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Abstract

The S = 1 antiferromagnetic Heisenberg chain in a magnetic field
along the z-axis at 7' = 0 is studied by numerical diagonalizations
up to N = 16 and an analysis of the finite size scaling. The system

1), where A is the

has two phase transitions at H.;(= A) and H,
Haldane gap; the ground state has m = 0 for H < H.; and m = 1 for
H > H.y, where m is the magnetization. We give the magnetization
curve in the thermodynamic limit, check that the system obeys the
conformal field theory with the central charge ¢ = 1 in a magnetic
state (0 < m < 1). We investigate the asymptotic form of the trans-
verse and parallel spin correlations and give the exponents n and n*,

defined by (S§S#) ~ (=1)"r=" and (S§Sz) — m? ~ cos(2kpr)r="".

We determine n = 1/2 and n* = 2 at m = 0 and 1. In addition, we
check the relation nn* = 1, which is consistent with the Luttinger
liquid concept. In terms of the concept, the anomalies of magnetiza-
tion at m = 0 and 1 are discussed. It is found that if the system is
quasi-one-dimensional, even small interchain interactions can make
canting Néel order, within a mean field approximation for interchain

interactions. It is consistent with a recent NMR measurement for

NENP at low temperature.
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Chapter 1. Introduction

§1. 1 Antiferromagnetic Heisenberg Chain
The Antiferromagnetic Heisenberg model has attracted great interest

for many years. It is defined by the Hamiltonian

H:ZS,SJ. =

<i,7>

where - means the sum for all the nearest neighbor pairs, and
<t,3>

the spin operators §; obey the commutation relation
4 b . be ¢ «
[52,8;] = i6:;€*°S, 1=2)

and the constraint S; - .§; = S(S + 1). The value of S is allowed to
be 1/2,1,3/2,2,---. The model describes the magnetic properties of
many antiferromagnetic insulators.

It has been exactly shown that the model has no long-range Néel
order at finite temperature for one and two dimensions.! Only the

ground state has Néel order for two dimensions, which is supported

f'_’ 3 8

by a rigorous proo at least for S > 1, and many theories* =% show
the existence of the order even for S = 1/2. But one-dimensional
model has no Néel order even at 17" = 0, because the quantum fluc-
tuation is very large. It has not been shown exactly yet. The exact

ground state has been derived from the Bethe ansatz method? only

=3 =



for § = 1/2. The model has been shown to have a gapless and lin-
ear dispersion of the spin wave excitation,'® and the spin correlation

decaying algebraically as

(1-3)

in the ground state.!! In this case Néel order does not exist but the
correlation length is infinite at 77 = 0, which means that 7" = 0

is a critical point. It had been thought that these behaviors for

S = 1/2 are common to all antiferromagnetic Heisenberg chains even

for higher spins, until Haldane proposed a conjecture mentioned in

the next section.




51. 2 Haldane Conjecture

Haldane predicted!? that the one-dimensional Heisenberg antiferro-
magnet has an energy gap in the excitation spectrum for integral
S, but not for half-integral S. The gap for integral S is called the
"Haldane gap”. This prediction is based on mapping'*'? the origi-
nal model to the non-linear o-model in 1 + 1 space-time dimensions
which has an energy gap.'*~!7 taking a semiclassical and continuous
limit after describing the spin operators by the operators

o, Ve S2i41 — S 7ot Soip1+ Sai (1—4)
PRI L e G i L W S .

-~ 25 75 2a
where «a is the lattice constant. This mapping gives the model de-

scribed by the Lagrangian

0 g
E:Zl‘),,n%)“n%—gt""n-((’)“nX('),,n) . (1-15)

and the constraint
n?i=1 , (1-6)
where g = 2/S and 0 = 27S. The second term is the topological
term which is of no effect for integral S. Haldane suggested that
the existence of the topological term leads to the different properties
between integral-S and half-integral-S cases, on the quantization of
the instanton solution for the non-linear o-model.
The prediction also suggested that the spin correlation decays

exponentially with a finite correlation length for integral S, but the




one decays algebraically for half-integral S. Thus the properties of
the ground state and the excitation spectrum for half-integral S are
qualitatively the same as for S = 1/2, but the ones for integral S
are essentially different. If the prediction is true, the system is not
critical even at 7" = 0 for integral S. It means that the quantum
fluctuation which breaks the Néel order is larger for integral S. The

fact that the qualitative property depends on the value of S is a

topological effect characteristic of the one-dimensional system.




§1. 3 Theoretical Supports

§1. 3. 1 Numerical Approaches

The Haldane conjecture has been supported by many numerical cal-
culations for § = 1. At first the phenomenological renormalization!®
based on numerical diagonalization up to N = 12 yielded evidence
of the fact that the energy gap closes at two points as the anisotropy

of the coupling constant A defined by

H = (§75%,1 + 558, + 28]
J

W Eh=7]

varies. Recent calculations'® for larger-size systems showed that the
two transitions are Kosterlitz-Thouless-type (A = —0.01 £ 0.03)
and two-dimensional-Ising-type (A, = 1.188 £ 0.007), as Haldane
predicted. The value of the energy gap in the thermodynamic limit
was estimated to be 0.41 by a Monte Carlo simulation®® up to N = 32
and 0.411 £ 0.001 by a numerical diagonalization®! up to N = 16.
In addition the difference of the excitation energy spectrum?? for
S =1/2and S = 1, and the asymptotic form of the spin correlation
decaying exponentially®® were checked by the projector Monte Carlo
methods. The correlation length estimated to be 5.5 + 2 from the

excitation spectrum,?* 6.3 from the correlation function,?® and 8.3

3 : o
from a quantum-transfer-matrix method.*”




§1. 3. 2 Analytical Approaches

Other than Haldane’s original work, some analytical approaches sup-
ported the conjecture. A method®® representing a spin-S operator
as the sum of 2.5 spin-1/2 operators, and taking a weak-coupling and
continuum limit, led to the difference of the spin correlation between
integral S and half-integral S.

An exactly solvable model for S = 1 was found.?™ It is given by

the Hamiltonian
i 2
H:ZSIA5,+1+§Z(5,'-5,+,)~ : (1-38)
J J

which has the same symmetry as the Heisenberg Hamiltonian. It
was exactly shown that the model has an energy gap and the spin
correlation decays exponentially in the ground state.

The original Hamiltonian for S = 1 was studied in a reduced

28 where the two spins at the left and right of a spin-0

Hilbert space
(5% = 0) site (or a sequence of spin-0 sites) should be antiparallel.
A typical example of a state within this restricted space could have

the form

DT 00N RO e

The model is equivalent to the transverse Ising model in the space
and it is found that the two-dimensional-Ising-type transition occurs

as an anisotropy of the coupling constant varies. This approximation

—




is good to study the low-temperature behavior of the original model.
In fact the excitation spectrum given by this method agrees with the
one by the Monte Carlo calculation®? within the statistical errors
for the region near k = 0 or 7. In addition the ground state of

the solvable model (1 — 8) was shown to be in the reduced Hilbert

27 .24
gpacei#li2?




