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Abstract

The 05 = 1 antiferromagnetic Heisenberg chain in a magnetic field

along the z-axis at T = 0 is studied by numerical diagonaJizations

up to N = 16 and an analysis of the finite size scaling. The system

bas two phase transition at 11cl(=~) and Ilc2 (= 4). where ~ is the

Jlaldane gap; the ground state has rn = 0 for FI < JJc ! and 171 = 1 for

iI > H c2 , where 171 is the magnetization. We give the magnetization

curve in the thermodynamic limit, check that the system obeys the

conformal field theory with the central charge c = L in a magnetic

state (0 < 171 < 1). We investigate the asymptotic form of the trans­

verse and paraJlel spin correlations and give the exponents T/ and 17 z ,

defined by (SoSn ~ (-1)'"1.- 1
/ and (05005:) - rn 2 ~ cos(2kpT)T-'1'.

We determine T/ = 1/2 and T/z = 2 at m = 0 and 1. In addition, we

check the relation T/T/z = 1, which is consistent with the Luttinger

liquid concept. In terms of the concept. the anomalies o[ magnetiza-

ion at 171 = 0 and 1 are discussed. It is found that jf the ystem is

quasi-one-dimensional. even small interchain interactions can make

canting leel order. within a mean field approximation for interchain

interactions. It is consistent with a recent NMR measurement for

NE Ip at low temperature.
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Chapter 1. Introduction

§1. 1 Antiferromagnetic Heisenberg Chain

The Antiferromagnetic Heisenberg model has attracted great interest

[or many years. It is defined by the Hamiltonian

H. = L 5 i · 5j,
<i,j>

(1- 1)

where L<i,j> means the sum [or all the nearest neighbor pairs, and

the spin operators 5 i obey the commutation relation

(1 - 2)

and the constraint 5 j · 5 j = S(S + 1). The value of S is allowed to

be 1/2.1. 3/2. 2,' ". The model describes the magnetic properties of

many antiferromagnetic insulators.

It has been exactly shown that the model has no long-range Neel

order at finite temperature for one and two dimensions. l Only the

ground state has -eel order for two dimensions, which is supported

by a rigorous proo(2,3 at least [or S ~ 1, and many theories4 - 8 show

the existence of the order ev n [or S = 1/2. But one-dimensional

model has no Neel order even at T = 0, because the quantum fluc-

tuation is very large. It has not been shown exactly yet. The exact

ground state has been derived from the Bethe ansatz method9 only
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[or S' = 1/2. The model has been shown to have a gapless and lin-

ear dispersion of the spin wave excitation,1O and the spin correlation

decaying algebraically as

(S'0S':) C::' (-lr~ (r - ).
7'

(1- 3)

in the ground state. J I In this case Neel order does not exist but the

correlation length is infinite at T = 0, which means that T = 0

is a critical point. It had been thought that these behaviors [or

S' = 1/2 are common to all antifenomagnetic Heisenberg chains even

for higher spins, until Haldane proposed a conjecture mentioned in

the next section.
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§l. 2 Haldane Conjecture

Haldane predicted J 2 that the one-dimensional Heisenberg antiferro-

magnet has an energy gap in the excitation spectrum for integral

8. but not for half-integral 8. The gap for integral 8 is called the

.. Haldane gap". Tbis prediction is based on mappingJ2 ,J3 the origi-

nal model to the non-linear o--lllodel in 1 + 1 space-time dimensions

which has an energy gap,J4-17 taking a semiclassical and continuous

limit after describing the spin operators by the operators

I
_ 8 2 ;+J + S2i

2i -
2a

(1 - 4)

where a is the lattice con tanto This mapping gives the model de-

scribed by the Lagrangian

r = ~"',n. "'I'n + !...-c!W n ('" "')L. U! U . U!Ln X uvn
2g 81f

and the constraint

(1- 5)

(1- 6)

where 9 = 2/8 and 0 = 21fS. The second term is the topological

term which is of no effect for integral S. Haldane suggested that

the existence of the topological term leads to the different properties

between integral-S and half-integral-S cases, on the quantization of

the instanton solution for the non-linear o--model.

The prediction also suggested that the spin correlation decays

exponentially with a finite correlation length for integral 8, but the
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one decays algebraically [or half-integral S. Thus the properties o[

the ground state and the excitation spectru m [or half-integral S are

qualitatively the same as for S = 1/2. but the ones for integral S

are essentially djrrerent. If the prediction is true, the system is not

critical even at r = 0 for integral S. It means that the quantum

fluctuation which breaks the Neel order is larger for integral S. The

fact that the quali tati ve property depends on the val ue o[ S is a

topological effect characteristic of the one-dimensional system.

-6-



§l. 3 Theoretical Supports

§l. 3. 1 Numerical Approaches

The Haldane conjecture has been supported by many numerical cal­

culations for 5 = 1. At first the phenomenological renormalization18

based on numerical diagonalization up to N = 12 yielded evidence

of the fact that the energy gap closes at two points as the anisotropy

of the coupling constant A defined by

H = "2)5j5j+1 + 5J5J+l + A5151+1),
]

(1- 7)

varies. Recent calculationsl9 for larger-size systems showed that the

two transitions are Kosterlitz-Thouless-type (Ac = -0.01 ± 0.03)

and two-dimensional-Ising-type (A c = 1.188 ± 0.007). as Haldane

predicted. The value of the energy gap in the thermodynamic limit

was estimated to be 0.41 by a Ionte Carlo simulation20 up to N = 32

and 0.411 ± 0.001 by a numerical diagonalization 21 up to N = 16.

In addition the difference of the excitation energy spectrum22 for

5 = 1/2 and 5 = 1, and the asymptotic form of the spin correlation

decaying exponentiaUy23 were checked by the projector Monte Carlo

methods. The correlation length estimated to be 5.5 ± 2 from the

excitation spedrum,24 6.3 from the correlation function,23 and 8.3

from a quantuJll-transfer-matrix method 25
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§l. 3. 2 Analytical Approaches

Other than Haldane's original work. some analytical approaches sup­

ported the conjecture. A method26 representing a spin-S operator

as the sum of2S spin-l/2 operators. and taking a weak-coupling and

continuum limit. led to the difference of the spin correlation between

integral Sand balf-integral S.

An exactly solvable model [or S = 1 was foundY It is given by

the Hamiltonian

(1- 8)

which has the same symmetry as tbe Heisenberg Hamiltonian. It

was exactly shown that the model has an energy gap and the spin

correlation decays exponentially in the ground state.

The original Hamiltonian [or S = 1 was studied in a reduced

Hilbert space28 where the two spins at the left and right of a spin-O

(S" = 0) site (or a sequence o[ spin-O sites) should be antiparallel.

A typical exam pIe o[ a state within this restricted space could have

the form

... II a I 00 111 aT· ...

The model is equivalent to the transverse Ising model in the space

and it is found that the two-dimensional-Ising-type transition occurs

as an anisotropy of the coupling constant varies. This approximation

-8-



is good to study the low-temperature behavior of the original model.

In fact the excitation spectrum given by this method agrees with the

one by the Monte Carlo calculation22 within the statistical errors

for the region near k = a or 7f. In addition the ground state of

the solvable model (1 - 8) was shown to be in the reduced Hilbert

spacc. 27 ,29

-9-



§l. 4 Quasi-One-Dimensional Case

Some experimental studies30 - 33 have also given the evidence o[ the

Haldane gap [or Ni(C2II8N2)2N02(CJ04), abbreviated NENP, which

is an .) = 1 quasi-one-dimensional antiferromagnet. Although most

real quasi-one-dimensional antj[erromagnets have Neel order due to

interchain interactions at low temperature. NENP has no Neel order

at least down to 1.2K(Ref. 30). It was expected that. if interchain

interactions are small enough, the system has no Neel order even at

T = O. This has been supported by some theoretical studies, which

are a perturbative approach34 , a field theoretical analysis35 , a mean

field approximation [or interchain couplings36 . and a rigorous proof

in the reduced Hilbert space37 . Using mean field approximation [or

interchain interactions, it has been shown38 that NE P has no Neel

order even at T = O. Thus the Haldane gap can exist also in a

quasi-one-dimensional system such as NENP, which is intrinsically

th ree-d imensional.

