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Abstract
We study consequences of the threshold effects of supersymmetric
(SUSY) and superheavy (GUT) particles to the gauge coupling uni-
fication condition in two specific supersymmetric SU(5) models, the
minimal model and the missing doublet model with natural doublet-
triplet splitting. We focus our main attention on the correction to the
estimation of the SUSY breaking scale by the unification condition.
We present a consistent treatment of the SU(2)xU(1) breaking mass
terms in the SUSY particle threshold effects, as well as that of the top
quark threshold effect, which have been ignored in previous works. The
GUT threshold effects are constrained by the proton decay experiments
and by some theoretical consistency conditions, but they are significant
and strongly model dependent. For example, under a certain assump-
tion for the SUSY particle masses, the minimal model favors a large
(>1TeV) SUSY breaking scale or high a,(mz)(> 0.12), whereas the
missing doublet model allows a low (<1TeV) SUSY breaking scale for
0.11 < a,(mz) < 0.13. The consequences of these two models in the

proton decay experiments are also briefly discussed.

1 Introduction

Recent experiments give precise values of the three gauge couplings in the
standard model [1]. These values are consistent [2] with the prediction of the su-
persymmetric (SUSY) SU(5) grand unification model [3]. It has hence become an
important task to study the unification of gauge couplings quantitatively in specific
SUSY SU(5) models.

Along these studies, there has been an interesting observation that if more
precise value of the strong coupling a, [4] is obtained, we can estimate the super-
symmetry breaking scale mgy sy from the unification condition of gauge couplings.
Even though our ignorance on the heavy particle mass spectrum of the GUT scale
prevents us from obtaining such information in general [5], the authors of ref.[6], for
example, estimated that mgysy should exceed 10 TeV under a certain constraint
on the GUT threshold effects in the minimal SUSY SU(5) model.

In this paper, we study the threshold corrections to the gauge coupling uni-
fication condition by SUSY particles and those by the particles with masses of the
unification scale, and their effects on the estimation of mgysy. We show that both
threshold effects are very important. We present a consistent treatment of the
SU(2)xU(1) symmetry breaking effects in the masses and couplings of the SUSY
particles, which have been ignored in previous studies [2,7]. We also study the GUT
model dependences in two specific SUSY SU(5) models, the minimal model and the
missing doublet model, improving our previous analysis [7]. We find that the exper-
imental limits on proton decays and the theoretical consistency of the GUT model
itself give significant constraints on the GUT threshold effects. Because of these
constraints on the GUT threshold effects, we can obtain [7,8] nontrivial constraints
on mgysy and a,(mz) from the unification condition without postulating a particu-
lar mass spectrum of the GUT scale particles as was done in ref.[7]. We observe that

the resulting predictions of the SUSY SU(5) unification condition are very different




and distinct in the two GUT models.

The paper is organised as follows. In section 2, we review SUSY SU(5)
GUT predictions in the next-to-leading order and define the framework for our
study. In section 3, we present the SUSY threshold corrections with a consistent
treatment of the SU(2)xU(1) breaking terms in the SUSY sector, as well as a
consistent treatment of the top quark threshold effects. In section 4, we review
the estimation of the SUSY breaking scale from the gauge coupling unification
condition without GUT threshold corrections. In sections 5 and 6, we study GUT
threshold corrections and their low energy consequences in two SUSY SU(5) models,
the minimal model and the missing doublet model, respectively. We find that the
phenomenological consequences of the GUT unification condition are very different
in these two models: under a certain assumption for the SUSY particle masses,
the minimal model favors large mgysy or higher a(mz) while missing doublet
model allows small mgysy for any o,(mz) in the experimentally allowed range.
Implications on the proton decay experiments of the two SUSY SU(5) models are

also discussed briefly. Section 7 gives our conclusions.

2 SUSY SU(5) GUT predictions in the next-to-
leading order

In this section, we show the unification condition of the low-energy gauge
coupling constants in SUSY SU(5) models in the next-to-leading order and its im-
plications on the GUT predictions, after preparing the framework for our study.
We also review the constraints on the GUT scale parameters from proton decay
experiments and from the theoretical consistency of the models.

We first review basic properties of the minimal supersymmetric standard
model (MSSM) and the supersymmetric SU(5) model. The minimal SUSY standard

model [9] is a simple supersymmetric extension of the minimal standard model (SM)

with two higgs doublets. This model contains the following chiral supermultiplets,

(qz:Ge)is  (upyiig)i, (dgydp)is
(Loslnis lemrlin E=1-~3)

(hayha),  (hayha),
and the gauge supermultiplets,
(9:3), (W,W) (B,B).

All the particles with tilder are the superpartners of the particles in the standard
model. All of them have masses in the order of the SUSY breaking scale.

The higgs scalars particles in the minimal SUSY standard model need special
care. There are the following five mass eigenstates of the physical higgs scalars in
this model:

(r% H®, P°, H), (2.1)
In the case where mpo is much greater than mg, the fields h° and (H°, P°, H*)
physically split. In this limit, % is almost the usual higgs scalar in the minimal
standard model, which is responsible to the breaking of SU(2)xU(1) gauge symme-
try. On the other hand, the remaining four scalars (H°, P°, H*) become very heavy
and almost independent of SU(2)xU(1) breaking physics. Then these fields form
a complete SU(2)xU(1) doublet H whose masses are nearly degenerate. We call
these four scalar fields as "extra higgs scalar doublet” in this paper. In the minimal
supergravity model, mpo increases with the SUSY breaking scale in order to realize
the radiative breaking of SU(2)xU(1) gauge symmetry. Therefore we treat these
four scalar higgses as members of the SUSY particles in this paper. In the case
where the SUSY breaking scale is low, the state is more complicated. Forturnately,
we show in section 3 that in more consistent treatment, only the charged scalar H*

is relevant to the SUSY threshold corrections.
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The SUSY SU(5) model is a grand unification of the minimal SUSY standard
model. This model contains at least the following chiral superfields: ( f;(5), F;(10))(i
1 —3), quarks and leptons; ¥, the higgs field which breaks SU(5) gauge symmetry
to SU(3)xSU(2)xU(1) and (¢, ®), the higgs fields which break SU(2)xU(1) gauge
symmetry to U(1)gy . This model also contains a vector supermultiplet which con-
sists of the standard model gauge fields and superheavy supermultiplet X. We use
myx, the mass of X, as a GUT unification scale. For the SUSY SU(5) models treated
in this paper, the low-energy effective theory is the minimal SUSY standard model.

We second fix our framework to study the unification condition of the low
energy gauge coupling constants in the SUSY SU(5) models. In principle, we can
derive all physical consequences directly from the SUSY GUT. But in many low
energy physics such as gauge interactions of massless particles, these predictions
suffer from large logarithmic factors In(mgyr/mz) in MS renormalization scheme
since heavy particles in loop graphs do not decouple in this scheme. To solve this
problem, the effective gauge theory approach [10,11] is usually used.

The effective gauge theory approach is summarized as follows. If we want
to calculate low energy physics in a theory with heavy particles, we first obtain the
effective gauge theory” by integrating out all heavy particles in the initial "full”
theory, then calculate physical quantities in the effective theory. The matching con-
dition between both theories are given by the relation between coupling constants.
As for low energy gauge interactions, the large logarithmic factors which appear
in calculations in the full theory are absorved into gauge couplings of the effective
theory if MS renormalization scale is taken to be sufficiently low.

We use the following procedure to study the unification condition of the low
energy gauge couplings in the SUSY SU(5) model.

(1) start from as(my) in the SUSY SU(5) model,

(2) derive a;(mx)ussm by integrating out all superheavy particles to obtain

the minimal SUSY standard model,

.

(3) derive a;(mz)ussm from the renormalization group equations in the min-
imal SUSY standard model, and
(4) derive a;(mz)sm by integrating out all SUSY particles to obtain the
minimal standard model.
As a result, the unification condition of a;(mz)sm takes the following form:
% 1 mx

el e b b S i e (22)
ai(mz)sm  os(my) mz my

The second term on the right hand side of (2.2) represents a contribution from the
running of a;(p)mssm between my and mz while the third term represents that from
the matching conditions of gauge couplings. Since In(mx /mz) is of the order of a;"
in GUT, we conclude that in order to study SUSY GUT predictions in the next-
to-leading order for given values of a;(mz)ys as defined in the minimal standard
model, we need the 2-loop renormalization group equations for the minimal SUSY
standard model couplings, and the 1-loop matching condition between the full SUSY
GUT model couplings and the minimal SUSY standard model couplings, and that
between the minimal SUSY standard model and the minimal standard model.

