ~ T + oo(NU,K)*X(J)
c T = T + oo(NU,K)*X(IU(NU,K»

540 CONTINUE
X (K) - X (K) - UD (K) *T

*% ISYNC (K) - 1
30 CONTINUE

RETURN
END

127

The routines using BL addressing in SOLV of FEMJ3AND:

c
c FEM_BAND (BL), using the process number
c

Modified Cholesy decomposition of syrmnetric band matrix

SUBROUTINE CHDCMP (MDIM, N,M1,AR, W, ISYNC)
DOUBLE PRECISION AR (MDIM, N) ,W (N)
DOUBLE PRECISION T, TT

INTEGER ISYNC (N), 10, 100, NPROC
common /nproc/NPROC
common /globa1/TT

*% ID-IPID()+1
*% 100 = 10 + 1
*% IF (ID .EO. 2) IDO = 1

M - M1-1
DO 10 K=l, N

10 = MAX(l,K-M)

*% ISYNC (ID) - 0
* proc 1 can execute first.
*$ barrier
*% ISYNC (1) - 1
*$ end_barrier

*$ pre sched do
-DO 20-1 - IO,K-1

T - AR(M1+I-K,K)
DO 530 J - 10,1-2

T = T - W(J)*AR(M1+J-I,I)
530 CONTINUE

c for the last element I-I
IF(IO .GE. I) GOTO 900

*% CALL SYNC(ISYNC(ID»
T - T - W(I-1) *AR(M1-1, I)

900 CONTINUE

AR (M1+I-K, K) - T*AR (M1, I)
W(I) - T

c sync
*% ISYNC (ID) - 0
*% ISYNC(IDO) = 1

20 CONTINUE
c
*$ barrier

TT = AR(M1,K)
*$ end barrier

- T - 0
*$ pre_sched_do

DO 540 I - 10, K-1
T - T - W(I)*AR(M1+I-K,K)

540 CONTINUE

128

*$ critical
TT = TT + T

*$ end critical
*$ barrier

AR(M1,K) ~ 1.0DO/TT
*$ end barrier

10 CONTINUE
RETURN
END

SUBROUTINE CHSOLV (MDIM,N,M1,AR, B, X, ISYNC)
DOUBLE PRECISION AR (MDIM, N) ,B (N) ,X (N)
DOUBLE PRECISION T

INTEGER ISYNC(N),ID,IDO,NPROC
common /nproc/NPROC

*% ID = IPID () + 1
*% IDO = ID + 1
*% IF(ID .EQ. 2) IDO = 1
c

M - M1-1
*% ISYNC (ID) = 0

proc 1 can execute first.
*$ barrier
*% ISYNC (1) ~ 1
*$ end barrier
*$ pre::::sched_do

D010K=1,N
T - B(K)
J = MAX(l,K-M)
DO 520 I - J,K-2

T = T - AR (M1+I-K, K) *X (I)
520 CONTINUE

c for the last element k-1
IF (J .GE. K) GOTO 900

*% CALL SYNC (ISYNC (ID»
T = T - AR(M1-1,K) *X(K-1)

900 CONTINUE
X(K) - T

c sync
*% ISYNC(ID) - 0
*% ISYNC(IDO) = 1

10 CONTINUE

*% ISYNC (ID) - 0
proc 1 can execute first.

*$ barrier
*% ISYNC(l) - 1
*$ end barrier
*$ pre::::sched_do

DO 30 K - N, 1,-1
T - X(K)*AR(M1,K)
J = MIN (N, K+M)
DO 540 I - K+2,J

129

T - T - AR(M1+K-I,I) *X(I)
540 CONTINUE

c for the last element K + 1
IF(K .GE. J) GOTO 901

*% CALL SYNC (ISYNC lID))
T - T - AR(M1-1,K+1) *X(K+1)

901 CONTINUE
X(K) = T

*% ISYNC (ID) = 0
*% ISYNC(IDO) = 1

30 CONTINUE
RETURN
END

130

[Fre74]

Bibliography

[AAD90] D. Alpert, A. Averbuch, and O. Danieli. Performance Comparison of
Load/Store and Symmetric Instruction Set Architecture. In P"oceedings
of 17th International Symposium on Computer Architecture, pages 172-181,
1990.

[ACK87] R. Allen, D. Callahan, and K. Kennedy. Automatic Decomposition of Scien­
tific Programs for Parallel Execution. In Proc. 14th ACM Symp. Principles
Programming Languages, pages 63-76. ACM, 1987.

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers, Principles, Techniques, and
Tools. Addison-Weslay Publishing Co., 1986.

[CFR+89] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck. An
Efficient Method of Computing Static Single Assignment Form. In P"oceedings
of 15th POPL, pages 25-35, 1989.

[CH84] F. Chow and J. Hennessy. Register allocation by Priority-base Coloring. In
Proceedings of the ACM SIGPLAN '84 Symposium on Computer Construc­
tion, pages 222-232, 1984.

