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o Introduction.

Recently, Ya.Sinai studied the distribution of spacings between nearest energy levels

of a quantum particle on the two-dimensional compact Riemannian surfaces, and he

shows the limiting Poisson distribution for spacings of quasi-classical eigenvalues for

the quantum kicked rotator model ( IS.!], [S.II) ). The essential point of the proof is to

reduce the problem to studying some ergodic transformation on T2. He considers the

distribution of the visiting times of the trajectory to a certain horizontal strip, and

obtained the limiting Poisson point process as the width of the strip tends to zero.

And he points out that the way of appearance of the above Poisson point process is

quite different from that in the usual situations in probability theory. This fact is very

interesting from the ergodic theoretical view point. Inspired by it, we will consider

the following problem.

Let X be a compact metric space, I a continuous map on X, and/-' an I-invariant

probability measure on X. Fix a point z E X and take its f-neighborhoods U,(z). As

a probability measure on U,(z), we will take the restriction of /-' to U,(z), i.e.

_ /-' Iv,(:)
fl, = fl(U,(z))"

Denote the k-th return time of a point x from U,(z) to U,(z) by T,jk)(x). Then, we

want to know what is the limit distribution of the normalized k-th return times

T (k)
',f



as € -> O.

Next let us introduce a counting measure ( N+ -valued Radon measure on R+ ),

Y;(x), defined by

oci

Y;(x) = L bc,.T,,J(')(x),

k=1

where c, = 1/E,., (T,jl») and bp is the Dirac b-measure at p E R+ Then, Y,(-) is

a point process on R+ Vve will call it the normalized return time process. And the

above problem can be considered as follows: what is the limit of the sequence of the

normalized return time processes {V,}. as € -> 0 ?

It is expected that the limit distribution of the normalized first return time is the

exponential distribution and that the limit distribution of the normalized return time

·process is the law of Poisson point process if the system (X, f, I') is "chaotic" in some

sense (for example, ergodic, mixing, etc.). Let us say that the Poisson law holds if it

is true.

In this paper the author considers the above problem for the typical "chaotic"

system, namely, for the Axiom A system, and shows the Poisson law for it.

Let M be a compact Coo Riemannian manifold and f : M -> M be an Axiom A

diffeomorphism. We denote its non-wandering set by fl = flU) and assume that fin

is mixing. Take a Lipschitz continuous function" : fl -> R and denote the (unique)

Gibbs measure (= the equilibrium state) for" by I' = Jiu' Fix a point zEn, and

take its €-neighborhoods {U,(z)},. The main theorem is the following:

Til EOREM. For I' - a.e. z E fl, the sequence o[ the normalized return time processes

converges to the Poisson point process in finite dimensional distribution: [or any

disjoint Borel sets B I ," . , B n E B(R+), and any non-negative integers I.: J ,'" , 1.:,,,

where eis the Lebesgue measure.

It should be emphasized that the main theorem holds for I' - a.e. z, but not for

every point.



COUNTER-EXAM PLE. For a periodic point zEn with period 111, the limit disiribution

of the normalized first return time is the linear combination of the delta-distribution

and the exponential distribution. Precisely,

where P. = 1 - exp{u(z) + u(J(z» + ... + u(Jm-l (z»}.

The main theorem holds only if the eigenvalue of the operator £ N defined in Section

1 which goes to 1 as N -I 00 is unique, or more precisely, if the number of the

cigenvalues of £N contained in a small neighborhood of 1 is only onc for large N.

'Otherwise, the limit of the normalized return time process is expectcd to obey a

compound Poisson law.

The proof of the theorem will be given in Section 5. In Section 1, we introduce

the singularly perturbed Ruelle- Perron- Frobenius operator which is the main tool to

prove the theorcm. We study its basic properties in Section 2. The relation bctween

the eigenvalues of that operator and the poles of the Ruelle-Artin-Mazur zeta function

is studied in Section 3, which plays the most important role in the proof. In Section

4, we show the Poisson law for symbolic dynamics which is the essential part of the

pl'oof of the above theorem. The main theorem can be proved by approximating E­

neighborhood by a finite union of cylinder sets associated with a Markov partition of

n in Section 5. The counter-example will be shown in Section 6.

After the author finished writing the present paper, he found B.Pitskel's paper

entitled" Poisson limit law for larkov chains" (Ergod. Th. and Dynam. S·ys. 11

(1991), 501-513). In that paper, he proved the Poisson law for the recurrence to

cylinder sets for a mixing stationary Markov chains with finite state space.
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and helpful discussions.

1 Set up.

Let J = {I,· ,r} be a finite set and A = (Aij)i,j=l, ',r be an irreducible "x,'
matrix with entries 0 or 1. Define the space E~ by



III 9 1110= Ilglioo + IIglio

where IIglloo is the supremum norm and IIglio is the Lipschitz constant for g:

and X n '! Yn.

