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0 Introduction.
Recently, Ya.Sinai studied the dis

ribution of spacings between nearest energy levels

of a quantum particle on the two-dimensional compact Riemannian surfaces, and he
shows the limiting Poisson distribution for spacings of quasi-classical eigenvalues for

the quantum kicked rotator model ( [S.I], [S.IT] ). The essential point of the proof is to

reduce the problem to studying some ergodic transformation on T2. He considers the
distribution of the visiting times of the trajectory to a certain horizontal strip, and
obtained the limiting Poisson point process as the width of the strip tends to zero.
And he points out that the way of appearance of the above Poisson point process is
quite different from that in the usual situations in probability theory. This fact is very
inicrt‘sting from the ergodic theoretical view point. Inspired by it, we will consider
the following problem.

Let X be a compact metric space, f a continuous map on X, and p an f-invariant
probability measure on X. Fix a point z € X and take its e-neighborhoods U,(z). As

a probability measure on U(z), we will take the restriction of u to U(z), i.e.
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Denote the k-th return time of a point @ from U,(z) to U.(z) by T,‘/“‘)(.r). Then, we

want to know what is the limit distribution of the normalized k-th return times
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as € — 0.
Next let us introduce a counting measure ( N*-valued Radon measure on Rt ),

Y.(z), defined by

oo
=~ Z‘% Te, s (¥)(z)>
k=1

where ¢, = l/E,“(T(_](”) and 6, is the Dirac §-measure at p € R*. Then, Y,(-) is
a point process on R*. We will call it the normalized return time process. And the
above problem can be considered as follows: what is the limit of the sequence of the
normalized return time processes {Y,}, as e — 0 ?

It is expected that the limit distribution of the normalized first return time is the
exponential distribution and that the limit distribution of the normalized return time
‘process is the law of Poisson point process if the system (X, f, i) is "chaotic” in some
sense (for example, ergodic, mixing, etc.). Let us say that the Poisson law holds if it
is true.

In this paper the author considers the above problem for the typical ”chaotic”
system, namely, for the Axiom A system, and shows the Poisson law for it.

Let M be a compact C*° Riemannian manifold and f : M — M be an Axiom A
diffeomorphism. We denote its non-wandering set by Q = Q( f) and assume that fla
is mixing. Take a Lipschitz continuous function u : @ — R and denote the (unique)
Gibbs measure (= the equilibrium state) for u by u = p,. Fix a point z € Q, and

take its e-neighborhoods {U(z)}. The main theorem is the following:

THEOREM. For ji— a.e. z € Q, the sequence of the normalized return time processes
converges to the Poisson point process in finite dimensional distribution: for any
disjoint Borel sets By,- -+ , B, € B(R), and any non-negative integers ky,--- ,k

s Ry

ki
e~ UB),

lim 1 (Ye(By) = by, Yo By) = ky) =

where £ is the Lebesgue measure.

It should be emphasized that the main theorem holds for y — a.e. z, but not for

every point.




COUNTER-EXAMPLE. For a periodic point z € Q with period m, the limit distribution

of the normalized first return time is the linear combination of the delta-distribution

and the exponential distribution. Precisely,

1;;15,16((,1“) <t)=1-—p. +p:(1—e*Y)
o

where p, = 1 — exp{u(z) + u(f(z)) +--- + u(f™"1(2))}.

The main theorem holds only if the eigenvalue of the operator £y defined in Section
1 which goes to 1 as N — oo is unique, or more precisely, if the number of the
eigenvalues of £y contained in a small neighborhood of 1 is only one for large N.
‘Otherwise, the limit of the normalized return time process is expected to obey a
compound Poisson law.

The proof of the theorem will be given in Section 5. In Section 1, we introduce
the singularly perturbed Ruelle- Perron- Frobenius operator which is the main tool to
prove the theorem. We study its basic properties in Section 2. The relation between
the eigenvalues of that operator and the poles of the Ruelle-Artin-Mazur zeta function
is studied in Section 3, which plays the most important role in the proof. In Section
4, we show the Poisson law for symbolic dynamics which is the essential part of the
proof of the above theorem. The main theorem can be proved by approximating e-
neighborhood by a finite union of cylinder sets associated with a Markov partition of
Q in Section 5. The counter-example will be shown in Section 6.

After the author finished writing the present paper, he found B.Pitskel’s paper
entitled ” Poisson limit law for Markov chains » ( Ergod. Th. and Dynam. Sys. 11
(1991), 501-513 ). In that paper, he proved the Poisson law for the recurrence to

cylinder sets for a mixing stationary Markov chains with finite state space.

Acknowledgment. The author would like to thank Prof. Y. Takahashi for showing
him Sinai’s preprints which led him to this problem, and also for his encouragement

and helpful discussions.

1 Set up.
Let J = {1,---,7} be a finite set and A = (Aij)i ;=

.r be an irreducible rxr

matrix with entries 0 or 1. Define the space EX by

Sh=do={202.67;

=1 forallie N}.
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For a fixed 0 < 6 < 1, we can define the metric d = dj on Eﬁ by

dg(z,y) = 6" if &; =y; for 1 -,n—1 andp: % Yn-

We denote the shift on Ej‘ by o :

(02)i = zig1.

Let Fp(S}) be the totality of real valued Lipschitz continuous functions on %%
A Y E A

(with respect to dy ) and define the norm on fg(z’:) by
g llle= llglls + llalle
where ||g|| is the supremum norm and ||g||g is the Lipschitz constant for g:

llglle = sup {L‘('M)"‘; z # y} :

do(z,y)

Foru € fg(Sx ), we define the Ruelle-Perron-Frobenius operator £ = £, : Fy( S*\) o

]:g{‘:_“_:) by

(1.1) Luf(z)= Y e@f(y).

oy=z
We assume that
(1.2) L lt =18

If not, we can obtain (1.2) by replacing u.by v’ = u + logh — log(h o o) — P(u) where
P(u) is the topological pressure for v and h is the eigenfunction of £, corresponding to
the maximal eigenvalue ¢”("). Hence we may assume (1.2) without loss of generality.
So we make this assumption throughout the paper.