[Cha82] G.J. Chaitin. Register Allocation ans Spilling \'ia Graph Coloring. ACAf
SIGPLAN Notice, 17(6), June 1982.

[CLZ86] R. Cytron, 1. Lowry, and K. Zadeck. Code motion of control structure in
high-level languages. In Proceedings of 13th POPL, pages 70-85, January
1986.

[DF84] J.W Davidson and C.W. Fraser. Code selection through object code optimiza­
tion. Trans. on Prog. Lang. and Sys., 6(4):505-526, Oct. 1984.

[Don79] J.J. Dongarra. Linpack user's guide. Technical report, the Society for Indus­
trial and Applied Mathematics, 1979.

R.A. Freiburghouse. Register Allocation Via Usage Counts. CACJI;f,
17(11):638-642, November 1974.

[GHHK] E. Goto, W. Hioe, N. Homma, and R. Kamikawai. G-Series Gate - 1 GHz
clock Silicon CML/ECL. to be prepared.

131

[HF72]

[HC83]

[GJ79] M.R. Garey and D.S. Johnson. COMPUTER AND INTRACTABILITY, A
Guide to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[GM86] P.B. Gibbons and S.S. Muchnick. Efficient Instruction Scheduling for a
Pipelined Architecture. In Proceedings of the SIGPLAN 1986 Conference on
Compiler Construction, pages 11-16, 1986.

[GNST86] B.K Gilbert, B.A. Naused, D.J. Schwab, and R.L. Thomposon. Signal Pro­
cessors Based Upon GaAs ICs: The Need for a Wholistic Design Approach.
IEEE Computer, 19(10):29-43, Oct 1986.

J.L. Hennessy and T.R. Cross. Postpass Code Optimization of Pipeline Con­
straints. ACM Trans. on Prog. Lang. and Sys., 5(3):422-448, July 1983.

T.G. Hallin and M.J. Flynn. Pipelining of Arithmetic Functions. IEEE Trans.
Computers, C-21(8):880-886, Aug 1972.

[HNM+87] Y. Harada, H. Nakane, N. Miyamoto, U. Kawabe, E. Goto, and T. soma.
Basic operations of the quantum flux parametron. IEEE Trans. Magn., pages
3801-3807, Sep 1987.

[HU74] M.S. Hecht and J.D. Ullman. Characterization of reducible flow graphs. J.
ACM, 21(3):367-375, July 1974.

[!ch87] Shuichi Ichikawa. "A Study on A Cyclic Pipeline Computer: FLATS2". Mas­
ter's thesis, The University of Tokyo, 1987.

[!ch90] Shuichi Ichikawa. "A Study on A Cyclic Pipeline Computer: FLATS2". PhD
thesis, The University of Tokyo, 1990. submitted.

[Joh81] S. C. Johnson. A Tour Through the Portable C Compiler. Unix technical
document, 1981.

[Jor87] H.F. Jordan. The Force. In L.H. Jamieson, D.B. Gannon, and R.J. Douglass,
editors, The Characteristics of Parallel Algorithms. MIT press, 19 7.

[Jou89] Norman P. Jouppi. The onuniform Distribution of Instruction-level and
Machine Parallelism and Its Effect on Performance. IEEE Transactions on
Computers, 38(12):1645-1658, Dec. 1989.

[Kow85] J.S. Kowalik, editor. Parallel MIMD Computation: HEP Supercomputer and
Its Application. MIT Press, 1985.

[KS86] R. S. Kunkel and E. Smith. Optimal pipelining in supercomputers. In Proceed­
ings of the 13th Annual International Symposium on Computer Architecture.
IEEE, June 1986.

[LH86] J.R. Larus and P.N Hilfinger. Register Allocation in the SPUR Lisp Com­
piler. In Proceedings of the ACM SIGPLAN '86 Symposium on Computer
Construction, pages 255-263, 1986.

132

[Mas86] Mori Masatake. Numerical Computation Programming. Iwanami-shoten, 1986.
in Japanese.

[McM84] F.H. McMahon. L.L.N.L. FORTRAN KERNELS: MFLOPS. Technical report,
Lawrence Livermore National Lab., 1984.

[MFH86] V. Milutinovic, D. Fura, and W. Helbig. An Introduction to GaAs Micropro­
cessor Architecture for VLS1. Computer, 19(3):30-42, March 1986.

[MFHL87] V. Milutinovic, D. Fura, W. Helbig, and J. Linn. Architecture/Compiler
Synergism in GaAs Computer System. Computer, 20(5):72-93, May 1987.

[Mor90] 1. Morishita. A New Pipelined MIMD Processor for Large Scale Parallel Ma­
chines with Multistage Interconnection Networks. Trans. of Info. Proc. Soc.
of Japan (in Japanese), 31(4):523-531, April 1990.

[PoI89] C. D. Polychronopoulos. Compiler Optimizations for Enhancing Parallelism
and Their Impact on Architecture Design. IEEE Transactions on Computers,
37(8):991-1004, Aug. 1989.

[RWZ88] B.K. Rosen, M.N. Wegman, and F.K Zadeck. Global Value Numbers and
Redundant Computation. In Proceedings of 15th POPL, pages 12-27, 1988.

