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Preface

A goal of theoretical chemistry is to clarify how and why

the chemical reactions proceed from the first principle and to

predict what is going on. The recent advances of computer

brought about a remarkable progress in the electronic structure

theory and has enabled theoretical chemists to accomplish the

above goal as far as we are interested in small molecules in the

ground state. Many ab initio Molecular Orbital (MO) calculations

reproduced the experimental data and also gave the theoretical

interpretations to the conventional chemical intuitions. Fur­

thermore, the accumulation of results gave the empirical guide as

to the reliability of calculations depending on the level of

calculations.

On the other hand, the calculations of electronically excit­

ed molecules less abundant than those of molecules in the

ground state because, for the former, large scale calculations

have to be performed to obtain reliable information of molecular

properties such as the excited energies.

The recent progress of experimental techniques gave detailed

information of the structure and dynamics of electronically

exci ted molecules, which raised many new questions forced the

conventional interpretations to be reexamined. In many cases,

empirical potential functions been used to study the dynamics of

electronically excited molecules. However, it was pointed out

that empirical potential functions are inappropriate for covering

various experiments because they were usually designed to repro­

duce a particular experiment. Therefore, experimental and theo-



retical chemists who work in the reaction dynamics look for ab

initio potential energy surfaces (PESs).

Considering the situations described above, the author

believes that a theoretical approach based on ab initio PESs is

very significant for studying the structure and dynamics of elec­

tronically excited molecules. The determination of PESs by ab

ini tio methods has several advantages over the determination of

the same quantity by experimental measurements. They are summa­

rized as follows.

1. In the theoretical study, a compound is characterized only by

its number of electrons plus the charges and locations of its

consti tuent nuclei. Therefore, the calculation can be carried

out at all the nuclear geometries for systems irrespective of

their thermodynamic stability and hence allows one to determine

the entire potential energy surface.

2. The same theoretical method can be employed for the entire

wavelength region from inner-shell ionization or excitation to

the far- infrared. whereas di fferent experimental equipment is

generally needed for ultraviolet and infrared spectroscopy. The

calculations are also in principle the same for all electronic

states irrespective of their multiplicity or character.

3. An analysis of the calculated wavefunctions or properties

gives insight into the qualitative principles that govern certain

effects, and from this information qualitative rules can be

derived which would allow predictions without actual calcula­

tions in related systems.

Considering these advantages, the ab initio method is a



powerful tool to study chemical reactions. In the following

parts, the author will treat two problems relating to the struc­

ture and dynamics of the electronically excited molecules to

which much attention has been paid from the experimental and

theoretical points of view. He will derive ab initio potential

functions and examine the structure and dynamics of the electron­

ically excited molecules theoretically.





Part I

Charge Transfer State Formation in Polar Solvent



Chapter 1

General Introduction



1-1. Survey of Experimental Studies on the Charge Transfer
Reaction of Electronically Excited Molecules

The formation of the charge transfer (CT) complexes through

the electronic excitation is one of the most fundamental process-

es in organic photochemistry. Since the solvent can contribute

to the energy dissipation of electronically excited molecules.

the reaction shows the aspect which is not observed in gas phase

reaction. Such a solvent effect has recently been attracted from

a theoretical and experimental point of view (1-4).

Lippert et al first observed two kind of fluorescences in

dilute N,N-Dimethy1aminobenzonitrile (DMABN). One is the normal

fluorescence and the other is the anomalous one which is observed

at a longer wave length with a broader width. Since then, a

series of compounds which show the dual fluorescence have been

studied to characterize the anomalous emi ttin'g state and to

discuss the role of solvent in the reaction. Although several

mechanisms involving ground- exci ted state complex formation

were proposed at an early stage of this study (6), twisted

internal charge transfer (TICT) mechanism by Grabowski and co-

workers was widely accepted to explain the dual fluorescence

(7). This was based on the following experimental findings:

1) the longer wavelength emission depends on the solvents while

the shorter wavelength is almost independent of them.

ii) the compounds related to DMABN, for which twisting of the

amino group are blocked, does not exhibit the longer wavelength

emission (7,8).

iii) Similar model compounds that are twisted in the ground state

such as 4-cyano-2, 6, N, N-tetramethylaniline lack or nearly lack



the normal short-wavelength fluorescence (7,9).

From these experimental findings, they characterized the two

emi tting states and proposed the reaction scheme schematically

represented in the figure. The excited molecule A* can be

directly deexci ted to molecule A. Since the relaxation process

from A* to A state is independent of the solvent polarity, the A*

state is the locally excited (LE) state with a less ionic charac­

ter. The excited species A* is also possible to go to the other

excited B*. In this process, the reorientation of the surround-

ing solvent molecules is accompanied by change of the charge

distribution of the solute. The photoemission f~om B* to A can

be observed at a longer wavelength. From the experimental find-

ings ii) and iii) mentioned above, the anomalous emitting state

has twisted geometry and so the 7! -7! conjugation between di-

methylamino part and aromatic ring is broken and the charge is

transferred from amino moiety to aromatic ring to generate the CT

state.
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The TICT mechanism was conf irmed or modi f ied by several

experimental works. Bischof et al found that TICT state was



formed independently in any solvent environments, that is, the CT

state formation is a true intramolecular process (10). The

time-resolved spectroscopic techniques gave more detailed infor­

mation on the dynamics of the CT state formation and gave rise to

much controversy about the CT formation process. Kosower et al

measured the fluorescence decay time in a series of linear alco-

hols, which was found to correlate the dielectric relaxation time

(11). They concluded that the motion of solvents controls the

TICT formation. Following their suggestion, Dobowski et al

pointed out that the TICT formation process is viscosi ty-con­

trolled (12). On the other hand, Rettig and Wermuth found that

the TICT formation rate depends on the solvent polarity (13).

Low temperature quantum yield measurements and direct laser

kinetic data show that the rate of formation of the TICT states

in n-butylchloride is a factor of 2 - 13 greater than that of the

nitriles. This is ascribed to the presence of a conical inter­

sections along the reactions coordinate in the case of ni triles.

That is, two excited surfaces contribute to the TICT formation.

Hicks et al reached at similar conclusion that variation of the

dynamics of DMABN in a series of polar solvent is ascribed to the

barrier height dependent on the solvent polarity rather than the

viscosi ty controlled reaction (13).

Kajimoto et al produced DMABN-H 20 van der Waals complex in a

molecular beam and measured the laser induced fluorescence spec­

tra (15). They found that the 0-0 band shows the blue-shift and

the emission spectra of this complex does not contain the CT

state component. From these findings, they pointed out the

importance of the location of solvating molecules in the CT state



formation. Furthermore, they measured the dual fluorescence in a

supercritical CF 3H fluid to characterize the nature of emitting

state (16). They found that both the Stokes shift and the ratio

between the CT and the S1 emissions increased with increasing

density of the polar fluid.

Contrary to the above discussion which insisted that the

TICT formation is solvent-controlled, Su and Simon estimated the

average survival probability of the locally excited (LE) state

and found that the average life time of DMABN in the LE state is

faster than the longitudinal solvent relaxation time (17). In

comparison with their experimental data and recent Marcus theory,

they concluded that the fluctuation of intramolecular motion is

relatively important in the CT state formation.

1-2. Theoretical Treatments of Electron Transfer Reactions

In spite of above mentioned controversies about the CT state

formation, theoretical studies on this problem are very limited.

One of the reasons is that there is no realistic molecular model

derived from the microscopic point of view. Many of previous

theoretical models contain many assumptions and adjustable param­

eters which can not be determined a priori.

Before proceeding the present work, the author will summa­

rize the theoretical models for the solute-solvent interaction

and the dynamics of electron transfer on which many previous

works are based.

1-2-1. Continuum Dielectric Model



In static treatment, the role of the solvent is to modify

the potential energy surface (PES) in a gas phase. Continuum

dielectric model, which was developed by Born (18) and Onsager

(19), is a convenient tool to estimate the change of PES in a

polar solvent. In this model the solvent is replaced by a fre-

quency dependent dielectric continuum, with dielectric function,

c (w), and the polar solute by a dipole within a cavity of some

simple shape. The solvation energy is obtained by evaluating the

reaction field of the polar solute molecule inside the molecular

cavity. For instance, when the shape of the molecular cavity is

sphere with the radius r c ' the solvation energy is

(c (w)-I)/(2c (w)+I) l/rc
3 L J.L j 2

j
(1)

The predictions of homogeneous continuum theories are most simply

discussed in terms of a solvation time correlation function,

which is directly connected with a relaxation time

(2 )

where Co and c OJ are the static and the optical dielectric con­

stants of the solvent and 'D is the Debye relaxation time of the

dipolar solvent (20-21). cc is the dielectric constant of the

molecular cavity. The application of this theory is well known

by Lippert-Mataga equation in order to quantify the red-shifts

and relate them to dipole moments of fluorescing spices (22).



However, this model is too simple in two points. The first

point is that the above simple model was derived under the as­

sumptions that the molecular cavity is spherical and the solvent

dielectric response is of simple Debye form. Then both assump­

tions were relaxed into the ellipsoidal cavity and a non-De bye

dielectric response (23). Castner et al pointed out the impor­

tance of non-Debye form to describe the solvent relaxation.

The second point is that the role of the solvents near the

solute is same as that of solvent far from the solute in the

above homogeneous model. Another modification, what is called

inhomogeneous model, was done by several authors. Bagchi pre­

sented the inhomogeneous dielectric theory that the dielectric

constant, E (r) was allowed to vary continuously as a function of

distance (r) from the polar solute molecule and the solvation

energy was evaluated by solving the Laplace equation, with the

posi tion- and frequency-dependent dielectric constant, E (r. w)

(24). In another theory by Castner, a discrete shell represen­

tation of the position dependent dielectric function was assumed

and the solvation energy was expressed as a sum of the solvation

energy from each shell (25). The main effect of the dielec-

tric inhomogeneity was to introduce relaxation times slower than

T L and to make the decay non-exponential. It is also pointed out

that the solvent response to a change in dipole moment is slower

than that to a change in the charge.

Although these continuum dielectric models are quite phe­

nome logical , they are in agreement with experiment and provide a

simple and intuitive picture of solvation dynamics and at the

same time incorporate some aspects of solute-solvent interac-



tions.

1-2-2. Marcus' Thoery

Next the author turns to microscopic or molecular theory to

describe the CT reaction in solution. Marcus' theory has been

developed to explain the electron transfer which is the special

problem in the chemical reaction in solution (26-28). This

theory is based on absolute reaction rate theory by Eyring (29).

The rate constant is given by eq.3

KB exp(-l;G~/kBT)

KB exp(l;S~/kB) exp(-l;H~/kBT) (3 )

In this equation, l; G\ l; S~, l; H~ are the free energy, entro-

py, entalpy, k B is the Boltzmann constant, B is the liquid phase

collision frequency with the order of 10 13 sec-1 . K relates the

electron transfer probability. If the reaction is adiabatic, K

has the value 1, that is, there is no recrossing on potential

surface, and less than 1 if non-adiabatic. Marcus gives the

following equation for l;G~

(4 )

l;GO is the standard free-energy increase for the electron trans-

10



fer reaction. The quantity A. which is estimated from experi-

ment, is the reorganization energy which is coupled to the elec-

tron transfer. In other words, A is the energy which would be

required to move all the atoms from their equilibrium positions

before electron transfer to the equilibrium positions after

electron transfer. Furthermore, Marcus divides A into two

parts, Ai + A 0 in order to analyze the sol vent effect on the

electron transfer reaction (28). Ai is the reorganization energy

of the inner shell of atoms and A 0 is that of the surrounding

solvent molecules. Ai is approximated by the inner-shell normal

mode;

(5 )

and A O is evaluated from the polarizability of the solvent which

is considered to be a continuous polar medium;

A
O

= (L,>e)2/ 47rEo (l/(2r1 ) + 1/(2r2 ) - 1/r12 )(1/Dop - l/Ds )

(6)

where D. e is the charge transferred from donor to acceptor, r 1

and r 2 are the radii of the two reactants, Dop and Ds are the

square of the refractive index of the. medium and the static di-

electric constant, respectively. This Marcus' theory was sui t-

able for a reaction with a high activation barrier and based on a

continuum description of the solvent polarization.

11



The various theory of the electron transfer reaction has

developed on the basis of Marcus' theory. Levich and Dogonadze

advanced a non-adiabatic electron-transfer theory, where the

microscopic electronic process rather than dielectric relaxation

constitutes the rate-determining step (30-32). Their treatment

which employed a stochastic solvent model that described the

dynamics of polarization fluctuation by a simple Debye model has

been further extended by introducing more realistic models for

the dielectric relaxation of solvents (33-35).

Recently, Calef and Wolynes investigated the role of solvent

fluctuation with special emphasis on the molecular nature of the

solvent (36-38). In their theory, the reaction coordinate (X) is

identified and a Smoluchowski equation for this reaction coordi­

nate is derived;

b p(X)/b t (7)

where D(X) is a position-dependent diffusion coefficient and

Veff(X) is an effective potential. A detailed calculation of

one-dimensional reaction free energy surface was done. Their

conclusion was that the molecular theory prefactors are signifi­

cantly lower than those calculated completely wi thin a continuum

model.

The low- or zero-barrier intramolecular electron transfer

reaction has been of much interest for the last few years. In

this type of reaction, since there is no clear separation of time

scale between the motion in the reaction zone and the rest of

12



the potential surface, the theory for a low-barrier reaction is

di fferent from the traditional theory for a high-barrier reac-

tion. Recently Marcus and co-workers presented a theory for a

low-barrier electron transfer reaction (39,40). Their theory

includes an average effect of the fast intramolecular vibrational

motions of the reactant and treats the diffusive orientational

motion of the sol vent by using the continuum model. The low-

barrier reaction was modeled as a diffusive process on a harmonic

surface with the solvent polarization (X) as the reaction coordi-

nate. The reaction takes place when the solvent polarization

attains a certain critical value, Xc' The time-dependent proba­

bility distribution P(X,t) is given by a modified Smoluchowsky

equation;

'" P(X,t)/o t (8 )

where k c (X) is a coordinate dependent rate constant and T L is

the longitudinal polarizability relaxation time of the unper­

turbed solvent. The form of kc(X) depends on the nature of the

participating electronic potential surfaces. Several limiting

forms for the position dependence of kc(X) have been investigated

in detail. If the vibrational modes of the electron transfer

system make a little contribution to electron transfer, kc(X) is

sharply peaked around Xc and may be represented by a delta func­

tion. On the other hand, if the contribution from vibrational

modes dominates the reaction, the reaction window is wide and

kc (X) may be represented by a broad Gaussian around Xc' The

magni tUde of the rate at the critical polarization value, Xc' is

13



governed by the adiabatic i tyjnon-adiabatici ty of the reaction.

Their conditions for the validity of the results was also pre­

sented by Onuchic (41). This recent Marcus' theory was used to

analyze the experiment by Su and Simon (17).

1-2-3. Molecular Theory

The importance of the molecular nature of the solvent in

solution reaction calls for a quantitative understanding of

microscopic process involved in orientational and polarization

relaxation of a dense dipolar liquid. Several approaches have

been done using generalized Smoluchowski equation (42-44)

c eS P (r, W , t) jet DR V W 2 eS P + DT V 2 eS P

- [DR VW • P VW + DT V P V ] .B F ( 9 )

where P(r,w,t) is the position, orientation and time-dependent

density of the solvent, eSP, the density fluctuation from the

equilibrium state, DR and DT are the rotational and translational

diffusion coefficients of the solvent, respectively. V wand V

are the usual angular and spatial gradient operators. The first

and second terms are diffusion terms,' and the last term is a free

energy term which consists of a potential mean force and a mean

field due to the other molecules .

.B F = Idr' dw 'c (r, w ,r' ,w ' ) eS P + .B Uext

14

(10 )



c is the two-particle direct correlation function of the dipolar

solvent. Uext is the external field which comes from the solute

ion or dipole. From eq. 9, the following expressions can be

obtained. One is the time-dependent solvent polarization of a

dipolar liquid, which is related to number density of the solvent

ppol(r,t) = J1 J dwa(w)P(r,x,t)

where a( w) is a unit vector with orientation w

(11)

and J1 is the

magni tude of the dipole moment of the solvent molecules. Relat-

ing to eq.11, the time-dependent solvation energy is given by

(12)

where D(r) is the bare electric field of the polar solute mole-

cule. Furthermore, the express ion for polarization relaxation

for dipolar hard spheres can be obtained. Both longitudinal and

transverse components were found to relax exponentially with time

constants given by

TL(k) = (2DR)-1[1 + p' (ka)2 -

PO/3 (1 + p'(ka)2(C~ + 2CD)]-1 (13)

(2DR)-1[1 + p' (ka)2 -

PO/3 (1 + p' (ka )2(C~ - CD)r 1

15
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where r Land r T are the wavevector-dependent longitudinal and

transverse polarization relaxation times, respectively, and p' =

(DT/2DRa 2 ) , a is the solvent molecular diameter. p' is a meas­

ure of the relative importance of translational modes in solvent

polarization relaxation. Po is the equilibrium number density of

bulk solvent. Cb and CD are the anisotropic parts of the direct

correlation functions. Calef et al and Chandra & Bagchi examined

the dynamical properties varying the parameters in this theoreti­

cal model and pointed out that structural relaxation occurs with

multiple relaxation times.

Maroncelli and Fleming have carried out the equilibrium and

non-equilibrium molecular dynamics (MD) simulations to study the

time-dependence of solvation in water (45). Relaxation of the

solvation energy following step function jumps in the solute's

charge, dipole moment and quadrupole moment have been determined

from equilibrium MD simulation under the assumption of a linear

solvent response. The relaxation times observed di ffer subs tan-

tially depending on the type of multipole jump and the

charge/size ratio of the solute. They concluded that the Onsag­

er's picture of monotonically increasing relaxation time with

distance is not correct for the systems studied. They have also

pointed out that the structure of th~ first solvation shell plays

an important roll in solvation dynamics. Their conclusion is,

roughly speaking, in accord with the theoretical study mentioned

above.
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Chapter 2

Charge Transfer State Formation of

4- (N, N-Dimethylamino) Benzoni trile

in an Aqueous Solution
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2-1. Introduction

The formation of charge transfer (CT) state is one of the

fundamental processes in photochemistry of organic molecules in

solutions. This process involves the relaxation of surrounding

solvent molecules and the rate of CT state formation is known to

be affected by the solvent dielectric relaxation time. Such a

solvent effect in the chemical processes has recently received

much attention from exper imental (1,2) and theoretical (1,3,4)

points of view.

There is a series of molecules which exhibit dual fluores­

cence in polar solvents (1,5). The polarity of solvent has been

recognized to be a clue in understanding the origin of redshifted

fluorescence. 4-(N,N-Dimethylamino) benzonitrile (DMABN) is a

prototype of such a class of molecules. Although there are some

controversies (6,7). the formation of a twisted intramolecular

charge transfer (TICT) state (8,9) in the excited state has been

generally accepted to be the origin of anomalous red shifts of

fluorescence in polar sol vents. In the TICT state where the

dimethylamino group undergoes a 90' internal rotation with

spect to the aromatic ring, an electron is completely transferred

from the amino group to the benzonitrile moiety because the

conjugation between the amino lone pair orbital and the rr orbit­

als on the aromatic ring is absent and the dipole moment reaches

to the extreme. The TICT state in DMABN is thus fully stabilized

by the solvent dipoles.