Let p = p, be the Gibbs measure for u. In our situation, the Gibbs measure

coincides with the equilibrium state. Hence y satisfies the following equality

(1.3) P(u) = hy(o) + /u(lp =0

where h, (o) is the metrical entropy. We remark that P(u) = 0 follows from our

as;umpt,ion (1.2) and that h,(o) > 0.
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Now we fix a point z € £} , and denote cylinder sets by
[z]NE[Z(,zl..,z,\ul]:{]/EEX;y,:Z,,i:U ..... N -1}, N=,2 -

Since the measure p is g-invariant, we can define a first return time from [z]y to

[z]n, denoted by Tn(x), for u —a.e. z € [z]n for each N:
Tn(z) =inf{i € N*;0'z € [z]n}.

We introduce the following singularly perturbed Ruelle-Perron-Frobenius operator
Ln : Fo(Bh) = Fo(BH) :
Ly f(@) = LA - ()
(1.4) = > W1 (v)f(y),

oy=z

where [2]§; denotes the complement of the set [z]y and 1j4)¢, is its indicator function.

LEMMA 1.1.

uw({z € [2]n; Tn(z) = i}) = /Z’[\;l([(llz]_\,))(I)l[:]N(,1')”((1.17).

PROOF: Recall that

(1.5) /L'.f~!ﬂ1/t = /.f~(000)f1/t

holds for f,g € fg(SjL). Using this fact, we can immediately obtain the above

lemma.

2 Basic properties of E‘\r.
“The properties of spectrum of analytically perturbed Ruelle operator is well known

by the results of Ruelle and Pollicott ([R.I],[P.]). But we can not apply their results

directly to EN because it is a singularly perturbed one. So, in this section, we will

study some basic properties of Ly.
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LEMMA 2.1(LASOTA-YORKE TYPE INEQUALITY). For each N € Nt there exists a
constant cy, which depends only on N, such that the following inequality holds for

any h € fg(Eﬁ) and any p € N:
@1 123 hlls < 67l[Allo + exlhllco-
PROOF: By the definition of EN, we can write

Ef:,h(:r): Z ('S’"'“'““"L)][z];’(ul...(A,,J')‘..1[1]:\((17,.“/1(111.,.u,,.:)

dye— 0y

7 S s
where Spu(-) = Z;':” u(0”?-) and the summation is taken over all words a, ---a
that a; ---a,z € E+‘

Put

, such

IX(h)= sup |LBh(z)— LRh(y)|-
d(z,y)<6n

Forn>N -1,

I*(h)= sup | Z eSeulas "“”’)1{:]%(01««-a,..‘r)---1[;];((1,,1‘)}1((1, -~ apT)
d(zy)<on - ; f

2ap

- Z SO @D e (0 apy) - Lags, (ap)h(as - - - ayy)]

a0

< sup Z \f‘s"“‘“"‘“"”h(al---upm)755"““‘" ¥ h(a, -ayy)|

dzy)<om o

< sup Z eSru(ar- “P‘)M(al ---apz) — h(ay - - apy)|

d(z,y)<0" o0 o

G- s Z eSrularap) | Spular-ay 2)=Syularapy) _ 1| |ln]loo

Az Y)<0™ 4, T,

IA

lIBllg - 647 + C"eC" " |h]|os - 6"+ with C' = ‘H“,“(;f

where we use the assumption (1.2

L,1 = 1. Hence,
(2:2) 07" - IR(R) < [|klle - 67 + Cl]| o
where C' is a constant depending only on u and 6.
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For n < N — 1, the following inequality is trivial,
IR (h) < 2||A|oo-
So we get
(2:3) 67"Ii(h) < Cy|Ihllo
with Cjy = 261—N.
By (2.2) and (2.3), we get

1C% Rl = sup I2(R)
n>0

: <67 lkflo+en - |IA]lco-
where ¢y = max{C,C}\}. I

By Lemma 2.1, we can estimate the upper bound of the essential spectral radius of
L.
LEMMA 2.2. The essential spectral radius of Ly is not greater than 6.

PROOF: We can prove this lemma by the technique used by Pollicott (| P.]). Define

a,compact linear operator E, : 7"—5(2:) — Fo(Z}) by

f[ﬂ‘ ) hdp

Eyh(-) = < llar ...a,,])llm ~a,)(*)

[ax-
where the summation is taken over all cylinder sets of length p.
By simple calculation, we can get the following inequalities:
Ik = Eyhlloo < |IRllo - 67
and

[l = Ephllo < ||hlo-

Put K, = L% E,. The operator Ky

is also compact because it is a composition

of a compact operator E, and a bounded operator L‘”\ By Lemma 2.1, we get
I(ZR = Ky p)hle = 123 (h = Eyh)o
<67 ||h— Eph|lg + en|lh — Eph|loo
<67 - (1+cn)|lhlls-
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And
IR = Bnp)hlloo = 1E5(h — Eyh)oo
< |lh = Ephlloo
< ||kllq - 67.
Therefore,

Il 2% — Ry lllo< (e + 2)6°.

‘Using the above inequality, we can see that the essential spectral radius of E‘\ is

not greater than 6 by Nussbaum’s essential spectral radius formula (IN.]):

sup{|A[; A is in the essential spectrum of Ly} = lim |[E{'\,||3/P
p—oo

where
1E2lle = inf{ 1 £%, — K |llo ; K : Fo(EX) — Fo(S%) is a compact operator}
1

REMARK: From the definition of E‘V and the assumption (1.2): £,1 = 1, it follows
that the spectral radius of [»V is not greater than that of £, which is equal to 1.
So, by Lemma 2.2, the spectra of Ly in the annulus {t € C;6 < [t| < 1} consists
only of isolated eigenvalues of finite mutiplicity. We will denote them by {,\(\”)J.
Similarly, we will denote by {A9)}; the isolated eigenvalues of £, in the annulus

{teC;o<|t| <1}.