[SGI89] K. Shimizu, E. Goto, and S. Ichikawa. CPC(Cyclic Pipeline Computer) ­
An Architecture Suited for Josephson Pipelined-Memory Machines. IEEE
Transactions on Computers, 38(6), June 1989.

[SHS+87] M. Suzuki, K. Hiraki, K. Shimizu, M. Sato, and N. Inada. FLATS Architecture
and its Evaluation. In Conference Proceedings of TENCON 87, pages 1039­
1043, August 1987.

[SIG89] Mitsuhisa Sato, Shuichi Ichikawa, and Eiichi Goto. Run-time Checking in
Lisp by Integrating Memory Addressing and Range Checking. In Proceedings
of 16th International Symposium on Computer Architecture, pages 290-297,
1989.

[SIG90] Mitsuhisa Sato, Shuichi Ichikawa, and Eiichi Goto. Multiple Instruction
Streams in a Highly Pipelined Processor. In Proceedings of 2nd IEEE Sym­
posium on Parallel and Distributed Processing, pages 182-189, Dec. 1990.

[Sit79] R.L. Sites. The Compilation of Loop Induction Expressions. ACM Trans. on
Prog. Lang. and Sys., 1(1):50-57, July 1979.

[SSFG89a] Mitsuhisa Sato, Paul Spee, Norihiro Fukazawa, and Eiichi Goto. "CPX: Ex­
ploiting concurrency on the CPC". In Proceedings of 6th Riken Symposium
on Josephson Electronics, pages 7-14, 1989.

[SSFG89b] Paul Spee, Mitsuhisa Sato, Norihiro Fukazawa, and Eiichi Goto. "CPX - An
operating System Kernel for CPC". In Proceedings of 6th Riken Symposium
on Josephson Electronics, pages 15-25, 1989.

133

[TTT81] M. Tokoro, E. Tamura, and T. Takizuka. Optimization of microprograms.
IEEE Trans. on Computers, C-30(7):491-504, July 1981.,I

Ir
It

[Sut89]

[Tar70]

[WZ84]

Ivan E. Sutherland. MICRO PIPELINE. CACA!, 32(6):720-738, June 1989.
the lecture of Truing Award.

R.E. Tarjan. Depth first search and linear graph algorithms. SIAM J. Com­
puting, 1(6):146-160, 1970.

M.N. Wegman and F.K. Zadeck. Constant Propagation with Conditional
Branches. In Proceedings of 12th POPL, pages 291-299, 1984.

134

	247685_0001
	247685_0002
	247685_0003
	247685_0004
	247685_0005
	247685_0006
	247685_0007
	247685_0008
	247685_0009
	247685_0010
	247685_0011
	247685_0012
	247685_0013
	247685_0014
	247685_0015
	247685_0016
	247685_0017
	247685_0018
	247685_0019
	247685_0020
	247685_0021
	247685_0022
	247685_0023
	247685_0024
	247685_0025
	247685_0026
	247685_0027
	247685_0028
	247685_0029
	247685_0030
	247685_0031
	247685_0032
	247685_0033
	247685_0034
	247685_0035
	247685_0036
	247685_0037
	247685_0038
	247685_0039
	247685_0040
	247685_0041
	247685_0042
	247685_0043
	247685_0044
	247685_0045
	247685_0046
	247685_0047
	247685_0048
	247685_0049
	247685_0050
	247685_0051
	247685_0052
	247685_0053
	247685_0054
	247685_0055
	247685_0056
	247685_0057
	247685_0058
	247685_0059
	247685_0060
	247685_0061
	247685_0062
	247685_0063
	247685_0064
	247685_0065
	247685_0066
	247685_0067
	247685_0068
	247685_0069
	247685_0070
	247685_0071
	247685_0072
	247685_0073
	247685_0074
	247685_0075
	247685_0076
	247685_0077
	247685_0078
	247685_0079
	247685_0080
	247685_0081
	247685_0082
	247685_0083
	247685_0084
	247685_0085
	247685_0086
	247685_0087
	247685_0088
	247685_0089
	247685_0090
	247685_0091
	247685_0092
	247685_0093
	247685_0094
	247685_0095
	247685_0096
	247685_0097
	247685_0098
	247685_0099
	247685_0100
	247685_0101
	247685_0102
	247685_0103
	247685_0104
	247685_0105
	247685_0106
	247685_0107
	247685_0108
	247685_0109
	247685_0110
	247685_0111
	247685_0112
	247685_0113
	247685_0114
	247685_0115
	247685_0116
	247685_0117
	247685_0118
	247685_0119
	247685_0120
	247685_0121
	247685_0122
	247685_0123
	247685_0124
	247685_0125
	247685_0126
	247685_0127
	247685_0128
	247685_0129
	247685_0130
	247685_0131
	247685_0132
	247685_0133
	247685_0134
	247685_0135
	247685_0136
	247685_0137
	247685_0138
	247685_0139
	247685_0140