.cuI = 1.

.cuf(x) = :L eU(Y) fey)·

P(u) = h~(a) +JtU[,t = 0

(ax)j = Xj+l.

if Xj = Yi for i = 0,··· , n - 1

We denote the shift on E~ by a :

V"le assume that

(1.1)

For U E Fo(E;), we define the Ruelle-Perron-Frobenius operator.c = .c. : .1'0(:81) --+

Fo(E~) by

Let Fo(E~) be the totality of real valued Lipschitz continuous functions on E~

(with respect to do ) and define the norm on Fo(E;) by

{
lg(x)-g(Y)1 }

Ilgllo=sup do(x,y) ;x,!y.

For a fixed 0 < () < 1, we can define the metric d = do on E~ by

(1.2)

If not, we can obtain (1.2) by replacing u. by u' = u + logh - loge h 0 a) - P(11) where

P(u) is the topological pressure for u and h is the eigenfunction of .cu corresponding to

the maximal eigenvalue eP(u) Hence we may assume (1.2) without loss of generality.

So we make this assumption throughout the paper.

Let I' = It. be the Gibbs measure for u. In our situation, the Gibbs measure

coincides with the equilibrium state. Hence Jl satisfies the following equality

(1.3)

.wh re h,,(a) is the metrical entropy. We remark that P(u) = 0 follows from our

as;umption (1.2) and that h,,(a) > O.



PROOF: Recall that

LEMMA 1.1.

N = 1,2,·

iNj(x) = .c(llzl'" . J)(x)

= L eU(Y)llzl",(y)j(y),

[Z]N == [ZOZI ... zN-d = {y E E;;Yi = zi,i = 0, ... N -I},

Now we fix a point Z E E; ,and denote cylinder sets by

VYe introduce the following singularly perturbed Ruelle-Perron-Frobenius operator

iN : Fe(E;) ---> Fe(E;) :

Since the measure (I is a-invariant, we can define a first return time from [Z]N to

[Z]N, denoted by TN(x), for (I - a.e. x E [Z]N for each N:

(1.4)

where [z]iv denotes the complement of the set [Z]N and llzl", is its indicator function.

holds for j, 9 E Fe(E;). Using this fact, we can immediately obtain the above

lemma. I

(15) j.cj·9d{l= jj.(goa)dJ.l

2 Basic properties of iN'

·The properties of spectrum of analytically perturbed Ruelle operator is well known

by the results of Ruelle and Pollicott ([R.I],[P.]). But we can not apply their results

directly to iN because it is a singularly perturbed one. So, in this section, we will

study some basic properties of iN.



(1\ , ... ,a p

LEMMA 2.1(LASOTA-YORKE TYPE INEQUALITY). For each N E N+, there exists a

constant CN, which depends only on N, such that the following inequality holds for

any h E F8(L;~) and any pEN:

+ sup 2: eSpu(a .... apy)leSpu(n •... npx)-Spu(n' npy) -ll·llhll
oo

d(z,y)~8n lIl,.",ap

I;,(h) = sup ll~h(x) -1~h(Y)I.
d(x,y):5,8 n

For n ~ N -1,

PROOF: By the definition of IN, we can write

(2.1)

where Spu(-) = Lj;:~ u(a i .) and the summation is taken over all words a, ... ap such

that a, ... ClpX E E~.

Put

with C' = lElk
I-B'

where we use the assumption (1.2): .cu 1 = 1. Hence,

(2.2) B-n . I;,(h) :s Ilhll 8 · (}1' + Cllhll oo

where C is a constant depending only on u and B.



For n < N - 1, the following inequality is trivial,

So we get

(2.3)

with CN= 201- N

By (2.2) and (2.3), we get

11£f..,hllo = supI~(h)
n~O

where CN = max{C'C'N}'

By Lemma 2.1, we can estimate the upper bound of the essential spectral radius of

£N.

LEMMA 2.2. The essential spectral radius of £N is not greater thliJl O.

PROOF: We can prove this lemma by the technique used by Pollicott ([ P.]). Define

a.compact linear operator E p : Fo(E~) ---> Fo(E~) by

where the summation is taken over all cylinder sets of length p.

By simple calculation, we can get the following inequalities:

and

Ilh - E"hll o :::; IIhll o.

Put KN,p = £f..,Ep . The operator KN,p is also compact because it is a composition

of a compact operator E p and a bounded operator £",y. By Lemma 2.1, we get

1I(£f.., - KN ,l,)hll o = 1I£",y(h - Eph)llo

:::; 0" ·lIh - E1,hllo + cNllh - Ephlloo

:::; 0" . (1 + CN )lIhll o.



And

1I(£j, - KN,p)hll oo = 1I£j,(h - Eph)lIoo

:::; IIh - Ephllex>

:::; IIhll o ' BP.