- 10 -
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§1. 5 Behaviors in a Magnetic Field

Il igh-field magnetization measurements32 .33 have also indicated the

evidence of the Haldane gap for NENP. According to those exper-

iments. a transition from the nonmagnetic to the magnetic state

at He]. Those support the existence of an energy gap between

the ground state with Lj Sf = 0 and the first excited states with

Lj SJ = ±l. It is also noted that the curve of the field derivative

~7; in an experiment 33 has an anomalous behavior at He].

Recently it has been reported that an NMR 11leasurement38 indi­

cated the strong anti ferromagnetic correlation for the magnetic state

of NENP in a magnetic field. Then it is expected that the canted

Neel order. that is. the state which has both ferromagnetic order

along z-axis(11 H) and staggered magnetization in .xy-plane(l- 11),

exists at sufficiently low temperature.

The magnetization curve [or S' = .L was given by a numerical

diagonalization40 up to N = 14, but the result was not extrapolated

to the thermodynamic limit and it did not give any singularities near

the critical field.

In this thesis we study a one-dimensional S' = 1 Heisenberg

anti ferromagnet in a magnetic field H at T = 0 by numerical diago­

nalizations up to N = 16 and the finite size scaling. In chapter 2 we

give the magnetization curve in the thermodynamic limit and suggest

-11-
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the existence of an anomaly at He]. In chapter 3 we show that the

transverse and parallel spin correlations decay algebraically for the

magnetic state and estimated the exponents of the power-law decay

applying the conformal field theory4] to the excitation energy spec­

trum of finite systems. Then we determine the forms of anomalies in

the magnetization curve using the consistency with the Luttinger liq­

uid theory.42 In chapter 4 we study the quasi-one-dimensional case

using a mean field approximation for interchain interactions, and

conclude that a transition from disorder to canted Neel order exists

at FleJ .

- 12-
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Chapter 2. Magnetization Curve

§2. 1 urnerical Calculation and otation

We consider the magnetization process of the S = lone-dimensional

antiferromagnetic Heisenberg model at T = 0 (Ref. 1). The IIamil-

tonian is

11. = 11.0+11."

(2 - 1)

We use the unit such as g~lB = 1, where 9 is the g-factor and f-lB

is the Bohr magneton. NENP has the anisotropic term D I: j SJ2 +

E I: j (Sj2 - st). For simplicity we neglect this term. Since the

commutation relation [I: j Sf. Hal = 0 is satisfied, 11.0 can be diag­

onalized within each subspace labeled by M independently. where

Jvl is the eigenvalue of I: j Sj. The role of 11.] is only to shift each

energy of 11.0 by -HAT. We define E(N. M) as the lowest energy of

11.0 in the subspace where I: j Sf = M. [or an N-site system. We

calculate E(N. M) (M = 0.1. 2, .... N) under the periodic bound-

ary condition for even-site systems up to N = 16, using the Lanczos

algorithm. The results are shown in Table 2-1. In this chapter, using

those data, we give the magnetization curve in the thermodynamic

limit. We define the magnetization m as m == MIN. Th numerical

resulLs up to N = 16 uggest that E(N, M) - E(N, M -1) increases

- 16 -



with AI monotonously. Thus the magnetization curve of the finite-N

system at T = 0 is given by

M
In = N : M = max{MIE(N,M) - E(N,M - l) < H}. (2 - 2)

which gives an N-step curve. So far the magnetization curve of a

bulk system based on numerical calculation has been given only by

connecting the middle points of the steps.2 But we give the ext rap-

olated magnetization curve for N ---. 00 at least for some points.

We define two critical fields; the ground state has M = 0 for 11 <

fl cl , and M = N for II> 11c2 ' The Haldane gap, which is defined as

6. is the energy gap between the ground state and the triplet of the

first excited states for Ho. These first excited states are the Jowest-

energy states in the subspaces where AI = ±1 respectively and the

second-lowest-energy state in the subspace where NI = 0 (Ref. 3).

Thus we get 6 = limN-->oo[E(N, 1) - E(N,O)]. At II = E(N, 1) -

E(N,O), the ground state of the Hamiltonian (2 - 1) changes from

non-magnetic to magnetic for an N-site system. Therefore Hel = 6.

We assumed that continuous spectrum corresponding to magnetized

state exists above the gap. In addition. since the ground state of

(2 - 1) has saturated magnetization for H > E(N. N) - E(N. N ­

1), we get Hc2 = limN_oo[E(N, N) - E(N, N - 1)]. The lowest-

energy state in the subspace where NI = N - 1 is exactly given

by N-l/2L:~=~l(-I)'l .. 1l01l·")r, where 1···llOll···)r is the

-17-
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state with S,' = 0 and SJ = 1 (j i= 1'). The state has the energy

E(J\'. N -1) = lY -4. and E(N. IY) -E(lY. iY -1) = 4 is independent

of N. Thus the critical field IIc2 i given by Hc2 = 4.

- 18 -
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§2. 2 Size Dependence of Energy

It is well known that the conformal field theorl is a powerful method

for one-dimensional quantum systems. It predicts that if the lowest-

energy state is massless. the size-dependence of the energy per site

has the form5

1 1
fjE(N.M) '" ((m) + A(m) N2 (A - 00). (2 - 3)

where ((m) is the lowest energy per site in the thermodynamic limit.

The second term represents the finite-size correction. lL is noted

that we must change N with m = M/N fixed. Plots of E(N,M)/N

versus 1/N2 for m =0, 1/4, 1/2. and 3/4 are shown in Fig. 2­

1. The plot is almost linear for m =I- 0, but the value for m = 0

converges faster than] /N 2 . It suggests that the lowest-energy state

is massless for m =I- 0, while massive only for m = O. Thus we

assume that the relation (2 - 3) is satisfied for 0 < m < 1. In order

to estimate ((m). we extrapolate from the largest- and next-largest-

size values of E(N. AI)/N by the form (2 - 3). For example. we use

E(16.4) and E(12.3) to determine ((1/4) = -1.1823 ± 0.0002. We

estimate the error by the difference from the result extrapolated from

the next- and next-next-largest-size data, which are E(12,3) and

E(8,2) in the example. We can estimate ((m) by this extrapolation,

for m =1/8, 1/6, 1/4, 1/3, 5/8, 1/2, 3/8, 2/3, 3/4, 5/6, and 7/8.

Tbe error due to extrapolation is smaller than 0.01% for m =1/4,

- 19 -



1/2. and 3/4. The error cannot be estimated for other values of m.

because only two points can be used [or extrapolation. for example.

we can use only N = and 16 for m = 1/8. But we think that these

estimations are also sufficiently accurate to plot in the figure. In fact

the difference between the estimation of ((1/2) extrapolated from

E(l4,7) and E(16,8). and the one extrapolated from E(6,3) and

E(l2, 6), is about 0.03%. Thus we think that estimations even from

only two points are as accurate as it, because the size dependence

of E(N, M) does not have a drastic change when m changes in the

region 0 < m < 1, where the system is still massless. Estimated

values of ((m) are plotted in Fig. 2-2, where the value o[ ((0) we

use is the result of Vanden Broech and Schwartz (YBS) method6 by

Betsuyaku 7
.