§1. 4 Quasi-One-Dimensional Case

Some experimental studies®*=*3 have also given the evidence of the
Haldane gap for Ni(CyHgN5 )2 NO,(C10y4), abbreviated NENP, which
is an S = 1 quasi-one-dimensional antiferromagnet. Although most
real quasi-one-dimensional antiferromagnets have Néel order due to
interchain interactions at low temperature, NENP has no Néel order
at least down to 1.2K(Ref. 30). It was expected that, if interchain

interactions are small enough, the system has no Néel order even at

T = 0. This has been supported by some theoretical studies, which

a mean

are a perturbative approach®®, a field theoretical analysis
field approximation for interchain couplings*®, and a rigorous proof
in the reduced Hilbert space®”. Using mean field approximation for
interchain interactions, it has been shown®® that NENP has no Néel
order even at 7" = 0. Thus the Haldane gap can exist also in a
quasi-one-dimensional system such as NENP, which is intrinsically

three-dimensional.

=ilg=




§1. 5 Behaviors in a Magnetic Field

High-field magnetization measurements®?=** have also indicated the
evidence of the Haldane gap for NENP. According to those exper-
iments, a transition from the nonmagnetic to the magnetic state
at H.. Those support the existence of an energy gap between
the ground state with Z} SJ = 0 and the first excited states with
Z/ ,Sj
dm

77 in an experiment®® has an anomalous behavior at H.;.

= +1. It is also noted that the curve of the field derivative

Recently it has been reported that an NMR measurement®® indi-
cated the strong antiferromagnetic correlation for the magnetic state
of NENP in a magnetic field. Then it is expected that the canted
Néel order, that is, the state which has both ferromagnetic order
along z-axis(|| H) and staggered magnetization in xy-plane( L H),
exists at sufficiently low temperature.

The magnetization curve for S = 1 was given by a numerical
diagonalization®® up to N = 14, but the result was not extrapolated
to the thermodynamic limit and it did not give any singularities near
the critical field.

In this thesis we study a one-dimensional S = 1 Heisenberg
antiferromagnet in a magnetic field # at 7' = 0 by numerical diago-
nalizations up to N = 16 and the finite size scaling. In chapter 2 we
give the magnetization curve in the thermodynamic limit and suggest

11




the existence of an anomaly at H.,. In chapter 3 we show that the
transverse and parallel spin correlations decay algebraically for the

magnetic state and estimated the exponents of the power-law decay

applying the conformal field theory*! to the excitation energy spec-
trum of finite systems. Then we determine the forms of anomalies in
the magnetization curve using the consistency with the Luttinger lig-
uid theory.*? In chapter 4 we study the quasi-one-dimensional case
using a mean field approximation for interchain interactions, and

conclude that a transition from disorder to canted Néel order exists

at Hy.
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Chapter 2. Magnetization Curve

§2. 1 Numerical Calculation and Notation
We consider the magnetization process of the S = 1 one-dimensional
antiferromagnetic Heisenberg model at 7' = 0 (Ref. 1). The Hamil-

tonian is

H = THo+ Hi,
2 (2-1)
Ho=) 8;-8j1, HMi=-HY S;.
J j
We use the unit such as gug = 1, where g is the g-factor and up

is the Bohr magneton. NENP has the anisotropic term [) Z] S;l A
E Z](S}'z — ')'/2). For simplicity we neglect this term. Since the
commutation relation [Zl .9';.7'([;] = 0 is satisfied, Ho can be diag-
onalized within each subspace labeled by M independently, where
M is the eigenvalue of Z, S;. The role of H; is only to shift each
energy of Ho by —H M. We define E(N, M) as the lowest energy of
Hp in the subspace where Z] 5! = M, for an N-site system. We
calculate E(N,M) (M =0,1,2,---, N) under the periodic bound-
ary condition for even-site systems up to N = 16, using the Lanczos
algorithm. The results are shown in Table 2-1. In this chapter, using
those data, we give the magnetization curve in the thermodynamic
limit. We define the magnetization m as mn = M /N. The numerical

results up to N = 16 suggest that E(N, M) — E(N, M —1) increases

16




with M monotonously. Thus the magnetization curve of the finite- /N

system at 1" = 0 is given by

M = max{M|E(N,M) - E(N,M — 1) < H}, (2-2)

which gives an N-step curve. So far the magnetization curve of a
bulk system based on numerical calculation has been given only by
connecting the middle points of the steps.? But we give the extrap-
olated magnetization curve for N — oo at least for some points.
We define two critical fields; the ground state has M = 0 for H <
H.y,and M = N for H > H.,. The Haldane gap, which is defined as
A, is the energy gap between the ground state and the triplet of the
first excited states for Hy. These first excited states are the lowest-
energy states in the subspaces where M = =£1 respectively and the
second-lowest-energy state in the subspace where M = 0 (Ref. 3).
Thus we get A = limy_o[E(N,1) — E(N,0)]. At H= E(N,1) —
E(N,0), the ground state of the Hamiltonian (2 — 1) changes from
non-magnetic to magnetic for an N-site system. Therefore H.; = A.
We assumed that continuous spectrum corresponding to magnetized
states exists above the gap. In addition, since the ground state of
(2 —1) has saturated magnetization for H > E(N,N) — E(N,N —
1), we get Hey = limy_.o[E(N,N) — E(N,N — 1)]. The lowest-

energy state in the subspace where M = N — 1 is exactly given

(=17 -11011 -

, where |---11011---), is the

T




state with ST =0 and S =1 (j # r). The state has the energy

{58

E(N,N—1)= N—4, and E(N,N)—E(N,N—1) = 4 is independent

of N. Thus the critical field H.y is given by Hep = 4.




§2. 2 Size Dependence of Energy

It is well known that the conformal field theory? is a powerful method
for one-dimensional quantum systems. It predicts that if the lowest-
energy state is massless, the size-dependence of the energy per site

has the form?

%[:'(.\',A\[)wr(m)+1(u:)% (N — ), (2-3)

where ¢(m) is the lowest energy per site in the thermodynamic limit.
The second term represents the finite-size correction. It is noted
that we must change N with m = M/N fixed. Plots of E(N,M)/N
versus 1/N? for m =0, 1/4, 1/2, and 3/4 are shown in Fig. 2-
1. The plot is almost linear for m # 0, but the value for m = 0
converges faster than 1/N?. It suggests that the lowest-energy state
is massless for m # 0, while massive only for m = 0. Thus we
assume that the relation (2 — 3) is satisfied for 0 < m < 1. In order
to estimate €(m), we extrapolate from the largest- and next-largest-
size values of E(N,M)/N by the form (2 — 3). For example, we use
E(16,4) and E(12,3) to determine €(1/4) = —1.1823 + 0.0002. We
estimate the error by the difference from the result extrapolated from
the next- and next-next-largest-size data, which are £(12,3) and
[(8,2) in the example. We can estimate ¢(m) by this extrapolation,
for m =1/8, 1/6, 1/4, 1/3, 5/8, 1/2, 3/8, 2/3, 3/4, 5/6, and 7/8.
The error due to extrapolation is smaller than 0.01% for m =1/4,

— i)




