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NUMERICAL QUADRATURES FOR NEARLY SINGULAR INTEGRALS
IN THE THREE DIMENSIONAL BOUNDARY ELEMENT METHOD

by
KEN HAYAMI
ABSTRACT
This thesis proposes an accurate and efficient numerical integration method

for nearly singular integrals over general curved surfaces, arising in three
dimensional boundary element analysis

Nearly singular integrals frequently
oceur in engineering problems involving thin structures or gaps and when
caleulating the potential or flux near the boundary.

The proposed Projection and Angular & Radial Transformation (PART)
method finds the source projection, which is the closest point on the curved
element over which the integration is performed, from the source point;
approximately projects the element on to a polygon in the plane tangent to the
element at the source projection; introduces polar coordinates in the planar
polygon centred at the source projection; applies a radial variable transformation
in order to weaken th

ar singularity of the integral kernel; applies an angular
variable transformat

0 to weaken the angular near singularity which arises

when the source proj

1 is near the edge of the polygon; and finally uses

egendre rule to integrate in the transformed radial and ang

As the near op

mum radial variable transformations, the log-L;
oglg+d) and the Ly - 1% transformation: R(p)= —(p+d)-'"®
are proposed. Also, an efficient log-type angular variable transformation is

transformation: R(,

introduced.

Numerical experiments on planar and curved boundary elements for potential
and flux integrals containing interpolation functions arising in three dimensional
potential problems, show that the method is far more efficient compared to
previous methods such as Telles' method, for nearly singular integrals with
relative source distance D) less than 0.06, and the tendency becomes more
pronounce as the relative source distance decreases, Here, the relative source
distance D) is defined as the source distance relative to the element size. The
proposed method is robust concerning the type of integral kernel and position of
the source point.




Experiments also show that tk
15

g-Ly transformation is suited to potential

caleulations, while the Ly sformation is suited to flux caleulations. When

the source projection lies outside the element, or when it is closer to the element

edge than the it is shown that moving the source projection to the

source p

nearest element edge improves the efficiency of the method substantially.
using complex function theory are derived, which

Theoretical error estime

antatively explain the efficiency of the proposed radial variable

formation

The PART method is also shown to be applicable, with some modifications, to
weakly singular integrals and Cauchy principal value integrals arising in three

dimensional potential problems.
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CHAPTER 1

INTRODUCTION

In three dimensional boundary element analysis, computation of integrals is
an important aspect since it governs the accuracy of the analysis and also because
it usually takes the major part of the CPU time,

The integrals which determine the influence matrices, the internal field and
its gradients contain (nearly) singular kernels of order 1/r® {(¢=1,2,3,4,") where
r is the distance between the source point and the integration point on the
boundary element.

For planar elements, analytical integration may be possible %% However,
it is becoming inereasingly important in practical boundary element codes to use
curved elements, such as the isoparametric elements, to model general curved
surfaces. Since analytical integration is not possible for general isoparametric
curved elements, one has to rely on numerical integration.

When the distance d between the source point and the element over which
the integration is performed is sufficiently large compared to the element size
(d>1), the standard Gauss-Legendre quadrature formula '? works efficiently.

However, when the source is actually on the element (d=0), the kernel 1/r*
becomes singular and the straight forward application of the Gauss-Legendre
quadrature formula breaks down. These integrals will be called singular
integrals . Singular integrals occur when caleulating the diagonals of the
influence matrices,

When the source is not on the element but very close to the element
(0=<d<1), although the kernel L/r® is regular in the mathematical sense, the
value of the kernel changes rapidly in the neighborhood of the source point and

the standard Gauss-Legendre quadrature formula is not practical since it would

require a huge number of integration points to achieve the required accuracy.




These integrals will be ealled nearly singular integrals . Nearly singular

integrals occur in practice when calculating influence matrices for thin
structures, where distances between different elements can be very small
compared to the element size. They also occur when calculating the field or its

derivatives at an internal point very close to the boundary element.

Singular Integrals Nearly Singular Integrals
(d=0) (0<d<1)

I. Analytical (for planarelementsonly )

I. Numerical

(1) Weighted Gauss (1) Element Subdivision
(2) Singularity Subtraction (2) Variable Transformation
(+Taylor Expansion) "
(i)Double Exponential
Transformation
(3) Variable Transformation i P .
| (ii) Cubie Transformation
(4) Coordinate Transformation (3) Coordinate Transformation

Polar Coordinates
(+ modification)

(i} Triangle to Quadrilateral
Transformation

(ii) Polar Coordinates

(5) Finite Part Integrals

Present Method :

Projection and Angular & Radial Transformation ( PART)

Table1.1  Classification of quadrature methods for (nearly) singular
integrals in three dimensional boundary element method.

Numerous research works have already been published on this subject and
they may be classified as in Table 1.1. These are numerical methods based on the

Gaussian quadrature formula or the truneated trapezium rule with modifications

to suit the (nearly) singular kernels which appear in the Boundary Element
Method (BEM).

Let us first briefly review the methods for singular integrals.

The weighted Gauss *%%2% method uses the kernel 1/r as the weight
funetion for generating the Gauss integration points.

The singularity subtraction *' with Taylor expansion ® method expands the
singular kernel by the local parametric coordinates. The main terms containing
the singularity is subtracted and integrated analytically and the remaining well
behaved terms are integrated by Gaussian quadrature,

Then there are the coordinate transformation methods. The first type is the
method of transforming a triangular region into a quadrilateral region so that the
node corresponding to the singularity is expanded to an edge of the quadrilateral,
so that the singularity is weakened ™% 2!, The second type is that of using polar
coordinates (p, #) around the source point in the parameter space *'% This
introduces a Jacobian which cancels the singularity 1/r.

For higher singularities of order 1/r* which appear in elastostatics, the
method for caleulating finite part integrals """ may be used.

Although a rigorous comparison is not attempted, the use of polar
coordinates seems to be the most natural and effective way. In the present work
this idea is extended to taking polar coordinates around the source point in the
plane tangent to the curved element at the source point. Further, an angular

variable transformation is introduced which considerably red the ber of

integration points in the angular variable,

Nearly singular integrals turn out to be more difficult and expensive to
calculate compared to singular integrals, They are becoming more and more
important in practical boundary element codes, since the ability and efficiency to
caleulate nearly singular integrals governs the code's versatility in treating

objects containing thin structures, which occur in many important problems in

engineering. Examples are the electrostatic analysis of electron guns with

5-




complex geometry, calculation of the magnetic flux in thin gaps occurring in
alectric motors, to mention a few, The use of discontinuous elements ' also
increases the chances of encountering nearly singular integrals. The stress of the
present work is on a new quadrature scheme for the accurate and efficient
evaluation of these nearly singular integrals,

The orthodox way to treat the problem is to increase the number of
integration points as the source to element distance d becomes small, and further

to subdivide the element so that the integration points are concentrated near the

source point " '%, Subdivision tends to be a cumbersome procedure and would be
inefficient when d is very small compared to the element size.
A recent trend is to transform the integration variables so as to weaken the

singular behaviour of the kernel, such as using the double exponential

transformation with trapezium rules !4, A more efficient self-adaptive method
using cubic transformation' has been proposed. However, this method does not
give accurate results when the ratio of the distance d to the typical element size
is smaller than the order of 10-%, which is required in practice.

The use of polar coordinates in the parametric space with correction
procedures is reported to be efficient for potential problems ™.

sent work a new coordinate transformation method is introduced,

In the pre

in which the curved boundary element is approximately projected to the tangent

plane at the point on the curved element nearest to the source point, and then
polar coordinates are employed in the tangent plane with a further

transformation of the radial variable in order to weaken the near singularity,

after which the wuss-Legendre quadrature scheme !7 is applied.

As the radial variable transformations, the log-L, and Ll"”’
transformations are introduced and shown to be robust and efficient for near
singularities of different orders.

Furthermore, the method is generalized to cope with arbitrary geometry of

the eurved element, such as curved triangular as well as quadrilateral elements.

Then, an angular variable transformation is introduced to reduce the number of
integration points in the angular variable.

The method, which will be referred to as the Projection and Angular &
Radial Transformation (PART) method, enables one to calculate nearly singular
integrals accurately and efficiently, even when the distance d to element size
ratio is smaller than 10-% The methed is also applicable to different types of
nearly singular kernels because of the robustness of the proposed radial variable

transformations.




MENT FORMULATION OF 8-D POTF

TAL PROBL

Although the quadrature methods to be proposed are applicable to general
problems, let us take potential problems to illustrate the nature of the (near)

singularities of integrals and how the quadrature methods can be applied.

2.1 Boundary Int

The potential problem in a three dimensional domain V with boundary

lowing Laplace equation:

surface S can be cribed by the fi

\ulxl=0 , (2.1)

(2.2)

where dfdn is the derivative alc

boundar pointx .

T'he fundamental solution u*( x, x;) of the Laplace equation:

Txx)) = —dix,x,) (2.3)

in the infinite domain is given by

uixx)

1 (2.4)

dur

where

dix,x ): Dimcsdelta function

and

taking F=u and G = u*, we obtain

| twae’—u auyav = |

where

x) !.ll'\l = |
Is
where
J iix) dix,x) dV = u(x)
b
and
J uix) Flx,x)dV = 0
o ¥

(2.6)

(2.7

ug ) dS (2.8)
for xEeV, (2.9)
for LV, (2.10)
9.




Fig.2.1 Source point X in region V

-10-

For the case when x; € §, i.e. when the sou

surface 8, the property of the Dirac's delta functio

| wix)dix,x)dV — ulx)
lv . 4x .

ree point xy is actua
n yields

(2.11)

where  is the solid angle subtended by V at x; on § asshow in Fig. 2.2.

For instance, w

From equations (2.8-11),

{ (x) - 1 dS
®) ulx, | g )
where
clx) 1 (= € V)
- x € V)
| 4= x €8

v when the surface S issmooth at x, .