In recent years many experimental works on DMABN have been

performed to elucidate the mechanism of CT state formation.

Kaj imoto et al. (10) have measured the dual fluorescence in a
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supercritical CF 3H fluid to characterize the nature of emitting

state. They have confirmed the CT state from the observation

that both the Stokes shift and the intensity of emission with a

longer wavelength increase with increasing the density of polar

fluid. The picosecond time resolved emission spectroscopy has

been applied to examine the relative importance between the

solvent dielectric relaxation and the intramolecular vibrational

motion to the rate of CT state formation. Hicks et al. (11,12)

have proposed that the barrier height for the CT state formation

is controlled by the polarity of solvent from their experiments

on DMABN in nitrile solutions. Su and Simon (13) have pointed

out the importance of fluctuations of intramolecular vibrational

motion compared to solvent diffusion in determining the reaction

rates in alcohol solution. Their conclusions were deduced from

the analyses of their experiments on the basis of theoretical

model developed by Sumi, Nadler and Marcus (14,15). By using the

supersonic expansion technique, the spectra of DMABN-solvent

complex have been examined by several groups (16-18) to obtain

the information about local solute-solvent interactions. All of

these works revealed that 1: 1 complex at low temperature does not

exhibit the dual fluorescence under isolated conditions.

To obtain a satisfactory understanding of the mecnanism of

CT state formation in solutions, detailed theoretical studies for

the potential energy surfaces including the solute-solvent inter­

actions and for the dynamics of solute molecule under the influ­

ence of solvent motions. Statistical mechanics calculations such

as Monte Carlo and molecular dynamics simulations for the
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solute-solvent systems would give valuable information on the

solvation processes (19-22). In spite of the experimental acti v­

ities mentioned above, theoretical studies on D~lABN are still

limited at present. The potential energy surfaces of low-lying

states of DMABN have been calculated by Rettig and Koutechy (23).

They have employed the ab initio and semiempirical CNDO/S molecu­

lar orbital (MO) methods to characterize the excited state elec­

tronic structures. Dynamics calculations for the intramolecular

electron transfer in DMABN based on a realistic molecular model

are virtually nonexistent because of the lack of reliable poten­

tial energy functions and solute-solvent intermolecular poten­

tials.

In this chapter, the CT state formation process of excited

state mlABN in the aqueous solution is treated theoretically to

provide a realistic description of the process at molecular

level. We focus on the nature of solution phase potential energy

profiles, the ingredient essential to understand the dynamics.

We first perform ab initio MO calculations on the excites as well

as the ground state potential energy surfaces of DMABN in the gas

phase. With the aid of electron distributions obtained from the

ab ini tio calculations, pair potentials are next constructed to

describe the solute-solvent systems are then carried out to

afford theoretical information on the solution phase potential

energy surfaces partitioning in the CT state formation process

and the solvation structures. In the next section, the results

of calculations on the potential energy surfaces of ground and

exci ted state DMABN are presented. The method of calculations

are first summarized. We examine the nature of electronic struc-
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tures of the excited states leading to the CT state and develop

the diabatic representation of excited state potential surfaces

to facilitate the calculations for solute-solvent systems. The

intermolecular potentials derived here are used to calculate the

structures of DMABN-water complex in the gas-phase and the

sul tant structures are compared to the avai lable experimental

results. In section 2-3, the Monte Carlo simulation calculations

the aqueous solution of DMABN are presented. The potentials

of mean force for the ground and excited electronic states of

DMABN are calculated as the function of torsional angle of di­

methyl amino group to see the effect of solvation on the poten­

tial energy profiles. The mechanism of fluorescence shifts are

also discussed on the basis of calculated solvation properties.

The reaction free energy surfaces for the CT state formation

process are calculated in section 2-4. The reaction surfaces are

given as the function of solvation coordinate, representing the

solvent configuration relaxation, and intramolecular vibrational

coordinate. In section 2-5, we give a discussion on the mecha­

nism of intramolecular CT state formation on the basis of the

results of present calculations. The conclusions are also summa­

rized in section 2-5.
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2-2. Potential Energy Surfaces of DMABN

2-2-1. Method of calculations

The potential energy surfaces of the ground and excited

states of DMABN were calculated by the configuration interaction

(CI) method. We first carried out the geometry optimization for

the ground state DMABN because it is experimentally unknown. The

analytical energy gradient method for the Hartree-Fock (HF) wave

function with the STO-3G basis set (24) was employed. The re­

sults were summarized in Table I. We have calculated the poten­

tial energy surfaces as a function of two internal coordinates,

the torsional angle around the N1C1 bond T and the wagging angle

of dimethyl amino group 8. The coordinate system is give in

Fig. 1. All the atoms except in the methyl groups were placed

the plane, the y-z plane, and the z-axis was taken to be the

direction of N1C1 . The geometric parameters were fixed to the

values in Table I.

We used a modified MINI4 basis set (25) (Basis A) in the CI

calculations. The 2p orbitals on the Nand C atoms except in the

methyl groups are of double zeta qual i ty and the minimal MINH

set was employed for all the other orbitals. This basis set is

more flexible than the minimal basis set in describing the 7C

orbi tals of DMABN. The calculations were carried out at 25

points for the (T, 8) pair; T=O·, 20·, 45·, 70·,90·, and 8=0·,

20·, 42·, 60·, 80·, respectively. In order to obtain more reli­

able energy estimates, the CI calculations with the split valence

MINH basis set (25) (Basis B) were further carried out at two

important geometries, the planar, (T, 8) = (0· ,0· ), and perpen­

dicular, (90·,0·), geometries. The numbers basis functions
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Table I. Optimized Geometry of DMABNa )

Bond Distances b )

N1-C1 1.446 C1-C 2 1.402
C2-C 3 1.379 C3-C4 1.394
C4 -C7 1.45S C7 -N 2 1.157
N1-CS 1.4S6 C2-H1 1.07S
C3-H 2 1.0S4 CS-H 5 1.093
CS-H6 1.0S7 CS-H7 1.0SS

Valence angles c )

C1C2C3 121- C2C3C4 120.S
C2C1C5 117. C3C4C6 I1S.6
C3C2H1 11S.2 C2C3H2 119.5
Cs N1C9 115.1 N1Cs H5 112.4
NI CSH6 111.3 Nl CSH7 10S.1

Torsional angles c )

CI N1CSH5 119.6 C1N1CSH6 -lIS. S
C1N1CSH7 -0.5

a) Torsional and wagging angle of dimethylamino group are
O· and 41.S·, respectively.

b) Bond distances are given in A.

c) Angles are given in degree.

Fig.1 Coordinate system of DMABN



92 and 119 for the Basis A and B. respectively.

The one-particle basis functions in the CI wave functions

were taken from the HF calculations. The orbital space was

divided into three sub-spaces. We have chosen 10 orbitals as the

active orbitals, which are the 7C and lone pair orbitals. Some

of important active orbitals are displayed in Fig. 2. The 34

-8

-12

Fig.2 Schematic representation of important MO's of DMABN at the
planar geometry. MO's are assigned in terms of C2v
symmetry although DMABN has only the Cs symmetry because of
methyl group.

orbitals with lower orbital energies were regarded as the inter-

nal orbitals and the remaining ones with higher energies were as

the external, respectively. All the single, double and triple

27



excitations within the active space from the HF configuration

were included in the CI wave functions. In addition to those

configurations, all the possible singly excited configurations,

wi th the Nand C Is orbi tals kept doubly occupied, from the

important configurations were further taken into account. This

choice of configurations is similar to the polarization CI (POL-

CI) method (26). The numbers of configuration state functions in

C
l

symmetry thus became about 9000 and 12000 for the Basis A and

B, respectively.

2-2-2. So and SI potential energy functions

We constructed the potential energy functions for the ground

and low-lying excited states of DMABN using the results of ab

ini tio calculations. For the So and S1 state, the energies

calculated with the Basis A were first least square fitted to the

analytical functions

3
WI(T, e)= L (anO + a n2 e 2 + a n6 e 6 ) cos2nT

D'O

These energy functions were further modified by adding the cor-

rection terms, a + bcos2r, to reproduce the barrier heights for

the internal rotation around the NC bond calculated with the

Basis B (Table II). The resultant potential energy surfaces are

(1 )

shown in

28
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Table II. Relative energies at the planar and
perpendicular geometries

Planar geometry ( T =0' • () =0· )
3 1A1

11A1 11 B2 2 1A1

Basis A o.ob) 5.44 5.99 7.87

Basis B o.oc) 5.26 5.71 7.64

Perpendicular geometry
11A1 11A2

Basis A 0.26 5.86 7.05

Basis B 0.26 5.79 6.32

a) Energies are given in eV.

b) Total energy is -454.7384 hartree.

c) Total energy is -454.8845 hartree.

6.83

6.53

906030
1: {deg!

OL-_~__L...--'-....L...J-_.l.-~_

o

'"
~ 30
<D

Fig.3 Contour maps of potential energy surfaces of So and Sl
states. Potential surfaces of So and Sl states are given
in (a) and (b), respectively. Energy at the minimum
of Sl surface is 4.0eV. Contour spacing is 0.05eV.
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The ground state So surface is a double well potential for

the wagging angle and the energy increases along the torsional

angle as seen in Fig. 3(a). The wagging angle at the minimum

energy point was calculated to be 38.2" and the inversion barrier

of dimethyl amino group was 1.6 kcal/mol at T 0". The barrier

height for the NC internal rotation was 5.9 kcal/mol.

The first excited Sl state is characterized by the two elec­

tronic configurations,

(2 )

and

(3 )

at the planar geometry and the weights of configurations corre­

lated to them in the CI wave function were almost constant at all

the geometries considered here. As seen in Fig. 3(b), the mini-

energy point on the surface is located at T = 0" and e =0" .

This surface is, however, very flat for the wagging angle and

becomes a double well at the region T > 20". The barrier height

for the internal rotation around the NC bond was 12.1 kcal/mol,

which is higher than that of So state by 6.2 kcal/mol.

The SO-Sl excitation energy was calculated to be 5.5 eV with

the Basis A and 5.3 eV with the Basis B, respectively, at the

planar geometry. These values are overestimated by 1.3 - 1.5 eV

compared with the experimental excitation energy, - 4 eV. We

therefore shifted the So energy in constructing the potential
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energy functions (Fig.3) so that the adiabatic SO-Sl excitation

energy becomes 4.0 eV. The parameters for the So and S 1 poten-

tial functions are summarized in Table V.

Table V. Parameters of potential energy functions

(A) Diagonal elements

aoo~~ 0.1785 4.2581 5.2671 5.5062 6.3993

a 02c ) -0.3034 -0.1374 0.4178 -0.4386 -0.1569

a 06a ) 0.5119 0.4299 0.4209 0.4311 0.4466

~20b)
-0.1447 -0.2771 0.2015 0.1527 -0.0360

0.0906 0.1456 -0.1635 -0.1942 0.1139
a 22c ) 0.0092 0.0018 0.0374 0.0174 -0.0000
a 26a ) 0.0176 0.0054 0.0058 0.0332 0.0140
a 40 c ) -0.0010 0.0293 -0.0130 -0.0304 0.0133
a 42 c ) -0.1183 -0.1297 -0.1303 -0.1098 -0.1185