1/2, and 3/4. The error cannot be estimated for other values of m,
because only two points can be used for extrapolation, for example,
we can use only N =8 and 16 for mm = 1/8. But we think that these
estimations are also sufficiently accurate to plot in the figure. In fact
the difference between the estimation of €(1/2) extrapolated from
E(14,7) and E(16,8), and the one extrapolated from F(6,3) and
E(12,6), is about 0.03%. Thus we think that estimations even from
only two points are as accurate as it, because the size dependence
of E(N, M) does not have a drastic change when m changes in the
region 0 < m < 1, where the system is still massless. Estimated
values of ¢(m) are plotted in Fig. 2-2, where the value of ¢(0) we
use is the result of Vanden Broech and Schwartz (VBS) method® by

Betsuyaku”.
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§2. 3 Extrapolated Results

§2. 3. 1 Magnetization
Minimizing the total energy of the system (2—1) €01 = €(m)— Hm,

it is found that the magnetization curve at 7' = 0 is derived from
d(m)=H, (2-14)

in the thermodynamic limit. Now we assume that ¢(m) and A(m)
are analytic for 0 < m < 1. In this region, we use the form (2 — 3)
to get the size-dependence of the spin-excitation gap, which is

E(N,M +1) — E(N,M) ~ é(m) + %(”(I!l)% + ()(%). (2-5)

1 1 1
O(N,M) - E(N,M —1) ~ ¢ — =" - —). (2-6
E( 1) — E(N,M —1) ~ €'(m) 2( (m).\, + O( »\,‘_,) ( 6)

The fact that the dominant finite-size correction of the gap is pro-
portional to 1/N has been also derived directly from the conformal
invariance (see the next chapter). In order to estimate ¢’(m), we plot
E(N,M +1)— E(N,M) and E(N,M)— E(N,M —1) versus 1/N in
Fig. 2-3. Those curves are almost linear at least for m =1/4, 1/2,
and 3/4. We use the largest- and next-largest-size data of E(N, M +
1) — E(N, M) to determine ¢'(m) by the first and second terms of
(2—=5), and do the same treatment using E(N, M) — E(N,M — 1)
and the form (2 — 6). The two results of €'(m) coincide with each

Vi=




other with difference less than 1% for m > 1/4. Only for 1/6 and
1/8, the difference is a few percent. Thus we regard the average
of the two results based on (2 — 5) and (2 — 6) as the extrapolated
value of ¢(m), and the difference between the two as the error due to
extrapolation. Now we consider the case of m = 0. It is found that
E(N,1) — E(N,0) converges faster than 1/N, as shown by points
connected by the dashed curve in Fig. 2-3. Even if we extrapolate it
linearly to 1/N, the result would be finite (~ 0.32). This is also the
evidence of the Haldane gap. Here we estimate the gap A by applying
Shanks’ transformation® to the sequence A(N) = E(N,1)— E(N,0)
up to N = 16. The transformation is one of techniques for accelerat-
ing the convergence of a sequence {P,} to its limit Ps, when {F,}
satisfies

By = Pos 01, n — oo, 2-17

where ¢ is a constant”. The asymptotic form (2 —T7) is characteristic
of data from a finite lattice when the system is not critical even at the
thermodynamic limit. The algorithm of applying this transformation
to a sequence {P,} is given by

Py Pryi= By
I B T il 2

Dl
P, =

(2-3)

If { P, } is exactly of the form (2—8), then P} is exactly Pu, otherwise
P! approaches P, more rapidly than P,. Since three data =

22




P,, and P,41) are needed to determine P, by (2 — 8), the number
of data of P! is less than P, by two. If sufficient data are available
to apply (2 — 8) to P! again and determine P/, P} approaches Py
more rapidly than P!. Then we can get the best value for P, by
applying the transformation as many times as we can. In addition
it was shown'® that the transformation can be used to estimate the
limit P, when {P,} satisfies the condition

Pr =P
lim —— < 1. (2-9)

ntvie Py — Pog

The result is shown in Table 2-2, where we use the data of A(N)
for N =4, 6, 8, 10, 12, 14, and 16, and apply the transformation
three times. The result of the third transformation in Table 2-2
gives the best estimation we can get, and we determine the error by
the difference from the farthest result among the three of the second
application of Shanks’ transformation. Then we get A = €'(0) =
lim,,, o4 €'(m) = 0.411 £ 0.001 (Ref. 11). We use this value for A
in this thesis. Plotting the extrapolated values of €'(m), we get the
magnetization curve at the thermodynamic limit based on (2 —4) in
Fig. 2-4. As mentioned above the errors are so small that we do not
show them explicitly here. The solid lines near H.; and H.y show
the anomalous (nonlinear) behaviors of magnetization which will be

given later.
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§2. 3. 2 Field Derivative

dm

T'he field derivative g7

is derived from

dm 1 2_10)
dH ~ ¢'(m)’ ¢

in the thermodynamic limit. In order to estimate €"(m), we use the

asymptotic form

N[(E(N,M +1)— E(N,M)) — (E(N,M) — E(N,M —1))]

1 1 1
~€'(m) + [E((")(m) + A/‘l"(rll)]A—,z + O(’\—‘)
(2-11)

Extrapolating the quantity of the left-hand side of (2 — 11) by the
same method as ¢(m) (fitting €”(m)+constant/N?), we can estimate
¢"(m). We have checked that errors are less than a few percent by

the same analysis as ¢(m). The field derivative curve is shown in Fig.

2-5.




§2. 4 Anomalies at H.; and H.,
Now we want to know the value of €’(0) = lim,, o4 ¢’(m) and

€"(1) = lim,,—1— €’(m). In order to estimate ¢’(1), we use the form

| E(N,N—-1)— E(N,N —2)
! :; n ] T n ! (2— 12)
N‘(l)_gl(])_-\:*‘[af (l)+A1(l)]‘

Since €'(1) = lim,, 1 — ¢/(m) = 4, we can estimate ¢”(1) by extrapo-
lating N[4 — (E(N,N — 1) — E(N, N — 2))] linearly with respect to
1/N, as shown in Fig. 2-6. The result is ¢’(1) = 0.01 £ 0.01. Thus
we conclude ¢'(1) = 0, that is :;;,’; — o0 at H¢y. The form of the
anomaly at H., has been predicted as

2 e
= =] SR =1
m 7( ”‘-2) ( 3)

by a Bethe-ansatz approach'?. Assuming that the form is m ~
1 — C(1 — H/H.)?, and using the values of €’(5/6) and €"(7/8)
estimated by our analysis, we get C' = 0.66 and 3 = 0.51. Thus our
result is almost consistent with (2 — 13).

At last we determine ¢’(0). Now we assume that ¢(m) is contin-
uous at m = 0, and finite-size correction of E(N,0)/N is less than

1/N?, that is

1 ] 1
TI'J(‘\.O)N((OH»O( Ik (2-14)
where €(0) = lim,, o4 €(m). The absence of a correction larger than
1/N? is supported by the plot of E(N,0)/N versus 1/N?* in Fig. 2-1.
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| Actually it has been reported that the correction decays faster than
1/N? by an analysis up to N = 14(Ref. 7).

The conformal field theory® gives the relation
A(m) x vg(m), (2—-15)

where vs(m) is the sound velocity, which is the derivative of the dis-
persion curve at the origin. Since a recent Monte Carlo calculation'?
suggested that the dispersion curve near k = 7 has I ~ ((k — )2 +

—351/2
SO

Thus we assume

J =1, it is expected to lead to lim,,—o4 v(m) = 0.