3. The Zeta-function associated with EN.

The Ruelle-Artin-Mazur zeta function ¢(t) is defined as follows:

~ S tP Spu(z
W=e(3 0 ¥ e

p=1 " z€Fiz,o

AP ' .
(3.1) :nxp{% = ) . LP1a,.q,i(@r - dp)}
PEL 1 sErAr
Epay=

where @, -+- @, is a periodic point a € E_ﬁ such that axp4i = a; for any k € N. It is

well known that the poles of ((t) are corresponding to the eigenvalues of £.
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PROPOSITION 3.1 (RUELLE [ R.I ]). Let AY) be the eigenvalue of £ in the annulus
{t € C;0 < |t| < 1} of multiplicity m;. Then F‘T) is the pole of ((t) in {t € C;1 <
|t| < 6~} of the same multiplicity mj, and vice versa.

Now, we define a formal power series {x(t) as follows:

A © 4p ) p—1
Cn(t) = exp{ = Z ) H 11, (072)}
p=t zE€Fizyo =0
® p i ' _
(3.2) = ('x]){Z; Y By eap(ar - ap))
p=1 S1eGy
apa; =1

We call it the zeta function associated with £y. Then, we can show the same cor
respondence as in Proposition 3.1 between the eigenvalues of £y and the poles of

Cn(t).

PROPOSITION 3.2. Let A'_\’,’ be the eigenvalue of Ev\‘- in {t € C;0 < |t| < 1} of

multiplicity m;. Then, —s; is the pole of {y(t) in {t e C;1 < |t| < 67!} of the same

X )

multiplicity mj, and vice versa.

PROOF: This proposition can be proved by almost the same technique as in the proof
of Theorem A.1 in [ R.IT ], and so we will only s
Let S

230

cetch the outline of the proof.

be the bases of generalized ei »ace of Ly corresponding to AY) and
& gensy I T g N

0;,+; be the dual bases of the dual operator E\ so that 0 ,(S;;) = 1.

We define compact operators E, and Ky, as follows:

(3.3) Bph()= Y. h(arap)  ayea)()
and
(3.4) K= L5y

Then, it is easy to see that the following two inequalities (3.5), (3.6) hold:

(3.5) (L% — K np)hlle < 87(1 + en)l|hllo

9
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where cy is a constant depending only on N, and
(3.6) I(ER = T wp)hlloo < 67 - |Ilo.

Now,

Z m;“fw’”‘" = Z(’\E\I" ) Z 5,7 (Si)

7 - vl
o Z 957 (lesm, )
17
= i (ER B np)Sing) + 3 0 (BwpSing)
1 1
=(I)+ (1)

where (I) is the first term and (II) is the second term of the right hand side.

From the inequality (3.5) (3.6), it is easy to see that
(I) < const - 67.
Next, we will estimate (I7).

1) = Zg]v"u(/j{'l\’EPSJﬂ; )

3

= Z ZSJ-%({.“ "'ELI')aJrW)(Efi/llﬂl o))

s e
Aayuy =1 0

= Z Z'pllfgll(u,»»-uy])(ftl“»(z,,)
T

Aapay =1

= Y BBt )= Y PLYIayany(ar - p)

ayiiap
Aspey=t Aa

par =t
where P; is the projection to the generalized eigenspace corresponding to ,\(\{) and
P is the projection corresponding to the part of the spectrum contained in the disc

{t e Gt < 0).
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The second term of (I1) is bounded by const - 6'7 for 8' > 6 and therefore,

[Z m,(,\(’,\],’)” = Z E’/’vl[ar“np](‘-“ cwap)| < const - 07
b

b S )
Aapa; 1
Consequently, we can see

Ev@®) - TT - ARyms

]

0. 49 = -~
:('xp(Z;( N Lol j(ar #485) > m;0)
p=1 &

Aeyey 1 J
converges for t € C such that [t|-6' < 1. §
THEOREM 3.3. Let us denote the convergence radius of g:,ytt) by tn. Then,

lim iy =1 for p—a.e. z.

N—oo
We remark that the convergence radius of ((t) equals to 1. So, the above theorem
implies that the convergence radius of é_\'(t) converges to that of ((¢). In order to
prove this theorem, we need two lemmas, Lemma 3.4 and Lemma 3.5 below. The

proof of the theorem will be given thereafter.

In preparation, let us introduce some notations. Put

1 £ §
Cp=-= Z C”l(a‘ -ap)(@1 -+ ap)

: L
! h‘,m,f\
and
W = L CNllﬂl ay)(d1- -+ p).
A.,,u,

Then, of course,

oo
) = exp Z cytr

p=1
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and

Cn(t) = opoCLN’t".

p=1
We put
DM { C, -, PN,
Bl
0 p>N
and
W) _ C, p<N,
= le™ e
We define f;\,[))(t) and g:jvm(t) as follows:
. o
Pty = expz DM
p=1
and
iy oo
v(\vE)(t) = expz E;,N)i”.
=
Then,

= (D A(E;
v - {00 =P ),
because CJ™) + DIV = BV
LEMMA 3.4. For p—a.e. z,

\!im E'()N) =C, uniformly in p.
N—co

PROOF:
i) For p < N, it is trivial by the definition of E,(,N'.
ii) For p > N,
N (N)
CG—EN =0~ CF

i * = .
= Spulay--ay)
== e »

P Z

ay-ap
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where E means the summation taken over all words a; --+ap such that
ay--ap

—1}. Hence,

.@j41°*Apay -+ @y € [2]y for some j € {0, ,
Cy— B < T Sutay)

= > eSpultorzn_abiwbiobyn)

Asn_18=Ab,_yzo=!

Note
Spu(2o - 2n_1by "'LF—N) < Snu(z) + Sp-nu(by -+ by_nz) + K

with K = q%‘;—’ Therefore,
Cp a Cv‘(’N) < (_’SNM(Z)EI\ Z CS,,,Nu(b‘“ bp-nz)

by N

Asn_ 181548, _yzo=!