46 a )
0.0164 0.0137 0.0127 -0.0062 -0.0025a 60b )

~~~c)
-0.0196 0.0043 -0.0035 0.0106 0.0137

0.0066 -0.0009 0.0226 0.0082 -0.0045

(E) Off-diagonal elements

D12 D13 D23

b a) -1.0044 -0.4821 b a) -0.2490
b la ) 0.0011 0.0073 bOa) 0.08213 b 2a )

·4 -0.0160
c 0.0455

a) Given in eV.

b) Given in eV rad- 2 .

c) Given in eV rad- 6 .
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2-2-3. Diabatic representation of CT state surface

In solutions the shape of potential energy surfaces will be

modified by solute-solvent interactions. Among the various

components of interaction energy such as the dispersion and the

exchange term, the electrostatic potential by solvent molecules

applied to the solute is expressed by the one electron operator

v(x), the potential energy of the I-th state is calculated by

N
WIO(X) + VII(X) + L IvIJ(x) 12/(WJO(X)-WIO(X)) (4)

J'1

using the second order perturbation theory. The energy of iso­

lated solute molecule is WIO(X) where X stands for the molecular

coordinates of solute. The diagonal and off-diagonal elements of

electrostatic potentials are given by

VII (X) = J P II (x , X) v (x ) dx

and

J PIJ(x,X)v(x)dx

(5 )

(6 )

respectively, where PII is the solute electron density for the

state I and PIJ the transition density between the states I and

J, respectively. The electrostatic interaction energy is conven-

iently rewritten into the multi-pole expression after expanding
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the potential v(x) by the power series of coordinate x. For a

polar molecule the most dominant term of this expansion is the

first order term. Then the diagonal element VII is expressed in

terms of the dipole moments and the off-diagonal element VIJ by

the transition moments. The I-th electronic state of solute is

thus largely modified by mixing with the J-th state through the

interaction with solvents when the transition moment to the state

J is large and the energy difference is small.

It was found that the second and third excited states, 8 2 and

8 3 state, strongly couple by the electric field from solvent

molecules because the transition moment between these state is

large and strongly depends on the amino torsional angle T. The

8 2-8 3 transition moment increases with twisting the dimethylamino

group and takes the maximum value of 4.3 D, the same order of

magnitude dipole moment itself, at 73· (see Fig. 7). These

states are found to be mainly described by the combinations of

three electronic configurations,

(7a)

(7b)

and

(7C)

at the planar geometry and correlate to the llA2 and 2 1A1 states

of the perpendicular form. The relative contributions of these

configurations in the CI wave functions change along the torsion-
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al coordinate.

We constructed here the diabatic representation of potential

energy surfaces for these states which are stable to the electric

field from solvent molecules in order to facilitate the calcula-

tions in a polar solvent. The successive two step unitary trans-

formations of the CI wave functions calculated with the Basis A

were carried out to diminish the transition moment and the three

diabatic states, D1 , D2 , D3 state, were obtained as the basis

functions representing the S2 and S3 states. The supplementary

S4 state was also provided.

The diabatic states defined here have a simple physical

interpretation. The D1 state corresponds to the CT state config­

uration and the D2 and D3 states to the local 7[ - 7[ * excited

state configurations in the benzonitrile moiety. In the adiabat-

ic representation the main component of S2-S3 transition moment

is the off-diagonal element of MO's which are given by the plus

and minus combinations of amino lone pair and aromatic 7[ orbital

(4b 1 and 5b1 MO in Fig. 2). These MO's are transformed into the

orbitals localized at the separated sides of molecule, i.e. the N

lone pair and 7[ orbital, respectively. Thus the transition

moment between the D1 and D2 state becomes very small. The D3

state is the 1a2-2a2 7[ - 7[ * locally 'exc i ted conf iguration where

two electrons are differently occupied from the D1 and D2 state.

The diagonal elements of diabatic state potential energy

matrix were least square fitted to the analytical function (eq.

1). The off-diagonal terms of D1 state with the D2 and D3 state

were represented by the function

34
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and the O2-03 off-diagonal element was by

(8)

(bO + b 2cos2T + b 4 coS4T)

X (l -c + c cos 8 ) (9 )

respectively.

As seen in Table II, the energy of CT state (11 A2 ) is low­

ered by the calculations with the Basis B at the 90· twisted

geometry and becomes the second excited state while the change of

relative energies at the planar geometry is small. We modified

the diagonal elements of the energy matrix by adding the correc-

tion terms, a + bcos2T, as in the case of So and S1 states. It

was found that the 0 1-02 off-diagonal element needs to be reduced

by multiplying the scale factor of 0.9 to reproduce the energies

and the relative weights of electronic configurations of S2 and

S3 states calculated with the Basis B. Fig. 4 shows the diagonal

oj
7

033 bJ

~
~'

l5 11 012

w 013 023

0
30 50 90 0 30 50 90

Torsional Angleldeg) Torsional Angleldeg)

Fig.4 Diagonal and off-diagonal Hamiltonian matrix elements of
diabatic states at 8=0·. Diagonal elements are in (a)
and off-Diagonal ones in (b), respectively.



and off-diagonal matrix elements of the diabatic states at e

=0·. The D1 and D2 state energies are close and decrease with

increasing the torsional angle while the D3 potential surface

slightly increases. The off-diagonal element between the Dl and

D
2

state is considerably large at the planar, 1.OeV, and declines

wi th twisting to the perpendicular geometry. The planar 8 2

energy is lowered by this term. The parameters of potential

energy functions for these diabatic states are tabulated in Table

V.

We calculated the adiabatic potential energy surfaces by

diagonalizing the Hamiltonian matrix for the diabatic states

obtained here and the resultant potential energy surfaces are

shown in Fig. 5. The potential surface features of 8 2 state in

Fig.3(a) are somewhat different from those imagined to interpret

the TICT state in the literatures (1). The 8 2 energy has been

conveniently regarded to be a decreasing function of amino inter-

nal rotation angle T. The present calculations show, however,

that the energy at the perpendicular geometry is higher than that

of the planar. This qualitatively agrees with the calculations

by Rettig and Koutechy (23). The 8 3 state energy, on the other

hand, monotonically decreases along the torsional coordinate.

We use the adiabatic 80 and 8 1 surfaces obtained above in

the calculations of solute-solvent system. The 80 state is

considered to be stable to the electric field from the solvent

molecules because the energy gap between this state and the

excited ones are large. Although the 8 1 state lies close in

energy to the 8 2 and 8 3 state, the calculated 8 1-8 2 and 8 1-8 3

transition moments were small and their directions were perpen-
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dicular to the z-axis. Since the solvent charge distribution is

symmetric in the directions of transition moments, the solute-

solvent interaction coming from these trans i tion moments wi 11 be

canceled out in the equilibrium solvation. The profiles of gas

phase potential energy surfaces of DMABN at e O· are shown in

Fig. 6.

906030
. 1ldeg)

o L-__------'_--l..--L....l-.L.JL.L...l-L.-I-L

o

0>

'"~ 30
<D

906030

1 (deg)

ol- l.--....l----l---'---'L...:L.-J

o

0.
~ 30
<D

Fig.5 Contour maps of potential energy surfaces of Sz and S3
states. Potential surfaces of Sz and S3 states are
given in (a) and (b), respectively.

SdB)

S31A

~
S2IA)

l
3

SoiA)
0

0 30 60 90
Torsional Angletdeg)

Fig.6 Profiles of gas phase potential energy surfaces at T=O".
All the states are assigned in terms of Cz symmetry
al though the methyl groups break the Cz symmetry.



2-2-4. Dipole Moments

The red shifts of fluorescence spectra of DMABN have been

related to the difference of dipole moments between the excited

and ground state. The Lippert-Mataga equation (27) has been

utilized to qualify these red shifts. We calculated the dipole

moments for the ground and excited states as a function of T and

9. The CI wave functions with the Basis A were employed. Fig.

7 shows the change of dipole moments along the torsional coordi-

nate T with the wagging angle e = 0·. All the dipole moments

are directed along the z-axis with the minus sign. The behavior

20

;:; 15

c
QJ 52E
~ 10

~ 53
0

510.

0
50

ol-.. ~ ___'

o 30 50 90

Torsional Angle ldeg)

Fig.7 Changes of dipole moments along the torsional coordinate
with 9=0·. All the dipole moments are directed to the
molecular z axis in Fig.l with the minus sign.
Uni t of dipole moments are in Debye.
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of dipole moment functions for the other values of essen-

tially the same as in Fig. 7. The dipole moments for So and Sl

state were calculated to be 5.4 and 6.4 D at the planar geometry,

which are underestimated than the experimental values, 7.6 and

9.1 D (28). However, the difference of dipole moments between

these two states, 1.0 D, is comparable to the experiments. The

So and S1 dipole moments gradually decrease wi th the NC internal

rotation and become nearly the same value, 4.2 D, at the 90·

twisted geometry. As seen in Fig. 7, the S2 state dipole moment

gradually increases at the region O· < T < 70· and then rapidly

grows up. This reaches the CT state dipole moment finally. The

S3 state dipole moment curve has the maximum at T = 62". In

contrast to these adiabatic state dipole moments, the changes of

dipole moments for the diabatic states are small along the

torsional angle as shown in Fig. 8. The D2 and D3 state dipole

20,------------,

15
5
c

~10
::E

Q> 03a
.~ 5
0 02

9030 50
Torsionl Angletdegl

o'--__~__~____J

o

Fig.8 Changes Df dipole moments Df diabatic states alDng the
torsional coordinate with 8=0". All the dipole mDments
are directed tD the molecular z axis with the minus sign.
Unit Df dipole mDments is in Debye.
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moments are almost constant and their magnitudes are similar to

those of So and Sl state. Only the D1 state dipole moment is

large and monotonically increases with the degree of internal

rotation.

The dipole moment of CT state has been estimated from the

measurements of fluorescence shifts in various solvents with

different polarities. Al though the estimated values depend on

the Onsager's cavity radius inherent to the Lippert-Mataga model,

one of the recommended values is - 16 D (29), about three times

larger than the So state dipole moment, with the cavity radius of

4 A. The present calculations gave the CT (llA2 ) state dipole

moment of 15.5D. The dipole moment of 7[ - 7[ * locally exc i ted

state at T = 90' was calculated to be 5.0 D.

2-2-5. Density matrices of Diabatic States

The density matrices of diabatic states were calculated from

the cr wave functions of the S2 and S3 state. For this purpose,

we assumed that the S2 and S3 state wave functions, "'r and "'rr.

are expressed as linear combinations of three electronic configu-

ration state functions (CSF), ct>A' ct>B and ct>C' given in eq. 7 as

"'r
and

40
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because these states are mainly described by the three configura-

tions, A, Band C.

The density matrices in terms of the configurations A and B

are easily derived from eqs. 10 and 11 as

(12)

{a 22 P I ,I

(13 )

and

with

where PI,I' PII,II and PI,II are the densities of 8 2 and 8 3 ,

and the transition density between these states, respectively.

The density PC,C is for the configuration C. In deriving eqs.

12 to 14, the transition densities PA,C and PB,C were put to be

zero because two electrons are differently occupied in the con-

figuration C from A and B.

The diabatic state densities, P1,1 and P2,2' were then
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calculated by diagonalizing the 2 x 2 z-component dipole moment

matrix,

,u A,B ]

,uB,B

(15 )

the density P3,3 is the same as PC,C'

In calculating egs. 12 to 14 the coefficients of CSF's in

the wave functions were taken from the CI wave functions, where

the coefficients are renormalized after eliminating the contribu-

tions from the other CSF's. The density PC,C was represented by

PC,C (16)

us ing the MO' s rf> i and the coeff icients 'Y i, j were obtained by

diagonalizing the dipole moment matrix at the perpendicular

geometry. The same coefficients 'Y i, j were used for the other

geometries.

The energy matrix elements in the diabatic state representa-

tion were obtained to reproduce the adiabatic energies and rela-

tive contributions of three CSF' s in the wave functions.

2-2-6. Solute-Solvent Interaction

42
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We assumed that the DMABN-H20 intermolecular potential is

composed of the electrostatic (Coulomb) and the exchange-exclu-

sion potential. Al though the Mulliken atomic populations are

sometimes used for the effective charges on atoms, the dipole

moments calculated with the Mulliken charges were only 60-70 % of

ab initio values. We therefore developed a different method. In

order to determine the electrostatic term of the interaction

potential, we calculated the electrostatic potential as a func­

tion of x', the position of test charge,

V(x' ) (17 )

where XN and ZN are the nuclear coordinates and charge of atom N

in DMABN. The calculations were carried out at about 500 points

of x' for each the geometry of DMABN. The dens i ty matrix p (x)

was constructed from the CI wave function (Basis A) for each

state. The density matrices of diabatic states were obtained by

the method discussed above. The effective charges located on the

atoms of DMABN were next determined so as that calculated elec-

trostatic potentials are represented by the sum of Coulombic

interactions between the effective charges and the test charge at

x'. The contributions from the methyl groups were represented by

the effective charges on the methyl C atoms. The least square

fitting was carried out under constraint that the ab initio

dipole moments are reproduced. The electrostatic potential thus

obtained contains the contributions from the multi-pole moments
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more than the dipole. In Table I I I, the effective charges of So

and Sl at the planar geometry and of the three diabatic states at

Table III. Effective charges on the atoms

Atom D2 b )

N1
-0.2627 -0.1379 0.7130 -0.2950 -0.1044

C8 0.1360 0.1449 0.0782 0.1082 0.0646
C1 0.0681 0.0314 -0.1903 0.0763 0.1094
C2 -0.1041 -0.0800 -0.4327 -0.0345 -0.0628
C3 -0.1804 -0.1767 -0.3229 -0.1615 -0.1606
C4 0.0407 0.0744 0.4619 0.0871 0.0852
C5 0.2643 0.2184 -0.1331 0.1464 0.2084
N2 -0.4047 -0.3482 -0.3478 -0.3652 -0.3750

HI 0.1167 0.0503 0.1933 0.0969 0.0550
H2 0.1788 0.1422 0.2323 0.1660 0.1420

a) Planar geometry.

b) Perpendicular geometry.

the 90· twisted geometry are summarized. We

Table that the Dr state is strongly polarized at T

from the

90·, the

effective charge of dimethyl amino moiety is 0.87e, while the

other states are of neutral type. The effective charges calcu-

lated at various geometries of DMABN are fitted to the analytical

functions. The details will be presented later.

The Gordon-Kim (GK) (29) model was applied to obtain the

exchange-exclusion potential. The interaction energy between two

molecules is calculated by
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where Pa(x) is the density matrix of one molecule and Pb(x) of

the other, respectively. The energy density Ea(p) is given by

Ea( p) (19 )

The electron density of DMABN was expressed as a superposition of

atomic

P DMABN(x)

density

(20)

PN

wi th n N the effective number of electrons on the atom N, deter-

mined above, and the atomic density is approximated by

(21 )

which is obtained by a least square fitting to the electron

density of isolated atom. The densities of CH3 groups and CH in

the aromatic ring are regarded as the extended atoms. The coef-

ficients Cm were reoptimized by the least square fitting of elec­

tron density distributions calculated for each state to eq. 20.

The electron density of H20 was also represented by eq. 21. In

calculating the aK exchange-exclusion potential, we introduced
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approximation that the total interaction energy is given as the

sum of contributions of pair potentials between H20 and the atoms

or extended atoms in DMABN. This approximation enabled us to use

a simple integration scheme in evaluating eq. 18. The 24 * 24

point Gauss-Lagueree and Gauss-Legendre numerical quadrature was

employed. The pair exchange-exclusion potentials are finally

fitted to the function

(22 )

where Rab is the distance between an atom in DMABN and the ° atom

of H20, to facilitate the simulation calculations. It was found

that the pair exchange-exclusion potentials are insensitive to

the change of DMABN geometry. We therefore ignored the T and e

dependence of potential and used the parameters determined at the

planar geometry.

The DMABN-H 20 intermolecular potentials were given as the

sum of Coulombic and exchange-exclusion terms. For the Coulombic

part, the T and e dependence of effective charge on the atoms in

DMABN was represented by the function

X (l-c+c cose), (23 )

since qi was relatively insensitive to the angle e compared to

the angle T. The coefficients, ani (n 0,2,4,6), were first

determined for the geometries with eo· and the parameter c

was then obtained.
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2-2-7. DMABN-H 20 complex

The geometries of DMABN-H 20 complex were optimized by using

the potential functions developed here. We chose the effective

charges of 0.41e for the H atoms and -0.82e for the ° atom in H20

to calculate the DMABN-H20 electrostatic potentials. The results

are summarized in Table IV. We found four different types of

stable configurations for the So state and illustrated them in

Fig. 9. One of the H atoms in H20 is coordinated to the amino N

atom and the other toward to the aromatic ring in the type A

configuration. The H20 molecule is located perpendicular to the

aromatic ring and lies on the x-z plane. The binding energy for

this complex was 2.70 kcal /mol. The type B configuration is

Table IV. Binding energies ~~a~:~~N'H2O
complex

in the So and SI

Typeb ) So SI

A 2.70 3.20

B 2.89

C 3.73 3'.65

D 4.26 3.89

a) Energies are given in kcal/mol.

b) See Fig.9 for the configuration types.
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Fig.9 Nuclear configurations of H20 coordinated to DMABN in
DMABN·H20 1:1 complex.

resemble to the type A; H20 sui ted on the x-z plane. Both the H

atoms interact more strongly with the aromatic carbons than the

amino N atom in this case. The binding energy, 2.89 kcal/mol, of

type B was slightly larger than the type A binding energy. The

type C and D are characterized by a strong hydrogen bonding to

the terminal N atom of CN moiety. The H20 molecule is also

the x-z plane and the binding energy is 3.73 kcal/mol in the type

c. The most stable configuration is type D with the binding

energy of 4.26 kcal/mol. In contrast to the other complexes, H20

suited on the same plane as the aromatic ring, the y-z plane.

The ° atom is coordinated to the atom attached to the aromatic

carbon with a strong N-H hydrogen bonding.

Warren et al. (17) have calculated the geometries of DMABN-

H20 system using the empirical interaction potentials. Their

resul ts are somewhat di fferent from H20 is located paral-

lel to the aromatic plane as in the benzene-H 20 complex at their
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most stable configuration. In the present calculations, this

geometry corresponds to the saddle point leading to the type B

configuration and the barrier height was calculated to be 0.49

kcal/mol. The present results emphas ize the importance of N-H

hydrogen bonding.

Three types of stable configurations were obtained at the S1

state. The type A and B configurations of So state resulted in

the same geometry because the amino wagging angle is very small,

6·, in this case. The changes of H20 location upon the SO-Sl

excitation were small for the type e and D complex and the wag-

ging angle became nearly equal to zero. As seen in Table IV, the

H20 binding energy of Sl state are larger than those of So state

for the type A and B. The configurations e and D, on the other

hand, exhibit blue shifts upon the excitation. This is due to

the decrease of local bond dipole of terminal eN group in the Sl

state as seen in Table III, where the effective charge on the

cyano N atom is -0. 35e in the S1 state and -0. 40e in the So

state at the planar geometry. Several authors have observed the

blue shifts of fluorescence spectra in the supersonic jet experi-

ments on the DMABN-H 20 complex (16,17). The present calculations

yield the blue shifts of 28 and 129 cm- 1 for the more stable type

e and D complex, which are in good agreement with the experimen­

tal values by Warren et al (19), 14 and 199 cm- 1 , respectively.

It should be mentioned, however, that more extensive MO calcula-

tions would be required to confirm the present results consider­

ing the approximations introduced in the present work.

For the S2 state, two stable positions of H20 were found;
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one is coordinated to the amino N and the other to the cyano N

atom. The tors ional angles of amino group were about 45· for

both the complex. The binding energies were 4.58 and 5.18

kcal/mol, respectively. In addition to these conf igurations, we

found the dipole-dipole type complex. in which the H20 dipole is

oriented to the direction of z-axis from the side of amino group.

The binding energy was 2.66 kcal/mol. In spite of larger stabi-

lization energies. the energies

still far above the 8 1 energies.

the experimental finding that

of 8 2 DMABN-H 20 complexes were

This result is consistent with

the CT state formation is not

achieved under the isolated molecular beam conditions.
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2-3. Equilibrium Solvation

2-3-1. Monte Carlo calculations

Monte Carlo simulation calculations were carried out on a

DMABN molecule solvated in water. The potential energy of this

system are calculated by the DMABN intramolecular and the DMABN­