A(0)= lim A(m)=0. (2-16)

m—0+
Using (2 — 3), (2 — 14) and (2 — 16), we get

1

E(N,1) — E(N,0) ~ €(0) + /’(0)% + o(7): (=T

where ¢ (0) = lim,, o4 € (m) and €"(0) = lim,,—o4 €'(m). On the
other hand the plot of E(N,1) — E(N,0) versus 1/N in Fig. 2-
3 suggests that the finite-size correction decays faster than 1/N.

] dm

Therefore we conclude ¢'(0) = 0 and Si —> oo af H.y. If higher-
order derivatives of ¢(m) at m = 0 can be estimated, the form of
divergence at H.; can be determined. But it is difficult to estimate
€"(0) from E(N, M) up to N = 16, which is too small.

As discussed above, we can find the existence of an anomaly at

H¢y but cannot determine its asymptotic form from the direct analy-
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sis of €(m) based on finite-size data up to N = 16. We will determine

the anomalous form by another method in the next chapter.
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Table 2-1 : Numerical results of the lowest energy E(N, M) of Z] 5;-8;41 in the subspace
where M = Z, Si for N-site systems.

N 6 8 10 12 14 16
M
0 -11.3370 -14.0941
1 3.5693
2 617
3 -4.2988
1 -1.4893
5 p
6 6
7
8
9
10
11
12
13
14 14 8.0767
15 12
16 16




l'able.2-2 : Results of Shanks’ transformation applied to energy gaps.

A\‘ .A A/ AH A//I
4 1.0000000
6 0.7206274
8 0.5 53 0.4126201

10 0.5248080 0. 0.4112915  0.4107755
12 0.4841965 0.4175743 0.4109199

14 0.4589653  0.4139409

16 0.4427956




E(N,M)/N

A L 1 1
0 2 2
1/16% 1/107 4 o

Fig. 2-1. Plots of (N, M)/N versus 1/N? with m = M/N=0, 1/4,
1/2, and 3/4 fixed respectively. The origin is sifted along the vertical
axis without changing the scale. The values of points A and B are as
follows; A : —1.47, —1.24, —0.73, —0.03 ; B : —1.40, —1.17, —0.66,
—0.10 for m=0, 1/4, 1/2, and 3/4 respectively. The plots are almost
linear for m # 0, which suggests that the lowest-energy states are

massless.
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Fig. 2-2. Plot of the lowest energy per site ¢(m) versus m. Bach point
is derived from the largest- and next-largest-size data of E(N,M)/N
using the extrapolating form (2—3). The solid curve is only a guide-
line. As mentioned in the text the error of each point is so small (

we think it is within 0.1%) that we do not write it explicitly.




o E(N,M+1)-E(N,M)
- E(N,M)-E(N,M-1)
m=7/8 -4.0 o =
5/6
3/4
2/3
5/8
m=1/2

3/8|:
1/3
1/4
1/6
e O S

m=01=%
1 1
1l
0 B 1/N 1/6
Fig. 2-3. Plots of spin-excitation gap versus 1/N with m = M/N

fixed. The plots are almost linear for m =1/4, 1/2, and 3/4. For
m # 0, B(N,M+1)—E(N, M) and E(N, M)— E(N, M —1) coincide
well at the thermodynamic limit (N — o0). For m = 0, the gap
E(N,1)— E(N,0), which are connected by a dashed curve, converges
faster than 1/N and has a finite value A = 0.411£0.001 (this is the

result of by Shanks’ transformation) in the thermodynamic limit.
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Fig. 2-4. Plot of m versus H(= ¢'(im)), that is the magnetization

curve at the thermodynamic limit. Each point is estimated by av-

eraging the two results extrapolated by (2 —5) and (2 — 6). TFor

the extrapolation, we use the largest- and next-largest-size data of

E(N,M +1) — E(N, M) and E(N,M)— E(N, M — 1), respectively.

We estimate the error of each point by the difference between the

two results extrapolated by (2 — 5) and (2 — 6), but it is so small

(less than a few percent) that we do not write it explicitly. We use

Hgy = 0.411 which is the result of shanks’ transformation. Solid lines

are drawn based the forms (3 — 15) and (3 — 16) from the nearest

points, as mentioned in chapter 3.
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dm
dH

0.4

0©

L |

Fig. 2-5. Curve of the field derivative %ﬁ (= 1/€"(m)) at the ther-
modynamic limit derived from the extrapolation (2—11). We apply
the same extrapolation as e(m) to estimate €’(m) here. The error is

so small (less than a few percent) that we do not write it explicitly.
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2.01=

N{4-[E(N,N-1)-E(N,N-2) ]}

1 1 1
0 1/16 1/10 1N 1/6

Fig. 2-6. Plot of N[4 — (E(N,N — 1) — E(N,N — 2))] versus 1/N.
The extrapolated value is 0.0120.01. This result is estimated from
the two points for N = 14 and N = 16 by 1/N-linear extrapolation,

and the error is the difference from the result for N=12 and 14. It

suggests ¢'(1) = 0.




Chapter 3. Spin Correlation

§3. 1 Numerical Calculation and Notation

In this chapter we consider the spin correlation functions at 7' = 0
for a transverse component and a parallel one to a magnetic field,
which are (S§S%) and (S5G57) respectively.! We want to know their
asymptotic forms. Now we study the same system as chapter 2,
described by the Hamiltonian (2 — 1). Haldane predicted® that the

spin correlation for # = 0 has the asymptotic form

2y = (= 1) 2 exp(—r/€), B-1)

where ¢ is the correlation length. Since a magnetic field only shifts
an energy of a magnetic state, the system has the same ground state
for 0 < H < Hey as for H = 0. This is because H is smaller than
the energy gap. Thus the spin correlation is still isotropic ((SgS2)=
(S¢SZ)) and has the same asymptotic form (3 —1) for < H < He-
But the magnetized ground state for ¢y < H < Hey is massless, as
shown in chapter 2, and then it is expected that the spin correlation
decays algebraically. We estimate the correlation exponent in this
chapter.

In order to estimate the correlation exponent, we use the relation
between the size dependence of the excitation energy gap and the

exponent, which is predicted from the conformal field theory.?

= 38—




Using the Lanczos algorithm, we calculate the lowest-state en-
ergy of Hy in the subspace where the system has the magnetiza-
tion Z/ SJ‘ — M and wave vector k, for the N-lattice system under
the periodic boundary condition. We restrict N to an even integer
and N < 16 again. We define the energy as Er(N,M). In addi-
tion we define the lowest one among Ex(N,M)’s corresponding to
all values of k, as E(N,M). The definition of E(N,M) is same
as chapter 2. In this case, E(N, M) = Eo(N, M) for even M and

E(N,M) = E.(N, M) for odd M (ref. 4).
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§3. 2 Prediction from Conformal Invariance
In this section we give a brief review of the result from the conformal
invariance which we use in this chapter.