Therefore,

·Using the above inequality, we can see that the essential spectral radius of £N is

not greater than B by Nussbaum's essential spectral radius formula ([N.]):

sup{I>'1; >. is in the essential spectrum of £N} = }~~II£j,II~/P

where

1I£j, lie = inf{1I1£j, - J( 1110 ; J( : Fo(E~) --+ Fo(E~) is a compact operator}.

REMARK: From the definition of £N and the assumption (1.2): .cuI = 1, it follows

that the spectral radius of £N is not greater than that of .c u which is equal to 1.

So, by Lemma 2.2, the spectra of £N in the annulus {t E C;B < It I :::; I} consists

only of isolated eigenvalues of finite mutiplicity. We will denote them by p W} J'

Similarly, we will denote by p(j)}j the isolated eigenvalues of .c u in the annulus

{t E C;B < It I :::; I}.

3. The Zeta-function associated with £N'
The Ruelle-Artin-Mazur zeta function ((t) is defined as follows:

(3.1)

where al ... ap is a periodic point (L E E~ such that (Lkp+i = (Li for any /,; E N. It is

well known that the poles of ((t) are corresponding to the eigenvalues of .c.



PnOPOSITlON 3.1 (RUELLE [ R.I ]). Let >.(j) be the eigenvalue of £ in the annulus

{t E C; 0 < It I ::; 1} of multiplicity mi' Then xirr is the pole of ((t) in {t E C; 1 ::;

It I < O- I
} of the same multiplicity mi, and vice versa.

Now, we define a formal power series (N(t) as follows:

00 t P p-I

(N(t) = exp{L p L eSpu(x) IT I"IN(aix)}
p=l zEFlzpu j=O

(3.2)

We call it the zeta function associated with IN. Then, we can show the same cor­

respondence as in Proposition 3.1 between the eigenvalues of IN and the poles of

(N(t).

PROPOSITION 3.2. Let >.W be the eigenvalue of IN in {t E C;O < It I ::; I} of

multiplicity mi· Then, >:;!m is the pole Of(N(t) in {t E C; 1::; It I < O- I } of the same

multiplicity mi, and vice versa.

PROOF': This proposition can be proved by almost the same technique as in the proof

of Theorem A.I in [ R.II ], and so we will only sketch the outline of the proof.

Let Si", be the bases of generalized eigenspace of CN corresponding to >.W and

ai"j be the dual bases of the dual operator IN so that aJ", (Si",) = l.

'Ne define compact operators E" and T: N,p as follows:

(3.3)

and

(3.4)

Then, it is easy to see that the following two inequalities (3.5), (3.6) hold:

(3.5)



where CN is a constant depending only on N, and

(3.6)

Now,

LmjUW)p = L(AW)pLaj,~j(Sj,~j)
j j"'lj

= LOj,~j([f-,Sj"Yj)
j,"'j

= (1) + (II)

where (1) is the first term and (II) is the second term of the right hand side.

From the inequality (3.5) (3.6), it is easy to see that

(1) ~ canst . ()P

Next, we will estimate (11).

(II) = Laj,~j([f-,EpSj,~J
JOYJ

L LPj([f-,lla,apl)(aJ .. ·ap )

AQQII'·~·IQ~l j

where P j is the projection to the generalized eigenspace corresponding to A~) and

P is the projection corresponding to the part of the spectrum contained in the disc

{t E C;ltl:::: ()}.



The second term of (II) is bounded by canst· B'P for B' > B and therefore,

IL mj(>W)P - L lj"l[a,ap)(i!I··· c!p)1 :::; canst· B'P
j Qt"'lI p

A GpQ1 =1

Consequently, we can see

converges for tEe such that Itl· B' < 1.

THEOREM 3.3. Let us denote the convergence radius of (N(t) by iN. Then,.

lim iN = 1
N-oo

for J1. - a.e. z.

We remark that the convergence radius of ((t) equals to 1. So, the above theorem

implies that the convergence radius of (NCt) converges to that of ((t). In order to

prove this theorem, we need two lemmas, Lemma 3.4 and Lemma 3.5 below. The

proof of the theorem will be given thereafter.

In preparation, let us introduce some notations. Put

and

Then, of course,

((t) = exp L Cpt P

p=l

11



and

(N(t) = exp L, C~N)tP.
p;l

We put

{

(N)
D(N) = Cp - Cp ,

I' 0

and

p~N,

p> N

p~N,

p> N.

We define (~l(t) and (~El(t) as follows:

(~D)(t) = exp f D~NltP
p=l

and

(~E)(t) = exp f Etltp.
p;!

Then,

PROOF:

i) For p ~ N, it is trivial by the definition of E~N>'

ii) For p > N,

LEMMA 3.4. For p. - a.e. z,

J~oo E~Nl = Cp uniformly in p.