H
2

0 intermolecular potential functions developed in section 2-2.

For the So and S1 state, the potential energies are given as the

sum of three terms;

Wr(T, e,R;r,Q) Ersolute(T, e) + Erint(T, e"R;r,Q)

+ Esolv(r,Q) (24)

where the first term is the potential energy of isolated DMABN in

its r-th electronic state, the second the DMABN-solvent interac-

tion energy, and the third the solvated energy, respectively.

The solute energy is assumed to be the function of two internal

coordinates, T and e. We used the simple point charge (SPC)

model (31) to describe the H20-H20 intermolecular interaction.

The interaction energy is constituted of the Coulombic potentials

between the effective charges placed the atoms and the 12-6

Lennard-Jones potential between the ° atoms. The effective

charges are O. 41e for the H atom and -0. 82e for the ° atom,

respectively. The length and energy parameters of the Lennard-

Jones potential are taken to be 3.1656 A and 0.1554 kcal/mol.

The solvent H20 molecule is regarded as a rigid body in the

calculations. Thus the solvent energy Esolv is given as the

function of a set of solvent center of mass coordinates rand
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orientation angles Q. The solute-solvent interaction energy

Er
int depends on the solute coordinates, T, e, and R as well as

the solvent coordinates, rand Q. R denotes the center of mass

and Euler angles to determine the orientation of DMABN molecule.

As shown in the previous section, the 52 state is described

as a superposition of three diabatic states and the weights of

these states in the wave function strongly influenced by the

sol ute-solvent interaction.

tonian matrix

We therefore constructed the Hamil-

HKL ( T, e, R ; r , Q )

and solved the secular equation

H C A. C

(K,L =1,2,3) (25 )

(26 )

to obtain the 52 state energy. In eq. 25 DKL is the energy

matrix element between the K and L-th diabatic states and vK
int

the solute-solvent interaction energy of 52 state are thus given

as the sum of the lowest eigenvalue of eq. 26 and the solvent

energy. We further defined the 52 state solute and solute-

solvent interaction energy for the later analyses as

(27)

(28 )
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where CK (K =1,2,3) is the eigen vector corresponding to the

lowest eigenvalue of eq.26.

Calculations were carried out for the system composed of a

DMABN and 350 water molecules, enough to describe the bulk sol­

vent partitioning in the solvation, in the NVT ensemble at 25 ·C.

The density was taken to be 1.0 g/cm 3 . The cubic periodic bound­

ary conditions were employed and the length of box side was thus

22. a A. In calculating the interatomic potentials, spherical

cutoffs of potential with the cutoff length was taken from the

half of box length used in a conventional 216 water simulation

with the density of 1.0 g/cm 3 .

Since we allowed to move the internal coordinates of DMABN,

T and e, as well as the translational and rotational coordinates

in the simulations, the appropriate volume element is required

for the coordinate space integration. The Jacobian of trans for-

mation from the Cartesian coordinate system to the molecular

fixed coordinates, T, e and R is given by

J(T, e, r) = II(T, e)ltsinr (29)

where r is the Euler angle to determine the orientation of

molecular z-axis. The 5*5 inertia tensor I (T, e) is for the

rotations around the molecular axes and the internal coordinates,

T and e. Thus the probability for the move of DMABN from the

m-th configuration to the n-th one is
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with /3 = l/kBT.

We employed the importance sampling (32) to calculate the

potentials of mean force, the relative free energy curves, for

the SO' Sl and S2 state. The torsional angle T of dimethylamino

group was chosen as the coordinate. The imposed umbrella poten­

tials were taken to be

(31 )

for the So and Sl state, and

for the S2 state, respectively. The umbrella potential was added

to all the diagonal elements of diabatic state potential func­

tions in the simulations for S2 state. We carried out the simu­

lation calculations at 5 - 6 different windows of T for each

electronic state and obtained the probability distributions of T

at each window. The potential of mean force was then calculated

by combining the distributions at different overlapping regions

into a single distribution.

For each simulation calculation, the averaging of 2000 ­

4000 K configurations were performed after the equilibration run

of 3000 - 5000 K configuration steps. New configurations were

generated in the usual Monte Carlo manner and the acceptances of

new configurations was according to the Metropolis test with the
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appropriate modifications for each sampling scheme. The solute

moves were attempted every 50th configurations. The ranges of

move for the geometric parameters were determined so that the

acceptance ratio becomes about 45 %.

2-3-2. Potential of Mean Force

The potentials of mean force for the angle T are shown in

Fig. 10. The solution phase So energy curves monotonically

increases with twisting of dimethylamino group and reaches to the

maximum at T = 90· as in the gas phase curve.

height in the solution, 6.1 kcal/mol, is almost the

The barrier

as that

of gas phase. The Sl state energy curve also rises with the

internal rotat ion. The solution phase barrier height, 12.9

kcal/mol, is slightly higher than the gas phase one by 0.8

kcal/mol. The increase of Sl state barrier heights in the solu­

tion can be rationalized from the results that the dipole moments

of 51 state decrease with the degree of internal rotation and the

difference of dipole moment between the planar and the perpendic­

ular geometry is larger in the Sl state than in the So state as

seen in Fig. 7.

The 52 energy curve in the solution presented in Fig. 10(c)

is much di fferent from the gas phase energy prof i le. The poten­

tial energy is very flat and gradually decreases with the inter­

nal rotation. Although the 90· tWist~d geometry corresponds to

the top of barrier on the 52 surface in the gas phase, it became

a stable point due to the solvation and is lower in energy than

the planar geometry by 2.0 kcal/mol. This result is consistent
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Fig.lO Potentials of mean forces for the torsional coordinate.
Potentials for SO' 51' 52 states are given in (a), (b),
and (c), respectlvely. Dots are calculated values and
solid lines are smoothed ones.

wi th the conj ecture derived from the experiments that the TICT

state is formed when the DMABN molecule is excited in polar

sol vents.

In order to

energy prof i les,

the effect of solvation on the potential

compared the energy components of solute-

solvent system for each electronic state. The distributions of

solute-solvent interaction energies are shown in Fig. 11. For

the 50 and 51 state, the energies distribute at the range 40.0 ­

60.0 kcal/mol and the average interaction energies are about 50

kcal/mol. The 52 state shows very broad distribution of interac­

tion energy compared to the 50 and 51 state. This is because the

S2 state potential of mean force is very flat and the torsional

angle distributes in a wide range. Fig. 12 shows the changes of
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Fig.l l Probability distributions of solute-solvent interaction
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Fig.l2 Changes of averaged S2 state solute potential energy and
solute-solvent interaction energy given as a function of
the torsional angle in the equilibrium solvation.
Dots are calculated values and solid lines are smoothed

ones.

averaged sol ute potential and solute-solvent interaction energy

of S2 state along the torsional coordinate. The solute-solvent

interaction remarkably increases with twis ting the dimethylamino

group compared to the solute potential energy and becomes 90.1
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kcal/mol at T = 90·. This is because the contribution of ion

pair D1 state becomes dominant near the region of 90· twisted

geometry in the S2 state. The results in Fig. 12 indicate that

the hydrogen bonding between H20 molecules is weaken with forming

the CT state and the energy lowering due to the increase of

solute-solvent interaction energy is compensated by the changes

of solute potential and solvent-solvent hydrogen bond energies to

bring the very flat S2 state potential of mean force in Fig.

lO(C). The changes of solute-solvent interaction energies of So

and S1 state are, on the contrary, found to be very small com-

pared to the S2 state energy.

The potentials of mean forces for the wagging coordinate e

are shown in Fig. 13. The So state potential is a double well

with a slightly larger well depth than the gas phase one. The Sl

state potential is very flat at the region of O· < T < 25· and

rises very rapidly at T > 25·. This results indicate that H20

is strongly hydrogen bonded to the amino lone pair orbital when

the wagging angle is about 20· in these states. The wagging

angle mean potential for S2 state was found to be a single well.
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>­
c>

c
W

20 40 60
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Fig.13 Potentials of mean force for wagging angle. Dots
calculated values and solid lines smoothed ones.



2-3-3. Photoemission Profiles

In order to examine the effect of solvation to the photoe-

mission spectrum profiles, we calculated the probabilities

(1=1,2) (32 )

where WI is the potential energy of the state I and Wo of the So

state, respectively. The ensemble average < .... >1 stands for the

integration over the solute and solvent configuration in the

equilibrium solvation for SI state. The probability given by eq.

32 approximately represents the intens i ty prof i Ie for the trans i-

tion from the SI state to So under the assumption that the vert i-

cal electronic transition occurs at the classical turning point.

Fig. 14 shows the calculated energy difference distribu-

tions. The SI-S0 distribution curve is centered at 4.0 eV and

3 4

Energy Difference(eV)

Fig.14 Probabi 1 i ty distributions of SI-SO and S2-S0 energy
difference. Probability is 1n arbitrary un1t. Dots
calculated values and solid lines smoothed ones.



its hal f width of 0.1 eV. THe SZ-SO energy di fference curves

covers a broad range of energy and has the maximum at Z. 9 eV.

The half width of this peak was calculated to be 0.7 eV.

The excited state DMABN is known to exhibit dual fluores-

cence in polar solvents. In many experimental studies, the band

with a shorter wavelength has been attributed to the emission

from the locally excited (LE) state and the very broad one with a

longer wavelength is to that from the TICT state. The results

presented in Fig. 14 to well reproduce the essential fea-

tures of typical emission spectra of DMABN in polar solvents.

The SO-Sl transition corresponds to the emission from the LE

state. The position and width of this peak is expected to be

rather insensitive to the solvent polarity since the dipole

moment of Sl state is close to that of So state. The broad peak

at a longer wavelength region is attributed to the emission from

the Sz state. Although this peak is considered to be the emis-

sion from the TICT state is not a pure CT state with T 90· and

the torsional angle T distribute in a very wide range as seen in

Fig. 10. This broad distribution of torsional angle is the

origin of broad peak observed in the experiments because the Sz

state solute-solvent interaction energy strongly depends on the

torsional angle.

It is noteworthy that the experimental intensity of LE

emission peak is smaller than that of TICT state. This is be­

cause that the SO-Sl transition moment is much smaller than that

of SO-SZ transition.
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2-4. Mechanism of CT State Formation

2-4-1. Theoretical model

It is convenient to describe chemical reactions in solution

in terms of the reaction free energy surface. For the electron

transfer reactions where the solvent dielectric relaxation plays

an important role, the reaction surface is usually defined as the

function of the solvation coordinate representing the solvent

orientation polarization (33). Al though there are several ways

to choose the solvation coordinate (33-35), we have taken the

difference of potential energies between the S1 and Sz state,

wi th

f(r, e,R,r,Q) (33 )

f(r, e,R,r,Q) .8{W 1 (r, e,R,r,Q)-Wz(r, e,R,r,Q)} (34 )

as the solvation coordinate s. With this definition the poten­

tial energies of two states coincide each other at the transition

state, s=O.

The magnitude of solute-solvent interaction in DMABN-HzO

system strongly depends on the torsional coordinate particularly

in the Sz state as mentioned above. Therefore it is important to

include the effect of intramolecular ~oordinates to describe the

CT state formation process of DMABN. Actually, based on the

experimental results by the time resolved emiss ion spectroscopy,

Su and Simon (13) have pointed out the importance of fluctuation

of intramolecular vibrations in determining the rate of CT state

formation.

We constructed the reaction free energy surfaces FI using
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the relation

Fr(S,T) = -,B-lln Pr(S,T) + C (I =1,2)

where the probability Pr(S,T) is given by

Jo{f(T, e,R,r,Q) - s} O(T'-T)

x exp(-,BWr(T, e,R,r,Q)} dr/2 r

with

2 r = J exp{-,BWr(T, e ,R,r,Q)}dr

(35 )

(36 )

(37 )

The volume element for coordinate integration is given by dr.

rt is straightforward to derive the relation from eqs. 35 to 37,

(38 )

This implies that the only first order term of s is different

between the free energy surfaces of two states when the surfaces

are represented by the power series of sand T.

rn calculating the free energy reaction surfaces, the proba­

bility Pr(S,T) was expressed by

(I =1,2) (39 )

where pB is the probability distribution function of T at a

given value of s and is the same for both the states because the
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potential energies of the two states differ only by the constant

value, p-ls. With the use of relations,

(40 )

(42)

and

F/(S) = Fr(S) + p-1 ln Jd, exp({-PFB(, ,s)} (41)

Fr(s) = _p-1 In Jd, Pr(s,,)

(43)

the reaction surface for respective state is calculated by

where

FB ( , , s) - FB( , 0 ( s) , s) (45 )

and 'o(s) is the value of, at the minimum of FB("s). The

second term of eq. 44 was found to be small and a slow varying

function of s in the calculations presented below. By approxi­

mating 6FB(, ,s) by the harmonic function

(46 )

and neglecting the second term of eq. 44, a more simple and
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useful form of the reaction surface

(47 )

may be derived.

2-4-2. Reaction Surface

Monte Carlo calculations carried out to obtain the

reaction free energy surfaces for the nonadiabatic transition

between the S1 and S2 state. The methods of calculations are

presented in section 3-1. We first calculated the probability

distribution function of s, P(s). The importance sampling was

employed by imposing the umbrella potential

U(r, e,R,r,Q) (48 )

to obtain uniform distribution of s. The function f was intro-

duced in eq. 34. the calculations were carried out at 8 windows

by choosing different umbrella potential parameters, ai and si.

The free energy curve F I (s) was obtained after combining the

distributions at different windows into a single distribution.

The results are presented in Fig. 15. The S1 state free energy

is a nearly parabolic function of s and has the minimum at s =

-15. Much different behavior was observed for the S2 state

curve. The energy gradually decreases at the region 0 < S < 5

and reaches the minimum at s =48. The energy of crossing point
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of two curves is 4.1 kcal/mol measured from the bottom of Sl

curve and 1.4 kcal/mol from the S2 bottom.

-20 20

Fig.15 Free energy curves along the solvation coordinate.
Energy at the minimum of Sl curve is taken to be zero.
Dots are calculated values and solid lines smoothed ones

The distribution of torsional angle T at fixed values of s,

pB(T ,s), were next calculated to obtain the free energy FB(T ,s).

We employed the umbrella potential of the form

U(T, e,R,r,Q) ai (.B

+ b j (T-Tj)2

f(T, e.R,r.Q)- si}2

(49 )

The first term was introduced to ensure that the difference of

potential energies of two states distributes in a very small

range around the given value of si' The parameter ai was chosen

to be 5000.0, which gave very small value of the root mean square

of the energy difference, «W 1-W 2 )2>1/2. For example, this was

smaller than 0.01 kcal/mol at si = O. The second was to ensure

uniform sampling for the angles T. The calculations were car-
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ried out at 8 points of si (-25,-15,-5,0,10,30,48 and 70). For

each value of si we performed the simulations at 5 - 8 windows,

corresponding to different choices of the parameters b j and Tj'

Fig. 16 shows the free energy FBCT ,s) at s = -15, ° and 48.

At the bottom of 51 state, s= -15, the energy FB has the minimum

at TO' and monotonically increases along with the amino

internal rotation. This potential curve is resemble to the 51

state potential of mean force presented in Fig. 10(b). The

energy minimum was found at T = 25' for the potential energy

curve along the surface crossing seam with s = 0. The torsional

angle T distribution is rather broad because the curve is flat

seen in Fig. 16. The TICT state becomes the minimum energy

20 r--------,

5=-15

5=0

-/'0

5= /,8

30 60 90

Torsionol Angl e Idegl

Fig.16 Free energy curves along the torsional coordinate at
s=-15,O,48. Energies at T=O· are taken to be zero.
Dots are calculated values and solid lines smoothed ones.



point for s = 48. Very sharp decrease of energy indicates a

strong solvation near the bottom of 52 surface. We compared the

components of potential energies of solute-solvent system at s

=-15, 0, 48 in Figs. 17 and 18. For the 51 state, the distribu-

tions of solute potential energy are narrow at s =-15 and 48

compared to that at the transition state region (Fig. 17(a)).

this makes the free energy curve along the crossing seam flat as

seen in Fig. 16. The 52 state solute potential energy in Fig. 17

(b) shows a similar behavior to the 51 state. The 51 state so­

lute-solvent interaction energy in Fig.18(a) is peaked at 47

kcal/mol at s =-15 and the solvation becomes strong with approach

to the transition state region. Although the interaction energy

in the 52 state is close to the 51 energy at s =-15, it increases

with increasing the value of solvation coordinate s. The differ-

ence of interaction energy becomes about 40 kcal/mol between s =

-15 and 48 as in Fig. 18 (b).

a)r------------------,

5:-15

~o )

b)

52

>. 5:-15

~
5=48

5=0

5 10

Potential Energy( keal/mol)

15 10 15 20
Potential Energy( kcal/moiJ

20

Fig.17 Probability distributions of solute potential energy at
s=-15,O,48. Probability is in arbitrary unit. Energies
of 51 and 52 states are given in (a) and (b) ,respectively.

;~~~;~:~ a~~t~e:~~r~~l~~~:t~~ev:i~~~u:n~fs~~~dP~~~:s51
smoothed ones.
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Fig.18 probability distributions of solute-solvent interaction
s=-15,0,48. Probability is in arbitrary unit.
Energies of Sl and S2 states are in (a) and (b),
respectively. Dotes are calculated values and solid lines
smoothed ones.

Two dimensional reaction free energy surfaces were con-

structed using the relation given by eq. 44. To facilitate the

calculations, the energies FB( T ,s) and FI (s) were least square

fitted to the analytical functions. the results are displayed in

Fig. 19. It is evident from the Sl state surface presented at s

< ° in Fig. 19 that the motion along the solvation coordinate is

rather independent of the torsional motion of dimethylamino group

of DMABN near the bottom of Sl surface. The minimum of angle T,

TO(S) given in eq. 45, was 0" at the region s < 8 and increases

rapidly to reach 25" at s =0. In order to see the importance of

torsional motion to proceed to the transition state, we calculat-

ed the steepest decent path starting from the minimum energy

point the crossing seam, s = ° (36). The effective masses for

sand T motion were assumed to be unity. The reaction path is
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Fig.19 Reaction free energy surfaces for the CT state formation
of DMABN. Energy is measured from the minimum of 3 1
free energy surface. Contour spacing is 1 kca1/mol.

mainly described by the torsional coordinate at the region 0" <

T < 18" and changes its main component to the solvation coordi-

nate s at T - ZO·. Therefore the fluctuation of torsional

motion plays an important role for the CT state formation reac-

tion. This can be also understood from the energy component

distributions in Figs. 17 and 18, where the 3 1 state solute

potential energy increase at the transition state region. On the

other hand, the solvent motion strongly couples with the torsion-

al motion on the 3 Z surface. The reaction path is described by a

combination of two coordinates at the region 0 < s < 30 and then

mainly by the torsional coordinate at s > 30.

The shape of free energy curve FZ(S) in Fig. 15 is much

different from a parabolic potential usually considered to de-

scribe electron transfer reactions. This is because that the

solvent motion strongly couples with the internal rotation of
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dimethylamino group in 8 2 state. If we see a section of free

energy surface cut at a given value of T, we can find that the

energy curve is approximately parabolic. It is noted that the 8 2

surface section at T O· has the minimum at s = -3 and the

energy of this point is 5.5 kcal/mol higher than that of the

bottom of 8 1 surface. 8ince the 8 2 state curve crosses with the

81 curve near the minimum of 8 2 curve at TO·, the internal

conversion to the 8 1 state through the surface crossing region

seems to be fast even when the solute molecule is initially

excited to the 8 2 state by photo-absorption.

The activation barrier for the CT state formation was calcu-

lated to be 4.1 kcal/mol. This is slightly overestimated com­

pared to the experimental values of 2.6 4.0 kcal/mol measured in

various alcohol solutions. We neglected the coupling term v for

the nonadiabatic electronic transition between the 8 1 and 8 2