We consider the one-dimensional quantum system with the field

ize N, and

&(r) under the periodic boundary condition, which has
a ground state |0) with the energy E%, where |0) is massless in the
thermodynamic limit. We define EY, is the lowest energy of the
excited state |¢) with the non-zero matrix element (0[¢(0)[¢) # 0.
The conformal field theory predicts® that the asymptotic behavior of
the ground state energy and excitation energy gap for N — oo have

the forms

] " ™ 1
sz{- ~ Ne¢y — Um'gT +0

where ¢ is the central charge in the Virasoro alg(‘ln‘a“ satisfied by
the energy-momentum tensor, vs is the sound velocity which is the
derivative of the dispersion curve at the origin, and 0 is the conformal
dimension of ¢(r). The form of the finite-size correction (2 — 3) is
derived from (3 —2). The conformal dimension 6 determines the
asymptotic form of the correlation function in the ground state as
follows:

(0]6(0)p(r)]0) = r=27. (3=

40




Thus the correlation exponent can be estimated from the size depen-

dence of the energy gap.
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§3. 3 Central Charge
The central charge ¢ parametrizes the conformal field theory de-
scribing the critical behavior of a two-dimensional classical system
at 7' = T., or a one-dimensional massless quantum system at 7" = (.
For ¢ < 1 a discrete set of values of ¢ is allowed by unitarity of the
scaling operator,” that is ¢ = 1 — 6/[m(m + 1)] (m > 2 an integer).
For ¢ = 1 the critical exponents may continuously depend on the
parameters of the model.® For example, the two-dimensional Ising
model has ¢ = 1/2, and the two-dimensional classical XY model
and the S = 1/2 one-dimensional Heisenberg model have ¢ = 1.

In order to determine the central charge of the model (2 — 1)
for 0 < m < 1, we use the asymptotic behavior of the ground state
energy derived from (3 — 2), which is

1 . T
TIL'(A\ M) ~ e(m) — E(‘I'g;

where we omit the term — Hm which exists on both hand sides. The
form corresponds to (2—3), which has been checked to be satisfied for
0 < m < 1 as shown in Fig. 2-1 in chapter 2. In order to determine
the value of ¢, we estimate the gradient of the plot E(N, M )/N versus
1/N? in Fig. 2-1, which denotes A = mcvs /6, and the sound velocity
vs. As wvg is the gradient of the dispersion curve at the origin, we
estimate vs by

' (B, (N,M)— E(N,M)), (3-16)
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where ky = 27/N for even M and ky = = — 27 /N for odd M. We
have found that the size correction of (3 — 6) is not O(1/N) but
O(1/N?) numerically for m=1/4, 1/2, and 3/4, which means that
the dispersion has the form Cik + Cyk® (k — 0) (C; and C; are
constants). It is similar to the dispersion for S = 1/2 which has the
form | sin k| (Ref. 9). We use the value of vs for N = 16 (N = 12 only
for m=1/6, 1/3, 2/3, and 5/6) and neglect the size correction here
(at least we checked that the error due to the size correction is less
than 1% for m=1/4, 1/2, and 3/4). In order to estimate A, we use
the two values of E(N, M) for the largest N and next largest N such
that magnetization is m = M/N up to N = 16, and neglect the size
correction. For example, we use [(16,4) and E(12,3) for m = 1/4,
and use £(12,2) and E(6,1) for m=1/6. Using those values of vg
and A, we estimate the central charge ¢ for m=1/8, 1/6, 1/4, 1/3,
3/8,1/2, 5/8, 2/3, 3/4, 5/6, and 7/8, and plot them in Fig. 3-1. It
suggests that ¢ = 1 for 0 < m < 1. Thus the critical exponents can

vary with the magnetization m.
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§3. 4 Spin Correlation Exponents

§3. 4. 1 Transverse Spin Correlation
Now we consider the spin correlation exponent in the magnetic state
(0 <m < 1)at T'= 0. First we investigate the correlation function

As the system is massless for 0 < m < 1, the asymptotic form of the

of the transverse component to a magnetic field, which is (S

transverse spin correlation decays algebraically and is assumed to be
(SESTy = (<11 (r = o0), 3=

in the thermodynamic limit. Then we determine the correlation ex-
ponent 7. When we apply the conformal field theory to the Hamil-
tonian H of (2— 1), E% and E%; correspond to E(N, M) — HM and
E(N,M + 1) — H(M + 1) respectively. Then the relation (3 — 3)

leads to the size dependence of spin-excitation energy gap
~ i e 1 ]
E(N,M +1)— E(N,M)—H ~ TSN o (N —o0). (3-38)

We have checked numerically that the gap is linear with respect to
I/N in Fig. 2-3. Here, in order to estimate 7, we eliminate H,
subtracting the energy of the spin excitation (M —1 — M) from eq.
(3 —8) and get

[E(N,M +1) — E(N,M)] - [E(N,M) — E(N,M — 1)]
1 (3—9)

= 271'1‘5‘7’]’—\- (N — ).

= =




Using the form of vs (3 — 6), we get the relation

E(N,M +1)+ E(N,M —1)—-2E(N,M) .
= - - 3 (3—10)
Ey, (N,M)— E(N,M)

We use eq. (3 — 10) to estimate n. Estimated 5 for N = 16 and
N = 12 is plotted versus magnetization m in Fig. 3-2, which shows
that each value of 7 converges well with respect to the system size
N. We have found that the size correction of eq. (3 — 10) behaves
as O(1/N?) numerically, but we neglect the correction because it
is small (at least, we checked that the correction for N = 16, which
was estimated from the difference between the values of ) for N = 16
and N = 14, is less than a few percents for m =1/4, 1/2, and 3/4).
In addition we determine 7 in the limits of m — 0+ and m — 1—,
extrapolating the value of n for M =1 and M = N — 1 linearly to
1/N, as shown in Fig. 3-3. We take the value extrapolated from

N = 14 and 16 for the best estimation, and take the difference

from the value extrapolated from N = 12 and 14 for the error of

extrapolation. The results are n = 0.493 + 0.009 for m = 0 and
n = 0.499 £ 0.003 for m = 1. Thus, we conclude that n = 1/2
for m = 0 and 1. It is consistent with Schulz’s statement.!” He

conjectured that n = 1/2 at H.y, by representing a spin-1 operator

as the sum of two spin-1/2 operators.




§3. 4. 2 Parallel Spin Correlation

Next we consider the correlation function of the parallel component
to a magnetic field. In the magnetic state (0 < m < 1), finite
magnetization exists along the z-axis and a gapless excitation (gap
decays as A ~ 1/N) can exist at the soft mode of k& = 2kp. In this
case, 2kp = 2nM/N for even M and 2kp = 7 — 2 M /N for odd
M. The existence of the soft mode is based on the assumption that
the magnetic state can be described by an interacting fermion model
where the number of the fermion is given by M. The assumption will
be supported by the consistency with the Luttinger liquid concept
in the next section. In this case, the asymptotic behavior of the

correlation function for the parallel component is expected to be
(5282 —m? ~ cos(2kpr)r=" (r —.09). (3—11)

The conformal field theory can also be applied to this case! and the

energy gap of the soft mode depends on the system size as
ke 2ol :
Eoye (N, M) — E(N, M) ~ mosn® N (N — o0). (3=12)
N

According to our numerical check for m =1/4, 1/2, and 3/4 up to
N = 16, the asymptotic form Fap, (N, M) — E(N,M) ~ 1/N is
satisfied within the error, as shown in Fig. 3-4 (Unfortunately the

error is very large for m = 1/4). Thus we assume that the gapless

— A =



excitation exists at 2kp. Now we determine the exponent n. Using

eqs. (3 —6) and (3 — 12), we get

_ B (N, M) — E(N, M)
= " By, (N,M)— E(N,M) "

n® (3—13)

The results of n* estimated by (3 — 13) for N = 12 and 16 are
plotted in Fig. 3-5. These converge well with respect to the system
size. We checked that the size correction of (3—13) decays as o(1/N)
numerically, but neglect it here. The values of n* for M = 1 and
M = N — 1 are 2 by definition (3 — 13), and they are independent
of N. Thus we conclude that n* = 2 for m = 0 and m = 1 in the
thermodynamic limit.