(2.12)

(2.13)

the

Instead of using the Dirac’s delta function of equation (2.11), equation (2.12)

can be derived for the case when x, € S as follows :

Consider a part of a sphere S, of radius «

centered at x; asin Fig

where S=8"+45,. Since now x, € V, the left hand side of equation (2.8) is

a9

| ulx)d(xx)dV=ulx) (2.14)
Next, the first term of the right hand side of equation (2.8) is
| gu"ds =|. qu"ds+ | qu'ds (2.15)
s is i85
where
[ .
q
qu dS — g5
Jl\ - = dxnr :
. S — (2.16)
drr =0




_ Fig.2.3 Treatment of x.€ S without
Fig.2.2 Use of Dirac's delta function the use of Dirac's delta function
abix e s




The second term of the right hand side of equation (2.8) is

— | wg'ds= = ] . i g dS= o q d§ (2.17)

where

Julx) (2.18)

From equations (2.8), (2.14) and (2.15-18),

ulx,) = lim | jdS + "‘t""‘-' (2.19)

Since for potential problems, u* ~ 0(1/), g* ~ O(1/c) (cf. equation (3.40) ) and

dS~0(e? for x€8 in the neighborhood of x;, where 5 now indicates the original

smooth surface, we ¢

(2.20)

lim

Hence, equations (2

x | toi’—ugids d (2.21)

olem

element method, especially when treating

tic problems is that exterior problems can be treated

without mes

s the infinite exterior regions. A briefexplanation will be givenin

the following for the three dimensioned potential problem.
Let us consider an exterior problem

Aulx)=0 In V (2.22)

with boundary condition

where the region V isan infinite region as shown in Fig. 2.4,

Since the Green's identity of equation (2.5) is also valid for a multi connected

region, let us take a sphere Sy of radius R centered at the source point x €V,
such that S isincluded in the sphere Sg, asshown in Fig. 2.5. The boundary
integral formulation of equation (2,12) becomes valid for the region Vi enclosed

between surface S and S

x)ulx)=| (gu—uq’)ds + i — g ) dS
R
On Sg,
u
. 1
g =
dS = R*dR sind dedy (2.25)
where (r, 0, ¢) is the polar coordinate system centered at x,,and R =|R|.

Let us take the limitof R—%, The value of u, g, on S can be considered

as a solution of

where @ is the sum of the source term (e.g. electric charge) inside S, since §
may be considered as a point source of finite magnitude § when observed from a
distant point x € Sp as R—o,

Hence, on Sg

u= -2 _o(1) (2.27

(2.28)




Fig.2.5 Multi connected region V4

Fig.2.4 Exterior region V

-16- 5 e




as R — @, so that the third term of equation (2.24) tends to zero as R— , since

= {g 2 .'a-'.l.l ds (2.30)
'8

for the exterior problem. Note that the boundary that has to be discretized is only

S and no mesh discretization in the infinite region is involved. Note also that the

unit outward normal n on 8 is defined in the opposite direction compared to the

interior problem as shown in Fig

a9 5

stization into Boundary |

Now the boundary element formulation can be derived from equation (2.12)

by discretizing the surfaces S into boundary elements S,, as shown in Fig.2.6.
[ .II element ¢

1~ n.), where u (or q) is deflined from the

boundary cond

q (or u) is to be solved.

The element

t is described by the parameters (y,, »,) and interpolation
functi = 1 = n,), which are defined so that
5 2
Z F (2.31)
where f./ is the {5, 775) At node x,/

f canrepresent the potential u, its
normal derivative ¢ = du/in or coordi

(2.32)

node x} .

element S,

Fig.2.6 Discretization of S into
boundary elements S,




N el I q (2.33)
i
and
= (7,7, _\_ Hogpndx?! (2.34)
For a curved quadrilateral element shown in Fig.2.7, S nz
g /\_/' e
s = .l | 161 d,dn, (2.35) 1

where

Since
il b1
: emt '8, =y

where m is the total number of elements, equation (2.12) can be discretized as

Y uix") \_ \‘_ | T ;_-._'.,u:ni..,':x.x"‘.l—,-: ulx; by lx,x" Ui Gidy, dy, (2.36)
X .5 \r e e r (2.37)
' ' Fig.2.7 Curved quadrilateral element S,

; P %) and parametric space (m,,n,)




| ¢ 1Glg (x,x%) dy dg, (2.39)

(2.40)

xan be y

Lo el )
uJ q

undary condition and q the Neumann boundary

so that t

and the potential gradient at an internal point x,€ V is given by

q
Ix Ig x
where
du ix, x= ) 1 T w
iy (2.47)
ix ix 3
and
X! 1 [n !
R T (2.48)
x dr |,

boun

;.
=
o
-]
B
b
kS

caleulated by

w5 3 (g —wtal (2.49)
where
g -,:‘ || .G " ( x,x, Jdy, dg, (2.50)
A | | (2.51)
and
",
xlnys74) = ettt wipa) (2.52)
=1

Similarly, the potential gradient at an internal point x; €V can be

calculated by

x)=Y \__ [‘n:" |,’i - b ] (2.53)




1
anc

b'
1
g 1
i)
where r = x( —%x; ,and n
boundary elem: S, at x €5,
2.4. Method

The ealeulation of

more elements

8 involves the calculation of the solid angl

on 8. In

is the unit outward normal vector of the

x,) in equation (2.13) when x, is a node shared by two or

order to avoid this, one ma

¢ use the row

potential problem defined in the interior region,
consi e equipot £

Au(x)= 0. Tt

ation (2.12)

Hence equs

cxy==| o

and wj=1,()=

his implies that g(x) =

lution u(x) =

1 to the original Laplace equation

au(x)an = 0 on the boundary S,

(2.56)

1-~N} and gj=0,{j=1~N) in equation (2.42) gives

| dy, doy (2.55)

Fig.2.8 The solid angle o at x,

subtending V




Hence,

similar technique can be used with some

elx Juix) | |¢,-.-,‘ ~-ug )dS + | lqu —ug 5 ) 4
" | 7 (2.24)
i

u(x)=1in the region V', of Fig.2.5.

Hence,

(2.61)

x)=—|q d8 + 1 (2.62)

which gives

(2.64)

H =H+c=1- Y H,

From the above argument, the diagonal element Hj; can be indirectly
caleulated by the row sum of Hy; ( § =), so that the caleulation of the solid angle

atnode x; givenby

ard ]

I Y (2.65)

i 4
and the calculation of the singular integral

i I

3 (2.66)

B . (2.67)
where

q =

become unnecessary. This technique is equivalent to what is known as the use of

rigid body motion in elastostatics. On the other hand, it is a good check to

ealculate Hj; directly from o; and Hjj . For discontinuous elements’, ¢; = 1/2 for
t = 1~ N, and caleulating the singular integrals Hj; directly are reported to give
more accurate results'®.

The diagonal element (7; has to be calculated directly by the singular

integral
8 = | | : 1GI IJ"I.I: ldg, dy, - (2.68)
where u*=1/(4

(2.69)




Une

| ol [ x.x )dg, d
and
| | ¢ ,':a.\: ) dy, dy, . (2.71)

are not singular for th

Ix—x since ¢, (x.") =0 fork+1

lems in the sense that the integral kernels are order

CHAPTER 3

NATURE OF I

.D POTENTIAL PROBLEMS

From the previou

chapter, the integrals which appear in three dimensional

related to the calculation of the potential u(x) and the coefficients of the H, G

matrices, and

- | d§ (3.3)

of the flux

at Xg.

tioned in the introduction (Chapter 1), these integrals may be
classified by the distance d between the source point x; and the boundary

surf;

3 (or the boundary element S, ).

When d= 0, the

led singular inte

When 0<d <1, the

are called nearly ar integrals

When d>1 , the

integrals do not cause difficulties since they may be

caleulated accurately using the standard Gauss-Legendre formula with

relatively few i

tegration points, (Here the distance d is defined relative to the

element size which issetto1.)

It is for the singular (d=0), and nearly singular integrals (0<d <1} that

special attention is ne

ary in order to caleulate their values accurately.




3.1 Weakly Sing

lar Integrals

Weakly singular integrals (d=0) arise when caleulating the diagonal terms
of the (7 and H influence matrices, This corresponds to integrals g.+* and h,"in
equations {2.38) and (2.39), when e'=¢ and k=1,

e’=¢ means that the source point x; is actually on the element surface S

X —xXy| becomes 0 at x = x;.

nore, when k=1, one has to calculate

it 3l u"(x, 2 ) dy dy
PR :l . oG e (x,x]) dy,d Tz (3.5)
| B
i I a1 i
i i JGl g (x,x!)dy dy, (i
e | ; J i 1" ¢ 1™ ¥y (3.6)
where
1
v (8.7
r,n)
q (x.x e =
P (3.8
and
r x x

1etions are generally constructed so that

6 (gm0 x (3.9)

where

and

In other words, ¢, is the interpolation function corresponding to node x,'.

Hence, the numerator of the kernels of integrals ge.", he " of equations (3.5)

and (3.6) take a nonzero value at x=x,!, whilst the denominator is zero since
r= |x=x,] = 0. This means that the kernel of the integrals are singular, and
special care is required for the evaluation of the integrals.

Let us now consider the order of singularity of the kernels of integrals g.."
and het.

For ge'!,since ¢.5,, 5 1 and |G|# 0atx,/= x(y/, ,), the order of

singularity is 1/r.
For h ", the order of singularity is also Lir ,since (r, n)/r has a singularity

oforder 1/r when d=0, asshown in the following theorem.,

Theorem :

(r,n)

s

fr 0<rat (3.10)

p

where Kp(4) isthe normal curvature of the curved element along a direction

A=dy g/ dy

7, 8tasource point X, on the element , and

7, are the parameters

describing the curved element.