The 2-loop renormalization group equations [12] for the gauge coupling con-
stants g;(u)ys = (4rou(p)y)"/? are

3

d—l‘f;;g.w) = %g%igwi—‘é)ﬂ?qﬁ G287 (2.3)

where the coefficients b; and b;; in the minimal SUSY standard model are

by = 33/10, by =1/2, by=—3/2, (2.4)

199/100 27/20 22/5
bi=| 9/20 2514 6 |, (
11/20 9/4 7/2

respectively. The solution of (2.3) is expressed as

S
o

S T S S S R (2.6)
ai(mz)ys  cilmx)ys mz



Here 6;(2) represents the correction from the 2-loop contribution in the running of
the gauge coupling constants between the scales mx and mz. Their explicit forms
are shown in the last of this section.

The 1-loop matching condition between the couplings of the full SUSY GUT
and those of the minimal SUSY standard model and that between MSSM and
the minimal standard model are essentially obtained by using the effective gauge
theory approach. In order to show their explicit forms, we first review the matching
condition between the gauge coupling in the effective theory and that in the full
theory in general case. At 1-loop order, the matching condition between these gauge
couplings is expressed as follows [10.11,13]:

T T

m;
. - ptinte W™ =il (A Misbign b(7)ln —2
a(p)ess () fun ; kel

—ib(j) (mﬁ -c>A @7
7 n

Here the sum is taken for all the particles (scalars(S), fermions(F) and vectors(V'))
in the full theory which decouple in the effective theory. The coefficient b(j) is
the contribution of the particle j to the 1-loop renormalization group equation
of a(pt)ess, which is determined by the gauge representation of j in the effective
theory. Note that eq.(2.7) is an improved relation by 1-loop renormalization group
equation. Eq.(2.7) agrees with the result of the step approximation in the 1-loop

renormalization group equation at y =(particle mass) apart from the constant c.
Special remark is needed for the threshold correction from the heavy vector
particles. In (2.7), there is an additional constant factor ¢ which depends on the
renormalization scheme. For example, ¢ = 1/21 holds [10,11] in the MS scheme. It
is not appropriate in studies of the SUSY GUTs where the supersymmetry is almost
exact at the unification scale, since the threshold effect of the heavy vector boson
and that of its superpartners (fermion and scalar) takes different forms in this case.
We can avoid this problem by using DR (modified dimensional reduction) scheme

[13] in the SUSY GUTSs, which preserves the supersymmetry in reguralization. In

this scheme, ¢ = 0 hold in the 1-loop level, therefore we obtain the manifestly
supersymmetric form for the threshold effects.

Since the low energy physics is usually described in the MS scheme, we should
convert the gauge couplings a;(jt)gs to au(j)pr at some scale below the unification
scale. Their matching condition is [14]

T

u,(p)gﬁ- - oi( )yis i )
where the constant ¢; is determined by the gauge group for ;. For example, ¢; =
N/12 holds for SU(N) (N > 2) gauge coupling whereas ¢; = 0 for U(1) gauge
coupling.

Using these results, we present general forms of the 1-loop matching condition
between the SUSY SU(5) model and the minimal SUSY standard model, and that
between the minimal SUSY standard model and the minimal standard model.

The SUSY threshold corrections to the gauge coupling constants are obtained
by evaluating eq.(2.7) at u = mz in the case where we can ignore all SU(2)xU(1)

breaking terms in the SUSY sector. They are then expressed as

™ ™
= + 6;(light),
ai(mz)sm ai(mz)mssm (tight)
S(light) = —Yb(j)ln—%, i=1,23. (2.9)
i Mz

6;(light) represents the threshold correction from all superpartners and the ex-
tra higgs scalar doublet H =(H°, P° H%), which we call as the SUSY sector
particles in this paper. The sum is taken for all SU(3)xSU(2)xU(1) gauge mul-
tiplets of the SUSY sector particles. The values of b;(j) are determined by the
SU(3)xSU(2)xU(1) gauge group representations of the particles and they are listed
in Table 1. This correction depends on the mass spectra of the SUSY sector par-
ticles. The forms of the SUSY threshold corrections including the SU(2)xU(1)
breaking terms are presented in section 3.

The GUT threshold corrections are obtained by evaluating eq.(2.7) at pu =

my in the DR scheme. For convenience, we regard the conversion factors from




the DR to the MS scheme as parts of the GUT threshold effects. The total GUT

threshold corrections are then expressed as

e oA e LD
ai(mx )ys as(mx)pr
§(GUT) = ¢i— Y bij)ln—%, (2.10)
b mx

6;(GUT) represents the threshold correction by the particles with masses of the
unification scale or, more precisely, all the particles in the full SUSY GUT which
decouples in the minimal SUSY standard model, which we call as the GUT sector
particles in this paper, including the conversion factor ¢; from the DR to the MS
scheme given in eq.(2.8). The sum is taken for all GUT sector particles. The sum
is taken for all SU(3)xSU(2)xU(1) gauge multiplets of the GUT sector particles.
The coefficients b;(j) are determined in the same manner as in the SUSY threshold
effects. This correction depends on the details of the GUT model, especially on the
masses of all the GUT sector particles with a nontrivial SU(3)xSU(2)xU(1) quan-
tum number. Note that the three gauge coupling constants a;(x) in the minimal
SUSY standard model are not unified at one scale unless all GUT sector particles
masses are degenerate.

By combining the 2-loop effect (2.6) in the running of the couplings and the
1-loop threshold effects (2.9) and (2.10), the final form of the unification condition

of the MS gauge coupling constants is as follows:

e Rt e il i)
ai(mz)ys  as(mx)pr mz
A; = 6(2) + 6;(light) + 6(GUT), i=1,2,3. (2.12)

Here the gauge couplings on the left hand side of eq.(2.11) are those of the minimal
standard model and the coupling on the right hand side is that of the full SUSY
SU(5) model. The GUT coupling aj is renormalized in the DR scheme. The terms
A; represent the total next-to-leading corrections. The definition of each term in

(2.12) is shown in (2.6), (2.9) and (2.10), respectively.
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Starting from eq.(2.11), the following SUSY GUT predictions for s*(my)

MS
(sin® 0w )(mz)gs (the weak mixing angle), my and as(my )gx are obtained.
sfmz)ys = 5O(mgz) + M:‘,. (2.13)
T
Inmy = In m‘e‘ + 6x, (2.14)
= = L +6 2.15)
as(mx )pr T as(my)® IRl S
where
5
by = 34 [(b2 — b1)Az + (by — b3) Ay + (bs — ba)Ay], (2.16)
1/8 5
s =—(—A7 __r>, 217
X 7\32e Ay 3._\1 (2:17)
1 5 5
b= g [bae 4300 - (b + 304 (2.18)
d 3 3
with
d = by + 3by — 5bs = 10, (2.19)
al=a;' + o7t (2.20)
In the above formulae,
1 Ta(mgz)
30)7 0 Y g g2 z 2.9
) 5 5 15a3(mz)’ (220
(0)
In B vy o tilll ATBVEL _'_47r—v (2.22)
mz 10a(mz) 15az(mz)
1 3 1 4
—_— = — +—, (2.23)
a5(mx)© 20 \a(mz) = az(mz)

are the SUSY SU(5) model predictions in the leading order. Obviously, each next-
to-leading order correction term § is decomposed into 2-loop, SUSY sector and GUT

sector correction factors via eq.(2.12), for example, as
b5 = 6,(2) + 6,(light) + 6,(GUT). (2.24)

In studying the consequences of these relations, we can make use of the fol-

lowing three types of informations. First, we have three measured values of the
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standard model coupling constants a;(mz)yg extracted from recent precision ex-
periments. Second, we have the lower mass limits of X, the superheavy gauge
boson of the SU(5) model that mediates proton decays via dimension-6 operators
(p — e +n° etc.), and also that of D, the color triplet higgsino that mediates
proton decays via dimension-5 operators (p — 7 + K etc.). These bounds on the
GUT sector particle masses are obtained as consequences of the non-observation of
corresponding proton decays. Third, we should impose a certain theoretical con-
sistency conditions on the SUSY GUT model. One of them is the "Planck mass
limit”, the condition that all masses of the GUT model particles should not exceed
the Planck scale, mp ~ 10"GeV. This is needed in order that the SUSY GUT
model without gravity makes sense. In addition, we impose the finiteness of the
unified gauge coupling as(m;) on all the superheavy particle mass shells. Finally,
in later sections we briefly study the consequences of the "weak higgs coupling con-
dition” that dimensionless couplings in the superpotential should not diverge until
the Planck scale. The last two conditions are needed in order for our perturbative
estimation to be valid quantitatively.