As shown in Figs. 3-2 and 3-5, the exponent 7 has a minimum
and n* has a maximum at m =~ 1/3. Thus, the transverse spin
correlation is strong and the parallel one is weak there. In addition,
we conclude that n = 1/2 and n* = 2 for m = 0 and m = 1, as
discussed above. It is noted that such behavior of the exponents
and 77 is very different from the case of S = 1/2. According to
the exact approach for S = 1/2, the system has a massless ground
state at H = 0, and both correlation exponents  and n* are one at
m = 0 (Ref. 12). The ground state is still massless for H > 0. As

H increases, n decreases monotonously to 1/2 (H = H., = 2), and

7? increases monotonously to 2 (H = H.,) for S = 1/2 (Ref. 13).




§3. 5 Luttinger Liquid Concept

* Haldane sug-

Finally, we consider the Luttinger liquid concept.!
gested that the Luttinger liquid can describe many one-dimensional

quantum systems with gapless excitations, and the validity has al-

ready been checked for some exactly solvable models, for example,
the S = 1/2X X Z spin chain'* and the Hubbard chain.!*=17

Now we consider an interacting spinless Fermion system as an
example of the Luttinger liquid. The Luttinger liquid theory assumes

that the elementary excitation can be described by the Hamiltonian

[on(N = No)? + 1‘.1-]3]- (3—14)

: 1w
My =vs Y |klblb + o

*
where vg is the sound velocity (the derivative of the dispersion), by

is the Boson operator, L is the system size, Ng is the number of the
Fermions, N — Ny is the number of the extra Fermions, and J is the
number of the particle-hole pair excitations with the wave vector 2kp
(kp = ©Ng/L). The last two terms of (3 — 14) are the energy gaps
of the charge excitation and the 2kp current excitation respectively,
and these excitations are gapless in the thermodynamic limit. The
parameters vy and vy are the velocities associated with the charge
and current excitations respectively, and they are given by the forms
on = vse 2% and vy = vge?? where @ is the parameter determined

from the interaction of the original system. Thus the relation
vs = (unvy)'/2, (3-15)

— 48 -

—'




is satisfied. For the non-interacting spinless Fermion system (¢ = 0)
the three velocities vg, vy, and vy all correspond to the Fermi velocity
vp. The important statement of the Luttinger liquid theory is that
the effect of the interaction is only to change the values of vg and ¢,
as far as the low-energy excitation is considered.

Our numerical check for the system (2 — 1) suggests the exis-
tence of the two gapless excitations, which are the spin excitation
and 2kp excitation respectively. It implies that the magnetization
of the S = 1 antiferromagnetic Heisenberg chain corresponds to the
charge of the Luttinger liquid. If the magnetic state of an .S = 1 an-
tiferromagnetic Heisenberg chain is described by the Luttinger liquid
through the correspondence, the velocities vy and vj are expected
to be given by the relation
vy = lim g[([i(A\ﬂ M+1)—E(N,M))—(E(N,M)—E(N,M-1))],

Nooo T
(3-16)

vy = Jim (B (N, M) ~ E(N,M)]. [3=1r)

The Luttinger liquid theory can give the correlation exponents as

n= on/vs, (3-18)

n* = 2v5/vs. (83-19)

These forms correspond to (3—10) and (3—13) given by the conformal

invariance in the thermodynamic limit. If the Luttinger liquid theory
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is valid, the relation

me =1 (3 —20)

which is derived from (3 — 15), (3 — 18), and (3 — 19), should be
satisfied. To check this, we show the value of 7n* calculated by
(3—10) and (3 — 13) for each M in the case of N = 16 in Table 3-1.
It shows that relation (3—20) is well satisfied. Thus the behaviors of
the magnetic state of an S = 1 antiferromagnetic Heisenberg chain

are consistent with the Luttinger liquid.
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§3. 6 Anomalies of Magnetization Curve

Now assuming the Luttinger liquid concept, we consider the form of
the magnetization curve near the limits of m — 04+ and m — 1—. It
has already been found that two anomalies exist at m = 0 and 1. As
discussed above, the correlation exponents n and * are determined

as n = 1/2 and n* = 2 in both limits. According to the Luttinger

]
N
w

1]
4

Il

liquid concept in the last section, n = 1/2 and n*
vy = vp) mean that the elementary excitation is described by a free-
Fermion system, which has a dispersion which behaves like k2.

If we assume such a dispersion, the forms of the magnetization

curve near the two limits are derived as (Ref. 18)
me~ (H—-H)Y?  (m—04), (B2

Lo (H e A AR (T ) (3=92)

where He (= A) is the transition point from the nonmagnetic to
magnetic state, and Hcy(= 4) is the point where magnetization is
saturated, as discussed in chapter 2. Relations (3 — 21) and (3 —
22) are consistent with some phenomenological approaches.'”=2! In

addition (3 — 22) is consistent with the result of the Bethe-ansatz

approach (2 — 13)(Ref. 22).
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Table 3-1 : Exponents 1 and n* estimated from (3-10) and (3-13) for

N =16, and the value of nn*. The relation nn* = 1 is satisfied well.

M n n nn:
1 0.432 2 0.864
2 0.391 2.523 0.986
3 0.368 2.755 1.015
! 0.358 B 1.029
5 0.353 2.941 1.037
6 0.351 2.975 1.043
¥ 0.353 2.974 1.048
8 0.360 2:910 1.048
9 0.375 2.788 1.046
10 0.400 2.589 1.035
11 0.432 2.366 1.022
12 0.464 2.184 1.013
13 0.487 2.072 1.009
14 0.499 2.019 1.008
15 0.504 2 1.007
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Fig. 3-1. Central charge ¢ estimated from egs. (3 —5) and (3 — 6).
We use the largest-two-size data of E(N,M)/N for A = mevs /6, and
the value of vs for N = 16, to estimate ¢ for m =1/8, 1/6, 1/4, 1/3,
3/8, 1/2, 5/8,2/3, 3/4, 5/6, and 7/8.
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Fig. 3-2. Exponent 7 estimated from eq. (3—10) for N =12 and 16.
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| Fig. 3-4. 2kp excitation gap Eap, (N, M) — E(N, M) plotted versus
1/N for m =1/4, 1/2, and 3/4. The estimated values in the thermo-
dynamic limit are 0.1£0.5, 0.0£0.1, and 0.0£0.1 for mi=1/4,1/2,
[ and 3/4, respectively. Although the error is very large for m = 1/4,

we assume that the 2kp excitation is gapless for 0 < m < L.
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Chapter 4. Quasi-One-Dimensional Case

§4. 1 Mean Field Approximation for Interchain Interaction
As most real materials described by the one-dimensional antiferro-
magnetic Heisenberg model like NENP!? have weak but finite in-
terchain interactions, we consider the quasi-one-dimensional case® in

this section. The system is represented by the Hamiltonian (2 — 1)

with interchain interactions defined by

!
!
H =TS =S, (A=)
(iz)
iz . ‘
where " is the sum over all the nearest-neighbor pairs that connect
adjacent chains. Here we treat interchain interactions by a mean

4—6

field approximation which is expected to be valid for J <« 1.