state in the present calculations. The barrier height is reduced

by Ivl if the coupling term is included. In contrast to the

experimental findings (13), the CT state formation is resulted to

be the endothermic process by 2.7 kcal/mol in the present calcu­

lations. This may be due to a slight overestimation of 8 2 - 8 1

energy difference of the theoretical model employed here.
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2-5. Conclusion

In the present work, we aimed to construct a realistic

molecular model in describing the CT state formation of excited

state DMABN in a polar solution. Ab initio CI calculations were

carried out for the potential energy surfaces. The intermolecu­

lar pair potentials between DMABN and H20 were also developed

with the aid of electron distribution obtained by the calcula­

tions. Although many experimental works have been performed on

the CT state formation of DMABN, the interpretations of these

resul ts have been based on hypothetical models of DMABN potential

surfaces and solute-solvent interactions. As pointed out in the

present work, theoretical characterization of 8 2 state electronic

structure is a clue to understanding the mechanism of CT state

formation because this state is directly related to the TICT

state at the 90· twisted geometry. The present calculations

showed that the 8 2 state can be described as a superposition of

three diabatic states, one is of the ion pair type and the other

two of the neutral ones, and the relative importance of these

states are strongly affected by the amino internal rotation and

the interaction with sol vents.

The Monte Carlo simulation calculations for the equilibrium

solvation of DMABN have revealed that the potential of mean force

for the torsional angle T is very flat in the 8 2 state. Al­

though the existence of TICT state in a polar solvent has been

suggested from the experiments, the solvated 8 2 state is not a

pure ion pair state and the conjugation between the amino lone

pair and aromatic 7( orbital still remains. Actually the broad
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emission band experimentally observed at a longer wavelength

region cannot be explained soly by the 90· twisted TICT state

because the ion pair state is dipole forbidden to the ground So

state if the twisted molecule has the C2v symmetry. Thus the

broad distribution of torsional angle is the origin of broad

emission band in a polar solvent. A rather narrow weak band at a

shorter wavelength region was assigned to the fluorescence from

the locally excited S1 state. These conclusions were deduced

from the calculations of energy difference distributions between

two states.

The two dimensional reaction free energy surfaces were

constructed as the functions of solvation coordinate and torsion-

al angle. As the solvation coordinate, the difference of

solute-solvent interaction energies has been conveniently chosen

in the literatures (22,34). We have instead taken the difference

of potential energies of solute solvent system for the solvation

coordinate because the S2 state potential energy itself is a

function of solvent coordinates, rand Q and is not separable

from the solute-solvent interaction energy. We can, however I

redefine the solvent coordinate by using eq. 28 as

s ' !3{f(T, e ,R,r,Q)-«E1solute(T»_<E2solute(T»)} (50)

where <E l solute> and <E2solute> are the averaged solute potential

energies calculated along the crossing seam, which are presented

in Fig. 20. The reaction free energy surfaces are then simply

redrawn as the function
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As mentioned in the previous section, the 52 state free

energy curve along the solvation coordinate given in Fig. 15 is

far from a parabolic form usually assumed to describe electron

transfer processes. This is peculiar to the present system where

the ion pair state strongly couples with the neutral states in

the 52 state and the solvation energy becomes larger with the

degree of amino internal rotation. Nonparabol ic free energy

curves as in the present case may be required to introduce in

many other intramolecular electron transfer processes. We need

to include the contribution of intramolecular degrees of freedom

to elucidate the mechanism in such cases.

Dynamics of CT state formation of DMABN have been experimen-

tally studied in a variety of polar solvents. Main interest in

these works has been how the longi tudial solvent relaxation time
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TL affects the reaction rates. Hicks et al (11,12) have report­

ed that the rate constants are similar to T L-1 in alcohol solu-

tions suggesting that the reaction rates are controlled by sol-

vent relaxation. Su and Simon (13), on the other hand, have

observed that the average lifetime of DMABN in the LE state is

faster than T L' They concluded that the fluctuations in the

intramolecular coordinates is important than the solvent fluctua-

tion. The results of present work are consistent with the postu-

late of Su and Simon. As seen in Fig. 19, DMABN is needed to

undergo a deformation in the amino torsional angle to reach the

transition state region. On the S2 surface, the solvent diffu-

sion seems to play an important role to reach the bottom of S2

valley. Since the relaxation of torsional motion is faster than

the solvent relaxation, the torsional angle is spontaneously

adjusted to the solvent diffusive motion.

It is noted that the direct excitation to the S2 state can

be achieved because the photon wavelengths used in many experi-

ments are shorter than the SI -SO adiabatic excitation energy and

the S2 -SO transition moment is much larger than that of SI -SO

excitation. In such a case, the dynamics of excited state mole-

cule becomes compl icated, inc luding the internal convers ion from

the S2 to SI state, the diffusive motion on the S2 surface

well as the transition from the SI to S2' Although the S2 to SI

internal conversion seems to be fast because the surface crossing

Occurs near the bottom of S2 surface at the region of small T as

seen in Fig. 19 and the vibrational relaxation is much faster

than the solvent relaxation time, the TICT state can be directly
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achieved from the vertically excited 52 state without forming the

51 state. The contribution of such process may be determined by

the ratio of time scales between the solvent diffusion and inter-

nal conversion.

In this chapter, we have proposed a molecular model poten­

tials of DMABN in a polar solvent to elucidate the mechanism of

CT state formation in the excited state. The calculated solva­

tion properties based on these potentials are in qualitatively

agreement with the available experimental findings. It should be

noted, however, that the present model is derived from the poten­

tial energy surfaces provided by approximate theoretical methods

of the electronic structure calculations. In order to obtain

quanti tative results, more elaborate calculations with a larger

basis set and a more accurate wave function would be required

both for the DMABN potential energy surfaces and the intermolecu­

lar potentials. This is computationally unavailable for us at

present because the system treated here is too large.

We have mainly focused on the static properties of DMABN in

an aqueous solution in the present work. The next step would be

the dynamics calculations on the reaction free energy surfaces

developed here. Al though the Fokker-Planck and diffusion equa­

tions have been used to treat the dynamics on the free energy

surfaces of electron transfer (14,15,37), the intramolecular

motions have been assumed to be separable to the solvent diffu­

sive motion in these works. This is not the case for the present

system. Molecular dynamics simulation calculations will provide

a valuable information to construct the reaction diffusion equa-

tion for the CT
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Chapter 1

General Introduction
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1-1. Survey on the Experimental and Previous Theoretical Studies
of the Photodissociation Dynamics of CH3 I

Photodissociation of polyatomic molecules through the

absorption of UV photons is one of the most fundamental gas phase

chemical reactions. A photodissociation process consists of

three parts; the absorption of UV photons. dissociation process

on potential energy surfaces (PESs), and distributions into final

product states. Many experimental techniques have been applied

to the photodissociation of polyatomic molecules. Especially,

I-containing compounds such as alkyl iodide have been extens i vely

studied since Kasper and Pimentel pointed out that these com-

pounds can become phtodissociation laser due to the high quantum

yield of I*(2 PI /2) product (1). At an early stage of this study,

several kind of compounds were photolyzed to examine the sub-

stituent effect on the I/I*-branching ratio (1-4). It was found

that the branching ratios of alkyl iodides and fluorinated alkyl

iodides are similar to that of CH 3 I.

The main interest of the photodissociation of I-containing

molecules has been directed to obtain more detailed information

on the photodissociation process including non-adiabatic transi-

tion. Since in general bulky alkyl iodide does not give clear

data and it is hard to interpret them without ambiguity, CH 3I.

which is the simplest molecule in a series of alkyl iodide, was

chosen to examine the photodissociation process in many cases.

Rowe and Gedanken assigned the main transition at A-band region

to the 3QO + ~ l A1 transition by the magnetic circular dichro-

mism experiment (5). This assignment was confirmed by some

different kind of experiments such as photoacoustic
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measurement(6) , time-of-flight experiments (7-8). Van Veen et al

pointed out that dissociation proceeds along the top axis of CH 3

(8) .

The time-of-flight experiment, which allowed I- and I*-

channel product to be distinguished, and the IR-spectroscopic

techniques gave the vibrational distribution of the final

product, the quantum yield and their dependence of excitation

wavelength (9-12). In these experiments, it was found that the

quantum yield of I*-product is 0.7 - 0.8 and that the distribu­

tion of umbrella mode of the product CH 3 for I- and I* -channel

shows an inverse population with an maximum peak at v 2=2.

Shapiro and Bersohn have theoretically examined the photo-

dissociation dynamics of CH3 I, using an empirical potential

energy surface which reproduces the experimental findings de-

scribed above. They have treated CH 3 I system as a pseudo-linear

triatomic system and carried out the quantum dynamics to examine

excitation wavenumber dependence of the vibrational distribution

and the intensity distributions of the Raman lines (13-16).

From these experimental and theoretical approaches, the

following description about the dynamics had been widely accepted

until very recently. CH3 I molecule through the absorption of UV

photons is excited to a triplet state (3 QO+) and CH 3 I moves

3Qo + surface and finally the system goes through to CH 3 + I*

while 20 - 30 % of CH3 I goes to CH 3 + I due to the curve cross­

ing between 3QO + and a singlet state (iQl ). The products CH3 for

both I- and I*-channels have an inverted population of umbrella

vibrational mode. This was rationalized by the large change of

geometry of the CH 3 portion between initial C3v and final D3h
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structure.

However, the recent experimental findings about the photo-

dissociation of CH 3 I are different from the above descriptions.

Although the detailed reviews will be given in next chapter, the

recent experimental findings can be summarized as follows.

(i) The CH 3 product in the I-channel is rotating around the axis

perpendicular to the CH3 top axis (17-20). The CH3 product in

the I *-channel has much less rotational exc i tation than in the

I-channel (17,19,20). This dynamics, therefore, can no longer

be treated with a pseudo-linear triatomic model as it used to be.

(ii) The vibrational distribution of the CH 3 product's Y 2

umbrella mode in the I-channel has an inverse population, with a

maximum around v 2

earlier studies.

2 (17,20-22), in qualitative agreement with

On the other hand, the product in the 1*-

channel has primarily v 2 = 0 (17,20-25). Therefore, the previous

interpretation about the umbrella mode excitation is inadequate.

(iii) There is some excitation of the Y 1 symmetric stretching

mode in the CH3 product (17,19,20,26,27), though the possibility

of Y 1 mode excitation was excluded due to the fact that the

frequency of the Y 1 mode of CH3 radical is much higher than that

of the Y 2 mode.

(iv) Recent sophisticated emission spectroscopy made it possible

to examine the dissociation process more directly. The CH 3 um­

brella motion takes place after the C-,-I bond is extended to some

extent (27). The polarization of the emission changes from

parallel to perpendicular in the curve crossing region (28).

The discussion based on ab initio PESs against these new
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experiments was desirable because ab initio PESs are developed

irrespective of experimental findings, and therefore if we en­

countered another type of experiment in future, we could discuss

the dynamics using ab initio PESs. Furthermore, since the photo­

dissociation dynamics of CH 3 I can no longer be treated as a

pseudo-linear dynamics as mentioned above, the degree of freedom

of PES must be more than 3 dimensions and therefore it is diffi­

cuI t to determine the coupl ings among the internal degrees of

freedom empirically. So it is very natural that one wishes to

reexamine the dynamics of CH 3 I using ab initio PES instead of

empirical PES. The author will theoretically examine the photo­

dissociation dynamics of CH3 I by deriving ab initio PES and

performing the classical trajectory calculations using ab initio

PES.

1-2. Theoretical Treatments of Nonadiabatic Electronic Transition

The nonadiabatic transition between the PES's plays a criti­

cal role in describing the photodissociation dynamics of CH 3 I

Since the dissociation process involves the PES's of different

spin mul tiplici ties, the calculation of spin-orbit coupling

elements was required. The author will describe the methods of

calculations of spin-orbit coupling elements and the semiclassi­

cal surface hopping trajectories which are key theoretical meth­

ods before proceeding the next chapter.

1-2-1. Spin-orbit Interaction

Spin-orbit interaction is a significant factor in calculat-
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ing accurate wave functions for systems containing heavy ele-

ments. Pitzer has calculated several low-lying excited states

as well as the ground states for T1 2 , Au2 , TlH, 8n2 , Pb 2 and

found that bond lengths, bond strengths and the shape of poten-

tial energy curves drastically change when spin-orbit couplings

are taken into account (29).

The spin-orbit operator in the Breit-Pauli approximation is

given by

+ L:, l/ri/(rijxPi),(si + 2S j )] (1)
I,J

where a is the fine structure constant, and j index, the

electrons, and K indexes the nuc lei. The first term in eq, 1 is

the one-electron spin-orbit interaction and the second term is

the two electron spin-orbit interaction. Walker and Richards

have noted that two-center contributions to the matrix element of

HSO are small owing to cancellation between the two-center one-

and two- electron terms (30). Langhoff has compared the follow-

ing method (31,32) with all-electron calculations using the full

spin-orbi t Hami I tonian for the rare-gas oxide potential curves

and found very good agreement (33). Therefore, an effective

one-center and one-electron spin-orbit hami I tonian

(2 )

has been often used to evaluate the CI matrix elements. Here ZA

in eq.1 is replaced by ZAeff in eq.2, which is adjusted to match
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experimental data. In this research described in the next chap­

ter, ZAeff is chosen to reproduce the experimental spin-orbit

multiplet separation of the iodine atom, E(I,2 P1 /2) - E(I,2 P3/2)

= 7603 cm- 1 at the same level of calculation.

1-2-2. Non-adiabatic Transition

Since the behavior of electronically excited molecule is

often associated with the nuclear motion on two or more than

potential energy surfaces, the treatment of non-adiabatic transi-

tion is also important problem in a classical trajectory calcula-

tion. Tully and Preston have developed the surface hopping tra-

jectory method (34). In this method, it is necessary to specify

N-dimensional (N: internal degrees of freedom) potential surfaces

and the off-diagonal interaction between the surfaces. It is

also necessary to define the crossing seam S(R) which is an

(N-1)-dimensional avoided crossing hypersurface. A traj ec tory

is started on one surface with the initial conditions and inte-

gration is continued until the condition S(R)=O is satisfied. At

this point, the trajectory is branched. The probability Pi(R,Q)

of the traj ectory undergoing a transition to surface i in ob-

tained by numerical integration of the coupled equations;

(3 )

(4 )
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which is derived from substitution of the expansion of eq.5 into

eg.7

Hel(R,r)<t>(r,t) = ih/2rr o<t>/bt (5 )

(6)

(7 )

The calculation then proceeds by the integration of each of the

traj ectories on the interaction surface. I f any of them reach

the interaction region again, the surface hopping procedure is

repeated. In the final averaging process to calculate cross-

sections or detailed rate constants each of the branched trajec­

tories is weighted by the appropriate Pi(R,R) factor.

However, this procedure will rapidly become burdensome if

seams are encountered repeatedly in a traj ectory. In stead of

this method (ants method), Tully and Preston have suggested that

only one trajectory be integrated (ant-eater method). At each

seam, this one traj ectory either undergoes a trans i tion or re-

mains its present surface as determined by a Monte Carlo game.

That is, if probability P > e at a seam, a transition occurs but

not otherwise. In the I imi t of an inf ini te number of traj ecto­

ries, the two procedures become identical.

Tully and Preston also found that the transition probability

were given satisfactorily by the Landau-Zener-Stueckelberg ap-
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proximation instead of eq.3.

If adiabatic potential surfaces are used, there is an addi­

tional complication arising from the fact that the avoided

ing the surfaces are not degenerate. This is taken into account

by adjusting the velocity along the non-adiabatic coupling vector

to conserve the total energy.

The appropriateness of using any classical trajectory sur­

face hopping method to the non-adiabatic processes is dependent

on the assumption that non-adiabatic transition takes plaoce at

localized region and is well separated in time along a trajectory

(34,35) . It was subsequently improved by Stine and Muckermann,

who reduced the multi-dimensional intersection (36-41). However,

their formulation is restricted to a particular type of transi­

tion region (trough-like intersections).

In order to extend more general cases, Parlant and Alexander

have very recently developed a new modification of the trajectory

surface hopping technique that allows for trajectory hops at any

location, not only at avoided intersections (42,43). In their

method, the semiclassical probability for being on each adiabatic

surface is calculated by integrating the electronic coupled

equations. For simplicity, consider a system with two electronic

states '¥ 1 and '¥ 2' which are eigenfunctions of the electronic

Hamil tonian with eigenvalues WI and W2' As the traj ectory

evolves in time, the electronic states. obey

a 2 Q exp(-27l" is/h)

-a1 Q exp(-27l" is/h)
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s = rW(t' )dt' (10)

Q (11)

Here W = Wz -Wl' r is the nuclear velocity vector and <'¥zlvl'¥l>

is the non-adiabatic coupling vector. lai(t)l z (i=l,Z) repre-

sents the probability that the system is in electronic state i at

time t. Initially al=l, aZ=O, Q=O. As the trajectory evolves

in time, IQI and lazlz grow, and at same point" the trajectory

is allowed to branch to surface Z. Eqs.8 and 9 are integrated

through the entire transition region to obtain the hopping proba-

bility P and the coefficients are reinitialized only at the

points where IQ I is minimum. The trans i tion r~gion is def ined

here as the region where IQ I rises from a minimum, goes through

a maximum, and falls to a second minimum. They found it to give

excellent agreement with quantum calculations for He + eN reac-

tion.
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Chapter 2

Ab Initio Potential Energy Surfaces and Trajectory Studies of

CH3I* -) CH 3 + I and CH3 + I*
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2-1. Introduction

The A(n -> <5 *) band photodissociation of CH 3I had been

extensively studied experimentally (1-14) and theoretically

(15-22), with a major focus on the v 2 umbrella mode excitation

of the CH3 product. In this reaction (see Fig.l), the photon is

lE----~

(n-- 0')

without spin-orbit

Conical intersection

/

/

/
/

with spin-orbit

Molecular Region Dissociation Limit

Fig.l Correlation diagram of the potential energy surfaces
for C

3v
dissociation without and with spin-orbit.

considered to take the CH 3I system to. the 3QO state, which cross­

es with the IQ1 state during the dissociation. The former state

gives the products: CH3 + r*(2 p1 / Z)' and the latter state, CH 3 +

r (ZP 3/ Z)' However, in the last few years, several new experi­

mental reports have appeared giving new insights in the detail of

the dynamics. The recent experimental findings can be summarized

as follows.
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(i) The CH 3 product in the I-channel is rotating around the axis

perpendicular to the CH3 top axis (24,27,28,30). The CH 3 product

in the I*-channel has much less rotational excitation than in the

I -channel (24,28,30). This dynamics, therefore, can no longer

be treated with a pseudo-linear triatomic model as it used to be.

(ii) The vibrational distribution of the CH3 product's v 2

umbrella mode in the I-channel has an inverse population, with a

maximum around v 2 = 2 (23,24,26,30), in qualitative agreement