In this paper, we use the following values of the gauge coupling constants

that are obtained by recent experiments [1,15].

- 8 m
Valmz)gs = 12194012+ ln -, (2.25)
-1
g 8agg(mz) , my
sin Oy (mz )y = [1 +Z)—7rlnm_z
x (02325 +0.0007 + 25(m2) 1 ﬂ) . (226)
3 mz
2 ! me 2.97
1/a,(mz)ys = (0.12£0.01)7" + 3—7rln el (2.27)

where we have explicitly shown the logarithmic dependences of the standard model
MS couplings on the top quark mass m,. These logarithmic m, dependences are
obtained by starting from the experimentally given value of the effecting mixing

angle 52 (see section 3 for details) with the assumption that there is no order m%/m?

12

contribution in the observables at the scale mz. We have explicitly checked that the
order m%/mj effects on these couplings are negligibly small at the 1-loop level for

m, > 100GeV. In eq.(z

26), as,(mz) stands for a(mz)ys in eq.(2.25) at my = my,
which is the MS coupling in the absence of the top quark. It is worth noting that
these logarithm m, dependences exactly cancel in the SU(5) prediction of s*(my)

and mx (16,7]. This can easily be shown by substituting eqs.

.27) directly into
€q.(2.21,2.22). We can hence safely use the values at m; = my in these predictions.
Even for as(my), the m, dependence is not significant for our study. In some
existing studies [6], this cancellation of the logarithmic m, dependence in the SU(5)
GUT predictions has not been taken account properly.

In the following, we use very rough lower limits of my and mp from the
upper limit of proton decay rates, 7(p — et7%) > 5.5 x 10%%years and 7(p —
7K*) > 1.0 x 10%%years [17],

mx > 10'°GeV/[18], mp > 10'°GeV([19,20]. (2.28)
These conservative limits are sufficient to obtain all the results of our analysis.

We comment on the validity of the lower mass limits (2.28). Exactly, the
lower limits of the proton partial life times 7(p — e*7n?) and 7(p — #K*) are
not directly related to the lower mass limits of the superheavy particles X and
D. In fact, they give constraints on the combinations m% /as(mx)? and mm¥y gy,
respectively. If these additional factors are largely modified by the threshold effects,
the mass limits (2.28) can become looser. In this paper, however, we can safely
ignore these effects. The reason for each case is as follows. For proton decays
mediated by X, the threshold correction of as is of the O(a;) whereas that of my is
of the O(aQ), so we can use the limit (2.28) in the next-to-leading order calculations.
For proton decays mediated by D, the argument is more involved. The breakdown
of the limit (2.28) may occur when msysy becomes very large. But we will show
in sections 5 and 6 that the lower limit of mp increases with msysy by the gauge

coupling unification condition. So the limit (2.28) is proved to be valid a posteriori.
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Finally, we show the explicit form of the 2-loop correction factor &;(2) as

used in our analysis. We use the one-iteration approximation,

3. b b m(;-))
ﬁ,(?):;at In 1+;]a3(mx)‘mlnE 3 (2.29)
in the following numerical analyses. We ignore any threshold effects of the GUT,
SUSY and top quark sector in eq.(2.29) since they form a part of the next-to-next-
to-leading order corrections. Then all §;(2) are simple constants. Here we give the

numerical values of §(2)’s for the case a(mz) = 1/127.9 and a3(mz) = 0.12,

%5,(2) ~ 0.0030, (2.30)
5x(2) ~ —0.22, (2.31)
65(2) ~ —0.67. (2.32)

These corrections are not negligible in the estimation of the SUSY breaking scale,

as will be seen in later sections.

3 SUSY and top threshold corrections

In this section, we study the threshold corrections to the gauge coupling
unification from the SUSY sector particles or, in other words, from all superpartners
and the extra higgs scalar doublet in the minimal standard SUSY model. We present
the correct treatment of the SU(2)xU(1) breaking terms in this sector, which has
not been shown clearly in the previous studies. The correct treatment of the top
quark threshold corrections is also presented.

First, in the case where all SU(2)xU(1) breaking terms can be ignored in the
SUSY sector, the form of the SUSY threshold corrections are expressed as eq.(2.9).
Therefore we can safely use eq.(2.9) if the SUSY breaking scale is sufficiently large.

In the case where SUSY breaking scale is relatively low, O(100GeV), we
cannot ignore SU(2)xU(1) breaking masses and mixings in the SUSY sector. We

should properly incorporate this effect. The difficulty arises in this case since the

14

low energy effective theory where SUSY sector particles are integrated out is no
more SU(2)xU(1) invariant and we cannot justify the usual effective gauge theory
approach for the matching condition of s%, as and ay.

In order to treat this SU(2)xU(1) breaking threshold corrections properly,
we return to the derivation of the MS couplings as(mz) and a(mz) from experi-
mental data. At present, most accurate measurements of the weak mixing angle
are performed at LEP from the leptonic and b-quark forward-backward asymme-
tries and from the 7 lepton polarization. These experiments determine the effective
mixing angle 52(m%), which represents the effective coupling of fermions to on-shell
Z, including process-independent contributions from loop graphs. This effective
coupling is expressed in terms of the MS couplings in the minimal SUSY standard

model as follows [21,22]:

B ol ERE”?%”*%?LM + R )svsy

= o+ [imenste ) 4
R = s [T + ]+ (R e

T e iRe“??v@’“%O) ey (3:2)

Here H?Q and I3? are 1-loop self energy corrections in the MS scheme with which

the transverse parts of the v and v — Z mixing propagators are expressed as

IF(¢) = 18, (3.3)
™
IF() = (00 - ST (G =1 - 57) (3.4)

»

the subscript ”,~” means removal of the residue at ¢> = 0,

Ir(¢*) — Iz (0)
' d

and a(g?) is the effective electromagnetic coupling [21] which agrees with the fine

HT,y(flz) =

structure constant at ¢° = 0. Note that in(3.1) and (3.2), only a vector particle W

15



contribute to H'}Q{IJ). From these equations we can obtain the relation between the

MS gauge couplings in the minimal standard model and that in the minimal SUSY

standard model:

g T 1 4
Salit) = — ————— = —RelI32(¢*)susv, 3.6
#) alp)sm  o(Wmssy 4 Ty (47 )susy (3.6)

o) il L e 39 (2 3

Vi = e el Rl (of)cusvs 3.
S as(p)sm  co(p)ussm 4 ellry (¢7)susy (3.7)

provided that the effective couplings a(g*) and 5%(g?) are independent of the SUSY
sector physics. These differences represent all contributions from the SUSY sector
particles. Note that only the charged particles enter in §, and &,w. This property
simplifies our discussion since the most complicated parts in the minimal SUSY
standard model, neutralinos and neutral higgs scalars, do not enter.

As for a(p)yg, we may obtain the same result as in the effective U(1)em
gauge theory approach by evaluating eq.(3.6) at ¢*> = 0. On the other hand, the
result (3.7) for as(p )y is not familiar. H-sr%(qz)gvsy is determined by masses,
charges and effective diagonal couplings to W3-vector boson, of the SUSY sector
particles and is unambiguous even in the presence of SU(2)xU(1) breaking. We
can safely interpret 8, as the SUSY threshold correction of ‘a(u)ys. We note in
passing that at u = mz, as(mz)sn is a(mz)/s*(mz )y in eqgs.(2.25, 2.26).