Proof :

Let the curved element be expressed by x =x(y,, 7,) and the source point be

with

r=x-—x
.
The unit narmal is given by

n=G/|G| (3.11) b

where

(3.12)




Taking Taylor expansions around X, one obtains,

+OCdy" ) (3.13)

where r;=dr/dy, etc. andthebar ° indicates the quantity at x;=x(j

0wy =0(dy,, dy,)
19
0Wgh= 00dy], dy ydiy : )
anc
Ods’)= 0(dy] , dyjdg, , dy,doy, dr}) (3.14)

denote the first, se

nd and third order terms of dy, and dy, , respectively.

Similarly one can expres

e derivativesof r as,

ro b P de o riy d,+ 0 (de®) b li=1,2) (3.15)
Hence, the cross product can be expressed by the following expression
r . ar - - 1
a — A II.| 4 s Oidy .II
[ N S o ] e I
|Fat(Fgdey + ¢ ogdg) + 0(dg) | ; (3.16)
and (r, G) can be caleulated from equations (3.13) and (3.16) as follows:
01 term = 0 (3.17)
Oyt term = (r, dy+ 1, dg, ) (F,%XF,)=0 | (3.18)

since

The O(dy?) term is given by

0 {dy

Jterm = 0, (dy") + 0, (dy”) (3.20)

where, from the O(dy) term of equation (3.13) and the O(dy) term of equation

(3.18),

l.’llul-,-l Py Xl dy + rad-_-?b—rzflr,“dr.- 4 “dr,:ll
= e TS e (r, % (r,.d 9 |d
~ Ty P Xlr, do+ r,,d ||1- 3 L Pty t ¢ .|"-‘-
rI |r_.l r‘. | 1 If,_‘,"f.ulir!
+ r__»- ||'.‘
(rydg +2r,,d gyt Fug gy delr, X e . (3.20)
since
a{bxe) = e laxh) : (3.21)

and, from the O(d4?) term of equation (3.13) and the O(1) term of equation (3.16),

2 1 - - .
0,(dy") = (T, + Edny’ ) ry X E,) - (3.22)

so that equation (3.20) becomes

-l

O(dn?) term = =~ (

1 2, .=
7 (P dn 20, dpdy, +

Py ) (FyXT,,) (3.23)
Hence, from equations (3.17), (3.18) and (3.23),

- (rodyt+2r,,dpdyg+ roodn?) - G + 0 (3.24)




From equation (3.16),

G=G +(r, Xr,,~F XF, Yy, + ( F, X

161 =(G-&)
= |G|* + Oidy
'Il_.' 2 |i 'i.'ll|-.-'rl
i ] |

|.‘
G| =G| |1+ 0wy
| |

and

1G]~ = |G|~ + 0wy

Hence, from equations (3.11), (3.24) and (3.28),
gl i

e U-cl:;"ll[ |G|

,dr,dy, + Fo,dri)e n + 0y

= r.l\(_d-f\ + O(ds”)

On the other hand, from equation (3.13),

rf=(r, r)

v {Jld;ll

L+ 0dgY

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

- . n.t ’ . ’ 2
= Py :-.‘ri_.i lzr_l I'_:r||=dl_2 oy T dyy (3.29)

=0,(dy") + 0 (dy”

(3.30)
and
r=010dg) (3.31)
Hence,
i) {140 g
2 {140 dy) )
+ O(dg)
)
(3.32)
where
(3.33)

is the normal curvature of the curved element at x;. ( See for instance ™,)

Here, K, depends only on the direction specified by

dnp,
= .I_-;
ie.
- ‘:.—“pzxj—.!+.« r,zil n
L . +2ir Fatd'r o r
Fiy" Py 1 2
From equation (3.31) and (3.32),
{r,n) K.—.
Lt Apeasd b 00
r'l 2




Q.E.D.
Henee, for potential problems, singular integrals arising from the diagonal

term of the H and G matrices are both of order
PR s (3.35)

where (r, &) are the polar coordinates on the plane tangent to the element at x,,

and

1 ]
D(=-)dS = Ol=) rdrdd
r

0f1) drd# (3.36)

This means that the integrals defining ge."" and A,

n equations (3.5) and
(3.6) are only weakly s
coordinates on the plane tangent at x; , as will be shown by numerical

experiments in Chapter 7.

For the case when e'= ¢ but k¥, it is shown in the following that the

numerators of the integral kernels also become zero at the source point x.!, so0

that the integr

als g Y and k" have a even weaker singularity compare to g

and h_". From equations(2.38) and (2.39),

8= ) #1681 xx) dy, g, (3.3M
1 1
& i . N
[ | |-| #,1Gl g’ tx, %)) dy, dy, (3.38)
where
1
W = — ~ 00 (3.39)

(3.34)

-4-"\ T (3.40)
and
r x l:
Let us take, as an example, a 9-point (quadrilateral) Lagrangian element
where
flg, 7, 1 #lm! }_ felng) Mlp.q) (3.41)
p=-1 = -1
and
KER (p=1)172
(3.42)
fln) =19
$n) = gly1)iz

and let the source x,* be x(0, 0). Then for k=1, ¢.' in equation (3.37) and (3.38)
will be of the order O(y,) or O(y,) or Oly,n,) in the neighborhood of

x.* = x(0, 0) and will not include a constant term. Also, in general |G| ~ O(1) in
the neighborhood of x,*. Hence, the kernel of the integrals in g..*, he* (k=)

are either of the order O( 5, /r), O( 5,/ rYor O 5,5,/ r).

From equation (3.30), for x,* = x(0,0),

= rr) = “n '|.-b T Zay iyt any, +Of 7 (3.43)
where

1:_“-I;_I Fode @=(F, s Tug)s  By=(F,u- Ty (3.44)
Here,

. L (3.45)

If welet 5,=0and y,— 0




since generally

Ifwelet 7, %0,

and

because r, 2 Feor,

and a,, > 0,

Hence,

Similarly,

Similarly,

(3.48

(3.50

(P ) (0 aem) S0 (3.49)

(3.53)

7 2
(+) =
r ) (3.54)
i )
"
Hence
(3.55)
Tosum up,
- 0(1), - 0(1), ~ 0(r) (3.56)
r r r

Hence, the kernel of the integrals in g..*, h.* (k¥1[) are of the order O(1) or
0(r) , which means that they have a even weaker singularity compared to O( 1/r)
for integrals in g.." and k", and will not cause any substantial difficulty when
integrating them numerically.

This will also imply that, for problems where u®* ~ O(L/F), ¢* ~ O(1/F?) as
in three dimensional elastostatic problems, the nondiagonal terms ge.*, hee"
(k+ I} can be calculated using polar coordinates around the source point x.*, since

for these terms

# ~ 0y 1g0 9,75 (3.57)
fl 1
g f,(_r ) o 0om (3.58)

so that the Jacobian r in dS = rdrdé will cancell the singularity in 4,/ /@
and hence in g..* and h.*, (k#[). The diagonal terms h.** can be calculated by

using the row sum elimination (rigid body motion) technique. The calculation of




Fee™® may require the calculation of the finite part of a hyper singular integral by,

for instance, Kutt’s method '%

3.2 Hyper Singular Integrals

For problems including higher order singularity ie. [g1/rdS (a=2), the
singular integrals do not exist in the normal sense,

This can be illustrated by taking S as a circular disc of radius a with the
source point x, at its centre. (Figure 3.1) Consider now taking a smaller

concentric circular disc of radius ¢« away from S and caleulating the integral at

the limitas ¢ —0. This gives
ds . [
p— lim | dé — rdr
B 2 1o | e
: ' dr
||mI 2 r =
(a=2)
lim 2
1 1 1
i—0 - - ..?'I (a>2)

(3.59)

This means that the Cauchy principal value for [¢ 1/ dS does not exist for

a=2. Instead, the integral must be deflined by its finite part '

which

corresponds to 2x loga , (a *f2—a), (a>2) respectively in
equation (3.59) .
Alternatively, the physical concept equivalent to rigid body motion in

elasticity may be used to calculate the diagonal coefficients of the influence

matrices,

Fig.3.1 Circular disc S




For potential problems, integrals containing higher order singularities arise

when caleulating the derivative of the potential at a point on the element by

i ju” ag \ g
== (g—=u—Jas (2.46)
ix s X, ax, /

where
du 1 r
— = — = 047
ax, i Jami A (2.47)
-r,-‘ I n drir,n) l
—(x,x )= - — . .
= axlp B (2.48)

instead of interpolating on the boundary element. The integral of equation (2.46)
does have a Cauchy principal value and can be calculated directly using a method
similar to that of Gray *® and Rudolphi et al. ®, or as a limit of a nearly singular
integral by the method which will be proposed in Chapter 11.

Let the source point x, be on the boundary element surface S. Since ¢ and
u in equation (2.46) generally contain constant terms g, and u, when expanded
by Taylor series around the source point x4, the order of singularity of the

integrals involved should be, roughly

(3.60)
1
)
(3.61)
since
Ky o {3\
(r,n) = T' -rrll_r J (3.62)

from equations (3.31) and (3.32). Hence, the apparent singularities in the integral
in equation (2.46) is of order O(1/r*) and O(1/F), suggesting that the integral does

not have a finite value, which is contrary to the fact that ¢= du/dn and du/at (a/at

: tangential derivative at x, on the boundary S) usually have finite values on the
boundary.

However, it will be shown in the following that the integrals L+ and I
do have Cauchy principal values.

Since only the neighborhood of x, is relevant, so long as the singularity is
concerned, let us assume that the boundary S is smooth at x, and take a local
tangential planar disc S; of radius a centered at x; as shown in Fig. 3.2, and

caleulate the integrals Iy, and I,.r‘,- for the planardise S, :

r S
q- ds (3.63)
L r
[m  3rien)
b (3.64)

Cartesian coordinate (x, y, ) are introduced with the x, y, axis lying in the
tangential disc with (0, 0, 0) at the centre of the disc and the z-axis perpendicular
to the disc towards the inside of the region ( opposite to the normaln ).