12



where L' means the summation taken over all words a, ... ap such that
al""Qp

.aj.+l ... apa, ... apE [Z]N for some j E {O,,·· ,P - I}. Hence,

Qt,· ,4 p
III "opElzlN

L eSpu(io "ZN_l bt··· bl··· bp_N).

btl'" ,b,._N

AZN_tbl =A"p_N.lO=l

Note

with J( =~. Therefore,

Cp - C~N) ::; eSNU(')ef( L eSp-Nu(b, bp_ N ')

"I" bp_N

AZN_1"t =A"p_N Z O=1

= eSNU(z)e/(,

where we use the assumption (1.2):£1 = 1. By the ergodic theorem,

and by (1.3),

. 1 J11m -NSNU(z) = udll
N-=

JL - a.e. z,

Therefore,

Hence we can see

lim SN1t(Z) = -00
N~=

for Il - a.e. z.

J~= ICp - C~N)I = 0

From i) and ii), we obtain

uniformly in p,

uniformly in p,

13

for Il - a.e. z.

for Il - a.e. z.



LEMMA 3.5. The convergence radius of(~)(t) is greater than 1.

~ eJ(1 eSpu(z)

= e/(I (e*spu(z»)P,

for It - a.e. z.- lim ~Sptt(z) = h,,(a) > 0
p-oo P

PROOF: Recall that (W)(t) = exp ~~=l(Cp - C~N»)tP.

For p:S: N,

with ](' = I~~I:. Therefore, the convergence radius of (~)(t) is not less than

exp{ -limp _ oo *Sptt(z)}.

And as we have seen in the proof of the previous lemma,

Hence the convergence radius of (~)(t) is greater than 1. I

COROLLARY 3.6. Denote by ~N the eigenvalue of l.N of maximal modulus. Then,

PROOF OF THEOREM 3.3:

Recall that (N(t). (~D)(t) = (~E)(t). By Lemma 3.4, we can see that the convergence

radius of (~E)(t) goes to 1 as N --+ 00, which is the convergence radius of (t), for

It - a.e. z. But the convergence radius of (~)(t) is greater than 1 by Lemma 3.5.

Therefore,

lim /N = 1
N-oo

for It - a.e. z.

lim ~N = 1
N-oo

for It - a.e. z.

PROOF: By Proposition 3.2, ~N = Il/N. Hence, by Theorem 3.3, ~N goes to 1 as

N --+ 00. I

REMARK: We can easily check by Lemma 3.4 and Corollary 3.6 that the convergence

radius of (1 - ~Nt) . (~E)(t) goes to that of (1 - t) . (t) as N --+ 00. Since 1 is the

14



simple pole of ((t), the modulus of the eigenvalues of IN execpt ).N do not go to 1

as N -> 00. Prccisely, there exists a number 0 < q < 1 such that for any N E N,

where Spec(IN) is the spectrum of IN.

4. Poisson law for Symbolic Dynamics.

In this section, we will show thc Poisson law for symbolic dynamics O:;~,a,I')'

We fix a point Z E E~, and take a cylinder set [Z)N as a neighborhood of =. On

[Z]N, we define a probability measure I'N as the restriction of the equilibrium state J1

to [ZIN, i.e.,

In order to study the limit distribution of the normalized first return time fNTN ,

where fN = l/E"N(TN ), as N -> 00, we consider its Laplace transform </>N(a):

Before we compute the limit of </>N(cr) as N -> 00, we prepare several lemmas.

LEM~IA 4.1. The operator IN : F9(E~) -> F9(E~) can be decomposed as follows:

where EN is the projection to the eigenspace corresponding to the eigenvaluc ).N of

maximal moduills, and ~ N is a bOllndedlinear operator such that

REMARK: The eigenfunction of IN corresponding to the maximal eigenvalue ).N is

P?sitive.

15



Then, by Lemma 1.1, we get for i ~ 2,

From Lemma 4.1, we obtain the following decomposition:

PROOF: By Lemma 2.1 (Lasota-Yorke type inequality), it is easy to see that the

operator ~Nl .IN :F8(E~) -; F8(E~) satisfies the conditions of the Tonescu-Tulcia­

Marinescu theorem([T.T.M.]). Then, it is a direct conclusion of that theorem that

~Nl ·IN can be decomposed as follows:

where EN is the projection to the eigenspace corresponding to the eigenvalue 1, and

ofi N is a bounded operator satisfying ENofi N = ofiNEN = O. Put ofi N = ~NofiN and

we obtain the above lemma. I

(4.2)

(4.3)

ILN(TN = i) =JliV
1
(L:1"IN)dILN

= ~iVl JEN(L:1I,jN)dILN +Jofi~I(L:1[,jN)dl'N-

The following result is well-known as a part of Ambrose-Kakutani's theorem ([PE.]),

but we will give a proof by using the operator IN for the completeness of the paper.