The explicit form of &, and é,,, is as follows:

Siem
bo(mz) = —Zbd])ln*’
% Dtz
7 —gln mmy, gln Me My 2 i Mg, Mg
9 m% 9 m% 9 m3
_}_ nlbLn127L M5, My _i mg, mg,
T Tl T T
m% m¥ m3
2 7, M N, ME-Mj- i +
S s e TR I s (3.8)
3 mz 6 my 6 mz
and
Salmiz) = —Zbgq ln—
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i 1 M sin® 0,—1 my o 1 L oty
= (R DA e e < i
6 mgz 6 mg, 6 mz 6 mz
1 mj 1 m; 1 m;
el Sin &L S T et
12 mz i my 12 mz
2 m 1 myy, 1 9 m
2 Wi Wa g .2 W
—Zln—" — —In—2 — —(sin? ¢, + sin® ¢z)In
£l 3 my 6 my,
N, ’”i' 1 M=
3 H*
i X (3.9)
1'2 mz 1 mz

In eq.(3.9), ¢; ¢rr are the mixing angles between mass and gauge eigenstates

defined as
(t} ) 3 < cos g smoi) (Y_L ) (3.10)
2 —Sin@; COS @ tp
‘f’l: b / Co'scr)L sin @ L:Vf (3.11)
W, —sing;, cosgy Hy;
VV{R cos pp sin ¢ g W',; :
it = 2 Sy i (3.12)
Wir —esingg €cos g Hyp
where € is a sign factor which is irrelevant to our discussion. The form of 8, agrees
with the matching condition of the effective QED coupling constant.
In the derivation of eq.(3.9) from eq.(3.7), we have made an approximation
in ignoring the deviation of @(m%) by the SUSY sector particles and in replacing
T,-y(mZ) by 1'[3 2(0). The difference made by these approximation is obtained

by regarding the quantities @(0) and 5%(m%) as independent of the SUSY sector

physics. In this case, ,w(myz) is explicitly expressed as

i} e
Saw(mz) = ZRerr%(mwsw Re [T133 (m3) — T132,(0)]

_(m3)
4

SuSsy

Re [F%(m3) - 182(0)] ., » (3.13)

with 4 = mz. The first term on the right hand side of (3.13) corresponds to
€q.(3.9) while the last two terms represent the difference made by these approxima-
tion. They are finite and of the order of (mz/msysy)?. In fact, deviations of this
order also appear in the derivation of 5%(mz) from the experimental data. These

effects are expected to be small for mgsygsy 3> mz. In this paper, we have ignored



these additional effects. We will show the complete analysis of the SUSY threshold
correction including these effects elsewhere.
To discuss the effect of these corrections to the GUT predictions, we identify

these formula as

bo(light) = by (mz), (3.14)
e 3
8i(light) = 5(6a(mz)—6uw(mz))
= ~Zbl(j)ln% (3.15)
1

and substitute into the formulas in section 2. Note that §x(light) and &5(light) are
expressed only in terms of §3(light) and 6,, as can be easily checked. We can easily
check that these results reduce to those without SU(2)xU(1) breaking if all SUSY
particle masses are much larger than my.

The top quark threshold effects which are presented in (2.25-2.27) are also
obtained in the same manner as the SUSY threshold effect. To show this, we rewrite
eq.(3.2) as
72(0)

2m%v

75%(¢*) m 1 3
- = ———— 4 |=Rell3% (&%) +
a(g?)  eawsw |4 7:(7)

1
+ ZRen;i(q?),ﬂ,, (3.16)
5q N

where the subscript 5¢ means the contribution of the minimal standard model except
for the top quark (the standard higgs scalar does not contribute at 1-loop level since
it is neutral). Therefore all the dependences of ay(u)sy on m; are contained in the
last term of eq.(3.16). The logarithmic dependence of the numerator of (2.26) on
my is then obtained from (3.16) with the approximation to replace H‘;%(m"}) by
H“,Z(o) The other logarithmic dependences in (2.25-2.27) are easily obtained by
usual effective gauge theory approach.

The typical SUSY particle mass spectrum expected in the minimal super-
gravity model is parametrized by 5 parameters (m, /2, mo, tan 3, Ay, m,,) as follows

23,24,25).

m; =~ 2.Tmyp 8.17)

2 2 1
mz, = my+ l‘m;._.'\_; - 3 ‘)mf‘,msi.i (3.18)
3 ) +6m] >+ L)m? cos2p 3.19
m3 > Mmy+0min+ (—= + =8°)m5 cos 2 & )
dg 0 /2 T\ 5 3’ z {
m%n ~ m’; + l‘xmf 2+ =S mé cos 23 (3.20)
> 5 e
m?in ~ my+ ﬁmf 9 — gs“'mé cos 23 (3.21)
9 9 1 e
m;, ~ my+ 0.5m3 5 + (=3 + 5% )mzcos 28 (3.22)
m‘;‘ﬁ & m2 + l),l:}m‘f 9= s‘:mi cos 243 (3.23)
My ~ 0.79my/s  v2my cos 3
my; = - e (3.24)
te V2my sin 8 I
P in = —mu(A+ pcotB) (3.25)
my = | (3.26)

The meaning of the parameters are as follows. my/5, mq are the soft SUSY breaking
terms at the unification scale. tan 3 is a ratio of the vacuum expectation values of
two higgs doublets in the minimal SUSY standard model. m,, is the supersymmetric
higgsino mass. A, is the soft SUSY breaking correction to the coupling of f;-f5-
(higgs scalar). M, is the SU(2) gauge symmetric mass of the wino. The mass of
the charged higgs scalar, mg«, is a complicated function of other parameters and
we have treated it as an independent parameter in this paper. We have not shown
the masses of sneutrino and neutralinos in above list since they do not appear in
€gs.(3.8,3.9) and hence are irrelevant for our discussion on the SUSY threshold
corrections with SU(2)xU(1) breaking. In the numerical analysis in this paper, we
always use the assumption m;/» = mg and M, = m, = myg+ = Mgysy-

In fig. 1, we show the numerical effect of the inclusion of SU(2)xU(1) break-
ing in SUSY sector for &,(g, W;), assuming m, = £M,. We can clearly see that the
SU(2)xU(1) breaking effect is significant in the low M, region and it decreases as

M, grows, as naively expected.
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4 Estimation of the SUSY breaking scale without
GUT threshold effects

In this section, we review the estimation of the SUSY breaking scale from
the unification condition of gauge couplings in the case where the GUT threshold
effects is not included [2].

First, for most of the later numerical analyses, we present simpler form of
6(light)’s expressed with one parameter mgy sy, which is usually defined as one of
the masses of the SUSY sector particles. Then the SUSY threshold corrections take

the following simple forms:
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8,(light) = 76‘61“M + (4.1)

bx(tight) = —goln T 4 O (42)
73

S Aght) e et (4.3)
40 mz

The parameters C)’s represent the effect of the mass splitting among SUSY sector
particles and depend on the model of the mass spectrum in the SUSY sector. The
explicit forms of C’s are expressed in terms of the masses of the SUSY sector

particles as follows:

7 & 1 My,

Cu = —In—TF_ _ (16— 5(sin? ¢; + sin® pp)) In ——
15 msysy 30 msysy
My, 1 Myt

——(6 + 5(sin> ¢ + sin® og)) In

30 msysy 20 msysy
y 2 o8
N, mimi ] gtz L) ' m;
ey en ip i el LR G G e (4.4)
60 mg, mg 125 ma, may 12 m;,
4 m; 1 T, My ) i Mmags
Cxi = —=h Hienp = ‘M o =
15 mgysy 15 Miysy 60  msysy
Ve, e, (4.5)
60 mg my,
3 m; 1. my my 1 m
Cy = sln—2i— 4 —Jqn—W"Wa =, A=
5 mgysy 10 M5ysy 40  mgysy

I & Me, T mgmg
il ([ e e
40 M2y sy 120 M5y sy
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mg mg,
=gt |, (4.6)

Misu sy M5y sy

In above results, we have included the effects of the SU(2)xU(1) breaking terms in
the SUSY sector, following eq.(3.9). C;’s are constants in the case where we can
make an assumption that SU(2)xU(1) breaking is negligible and that all masses of
superparticles are proportional to one parameter mspsy. This assumption is valid
as long as mgygy is sufficiently larger than my.