Now we define the critical value .J. such that the ground state has
Néel order for J > J., while not for J. > J > 0.
At first we put H = 0. Applying the mean field approxima-

tion for interchain interactions, the part of the hamiltonian which is
concerned with the 7th chain, has the form
HE=0 Si S T S N (S (4-2)
i i »
where the subscript ¢ specifies a chain, j is a coordinate along the
chain and Z/‘ describes the sum for all the nearest-neighbor chains.
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The mean field (5, ;) is averaged for pth chain, independently of
other chains. If the easy axis of staggered magnetization is z-axis,
we substitute a mean field

(S% ) = —(=1)?mg

(5% )= 45070 =0

Pyl

for (S,;). Then the Hamiltonian (4 — 1) is replaced by

Het = ), 55 Sisi —het ) (-1)'57 4-9
J g

Nt = Zditiag % ()

where Z is the number of adjacent chains (Z=2 or 4 for NENP(Ref.
6)) and the subscript i is omitted. This is the effective hamiltonian
of the one-dimensional system to which the staggered magnetic field
he is applied. If for this one-dimensional system the sublattice
magnetization in the ground state can be given as the function of
heg such that

mg = f(herr) (4—6)
then we get the self-consistent equation
Meti=J(2Jmet) 4-1

By solving this equation the sublattice magnetization mg can be

obtained. Generally f(heg) is a concave function and satisfies f(0) =

6=

L e




0, and the solution my is obtained from the intersection of f(heg)
and the line h.g/ZJ. Therefore whether a non-zero solution mg
exists or not is determined by the gradient of f(heg) at heg = 0,

that is the staggered susceptibility

o Omg
Xst = <L> . (4=38)
Ohes a0

If x&* > 1/Z.J then a non-zero solution exists, otherwise not. There-
fore the critical value .J. is given by

1

Jo=o—02 (4-9)
ZX

Thus within this approximation we have only to calculate the stag-
gered susceptibility for the one-dimensional system at 7" = 0.

When the finite magnetization along z-axis exists, the eas

of the staggered magnetization is in the xy-plane. Thus the relation

(4 —9) is valid even for the magnetic state.
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§4. 2 Staggered Susceptibility of One-Dimensional System
In order to study the antiferromagnetic property in the plane perpen-
dicular to the magnetic field (H || S%) for the quasi-one-dimensional
system, we calculate the staggered susceptibility along z-axis for the

one-dimensional system at 7' = 0, which is given by
X = lim § < MZE; MZE > (8 =1/ksT), (4 -10)
B— o0

where
Mg =Y (-1)/5%, (4—11)
J
and < ---;--- > is the canonical correlation” defined by
[ dATx[e~#TeX™ Ae=>" B

A; B >=
s i BTre—FH

(4-12)

In the form (4 — 12) H is the Hamiltonian (2 — 1). Integrating over

A in the limit f — oo, we get the form
g2 o %Z I(l]_JAL‘{ |__‘,>}'-’_ (4-13)
yl E El—Eyg
where |g) is the ground state, |I) is the excited state, and £,, &;
are their energies, respectively, for the Hamiltonian (2 — 1) at fi-
nite H. We calculate xZ" of finite systems under periodic boundary
condition at 7' = 0 numerically as follows : At first, using the Lanc-

zos algorithm, we get the wave function of the ground state for the

Hamiltonian (2 — 1) with a staggered magnetic field described by
H = =R, (4 —14)
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Next we calculate the transverse staggered magnetization (MZ) for
this state. At last we differentiate it with respect to h numerically
to estimate x%*. Thus our numerical calculation is based on (4 — 8)

rather than (4 — 13). We use this method to calculate x%* up to

N = 12. This method can be used to calculate x%* at most up
to N = 14, because Z, SJ is not conserved owing to the staggered

magnetic field (4 — 14) and the dimension of the Hilbert space used
for calculation becomes larger. However the direct calculation based
on (4 — 13) is available only for smaller systems. The behavior of
x&* for N = 12 is shown as a dashed curve in Fig. 4-1. It is found
that xZ® diverges at each level-crossing point, which is defined by
Hy = E(N,M) — E(N,M — 1), (limy—~oo H1 = He1, Hy = Hca).
The form of the divergence at each Hy; is

1

[H = Hyl. L

v
Xst
In particular for H > H.y, ' can be calculated analytically because

the ground state is completely ferromagnetic here, and we get

TE o l - - 3
G E g 5 Ha), (4—16)

which is independent of N. Now we define the quantity

2 (M| ME|M — 1)) ‘o 2 [(M + 1| M)
N H-Hy N i

(4—17)
for Hyy < H < Hpyqq (1 < M < N —1). This satisfies the inequality
Xk 25T (4-18)

G
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“TT s : > o :
Xst gives a good approximation of x%*. According to our check,

B

Xst

and Y& coincide within 0.4% and the difference between them

decreases as H approaches H s, at least up to N = 14. Since the
system (2 — 1) is massless between H., and H., as shown in chapter
2, we think that x%* always diverges in this region, as shown by the
solid curve in Fig. 4-1. In order to make sure of it, we check that

the numerator 2/N|(M + 1|MZ|M)|? diverges as
2 Ve 2t afuprer r C
UM + IR ~ N7 (N = 00), (4—19)

with m = M/N fixed. Plots of In [2/N|[(M + 1|MZ|M)|?] versus In N
for m =0, 1/4, 1/2, and 3/4 are shown in Fig. 4-2. They look linear
for m # 0, which suggests that (4 — 19) is valid and xZ" diverges for
H. < H < He. In order to consider the size-dependence of xZ.
we define YZ* as the value of X7 at H = (Hy + Har41)/2 and take
XEF as an approximation of xZ¥ for m = M/N. We have checked
the form

XZE ~ N“ (N — o0), (=20)

with fixed m = M/N =1/4, 1/2, and 3/4 respectively, up to N = 16.
The values of w, which are estimated by applying (4 — 20) to &,
are shown in Table 4-1, where we use the value derived from the
largest- and second-largest-size data of Y&, and estimate the error
based on the difference from the value derived from the second- and
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third-largest-size ones. In addition, in order to check the scaling
relation

w=2-1, (4=21)

we extrapolate the spin correlation exponent 7 calculated by eq. (3—
| 10) linearly to 1/N? for m =1/4, 1/2, and 3/4, and show the results
in Table 4-1. The relation (4 — 21) is satisfied within the errors. The
relation (4 — 21) is of two-dimensional classical systems, and is also
derived from the conformal invariance®. Therefore, this analysis is
consistent with the result in chapter 3.