< eSNu) K pp=Ny ()

= eSNu) K

where we use the assumption (1.2):£1 = 1. By the ergodic theorem,
li ! Snu(z) 1,
im —Syu(z) = [ ud L —a.e. z,
o N R

and by (1.3),
/,u//, = —hy(0) < 0.

Therefore,
lim Syu(z) = —c0 for u-—a.e. z.
N—oo
Hence we can see
lim |C), — cM|=o0 uniformly in  p, for p—ae.z.
N—oo E

From i) and ii), we obtain

|=0 uniformly in  p, for pu—ae. z.

lim: [Gy— B
Nﬁwl L -




LEMMA 3.5. The convergence radius of (\2)(t) is greater than 1.

PROOF: Recall that (7 (t) = exp S (€, — SV v,
Forp< N,

1 e
_comn_1 Spulay--ap)
Cp—CyV'= = E et »

ay--ap
< K’ ¢Spu(z)

— K (3 Srua)ye,

: & z (D 3
with K’ = I—!':ué'. Therefore, the convergence radius of g! )(t) is not less than
; 1 .
exp{—lim,_.o ;5‘,u(4)}.

And as we have seen in the proof of the previous lemma,

— lim 75 u(z) = hy(o) >0 for p—ae.z.

p—oo

D
Hence the convergence radius of g; ’(t is greater than 1. |

PROOF OF THEOREM 3.3:
Recall that g\rH) ‘(”) {t)= g:_(\m(t), By Lemma 3.4, we can see that the convergence
radius of W (1) goes to 1 as N — oo, which is the convergence radius of ((t), for

Al )(tj is greater than 1 by Lemma 3.5

# — a.e. z. But the convergence radius of (s
Thcrcforo,

for p—ae. z.

COROLLARY 3.6. Denote by ,\N the eigenvalue o[['vlv of maximal modulus. Then,

lim Ay =1 for p—ae. z.
N—oo

PROOF: By Proposition 3.2, Ay = 1/fy. Hence, by Theorem 3.3, Ay goes to 1 as
N = oo It
REMARK: We can easily check by Lemma 3.4 and Corollary 3.6 that the convergence

radius of (1 — Ayt)- ¢ ?)(t) goes to that of (1 —¢) - ((t) as N — co. Since 1 is the
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simple pole of ((t), the modulus of the eigenvalues of Ly execpt An do not go to 1

as N — oo. Precisely, there exists a number 0 < ¢ < 1 such that for any N € N,
sup{|A; A € Spec(Ln) \ v} <q
where S])CC(ZN) is the spectrum of £ y.

4. Poisson law for Symbolic Dynamics.

In this section, we will show the Poisson law for symbolic dynamics (£, 0, )
We fix a point z € £, and take a cylinder set [z]n as a neighborhood of z. On

[z]n, we define a probability measure uy as the restriction of the equilibrium state

to [z]wn, i.e.,

T Al

(G

In order to study the limit distribution of the normalized first return time enTn,
where ey = 1/E,(Tn), as N — oo, we consider its Laplace transform ¢n(a):
70(N'I‘N)

on(a) = un(e

= /e_"“"'T‘\"”;L‘\v(z[I).

Before we compute the limit of ¢n(a) as N — oo, we prepare several lemmas.
LEMMA 4.1. The operator EN : fg(Z‘j) — ]"g(E':) can be decomposed as follows:
(4:1) Ly =AnEy+ 0y

where Ey is the projection to the eigenspace corresponding to the eigenvalue \y of

maximal modulus, and ¥ is a bounded linear operator such that
EnYy =¥YNEyNy =0.

REMARK: The cigenfunction of Ly corresponding to the maximal eigenvalue ,i‘v is

positive.




PROOF: By Lemma 2.1 (Lasota-Yorke type inequality), it is easy to see that the
operator A‘Tv' Ly Fo(2

Marinescu theorem([L.T.M.]). Then, it is a direct conclusion of that theorem that

) — Fo(£}) satisfies the conditions of the Tonescu-Tulcia-

At - L can be decomposed as follows:
N 244 I
il 3
Ay "Ly =En+ Ty

where Ey is the projection to the eigenspace corresponding to the eigenvalue 1, and
¥y is a bounded operator satisfying Eniy = I Ey =0. Put Iy = Ay 'y and

we obtain the above lemma. J
From Lemma 4.1, we obtain the following decomposition:

(4.2)

Then, by Lemma 1.1, we get for 7 > 2,
un(Ty =1) = /E?‘(U[:]_‘; Ydpn
(4.3) = X /E.‘N(Cl[;]N)(l/LN +/¢r',;l(m[z]N)d,LN.

The following result is well-known as a part of Ambrose-Kakutani’s theorem ([PE)),

but we will give a proof by using the operator £y for the completeness of the paper.
LEMMA 4.2.

1

N = m = u([z]n)

PROOF:

By (Tn) = un(Ty = 1)+ Y ipn(Tw = i)

i=2

= ‘/AC(I[:],\,)J;LN+z:i/fnv
i=2

](Cl[:]N Ydpn

oo
=1+ Z/Zf»v-ld;LN,

=

16
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where we used the fact that

(4.4) L1, =1 - Enl.

AN

But, using the property (1.5), we can see
n(lzly) = X/l[z];, “(Uagg, 00) -+ (L, 0071 - (Ipzgy 0 0% )dlpe
i=1

= Z/Ef\yl A dp.

=1

Then,

Therefore,

LEMMA 4.3. For p— a.e. z, there exist a positive integer Ny and a constant H and a

number ¢, 0 < ¢ < 1, such that for any N > N,
|95 1)lo < H-¢?  for anyp e N.
PROOF: The resolvent operator of 2;\:, say Ry, can be formally expressed as follows:

Ry(t) = (tI - Ly)™!

We have already seen that S\N — 1 as N — oo. But as we remarked below Corollary
3.6, the eigenvalues of Ly of the second maximal modulus do not go to 1 as N — oco.