In realistic models, where colored SUSY sector particles tend to be heavier
than non-colored particles (see (3.17-3.26)), Cy is positive while Cy; is negative.
In section 5, we will see that both constants increase the estimation of mgy gy [26]
in this case. In the terms C,; and Cyx;, the contribution of squarks and sleptons
cancel each other to leave only the constant factor reflecting their mass ratios and
O(mz/msysy)? terms, as seen in eq.(4.4) and (4.5). The reason is that the squarks
and sleptons form complete SU(5) multiplets.

If we take the SUSY mass spectrum as expected from the minimal super-
gravity model, as given in (3.17-3.26), we can make estimates for these constant
factors. For myjy = mg and my= = m, = My = msysy, we obtain the following
numerical values

C,1=0.60, Cx; = —0.41, C5 = 1.82, (4.7)

ignoring SU(2)xU(1) breaking terms. In the above assumption for the SUSY
masses, the main contribution to eq.(4.7) comes from the mass splitting between
gluino and wino. The constants of eq.(4.7) can be as large as or even larger than
the logarithmic terms in eqs.(4.1) to (4.3). Therefore the neglect of these constant
terms from the SUSY mass splittings does not lead to realistic estimates in this
class of models [2,26].

‘We use the values (4.3) of the constant factors C;’s in the analysis in section
5 in the studies of the minimal SUSY SU(5) model, where the preferred value of

msysy is large. In section 6 in the studies of the missing doublet model, where we
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find that small value of mgy sy is allowed, we include SU(2)xU(1) breaking effects
in the constants Ci's via egs.(4.4)—(4.6).

Here we show the estimation of msysy from low energy experimental data
in the case where GUT threshold corrections are unknown. From egs.(2.13,4.1), we
obtain

In mfn—”z“ = % 'a(%)[":(m” = sO2(mz)] + Cyr + 6,(2) +6,(GUT)| . (4.8)

We can see that in (4.8), the dependence of msysy on a,, Cy, 6,(2) and
6,(GUT) is very significant. The constant C,; = 0.60 given in (4.7) multiplies
the estimation of mgy sy by about 7. The 2-loop correction &,(2) given in eq.(2.30)
multiplies msysy by about 50. These corrections are very large [2,26]. The resulting
estimation of mgygy without GUT threshold effects (§,(GUT) = 0) is shown in

fig.2 with two dashed lines. Their typical values for several values of a,(mz) are as

follows:
23TeV < mgysy < 130TeV for a,(mz) =0.11,
820GeV < mgysy < 4.9TeV for a,(mz) = 0.12, (4.9)
50GeV < mgysy < 300GeV for a,(mz) = 0.13.

These results essentially agree with those in [2]. The uncertainty of mgy sy for fixed
a,, about a factor 6, comes from the experimental error of s in (2.26).

Since the GUT threshold correction §,(GUT) is a part of the next-to-leading
corrections, its effect to the estimation of mgy gy may be as significant as the 2-loop
and SUSY threshold corrections. In later sections, we will explicitly show that this

is indeed the case.

5 GUT threshold effects in the minimal SUSY
SU(5) model

In order to discuss GUT threshold corrections, we should fix the SUSY GUT

model and derive the masses and the SU(3)xSU(2)xU(1) gauge representations of
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all the GUT sector particles. In this and the next sections, we study the GUT
threshold effect and its consequences in two specific SUSY SU(5) models, the min-
imal model and the missing doublet model, respectively. The consequences to the
estimation of the SUSY breaking scale are mainly discussed. The results of this
section essentially agrees with those of refs.[8,6].

We start by studying the minimal SUSY SU(5) model [3]. First, we obtain
masses and gauge representations of the GUT sector particles. The superpotential

of the GUT sector particles is
Wam = Moy Te(E?) + M Tr(2%) + MBS0 + M5, (5.1)

with three chiral supermultiplets: £(24), ¢(5) and #(5). By choosing the SU(3)x
SU(2)xU(1) symmetric vacuum, (Z) = Viy diag (-2, -2, -2, 3, 3)/2v/15 with Voq =
—4v/15My4/(3\1) and (@) = (¢) = 0, we find the mass spectra of Tables 2 and 3,

after making the fine tuning
2(Aa/ M) Moy — M5 =0 (5.2)

which is necessary for keeping the Higgs doublets in ¢ and ¢ massless. The (3, 2,
+5/6) components of £ combine with the corresponding (X, Y) components of the
gauge multiplet to make the super gauge-Higgs multiplet given in Table 2 with the
common mass m% = (5/6)g2V. The rest of T has either the mass 5My4 (= ms) or
My, as listed in Table 3. The triplet components of ¢ and , shown as D in Table
3, have a common mass mp = (5/3)M;.

The GUT threshold corrections in minimal SUSY SU(5) model are then
found as follows:

] 1 myg 3 mp 2
2 4de o VB g D4 3
60 10 “mx T 10 " myx 6:8)

B (GET) = e R N (5.4)

6,(GUT)

SIGUTY =t e P 2 (5.5)
X X




At first sight, one might argue that we can learn nothing about these corrections
since they contain many unknown mass parameters [5|. But we already have lower
limits of mp and mx by proton decay experiments. Together with the upper limits
from the theoretical consistencies, as discussed in section 2, we can make use of
these limits to obtain nontrivial constraints on the GUT sector mass spectrum.

To see the GUT threshold correction to the low energy physics, we derive

two useful relations from eqs.(2.13-2.22, 4.1-4.2, 5.3-5.4).

mp 5, msysy 3, 2
R , 2 _ 20 . !
n m® "6 In e s*(mz) — %% (mz)] — 3(Cy + Con) + (Cx1 + Cxn),
(5.6)
and
2
msmy 2, Mmsysy T 2 20!
L s —3la o ‘ﬂ(mz)[b (mz) =" (mz)]+(Cu+Cn) +3(Cxi+Cxn),
(5.7)
where
1 =
Ca = 0 + 6,(2), (5.8)
1!
Cxn = % +6x(2), : (5.9)

are sum of the constant factors from the GUT threshold corrections (5.3-5.5) (the
DR to MS conversion factor only in the minimal model) and the 2-loop running
effects. The identities (5.6) and (5.7) have first been noted clearly in ref.[8]. Eq.(5.6)
shows that for fixed a;(mz )y values, the SUSY breaking scale mgy sy is determined
only by the value of mp. We show in fig. 2 the relation of msysy and a,(mz) for
various upper limit values of mp. The upper limit value of mp in fig.2 is achieved
in the case where s° takes its maximal value allowed in (2.26). The uncertainty
of msysy from the experimental error A(s?) = 0.0014 for fixed values of mp and
a,(mz) is about a factor of 7.6. On the other hand, if we multiply mp by 10,
mgygy is multiplied by about 16. This means that even if we have exact values of

the low energy gauge couplings and a definite mass spectrum in the SUSY sector,
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we cannot determine the SUSY breaking scale by the gauge coupling unification
condition without informations of the GUT sector.
We first note that in the minimal SUSY SU(5) model, we can obtain the

lower limit of mgy sy,

> gln ”nljv”""“ = _li[s"'(mz) — s*O(mz)]
9 mi\ Sa(mz)" 5
18 6
+—=(Ca+ m)‘g(c\-,rc\'h). (5.10)
b

by imposing the constraint mp > (mp)min from proton decay experiments. Using
the conservative limit (mp)min = 10'°GeV, we find that the GUT threshold effects
increase the estimation of mgy sy in most cases, as seen in fig.2. We find that under
the assumption (4.7) for the SUSY sector masses, the minimal SUSY SU(5) model
favors high a,(mz)(>0.12) if mgysy <1TeV is satisfied. This result is severe for
the naturalness condition, which is typically expressed as mgsysy <1TeV. To be
precise, there is also the upper limit of mgysy from the Planck mass limit of mp,
mp < mp. But this upper limit is beyond the frame of fig.2.