LEMMA 4.2.

1
€N = E"N(TN) = 1l([Z]N)

PROOF:

E"N(TN) = ILN(TN = 1) + LiIlN(TN = i)
1=2

= 1 + f Jl~ldIlN,
i=1

16



where we used the fact that

(4.4)

But, using the property (1.5), we can see

Then,

Therefore,

L.E:MMA 4.3. For I-' - a.e. z, there exist a positive integer No and a constant H and a

number q, 0 < q < 1, sud, that for any N > No

for any pEN.

PROOF: The resolvent operator of iN, say RN' can be formally expressed as follows:

= 1 -
= L tP+IL.jy·

p=o

We have already seen that AN ---> 1 as N ---> 00. But as we remarked below Corollary

3.6, the eigenvalues of iN of the second maximal modulus do not go to 1 as N ---> CXJ.

Therefore, we can choose 0 < q < 1 such that for N large enough,

17



and

sup{I,XI; ,X E Spec(.c) \ 1} < q

where SPCC(£N) is the spectrum of £N and Spec(.c) is that of .c.

Let f q be a circle of radius q centered at the origin. Then, we can write

'Recall the compact operator K N,p defined by (3.4) in the proof of Proposition 3.2.

For that operator, we have already seen the following inequality,

(3.6)

Then, for any x E E~,

It(£~ - K N,p)hll oo :5 (jP ·llhlto

IKN,ph(x)1 = I L h(al . ap)£~l[al . a"l(x)1
01 'Op

""'p 4 1=1

Therefore, using (3.6), we can see

Hence we obtain

ItRN(t)lltoo :5 e611 "1I. f Itl~+l L £1'lla\. a"j(al ... CL p )

p=l GlOp
A llpO ) =1

18



We remark that l/q is not a pole of

because we choose q so that it is not an eigenvalue of £. Hence, as ((l/q) converges,

there exists a constant C such that

Then, for N large enough,

where H is some constant which is independent of N.

LEMMA 4.4. For f' - a.e. z,

PROOF: For the simplicity, we put

Since f'U z E l:t z is periodic}) = 0, we may assume that z is not a periodic

point. For an integer p > 0, put

19



Then, for any x E [Z]N
p

and any words al' . ap,

aj···apx f/: [Z]Np j = 1,'" ,p.

Therefore, for any N > N p and any x E [Z]N, we can see

Recall that

Hence, for N > N p ,

= I[']N(x)' .cPI(x)

= I[.IN(x).

Therefore, Jl~Idl.lN = 1 for N > N p .

Now, we use the decomposition l~ = ~~EN + -t~ for any p and N > N p . Since

JENId!lN > 0 and 0 < ~N < 1, we can obtain

11- JENId!lNI ~ 11 - ~~JENId!lNI

= IJ-t~Id!'NI

~ 1I-t~Illoo.

Hence, by Lemma 4.3,

I· [EN} I' JE- d1m --_- = 1m NI /.IN = 1.
N-oo 1 - AN N-oo

20



LEMMA 4.5. For fJ. - a.e. z,

PROOF: Put [EN) = J EN(£l")N)dILN, and [~~I = J~~(£l"JN)dILN'

Then,

E1'N(TN) = J£l")Ndl'N + f(i + l){.x~[ENJ + [~~]}
1=1

where we use [~N) = J ~~(£l"JN)dILN = J ~N1dl'N - J ~;.jlldfJ.N'

Hence

By Lemma 4.3 and Lemma 4.4, for IL - a.e. z,

lim [EN] = 1.
N-oo EN

LEMMA 4.6. For IL - a.e. z,

lim EN f J~~ldI"N = O.
N-oo 1:::;)

PROOF: This lemma is obvious from Lemma 4.2 and Lemma 4.3.

Using the above lemmas, we can prove the following result.

21



THEOREM 4.7. For Jl - a.e. z, the jimit distribution of ENTN as N -t (Xl exists and

it is the exponential distribution with parameter 1, where EN = 1/E"N (TN).

PROOF: In order to prove the theorem, we will consider the limit of <PN(a).

= L e-C<'NiJlN(TN = i)
1=1

= e-C<'N {J £l[']NdJlN +f e-C<'Ni~~[ENl +f e-C<'Ni[tiJ~]}
1=1 i=1

where we used (4.3) and (4.4).

,By Lemma 4.4, we can see that for Jl - a.e. z,

The following equality is obtained by Lemma 4.4 and Lemma 4.5,

And we can see by Lemma 4.6,

IL(e-c<'Ni - 1)[tiJ~11 ~ aEN L i[tiJ~1
~] 1=1

-t O.