For simplicity, let &« and g in equation (2.46) be given by linear

interpolation:

e=qtg s tqy

(3.65)
By taking polar coordinates (g, f) inthe x, y plane centered at (0, 0),
u = uy+plu cosd + u‘_e:in-'ib
q=g,+ ,-Iq(m:ﬂ' + qvﬁlllﬁl (3.66)

In order to calculate the hyper singular integrals of equations (3.63), (3.64),

let us assume that x,=(0, 0, d) and take the limit as d—0, i.e.




Fig.3.2 Polar coordinates (p,0) on
a planar disc S,

L= lim '.,-""f'

au o (3.67)
and
e = 05 e @ (3.68)
where
1 [ ra ) r
I.n.'1 (d) = = .|\ dé ]" l.,’” + o lg cosd + q sind ) r—\ o dp
1
olgl el +q1) (3.69)
and
_I"".["[ .,]ﬂmll
J"u’ {d) G rl dd I, ty + ¢ Ila‘nn-.r + u sind ) 3 - i r pdp
1
o (g + L +u L 4ul ) (3.70)
o ‘ ¥
Noting that
L
r=x-x ! osind
=
r \r"r
0
n = (]
\ =1
and
(r,n}=d ' (3.71)
we obtain
S o
I [ dd | - pdp
L ) o ¢




a dg
de dp =
o
since
N (= 2
0 J cos” @ dif = r = (3.75)
0 o
0

f sin f cos f dff = |
0 I

s . N i W Noting that,
[a
| 0 - 0 (3.72) (3.76)
wt| —— o [ |2 (==-1)
p| ——— -
vV pi4d? lo | YWoatsd® J
so that v o34 ;_ 4
i' o )
lim 1 Ll Yo (3.73)
a0 | J =vVa d
B
\
and —)’, = a . (3.77)
e e -~
t,, |I 40 | =5 o' et da
(3.78)

dp
2=
= | | dng dp
e o 0
33
o ol
3 peoosd
| p win 8 cosd .
psind | o sind
A cond 2 i
Sl x " =
! f = dg = L 4,
b d 0 0 T ar

Vel d®

46 - -47 -




y ; n : r. o
I
(3.84
! 1
E rd
(3.79)
! - | | o 1 {3.85
: 0 (3.86)
- (i | de
(3.81) ol IS
= - )

(3.87)

h other out.

itiesdue to n/r’ and —3r{r,n)rfec

Note
Hence,

2 (3.88)

R s

(3.83)




n rir,n
1
1
1
| = )
whert
I - dd | d
i ——
Vat+d®
Va * / 2
Ve
-
He
lim
Not

(3.80

©

I
we have

lim

d-=0

Similarly,

1
where

I.

-
I

which gives

lim
-0
and
I
I‘\:
Hence,

' b
-
0 |
5
ol
A
e J n arir,n) 2
I dé | — — —— | p'sind# dp
o o LA B
E
I
..

3% sind

(3.94)

0 , (3.95)

(3.93)

(3.97)

(3.98)

(3.99)

(3.100)

= (3.101)




and

u
x
2

1

(3.102)

(3.103)

(3.65)

(3.104)

(3.105)

Hence, the contribution of the integration in the local disc 8, including x,,
to the singular integral of equation (2.46), which give the potential derivative

duwlaxg at x, is

T “ aq e Y
T =1 s - -
ax, ls q 4 2
aq u .
R (3.108)
4 2
S

which is finite, Since the integral for the boundary surface S excluding S, is
finite, the integral

(2

ls ix

du

L gt Ve "
p —knild8 ., xS (3.107)

gives a finite value (Cauchy principal value) when calculated in the above
manner, although the integral kernel has an apparent hyper singularity of order
O( 1)~ O 1), asseen in equations (3.60) and (3.61).

This is reasonable since, physically, one would expect finite values for

dw/dx, from the interpolation of u, duw/dn , dw/at in the boundary S , whered=0.

3.3 Nearly Singular Integrals

When the source point is very near the surface, the integrals g*, h* of
equations (2.50) and (2.51), and a,", b, of equations (2.54) and (2.55) have finite
values. But it is difficult to calculate them accurately and efficiently using the
standard Gauss-Legendre product formula, since the value of the kernels vary

very rapidly near the source point x,. In fact the nearly singularintegrals




(0<d<1) turn out to be more difficult to caleulate than the singular integrals
(d=0).

The accurate caleulation of these nearly singular integrals is of practical
importance in boundary element codes. They may arise when calculating the H
and ¢ matrices in cases where the elements are very close to each other, when
using discontinuous elements , or when it is necessary to caleulate the potential
and its gradients at a point very near the boundary. Good examples are the
analysis of electron guns which have complex geometry and thin structures, or
the analysis of electromagnetic fields in thin gaps arising in motors , to name a
few.

To understand the problem, let us examine the nature of the near
singularity ( 0<d<=1) in comparison with singularity { d=0 ), for the integral
kernels u*, q*, du*fix, and dg*/dx;, which occur in three dimensional potential
problems,

Let %, be the nearest point on the curved boundary element S to the source

point x;, and let the distance be
d=|x- x| (3.108)

as shown in Fig

%y will be called the source projection.
In general , r/r is a unit vector.

Hence ,

(Z,n) = aw (3.109)

= (3.110)

R e e e (3.111)

-54-

Fig.3.3 Source projection X; and
source distance d




Fig.3.4 Angle 6,, between r

and n

S . (3.112
,-_' 1 [n ir ]
x dx | . |

LH e (3.113)

Now let us examine the behaviour of these kernels when the limit of x — x4

is taken.

R tha higutar cave (=001 incs s taling e tintEof e~y

firection of r (as r— 0),asshown in

5 ¢ (3.114)
from equation (3.10),

: Tn 1 (3.115)

For the nearly singular case (0<d<1), taking the limitof x — x.,

- n (3.118)

“en (3.118)

asshown in Fig. 3.6.

=3




Fig.3.5 L ~t (singular case) Fig.3.6 %~ n (nearly singular case)
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4= dq®lix
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tively and the singu

coordinates. However, as

5), these hy singular integrals render y .

ilated using polar

lue), which can be c:

e tangentto S
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Fig.3.7 The planar element S
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may 1

singularity. Also, since for a planar el

1 10"
4%

a. et
3.129

(3.130)

he radial ( p ) component, we

it when discussing the nature of near

ement(r,n)= d isconstant, the nature of
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(3.132)

where (g

#7) are the polar coordinates centered a the source projection %; in §

and pmax(0) isdefined

sin Fig.3.8.

Hence, the near sing

rintegrals in three dimensional potential problems

involving the kernels u*, g*

. du*/ix, and dg*/dx, in Table 3.2 can be expressed as

(3.133)

where o

(3.134)

since S isa planare

Since the near singularity is essen

Illy due to the radial component,

consider the radial component of the integral in equation (3.133) :

= | = rads :‘ fiz) dg

(3.135)

where

(3.136)

so that, essentially, the nature of near singularity of the radial component of
integrals containing the kernels u*, g%, du*/d x,, dg*/d x, is given by Table 3.3,




Fig.3.8 Definition of Pmax(0) for

a planar element S

Nature of near singular kernels of the radial

component integrals in 3-D potential problems

Order of near singularity
Tad olr
q* r
du*/ix = r
J'." i X K '_I ,[‘r'

The graphs of the near singular kernels fi, f5, fiz, fs and foy of the radial
Eraf B I3 N2 53

component integrals are given in Figures 3.9 to 3.13. The characteristic feature
of the kernels fy» and fis, which appear in the ealculation of the Mux dw/ix,, is

that

] (3.137)

For planar elements, the radial component integral of equation (6.135) for
the kernel functions fi, f3, f52 fs and f52 of equation (6.136) can be expressed in

closed form as follows:

(3.138)




(3.140)

(3.141)

- " (3.142)

These closed form integrals are useful for performing the integration in the

radial variable analytically for planar elements, as will be mentioned in

Chapter 5. They are also useful in checking numerical integration methods for

the radial variable, and will be used in Chapter 10,
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Fig.3.11 Graph of f;, = }

fs(P)
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Fig.3.13 Graph of f5,=
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apte

QUADRATUY

i

E METHODS FOR

RALS

ording |

lement a

g Bl et a9 (4.6)
Gl=vVgi+glssg (4.7)
For potential problems
1
u*lx x I_ (4.8)
1 (r,n
q*lx.x = (4.9)
' i i .
and
¥
{0 adt (4.10)
] n drirn
X, x ) ]
-.‘ i 3 | (4.11)
where
= (Pl = X > 8 )% - x (4.12)
’ ¥ Viry+ ra 4
4.1

Closed form or ane

cal integration formulas for equations (4.1)~(4.4) are

available for constant planar triangular elements ', planar parallelograms ® and

for planar triangular elements with higher order interpolation functions **, in
the case of potential problems

However, for ge al curved elements with constant or higher order

interpolation functions, it seems impossible to derive closed form integrals for

equation (4.1)~(4.4), let alone for potential problems. The main reason for thi

that the integrands include 1/, (o =1~5) and |G|, where r and |G| are given by

the square root of a general polynomial of (y , the order of which is higher




tand

ims

ral curved eler

ri4.14)isgiven

al qus

ature

(4.18)

It turns out that equation (4.18) is satisfied if x,, ~+, x_are taken as the zero

points

Plz)=0 (i=1,2,.n) (4.19)

P (x5 — - — (4.20)
and

2 e (4.21)

The table [or the Gauss-Legendre quadrature formula is given in ? |, and an

efficient algorithm generating the table has been proposed by Golub and

Welsch 9,

The error for the Gauss-Legendre quadrature formula when applied to a

function fix) defined in the interval < € [-1, 1] isgiven by

forsome —1<gp<1."

e integration ov

» inters ], equation (4.22) can be applied to

h—a V' Ja+b+zth-a
| fierde f : s (4.23)
|
as will be shown in Chapter 6
For two dimensional integrals, the product formula
[ dg. d PP | (4.24)
11y 1772 i 2y I

can be empl

The Gat

Legendre quadrature formula is optimal in the sense that it gives
exact results for polynomials of up to order 2n—1 with n integration points,
However, the formula does not give exact results when the integrand ffx) is

singular or nearly singular.