In addition, we comment on the relation between my and mgysy. The rela-
tion between the combination mym% and msysy is given in eq.(5.7). Unfortunately,
myz has no constraint except for the Planck limit, ms < mp. This constraint gives
no useful information on the relation between mgysy and my beyond the present
experimental limits. Therefore any values of mx in the range from 10'°GeV to mp
are theoretically allowed.

The authors of ref.[8,20] have shown that if one further imposes the "weak
higgs coupling condition” that the higgs couplings A; and A, in (5.1) should not
diverge until the Planck scale, the mass ratios mp/mx and ms/mx should not
exceed a value about 3, therefore strong constraint on my for given value of mgysy
is obtained. This study is beyond the scope of this paper. We only quote their
result that the proton decays mediated by X cannot be comparable to or dominant

over the proton decays mediated by D in the minimal model if mgygy is smaller
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than 1TeV.

6 GUT threshold effects in the missing doublet
SUSY SU(5) model

As stated in the last section, the minimal SUSY SU(5) model has a problem
of fine tuning, eq.(5.2), to arrange for the huge gauge hierarchy. One way to avoid
the fine tuning problem is the missing partner mechanism. In this section, we study
a SUSY SU(5) model which realize this mechanism, the missing doublet model [27].

As in the last section, we first obtain masses and the SU(3)xSU(2)xU(1)
gauge representations of all the GUT sector particles. The superpotential of the

missing doublet model for the GUT sector is
Wapm = MrsTr(E2) + M Tr(E2) + 1,856 + A856 + M50, (6.1)

with chiral supermultiplets £(75), ¢(5), (5), ®(50) and (50). T is now a 75 chiral

supermultiplet which acquires a vacuum expectation value

(Sf)’) = —e,,msk""Vm.
(58) = 888,
(BL) = —3646°Vig,
Vis = Mzs/(4\), (6.2)

that uniquely breaks gauge symmetry to SU(3)xSU(2)xU(1) (see the Appendix for
notation and detail).

The (3, 2, +£5/6) components of £ combine with the corresponding (X,
Y') components of the gauge multiplet to make the super gauge-Higgs multiplet of
Table 2, just as in the minimal model, with the common mass m% = 24¢2V;. All the
remaining components of £ acquire masses proportional to Mys, as listed in Table 4.
The (8, 3, 0) component has the largest mass 20Mys, which we denote as my. All

the supermultiplets of $(50) and ®(50) obtain the common mass mg = Mg, except
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for their (3, 1, £1/3) components (Dg, Dg) that couple with the triplet components
(Dy, Dg) of ¢ and & to form two massive states D, and D», as is explained below.
The doublet components of © and ¢ remain massless since ®(50) and $(50) have
no (1, 2, £1/2) components, as is clearly seen in the decomposition of 50 into

SU(3)xSU(2)xU(1) representations.

50 = (6,3,+1/3) +(8,2,—1/2) + (3,2, +7/6) +(B,1, —4/3)
+(3,1,+1/3)(= D) + (1,1, +2). (6.3)
The triplet-doublet splitting is then naturally achieved in this model.

The quadratic part of the superpotential for the triplet components of ¢, ¢,

® and @ is as follows from (6.1):

W(D,D) = (Dj, Ds)M ( & )

Dg
- D, :

s D)) . 4

(D1, D2)Mg ( Dy ) (6.4)

where M and M, are the mass matrices in the gauge and mass eigenstates basis,
respectively,

" oS 5

g ( MVis Mg )’ o

My = VMU' = diag(mp,,mp,), (6.6)

mp, < mp,.

The two unitary matrices U and V are needed to obtain the two Dirac supermulti-

plets D, and D, as the mass eigenstates. The two mass eigenvalues

Mo, = (M + O+ X PVE) 2 F (ME+ (o - MWPVA) 22, (87)

satisfy the following useful identity

mp,mp, = |2 As|Vis. (6.8)




All the five parameters of the superpotential (6.1) are independent, and we
can take the five physical masses my, mg, mp,, mp, and mp as the parameters of
the model.

We should be careful when imposing the limit from experiments of the proton
decays mediated by dimension-5 operators (2.28) in the missing doublet model since
both Dy and D, mediate this decay. Fortunately, as we will show below, this limit
is represented by just one combination of the mass parameters, which we denote by
mp(ef f). To prove this, let us evaluate the magnitude of the dimension-5 operator

which mediates proton decays by making use of the property that only ¢ and @

couples to quarks and leptons.* Then the operator is proportional to

m, 1
=1 mp ol mD,;Dg > mp(eff) B8}
if the momentum square of the propagator of D; is negligible as compared to mp,’s.
Hence eq.(2.28), the lower limit of mp in the minimal model is also the lower limit
of mp(eff) in the missing doublet model. Note that the Planck scale upper limit is
not applicable for mp(ef f) since this quantity is not a physical mass of a particle.
We find that the use of mp(eff) instead of mp,’s is very useful for our
discussion. The reason is that with mp(eff), the GUT threshold correction in the
missing doublet model is expressed in the form very similar to that in the minimal
model.
The next-to-leading order correction terms, §(light) and §(2) are common to
the minimal model since these are determined by the low energy effective theory,
the minimal SUSY standard model. The GUT threshold corrections of the missing

doublet model are as follows:

L e 3 mplef f)
S GUT ) ==3100 = = [n— Dol il 6.10
(GUT) T T oy i,
o 3. mg 1 mp(eff)
5 g D ETT) 11
#(GUT)= 072 - a2 i B (6.11)

“Here we have ignored possible direct coupling of ® to quarks and leptons [27].
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55(GUT) = —6.28 +

2By s il nernin (S B0 I te o
my

20 N my 20 my 2

We first comment on the fact that the coefficients of the logarithms in
eqs.(6.10,6.11) are the same as those of eqs.(5.3,5.4) in the minimal model, de-
spite the significant difference between these models. This property has already
been pointed out in ref.[11], in the context of non-SUSY GUT models. The reason
is that in both models, the (3,2,+5/6) components of £, which are absorbed into
the heavy gauge supermultiplets (X,Y), and two (1,2,+1/2) components of ¢, ¢
(and @, & in the missing doublet model) are splitted from complete SU(5) multi-
plets in the GUT sector. Therefore, the remaining logarithmic contributions to &,
and §x should be the same in both models. Second, we note that the large negative

constant factors in eqs.(6.10) and (6.12) come from the mass splitting inside £(75),

see Table 4. For example, the contribution of £(75) to &, is as follows:

43 my 19  0.8my 16,  0.4mg 7 . 0.2mg
A e o ey TN =
&(%) 10 S i B A e MV
1 my
=——In——3/02: 6.13
10 L mx d ( )

We can clearly see that the coefficients of the logarithms cancel whereas the con-
stant terms add up. The corresponding constant terms are absent in the minimal
model, see eqs.(5.3-5.5), since all the mass eigenstates of £(24) with non-trivial
SU(3)xSU(2)xU(1) quantum numbers have the common mass, 5Maq4, there (see
Table 3). Due to these two facts, we can perform the discussion of GUT threshold
corrections which is parallel to but distinct from that in the minimal model.

The relations analogous to eqs.(5.6,5.7) in the minimal model hold also in

the missing doublet model with the replacement

mp — mp(eff), (6.14)

with
Coph = =300 55(2), (6.15)
Cxn = 0.72 4 6x(2). (6.16)
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Because of the large constant terms in eqgs.(6.15, 6.16), we find that the missing
doublet model favors smaller mgy sy and lower a,(mz) than those in the minimal

model, for the same mp or mp(ef f) value. Explicitly, the relation
mp(ef f)mpm = 1.7 x 10*(mp)um (6.17)

holds for the common mgysy and a,(mz). In order to satisfy the non-observation
of the SUSY sector particles at colliders, which is expressed typically as mgpsy >
mgz/2, we need very high values of mp(eff), as seen in fig.3. Consequently, in
this model we cannot expect to observe proton decays mediated by the dimension-
5 operators in the near future. In other words, observation of the proton decay
expected from the dimensional 5 operators in the near future is almost sufficient to
rule out the missing doublet model. As for the SUSY breaking scale, lower msysy
is allowed for a,(mz) > 0.11 after imposing mp(eff) > 10%GeV, in contrast to
the result in the minimal model.