Therefore, for Jl- a.e. z,

lim <PN(a) = _1_.
N-oo 1 + a

22



This implies that the limit distribution of fNTN is the exponential distribution with

parameter 1. I

Next we will study the k-th return times TN(k) :

T (k)( ) - ~ T ( T(j)(x) )
NX=L...JNO'N X,

j=o

k = 1,2,'" ,

LEMMA 4.8. For each k ~ 1, fN(TN(k+l) - TN(k») has the same distribution as

fNTN . Therefore, for ~, - a.e. z, the limit distribution of fN(TN(k+ I) - TN (k») is the

exponential distribution.

PROOF': The measure JlN on [Z]N is an invariant measure of the induc d transforma­

tion of the shift a to [Z]N, i.e. a TN (-)(-) : [Z]N -> [Z]N. And therefore the following

equality holds:

This shows Lemma 4.8. I

We remark that the limit distributions of fN(TN(k+ 1
) - TN(k») are mutualy inde­

pendent because (E1, a, ~l) is weakly Bernoulli. ( See [B.] )

Hence we obtain the following proposition.

PROPOSITION 4.9. For Jl - a.e. z,

Here, let us define a point process on R+, say YNC), as follows:

where op is the Dirac 0 measure at p E R+ We will call it the normalized return time

process.

Then, the above proposition implies the following.
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TIIEOREM 4.10. For/t-a.e. z E E~, the sequence of the normalized return time pro­

cesses {YN}N converges to the Poisson point process as N ---> 00 in finite dimensional

distribution, i.e. for any disjoint Borel sets B,,· .. , B n E B(R+) and any non-negative

integers kll ··· ,kn ,

where eis the Lebesgue measure.

and define the metric don E A by

Let .re(E A ) be the totality of real valued-Lipschitz contiuous functions on E ..,_ Take

" E .re(EA ), and let jl" be the (unique) equilibrium state for u. But, one can find u'

which depends on only {Xi}~O and is homologous to u. Indeed, put

if Xi=Yi for i=-(n-1),··· ,n-1,

and if X_n of Y-n or Xn of Y,,·

d(x,y) = (}n

REMARK: By using the technique of Section 5, we can see that the above theorem

holds not only for the normalized return time processes associated with cylinder sets

{[Z]N}N but also for that associated with open neighborhoods {U,(z)}, such that

U,(z) ---> {z} as E ---> O.

Now, we can easily extend Theorem 4.10 to two-sided symbolic dynamics. Put

"O(X) = min,,(y)
y

and

"n(X) = min{,,(y) - "n-I (x) ; Xi = Yi for i = -n,·· . , n},

then, 'U = tt' + tv - tv 0 a where u' = L:~=o 'Un 0 an and 10 = L::C=o L~':~ u" 0 ok. \"l\fe

J·ep1ark that ,,' E .re(E~) and I'" = It,,'. Therefore, we may assume that" depends

on only {x;}~o.

Fix a point z E EA , and denote

-a[zh={XEEA ; Xi=Zi fori=-a,··· ,b},
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and

if N = 2m m ~ 0

if N = 2m - 1 m ~ 1.

For a point x E [ZJ(N), we denote its first return time to [ZJ(N) by T(N)(X), and the

k-th return time by T/;)) (x ). As ji" is a-invariant,

ft,,({X E [ZhN);T(N)(X) = i}) = ft,,(l[iIN . (l[iIN< oa)·· (ll iIN< 0 a H
). (l[iJN oa'))

= Jli~~(L:1[iIN) ·l[iI N
d ftu

=Jli~~(L:1[iIN)' 1I i IN dj.Lu,

where [Z]N =0 [a-[-'tlz]N, l[ilNf == L:(l[iIN< . J), and flu is the equilibrium state on

E~ corresponding to It.

Then, the problem is reduced to the case of (E~,a,j.L,,). It is easy to see that

Lemmas, Propositions and Theorems in Section 1, 2 also hold for l[ilN iristead of

IN. Define a probability measure ft(N) o~ [ZhN) by

Denote the normalized return time process on R+ by Y(N) :

where EN = l/Ej'(N)(T(N)).

Then, Lemmas and Theorems in the previous section hold for this system. Hence,

we can obtain the following assertion.

PROPOSITION 4.11. For iLu - a.e. z E EA ,

r - (-. T«(Nk)) _< t and EN' T(k+ 1
) > t) = ~e-tN'!?oo j.L(N) EN (N) /.;1'
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And the sequence of the normalized return time processes {Y(N)} N converges to the

Poisson point process as N ---> 00 in finite dimensional distribution.

5. Poisson law for Axiom A system.

Now, we will think about the Poisson law for Axiom A system. Before going to

prove the main theorem, we will recall some basic facts of Axiom A diffeomorphisms

( see [B.] about the details ).