Hence, the Gauss-Legendre quadrature formula itself may be used to

caleulate the 3D boundary element integrals of equation (4.1)~(4.4) so long as the

ance d between the rce point x; and the boundary element S is

d

sufliciently large compared to the element size.

Methods for Singular Integrals

Singular integrals arise when the source point x; lies in the boundary

1ent S8 over which the integration is performed. The straight forward

application of the Gauss-Legendre quadrature formula fails, since the integrand

s to infinity when x coincides with x,, i.e. when r= |[x—x,|= 0

Varic

15 methods he een proposed to overcome this difficulty. Some of

1 will be explained brielly in the following.

s method 511

(1) The weighted

In the one dimensional Ga

and { w, } s0

that the sild give optimu

ained quadrature points | x; } and weights {

finite part of the singular integral

where w{x)= 1/(x+1)" issingularat x=-1.

This can iplied to three dimensional boundary element integral, for

instance to equation (4.1) in the form

NG
i) R

(4.27)

when the source point is at %, = x(—1, —1) , since the term in { } is well

behaved, ause the singularity due to Ur is cancelled by (5, + 1)y, +1).

s method was improved 5 ' by using a two dimensional weight function

= (4.28)

where x(7,, 7,) is Lhe source point. Equation (4.28) approximates the distance r

so that the singularity cancellation is improved.

A further modification was introduced *® where the first term of the Taylor

ation for the di

emple

appro ance r d. This method is reported to give

goud resy ns but relatively poor results on a spherical

patch.

r expansion method *

| way of dealing with kernel singularities is to subtract them out

so that F(x, x,) , an integrand containing a singularity, would be dealt with

using

| i l )= Flix,x,) | d5 + i Fle,x)ds ,  (4.29)
where F*(x, x,) is a function which has the same singularity as F(x, x;) bul isof
simpler form which ean be integrated exactly. Then, Fix, x,) — F*(x, x,) is non
singular and can be integrated accurately using, for example, the Gauss-Legendre
quadrature formula.

This method was introduced in three dimensional boundary elements in *' |
where the exact integration of the subtracted singularity F*(x, x,) for planar

elements was caleulated.

—




Aliabadi, Hall and Phemister ® introduced the idea of using Taylor series

expansion of the complete singular integrand to provide subtracted terms which

grated, though these integrations can be very laborious. They

can be exe

n

that subtraction of only the first term containing the actual

alsc ORIz

singularity was nol sufficient to produce a well behaved remainder integral and

at there was an advantage in subtracting further terms of the series. The

method is reported ' to give an error of 62107 with only 64 integration points for

anar paralle ums. However, for a spherical patch, 24X 24=576 integration

points are required to achieve an error of 10-%,

(3] Variable transformation methods

Variable transformation is a well-known technique for the evaluation of

improper integrals %513

I il integral
x) dx (4.30)
(4.31)
s0 that
[ | " u ) du (4.32)
1 ¢lb)=1 (4.33)
and
dy
AL by (4.33)
I'he transformation x= ¢(u) is chosen so that
[LgQu))g'tu) (4.34)

is o longer an improper integrand. Hence, one can apply a standard quadrature

rule to

to calculate the original integral.

One such transformation is the error function transformation

| @ dy (4.36)

10 e " du (4.37)

The integrand is now dominated by e—«* and may be approximated accurately by
a truncated trapezium rule *', This method has been applied in the boundary
element analysis of a three dimensional acoustic problem ** for weakly singular

integrals by using the transformation of equation (4.36) in each direction of the

ar region.

two dimensional recta

The double al transformation ™ was applied 7 in the form

i (4.38)

in each direction of the two dimensional element for weakly singular integrals in
a three dimensional electrostatic problem.

Both methods are reported to give accurate results. However these methods
use extra CPU-time in the caleulation of the exponential and error functions,
unless they are prepared before hand as a table of integration points and weights.
Hence, as far as weakly singular integrals are concerned, the simple polar

coordinate transformation, which will be explained in the next section, seems

more efficient in canecelling the weak singularity of order 1/r. For hyper singular




order 1/r* («= 2), the variable transformations mentioned here do not

integra

work. For such cases the finite part of the integral may be calculated by the

method of equation (4.26) proposed by Kutt 1%,

(4) Coordinate transformation methods

(i) Triangle to quadrilateral transformation
Lachat and Waston 7 introduced the transformation of a triangular element

In this transformation the corner at

to a square in the parameter space (4,

which the sin

larity is placed becomes the fourth side of the square on which the

Jacobian of the transformation is zero. For example,

where

oy my . (4.40)

The above Jacobian iy ) regularizes the integration so that the Gauss

Legendre quadrature formula can be applied

(if) Polar coordi

Rizzo and Shipy introduced the method of using the polar coordinate

1) in the (5,

system (p, #) centered at the source point [.-..I ,) parameler space, s0

that

(A7, dp dd (4.41)

The Jacobian of the transformation : o cancels the singularity of order 1/r. The

method is also mentioned in '®
As shown in Chapter 2, the order of singularity of both u* and g* are of

order 1/r for weakly singular integrals arising in three dimensional potential

problems. This explains the fact that the use of polar coordinates regularizes
these singularities, so that the Gauss-Legendre quadrature formula can be safely
applied to the variahles » and &

In this thesis, this idea is extended to taking polar coordinates around the
source point in the plane tangent to the curved element at the source. This
enables one to treat near singular integrals and singular integrals in the same

frame work by introducing n iable transformation R(p) of the radial variable

» which regularizes the (near) singularity. Further, an angular variable

transformation #(#) is introduced, which considerably reduces the number of

integration points in the angular direction.

4.4 Quadrature Methods

Nearly Singular Integrals

arly singular inte

als turn out to be more difficult and expensive to

calculate compared to the (weakly) singular integrals mentioned in the

proceeding section.

Nearly singular integrals become important when treating thin structures,
where the distance between elements are very small compared to the element size
as shown in Fig. 4.1 . The use of discontinuous elements is another source of

nearly singular integrals, since the distance between an element node and an

sshown in Fig.

adjacent element can be very small compared to the element size,
4.2 . Another important source of nearly singular integrals is the calculation of
the potential or potential derivatives at an internal point very near the boundary.

This arises for instance in the simulation of electron guns in cathode ray tubes,

.B1-

i




where the accurate value of the electric flux near the cathode is required in order

to ealeulate the trajectory of electrons.

The stress of this thesis is on the calculation of these near singular integrals,

rir rals can be treated efficiently in the same frame work.

although singu

will be briefly reviewed in the following.

ious meth

The orthodox way to treat nearly singular integrals is lo increase the

number of integration points as the source to element distance d diminishes

(compared to the element size) "%, However, the number of necessary integration

points with the ndard Gauss-Legendre quadrature increases rapidly as d

decrenses, as will be shown in Chapter 10.

The next thing to do is Lo subdivide the element so that the integration

ar the source point ™ 1%,

n tends to be a cumbersome procedure and would still be

18 Ver

small compared to the element size. Another

vantage of

»ment subdivision is that it suffers [rom the fact that the

highest polynomial degree which can be integrated exaclly by the Gauss

| number of integration points selected

sendre quadrature depends on the

instance, a one-dimensional quadrature which is

se subelements and uses 2, 3 and 4 Ge

55 points,

and 7

ate exactly polynomial integrands of degrees

over each part (Zn—1) , when il 9 points are used to integrate over the

complete element, a 17th-degree polynomial is allowable !

L)

Fig.4.1 Boundary elements for thin
structures

[ ]

Fig.4.2 The use of discontinuous
elements




aken the

he integration variables so as to w

an of the transforn n » transformation also

ion points near the source point.

proposed by

(4.42

=y 158

zrable singularities ¢

ansformation

duces the varie

ar integrals in bounda

Chapter 10 the

requires

wiree distance o is very small, and the

for the eval

‘unction

rmation method

t self-adaptive method using cubic transformation was

Them

y explained in the following.

For a one dimensional integral

let the projection of the source point x, on to the element I" be x(7), and the
distance d asshownin Fig, 4.3, where the element is described by
x(p), (=15 y=1).

nsformation

! o J d (4.46)
is introduced, such that
1
I £ imiy)) dy (4.47)
1
where
J
dy
and
1) 1
(1 1
(r)
(4.48)

and J(y) takes a minimum value 7 (d} at

¥ , in order to weaken the near

singular behaviour of f( 5(y)) near 3= j.

F(d) is an optimized function of the distance d given by

rid) = [0.85 +0.24 logd (0065 d<1.43)
J 0g93 0 logz of (1.35 d<3618)
b
49
| 1 (36185 o) (4.49)




In order to compare with methods proposed in this thesis for cases where d<0.05 ,
the function F(d) isinterpolated between d=0 and 0.05 to give
rd) 2.62d (05 d<0.06)
(4.50)
The standard Gauss-Legendre quadrature formula is then applied to equation
(4.47).
For two dimensional integration, equations (4.45) and (4.47) are generalized

to give.

7yfrg) ) () e ) dy, dy, (4,51)

£
g
8
z
=

are applied to each direction 5

1+ T2

respectively. In this case the distance parameters d), dz for each direction is

determined by

(4.47)

Fig.4.3 One dimensional integral over T. Yy - x-17y

where %,= x(7,, 7,) is the source projection or the point on the curved element S

nearest Lo the source point x,. (7, ,) can be calculated by the Newton-Raphson

method, as will be explain in Chapter 5.

Telles’ method gives good results for d>10-?, where d is the relative

distance compared to the element size. However, when 0<d<10-*, the method

does not give accurate enough results even when 3232 integration points are

used, as will be shown in Chapter 10.




(3) Polar coordinates

The use of polar eoordinates in the (y,, y,) parameter space, as in the
caleulation of weakly singular integrals, alone does not give accurate results for
nearly singular integrals, as will be shown in Chapter 10, A method Lo improve
the result by correclion procedures ' is reported to be efficient for potential
problems.