- 20-
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§2. 3 Extrapolated Results

§2. 3. 1 Magnetization

Minimizing the total energy of the system (2 - 1) Ctot = c(m) - H m.

it is found that the magnetization curve at T = 0 is derived from

c'(m) =H. (2 - 4)

in the thermodynamic limit. Now we assume that c(m) and A(m)

are analytic for 0 < m < 1. In this region, we use the form (2 - 3)

to get the size-dependence of the spin-excitation gap, which is

1 1 1
E(N, M + 1) - E(N, M) '" c'(m) + ;;/'(m)jIj + O( N2)' (2 - 5)

E(N, M) - E(N, AT - 1) '" c'(m) - ~cll(m)~ + O( ~2)' (2 - 6)

The fact that the dominant finite-size correction of the gap is pro-

portional to 1/11" has been also deri ved directly from the conformal

invariance (see the next chapter). In order to estimate c'(m). we plot

E(N,M +1) - E(N. M) and E(N. M) - E(N. M -1) versus I/N in

Fig. 2-3. Those curves are almost linear at least for m =1/4, 1/2,

and 3/4. We use the largest- and next-largest-size data o[ E(N, M +

1) - E(N, M) to determine c'(m) by the first and second terms of

(2 - 5), and do the same treatment using E(N, M) - E(N, M - 1)

and the form (2 - 6). The two results of c'(m) coincide with each
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other with difference less than 1% for m 2': 1/4. Only for 1/6 and

1/8. the difference is a few percent. Thus we regard the average

of the two results based on (2 - 5) and (2 - 6) as the extrapolated

value of f(m). and the difference between the two as therror due to

extrapolation. Now we consider the case of m = O. It is found that

E(N,l) - E(N,O) converges faster than l/N. as hown by points

connected by the dashed curve in Fig. 2-:3. Even if we extrapolate it

linearly to l/N, the result would be finite ('" 0.32). This is also the

evidence of the Haldane gap. Here we estimate the gap 6. by applying

Shanks' transformation8 to the sequence 6.(N) == E(N, 1) - E(N, 0)

up to N = 16. The transformation is one of techniques for accelerat-

ing the convergence of a sequence {Pn } to its limit Poo , when {Pn }

satisfies

n- (2 -7)

where c is a constant9 . The a ymptotic form (2 - 7) is characteristic

of data from a finite lattice when the system is not critical even at the

thermodynamic limit. The algorithm of applying this transformation

to a sequence {Pn } is given by

(2 - 8)

If {P".} is exactly or the form (2-8), then P~ is exactly Poo , otherwise

P:, approaches Poo more rapidly than Pn . Since thre data (Pl1 - 1 ,

- 22-



Pn . and Pn +l ) are needed to determine P~ by (2 - ), the number

of data of P~ is less than Pn by two. If sufficient data are available

to apply (2 - ) to P:, again and determine P::. P~~ approaches P

more rapidly than P:,. Th n we can get the best value for P00 by

applying the transformation as many times as we can. In addition

it was shown10 that the transformation can be used to estimate the

limit Poo , when {Pn} atisfies the condition

lim ,Pn-Poo <l.
'n~oo Pn - J - P00

(2 - 9)

The result is shown in Table 2-2, where we us the data of 6.(N)

for N =4, 6, 8, 10, 12, 14, and 16, and apply the transformation

three times. The result of the third transformation in Table 2-2

gives the best estimation we can get, and we determine the error by

the difference from the farthest result among the three of the second

application of Shanks' tran formation. Then we get 6 = ('(D) ==

limm~o+ ('(m) = 0.411 ± 0.001 (Ref. 11). We use this value for 6

in this thesis. Plotting the extrapolated values of ('(m). we get the

magnetization curve at the thermodynamic limit based on (2 - 4) in

Fig. 2-4. As mentioned above the errors are so small that we do not

show them explicitly here. The solid lines near Hel and JIe2 show

the anomalous (nonlin ar) behaviors of magnetization which will be

given later.
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§2. 3. 2 Field Derivative

The field derivative ~7; is derived from

dm 1

dH ("(m)'
(2 -10)

(2 -11)

in the thermodynamic limit. In order to estimate ("(m). we use the

asymptotic form

N[(E(N,M + 1) - E(N,M)) - (E(N,M) - E(N,M -1))]

rv ("(m) + [~(('I)(m) + A"(m)] j~2 + O(~4)'

Extrapolating the quantity of the left-hand side of (2 - 11) by the

same method as ((m) (fitting ("(m)+constant/N2
), we can estimate

("(m). We have checked that errors are less than a few percent by

the same analysis as ((rn). The field derivative curve is shown in Fig.

2-5.
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§2. 4 Anomalies at IIeJ and JIe2

ow we want to know the value of £//(0) == limm_o+ (//(m) and

(//(1) == limm_l_ (//(m). In order to estimate (//(1). we use the form

E(N.1V - 1) - E(N. . - 2)

,() 3 // ( ) 1 [7 //' () ,( ] 1 ( 1
rv £ 1 - 2£ 1 N + 6( 1 + A 1) N2 + 0 N3)'

(2 - 12)

Since £'(1) == limm_l- ('(m) = 4, we can estimate (//(1) byextrapo-

lating N[4 - (E(N,N -1) - E(N,N - 2))] linearly with respect to

l/N, as shown in Fig. 2-6. The result is £//(1) = 0.01 ± 0.0l. Thus

we conclude (//(1) = 0, thaL is ~7; --> 00 at He2 . The form of the

anomaly at He2 has been predicted as

2( H l/2m rv 1 - - 1 - -) ,
Jr H e2

(2 - 13)

by a Bethe-ansatz approach12 . Assuming that the form is m rv

1 - C(1 - H/He2 )f3, and using the values of £//(5/6) and £//(7/8)

estimated by our analysis. we get C = 0.66 and f3 = 0.51. Thus our

result is almost consistent with (2 - 13).

At last we determine £//(0). low we assume that ((m) is contin­

uous at m = 0, and finite-size correction of E(N,O)/N is less than

1/N 2
, that is

1 1
NE(N,O) rv £(0) + o( N2)' (2 -14)

where £(0) == limm.->o+ ((m). The absence of a correction larger than

I/N2 is supported by the plot of E(N,O)/N versus 1/N2 in Fig. 2-1.



Actually it has been reported that the corredion decays faster than

1/N3 by an analysis up to N = 14(Ref. 7).

The conformal field theory5 gives the relation

A(m) ex vs(m). (2 - 15)

where vs(m) is the sound velocity, which is the derivative of the dis­

persion curve at the origin. Since a recent Monte Carlo caJcuiation l3

suggested that the dispersion curve near k = 'Tr has E", ((k - 'Tr)2 +

C 2)l/2 for Lj S; = 1, it is expected to lead to limm->o+ v(m) = O.

Thus we assume

A(O) == lim A(m) = O.
m,----tO+

Using (2 - 3), (2 - 14) and (2 - 16), we get

1 1
E(N, 1) - E(N, 0) '" c'(O) + c"(O)N + o( N)'

(2 - 16)

(2 - 17)

where c'(O) == limm_o+ ('(m) and c"(O) == limm->o+ c"(m). On the

other hand the plot of E(N.l) - E(N.O) versus liN in Fig. 2-

3 suggests that the finite-size correction decays faster than liN.

Therefore we conclude c"(O) = 0 and ~~~ - 00 at H el . If higher­

order derivatives of c(m) at m = 0 can be estimated, the form of

divergence at H el can be determined. But it is difficull to estimate

('''(0) from E(N, M) up to N = 16, which is too small.

As discussed above, we can fmd the existence of an anomaly at

H el but cannot determine its asymptotic form from the direct analy-



sis of c(m) based on finiLe-size daLa up Lo iY = 16. We will deLermine

Lhe anomalous form by anoLher meLhod in Lhe nexL chapLer.
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Table 2-1: Numerical results of the lowest energy E(N, AI) of L::j Sj· Sj+1 in the subspace
where 1\1 = L::j SI for N-site systems.