Let I : !vI ---> !vI be a Axiom A diffeomorphism of a compact Coo Riemannian

manifold 111, and n = nu) be its non-wandering set. By considering the' spectral

decomposition of n, if necessary, we will assume that I In is topologically mixing.

Then a Markov partition of n, say R = {R, ,··· , R,.}, can be constructed. \<\Trite

a'R = Uj a'RJ and aUR = Uj auR j where a'Rj is the stable boundary of R
J

and

a"Rj is the unstable one. The structure matrix A = (Aij)i,j=I,. .. ,,. is defined by

{

I if int Ri n I-I( int R j ) =f <P
A;j =

o otherwise.

Then there exists a continuous surjection 1r : EA ---> n which satisfies 1r 0 (7 = I 0 1r .

.F~rtheremore, 1r : 1r-
1(n) ---> n is one to one, where n is a residual set defined by

n= n \ UjEz IJ(a'RU aUR).

Let u : n ---> R be a Lipschitz continuous function and I' u be the unique equilibrium

state for u. We remark that /-'u(n \ n) = O.

Now, fix zEn and put z = 1r-
I (z) = {z;}~_oo E EA. Let u' = u 0 1r and I' u ' be

the equilibrium state for u' on EA. Then /-'u = 1r·/-,u.' For the fixed zEn, denote

its f-neighborhood by U,(z), and define a probability measure /-,,011 U, by

Denote by T'J the first return time from U,(z) to U,(z). Put c, = 1/E1•• (T',J)'

Remark that c, = 11,,(U,(z)). Then the following theorem holds.

THCORCM 5.1. For It" - a.e. zEn, the limit distribution of ti,e first return time

c,T'J as f ---> 0 exists and it is the exponential distribution with parameter 1.

The proof of the above theorem will be given after several lemmas.
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Define for € > 0 sufficiently small

and

For simplicity, we put U, = 7r- 1(U,(z)) and ,I = ,t u •• We can choose a set V, C E.4

which is a finite union of cylinder sets such that

and

And we can choose W, c EA which is a finite union of cylinder sets such that

W,CU,

and

For an open set V C EA , we denote the first return time from V to V by Tv:

Tv(x) = inf{i E N+jaix E V}.

Remark that Tv(x) is finite for ,I -a.e. x by Poincare's recurrence theorem. And we

define a probability measure /.IV on V by

plv
,IV = p(V)'

LEMMA 5.2.

,lv,(Tv, = i) - 2/1(V,)2 S; "u,(Tu, = i)

S;PIV,(TIV, =i)+2,I(W,?

PIlOOF: Denote the first hitting time from U, to V, \U, by Tu" i.e., for 'I-a.e. x E U"
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Similarly, we denote the first hitting time from V, \ U, to U, by Tv, \U,' Then the

following inequality is obvious:

}1(X E V,; Tv, (x) = i) ::; },(x E U,; Tu,(x) = i) + }1(X E U,;Tu,(x) = i)

+ /l(x E V, \ U,;Tv,\u,(x) = i) + /l(x E V, \ U,; Tv,\u, (x) = i)

= (1) + (2) + (3) + (4).

But it is evident that

and

Therefore,

.) (1) ()2
/-lv,(Tv, = I ::; /-leV,) + 2/l V,

::; /-lu,(Tu, = i) + 211(V,)2.

The second inequality can be proved in a simillar manner.

LEMMA5.3. For any positive number Q > 0,

and

PROOF: By the way of the choice of V, and W" it is obvious that

and

Hence I,(U,)!J'(V,) andll(U,)!JI(W,) go to 1 as € -+ O. Therefore we can obtain the

above lemma by simple ca.lculation. I
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and

LEMMA 5.4. For /l-u - a.e. z,

(5.2)

'(5.1)

PROOF: As we have seen in the previous section, it is enough to prove the lemma in

tile case of one-sided symbolic dynamics. Therefore we may assume that V" IV, C

[Z]N+(,) C E~.

We will only prove (5.1), because (5.2) can be proved in a simillar manner.

Define a singular perturbed Perron-Fl"Obenius operator ill, : Fo(E~) -> Fo(E~) by

iIlJ(x) = .c(111,' . J)(x).

As the set V, is a finite union of cylinder sets, we can obtain the following Lasota- Yorke

type inequality by a similar calculation as in the proof of Lemma 2.1 ;

(5.3)

where cv, is a constant depending only on V,.

Then we can see the essential spectral radius of ill, is not greater than (J . ( cf.

Lemma 2.2)

Define the zeta function associated with iv, as follows:

00 tP p-I

(v,(t) = exp{L p L eSpu(x) II 1 11,'(ai x)}
p=l xEFaxpu )=0

Then the same correspondance as Proposition 3.2 holds between the eigenvalues of

ill, and the poles of (v.(t). In particular, the eigenvalue of ill, of maximal modulus,
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say ).v,> is equal to the inverse of the convergence radius of (v,(I), say Iv,. As

V, C [i]N+(,»

Hence lv, ~ IN+(,) >i.e., ).N+(,) ~ ).v,. Consequently> as lim,_o ).N+(,) = 1, we get

!~).v,=l.