wi th earlier studies. On the other hand, the product in the

I*-channel has primarily v 2 = 0 (23,24,29-32).

(iii) There is some excitation of the v 1 symmetric stretching

mode in the CH3 product (24,28,30,33,34).

(iv) The CH3 umbrella motion takes place after the C-I bond is

extended to some extent (34). The polarization of the emission

changes from parallel to perpendicular in the curve cross ing

region (35).

However, individual results are di fferent in detail from

each other and we make a belief review on some important experi-

mental reports. Powis and Black (PB) (28) have found in the

photodissociation of CD 3 I (as well as CH 3 I (27» that the CD 3

product in the I-channel has relatively large population at N = 8

and has high rotational excitation up to N=14 and that the

product in the I*-channel has less excitation, with up to 4

angular momentum units. They have also found that the I* -channel

product has a trend with K " N and that I-channel product has K .L

N. Houston et al. have estimated the average CH 3 rotational

excitation to be 125 cm- 1 (24), which is lower than the PB est i-
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mation, 208cm- 1 for CH3 (27). They have examined this differ­

ence and pointed out that PB results might be affected by the

ini tial rotation of the parent CH3I molecule. Chandler and

coworkers have obtained results similar to Houston's; the rota-

tional exc i tation extends only up to N= 6, and the average rota-

tional energies around the axis perpendicular and parallel to the

top axis are 106 and 8 cm- 1 , respectively (30).

PB have shown that the I-channel has an inverted CH 3 v 2 vibra­

tional population with its peak at v 2=3, and that the I*-channel

has a peak at v 2=2 with the population ratio for v 2=0,1,2 of 1

1.1 2.0 (26), which is very different from previous results, 1

4.4 : 14.6, of Lee et al. (8). Houston et al. have estimated

the population ratio (v 2=O)/(v 2=2) for CD 3 to be about 1.1 (24).

They have found that the I*-channel product has primarily v 2=0.

Chandler et al. have shown that the 1/1* ratio increases with the

increasing vibrational quantum number (30). Kanamori et al. have

observed that the distribution in the v 2 mode in the I*-channel

monotonically decreases with the quantum number with the popula-

tion ratio of 0.66 : 0.26 : 0.08 : 0.004 for v 2 = 0,1,2,3 (31).

Hall et. al. have found that the population ratio of the 1*-

channel product is 4 : 3 : 2 for v 2 = 0, 1, 2 (32).

The excitation in the VI CH 3 symmetric stretching mode was

in earlier days considered unlikely because the C-H bond dis-

tances of the parent CH 3I and the product CH 3 almost identi-

cal and that the vI mode has a much higher frequency than the v 2

mode. PB have found that the v 1 excitation occurs only in the

CD 3 produced via the I-channel, that is, the v 1 excitation has

an isotope and channel specificity (28).
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found the vI mode excitation for CH3 spieces (24), but they did

not examine the channel specificity. Chandler et al. have

observed that the 1/1* ratio of v l =1 is )2.0, indicating that

the I-channel is more easily excited (30). Kinsey and co-workers

have observed the v 1 mode excitation (vI =1) by means of Raman

emiss ion spectroscopy (33,34).

Recent emission spectroscopy studies have made it possible to

probe an evolution of the molecular dissociation on potential

energy surfaces. Kinsey and co-workers have concluded that in

the photodissociation of CH 3I, the C-I bond extension initially

takes place to some extent before the subsequent umbrella motion

sets in (34). Lao et al. have observed that the polarization of

the emission with lower quantum number in C-I stretch is paral-

leI, but the polarization of the emission with the higher quan-

turn number is perpendicular. From their observation, they have

given a classical picture to the photodissociation through an

electronic curve crossing, that is, the amplitude of the molecu­

lar wave function gradually develops on the lQ l repulsive surface

as the molecule dissociates through a curve crossing (35).

On the theoretical side, Shapiro and Bersohn have treated

the photodissociation dynamics of CH 3I as a linear triatomic

system using empirical potential surfaces (denoted hereafter the

SB surfaces) of the 3Qo and lQ l states and adjusted their param­

eters to explain the dynamics such as the v 2 vibrational distri­

bution of the CH3 product, the branching ratio and its wave-

length dependence (15-17). The SB empirical surfaces have also

been used for other dynamics studies (18,19). However, the SB
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surfaces, with only two degrees of freedom, the C-I stretch and

the CH3 umbrella motion, can not handle the new experimental

findings of CH 3 rotational excitation. Even for the CH 3 umbrella

mode distribution, the SB surfaces give results (v 2 hot in both

channels) which agree with the old experiments (7-12) but disa-

gree with new experimental findings mentioned above (24,26,30-32)

(v2 hot in the I-channel but cold in the I*-channel). Very

recently Guo and Schatz have modified the SB surfaces (denoted

hereafter the GS surfaces) to reproduce the new experimental

findings (36).

We have recently calculated and reported preliminarily the

general feature of the potential energy surfaces (PESs) of the

two excited states for non-C3v geometries of CH 3I, and have

indicated that the bending near the 3E-2A1 conical intersection

can be the origin of the CH3 rotational excitation (37).

The present study is an extended and thorough account of the

study. We have calculated the potential energy surfaces of the

excited states with an ab initio SOCI method and fitted them to

analytical functions for six degrees of freedom, (the C- I

stretch, the CH 3 umbrella motion, the CH3 deformation, the CH 3

rock), i.e. all the degrees of freedom except for 3 C-H stretch-

es. We have also performed classica~ trajectory calculations on

these analytical potential functions. In section 2-2, we de­

scribe the method of calculation for obtaining the adiabatic

energies, transformation from the adiabatic to the diabatic basis

and analytical fitting of diabatic energies. In section 2-3, we

describe the method of classical trajectory calculation including

the treatment of non-adiabatic transition based on a Landau-Zener
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model. In section 2-4, we describe the global features of PESs,

the results of classical traj ectory calculations and discus­

sions on the origin of vibrational and rotational excitation.

We also discuss the relationship between PES characteristics and

dynamics and how the initial conditions affect the dynamics.

Finally, we give our conclusions in section 2-5.
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2-1. Methods of Calculation of PESs

2-1-1. Adiabatic Energies

Ab initio spin-orbit configuration interaction (SOCI) calcu­

lations have been performed to obtain the potential energy sur­

faces. We have used a double-zeta-plus-polarization (DZP) basis

set: the Huz inaga-Dunning double-zeta bas is set for carbon and

hydrogen atoms (38), and the Hay-Wadt relativistic effective core

potential (39) and associated valence double-zeta basis functions

augmented with single d-polarization function carbon

(a d=O. 75) and iodine (a d=O. 405) . The molecular orbitals have

been determined by an open shell RHF calculation for the averaged

n ->6* excited states, SOCI calculations have been carried out

with a modi f ied COLUMBUS package (40), us ing a one-electron

spin-orbit hamiltonian with an empirical nuclear charge (37). In

our previous calculations, we have used the uncontracted SOCI

with about 5*10 5 configuration state functions for each of A' and

A" symmetry, arising from the single and double excitations out

of the full valence (6,6*,e
X

,ey )6 reference configurations (16

in A' and 12 in A"). In order to perform calculations at many

points to obtain the analytical potential functions, we have

used in the present paper a' contracted' SOCI method, which is

similar to the method by Cohen et al. '(41). First, a large-scale

spin-free CI calculation is performed to obtain the spin-free

eigenstates and eigenvalues and then a small contracted SOC I

matrix (12 dimension in the C1 double group symmetry, 6 (A') and

6 (A") dimension in Cs double group symmetry), which is composed

of the diagonal matrix elements of the spin-free eigenstates ob­

tained above and the off-diagonal matrix elements of spin-orbit
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interaction, is diagonalized and the adiabatic energies for each

geometry are obtained. All the independent spin functions be­

longing to the lowest l A1 ,3 E IE and 3A1 states of the spin free

CI are inc 1uded in the contracted SOCI; the six A' independent

functions included in the contracted SOCI are one l A1 , three

3E,s, one IE and one 3A1 , and the six A" functions are three

3E,s, IE and two 3A1 ,S. The inclusion of the high-lying

3A1 states is essential to obtaining a reasonable results in the

contracted SOCI calculation. In Table I, we show an example of

Table I. Comparison of Excitation Energies (in eV) a)

state Contracted SOCI Uncontracted SOCI

l A1 ( lA1 ) 0.0 b) 0.0 b)

3
Q2 ( IE) 4.455 4.457

3
Q1 ( 2E) 4.629 4.629

3Qo _ (IA 2 ) 4.984 4.991

3QO + (2A 1 ) 5.089 5.067

l
Q1 (3E) 5.450 5.448

a) At the experimental equilibrium geometry :
R(C-I) = 2.132 A, R(C-H) =1.084 A and <HCH =111.2·
with the C3v symmetry (42).

b) The total energy of the ground state is -51.008888 and
-51.009699 hartree for contracted and uncontracted SOCI,
respectively.
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comparison of adiabatic energies between contracted and uncon-

tracted SOCI calculations. The contracted SOCI results reproduce

the uncontracted ones very well. The excitation energies of

CR
3

I at the experimental equilibrium geometry from the ground to

the n -) (j * excited states 3Q1 , 3Qo _, 3QO + (we refer this state

simply an 3 QO throughout the paper) and 1Q1 are 4.63, 4.98, 5.09

and 5.45 eV, respectively, in reasonable agreement with the

experimental broad A-band centered around 260 nm (4.77eV). The

adiabatic energies at 170 points have been calculated, varying

the C-I distance R, the umbrella angle a, the bending angle e,

the direction of the bend ¢, and the proj ections of the three

HCR angles to the plane perpendicular to the top axis /3 i

(i=l,2,3), as defined in Fig.2. The C-H bonds are fixed through-

out the paper at r e = 1.084 A (42).

H1

JiI
fi~2
H2 fJ

1
H3

Fig.2 Definition of internal coordinates.
The broken line on the left is the axis for which the
the umbrella angle is equal for all three CR's.
The figure on the right is projection to the
plane perpendicular to this axis.
e takes a value between 0 and rr. ¢ is between 0 and 2rr.
/3 i' s are redundant, satisfying /3 1 + /3 2 + /3 3 = 2rr.
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2-2-2. Transformation from Adiabatic to Diabatic Basis

rn running a classical trajectory, we have to evaluate the

adiabatic 3QO and lQ I potential energies and forces using analyt-

ical potential functions. However, it is hard to fit the adia­

batic 3QO and IQ I energies to analytical functions because the

character of each state changes with the geometry. Therefore, we

transformed the adiabatic states to the diabatic states and

fi tted the latter to analytical functions.

was carried out in the following way.

The transformation

Three adiabatic wave

functions for each geometry can be written as in eqs. I to 3.

3,¥ = NI(3~I+A/~I) Nl =I/(1+ A 1 2r! (1 )

1,¥ 1= N2(1~2+A23~2) N2=1/(l+A 22 r t (2 )

1,¥ 2= N3(1~3+A33~3) N3=1/(1+A32rt (3 )

3,¥ , which is the adiabatic 3
Qo wave function, mainly has a

triplet 3~ I character with a small singlet character 1~ 1. l,¥ I'

which is to have A' in Cs symmetry, is mainly a singlet 1~2

with a small triplet 3~2 character. 1'¥2' of A" in Cs ' mainly

has another singlet 1~3 character with a small triplet 3~3

contribution. Three Ai's were de·termined by the contracted

socr coefficients. For example, A 1
2 equals to the sum of the

squares of the contracted socr coefficients of all the singlets

(3 singlets in C1 ' 2 for A' in Cs ' and 1 for A" in Cs in the

SOCr) . We transform these adiabatic wave functions (eqs. 1 to

3), using the matrix U defined in eq. 4 into another set of wave

functions in eq. 5.
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cosB sinB cosC

'i:C1U cosA sinA -sinB cosB (4 )

0 -sinA cosA -sinC cosC

3<1> 1 all a 12 a 13
3,., 3,.,

1<1> 2 a 21 a 22 a 23 1,., 1 U 1,., 1 (5 )

1<1> 3 a 31 a 32 a 33 1,., 2 1,., 2

3<1> 1 = (allN1
3

1,b1 + a12A2N231,b2 +a13A3N331,b3) (6 )

+(all A 1N1
1 1,b1 + a 12N/1,b2 + a 13N3

1 1,b3)

1<1> 2 (a21 A 1N/1,b1 + a 22 N/1,b2 + a 23N/1,b3) (7)

+(a21 N1
3

1,b1 + a22A2N231,b2 + a23A3N331,b3)

1<1> 3 (a31 A 1N/1,b1 + a 32 N2
1 1,b2 + a 33 N3

1 1,b3) (8)

+(a31 N1
3 1,b1 + a 32 A 2N2

3 1,b2 + a33A3N331,b3)

The angle A, for instance, in eq.4 determines the transformation

between the two adiabatic 1Q1 states, 1,., 1 and 1,., 2' The follow­

ing function f(A,B,C) gives the sum of weights of minor spin

components over the three states.

f(A,B,C)= J[(all A 1 N1
1 1,b1 + a 12N/1,b2.+ a 13N3

1 1,b3)2

+(a21N1
3

1,b1 + a22A2N231,b2 + a23A3N331,b3)2

+(a31 N1
3

1,b1 + a32A2N231,b2 + a33A3N331,b3)2JdT
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=allZNIZAIZ+aIZZNZZ+aI3ZN3Z+aZIZNIZ+azzZNZZAZZ

+aZ3ZN3ZA3Z+a31ZNIZ+a3ZZNZZAZZ+a33ZN3ZA3Z (9)

+Z (all a 1zN1 NZAl <1\VlI 1 \VZ>+all a l3N1 N3 Al <1 \VIII \V3 >

+alZaI3NzN3<I\Vzll\V3>+aZI a zz N1 Nz A Z<3\V11 3 \VZ>

+aZlaZ3NlN3k3<3\V113\V3> + aZZaZ3NzN3AzA3<3\VzI3\V3>

+a31a3ZNINzAz<3\V113\Vz> + a31a33NIN3A3<3\V113\V3>

+a3Za33NzN3AzA3<3\VzI3\V3> )

Though we cannot eliminate the minor spin components completely,

i.e. f(A,B,C) = 0, we can minimize it as far as possible by

choosing A, Band C to satisfy eq.l0.

o flo A o f/o B o f/o C (10 )

Using U thus determined, we transform with eq.ll three adiabatic

elements at each geometry.

V3 V13 VZ3 E(3 QO )

Vl3 VI VIZ U E(IQ11 ) U- 1 ( 11)

VZ3 VlZ Vz E(I Q1Z )

Where Vij <I> i *H<I> j dT and Vi Vii
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We note that the order of the operations in eq. 4 is arbitrary.

Though a different order of the operations gives a difference in

a set of angles A, B, C, which satisfies the eq. 10, it does not

change the transformation matrix U in eq. 4. and therefore. six

diabatic matrix elements on the left hand side of eq. 11 are

independent of the order of the operations.

2-2-3. Analytical Fitting of Diabatic Potential Terms

We have fitted the six diabatic matrix elements to analyti-

cal functions with respect to seven internal coordinates. The

C3v geometries are determined only by R and a. with all the

other parameters to be zero. Changes of the other parameters

from zero lower the symmetry from C3v to Cs or C1 . First, we

describe the three diagonal terms. In the present system, there

is an energetic and symmetry hierarchy with respect to the

internal coordinates. The diagonal terms change wi thin 0.1

hartree with respect to R, wi thin 0.01 hartree wi th respect to

a, and wi thin 0.001 hartree with respect to the other parame-

ters, e, ¢ and ~i(i=1,2.3) in the region probed in the dynamics.

We have also found that the diabatic terms obey a good additivity

rule among the e, ¢ and ~ i' s contributions. Furthermore we

have to consider the requirement that the adiabatic 3 QO and 1Q1

energies are unchanged by permutation among the three hydrogens,

which relates the internal parameters, ¢ and ~ i' s. A detailed

discussion on this requirement is given in Appendix. This re-

qUirement leads us to two restrictions about the fitting forms of
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the diabatic potential functions ; there should be a coupling

between ~ and ei's and there should be some relationships among

the fitting forms of six diagonal and off-diagonal terms.

Based on the above discussion, we first fitted the diagonal

elements at the C3v geometries to analytical functions of Rand

Then, we fitted the di fferences between the C3v and the non­

C3v values ; this procedure ensures that the relatively small

energy dependence in the e, ~ and e i' s, is properly reproduced

in the fitted functions. In the non-C 3v fitting, the e, and

ei's contributions have been fitted independently in view of the

addi tivi ty mentioned above. The actual forms of fitting func-

tions are given below for the two diabatic singlets (eqs.12 and

13, corresponding to the A' and the An state in the Cs symme­

try, respectively) and for the diabatic triplet state (eq. 14) .

V1 (AO + A1LlR)*exp(-A 5 LlR) + VCH3

+(A2*sin2e+A3*(1+X(~,e2,e3,!;»*sine)*exP(-A5LlR) (12)

+ A4 *Sa*exp(-A6 LlR)

V2 (Ao + A1 LlR)*exp(-A5 LlR) + VCH3

+(A2*sin2e+A3*(1-X(~,e2,e3,!;»*sine)*exP(-A5LlR) (13)

- A4 *Sa*exp(-A6 LlR)

(BO + B1LlR)*exp(-B 3LlR) + VCH3 + LlE I

+ B2 * s in2 e *exp (-B 3 Ll R)
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The variables used, in addition to e. are

r e and Re are the equilibrium C-H and C-I distances.

The coefficients AO to A6 , and BO to B3 , represented in general

by Zi' are the following functions of l'.a.

(15 )

VCH3 is the term which reproduces the CH3 force field in the

dissociation limit, and we used Spiko and Bunker's empirical CH 3

force field (43).

VCH3 G2*(re *sinl'.a)2 + G4*(re *sinl'.a)4 + G6 *(re *sinl'.a)6

+ H2/2*(Sa 2 + Sb 2 ) (16)
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A EI=O. 034646 hartree in eq. 14 is the energy di fference between

the ground ( ZP3/Z) and the excited (ZP1/z ) states of the iodine

atom.

The first lines on the right hand side of eqs.lZ and 13,

which depend only on R and a and are the largest contributions

to VI and VZ' are the same since they represent the C3v symmetry

where VI and Vz are degenerate. The second lines, relating to

the direction of bending of the I atom, are different from each

other, though they share the common exponential factor A 5 due to

the energetic hierarchy and the convenience. The potential

curves with respect to sine all fit well to a parabola. With

respect to r/J, all the diagonal terms have a three fold symmetry,

wi th the energy minimum at r/J =0· for VIand r/J =180· for VZ when

the CH 3 group has a local C3v symmetry. The secbnd lines repre­

sent these angular dependencies. The third lines in eqs.lZ and

13, relating to the CH3 deformation, differ only in sign between

eqs.lZ and 13. The first term in the third line which was

determined in the Cs symmetry. is linear with respect to A {3 i • s.

The coefficients of diagonal terms are listed in Table II.
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Table II. Potential Function Parameters:
Coefficients of Diagonal Terms a),b)

XiO Xi1 Xi2

0.140181 -0.124719 0.043310

0.088560 -0.048580 -0.163996

0.141458 -0.384253 0.339277

-0. 003932 0.002520 -0.000993

-0 .002909 0.005382 -0.006503

1.99296 -0. 127307 -1. 41067

0.810876 2.41001 0.0

0.099686 -0.153511 0.064085

-0. 068734 0.068596 -0.059619

0.099668 -0.181578 0.089516

0.874084 -0.337881 2.610930

CH 3 force field

0.012319

H2 0.096837

a) In units of a.u.

0.026889 G6 -0.000889

b) Constants are Re =4.02889 a.u. and r e
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Next, we describe the fitting forms of the off-diagonal elements,

which are shown in eqs.17, 18 and 19.

V13 = D1*X(¢,.82,.83,~)*sine/«R-D2)2+D32)

+D4 *Sa/«R-D5 )2+Ds 2) (17)

-D 1*Y(¢ ,.8 2 ,.8 3 ' ~ )*sine/«R-D2 )2+D3 2)

-D4 *Sb/ «R-D5 ) 2+ DS 2)

V12 = A3*Y(¢,.82,.83,~)*sine*exp(-A56R)

+ A4 *Sb*exp(-As 6R)

where

(18 )

(19 )

Y(¢ ,.8 2 ,.8 3 ' ~ )=[sin(3¢+~ )+sin{3(¢+.83)+~ }+sin{3(¢-.82)+~ }]/3

These off-diagonal elements are all zero within the C3v symmetry.

Since the diabatic states leI> 1 and leI> 2 belong to A' and A" in the

Cs symmetry, respectively, V 23 is 0 in the Cs symmetry, whereas

V13 is non-zero even in CS ' The singlet-triplet coupling terms,

V13 and V23 , have been found to be reproduced well by Lorentzian

functions which have the maximum with respect to R near the

conical intersection. The off-diagonal term V12 between the two

singlet states has been found to fit well to the function relat-

ing to the ¢ and.8 i 's parts of the diagonal term VI (or V2) ,

which satisfies the second requirement as pointed out before.

The coefficients D1 to DS in eqs. 17 to 18 are also functions of

a, as are given in eq.15. The coefficient sets of the off-

diagonal terms are listed
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Table III. Potential Function Parameters:
Coefficients of Off-diagonal Terms a)

XiO Xi! Xi2

0.004618 -0.011405 0.011226

4.22343 0.437838 0.0

0.662089 0.490741 0.0

-0.000436 0.001009 -0 .001683

4.30019 0.316343 0.0

0.941249 0.027870 0.0

a) In units of a.u.

/
'/

./
AS INITIO (eV)

i :::
r:

'O·~~.01 0.00

,,1,,8 INITIO (tV) "B INITIO leV)

Fig.3 Comparison of the adiabatic energies between
ab initio calculations vs. analytical functions fitted.
(a) the energy at the C3v geometry,
(b) the energy difference between the C3v geometry

and the non-C 3v geometry with respect to
e and ¢, and

(c) the energy difference between the C3Y geometry
and the non-C 3v geometry with respect to ~i's.
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In Fig. 3, the adiabatic energies of the ab ini tio SOCI

calculation are compared with those from the fitted analytical

potential functions. The standard deviations of the fit were

0.0933, 0.0033, 0.0036 eV for Fig.3(a).(b).(c), respectively.

Note the difference in energy scale of (a) from that of (b) and

(c). For each hierarchy of variables, the ab initio energies are

well reproduced by the analytical functions. We use thus ob-

tained analytical potential energy functions without modif ication

in classical surface hopping trajectory calculation.
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2-3. Classical Trajectory Calculations

2-3-1. Initial Conditions

Since parent molecules CH3 1 in most relevant experiments are

cooled in supersonic expansion, they are considered to be at the

vibrational ground state. The rotation of the entire molecule or

its coupling with vibration has not been considered. Therefore,

the normal mode description can be used for initial conditions of

classical trajectory calculations (44). First, nine normal mode

coordinates of CH3 1 were determined according to eqs. 20 and 21.

Table IV. Calculated Vibrational Frequencies (in em-I)
and Their L Matrix

a 1 symmetry
(;~~;)i)

1346.3 562.4