However, in Lhis thesis we take a different view and introduce a new method
by taking polar coordinates in the plane tangent to the element at the source
projection. Further, radial and angular variable transformations are introduced
in order to weaken the near singularity before applying the Gauss-Legendre

quadrature formula.
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CHAPTER 5

THE PROJECTION AND ANGULAR & RADIAL

TRANSFORMATION (PART) METHOD

5.1 Introduction

Hayami and Brebbia '7 have proposed a new coordinate transformation
method to caleulate singular and nearly singular integrals for curved boundary
elements

Here, the method will be generalized o deal with arbitrary curved element

geometries and different types of integral kernels which arise in three
dimensional potential problems.

From Chapter 3 (cf. Tables 3.1 and 3.2), the (nearly) singular integrals
involved in the boundary element analysis of three dimensional potential

problems may be generally expressed as

(5.1)

\\'hL‘r'.‘
a=1 for (weakly) singular integrals necessary for the caleulation of H
and 7 matrices
and

I
)

5 for nearly singular integrals necessary for the calculation of
polential and potential gradients at internal (external) points
very near the boundary S.

Here r=|x—x,| is the distance between the source point x, and the field point x.

f isafunction of x€S5, which does not have any (near) singularity in r.

hl

Although the method is proposed for three dir ional potential pr

integrals arising in other areas such as acoustic problems (Helmholtz equation),

——




1 ‘ 1|'|

elastostatics ete,, may be regarded to take the form of equation (5.1}, so that the

following analysis may also apply to such problems.

As the evaluation of (nearly) singular integrals becomes a difficult problem
for the case of curved elements these are the elements to be treated here in detail.

For planar elements, the problem becomes simpler and closed form integrals such

as those given in Aliabadi, Hall and Phemister ® or Kuwabara and Takeda

ilable

av

Although the quadrature method to be proposed can be applied to general
curved elements (triangular as well as quadrilateral), we shall use the 9-point
Lagrangian element as an illustration (cf. Fig. 5.1).

The interpolation in this element can be expressed as

1 1
y > > W # ) FULR) - (5.2)
] 1
where
{ -
i
1 (5.3
l'he element is isoparametric in the sense thalt [ can also represent the
coordinates x(y,, 7,). The element S isdefined by
|
5 %07y 9g) 1 . 1
where
5 s (7 '
1 — 1
ka1
and
x x(f k), fk==1,0,1 (5.4)

for a 9-point Lagrangian element.

90

Fig. 5.1

T]E

The 9-point Lagrangian element
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When caleulsting boundary element integrals, one needs to know a measure
of the distance d between the source point x; and the element S over which the
integral is performed. A rough estimate of d can be obtained by the distance d’

between x, and the centre of element x(0,0), i.e

&

d’ xi0,00 - x| (5.5

Let us define the size [ of the element by

max (| x01,00 - x(=1,00], | x0,1)=x®, =1)] 1 (5.6)

If d' & I, the integration can be performed by the standard product Gauss-
Legendre quadrature formula '3,

It is when o' = [ that we need to devise a new scheme, since the standard
Gauss-Legendre formula slone does not give accurate estimates of the integral
efficiently, { From here on, we shall assume that the element has been normalized,
so that {=1 and d=d'.)

For such cases, this thesis proposes a new scheme : the Projection and

Angular & Radi isformation (PART) method '®

The proposed method consists of the following steps :

1) Findth

point %, on the element S nearest to the source point x, .

Approximately project the curved element S on toa polygon S in the plane
tangent to the element S at &

(3)  Introduce coordinates (o, &) in the projected element S.

(4) Transform the radial variable by R(p) in order to weaken the (near)
singularity [/re in the integral of equation (5.1) ,

(5) Transform the angular variable by ##) in order to weaken the near
singularity in # thatarises when %; is close to the edges of S,

(6)  Apply the Gauss-Legendre quadrature formula to the transformed variables

R and t inorder to caleulate the integral of equation (5.1) numerically.

5.2 Source Projection

) on the curved element

The first step is to find the closest point £, = x( T

S to the source point x,. This point %, will be called the ‘source projection’.

iy) can be obtained by solving the set of nonlinear equations for (4

]=0 (i=1,2) P (5.7

since x—x, L ax/ay, (i=1,2) issatisfied at ,=x(7,, 7,) , as shown in Fig, 5.2.
Let r =x—x,. Then, arliy = ax/dy, , (i=1, 2) s0 that equations (5.7) is

equivalent to

f i
|r, == (1] (¥} (5.8)
Here,
b
S 6w s,
Sy, (-,
s Al (5.9)
where
e
since
Y ol =1
i 4

for complete interpolation functions. For instance for the 9-point Lagrangian

element of equations (5.2)~(5.4) ,
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since

where
f; (nys il iE
L. Let
Fig. 5.2 The source projection X e=[ L) . |
1 | n

Since
¥,
iy |

fing+an) Fin) +

if we have an initial solution n, which is in the neighborhood of # : f(g) = 0,

i.e. |Fin)| < 1, the iteration

(5.11)

(5.13)

(65.14)

(5.16)




an " . fin,) (5.17)

"

should e

re to the solution , i.e

lim n = n

This is what is known as the Newton-Raphson method , and n, will
converge to the true solution q very quickly, provided that the initial solution g,
is in the neighborhood of 1 . In fact the method has the property of second order

convergence, i.e.
|an,, |~ odan? (5.18)

where | + | isa suitable norm for

For our problem of solving equation (

7) to find the source projection %, , the

Newton-Ra

son method converges within few (3~4) iterations to give a relative

ror of 10-%, and consumes only about 1% of the total integration time. The

Vergence 1s very

so long as the solution &, lies inside the element S

Then, the initial solution can be setto n

(0,0).

'n the source projection li ar out side the element , i.e.

17,121 and/or |§,|¥ 1, the method may not converge to the true solution (7, ,) .

Thi

the interpolation lunction ¢ (e.g. 9-point Lagrangian element)

diverges as

7,121 and / or |5 1, i.e. the interpolation function ¢, gives a good

approximation of the function only when |y |=1, (i=1,2).

Hence, it may be safer to start with the initial solution

corresponding to the closest node x/*, (j, k = —1, 0, 1) of the element, to the

source point X, particularly when &, lies near or outside the edge of the element.

96

In the actual application of the proposed integration method (PART), it
turns out that it is only when the source distance d=|x; —#,| is relatively small
compared Lo the element (d €1), that the integral becomes (nearly) singular. This
means that the method should be applied when the source point x, is very close to
the element. In this case, the source projection &, either lies inside the element S,
or very close to the edges of S even when it lies outside the element. This justifies
the use of the Newton-Raphson method to obtain the source projection %, since
the convergence of the method is guaranteed in such cases due to the nature of the

interpolation functions ¢

Approximate Pre

ction of the Curved Element
Next, the curved element S is approximately projected on to the plane
tangent to the curved element S at the source projection %,.

First the unit normal vector n; to the element § at %,=x Gy

calculated by

where

PR (5.20)

s nodes of the element by

x, = x(L1)

x x{=1,1)
x‘—a!—l -1)
- 1

x,= =il 1

(6.21)




Then the perpendicular projection ; of node x; onto the plane tangent to the

curved element S at %; isgiven by
x =x —|x \-n’ln_ j=1-4) (5.22)

The curved element S is then mapped onto the planar quadrilateral S
defined by ®,, &,, %, and &, as shown in Fig. 5.3. This is an approximate

projection, since the exact prajection of a curved edge of S would, in general, be a

curve in the tangent pl

ne.

The consideration of exact projection will be given in a later section.
However, the approximate projection is shown to be sufficient and more efficient
for introducing the source distance o into the radial variable transformation

Ri{p), considering that it is the local behaviour of Ur, r

—xg , x€S, that

dominates the (near) singularity of the integrand.
Next, one divides the projected quadrilateral S into four triangular regions

1~4) centered at R, asshown in Fig. 5.4.

In each trinngular reg &; defined by %, % and ;4 1, one defines the following,

geomelric quantities

(5.23)
where .‘-(_, =X , and

edge-j : edge correspondingto %, —%
[ : footof perpendicular from %, toedgej
h; : length of the perpendicular ( ;= [fj=%4l 1,

angle between vectors I'J.—)'«_.; and %;

L8

L.S 4

Fig. 5.3 Approximate projection of
the curved element

-99




edge-1 i

edge-4

edge-3

Fig. 5.4 Division of the projected quadrilateral S
into four triangular regions
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and

: angle between %, —% and® —% . (5.24)

asshownin Fig. 5.5,

Then ,
. !
in
o wnly) [ T 7 ) b
E ; J J
in o mnlj) (o, —a csAl )/ b
) @ cos

(5.26)
where sgnl j ), ;=1~4 for curved quadrilateral elements are defined by the
position of the source projection { 7

iy ) in the square —1=5,, 5,=1 in the

parameter space (Fig. 5.7), i.e.

sgnil) = | 1 ; Ne<l—¢

sgn(2) = 1 ; 1+

sgn(d) = 1

sgnfd) = 1

(6.27)

where0<s¢<leg, «=10-"
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Here it should t

» noted that in equation (5.27), sgn( j) was defined according

to the pc

sition of (3, 7, ) with respect to the square —15 5, ,= 1 in the (y,, ;)

parameter space, and not according to the position of the source pro

=% (7,

7, ) with respect to the approximately projected quadr

There is a subtle but substantial difference, since when %, is very near the

ted

of a curved element S, it can happen that %, lies outside the pro

element 8

in the tangent plane at %,

yen though %, lies inside the element § as
shown in Fig. 5.6, or vice versa. It may also happen that ®; lies on the edge-j of

element S i.e.sgn(j)=0, but &, lies inside 5 or outside S. In a word, the topology

of 5 with regard to § is not necessarily preserved for %; with regard to S when £,

is near the edge

curved element S . An example

such a case is given in
chapter 10 for a 9-point Lagrangian element modelling a spherical quadrilateral

elemer

Since the integral of equation (5.1) of interest, is defined on the element S

and on the (y,, #,) parameter space as in equation (5.28), the topology of the source

projection &;=x(5,, 7,) should be maintained for the correct evaluation of the

ion (5.1) and henee (5.28). This is why sgn(j) of equation (5.27)

integral

f equs

was defined according to ion af (

75} with respect to the square

—1=y,, 3,=11in the (y,, y,) parnmeter space, and not according to the position of
LR £ Ll | FLR

7, ) with respect to S.