Therefore, we can choose 0 < ¢ < 1 such that for N large enough,

sup{|Al; A € Spec(Ly) \ X\} < g< x|

17




and

sup{|A; A € Spec(£)\1} < ¢
where Sp(‘('([:N) is the spectrum of EN and Spec(L) is that of L.

Let T'y be a circle of radius ¢ centered at the origin. Then, we can write

Sl t? Ry (t)dt.
.

27 Jp,

‘Recall the compact operator FN‘,, defined by (3.4) in the proof of Proposition 3.2.
For that operator, we have already seen the following inequality,

(3.6) (5 = T np)hlloo < 67 - [|A]lo-

Then, for any z € S¥,

Bnph@) =1 3 hlar--ap)Lh1 1, ap(2)]

< S |h(ar - )P, 0, (2)

Aapay =1

< |Afloo - €75 Nulle > LUy (@1 dp).

ayap
Aapay =t

Therefore, using (3.6), we can see

¥ 1 Sy i et L oy M
RN ®lloo =171+ 3" g (B~ Enah+ Y s Knphllee

p=1 p=1
20 gP EPETT -G | - .

S Helle 3 s + Wbllase ™0 37 s 37 21t - dy).
=0 p=1 ajiaiy

Aepay=t

Hence we obtain

r L - 1 ~p . .
RN ()10 < em=olivlle 3™ GG D LUy (o).
= of

ap
Aspay =t
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We remark that 1/¢ is not a pole of

iy . .
<(r):vxp{2; D, Pl a2+ ap))s

p=1 OO

»
Aapay =t

because we choose ¢ so that it is not an eigenvalue of £. Hence, as ((1/q) converges,
there exists a constant C' such that
B8 (@)1l < C.

Then, for N large enough,

5 n 1
195 lloo < 1 RN ()10 - |5

/ trdt|
o8
<H-¢

where H is some constant which is independent of N. |

LEMMA 4.4. For p— a.e. z,

. [ En(Ly
lim ——
N—oo =

! — lim /E_\'h[/t_\' =k
N—

+00

PROOF: For the simplicity, we put
[En] = /E,\r(a[;,\ )dp .

Then, by using L1y =1— Z;\rl,
[Ex]=(- X.'»')/A’i'.wltlu,w

Since pu({z € EX; z is periodic}) = 0, we may assume that z is not a periodic

point. For an integer p > 0, put

log(dg(z,0'2))
N, = ax ol
SR e
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Then, for any z € [z]n, and any words a, - - a,,
aj---apz ¢ [2]N, =0 s m
Therefore, for any N > N, and any z € [z]n, we can see
Liggiataladnlan)=L
Recall that

B =3 SO () apz) - 1 (apa).

aj-ap

Hence, for N > N,

Lge(e) - ER1(@) = 1ppufa) - 3 eSrHlnars)

ay-ap
=1y (2) - LP1(2)
= 1pzn (2).
Therefore, [ £31duy =1 for N > N,.
Now, we use the decomposition Ep\ = ;\p\E\ i ‘i"{ for any p and N > N,,. Since

/ El\"ll[[lN >0and 0 < X\ < 1, we can obtain
M -/E\vmﬂ_\w i ,‘\{’\,/E\-ldm

= |/‘i"_"\y1(1}l;\7|

< ¥ 1ee

Hence, by Lemma 4.3,

lim [EY] =" lim /E‘Nl(l;erl.

N—oo]l—\y N—oo,




LEMMA 4.5. For p—a.e. z

lim LiLl[ I JdEN

=1.
N—oo

EN

PROOF: Put [Ey] = [ EN(LI[,}N)(I/A,M, and [Pi] = [ \i/fvl/ll[;]_\v )dpn .
Then,

Bun(Tw) = [ Llgaudin + 3G+ D5 By + [¥5])
=1
(Ew) (Ex) °°/~,
et il sl el i 1duy
T ; el

here we use (U] = [ T4 (L1, )dun = [ Ui 1duy — [ T3 1dpy
Hence

1]

= [EN]- Byy(Tn)

) +[En]-(1- [FV Z/‘I”xlduv

By Lemma 4.3 and Lemma 4.4, for yu — a.e. z,

LEMMA 4.6. For u— ae. z,

,\}L";ENZT/‘P;‘JI([“N =10,
i=

PROOF: This lemma is obvious from Lemma 4.2 and Lemma 4.3. |

Using the above lemmas, we can prove the following result
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THEOREM 4.7. For p — a.e. z, the limit distribution of exTy as N — oo exists and

it is the exponential distribution with parameter 1, where ey = 1/E, ,(Tn).
PROOF: In order to prove the theorem, we will consider the limit of ¢x(a).

¢n(a) = /e_m"TNd/LN

—aeni

Il
Mg

e un(Ty =1)

i=1

o o
= e TN {/Cl[Z]N(Z)lN + Z e’"'”’j\'N[EN] + Z e""""[\i“,\,]}

i=1 i=1

X X ” oo A\
:(z"‘"”{l—AN/Elel/LN+—N;-[EN]+ S (emmi — D[FR)).
o Dy

N
i=1

where we used (4.3) and (4.4).

By Lemma 4.4, we can see that for u — a.e. z,

lim (uf\N/ENM,;N) =0.
N—oo

The following equality is obtained by Lemma 4.4 and Lemma 4.5,

X 4
lim — . [Ey] = Y
N—oo e@N — Ay 1+a

And we can see by Lemma 4.6,

s

(7o — TR < aen Y i[T}]

1

i=1
0. =
= aen Z /\Ilf\,lvl;w
=y
— 0.
Therefore, for p — a.e. z,
lim ¢n(a) = !
Nevoo t 1Y T 1+a
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This implies that the limit distribution of eyTy is the exponential distribution with

parameter 1. Il

Next we will study the k-th return times Ty*) :

k-1
T;\,k)( )= ZTN(G'I‘_'A,”(z)I)Y Pt lby o,

j=0

where T{(

LEMMA 4.8. For each k > 1, en(Tn**Y — Ty®) has the same distribution as
enTn. Therefore, for j — a.e. z, the limit distribution of e,\v('l‘_‘\/”‘“) —Tn®) is the

exponential distribution.