N 6 8 LO 12 14 16
111

0 -8.6174 -11.3370 -14.0941 -16.8696 -19.6551 -22.4468
1 -7896 -10.7434 -135693 -16.3854 -19.1962 -22.0040
2 -6.4617 -95966 -12.2597 -15.5294 -18.4227 -21.2916
3 -4.2988 -78756 -11.1548 -14.2781 -17.3097 -20.2830
4 -1.4893 -5.638J -92775 -12.6524 -158693 -18.9844
5 2 -2.9174 -6.9946 -106729 -14.1157 -17.4056
6 6 0.29 4 -4.3257 -8.3592 -12.0641 -15.557
7 4 -1.2672 -5.7244 -11.72 4 -13.4527
8 8 21938 -2.7674 -9.1177 -11.1005
9 6 0.5232 -62319 -8.5076

10 10 4.1355 -3.0632 -5.6747
11 8 2.3902 -2.5965
12 12 6.0999 0.7321
13 10 4.3014
14 14 .0767
15 12
16 16
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Table.2-2: Results of Shanks· transformation applied to energy gaps.

N /::;. /::;./ /::;./1 /::;./1/

4 1.0000000
6 0.7206274 0.4875325
8 0.5935553 0.4437757 0.4126201

10 0.524 080 0.4255775 0.4112915 0.4107755
12 0.4 41965 0.4175743 0.4109199
14 0.4589653 0.4139409
16 0.4427956
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Fig. 2-1. Plots of E(N,M)/N versus l/Nz with m = M/N=O, 1/4,

1/2, and 3/4 fixed respectively. The origin is sifted along the vertical

axis without changing the scale. The values of points A and B are as

follows; A : -1.47, -1.24, -0.73, -0.03 ; B : -1040, -1.17, -0.66,

-0.10 for m=O, 1/4, 1/2, ancl3/4 respectively. The plots are almost

linear for Tn =f- 0, whicb suggests that the lowest-energy states are

massless.
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1.0

E{m)

o

-1.0

o 0.5
m

Fig. 2-2. Plot of the lowest energy per site E(m) versus m. Each point

is derived from the largest- and next-Iargest-size data of E(N, M)jN

using the extrapolating form (2 - 3). The solid curve is only a guide­

line. As mentioned in the text the error of each point is so small (

we think it is within 0.1%) that we do not write it explicitly.
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o E(N,M+1)-E(N,M)
. E(N,M)-E(N,M-1)

m=7 /8 ~4~.~0=~~~~~~==5/6i
3/4r--

2/3 c====--==~=--
5/8 ----~

m=1/2

3/8
1/3 c======--==:::::::::::=--
1/4

1/6 c:::===~=----__
1/8 r-

m=O

o 1/16 1/10 l/N
1/6

Fig. 2-3. PloLs of spin-exciLation gap versus liN with m = MIN

fixed. The ploLs are almosL linear for m =1/4, 1/2, and 3/4. For

m -=f. 0, E(N,M +l)-E(N,M) and E(N,M)-E(N,M -1) coincide

well aL the thermodynamic limit (N -> 00). For m = 0, Lhe gap

E(N, 1) - E(N, 0), which are connecLed by a dashed curve, converges

fasLer than liN and has a [miLe value t::. = 0.411 ±0.001 (Lhis is the

resulL of by Shanks' Lransformation) in the thermodynamic limiL.
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o

o
H

Fig. 2-4. Plot of m versus H(= f'(m)), that is the magnetization

curve at the thermodynamic limit. Each point is estimated by av­

eraging the two results extrapolated by (2 - 5) and (2 - 6). For

the extrapolation, we use the largest- and next-Iargest-size data of

E(N, M + 1) - E(N, M) and E(N, M) - E(N, M -I), respectively.

We estimate the error of each point by the difference between the

two results extrapolated by (2 - 5) and (2 - 6), but it is so small

(less than a few percent) that we do not write it explicitly. We use

lId = 00411 which is the result of shanks' transformation. Solid lines

are drawn based the forms (3 - 15) and (3 - 16) from the nearest

points, as mentioned in cha,pter 3.



dm

dB

0.4 I-

o

o

0 00 0
00

0

0.2 I- 00

0.1 I I I

Hc1 (= ,6.) 2.0 H Hc2 ( = 4)

Fig. 2-5. Curve of the field derivative ~;; (= 1/Elf (m)) at the ther­

modynamic limit derived from the extrapolation (2 - 11). We apply

the same extrapolation as E(m) to estimate EII(m) here. The error is

so small (less than a few percent) that we do not write it explicitly.
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Fig. 2-6. Plot of N[4 - (E(N, N - 1) - E(N, N - 2))] versus l/N.

The extrapolated value is O.Ol±O.Ol. This result is estimated from

the two points for iV = 14 and N = 16 by 1/iV-linear extrapolation,

and the error is the difference from the result for N=12 and 14. It

suggests E"(l) = O.
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Chapter 3. Spin Correlation

§3. 1 Numerical Calculation and Notation

In this chapter we consider the spin correlation functions at T = 0

for a transverse component and a. parallel one to a magnetic field,

which are (808;") and (808:) respectively.! We want to know their

asymptotic forms. Now we study the same system as chapter 2,

described by the Hamiltonian (2 - 1). Haldane predicted2 that the

spin correlation for 1:1 = 0 ha.s the asymptotic form

(3 - 1)

where ~ is the correlation length. Since a magnetic field only shifts

an energy of a magnetic sta.te, the system has the same ground state

for 0 < Fl < flel as for fI = O. This is because fI is smaller than

the energy gap. Thus the spin correlation is still isotropic ((808:) =

(805',:)) and has the same asymptotic form (3 - 1) for 0 < 1:1 < Hcl .

But the magnetized ground state for Hel < If < H e2 is ma.ssless, as

shown in chapter 2, and then it is expected that the spin correlation

decays algebraically. We estimate the correla.tion exponent in this

chapter.

In order to estimate the correlation exponent, we use the relation

between the size dependence of the excitation energy ga.p and the

exponent, which is predicted from the conformal field theory.3
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sing the Lanczos algorithm. we calculate the lowest-state en­

ergy of 7io in the subspace where the system has the magnetiza­

tion L::
j

5J = AI and wa\"e vector k. [or the N -lattice system under

the periodic boundary condition. We restrict N to an even integer

and A :::; 16 again. We define the energy as Ek(N. AI). In addi­

tion we define the lowest one among EdN. AJ)'s corresponding to

all values of k, as E(N, M). The definition of E(N. M) is same

as chapter 2. In this case, E(N, M) = Eo(N, M) for even M and

E(N, M) = E1r (N, M) for odd M (ref. 4).



§3. 2 Prediction from Conformal Invariance

In this section we give a brief review of the result from the conformal

invariance which we use in this chapter.

V'le consider the one-dimensional quantum system with the field

¢(r') under the periodic boundary condition. which has size N. and

a ground state 10) with the energy E'Jv. where 10) is massies in the

thermodynamic limit. \Ne define Et is the lowest energy of the

excited state I¢) with the non-zero matrix element (01¢(0)1¢) =I- o.

The conformal field theory predicts5 that the asymptotic behavior of

the ground state energy and excitation energy gap for N --> CXJ have

the forms

EO" ~ Nco - ~cvs~ + O(~)
1 6 N N2

(3 - 2)

(3 - 3)

where c is the central charge in the Virasoro algebra6 satisfied by

the energy-momentum tensor. Vs is the sound velocity which is the

derivative ofthe dispersion curve at the origin. and 0 is the conformal

dimension of ¢(T). The form of the finite-size correction (2 - 3) is

derived from (3 - 2). The conformal dimension 0 determines the

asymptotic form of the correlation function in the ground state as

follows:

(3 - 4)
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Thus the correlation exponent can be estimated from the size depen­

dence of the energy gap.
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§3. 3 Central Charge

The centraJ charge c parametrizes the conformal Aeld theory de-

scribing the critical behavior of a two-dimensional classical system

at T = Te , or a one-dimensional ma sIess quantum system at T = O.