For the case of Fig. 5.6, sgnl

1 and Afiy 1s defined by equation (5.26) as

() even though %; € S. For the case when sgn (j)=0 but %, is not on the

edge -j of 8, the integral I; over A;is zero since the area of 4;is zero, even though
Ajhas a finite area. In this case, det Lij=0 sothat ;=0 in equation (5.39).

To sum up, the notion of mapping (approximately pr 1) S onto S should

n the

be more rigorously interpreted as mapping each triangular region !

7,) space to a triangular region 4; in S, maintaining the original topology of

1 for R;=x(7,, 7, ) in ‘_3 Henee, the

with respect to the square —1= g,
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Fig. 5.6 Case where X;eS but X;¢S5

orientation of each triang

sgnijlort zn of the angle corresponding to

iined as A

The procedure of appr ned so far, can also be applied

ilar elements. In this case, S is divided in to three t lar

ang

regions A

5.4 Polar Coordinates in the Pr

As mentioned befi randn singular integrals occurring in

, the sing

three | boundary element method can be generally expressed as

1)

where f isawell behaved functionof x on §. Since the singularity is related to

in the radial direction, it seems

the integ eparate the integral

ial :Hlf.l.'lli[:' Iar compone

equation (5.1) In this way, one can tackle

of (r

problem

rity by considering on

» radial component of the
integral

Hence, fi

rating equation (5.1) using polar coordinates in

S , centered at the source %; , where %;

projectior

the pr

lefined in the previous section.

Polar coordinates in the (5

1,) parameter space have been previously used

to deal with singular integrals *'®, but here they are generalized by using polar

coordi s in the projected quadrilateral and by introducing further variable

transformations in the angular and radial directions,

ameters defined

Using the (y,, 7,) pa equations (5.2)~(5.4) and Fig. 5.1,

equation (5.1) becomes

e = |G| dy,dg (5.28)
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Next, divide the square region of the integration in equation (5.28) into four
gular regions 4A; (j=1~4) centered at (7,, 7,) and situated in the (5

as shown in Fig, 5.7 Notice that (§,, #,) corresponds to the source

(5.30) /v
_ /L Ay

Fig. 5.7 Four triangular regions in (M4,M,) space

map the projected quadrilateral S onto the curved element S
r map each triangular region A;in S (Fig. 5.4) onto each corresponding
triangular region 4&; in the (y,, 5

space (Fig. 5.7 This is done by defining

local Cartesian coordinates £+ &) for each triangular region 4;in S (Fig. 5.5) as

hown in Fig. 5.8, and then mappi jonto A;( Fig.5.9).

L
Fhe linear map from &; to &; which maps (0,0) to (5, 7). (a,, 0) to

)y and (a cosdd;, a sinAd;) to (g, )t

A en by




&, ) coordinates in region A; in S.

(nJ*

1

1
» M0 (T]]J’!T]?J]

Fig. 5.9 Region A;




, one obtains

Hence, the integral of equation (5.30) becomes

The above mentioned procedure for » 1g the curved element 8 onto the

planar po

the parametric sg

e (7,, 7,) is illustrated in Fig. 5.10.

Now one can introduce polar coordinates (g, #) in each triangular region

of the projec

hown in Fig.5.11.

(5.38)

Thus, the

and from e

= (5.40)

The upper limit o (4) of the integral in the radial direction o(#) is given by

b [ = o £ (5.41)

where hj, oj are defined in Fig of the previous section.
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A
(M1,

0

4
1

Linear

(M4, M, ) space

fIG!
I= ﬂ H -—rU—dl'h dn,

=5
j=r

N (G o
y "L;[J_-JTd%qdéz

A}

Fig. 5. 10 Mapping from S to S via the

parametric space (n,, m,)

g 2

Fig. 5.11

(4a;.1c08A6;, u}-”sin.-_\ﬂj)

&

Polar coordinates (P,0) in Aj




Radial Variable Transform

This section deals with two cases ;

(i)  when the source point x, is on the element and produces weak singularity
le=1)

and

(ii) when the source point X, is very near the element and results in a near

singularity.

These types of singularities or near singularities can be investigated by
looking at the integral in the radial direction in equation (5.39), i.e.

@ Gl
= P (5.42)

0 *
In order to cope with the near singularity, a transformation of the radial

variable o will be introduced.

(i)  Weakly Singular Integrals

As shown in section 3.1 , the singular integrals (d=0) arising in the

leulation of H and (G matrices in three dimensional potential problems are only

weakly singular and have kernels of order at most O{1/r) , i.e. =1 in equation
(5.42).

Since r ~ g in the proximity of x, , where p is the radial length along the
tangent plane at x, , the singularity O(L/r) is cancelled by » to give a regular

kernel of arder O(1) . Hence, no extra transformation in the radial variable is
necessary for the weakly singular integrals, It will be shown in the numerical

results in Chapter 10 that the use of polar coordinates with the angular variable
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transformation enables one to calculate the weakly singular integrals very

efficiently, irrespective of the position of the source point x, on the element .

It is worth noting that in this method, the same set of integration points can
be used for the ealculation of both H and G matrices since the order of singularity

involved is the same, as demonstrated in Chapter 3.

(ii) Nearly Singular Integrals

It will be shown that nearly singular integrals ( 0<d<1 ) are much more

difficult to calculate efficiently compared to singular integrals (d=0). Using

polar coordinates alone, for instance, does not give accurate results when 0<d<1

(1) Singularity cancelling radial variable transformation

To overcome this difficulty, Hayami and Brebbia ' have proposed a
transformation of the radial variable o for the integral of equation (5.42). Thisis
done by approximating the distance r=|x—x,] by r=V*+d® asshown in

Fig.5.12, which is equivalent to approximating the curved element by its

projection on Lo its tangent plane at %,




Fig. 5.12 Approximate distance r

Here it is worth noting that for general curved elements, r' does not
approximate r very well when x is far from the source projection &;. However,
the (near) singularity 1/r* is only dominant in the neighborhood of x;, where
r~r', so that the transformation R(p) based on this approximation r' ~ r should
work efficiently for (near) singular integrals (0= d < 1), even when the curvature
of the element is relatively large.

Hence, a radial variable transformation R(p) is introduced such that

(5.43)

r'"dR

(5.44)

This operation has the effect of cancelling the singular behaviour of 1/ by =,

The transformation R(p) is defined by equation (5.43) as

Ri (- F: <L
(5.45)
which can be integrated analytically as follows :
From the definition of the approximate distance
o (5.46)
it} 2, 4t (547)
e’ = pdp (5.48)

so that




| for a=2
1 (5.49)
log for a=2
for a» 32
(5.50)
for a=2

From equation (5.50), the inverse function o(R) of R(p) isgiven by

i ala
| |-.?,_..-.!r|"‘ -t |, tem?)
a(R) “'\l | (5.51)
| e agh? s lie=8)
From equation (5.49) the function F'(R) is given by
1
[ @2-a)R}T" . la=2)
iRy o2
4 . (5.52)
o , (e=2)

Rip), olR) and r(R) are given in Table 5.1 for a-

It is found that the radial transformation (5.45) exactly cancels out the
(near) singularity in equation (5.44) when [ =constant for the case of planar
parallelogram elements and planar triangular elements ( |G| =constant ). This

means that only one integration point is required for the radial integration to give
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Table 5.1 Radial variable transformation R(z)

and o(R), r(R) for a=

Rig) l s(R) r'iR)
|
1 v % 7 d
2 log v Lid?
1
i —— = /
Vel +d? /
| —
4 — f
2 (o +d?) v
1 i
9 = — | V(=3R)
}(p®4-d%) 32

an accurale result, independent of the source distance d . In other words, the

integration in the radial variable was done analytically. In this sense, the
method is semi-analytical.
From this point of view, for a planar element S, (r=r'), with f=constant,

the radial component of the integrals

(5.53)

where y=0; =135 and y=1; «=3,5 (cf. Table 3.2) which occur in three
dimensional potential problems can be caleulated analytically as follows.
I > Ideth | 1

w7 (5.54)
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where
t o
J dge
IJ
f | dp
SV /T
f | R _{: ;'H":' - R" L0)
where
n
and §=¢+1, sothat
=1 r=1,3.5 and
2 3.5
For 1
R_ =1,3.5 (5.58)
from equation (5.49)
For =2, which occurs in flux calculations
R 1Y |
= (5.59)
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15.60)

3d* Vipls o

from equations (3.141) and (3.142) respectively.
For general curved elements, one can also use the radial variable

transformations of equations (5.50), (5.58) and (5.59). In this case, the radial

variable transformations no longer cancell the (near) singularity exactly, since
the element is curved. Hence, more than one integration points are required for
the integration in the transformed variable R .

For instance, numerical results in Chapter 10 show that, for a spherical
quadrilateral element S, with f =constant, the approach works efficiently when
the source projection &, is near the centre of the element, although it requires

additional

dial integration points for the case d<1 . However, as %, moves
away from the centre of the element towards the edge of the element, the method

to require more radial integration points and becomes inefficient.

seems

Problems also arise for the case of planar quadrilateral elements which are

not parallelograms. This is caused by the fact that the mapping from the square
in the (y,, y,)-space to an element is linear only when the element is a planar
parallelogram.

Similarly, for curved elements the linear mapping L;j defined for each
region A; in equation (5.34) does not give the exact point on the curved element
whose projection matches the integration point on the tangent plane, since this
inverse projection is defined by a nonlinear mapping.