PROOF: The measure py on [z]y is an invariant measure of the induced transforma-

tion of the shift o to [z]n, i.e. aTNO)(.): [zly = [z

And therefore the following
equality holds:

u({z € [2ln; TNV (2) — Tn®)(2) = i}) = p({z € [2]n; Tn(z) = i}).
This shows Lemma 4.8. |

We remark that the limit distributions of EA'(T,\'M“) - TV\“") are mutualy inde-
ly Bernoulli. ( See [B.] )

Hence we obtain the following proposition.

pendent because (\::,(1,[1) is w

PROPOSITION 4.9. For pu— a.e. z,

: e ) *
lim }1_\’(5}\‘1‘_\‘(“ <t and eyTN**V) > t) = —¢
N—oo k!

Here, let us define a point process on R*, say Yy(-), as follows:
o
()= Ot ()
k=1

where 6, is the Dirac § measure at p € R*. We will call it the normalized return time
process.

Then, the above proposition implies the following .
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THEOREM 4.10. For u—a.e. z € ©F, the sequence of the normalized return time pro-

cesses {Yn }n converges to the Poisson point process as N — oo in finite dimensional

distribution, i.e. for any disjoint Borel sets By,--- , B, € B(R") and any non-negative
integers ky,- -+ , kn,

Iim pn(Yn(By) = ky,---
N—o0

where ( is the Lebesgue measure.

REMARK: By using the technique of Section 5, we can see that the above theorem

holds not only for the normalized return time processes associated with cylinder sets

{[zln}n but also for that associated with open neighborhoods {U,(z)}, such that
U(z) — {z} as e — 0.

Now, we can easily extend Theorem 4.10 to two-sided symbolic dynamics. Put

Ba={r= {22 o €J%Asz,, =1, foraliel},
= izin

and define the metric d on $4 by

J(I,y):('?" if z;=y; fori=—-(n—-1),---,n—1,

andif - £y Of Tn#Yu

Let F¢(34) be the totality of real valued Lipschitz contiuous functions on % ,. Take
u € Fg(X4), and let i, be the (unique) equilibrium state for u. But, one can find u’

which depends on only {z;}$2, and is homologous to u. Indeed, put

ug(z) = minu(y)
v

and

up(2) = min{u(y) — up—1(2); i =y; for i =—n,---,n},

3 =u = ore u’ S n _ o n—1 k 7
then, u = ' +w—woo where v’ = 3772 jun00™ and w = Y02 Y ko unoor. We
remark that u' € fg(flj\') and fi, = fi,r. Therefore, we may assume that u depends

s 100
on only {z;}2,.

Fix a point z € ©4, and denote

_alzls ={z € Zy; z; =2z fori=
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and
poshllzles it N=2m m>0
[z

—milflm ' N=2m—1 m>1.

For a point z € [2](n), we denote its first return time to [z](x) by T{n)(z), and the

k-th return time by T((:,))(:p). As fi, is o-invariant,
Au({z € [2)(nys Tinwy(2) = i}) = fru(Lfz)y - (Lzpye 00) -+ (Izye 00 71) - (15, 0 0%))

= / Clin (Cliay) - Lz i

Il

/‘[‘"}N(ﬂl[z]w )+ sy ditus

where [Z]§ =¢ [a‘l%]:]N, E{z]z«f = L(1fzy< - f), and g is the equilibrium state on
E_Jg corresponding to u.

Then, the problem is reduced to the

se-of (2 10 u). It is easy to see that
Lemmas, Propositions and Theorems in Section 1, 2 also hold for Lz, instead of

Ln. Define a probability measure ji(y) on [z](n) by

X P 2] wy
Byt
(e

Denote the normalized return time process on R* by Yin)

o
Yimy Z T

k=1

\\'lmu én = 1/E; v, (T(vy)-

ANy
Then, Lemmas and Theorems in the previous section hold for this system. Hence,

we can obtain the following assertion.

ProPOSITION 4.11. For Pu—ae. z € Xy,

k
SN S W 2 (k -H) S
‘N!TL;L(M(EN T(N) t and €y - Ty >t = e -
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And the sequence of the normalized return time processes {Y(ny}n converges to the

Poisson point process as N — oo in finite dimensional distribution

5. Poisson law for Axiom A system.

Now, we will think about the Poisson law for Axiom A system. Before going to
prove the main theorem, we will recall some basic facts of Axiom A diffeomorphisms
( see [B.] about the details ).

Let f : M — M be a Axiom A diffeomorphism of a compact C'* Riemannian
manifold M, and @ = Q(f) be its non-wandering set. By considering the spectral
decomposition of €, if necessary, we will assume that f |o is topologically mixing.
Then a Markov partition of 2, say R = {R;,---,R,}, can be constructed. Write
O*R = J; R, and "R = J; 0"“R; where 8*R; is the stable boundary of R; and

0" Rj; is the unstable one. The structure matrix A = (Aij)i j=1,.. r is defined by

" {1 if int Rinf~1(int Rj) # ¢
X]:

0 otherwise.

Then there exists a continuous surjection 7 : $4 — Q which satisfies T 0o = fom.
Furtheremore, 7 : N"(Q) — Q is one to one, where (1 is a residual set defined by
Q=Q\Ujez FP(O*RUG*R).

Let u : @ — R be a Lipschitz continuous function and g, be the unique equilibrium
state for u. We remark that p,(Q\ Q) =0.

Now, fix z € Q and put Z=7"1(2) = {z:}= € Xa. Let u* = uow and py- be

the equilibrium state for u* on £ 4. Then g, = 7*j,-. For the fixed z € Q , denote

its e-neighborhood by U(z), and define a probability measure e on U, by

Hulu ()
He= —— s

~ m(U(2)

Denote by T, s the first return time from U,(z) to U.(z). Put ce = 1/E, (T f).
Remark that ¢, = j1,(Uc(2)). Then the following theorem holds.