For c < 1 a discrete set of values of c is allowed by unitarity of the

scaling operator. 7 that is c = 1 - 6/[m(m + 1)] (m ~ 2 an integer).

For c = 1 the critical exponents may continuously depend on the

parameter of the modeLs For example. the two-dimensional Ising

model has c = 1/2, and the two-dimensional classical XY model

and the S' = 1/2 one-dimensional Heisenberg model have c = l.

In order to determine the central charge of the model (2 - 1)

for 0 < m < 1. we use the asymptotic behavior of the ground state

energy derived from (3 - 2), which is

~E(JI:.M) c:: f(m) - ~cvs~
N 6 N2

(N- ). (3 - 5)

where we omit the term -.rIm which exists on both hand sides. The

form corresponds to (2-3), which has been checked to be satisAed for

o< m < 1 as shown in Fig. 2-1 in chapter 2. In order to determine

the value of c, we estimate the gradient oCthe plot E(N, M)/N versus

1/N2 in Fig. 2-1. which denotes A = 7rcvs/6. and the sound velocity

vs. As Vs is the gradient of the dispersion curve at the origin, we

estimate Vs by

N
Vs = 27r(Ek ,(N.M) - E(N,M)).

- 42-
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where k] = 2Jr /1\' [or even !II and k] = Jr - 2Jr/ N [or odd M. We

have round that the size correction o[ (3 - 6) is not O(l/N) but

O(l/NZ ) numerically [or m=I/4. 1/2. and 3/4. which means that

the dispersion has the [arm C, k + Czk3 (k - 0) (C] and Cz are

constants). It is similar to the dispersion [or 5 = 1/2 which has the

[arm Isin kl (Ref. 9). We usc the value of Vs for N = 16 (l\" = 12 only

[or m=1/6. 1/3, 2/3, and 5/6) and neglect the size correction here

(at least we checked that the error due to the size correction is less

than 1% [or m=I/4, 1/2, and 3/4). In order to estima.te A, we use

the two values of E(N, M) [or the largest N and next largest N such

that magnetization is m = M/N up to N = 16, and neglect the size

correction. For example. we use E(16,4) and E(12,3) for m = 1/4,

and use E(l2,2) and E(6,1) [or m=1/6. Using those values of Vs

and A. we estimate the central charge c for m=l/ . 1/6, 1/4. 1/3,

3/ .1/2.5/8.2/3,3/4.5/6. and 7/ . and plot them in Fig. 3-1. It

suggests that c = 1 for 0 < m < 1. Thus the critical exponents can

vary with the magnetization m.
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§3. 4 Spin Correlation Exponents

§3. 4. 1 Transverse Spin Correlation

~ow we consider the spin correlation exponent in the magnetic state

(0 < m < 1) at T = O. First we investigate the correlation function

of the transverse component to a magnetic field. which is (So Sn·

As the system is massless for 0 < m < 1, the asymptotic form of the

transverse spin correlation decays algebraically and is assumed to be

(7) ----> (0), (3 -7)

in the thermodynamic limit. Then we determine the correlation ex-

ponent 7]. When we apply the conformal field theory to the Hamil­

tonian H. of (2 - 1), E~ and Et correspond to E(N, M) - IfM and

E(N.!II + 1) - If(AI + 1) respectively. Then the relation (3 - 3)

leads to the size dependence of spin-excitation energy gap

E(N.M +1) - E(l\',i\I) - II c::::: 1iVS7]~
N

(N - ). (3 - 8)

We have checked numerically that the gap is linear with respect to

liN in Fig. 2-3. Here. in order to estimate 77, we eliminate If,

subtracting the energy of the spin excitation (M -1 - M) [rom eq.

(3 - 8) and get

[E(N,M + 1) - E(N, M)] - [E(N,M) - E(N,M -1)]
1 (3 - 9)

c::::: 21ivS7]fj (N ~ (0).
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Using the form of Us (3 - 6). we get the relation

E(N. M + 1) + E(N.1I1 - 1) - 2E(N.lIJ)
T/ = E k1 (N.M) - E(N. M) .

(3 - 10)

We use eq. (3 - 10) to estimate T/. Estimated 1] for N = 16 and

N = 12 is plotted versus magnetization m in Fig. 3-2. which shows

that each value of T/ converges well with respect to the ystem size

N. We have found that the size correction of eq. (:3 - 10) behaves

as O(1/N2 ) numerically, but we neglect the correction because it

is small (at least, we checked tbat the correction for N = 16, which

was estimated from the dif[erence between the values of T/ for N = 16

and N = 14, is less than a few percents for m =1/4. 1/2, and 3/4).

In addition we determine T/ in the limits of m ~ 0+ and m - 1-,

extrapolating the value of T/ [or }.If = 1 and M = N - 1 linearly to

1/N. as shown in Fig. 3-3. We take the value extrapolated from

]\" = 14 and 16 for the best estimation, and take the difference

[rom the value extrapolated from]\" = 12 and 14 for the error of

extrapolation. The results are T/ = 0.493 ± 0.009 [or m = 0 and

1] = 0.499 ± 0.003 for m = 1. Thus, we conclude that T/ = 1/2

[or m = 0 and 1. It is consistent with Schulz's statement. 10 He

conjectured that T/ = 1/2 at He], by representing a spin-1 operator

as the sum of two spin-1/2 operators.
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§3. 4. 2 Parallel Spin Correlation

Next we consider the correlation function of the parallel component

to a magnetic field. In the magnetic state (0 < 171 < 1), finite

magnetization exists along the z-axis and a gapless excitation (gap

decays as ~ ~ 1/N) can exist at the soft mode of k = 2kp. In this

case, 2kp = 21rM/N for even M and 2kp = 1r - 21rM/N for odd

M. The existence of the soft mode is based on the a.ssumption that

the magnetic state can be described by an interacting fermion model

where the number of the fermion is given by A1. The assumption will

be supported by the consistency with the Luttinger liquid concept

in the next section. In this case, the asymptotic behavior of the

correlation function for the parallel component is expected to be

(r ~ (0). (3 - 11)

The conformal field theory can also be applied to this case]] and the

energy gap of the soft mode depends on the system size as

(N ~ (0). (3 - 12)

According to our numerical cbeck for 171 =1/4, 1/2, and 3/4 up to

N = 16, the asymptotic form E Zkp (N, M) - E(N, M) ~ 1/N is

satisfied within the error, as shown in Fig. 3-4 (Unfortunately the

error is very large for 171 = 1/4). Thus we assume that the gapless
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excitation exists at 2kp . Now we determine the exponent 1]'. Using

eqs. (3 - 6) and (3 - 12), we gel

Z _ 2E2kp(N.I\1) - E(I\'.I\1)
1] - Ek1(N,M) - E(N,M) ,

(3 - 13)

The results of 1]z estimated by (3 - 13) ror N = 12 and 16 are

plotted in Fig. 3-5. These converge well wilh respect to the system

size. We checked that the size correction of (3 - l3) decays as 0(1/N)

numerically. but neglect it here. The values or 1]' for M = 1 and

M = N - 1 are 2 by definition (3 - 13), and they are independent

or N. Thus we conclude that 1]' = 2 for m = 0 and m = 1 in the

thermodynamic limit.