(1252 ) (533 )

SI -0.997451 -0.002227 -0.016053

S2 -0. 051969 -0.982293 -0.139558

S3 0.048904 0.187339 -0.990084

e symmetry 3254.2 1541.0 891.4
(3060) (1436) . (882)

S4 -0.997451 -0.002227 -0.016053

S5 -0.051969 -0.982293 -0.139558

S6 0.048904 0.187339 -0.990084
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Table IV continued

Defini tion of Symmetry Coordinates b)

a l CH 3 s-str. Sl 1/{3(C>.r l + C>.r 2 + C>.r 3 )

CH 3 s-def. S2 1/{6(C>.a l + C>. a 2 + C>. a 3
-c>' Y l-c>' Y 2- C>. Y 3)

CI str. S3 = C>.R

e CH3 d-str. S4a = 1/{6(2C>.r l - C>. r 2
- C>. r 3 )

S4b = 1/{2(C>.r2 - C>. r 3 )

CH 3 d-def. S5a = 1/{6(2c>'Y l - C>. Y 2 - C>. Y 3)

S5b = 1/{2 (C>. Y 2 - C>. Y 3)

CH3 d-rock. S6a 1/{6(2C>.a l - C>. a 2 C>. a 3)

S6b 1/{2(C>. a 2 - C>. a 3)

a) The numbers in the parentheses are observed frequencies
from Ref.44.

b) R is the distance between C and I <;l.toms,
ri is the distance be.tween C and Hl. atoms,
ai is the angle of Hl.CI, and

Yi is the angle of HjCHk :
(i,j,k)=(1,2,3),(2,3,1),(3,1,2).

Qk(t) = Qk °cos (A k!t+o k) (k 1,2, ... ,9) (20 )

QkO = (20 k/ Ak)! (21 )

ok Ak!(Vk+ l / 2 ) (22 )

ok =2rr, k (23 )
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Ak's were obtained by diagonalizing the force constant matrix of

the ground state of CH 3I (Table IV), which was determined by the

contracted SOCI calculations described in Section 2-1. The

calculated frequencies well reproduced the observed ones (45).

Ok is the energy of mode k with a vibrational quantum number vk

in eq. 22 (in the present trajectory calculation, all vk's were

set to 0 except for the cases explicitly specified in section 4-

4) . The phase factor of vibration 15 k was calculated according

to eq. 23, where .; k is a random number uniformly distributed

between 0 and 1.

Normal coordinates and conjugate momenta were transformed

into cartesian coordinates and conjugate momenta, which were used

as the initial conditions of 500 traj ectories on the excited

states.

2-3-2. Condition of Integration

In our main calculation, we started each trajectory on the

3QO adiabatic surface. A discussion on the trajectories starting

on the l Q1 surface will be given in a discussion. This is based

on the experimental finding that the A-band is dominated by the

transition from the ground to the 3Qo state. Integration of the

Hamilton equation of motion on the adiabatic surfaces was carried

out by the Runge-Kutta method. In the present calculation, three

C-H bond distances were fixed at reo This was done by giving

very large force constants with respect to three C-H stretches.

The time step used for integration was 0.1 fsec. When the abso-

lute value of the difference between a triplet (V3 ) and a singlet

(VI or V2 ) diabatic term was less than 10-3 a.u., the time step
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was reduced to 0.01 fsec in order to determine the timing of non-

adiabatic transition accurately.

2-3-3. Treatment of Non-adiabatic Transition

As a trajectory evolves in time, the 3 QO diabatic surface,

correlating to the CH 3 + I* dissociation limit, must cross the

1Q1 surface, correlating to the CH 3 + I limit. In our trajectory

calculation, the non-adiabatic transition between the two sur-

faces was treated as follows. When the energy difference between

one of the diabatic singlets and the triplet, V 1-V 3 or V 2 -V 3 ,

changed the sign from pos i tive to negative, which occurred only

once for V 1 -V 3 and V 2-V 3 , respectively, in each trajectory, the

transition probability P was calculated based on the Landau-Zener

model (46) according to eq. 24 :

P (i,j) =(1,2) or (1,3) (24)

Fi and v-l are the diabatic force and the velocity of this

traj ectory to the direction perpendicular to the crossing seam.

Whether the transition is allowed or not was determined by the

Monte Carlo method (47); if the diabatic transition probability P

is greater than a random number e uniformly distributed between

o and 1, the transition is allowed and the trajectory is hopped

onto the diabatic singlet surface, correlating to CH 3 + I; other-

wise the traj ectory remains on its present diabatic surface,

115

~ I _



which correlates CH 3 + I* in the dissociation limit. In the

latter case, the traj ectory crosses the other singlet surface

within several time steps after the first crossing. At this

point, the transition probability was calculated again and it was

determined whether the surface hopping takes place here or not.

In any case the actual trajectory calculation was carried out on

the adiabatic PES's and the correction to the momentum perpendic-

ular to the seam was made in order to conserve the total energy

of the traj ectory.

2-3-4. Analysis of Trajectories

When the distance between the CH 3 center of mass and the

atom was greater than 20.0 a.u., the trajectory was stopped and

the vibrational quantum number v 2 of the CH3 y 2 mode and the

rotational quantum number were calculated.

The potential energy "pot contributing to the CH 3 Y2 um­

brella mode depends only on the invers ion angle a, and the

kinetic energy "kin of the Y 2 mode is calculated by the CH 3

internal velocity components perpendicular to rCHi (i=1,2,3). The

vibrational quantum number v 2 was calculated from the sum of

potential and kinetic energy according to eq. 25, where Y 2 is

the fundamental frequency of the umbrella mode, and was rounded

off to an integer.

" tot
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The CH 3 rotational quantum number N was calculated by taking

the rotational angular momentum LCH3rot around the CH3 center of

mass and was rounded off to an integer.

L rot
CH3

i

L mi(ri-rCM)x(ri-rCM)
ioj

(26 )

The projections, NIl and Nol, to the direction parallel and per-

pendicular to the CH3 top axis, respectively, are calculated as

follows:

ILCH/II = NIl,

N2 = NI12 + Nol2
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2-4. PES and Photodissociation Dynamics

2-4-1. Features of the Potential Energy Surfaces

At first we describe the global features of the present

analytically fitted PES's. We also compare these with the empir­

ical SB and GS surfaces (17,36).

Fig.4 shows the present analytical 3 QO and 1Q1 potential

energy surfaces for the C3v symmetry. In the C3v symmetry, all

the off-diagonal elements Vij are zero, and Vi represent the

adiabatic potential surfaces. Fig. 4 (a) represents the potential

energy curves with respect to R with a optimized for each R

(cf. Fig.2). The 1Q1 curves (degenerate due to the C3v symmetry)

monotonically decrease in energy as R increases. On the other

has a shallow well ( 0.223 eV at R= 3.493 A and

a =91. 4 0) outside the conical intersection. This is similar to

the other ab initio result

by Tadjeddine et al. (22).

0.157 eV at R= 3.5 A and a=92.6°)

Brus and Bondybey have pointed out

from the analysis of the emission spectrum in the photolysis of

CH3 I and CD 3 I in Ne at 4.2 oK that the 3Qo surface is slightly

bound «0.248 eV at around R=3.3 A) (6).

Next we describe the contour maps in the C3v symmetry. As

far as the symmetry of the CH3 I system is restricted to C3v ' this

is exactly equivalent to a linear XCI system where X is a pseu-

do-atom placed at the center of mass of three hydrogen atoms with

their combined mass. We define a new coordinate system,

(Rtr , rint)' replacing the original coordinate system (R, a).

Rtr is the distance between the I atom and the CH3 center of

and is the

118

XC distance.



6.00

(e V )

5.00

3QO

4.00 IQ
1

>-
<..:>

""w 3.00z
w

2.00

CH3+ j"

1.00

Re
CH3+

o. O? SO 2.00 2. SO 3.00 3. SO 4,00 4.50 5.00 5. SO

R (A )

0.40 -0.10 0.15

Fig.4 Present potential energy surfaces in the C3v symmetry.
(a) The potential energy curves with res~ect to R, with a
optimized for each R. (b) 3QO and (c) Qo -> lQ 1 contour
maps. contour spacing is 0.2 eV, relative to
the CH 3 + I (2 P3 /2) limit.
~EAM represents the conical intersection, at which

Qo and lQ surfaces are connected in (c). RC and *
represent the reaction coordinate and the ground state
equilibrium geometry, respectively.
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(28)

In this new coordinate system, the kinetic energy operator is

diagonal and the internal CX motion, which contributes to the

v 2 mode excitation, is separated from the translational motion,

as shown in eq.29.

(1/2)*(mCX*mI/M)*Rtr2 + (1/2)*(mC*mx/mcx)*rint2 (29)

M = mI + mC + mX

Figs. 4 (b) and (c) show the contour maps in the new coordinate

system, scaled with the proper mass so that the dynamics on these

surfaces can be treated as that of a rolling ball. The reaction

coordinate (RC), determined by connecting the minima with respect

to rint for each Rtr on 3QO ' intersects with lQ1 at Rtr=2.422

A, r int = 0.2674 A , i.e., R=2.365 A and a=104.3°. When a

point is located on the right (left) hand side of the RC, it

recei yes a force which tends to reduce (increase) r int' i. e.

The change of r int and a on the RC is s low with respect to the

change of Rtr . Since the Franck-Condon region (a = Ill. 2 0) is
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located slightly away from the RC (a = 106.0· at the same Rtr ),

a small force for internal excitation is expected in the early

stage of reaction on 3 QO ' In fig.4(c), which shows the potential

surface 3QO before and 1Ql after the seam of conical intersec-

tion, one can see that the RC 1Q1 has a small rint' i.e.

90· and is quite far away from RC on 3 QO ' When a traj ectory hops

from the 3 QO to 1Q1 , the force and the force constant with re-

spect to r int change very much. As will be discussed later,

these characteristic differences between 3QO and 1Q1 are the

essential factor governing the difference in v 2 vibrational

exci tation in the CH3 product.

Here we would like to make a brief comparison between the

present ab initio surfaces in the C3v symmetry and the SB and GS

empirical surfaces (which are defined only within the C3v symme­

try), shown in Fig. 5 . Both SB and GS 3QO surfaces monotonically

decrease without a well, in contrast to the present surface which

has a shallow well. The reaction coordinate on both SB 3Qo and

1Q1 surfaces pass through near rint=O for any Rtr , indicating

that as soon as the system is excited to 3QO ' CH 3 wants to be

planar. The preference of the planar CH3 does not change by

switching from 3QO to lQ1' These imply that the umbrella mode

exci tation is mainly determined at the Franck-Condon region and

that there should be little, if any, channel selectivity (17).

These features are again in a clear contrast with those of the

present surfaces. On the other hand, roughly speaking, the GS

surfaces were designed to reproduce the recent experimental find-

ings about the CH3 v 2 mode excitation, and are similar to the
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present surfaces except for the behavior of the conical intersec-

ti on to be discussed later ( 36) .

(eV)

~ 3.00

(0)

L\·····.._.. :~:\

\
\

\ CH3. I·

\

(eV)

~ 3,00 L\\ m •• :~:\

\, [H)' I"

Re

D.OID,SO 1.00 1.50 3.0~···~-:~~···~·:OO cs~H~"oo1 5 . 50

Re

O,OlO.SO 2.00 2.50 ).O~···~·:·5~···•. OO 4.s~H~"ool 5.50

- -
'" '" '"

Fig.5 Empirical potential energy surfaces (a)-(c) by Shapiro
and Bersohn, and (d)-(f) by Guo and Schatz.
The scale and other glossaries 'are the same as in Fig.4.

122



Fig.6 shows examples of the present potential energy curves

wi th respect to the bending angle e for a few fixed values of R,

where a is optimized for each state. In the Franck-Condon

region (see Fig. 6 (a», the 3QO surface has a minimum at e =0,

whereas the lQ 1 surface has minima at e :!:4·. This deviation

from the C3v symmetry is due to the Jahn-Teller distortion.

Fig.6(b) shows the curves at the conical intersection, where

the reaction coordinate of 3QO crosses the lQ 1 surface. Each

adiabatic surface has a minimum at e i O. When a was fixed at

2A j a = 111.2
1.80 L,-~_.L-~'----7".

-10 -10 0 10 20

O'

(a )

3.50

3.• 0

2. 132 (A) (b) 2.365 (A) ( c ) R

2.10 1.40

(e V ) (e V 1
2.00

A,:
1.30

A
>- A' >-
C> C>
0<: 0<:
w 3E+2A 1

w
z z
w w

a = 104.3 1.00

1.60 0.90 .

1.50 0.80

1.40 0.70
-20 -20 -10

O'

2.646 (Al

A'

102.0

A'

'3E
a = 97.0

10

O'

Fig.6 Adiabatic potential energy curves with respect to e at
(a) the Franck-Condon region, R=2.132 A 3 .

(b) t~~o~~~~~~~ ~~~:~::cr~o~, ~~~~~6;h1 a~g reactl0n

(c) outside the conical intersection, R=2.646 A.
The local C3v symmetry of CH 3 is assumed.
a is optimlzed at each R for each state for (a) and (e).
The positive and negative values of e in these
figures represent ¢ = 0 and n, respectively.
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111.2·, the two surfaces intersects at R=2.445 A for e = 0 and

the largest bending angle and the bending stabilization energy

were e min = 6.0· and ~E(emin) E(emin)-E(O·) = -4.3*10-3 eV

for the A' state (48). When a is allowed to change, the RC of

the 3QO surface intersects the 1Q1 surface at R = 2.365 A and

a =104.3· for e = 0 and the largest bending stabilization is

l>E(e min = 5.0·) -5.3*10- 3 eV; when a is allowed to relax, two

surfaces cross at a smaller R. Fig.6(c) shows cuts of PESs

outs ide the conical intersection region. Whi Ie the 3 QO surface

has a substantial force constant at e =0, the lQ1 surfaces are

very flat with respect to e. This difference in the e depend­

ence between the lQ1 and 3 QO surfaces, as will be discussed in

the next section, is the most important factor determining the

energy partitioning into the CH 3 rotation.

2-4-2. Rotational Excitation

One of the largest concer~ in the present study is the

distribution of rotational quantum number in the CH 3 product in

each channel. Fig. 7 shows the rotational distribution obtained

in the trajectory calculation. We can clearly see the channel

selectivity. We have found that the rotational angular momentum

is nearly perpendicular to the top axis in most traj ectories,

i.e. N ~ N~. Therefore, we use only the total rotational angular

momentum N in the following discussion. Qualitatively, the CH 3

product in the I*-channel is rotationally cool, which agrees with

recent experiments (24,28,30) as well as our previous discussion
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Fig.7 The final (a) rotational (N) and (b) the umbrella
vibrational distribution of the CH 3 product.

i~: ~~~~~a~in;Hf~ ~~e i~i;~~i;~~~~~ ~~b~~~i~~:~h~~~~~:
and the dotted line is the distribution in the
I-channel, scaled up 3 times for clarity.

(37). Quantitatively, the present calculation predicts the peak

in the rotational distribution at N=l. It is not clear at this

point whether this slightly hot distribution is credible not,

considering the fact that the calculation has been carried out by

quassi-classical trajectories with zero-point energies. On the

other hand, one finds that the product in the I-channel is rota-

tionally excited up to N=8 with a peak at N=5. This is in good

agreement with the experiment by Chandler and co-workers (30).

but is in the quanti tative sense in disagreement with the PB

experiment that CD3 is rotationally excited up to N=14. If

accepts the comment that the PB experiment carried out at the

room temperature may possibly involve rotationally excited parent

molecules which would give hotter laboratory rotational distribu-

tion of the product due to poor alignment (27,30), the agreement

with the experiments is excellent.

We have examined the origin of this selectivity in detail.
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Fig.8 shows plots of the CH3-I distance Rtr vs. the rotational

energy of the CH3 fragment and e for a selected traj ectory,

which was forced to run on three separate branches. The rota-

tional energy and quantum number of the CH3 fragment during the

reaction was calculated from the atomic velocities assuming that

the CH 3 fragment was completely isolated from I. It can be

in Fig.8(a) that the rotation is highly excited (N=5 in this

case) before the non-adiabatic trans i tion and furthermore the

final rotational energy in each channel is determined by whether

this excitation is more less retained (as in the I-channel) or

6' (b)

Fig.8 Plots of Rtr vs. the rotational energy of the CH 3
fragment, and (b) Rtr vs. e ·for a randomly selected
traj ectory.
The solid line represents a trajectory which stayed on
the 3QO diabatic state and has given I*. The dotted and
dashed lines are the same tralectory but have been forced
to switch to the lQl(A') and Q~(A") surface,
respectively, and to give I.
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is nearly completely damped (as in the I*-channel). In Fig.8(b),

the traj ectory on the 1Q1 surface

whi Ie the traj ectory on 3QO does

show a smooth increase in e

not. These di fferences

justifiable in relation to the shape of PES with respect to e.

The 1Q1 surfaces are very flat even right after the transition

region, as shown at R = 2.646 A in Fig.6(c). Therefore, the

trajectory with the kinetic energy in the "rotational" mode is

expected to show a smooth increase in e, retaining the energy.

The 3QO surface, on the other hand, now has a substantial posi­

tive bending force constant around e = 0, and the trajectory is

forced to remain within a small value of e, releasing the rota-

tional energy into the translational motion. Though Fig.8

represents one traj ectory, this observation is borne out statis-

tically in Fig.9. The "rotational" distribution at the transi-

tion region (where the decision of making transition or not is

made) in Fig.9(a) shows that CH3 I going to the I*-channel has

almost as high a CH3 rotational quantum number as that going to

the I-channel. Fig.9(c) shows that the rotational distribution

in the I*-channel at R=3.704 A has substantially cooled down.

On the other hand, the rotational excitation in the I-channel

remains unchanged (or slightly enhanced) after the transition

region. Therefore, we can conclude that the rotational energy is

accumulated before the transition, and the channel selectivity

takes place after the transition and is due to the difference in

the force constant for bending angle" e outside the conical

intersection.
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Fig.9 The rotational (N) and umbrella vibrational (v 2 )
distribution of the CH 3 fragment during the reaction,
(a) and (b) at the transition region, and
(c) and (d) at the intermediate region, R=3.704 A.
The reactant CH 31 is in the ground vibrational state.
Glossaries and scales are same as in Fig.7.
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The next question to ask then will be why the rotational

distribution at the transition region is hot, seen in

Fig.9(a). Here one should recall that, CH 3 I travels from the

equilibrium geometry (Re - 2.1 A) to the conical intersection

region (R - 2.4 A), the potential energy of about 1.1 eV is

released into the kinetic energy with respect to the CH 3-I dis­

tance Rtr . It is very natural that a small fraction of it (up to

200 cm- 1 or about 2.2 %) shows up in the bending or rotational

mode, which is coupled in the dynamics with the CH3-I distance

via the point vibration of the parent CH3 I molecule.

Fig.8(a) actually shows that the build-up of energy in the rota-

tional mode occurs throughout the initial stage of reaction, i.e.

the evolution of the system on the 3QO surface.

It is interesting to compare the results of'classical tra-

j ectory calculation with the impact or sudden model, which we

used in our previous paper (37) to explain in part the hot CH3

rotational distribution in the I-channel. In this model, trajec-

tories which have a larger e at the transition region will have

more chance to make a transition to the 1Q1 surface due to the e

dependency of V13 and V23' Here the torque due to the energy

lowering for the bending, !t.E(e min ) I, will be converted suddenly

into the rotational motion. Trajectories with a small , on

the other hand, wi 11 tend to stay on the 3Qo surface and reach

the product with unexcited rotation. Fig.10 shows that there

might be a weak relation between the final CH3 rotational quantum

number N and the bending angle e t at which the decision of

making a trans i tion or not has been made. We have also found
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that the final CH3 rotational quantum number N is unrelated to

t. E (e min) at the point of trans i tion. Because of these resul ts

as well as the dynamical details discussed above, one has to

conclude that there is no justification of a simple impact model.
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Fig.IO The bending angle e t , at which the decision of making a
transition or not has been made, vs. the final CH 3
rotational angular momentum N for individual
trajectories in (a) the I*-channel and (b) the I-channel.
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2-4-3. Relationship between Dynamics and Crossing Point

The crossing between the two electronic states, 3QO and 1Q1 ,

has a close connection to the polarized emission spectroscopy of

the dissociating CH 3I molecule by Lao et. al. (35). In their

classical, one-dimensional interpretation, the difference in

energy between these excited states and the ground state at the

dependence of the polarization of emission. When the energy of

emitted photon is larger than ~Ex' its polarization is parallel,

indicating that the emission takes place from the 3Qo surface

before the CH3I molecule reaches the crossing. When the photon

energy is smaller than ~ Ex' i. e. after the cross ing is passed,

some emission with a perpendicular polarization from the 1Q1

surface, as well as the parallel transition, appears. The abrupt

change in polarization between the emission to the v 3 (C-I

stretch) = 8 level and to the v 3 = 9 level of the ground state

indicates that the excited-ground energy difference at the cross­

ing, ~Ex is 33000 - 33500 cm- 1 .

We have calculated Rx and ~Ex' as shown in Table V, using

three di fferent methods. In the first method, denoted the

static(R) method, the 3QO reaction coordinate (RC) is determined

by connecting the potential minima with respect to r int for

various values of the C-I distance R within the C3v symmetry, and

Rx is defined to be the C-I distance R at which this RC crosses

the 1Q1 surface. We obtained ~ Ex to be 31035 cm- 1 at R=2. 393 A

and a=106.6°. This value is similar to the corresponding

values, ~Ex=31370 cm- 1 and 29598 cm- 1 of the SB and GS surfaces.
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It is also similar to the values quoted in Ref. 35, presumably

calculated with the method simi lar to this. These values are

lower than the experimental estimate by about 2000 em-I. Lao et