In the missing doublet model, we should impose a further condition that the
gauge coupling constant as(u)pg should be finite at all the GUT particle masses
in the theory. This condition is non-trivial in the missing doublet model or, in
general, models which contain large number of higgs supermultiplets in the GUT
sector, since these models are asymptotically non-free, in contrast to the minimal

model. In the missing doublet model,

T ™ m,
8 e Sk o ot 261n —Ti (6.18)
holds.

In fig.4, we show the allowed region on the parameter space (mg, my) for
several values of mgysy and a,(mz) together with the corresponding values of
mp(ef f), after imposing the following conditions: measured values of the standard

model gauge coupling a;(myz), lower limits of mx and mp(eff) from the proton

decay experiments (lower frame of fig.4), Planck mass limits (upper frame and
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vertical line) and the finiteness of a;(u) at all the GUT particle masses (skew and
curved lines). Among the remaining two parameters in the missing doublet model,
my is dependent on myx via the analogous relation of eq.(5.7), while mp, is set to its
lowest value for given (my,mg) to obtain the most general conditions. The lowest

value is obtained by choosing Ay = )3 in eq.(6.7). Explicitly,
X Mme 12
min(mp,) = = ((1 +4mp(eff)/ms)'’* + 1) (6.19)

holds. We have imposed the finiteness of as(m;) on m; = mx, mg and mp,. The
finiteness of as(mg) is not needed since mp, > me always holds from eq.(6.19).
The allowed region of (mg, my) is rather narrow. We can see that in fig.4, the
allowed parameter region gets narrower as mgysy and a,(mz) increase. Indeed,
from the finiteness of as(m;), we can obtain the upper limit of mgysy since for
too large mgysy and, consequently. for large mp(eff) there remains no allowed
parameter region. We can explicitly prove this by showing that the following three
constraints mp,mp, < m}, mx > (Mx)min = 10°°GeV and a5(,/mp,mp,)"" > 0

can be simultaneously satisfied only in the case where

msysy 1 mp (M )min
e [ Bk B S e
In = 2. 1o (as(mx)“’) + Cs1 + Cs1) + 541n 0 501n o
375 9
+96(Cxt + Coxn) =~ (5(mg) — *®(my)) + 375(C + Cun) | -
a(mz)
(6.20)
Here Cs, is defined as
Oy = —6.98 + 65(2). (6.21)

The upper border of the allowed range of (mgsysy, as(mz)) from this constraint is
shown in fig.3 with a dashed line. The resulting upper limit of mgysy is below 1TeV
for a,(mz) > 0.13, making a sharp contrast to the result in the minimal model.

It is interesting to study consequences of the finiteness of a5(y) at the Planck

scale mp, although this condition is not necessary for theoretical consistency of the
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model. However, we find that by imposing this condition, the upper limit of msy sy
(6.20) is not modified although the allowed region of (mg, mx) is largely restricted.
The reason is that in the case where mgy sy is near its maximal limit, mp, is near the
Planck scale. In other words, the finiteness condition of as(mp) has been implicitly
included in eq.(6.20).

Another important consequence is that the allowed value of my is much
lower than that of mp(eff), as seen in fig.4. This means that in the missing
doublet model, proton decays are expected to occur dominantly by the dimension-
6 operators. This also makes a strong contrast to the prediction of the minimal
model.

Here we comment on the relation between mgysy and my. In contrast to
the case in the minimal model, the upper limit of mgysy and my is closely related
via eq.(6.20), without further constraints such as the weak higgs coupling condition.
For example, if we can improve the lower limit of mx by a factor 10, the upper limit
of mgygy is reduced by a factor about 18.

Finally, we comment on the consequence of the weak higgs coupling condi-
tion in this model. As can be seen, for the triplet higgses, only the combination
mp,mp, = mp(ef f)me, not mp(eff) and mp, themselves, is subject to this con-
ditions:

mp,mp, _ A2

L o (6.22)

If we impose the weak higgs coupling condition to A, and A3, the above mass ratio
should not be much larger than O(1). We can obtain the lowest allowed value of
this mass ratio for given mgysy from the finiteness of as(m;). Explicitly, from the

finiteness of as(,/Mp, mp,) and asz(ms),

mp, mp. 1 T msysy
In———= > — |-18(———= + Cs + C 293In ——
m¥k 129 (as(mx)(") + Csi + Con) + & mz

%(sf(mz) — 82O(myz)) — 1029(C,i + C.p)|  (6.23)
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follows. We find that this mass ratio should exceed 10? in wide range of (a,(mz).
msysy ), whose upper border is shown in fig.3 with a dotted line. So if a,(mz)
is higher than 0.12, the weak higgs coupling condition is likely to be violated in
the missing doublet model. But since light SUSY breaking scale is concerned in
this case, a definite conclusion may require a more complete analysis including the

non-logarithmic SUSY mass corrections to the present experimental observables.

7 Conclusion

In this paper, we have studied SUSY and GUT threshold effects on the
predictions of the two supersymmetric SUSY SU(5) models, the minimal model
and the missing doublet model. The effect of these corrections on the estimation
of the SUSY breaking scale mgsysy from low energy experimental data and the
unification condition is discussed in detail.

For the SUSY threshold corrections, we have reviewed the effects of the mass
splitting within SUSY sector particles. We have also presented a correct treatment
of the effect of SU(2)xU(1) breaking in the SUSY particle mass spectrum, which has
been ignored in previous studies. We have shown that this effect is significant for the
low msysy case (msysy ~ mz) and vanishes as increasing msysy (msysy > mz),
as naively expected.

For the GUT threshold corrections, we have studied the model dependence
of these corrections for the two SUSY SU(5) models, the minimal model and the
missing doublet model which solves the fine-tuning problem. We have shown that
the GUT threshold corrections in the missing doublet model contain large constant
terms generated by the mass splitting within a superheavy higgs multiplet $(75),
whereas the coefficients of the logarithmic terms generated by the mass splitting
among different SU(5) multiplets are mostly common to those of the minimal model.
Due to these large constant terms and the asymptotical non-freedom of the missing

doublet model, the low energy consequences of these two SUSY SU(5) models are
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found to be very different.

We have focused our attention mainly on the estimation of the SUSY break-
ing scale from the gauge coupling unification condition. We have used the fol-
lowing constraints for the threshold effects: the gauge coupling constants at the
scale mz, the proton decay experiments, and some theoretical consistency condi-
tions such as the Planck mass limit and the finiteness of the unified gauge coupling
constant ags(m;)pg at all the GUT particle masses m;. Under these constraints,
we have shown that the GUT threshold corrections are significant and strongly
model dependent. For example, we have found that under a certain assumption for
the SUSY particle masses, the minimal model favors large mgy sy (>1TeV) or high
a,(mz) (> 0.12), whereas the missing doublet model allows low mgysy (<1TeV)
for 0.11 < a,(mz) < 0.13. Moreover, mgygy should be less than 1TeV in the latter
model if a,(myz) is very large (> 0.13).

We have also found that the main proton decay mode is different in both
models. In the minimal model, we have checked that mx has no relation to the
values of (a,(mz), msysy) in experimentally allowed regions, but it has already
been found [20] that the decays mediated by dimension-5 operators, p — 7 + K*
etc., are expected to dominate if we impose the "weak higgs coupling condition”
that the higgs couplings in the superpotential do not diverge until the Planck scale.

On the contrary, in the missing doublet model, we have shown that the decays
mediated by dimension-6 operators, p — e* + 0 etc., are expected to dominate if
we impose the conditions that mgysy is larger than mz/2 and that as(u)pg is finite
at all the GUT particle masses in the model. In addition, the upper limit of mgy sy
is sensitive to the value of myx in this model. These results have been obtained
without imposing the weak higgs coupling condition.