THEOREM 5.1. For pu, — a.e. z € Q, the limit distribution of the first return time

ceTe 5 as € — 0 exists and it is the exponential distribution with parameter 1.

The proof of the above theorem will be given after several lemmas.
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Define for € > 0 sufficiently small
Nt(e)= max{i € N*;U(z) C n(o[2]:)}

and

N~ (e) = max{i € N*; Uc(2) C m(-i[2]o)}

For simplicity, we put U, = #~'(U(z)) and g = pu+. We can choose a set V, C %4

which is a finite union of cylinder sets such that
UcCVeC _n-(olZln+o

and

WV \U) < p(Ve)®.
And we can choose W, C £ 4 which is a finite union of cylinder sets such that
A Waic U,

and

HUNW) < (W)
For an open set V C £ 4, we denote the first return time from V to V by Ty:
Ty(z) = inf{i e N*;0'z € V}.

Remark that Tv(z) is finite for y — a.e. = by Poincaré’s recurrence theorem. And we

define a probability measure uy on V by

sl
(V)"

LEMMA 5.2.

wv(Tv, =) — 2u(Ve)? < pu, (Ty, =)

< uw(Tw, = 1) +2u(W,)*.
PROOF: Denote the first hitting time from U, to V,\U, by Tu(, ie., for y—ae. z € U,,

Ty,(z) = inf{i € N*;0'z € V. \ U,}.

27




Similarly, we denote the first hitting time from V, \ U, to U, by T\(\, .- Then the
following inequality is obvious:
Wz €VyTy(z)=1) S p(z € Uy Ty (z) =)+ p(z € [’(:'j)v((.1~) =.1)
+u(z € Vo \ U Ty,\v,(z) = 1) + p(z € V. \ Ug; Ty \v, () = 1)
=(1)+(2)+(3) + (4)-
But it is evident that
(3) +(4) S W(Ve\UL) < (Vo)
and

(2) < W(Ve\Ue) < p(Ve)®.

Therefore,

. (1)
A S

< pu (Tu, =) +2u(Ve)2.

+2pu(Ve)?

The second inequality can be proved in a simillar manner. J
LEMMAS5.3. For any positive number a > 0,

e—on(Us)

: r\2 =
lim p(Ve) )
and
—au(U.)
. e =
}‘i‘éﬂ(”() T 0.

PROOF: By the way of the choice of V, and W,, it is obvious that
05 u(Ve) = p(Uo) < (V)

and

0 < u(Ue) — (W) < (We)*.

Hence u(U)/ju(V.) and u(Ue) /(W) go to 1 as e — 0. Therefore we can obtain the

above lemma by simple calculation. I




LEMMA 5.4. For p, —a.e. z,

o
~ 1
‘(5 i —apu(V.)i g
(5.1) (131(1]2;5 pv,(Ty, =1) SR
i=
and
S 1
(5.2) }i_n(llZe"""W"'/m/((Tw( =1i)= T
i

PROOF: As we have seen in the previous section, it is enough to prove the lemma in
the case of one-sided symbolic dynamics. Therefore we may assume that V,, W, C
i+
[Zlnv+e C T35
We will only prove (5.1), because (5.2) can be proved in a simillar manner.

Define a singular perturbed Perron-Frobenius operator Ly, :

()]

vof(@) =Ly, - f)(z).

As the set V is a finite union of cylinder sets, we can obtain the following Lasota- Yorke

type inequality by a similar calculation as in the proof of Lemma 2.1 ;
(5.3) %, £llo < 6211 Fllo +ev. | flloo

where cy, is a constant depending only on V.
Then we can see the essential spectral radius of Ly, is not greater than 6 . ( cf.
Lemma 2.2 )

Define the zeta function associated with C.‘; as follows :

1 S . Pl
c\;(t)w-xp{Z; Yo 5@ ] 1ye(o72)}
Jj=0

p=1 " z€Fiz,o

o
PP 5 : :
= exp{) % > LYy eyl @)
S

p=1
Aapay =1

Then the same correspondance as Proposition 3.2 holds between the eigenvalues of

Ly, and the poles of C\/‘(P). In particular, the eigenvalue of L:\,; of maximal modulus,
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say ;\\x(, is equal to the inverse of the convergence radius of g:\',(t). say ty,.
Ve C [Z]n+(9»

p—1

p—1
Y, O, (@) 3 O[] 1ve(oa).
j=0

r€Fiz,o z€Fiz,o j=0

Hence {\/‘ < {N+[L] seliey) XNH() < :\V.' Consequently , as lim,_g Ay+() = 1, we get

lim /iv( =il

—0
By the Lasota-Yorke type inequality (5.3) and the Ionescu-Tulcia-Marinescu theorem,
we can obtain the decomposition:

L

. = Ay, Ey, + Uy,
where the oprator Ey, is the projection to the eigenspace corresponding to the eigen
value Ay, and the oprator Wy, is a bounded linear operator such that Ey, Uy, =

\i'\;l?\,r( = 0. Then the same a

rtions as Lemma 4.3, 4.4, 4.5, 4.6 remain valid for
Ey, and ‘i’\r( as € — 0. Therefore we obtain (5.1) by a similar calculation as in the
proof of Theorem 4.7.