al. (35) have suggested that the calculated C-I distance at the

crossing Rx may be too large and that a smaller Rx should give a

larger "" Ex in better agreement with the experiment. This may

well be so, because finding the exact location of crossing of two

nearly parallel curves is not easy and that "" Ex should be very

sensitive to the location of crossing.

Table V. Location of Crossing and the Excited-Ground
Energy Di fference

Potentials Method
(~t (~ Eex(Rx ' ~~~-i) Egr(Rx ' a x)

Present Static(Rtr ) 2.365 104.3 32196

Static(R) (2. 393 ) (106.6) (31035 )

Dynamic 2.345 102.5 33051

Tadjeddine a) 2.353 NA 31100

Shapiro Static(Rtr ) 2.413 91.2 31941

Static(R) (2.396) (97.9) (31370)

a) 2.403 'NA 30716

Guo and Schatz
Static(Rtr ) 2.435 98.5 30136

Static(R) (2. 440) (101. 1 ) (29598)

a) Taken from Table II of Ref.35. Presumably the method
used is Static(R).
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However, one can argue easily that the above method is not

correct. Since the kinetic energy matrix for the (R, r int )

coordinate system is not diagonal, the results are coordinate

dependent. One has to use the coordinate system which has a

diagonal kinetic energy matrix, in order to obtain the coordinate

independent reaction coordinate with the above minimization

procedure (49). The (Rtr , rint) coordinate system, eq.28, satis-

fies this condition. The crossing, determined with this method,

denoted static(Rtr ), for our surfaces occurs at a smaller R=2.365

A and a smaller a=104.3· with a larger 6Ex =32196 cm- 1 . This

correct static value of 6Ex is still 1000 cm- 1 too small in

comparison with the experimental estimate. However, we can pro-

pose that the dynamic effect can account for this discrepancy.

Fig.11 shows the plots of the point (Rtr , rint) where the dec i-

sion of making a transition or not has been made for trajecto-

ries. One can see immediately that most trajectories cross the

conical intersection at points where both Rtr and rint' and

therefore R and a, are smaller than the above point determined

statically (where SEAM and RC cross in Fig.ll). Trajectories

start at the FC region, which is on the right hand side of the

RC. The force in the region is to reduce r int and cause the

trajectories on average to reach the seam of crossing at rint

which is smaller than rint on RC. (See the next section for the

trajectory that starts at the ground state equilibrium geometry).

The averaged values in Fig.11, regardless of whether the transi­

tion is made (I-channel) or not (I*-channel), are Rtr=2.395 A,

rint=0.234 A, i.e. R = 2.345 A, a = 102.5·, where 6Ex is calcu-



lated to be 33051 em-I, which is larger than the static t. Ex by

about 1000 em-I. Thus, the dynamically determined t. Ex is much

better agreement with the experimental estimate.

-0.10 0.15 0.40

Fig.11 Plots of Rtr YS. rint for trajectories at the point where
the decis10n of making the trans1t10n or not has
been made, (a) for the I*-channel and (b) for the
I-channel, superimposed on the contour maps of Fig.4.
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2-4-4. Vibrational Excitation of Umbrella Mode

Now we turn to another important question of the final

vibrational distribution in the v 2 umbrella mode for each chan­

nel product. Fig.7(b) gives the results of the trajectory calcu-

lation. The distribution in the I-channel product has peak at

v=2 and this propensity is in good agreement with experimental

results (26). On the other hand. the I *-channel product is

vibrationally cold. This is also in good agreement with recent

experiments by Houston and co-workers (24,30), and Suzuki et. al.

(31), who observed in the I*-channel that the cold (v 2=0)

product is more abundant than the vibrationally hot (v 2=2)

product.

We have examined the reason why the CH 3 vibrational distri­

bution is different between the I- and the I*-channel. For this

purpose, we use a traj ectory that starts exactly at the ground

state equilibrium geometry without initial kinetic energy and

travels initially on the 3QO surface. This trajectory maintains

the C3v symmetry during its evolution ; we treat the dynamics as

a linear triatomic XCI system. The trajectory was forced to run

in two branches, with or without making 3QO -) 1Ql transition at

the conical intersection. Fig.12 shows energetics and Fig. 13

actual traces of two branches of the traj ectory. As shown in

Fig.12(a), most of the potential energy released during the

dissociation is converted into the kinetic energy of the CH 3

centre-of-mass as well as that of the I atom (not shown). The

difference in the kinetic energy between the two channels re­

flects the difference in the electronic energy between I and I*.

Fig.12(b) shows the plots of Rtr vs. the internal kinetic energy
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Fig.12 Plots of Rtr vs. (al the kinetic energy of the CH3
center of mass, (bl the klnetlc K,
(cl the potential V and (dl the total energy (K+VI
in the "umbrella" mode, for the trajectory that starts
at the ground state equilibrium geometry without
initial kinetic energy.
The solid and dotted lines represent the branches
giving r* and r, respectively.

contributing to the Y2 mode, which is equal to the second term

in eq.29. There are two questions to be answered in this figure.

The first is why the internal kinetic energy decreases slightly

just before the transition. As shown in Fig.13(al and discussed

in section 2-4-1, the starting point of the trajectory is on the

right hand side of the RC on the 3QO surface, and the force

acting on it has a strong component to shorten r int' as shown in



0.400.15-0.100.40

0.40

0.15

0.15

However, as the traj ectory evolves in time, the

10

-0.10

~ ~
+-="----c;>---=:>.,.--.::;::r=----,L-LL N

Fig.13 Plots of the zero-energy pseudo-linear trajectory

(denoted TRJ), superimposed on the contour map,
for (a) I*-channel product and (b) I-channel product.
The internal force, 0 Vic rint is also shown, ln ar:
arbitrary scale for several values of Rtr ln the flgure.
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left, crossing the RC, with an increased kinetic energy in the

internal force changes the sign, caus ing the internal kinetic

rint mode.

Fig.13(a) (as well as the much larger component to stretch R
tr

which is not shown), and causes the trajectory to travel to the

energy to decrease. The second question is the origin of the

difference between the 1- and I*-channel after the conical inter-



section. Two branches of the trajectory for I* and I, shown in

Fig.13(a) and (b), respectively, clearly demonstrate what is

happening. When the trajectory in Fig.13(b) crosses the seam

onto 1Q1 , the force with respect to rint changes the sign abrupt­

ly, and the kinetic energy in the r int motion increases rapidly

(Fig.12(b)). The potential energy in the rint motion, defined as

the energy relative to the minimum with respect to rint' of

course changes discontinuously at the seam upon going into the

I-channel, as seen in Fig.12(c), because the optimal rint differ

very much between 3QO and 1Q1 . The total energy in this r int

motion, i. e. the v 2 mode, calculated as the sum of the kinetic

and potential energy in Fig.12(d), increases by Rtr = 2.8 A up to

0.15 eV, at which level the v 2 vibration is maintained into the

product. On the other hand, for the traj ectory remaining on the

3QO surface (Fig.13(a)), the force is maintained not to decrease

rint rapidly and therefore the vibrational energy which had been

accumulated up to the conical intersection is depleted rapidly.

This dramatic difference between the two channels essentially

comes from the difference in the RC, i. e. the difference in the

optimal rint on the two surfaces ; the 3QO surface has a rela-

tively large r int' therefore a large a, for instance, r int =

0.26 A, a= 103.9 0 at Rtr =2.45 A and rint =0.13 A, a= 96.9 0 at

Rtr 2.80 A, whereas the 1Q1 surface has nearly r int = 0, a =90 0

for any Rtr after the conical intersection.

This analysis of the zero-energy quassi-linear trajectory is

actually statistically borne out in the full-dimensional trajec-

tory calculation. As was shown in Fig.9(b) at the transition

region, both I- and I*-channel products are still cool. However,
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at the intermediate region (R=3.704 A) (Fig.9(d», the I-channel

product becomes hot and its population is close to that of the

final state (Fig.7(b». On the other hand, the I*-channel

product is cooler in the intermediate region than at the transi-

tion region. From the above discussions, we conclude that the

difference in the Y2 mode excitation between the two channels is

due to the difference in the shape of PES ; lQ l wants to have a

planar CH 3 , whereas 3Qo wants to maintain the bent structure

until CH 3-I distance becomes very large.

We can briefly point out why the SB potential surfaces give

an inverted population in the 1* -channel as well as in the 1-

channel. As discussed in section 2-4-1, the SB 3Qo surface, as

well as the 1Q1 surface, has the optimal rint = a for any Rtr .

The excitation of the CH3 umbrella motion takes place immediately

upon excitation to the 3QO surface, and the 3QO -> 1Q1 hop makes

very 1 i t tIe di fference in the dynamics. These defects of the SB

surfaces disappear in the GS surfaces, which make it possible to

have a discussion similar to the present one. As shown in Fig.5

(e) and (f), however, the behavior of the conical intersection of

the GS surfaces is very different from that of the present sur-

faces. The GS surfaces have such a skewed conical intersection

seam that some trajectories may actually cross the seam near the

FC region.

2-4-5. Effect of Initial Conditions: Mode Selectivity

In order to assess how the initial vibrational states of
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understandable because this C-1 mode becomes the dissociation

excitation by one quantum number in each of the vibrational mode

This is

This is understandable because the .B i 's part in thetion.

The excitation in the Y 3 C-1 stretching mode has no

to a particular mode of the reactant remains there substantially

in the C3v symmetry) and therefore increases a transfer between

diabatic surfaces. The Y5 mode also' destroys the C3v symmetry

due to changing .Bi's. However, the branching ratio (as well as

the distributions) is little influenced by the Y 5 mode excita-

branching ratio. The Y6 mode destroys the C3v symmetry of the

system due to varying e and promotes a coupling (which is zero

ference in the rotational distribution. Of course, the Y 2 mode

coupling elements, V13 and V23 , is a quarter or less of the e

part. All these results indicate that the internal energy given

exci tat ion in the Y 6 rocking mode, which is correlated to the

y 2' y 3' y 5 and y 6 of CH 31. The product distributions of the

Y2 vibrational and the rotational quantum numbers thus obtained

are shown in Fig.14. These figures should be directly compared

carried out additional traj ectory calculations with an initial

effect on the product internal energy distribution.

of CH 31 is directly correlated to the Y 2 mode of CH 3 . The

CH 3 rotation, gives a substantially higher rotational excitation

in both 1- and 1*-channels. This mode also gives a higher 1/1*

with Fig.7, which is for the initial ground vibrational state of

CH31 in the ground electronic state affect the dynamics, we have

mode in the excited state. The excitation in the Y 2 CH 3 umbrel­

la mode gives a higher excitation in the Y 2 mode in the CH 3

product for both 1- and 1*-channels, but makes very little dif-
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Glossaries and scales are same as in Fig.7.
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and is converted rather adiabatically into the energy of the

product. This is understandable considering the fact that the

time required for photodissociation (about 10 fsec up to the

transi tion region and about 20 fsec to reach at R = 3.0 A ) is

shorter or of the same order to the period of vibrational motions

(about 20 - 60 fsec). The dissociation occurs too fast for the

internal energy to redistribute.

In the PB experiment which may be using rotationally warm

CH3 I molecules, a possibility of contribution of vibrationally

excited CH3 I can also be suggested. About 1.5 % of CH 3 I mole­

cules in room temperature is excited to the v=1 excited state of

the v 6 vibrational mode, which would give a contribution to

highly rotationally excited CH 3 product in the I-channel, as is

seen in Fig.14(g).

2-4-6. Branching Ratio

Several experimentalists have reported that the r*/(I+I*)

branching ratio of photolysis at 266 nm ranging from 0.6 to 0.9,

most frequently about 0.7 (4,5,7-12). The branching ratio in our

trajectory calculation, 0.91, is significantly larger than 0.7.

In the present model the branching ratio is determined by Vl3 or

V23 according to eq. 24, and they are functions of the bending

angle e and the degenerate CH 3 deformation as shown in eqs.17­

18. Eqs .17-18 are valid, as far as only six degrees of freedom

are used in the potential functions and consequently in the

dynamics. If three C-H stretching degrees of freedom, frozen in

the present study. are taken explicitly into account. however,
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the degenerate stretching modes, S4a = 1/{6(2llr1-llr2-llr3 ) and

S4b 1/{2(llr2-llr3 ) are expected to contribute to V13 and V23 as

well. Our preliminary ab initio SOCI calculations with varying

C-H distances (50) indicate that actually there are new additive

contributions from S4a and S4b' of the same order of magnitude as

the terms in eqs. 17-18. Thus, if we carry out a traj ectory

calculation using potential functions including C-H stretches,

the branching ratio is expected to decrease, to approach experi-

mental values. A recent experimental finding shows that the

symmetric C-H stretch v 1 of the CH 3 product takes place prefer­

entially in the I-channel (30). This could be just a matter of

difference in the exothermicity, but could also imply the impor-

tance of C-H stretch in the dynamics.

In the present model, trajectories are rest'ricted to start

the 3Qo , based on the experimental fact that 94 % of the

absorption is 3QO <- lA 1 at about 260 nm (4). The experiment

also indicates that a few percent of the A-band absorption is lQ 1

<- 1A1 . We have also carried out a trajectory calculation start­

ing on the lQ1 state, In this case, the branching ratio to the

I*- and I- channel is calculated to be 0.03 : 0.97. Therefore,

the contribution of a few percent of lQ 1 <- lA1 absorption is

expected to decrease·the calculated branching ration I*/(I+I*) by

a few percent.
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2-5.Conclusion

We have calculated the potential energy surfaces of CH 3I

photodissociation with the contracted spin-orbit CI method. The

contracted SOCI gives the results almost undistinguishable to the

uncontracted SOCI method, while reducing the computer time sub-

stantially.

Our analytical potential functions, derived from ab initio

results in six degrees of freedom, and surface hopping trajecto-

ries on them can reproduce important recent experimental results,

including (i) the hot CH 3 rotational distribution with peak at

N=5 in the I-channel and the cold distribution i; the I*-channel,

(ii) the hot CH 3 v 2 vibrational distribution with peak at v 2=2

in the I-channel and the cold distribution in the I*-channel, and

(iii) the excited-ground energy difference at the seam of conical

intersection where trajectories make a transition, if the dynam-

ics effect is taken into account.

The CH3 rotational excitation is mainly determined by the

shape of potential energy surfaces with respect to the bending

angle e outside the conical intersection. The rotation is hot

when trajectories arrive at the conical intersection. If a

transition is made onto the 1Q1 surface to give an I-channel

product, the 1Q1 surface which is flat with respect to e retains

the rotational excitation. If the traj ectory stays on 3QO to

give an I *-channel product, the 3QO surface which has a large

bending force constant damps the rotational excitation. The CH 3

v 2 vibrational excitation, on the other hand, is mainly deter-

mined by the shape of potential surfaces with respect to the CH 3

umbrella angle a outside the conical intersection. The reaction
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coordinate on 1Q1 has a - 90 . outside the conical intersection,

whereas that on 3QO retains relatively large a - 110·, until the

CH3-I distance is very large. The Y Z vibration is relatively

cool when trajectories arrive at the conical intersection. If a

transition is made from 3Qo to lQ1 to give an I-channel product,

the traj ectory receives an abrupt. strong force to reduce a,

because of the difference in the optimal a between two surfaces,

and the Y z vibration becomes excited. If the trajectory stays

3QO ' energy cannot easily flow into the vibrational mode.

Trajectories cross the conical intersection on average with

a smaller CH3-I distance and a smaller CH3 umbrella angle than

what the reaction coordinate indicates. This dynamical effect

can account for the discrepancy in the ground-excited energy

difference between the polarized emission experiment and the

calculation on the reaction coordinate.
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Appendix

Considering the numerical behavior of the diabatic terms and

the requirement that the adiabatic

invariant under permutation among the three hydrogen atoms, the

fitting functions have to have the forms shown in (A.1) to (A.6),

V1 V10 + P1X + PZS a (A.1)

Vz V10 (P 1X + PZS a ) (A.Z)

V3 V30 (A.3)

V1Z PlY + PZS b (A.4)

V13 Q1 X + QZSa (A. 5)

VZ3 -(Q1Y + QZSb) (A.6)

where V10 , V30 , P1 , P Z ' Q1 and QZ are functions with respect to

R, a, 8, which are invariant under permutation and Sa' Sb' X

and Yare defined by (A.7) to (A.10).

Sa=1/{6(Zf'./31-f'./3z-f'./33)

Sb=l/{Z (f'. /3 z-f'. /3 3)

(A.7)

(A.8)

X(91 ,/3Z,/33,t; )=[cos(391+t; )+cos{3(91+/33)+t; }+cos{3(91-/3z)+t; }]/3

(A.9)

Y(91 ,/3 Z ./3 3 , t; )=[sin(391+t; )+sin{3(91+/33)+t; }+sin{3(91-/3z)+t; }]/3

(A.10)

(A.ll)

A set of dihedral angles, A ={91,91+/33,91-/3Z}, are defined

by those of the I atom against the three hydrogen atom H1 , HZ and

H3 , respectively (cf. Fig. Z). If one permutes two hydrogens,
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one would obtain another set of angles, A' ={r/J',r/J'+/33',r/J'-

/3z'}. However, two sets, A and A' are identical.

Next we comment on the phase factor t in X {and Y). The

secular equation composed of (A.l) to (A.5) gives a cubic equa-

tion in (A.lZ),

x 3 - (ZV lO +V30 )xZ + [-(VlOZ+ZVlOV30) +(PlZ+QlZ)(XZ+yZ)

+(PlZ+QlZ)(SaZ+SbZ) + (PlPZ+QlQZ)(XSa+YSb)]x

-(VlVZV3+ZVlZVZ3V13-VlZVZ3-VZZV13+V3ZVlZ) = 0 (A.lZ)

In order to satisfy the energy invariance under permutation, the

coefficients of the cubic equation have to satisfy the invariance

under permutation. The coefficients of the second order, and the

first to third coefficients of the first order are invariant. If

one choose the phase factor t determined by (A. 11) , the fourth

coefficient of the first order in (A.lZ) equals to

X(r/J , /3 z, /3 3,0), which is invariant due to the fact that the

dihedral angle set A is invariant. It be also proved that

the constant term is invariant under permutation.
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Part III

General Conclusion
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In this research, the author has intended to clarify the

behavior of electronically excited molecules based on ab initio

potentials.

In Part I, the author examined the mechanism of CT state

formation of DMABN in an aqueous solution, of which a realistic

molecular model has been actually nonexistent. The solvation

properties based ab initio MO calculations and Monte Carlo

simulations are in qualitative agreement with the available

relates CT state, increases monotonically

experimental data. The potential energy of S2 state, which

and the 90' twisted

geometry is at the top of potential energy surface with respect

to the torsional angle in the gas phase. On the other hand, in

aqueous solution, the potential of mean force of S2 state

become very flat in a wide range of the torsional angle, which is

the origin of broad emission band in a polar solvent. The dynam­

ics of CT state formation has two factors. It was pointed out

from the reaction free energy surfaces that initially the intra­

molecular (that is, torsional) fluctuations play an important

role in the dynamics. However, once the transition from Sl to S2

free energy surface is occurred, the solvent diffusion plays

important role al ternatively.

In Part II, the author examined the A-band photodissociation

dynamics of methyl iodide, which could not be treated as a linear

triatomic system. The contracted SOCI calculations are useful

method to obtain the multi-dimensional potential surfaces instead

of terribly large scale variational SOCI calculations because the

energies relative to the ground state well reproduce variational

ones and the CPU time can be saved substantially. The present
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potential functions, derived from ab initio result in six degrees

of freedom, and surface hopping trajectories on them can repro-

duce important recent experimental results, including (i) the hot

CH3 rotational distribution with peak at N=5 in the I-channel and

the cold distribution in the I*-channel. (ii) the hot CH 3 v 2

vibrational distribution with peak at v 2=2 in the I-channel and

the cold distribution in the I* -channel, and (iii) the exci ted-

ground energy difference at the seam of conical intersection

where trajectories make a transition, if the dynamics effect is

taken into account. It was found that these findings in

close relation to the shape of 3Qo and 1Q1 potential energy

surfaces.

In this research, the author started with making a potential

energy surface by means of ab initio MO calculation and went on

to making theoretical investigations based on Monte Carlo simula-

tions or classical trajectory calculations in order to clarify

two attractive problems of the behavior of electronically excited

polyatomic molecules. To obtain the ab initio potential func-

tions is the first step and very important to make theoretical

investigations of the structure and dynamics of electronically

excited molecules.
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