Now we determine the asymptotic form of x&* for H ~ Hq (H <

H:y). Here we also define 7" as

2 - 2 1 1
ol = =|AIME|0)|* (+—— + —=), 4-—22
Xst N [(1]M10)] (”cl S + e H) ( )
where we use (—1|MZ|0) = (I\A\A[:;\O). According to our numer-
ical check up to N = 14, \5" is also a good approximation for

0 < H < Hg, and the difference between Y and x%* decreases
as H approaches H¢y. It suggests that only the first term of (4 —22)
contributes to the divergence of x%* at H.y. In order to make sure
of it, we consider the second lowest-energy state which has a non-

zero matrix element of MY

& with |0). This state must be in the
subspace where z] S% =1and k = m. We define [1), as the sec-
ond lowest-energy state in the subspace and Fy(N,1) as its energy

=66 =

S




for an N-site system. We calculate F5(N,1) up to N = 16 and plot
E3(N,1)— E(N,1) versus 1/N in Fig. 4-3. It suggests that there is a
gap between |1); and [1) even at the thermodynamic limit. The esti-
mated value of this gap is Fo(N,1)—E(N,1) — 0.563+£0.001 (N —
00). Therefore we conclude that the asymptotic behavior of x&* for
H~ H., (H < Hg)is determined only by the first term of (4—22),
because no other term of (4 — 13) diverges at H;. Since y&* is finite

at I = 0, the factor 2/N|(1 \,\7:;[0)\2 is finite at the thermodynamic

limit. Thus we use Shanks’ transformation® given by eq. (2—8) to es-
timate the value of 2/N [(1|MZ|0)|? at the thermodynamic limit. The
result is shown in Table 4-2, where we use the data of 2/N |(1|MZ|0)/>
for N =6. 8, 10, 12, and 14, and apply the transformation twice. We
did not use the value for N = 16 because it leads to misconvergence
on the second application of the transformation due to a finite-size
effect or a round off. Such a misconvergence sometimes occurs in
quantum systems!'’. The result of the second transformation in Ta-
ble 4-2 gives the best estimation we can get, and we determine the
error by the difference from the farthest result among the three of
the first application of Shanks’ transformation. Thus we determine

the form of the divergence at H.y as

& ~ (3.86 £ 0.06) (H < Hy), (4 — 23)

1
H,-H
at the thermodynamic limit.
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Then we give the behavior of x&* for the one-dimensional sys-
tem at the thermodynamic limit as a solid curve in Fig.4-1. The
asymptotic forms for H ~ H(H < Hey) and H ~ Heo(H > Heo)

are given by (4 — 23) and (4 — 16) respectively, and always diverges

between H.; and H,.
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§4. 3 Consistency with Experiment

At last we return to the quasi-one-dimensional problem. Treating
interchain interactions (4 — 1) as a mean field, the critical value .J.
is given by (4 — 9). Therefore, within this approximation, we con-
clude that however small .J is, Néel order exists in ay-plane between
Hy and H.y, because x%* of the one-dimensional system diverges for
H.y < H < H.y. This order is canted Néel order because finite mag-
netization exists along z-axis here. Thus, if a measurement is done
at sufficiently low temperature, the canted Néel order can be found

for Hyy < H < Hcy. In particular a strong signal could be obtained

at m ~ 1/3, because the transverse spin correlation is strongest there
in one-dimensional case. In fact the canted Néel order was observed
in the NMR experiment!!, but it was reported that the order ex-
isted even at 0 < H < H. and its amplitude varied continuously

even near H.;. We think that a certain anomalous behavior would

be found at H.; if the experiment is done at lower temperature.
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Table.4-1 : Exponent 7 extrapolated linearly to 1/N?* from the re-
sults of eq. (3 — 10) and exponent w estimated by eq. (4 — 18), for
m =1/4, 1/2, and 3/4. The scaling relation w = 2 — 7 is satisfied

within the errors.

m m=1/4 = m = 3/4
n 0.348+0.005 0.349+0.001 0.459+0.001
w 1.66+0.04 1.650.01 1.554:0.01




Table.4-2 : Results of the Shank’s transformation applied to 2/N|(1 |A\A1;’|' |0Y]2
twice. The column with three data is the result from the first trans-
formation and the right-hand value is from the second one which is
the best value we can get here. The error is estimated by the differ-
ence from the farthest result among the three results of the first trans-

formation. Thus we estimate 2/N|(1|MZ]0)|*> — 3.86 £ 0.06(N —

o).

N 2/N|{1|MZ|0)|? once twice

6 2457651

8 2.797896 3.845386

10 3.054720 3.832626 3.859898
12 3.247799 3.808645

14 3.391431
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Fig. 4-1. Transverse staggered susceptibility x&¥ at 7' = 0 plotted
versus H for N = 12 (a dashed curve) and the thermodynamic limit
(a solid curve). The latter always diverges between H¢y and Hy, and
has the asymptotic form x%& ~ (Hey — H)™ at H ~ Hey(H < Hep).

The form X% = (H — He)™! for H > H. is independent of N.
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Fig. 4-2. Plots of In[2/N|(M + 1| MZ|M)|?] versus In N with m =0,
1/4, 1/2, and 3/4 fixed respectively. The plots are almost linear for
m # 0 (solid curves), which suggests that the numerator of (4 — 15)

diverges as 2/N|(M + 1| ME|MY? ~ N
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Fig. 4-3. Plot of I5(N,1) — E(N, 1) versus 1/N. It suggests that a
finite gap exists between the lowest- and second lowest-energy states
in the subspace where 37,57 = 1 and k = 7, even at the thermo-

dynamic limit. The estimated gap is 0.56320.001. Here we use the

same extrapolation in Iig. 2-6.




Chapter 5. Summery

In this thesis the S = 1 one-dimensional Heisenberg antiferromagnet
in a magnetic field at 7" = 0 is studied by the finite size scaling
based on the conformal field theory applied to numerical data from
diagonalization of finite systems up to N = 16.

The system has two phase transitions at H. and H.. The
ground state has the magnetization m = 0 for H < H.;, 0 <m <1
for Hqy < H < He, and m = 1 for H > H.. We estimated
H. = A = 0.411 + 0.001 by Shanks’ transformation. We gave the
magnetization curve in the thermodynamic limit from the extrapo-
lation of the spin-excitation energy. According to this analysis the
existence of anomalies at H.; and H., is expected but their asymp-
totic forms cannot be determined.

We analyzed the size dependence of the ground state energy and
the excitation spectrum for the magnetic state to conclude that the
ground state is massless and the system obeys the conformal field
theory with ¢ = 1 for 0 < m < 1, and to estimate the exponents 7
and n? of spin correlations decaying algebraically. We found that the
relation nn* = 1 is satisfied and the system can be described as the
Luttinger liquid. The extrapolation of 1 and n* yielded the result
that n = 1/2 and 7 = 2 in both limits m — 04 and m — 1—, which
means that the magnetic excitation can be described as a free fermion

=16,

I



in the limits. Thus we concluded that the anomalous behaviors of

the magnetization curve at H.; and H., have the forms
m ~ (H — Hq)'?, = (Hoge— )2,

respectively.

The rotational symmetry in zy-plane is not broken even for
0 < m < 1 in one dimension. In quasi-one dimension, however,
interchain interactions break it and the canted Néel order occurs,
within a mean field approximation for interchain interactions. It

is consistent with a recent NMR measurement for NENP at low

temperature.
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