As shown in Figs. 3-2 and :3-5. the exponent 1] has a minimum

and 1]' has a maximum at m ':::' 1/3. Thus, lhe lransverse spin

correlation is strong and lhe parallel one is weak there, In addition.

we conclude that 1] = 1/2 and 1]' = 2 for m = 0 and m = 1. as

discussed above. It is noted that such behavior of lhe exponents 1]

and 1]" is very different from lhe case of S = 1/2. According to

the exacL approach for S = 1/2, the system has a massless ground

state at 11 = 0, and both correlation exponents 1] and 1]' are one at

m = 0 (Ref. 12), The ground state is still massless for H > O. As

11 inCl'ea es, 1] decreases monotonously to 1/2 (H = Ifc2 = 2), and

1]' increases monotonously lo 2 (If = 11c2 ) for S = 1/2 (Ref. 13).

- 47-



(3 - 14)

§3. 5 Luttinger Liquid Concept

Finally. we consider Lhe LutLinger liquid concepL 14 Haldane sug-

gested that the Luttinger liquid can describe many one-dimensional

quanLum systems with gapJess excitations, and the validity has al-

ready been checked [or some exactly solvable models. [or example,

the oS = l/2X X Z spin chain14 and the Hubbard chain. IS - 17

Now we consider an interacLing spinless Fermion system as an

example of the Luttinger Jiquid. The Luttinger liquid theory assumes

that the elementary excitaLion can be described by the Hamiltonian

'" t 17r 2 2HI, = Us~ Iklb"b" + 2Y[VN(N - :\10) + vJJ ].
k

where Vs is Lhe sound velocity (Lhe derivative of the dispersion), b"

is the Boson operator. Lis Lhe system size. No is the number of the

Fermions, N - J 0 is the number of Lhe exLra Fermions, and J is the

number o[ the particle-hole pail' excitaLions wiLh the wave vector 2kp

(kp = 7r:-J. o/L). The last two terms of (3 - 14) are the energy gaps

o[ Lhe cbarge excitation and the 2k p current excitation respectively,

and these exciLations axe gapless in the thermodynamic limit. The

parameLers v and VJ are Lhe velocities associated with the charge

and current excitations respectively, and they are given by the forms

VN = vse-2
<p and VJ = vse2

<p where <p is the parameter determined

[rom the interaction o[ the original system. Thus the relation

(3 -15)
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VJ = lim .N [Eu:p(iV,M) - E(N,M)].
N-oo 2Jr

is satisfied. For the non-interacting spinless Fermion system (~ = 0)

the three velocities Us. VN. and VJ all correspond to the Fermi velocity

VF· The important statement o[ the Luttinger liquid theory is that

the effect of the interaction is only to change the values o[ Vs and <po

as far as the low-energy excitation is considered.

Our numerical check for the system (2 - 1) suggests the exis-

tellCe of the two gapless excitations, which are the spin excitation

and 2kF excitation respectively. It implies that the magnetization

of the S = 1 antiferromagnetic Heisenberg chain corresponds to the

charge o[ the Luttinger liquid. If the magnetic state o[ an S = 1 an­

tiferromagnetic Heisenberg chain is described by the Luttinger liquid

through the correspondence. the velocities VN and VJ are expected

to be gi ven by the relation

VN = lim ~[(E(N.J1J+1)-E(N.l\1))-(E(N:M)-E(N.M-1))1.
N-oo Jr

(3 -16)

(3 -17)

The Luttinger liquid theory can give the correlation exponents as

(3 - 1 )

(3 - 19)

These forms correspond to (3-10) and (3-13) gi ven by the conformal

invariance in the thermodynamic limit. If the Luttinger liquid theory
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is valid, the relation

(3 - 20)

which i derived from (3 - 15). (3 - 18), and (3 - 19), should be

satisfied. To check this, we show the value of Tl17z calculated by

(3-10) and (3 -13) for each M in the case of N = 16 in Table 3-1.

It shows that relation (3 - 20) is well satisfied. Thus the behaviors of

the magnetic state of an S = 1 antiferromagnetic Heisenberg chain

are consistent with the Luttinger liquid.
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§3. 6 Anomalies of Magnetization Curve

Now assuming the Luttinger liquid concept. we consider the form of

the magnetization curve near the limits ofm - 0+ and m - 1-. It

has already been found that two anomalies exist at m = 0 and 1. As

discussed above, the correlation exponents 1] and 1]' are determined

as 7] = 1/2 and 7]' = 2 in both limits. According to the Luttinger

liquid concept in the last section, 1] = 1/2 and 1]z = 2 (vs = VN =

VJ = VF) mean that the elementary excitation is described by a free­

Fermion system, which has a dispersion which behaves like k2
.

If we assume such a dispersion, the forms of the magnetization

curve near the two limits are derived as (Ref. 18)

m ~ (Fl - Hcd/2 (m - 0+).

1- m ~ (Hc2 _1I)1/2 (m ~ 1-),

(3 - 21)

(3 - 22)

where lIcl (= L",) is the transition point from the nonmagnetic to

magnetic sta teo and 11c2 (= 4) is the point where magnetization is

saturated, as discussed in chapter 2. Relations (3 - 21) and (3 ­

22) are consistent with some phenomenological approaches. J9
-

21 In

addition (3 - 22) is consistent with the result of the Bethe-ansatz

approach (2 - 13)(Ref. 22).
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Table 3-1 : Exponents T/ and l]z estimated [rom (3-10) and (3-13) [or

N = 16. and the value o[ T/T/z. The relation T/l]' = 1 is satisfied well.

M 1] T/;; T/l];;

1 0.432 2 0.864
2 0.391 2.52:3 0.986
3 0.36 2.755 1.015
4 0.358 2.873 1.029
5 0.353 2.941 1.037
6 0.351 2.975 1.043
7 0.353 2.974 l.048
8 0.360 2.910 l.048
9 0.375 2.788 1.046

10 0.400 2.5 9 1.035
11 0.432 2.366 1.022
12 0.464 2.184 1.013
13 0.4 7 2.072 ] .009
14 0.499 2.019 1.008
15 0.504 2 1.007
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1.1
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0 0
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Fig. 3-1. Central charge c estimated from eqs. (3 - 5) and (3 - 6).

We use the largest-twa-size data of E(N, M)/N for A = 1rc'Us/6, and

the value of 'Us for N = 16, to estimate c for m =1/8,1/6,1/4,1/3,

3/8, 1/2,5/8,2/3,3/4,5/6, and 7/8.
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Fig. 3-2. Exponenl 'I] cslimalcd from eq. (3 - 10) for N =12 and 16.

- 56-



o 0

O5 - - 0-0 oM _ N - f)
. ~ - - - 71(-

\
\

1] \
\

\
\

\
\

\
\

\
\

\
\

\

o

1/16 1/12 1/8 1/6

l/N

0.4 -

o
I I

o

o
I

o

I

Fig. 3-3. ExponenL 17 for M = 1 and N - 1 esLimaLed from (3 - 10),

plotLed versus 1/N. ExLrapolaLed resulLs are 1] = 0.493 ± 0.009 for

m = 0 and 17 = 0.499 ± 0.003 for m = 1. Thus we determine 17 = 1/2

for both poinLs.
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Fig. 3-4. 2kF excitation gap EZkp(N, M) - E(N, M) plotted versus

l/N for m =1/4, 1/2, and 3/4. The estimated values in the thermo­

dynamic limit are 0.1 ± 0.5,0.0 ± 0.1, and 0.0 ± 0.1 for m =1/4,1/2,

a.nd 3/4, respectively. Although the error is very large [or m = 1/4,

we a.ssume that the 2k1•• excitation is gaplcss for 0 < m < 1.