PROOF OF THEOREM 5.1: We will denote by ¢.(a) the Laplace transform of the

normalized first return time ¢ T,y :

de(a) = /07"“7" Tdp,

3 e (T =)

]

Il

&
D eV g (Ty, = i)

i=1

and consider the limit of ¢e(a) as e — 0. By Lemma 5.2 and the inequality pu(W,) <
AU < p(Ve),

o o
Z'_"M"‘)l”ﬁ(T\Q =) — 2u(V,)? Z e—an(Uo)i

=1 =1
< de(a)
oo o
) = Zef"“”v‘);tw,(Tw( = 1)+ 2u(W,)* Z e A(LB
t=1 =1
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By Lemma 5.3 and Lemma 5.4, we get

1

ta

Iun (a) =

This implies Theorem 5.1. |

We denote the k-th return time by T,J(“;

k-1
TosP(a)= D T ({7 *)z)

=0

where T{'/'O' = 0. And we define the normalized return time process Y, as follows :

oo
= Zéc(n/“)( )
k=1

As (Q, pty, f) is mixing, the same statements as Lemma 4.8 and Proposition 4.9 hold

for the normalized k-th return times c, TLJ“"'. Therefore we obtain the main theorem

THEOREM 5.5. For p, — a.e. z € Q, the sequence of the normalized return time

proc s {Y.} converges to the Poisson point process as € — 0 in finite dimensional
distribution, i.e. for any disjoint Borel sets By,--- , B, € B(R*) and any non-negative
integers ky,- -+ , kp,

hm pe(Ye(By) = ky, -+, Ye(Bn) =
e

H {(B )
1

where £ is the Lebesgue measure.

6. Counter-example.

As is mentioned in the introduction, Theorem 5.5 does not hold for every point
z € Q. In this section, we will consider the typical counter- example, the case where
a point z € Q is periodic. As we have seen in the above se ctions, the problem can be
essentially reduced to the case of one-sided symbolic dynamics, and so we will only
consider the system (X7, o, 11). The essential point is that Theorem 4.7 fails whenever

apoint z € £ is periodic. Indeed, the limit distribution of the normalized first return
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time eyTny as N — oo exists but is not an exponential distribution, but it turns out

to be a linear combination of the delta-distribution and an exponential distribution.

We assume that a point z € 7 is a periodic point with period m. By the same

technique of the proof of Lemma 3.4 and Lemma 3.5, we can see that the equality in

Lemma 3.4 and the statement of Lemma 3.5 remain valid even if a point z is periodic.

of the maximal moduls, Ay, converges to 1 as N

Hence the eigenvalue of £y

and the statement of Lemma 4.3 holds. But in this case, Lemma 4.4 does fail, i.e.,

/ E:NI/IN does not converge to 1. Indeed, we can obtain the following

LEMMA 6.1. For a periodic point z € £ with period m,

En(L1y)d - !
lim i —M = lim /ENl(l/LN =1—Smu(a),
N—oo 1=3n N—co
PROOF: Recall that

Ef’,l(:c) = Z eSrular “’Z)IIZ]; (ayasa)i .. 1[:];,((11,.1‘)

a1,y
Fix k € N arbitrary and put p = km. For N large enough,

1[1]_».;(1')7][z]N(I)'E{{ll(I):1[;],\-(1')' Z eSr (a1 am(k-1) 0 2m-12)

S ay@m(k—1)
=i (z) - LP~™eSmul20--2m—172)
) (3 :

Then,

[2— /E‘_U\J(I/,N — Smu(d)| < /LP"H‘ESmul:a'"zm-xt) _ eSeMD| gy

< Smu() (8" M lulle/1-6 _ 1)

-0 (N — o).

Therefore, for any p = km,

mu(z)

: p o
Nllnw/ Lilduy =1
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On the other hand, by Lemma 4.3, the following inequality holds for large N

ct 1duy — A%, Enldun| = | ‘i’y\ ldpn|
N N 1

< 131l

<Hg.

We fixed p = km arbitrary and Ay goes to 1, therefore,

lim /ENI(I/LN =1 —emula)
N—oo

THEOREM 6.2. For a periodic point z € EX with period m, the limit distribution
of the normalized first return time eyTn as N — oo exists and it is the linear

combination of the delta-distribution and the exponential distribution. Precisely,

Jim pn(enTn <t)=1-—p:+ps(1—e*")
where p, =1 — Smu(2),

PROOF: By Lemma 6.1 and a similar calculation as in the proof of Lemma 4.5 , we
obtain

lim ‘fé,\'(ﬁlh]")zl;u\v =
N—oo €N

Then the limit of the Laplace transform of the normalized first return time , ¢x(a),
is given by

p:
a+p.’

lim éy(a)=1—p,+p,-
N—oo
This proves the above theorem. §
REFERENCES

[B.] R. Bowen, “Equilibrium states and the ergodic theory of Anosov diffeomor-

phisms,” Lec. Note. in Math. vol.470, Springer, 1975.

33




[I.T.M.] C. T. Ionescu-Tulcea, G. Marinescu, Théorie ergodique pour des classes
d’operations non complétement continues, Ann. of Math. 52 (1950), 140-147.
[M.] T. Morita, Random iteration of one-dimensional transformations, Osaka J.
Math. 22 (1985), 489-518.

[N.] R. D. Nussbaum, The radius of the essential spectrum, Duke Math. J. 37
(1970), 473-478.

[PE.] K. Petersen, “Ergodic theory,” Cambridge University Press, 1983.

[P.] M. Pollicott, Meromorphic extensions of generalized zeta function, Invent
math. 85 (1986), 147-164.

. [R.I] D. Ruelle, “Thermodynamic formalism,” Encyclopedia of Mathematics and

its Applications, vol.5, Addison-Wesley, 1978.

[R.IT] D. Ruelle, The thermodynamic formalism for expanding maps, Comm. Math.
Phys. 125 (1989), 239-262.

[S.1] Ya. G. Sinai, Some mathematical problems in the theory of quantum chaos,
Physica A 163 (1990), 197-204.

[S.I1] Ya. G. Sinai, Mathematical problems in the theory of quantum chaos, preprint.

34










	262858_0001
	262858_0002
	262858_0003
	262858_0004
	262858_0005
	262858_0006
	262858_0007
	262858_0008
	262858_0009
	262858_0010
	262858_0011
	262858_0012
	262858_0013
	262858_0014
	262858_0015
	262858_0016
	262858_0017
	262858_0018
	262858_0019
	262858_0020
	262858_0021
	262858_0022
	262858_0023
	262858_0024
	262858_0025
	262858_0026
	262858_0027
	262858_0028
	262858_0029
	262858_0030
	262858_0031
	262858_0032
	262858_0033
	262858_0034
	262858_0035
	262858_0036
	262858_0037