By the Lasota-Yorke type inequality (5.3) and the Ionescu-Tulcia-MarinesclI theorem,

we can obtain the decomposition:

£v, =).v,Ev, +<iJ v,

where the oprator Ev, is the projection to the eigenspace corresponding to the eigen­

value ).v, and the oprator <iJ v, is a bounded linear operator such that E v, ~ II, =

~ v, Ev, = O. Then the same assertions as Lemma 4.3, 4.4, 4.5, 4.6 remain valid for

Ev, and <iJ v, as f --> O. Therefore we obtain (5.1) by a similar calculation as in the

proof of Theorem 4.7.

PROOF OF THEOREM 5.1: We will denote by ,p,(a) the Laplace transform of the

normalized first return time c,T,.! :

= L e-"c.i{,,(T,.! = i)
i=1

= Le-"c'I'(u·)IlU,(Tu. =i)
i=l

and consider the limit of ,p,(a) as f --> O. By Lemma 5.2 and the inequality {'(W,) ~
{,(U,)~{,(V,),

f e-"I'(V')llv, (Tv, = i) - 2{,(V,)2 f e-"I.(U,)i
i=1 i=1

~ L e-"I'(w,) Ilw, (Tw• = i) + 2fL(W,)2 f e-"I.(U,)i.
i=} i=l
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By Lemma 5.3 and Lemma 5.4, we get

lim ,p,(a) = _1_.
,-0 l+a

This implies Theorem 5.1. I

We denote the k-th return time by T,jkl,

k-l

T,jkJ(X) = 'I:,T,,JUT,./i)(x)X)
j=O

k = 1,2,·

where T,jO) == O. And we define the normalized return time process Y, as follows:

00

Y,(-) = 'I:, '\,T,,/(k)O'
k=]

As (n,flu,I) is mixing, the same statements as Lemma 4.8 and Proposition 4.9 hold

for the normalized k-th return times c,T,,J(k) Therefore we obtain the main theorem.

THEOREM 5.5. For flu - a,e, zEn, the sequence of the normalized return time

processes {Y,}, converges to the Poisson point process as f --> 0 in finite dimensional

distribution, i.e. for any disjoint Borel sets B]," . ,B" E B(R+) and ally non-.negative

integers k 1 ,' •• , k",

where eis the Lebesgue measure,

6. Countelo-example.

As is mentioned in the introduction, Theorem 5,5 does not hold for every point

zEn. In this section, we will consider the typical counter-example, the case where

.a point zEn is periodic. As we have seen in the above sections, the problem can be

essentially reduced to the case of one-sided symbolic dynamics, and so we will only

consider the system (B~, a, fl). The essential point is that Theorem 4.7 fails whenever

a point z E B~ is periodic. Indeed, the limit distribution of the normalized first return
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time fNTN as N -t 00 exists but is not an exponential distribution, but it turns out

to be a linear combination of the delta-distribution and an exponential distribution.

We assume that a point z E E~ is a periodic point with period m. By the same

technique of the proof of Lemma 3.4 and Lemma 3.5, we can see that the equality in

Lemma 3.4 and the statement of Lemma 3.5 remain valid even if a point z is periodic.

Hence the eigenvalue of iN of the maximal moduls, ~N, converges to 1 as N -t 00

and the statement of Lemma 4.3 holds. But in this case, Lemma 4.4 does fnil, i.e.,

JEN l{LN does not converge to 1. Indeed, we can obtain the following.

LEMMA 6.1. For a periodic point z E E~ with period m,

PROOF: Recall that

Fix kEN arbitrary and put p = km. For N large enough,

at ···arn(A:_l)

Then,

-t 0 (N -t 00).

Therefore, for nny ]J = km,
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On the other hand, by Lemma 4.3, the following inequality holds for large N,

~ 11~~111<x>

~ HqP.

We fixed p = km arbitrary and ~N goes to 1, therefore,

THEOREM 6.2. For a periodic point Z E E::'; with period m, the limit distribution

of the normalized first return time ENTN as N --+ 00 exists and it is the linear

combination of the delta-distribution and the exponential distribution. Precisely,

where pz = 1 - eSm u(z).

PROOF: By Lemma 6.1 and a similar calculation as in the proof of Lemma 4.5 , we

obtain

lim JEN(£l(z)N)dJ.LN = l...
N-oo EN .

Then the limit of the Laplace transform of the normalized first return time, rPN(a),

is given by

lim rPN(a)=l-pz+pz'-P_z-
N-<x> a +pz'

This proves the above theorem. I
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