- 58-



3.0 ~ •0 0 • N=12oe
~

~ oN=16r;z
0

0 •

• 0

2.5 '- 0

•
0

Q

o.
2.0 oe

I
°eo

I I

0 1/4 1/2 3/4 m 1

Fig. 3-5 Exponent 17 z estimated from eq. (3 -13) for N =12 and 16.
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Chapter 4. Quasi-One-Dimensional Case

§4. 1 Mean Field Approximation for Interchain Interaction

As most real materials described by the one-ehmen. ional anti ferro­

magnetic Heisenberg model like NENpJ,2 have weak but RniLe in-

Lerchain inLeractions, lYe consider the quasi-one-dimensional ca e3 in

Lhis section. The syslem is represented by Lhe HamilLonian (2 - 1)

wiLh interchain interacLions deRned by

H' = i2.:~/Si· Sj,
(ij)

(4 -1)

where I;' is the sum over all the nearesL-neighbor pairs that connect

adjacent chains. Here we treal inlerchain interacLions by a mean

ReId approximation 4
- 6 , which is expecLed Lo be valid for J « 1.

Now we define the critical value Je such Lhat the ground stale has

Neel order for J > Je , while noL for Je > J> O.

At first we put II = O. Applying the mean ReId approxima-

lion for inlerchain inLeractions, Lhe pa1t of lbe hamiltonian which is

concerned wilh the ith chain, has the form

Hi = L Si.j . Si.j+1 + J L Si,i . L(S p,i)'
) )

(4 - 2)

where the subscript i specifies a chain, j is a coordinate along the

chain and I; p descri bes Lhe sum for all the nearest-neighbor chains.
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The mean field (8 p.j) is averaged for pth chai n. independently of

other chains. If the easy axis of staggered magnetization is :r-axis.

we substitute a mean field

(S~) = -(-1)jms l

(S~) = (S;) = O.

for (8 p.j). Then the Hamiltonian (4 - 1) is replaced by

(4 - 3)

Herr = L 8 j · 8j+l - herr L(-l)jSj (4 - 4)
J J

herr = 2Jms t (4 - 5)

where 2 is the number of adjacent chains (2=2 or 4 for ENP(Ref.

6)) and the subscript i is omitted. This is the effective hamiltonian

of the one-dimensional system to which the staggered magnetic field

herr is applied. If for this one-dimensional system the sublattice

magnetization in the ground state can be given as the function of

herr such that

(4 - 6)

then we get the self-consistent equation

(4 -7)

By solving this equation the sublattice magnetization mst can be

obtained. Generally .f(heff ) is a concave function and satisfies .f(0) =
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0, and the solution mst is obtained from the intersection of f(heff )

and the line herr/ZJ. Therefore whether a non-zero solution mst

exists or not is determined by the gradient of f(h err ) at heff = 0.

that is the staggered susceptibility

xx _ (oms t )
Ast - oherr herr=O

(4 - 8)

If \~t'" > l/ZJ then a non-zero solution exists. otherwise not. There-

fore the critical value Je is given by

1 __I_
e - Z\~t'"

(4 - 9)

Thus within ihis approximation we have only to calculate the stag-

gerecl susceptibiLity for the one-dimensional system at T = 0.

When tbe finite magnetization along z-axis exists, tbe easy axis

of the staggered magnetization is in the xy-plane. Thus the relation

(4 - 9) is valid even for the magnetic state.
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§4. 2 Staggered Susceptibility of One-Dimensional System

In order to study the antiferromagnetic property in the plane perpen-

dicuJar to the magnetic field (11 II 5=) for the quasi-one-dimensional

system. we calculate the staggered susceptibility along x-axis [or the

one-dimensional system at T = 0, which is given by

(4 - 10)

where

and < . .. . . > is the canonical correlation 7 defined by

. _it dATr[e-,B'HeAH Ae- AH B]
< A. B >= f3Tl-e-,B'H

(4 - 11)

(4 - 12)

(4 - 13)

In the form (4 -12) 7-{ is the Hamiltonian (2 -1). Integrating over

Ain the limit f3 ---> 00, we get the form

t;t = ~L l(il-"Is~lg)12
N [ C[-Cg

where Ig) is the ground state, Ii) is the excited state, and cg . C[

are their energies, respectively, for the Hamiltonian (2 - 1) at fi-

nite 11. We calculate \~t of finite systems under periodic boundary

condition at T = °numerically as follows: At first. using the Lanc-

zos algorithm. we get the wave function of the ground state for the

Hamiltonian (2 - 1) with a staggered magnetic field described by

7-{" = - h-"!rs~'

- 63-

(4 -14)



Next we calculate the transverse staggered magnetization (ij~~) for

this state. At last we differentiate it with respect to h numerically

to estimate \~t. Thus our numerical calculation is based on (I[ - 8)

rather than (4 - 13). We use this method to calculate x~t up to

N = 12. This method can be used to calculate \~t at most up

to N = 14, because Lj SJ is not conserved owing to the staggered

magnetic fleld (4 - 14) and the dimension of the Hilbert space used

for calculation becomes larger. However the direct calculation based

on (4 - 13) is available only [or smaller systems. The behavior of

\~tX [or N = 12 is shown as a dashed curve in Fig. 4-1. It is found

that '(~t diverges at each level-crossing point. which is defined by

The form o[ the divergence at each H M is

(4 -15)

In particular for TJ > JJc2 ' \~t can be calculated analytically because

the ground state is com pletely ferromagnetic here, and we get

\~t = H _1 H
c2

(11 > Hd·

which is independent o[ N. Now we defllle the quantity

(4 - 16)

-xx _ 2 I(MIMsWld" - lW 2 I(M + IINI5~IMW\ - + (4 - 17)
5t - N 1I - JIu N JIM +J - E

for E u < II < H U +J (J ::; M::; N -1). This satisfies the inequality

(4 -18)
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\:~t gives a good approximation of \:t. According to our check.

,<-:t and 5e~t coincide within 0.4% and the dirrerence between them

decreases as H approaches 11M , at least up to N = 14. Since the

system (2 - 1) is massless between fIe! and He2 as shown in chapter

2, we think that \:t always dil·erges in this region, as shown by the

solid curve in Fig. 4-1. In order to make sure of it, we check that

the numerator 2/NI(M + 11A1s~I}\fW diverges as

(4 -19)

with m = }\f/N fixed. Plots ofln [2/NI(i\f + 11i\!s~I.i\JWl versus ln N

for m =0,1/4,1/2. and 3/4 arc shown in Fig. 4-2. They look linear

for m i- 0, which sllggests that (4 - 19) is valid and X:t diverges for

H e1 < H < 11e2 . In order to consider t he size-dependence of \:t.

we define \:t'" as the value of \:t at H = (11 M + J1 111+1)/2 and take

X:t as an approximation of X:t [or m = M/N. We have checked

the form

(4 - 20)

with fixed m = M/N =1/4, 1/2, and 3/4 respectively, up to N = 16.

The values o[ w, which are estimated by applying (4 - 20) to >"':t"'.

are shown in Table 4-1. where we use the value derived from the

largest- and second-Iargest-size data of x.:t, and estimate the error

based on the difference from the value derived from the second- and
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third-largest-size ones. In addition. in order to check the scaling

relation

w = 2-TJ. (4 - 21)

we extrapolate the spin correlation exponent 1] calculated by eq. (3-

10) linearly to I/N 2 [or m =1/4.1/2. and 3/4. and show the results

in Table 4-1. The relation (4 - 21) is satisfied within the errors. The

relation (4 - 21) is of two-dimensional classical systems, and is also

derived [rom the conformal invariance8 . Therefore, this analysis is

consistent with the result in chapter 3.