We have also shown that in the missing doublet model, the higgs couplings
in the superpotential should be very large for wide range of (a,(mz), msysy). So,

the weak higgs coupling condition is likely to be violated in this model if a,(mz) is
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higher than 0.12.
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Appendix

In this Appendix, we derive the mass spectrum of the ¥(75) supermultiplet
in the missing doublet model, which is listed in Table 4.

The multiplet £(75) is represented by a SU(5) tensor £ (a,b,--+ =1 —5)
with the constraints £¢ = —3¢¢ = —£% and 2 = 0. The superpotential of (75)

is contained in eq.(6.1),
W(E) = MTr(Z?) + ATx(Z%). (A1)

For simplicity, we abbreviate M5, A; in (6.1) as M, A, respectively. We fix the
definition of the Tr(£?) and Tr(S?) in eq.(A.1) as follows:

TH(2) = THBY, (A2)

LioThl — ST (A.3)

al

These definitions are unique up to total normalization factors.
To obtain the mass spectrum of £(75), we decompose £ into SU(3)xSU(2)

xU(1) representations. The results are

£(75) = (HAM(8,3,0),H:(3,1,+5/3),H'(3,1,-5/3),

Hiij)a(6,2,+5/6), H)*(6,2,-5/6), H(1,1,0),
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H*(8,1,0), Hia(3,2,—5/6), H*(3,2,+5/6)), (A4)
1 1

vkl = king = empr  _* (AymprA =
Y= Gme W_,EAHH \/5(’ iz ) (A.5)
Ef]" = FUI(HHMH =4 JT:flkmE')JHmJ) (A.6)
V6
3% = anefHt (A7)
S8 = L H + - HA + LB (As)
It g8 2
o= y2/3H H,, (A.9)
% = (A.10)

and their hermite conjugates for the gauge representations, not for the chiralities.
Here the letters (7,7---), (a,8:-+), A and M represent SU(3) fundamental (1-
3), SU(2) fundamental (1,2), SU(3) adjoint (1-8) and SU(2) adjoint (1-3) indices,
respectively. The matrices 74 and o™ are the generator of SU(3) and SU(2), re-
spectively, with the normalization Tr(7477) = 2§47 etc. The normalization factors
in egs.(A.5-A.10) are chosen so that the left hand sides represent the properly nor-
malized fields. Among these fields, the scalar component of H acquires a vacuum

expectation value V75,
(HY=3V/V2, V=M/4)), (A.11)

where V' is normalized to be consistent with (6.2).
Now we are ready to derive mass spectra of £(75) after SU(5) breaking.
First, the quadratic term Tr(3?), which gives SU(5) symmetric masses, is expressed

in terms of the component fields H’s as follows:
Ts? = 4(HAMEM 4§ 4 gAHA)
+8(H;H' + Hiijo HU)® + Hi H'®). (A.12)

After SU(5) breaking (A.11), also the cubic term Tr(E*) contributes to the

mass spectrum. After the replacement £ — £ — (Z), the quadratic superpotential
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is as follows:

WA(Z) = MTe(S?) +3rsds (D)
= (4M + 24NV )(HAM)? 4 (8M — 96)V )H, H*
+(8M + OAV ) Hiijpo HD® 4 (4M — 320V)H?
+(4M — 8AV)(H*)? + (8M — 32AV)H; H™. (A.13)
After substituting (A.11) into (A.13), we obtain the mass spectrum of T listed in

Table 4. The fields H;, and H'® receive no mass term from the superpotential.

These fields are absorbed into the heavy vector supermultiplet (X, Y).
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Tables

Table 4 Higgs sector of the missing doublet model with (75), ¢(5), &(5), ®(50) and

&(50).

T ¥ ¢ . j 18 S ba i ts

Table 1 SU(3)xSU(2)xU(1) quantum numbers, masses and B-function coefficients J R i b17) bay) bj(j‘) Lt
4 H(s.a), H(B,ﬁ) (8,3,0) my 0 8 9/2
by(j) of the SUSY sector particles j in the minimal standard model. SU(2)xU(1) Hg,y), Hgyy (3,1,£5/3) 0.8me 5 Qb “Hf

E_irs : Heay Az (6,2,£5/6) 0.4my 5 3 5| in%
breaking is not included. o H“'” (1.1,0) B 0 0 0
Ha), Higyy  (8,1,0) 0.2my 0 0 3/2
bi(j) ba(j) b3(j) | comments Dy, Dy (3,1, £1/3) mp, | 1/5 0 1/2| in
) | 0 0 1 Dy, Do (3,1,£1/3) mp, | 1/5 0 12| ¢,6,8,%
. b3 05" 373 0 Hso, Hso ma | 173/10_35/2 17 | (®,®) - (Ds, Dg)

(

(1,3

(12i1/2) 1/50 4148 0
(3,2,+1/6) [ 1/60 1/4 1/6
(3,1,+2/3) | 2/15 012
(3,
(
(1
(

1,-1/3) | 1/30 0 1/12 | for 1 generation
il i ) iy ]
R A 0 0
1,2,£1/2) [ 1/200 1/12 0 | extra higgs doublet

KRR I e g

Table 2 the heavy multiplets in the supersymmetric SU(5) model gauge sector.

J R mass | bi(s)  ba(s) bs(s)
X,Y  (3,2,45/6) mx | -35/4 —21/& —7/2
X% (3,2,£5/6) my 10/3 2 a3
Hx,Hy (3,2,45/6) myx | 5/12 1/4 1/6
sum my -5 -3 -2

Table 3 Higgs sector of the minimal model with £(24), ¢(5) and &(5).

J R mass | bi(j) ba(j) bs(j) | comments

Hsyy, Hisyy  (8,1,0) my 0 0 3/2

Hug), Has (1,3,0) msg 0 1 0| inZ

Hugy, Hogy (1,1,0) 0.2mg 0 0 0

DD (3,1,£1/3) mp | 1/5 0 1/2|ingand ¢
40
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Figure Captions

Fig.1

Fig.2

Fig.3

Fig.4

é,(gluino, chargino) with and without SU(2)xU(1) breaking effects in the
SUSY sector. The parameters are chosen as m, = £M,, tan3 =2 and 8,
my = 80.2GeV, mz; = 91.19GeV. The dashed line shows the result when
non-diagonal terms in (3.24) are absent. The condition my, ,my, > mz/2 is

satisfied in all appeared region.

The relation between a,(mz)ys, msysy and max(mp) in the minimal SUSY
SU(5) model. The input parameters are o~ !(mz)yg = 127.9, s*(mz)g =
0.2325 4 0.0007. The assumption for the SUSY particle masses given in sec-
tion 3 is used. The region between two dashed lines shows the allowed val-
ues of (mgysy, a,(mz)) without GUT threshold effects, (4.8). The effect of
SU(2)xU(1) breaking in the SUSY sector is not included.

The relation between a,(mz)ys, msysy and min(mp(eff)) in the missing
doublet model. The input parameters and assumption for the SUSY particle
masses are the same as in Fig.2. The upper border of the allowed range
of (msysy, as(mz)) from the finiteness of as(mp,) and that from the weak
higgs coupling condition, mp, mp, < 100m%, are also shown with dashed and
dotted lines, respectively. The effect of SU(2)xU(1) breaking in the SUSY

sector is not included.

The allowed range of (mg, my) with several values of msysy and a,(mz),
associated with the corresponding values of min(mp(eff)) in the missing
doublet model. Note that my is dependent on the other mass parameters via

eq.(5.7) whereas mp, is set to the lowest value (6.19). The upper frames of
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mx and the vertical lines represent the Planck mass limits. The lower frame
of my comes from eq.(2.28), the limit from proton decay experiments. The
skew and curved lines are the limits from the finiteness condition of as(m;) on
m; = mx, mg and mp,, as indicated in the figure for (mgy sy = 200, a,(mz) =
0.11). The region surrounded by hatches and frames is allowed. The low
energy gauge coupling constants and assumption for the SUSY particle masses
are the same as in Fig.2. Other parameters are chosen as my =80.2GeV,
mz=91.19GeV and tan 3=2. The effects of SU(2)x U(1) breaking in the SUSY
sector are included via (4.4-4.6) except for in the f sector. All mass scales are

expressed in GeV.
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