Now we determine the asymptotic form of x~t [or H rv He] (H <

11el ). Here we also define \.:t as

-xx _ 2
1

( l ijx IO)1 2 ( 1 1)
\sl = NISI H - H + H + H 'e] el

(4 - 22)

where we use (-lli\Js~IO) (11~Is~IO). According to our numer-

ica! check up to N = 14. \.:t is also a good approximation for

o :::::: H < Hel · and the difference between \.:t and \:t decreases

as H approaches He I. It suggests that only the first term o[ (4 - 22)

contributes to the divergence of A~t at Hel . In order to make sure

o[ it, we consider the second lowest-energy state which has a non­

zero matrix element of JVI;~ with 10). This state must be in the

subspace where Lj Sf = 1 and k = 7r. We define 11h as the sec­

ond lowest-energy state in the subspace and E2 (N, 1) as its energy
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for an N-site system. We calculate E2 (N.1) up to N = 16 and plot

E2 (N. 1) - E(1V.1) versus Ij.V in Fig. 4-3. It suggests that there is a

gap between 11h and 11) even at the thermodynamic limit. The esti­

mated value of this gap is E2 ( T, l)-E(N.I) - 0.563±0.001 (N-

). Therefore we conclude that the asymptotic behavior of \:t for

B rv He] (II < He]) is determined only by the first term of (4 - 22),

because no other term of (4 -13) diverges at lIe]. Since \:t is finite

at FI = 0, the factor 2/NI(JIj\Ir~~IOW is finite at the thermodyna.mic

limit. Thus we usc Shanks' transfonnation9 given by eq. (2-8) to es­

timate the value of2/NI(JIMs~10)12 a.t the thermodynamic limit. The

result is shown in Table 4-2, where we use the data of 2/NI(WVIs~10)1 2

for N =6, 8, 10. 12. and 14, and apply the transformation twice. We

did not use the value for N = 16 because it leads to misconvergence

on the second application of the transformation due to a finite-size

effect or a round of[. Such a misconvergence sometimes occurs in

quantum systems]o. The result of the second transformation in Ta­

ble 4-2 gives the best estimation we can get, and we determine the

error by the difference from the farthest result among the three of

the first application of Shanks' transformation. Thus we determine

the form of the divergence at He] as

x:t rv (3.86 ± 0.06) Hel
l
_ H (H < He]),

at the thermodynamic limit.
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Then we give the behavior of A~t for the one-dimensional sys­

tem at the thermodynamic limit as a solid curve in FigA-l. The

asymptotic forms [or 11 '" JJeJ(H < He]) and i1 '" 11e2 (I1 > lIe2 )

are given by (4 - 2:3) and (4 - 16) respectively. and always diverges

between He] and l1e2 ·
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§4. 3 Consistency with Experiment

At last we return to the quasi-one-dimensional problem. Treating

interchain interactions (4 - 1) as a mean field, the critical value Je

is given by (4 - 9). Tberefore, within tbis approximation, we con­

clude that however small J is, Neel order exists in xy-plane between

He] and H e2 , because X~i'L of the one-dimensional system di verges for

He] < H < H e2 . This order is canted Neel order because finite mag­

netization exists along z-axis here. Thus, if a measurement is done

at sufficiently low temperature, the canted Neel order can be found

for H cJ < H < flc2 ' In particular a strong signal could be obtained

at m '" 1/3, because the transverse spin correlation is strongest there

in one-dimensional case. In fact tbe canted Neel order was observed

in the NIvIR experiment]], but it was reported that the order ex­

isted even at a < H < He] and its amplitude varied continuously

even near He]' Vve think that a certain anomalous behavior would

be found at H cJ if the experiment is done at lower temperature.
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Table.4-1 Exponent 'T/ extrapolated linearly to 1/N 2 from the re­

sults of eq. (3 - 10) and exponent w estimated by eq. (4 - IS), for

m =1/4, 1/2, and 3/4. The scaling relation w = 2 - 1] is satisfled

within the errol's.

m

1]

W

m = 1/4
0.34S±0.005

1.66±0.04

m = 1/2
0.349±0.001

1.65±0.01

-71-

m = 3/4
0.459±0.001

1.55±0.01



Table.4-2: Results of the Shank's transformation applied to 2/NI(lIM~~lOW

twice. The column with three data is the result from the first trans-

formation and the right-hand value is from the second one which is

tbe best value we can get here. The error is estimated by the differ­

ence from the farthest result among the three results of the first trans-

formation. Thus we estimate 2/NI(lIM~~10)12 ---> 3.86 ± 0.06(N ­

(0).

N 2/NI(lIM~~IOW once twice

6 2.457651
8 2.797896 3.845386
10 3.054720 3.832626 3.859898
12 3.247799 3.808645
14 3.391431

- 72-



H
2.0

I' I
: I I' II

I II 11
II II II I I II II II 11 :
II II II I I I I I I II II

II II III
II II

I I I I I I I I I I : 1I 1
J I I I I I I II II III

II I I I I II I I , I I I I II II III
II I I I I I

II
I

I I I I I I I I I
I , I III

, I I I I I I
\ ' I I

I I I
I I I I I I III

1\ , I I I I
I

I
\ ' I'

I I
\ I

, ' .... I , I I
III

)!
\ I I I ~ "" v \ , I I III
\ ..... ~ ~ I I I I I)

\
J \ I I'

...... v

- - - N=12

-- N~ (X)

~
o

o

40

80

X
XX

st

Fig. 4-1. Transverse staggered susceptibility x~t at T = a plotted

versus II [or N = 12 (a dashed curve) and the thermodynamic limit

(a solid curve). The latter always diverges between Hel and H e2 , and

has the asymptotic form x~Ct rv (Bel - I-I)-l at II rv H el (H < Hel ).

The [arm x~t = (II - H e2 )-l [or H > Hc2 is independent o[ N.
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1/4,1/2, and 3/4 fIXed rcspectively. The plots are almost lincar [or

m f:- 0 (solid curvcs), which suggests that the numcrator of (4 -15)

diverges as 2/NI(M + IIJ\1;Hi\1W rv N".
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Fig. 4-3. Plol of Ez(N, 1) - E(N, 1) versus LIN. H suggests lhat a

finile gap exisls bclween lhe lowesl- and second lowesl-energy states

in the subspace where Lj S'] = 1 and k = 7l", even at lhe thermo­

dynamic limil. The eslimated gap is O.563±O.OOl. Here we use the

same eXlrapolation in Fig. 2-6.
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Chapter 5. Summery

In this thesis the S = lone-dimensional IIeisenberg antifC'rromagnet

in a magnetic field at T = 0 is studied by the finite size scaling

based on the conformal field theory applied to numerical data from

diagonalization of finite systems up to N = 16.

The system has two phase transitions at lIe! and Jle2 . The

ground state has the magnetization m = 0 for fl < He!. 0 < m < 1

for 1Jcl < II < JJe2 , and m = 1 for }f > lIe2 . We estimated

JJe1 = L = 0.411 ± 0.001 by Shanks' transformation. We gave the

magnetization curve in the thermodynamic limit from the xtrapo­

lation of the spin-excitation energy. According to this analysis the

existence of anomalies at lId and J-lc2 is expected but their asymp­

totic forms cannot be determined.

We analyzed the size dependence of the ground state energy and

the excitation spectrum for the magnetic state to conclude that the

ground state is massless and the system obeys the conformal field

theory with c = 1 for 0 < m < 1. and to estimate the exponents T)

and1]z of spin correlations decaying algebraically. We found that the

relation T)T)z = 1 is satisfied and the system can be described as the

Luttinger liquid. The extrapolation of 1] and 1]z yielded the result

that 1] = 1/2 and 1]' = 2 in both limits m ~ 0+ and m -> 1-, which

means that the magnetic excitation can be described as a free fermion
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in the limits. Thus we concluded that the anomalous behaviors o[

the magnetization curve at JIe ] and H ez have the forms

respectively.

The rotational symmetry in xy-plane is not broken even for

< m < 1 in one dimension. In quasi-one dimension, however,

in terchain interactions break it and the canted Neel order occurs,

within a meanfleld approximation for interchain interactions. It

is consistent with a recent NMR measurement for NEN P at low

tem perature.
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