At first thought, inaccuracy of the inverse mapping appears to be the main

reason for causing inefficient cancellation of the (near) singularity.
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inverse projection and curvature of the element

in_the radial variable transformation

In order to overcome these difficulties, the following modifications were
considered.
(i) Exact projection of the curved element S on to the plane tangent at %,
(ii) Exact inverse projection from the integration point on the tangent plane to
the curved element using the Newton-Raphson method to account for the
nonlinear mapping.
(iii) A more accurate approximation of the distance r by taking the curvature of
the element at &, into account in the approximating distance ' and the

radial variable transformation Rip) based on this r'.

The combination of these modifications resulted in a significant decrease of
the number of necessary radial integration points, which remain almost constant
for very small values of the distance d , for the case when f sconstant in the

integration

Howe

r, this npproach has the following draw backs:
(i) t was found that when [# constant, for instance for integrals containing the

interpolation function :
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with the linear mapping of equation (5.23) based on L;, requires more than
32 Gauss points to achieve a relative error < 10-% for a planar square
element, as will be shown in Chapter 10.

For planar square elements, the ‘approximate’ projection of the

element S to 8, the inverse projection using the linear mapping L;, and the

‘approximating’ distance r'= \f’:_n are all exact, Hence, the failure to
integrate [. ¢ /r d8 indicates that the above modifications are not
sufficient to calculate the integrals [ [/r* dS for general curved elements,

let alone planar ele

1enis
In fact numerical experiments on curved elements showed that the
above modifications do not help to decrease the necessary integration points
to caleulate [ f/r* dS over curved elements when f # constant.

(ii) The two variable Newton-Raphson iteration has to be applied for each
integration point in order to find the inverse projection, which results in
excessive CPU time.

(iii) Since an exact projection of the curved element S to the tangent plane at %,
is performed, the projected quadrilateral § generally has curved edges. This

causes many complexities when performing the integration in S .

Another disadvantage of the singularity cancelling radial transformation
proposed so far is the fact that they require a different transformation for different
order of singularities a=1~5. This implies that different sets of integration
points and caleulation of the quantities like r, |G|, ¢, for them are required for
each «. For instance, different sets of integration points are required for the

M of equation (2.38) and (2,39)

computation of near singular integrals g, and h,
in order to obtain the influence matrices G and H.

Consequently a more simple but robust radial transformation is desired.
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ation (log-L2)

In order to overcome the above difficulties, one resorts to the approximate

{3)  Adaptive logarithmic r riable transforn

projection and the linear mapping from the tangent plane to the curved element
mentioned in sections 5.2 and 5.3.

However, this time, instead of using the same degree a of the radial
transformation as the (near) singularity 1/r, as in equations (5.43) and (5.44),

radial transformations with different degrees §+ o were atlempted, i.e.

and

where a=1~5and #=1~5 independently,
As n result, it was found (ef. Chapter 10) that the transformation

corresponding to F=2:

pdp = r4R (5.63)
or
Rip) = log Vit (5.64)
which gives
! v ‘. ] { (5.65)
AR oM {5.66)

works most efficiently for different Lypes of near singularities 1/r*, (¢=1,2,3,4,5).
We shall refer to this transformation as the adaptive logarithmic transformation
(log-La2), since R(p) is the logarithm of the Ly - norm in the (p, d)-space.

As will be shown in the numerical results in Chapter 10, this log-Lg
transformation works efficiently for general curved elements, with arbitrary

position of the source projection ;. It also enables one to calculate accurately and

efficiently nearly singular integrals whose kernels include the interpolation
functions ¢ even when 0<d<1, which was not possible with previous methods.
The log-Lg radial variable transformation also has the virtue that only one radial

transformation is necessary for kernels with near singularities of different orders,

suchasin g " and A Y

in equations (2.38) and (2.39) for the (¢ and H matrices,

or g*, h*in equations (2.50) and (2.51) for the potential at an internal point x,.

The reason why the adaptive logarithm radial transformation (log-Lg) works
efficiently for nearly singular integrals of the type [; 1/rdS , (2 =1,2,3, - ) seems
to be the following :
(i) For 0<d<1,r? is sufficient to weaken the near singularity of Lir*
la=1~5).

{ii} Since the lower and upper bounds of the radial integration is

R0) = log d (5.67)

and

(5.68)

respectively, the range of integration does not expand drastically as d becomes

very small. This enable the Gauss-Legendre quadrature formula to work
efficiently in the transformed variable R .

For higher degree transformations this is not the case, for example

1

RiD)y= - (§=3) - (5.69)
o
1

R0 = — (F=4) 3 (5.70)
2d”
1

R0)= —— (g=5) (5.71)
Ad

However, a more rigorous explanation for the optimality of the =2 (log-La)

transformation will be given in Chapter 6.




(4) Adapliv garithmic rs ariable transformation ( log-Ly )

As will be shown by numerical experiments in Chapter 10, and explained by

the error analysis in section 6.2 , the adaptive logarithmic transformation (log-Lza)

RBipl = gVpl+d® (5.64)

proposed in the previous section (3) , works efficiently for nearly

singular integrals arising from the caleulation of the potential nu(x,) ata point x,
very near the boundary,

However, the log-Lg transformation of equation (5.64) does not work so

efficiently for nearly singular integrals arising from the caleulation of the flux
( eg. electrostatic field E, magnetostatic field B) or the potential derivative
duldxs at a point X, very near the boundary. This is demonstrated by numeriecal
experiments in Chapter 10. The reason for the inefficiency of the log-Lz
transformation for the potential derivative is given in the error analysis of section

6.8

In short, the near singular integrals for the potential derivative duw/dx;

include integ 3 of Lhe type
: fw=bind (5.72)
in the radial v , where
’ (5.73)

The integral J_, of equation (5.72) is transformed by the log-Lg transformation

Rig) = lgVp'+d (5.64)

to give

r"dR . (5.74)

where
{5.75)
for planar elements ,
F(R)= pri—* - (5.76)
and
dF dF dy
= B e (6.77)
di dp dR
so that
dF E
] | e . (5.78)
dR | e s
and similarly
| =" 1 (5.79)

which means that the application of the Gauss-Legendre formula to the numerical

integration of F(R) = 5

with respect to the variable R in the integral of

equation (5.74) is expected to be inaccurate, or inefficient in that it requires a lot

of integration points,

The basic reason for this is that for the log-Lg transformation

R(p) = logV p%+d" ; (5.64)

(5.80)

and

dR

holu ) 3-een

T (5.81)
asshownin Fig. 5.13, so that

b piAd :

dp | mitE (5.82)

di »
which results in

dp

L) ST T

7777 | (5.83)

in equations (5.77) and (5,78) .




log \-"P_'-‘+ dz

P

Fig. 5.13 The log-L. transformation :
R(P) = log Vp2+d?

In order to avoid this defect of the log-La transformation of equation (5.64),
one would like to have a radial variable transformation which retains the nice

logarithmic character of the log-Lg transformation and yet has the property

dR |
= + 0 (5.84)
so that da/dR has a finite value at p=+0,
This can be satisfied by the transformation
RG)Y= loglasd J (5.85)

which we shall refer to as the adaptive logarithmic radial variable transformation
(log-Ly ), or the log-L) transformation, since it is the logarithm of the Lj-norm in

the (o, d)-space. Note that

R0} = logd (5.86)
Rip )= logl 4 d) (5.87)
From equation (5.85),

dR 1
e = (5.88)
d pobd

which satisfi
LR [ ) (5.89)
dp luo d

asshown in Fig. 5.14 , so that
W . (5.90)
dR |-

As will be shown in section 6.8 , the essential nature of the radial component

of the near singular integrals in three dimensional potential problems can be

represented by




Fig. 5.14 The log-L4transformation :
R(P)=log (P+d)
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J ~d (5.91)

where

for the calculation of the potential u(x,) and

1 3,5

for the potential derivative du/dx,. (cf. Table 3.3 of Chapter 3 )
The integral of equation (5.91) is transformed by the log-L; transformation

of equation (5.85) as

(5.92)

- (5.93)
dit
Let the int
FiR - - - (5.94)
where
ogd S R = log (5.95)
and
: [
: o %
O o 22| A rrivad] - o]
dR - f I
(o) [ . - - =
' | 0=+ 0™ B=a) do®+ t84+1) 0% + .uf‘ll (5.81)
RTY
s0 that
] pea @ R (5.97)
dR - ! | 0 B=2)
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and dF/dR 2 for the

erval of R in equation (5.95), in contrast

with equat for the log-Lg transformation.

Hence, the sgarithmic radial variable transformation (log-Ly )
stands a good ¢ ient ealeulation of near singular integrals for the
potential derivative duw/ix, as well as the potential wu(x;) . This will be
demonstrated by numerical experiments in Chapter 10.

In fact, it turns out that the log-L, transformation is more efficient than the

log-1 mation, not only for the flux calculation but also for the potential

culation when curved elements and/or high order interpolation functions are

ed. This can be explained by the presence of terms with =2 in equation (5.91)

for suc

tion is also more robust s L the ¢ ge of the

nsforme

The log-Ly tre

tance d and the position of the source projection R, ,comps

source di
ation.,

.1 radial variable transformation is preferred to the log-Lg

ask then, is whether the log-L; transformation is the

yrmation based on the Gauss nde formula,

ntions.

wce results for the Lo sformation in Fig.

7 at the converge

10.18~10.22, we observe that, although the log transformation

e corresponding to #=2 is most robust for integrals s LirdS ,
la=1~5), the transformation R{p)=—(g*+d?)-"? corresponding to 7=3 shows
better convergence for the case o =4, 5
This leads us to try the corresponding Li-type transformation
Rig)== (e +d)~" (5.98)
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eal experiments on the model radial variable integrals

| Y i
-l (10.45)
where
. (10.48)
show that the transformation (5.98) gives better results for o = ;:a=5,d=1

and a=5

=2 compared o the log-L;, transformation. However, the results for

=1, d=landa= =2 are very bad ns shown in Table 10.25.

This then leads us to seek for Li-type transformation which lie between

loglp+d) and (o+

When we look at the transformation as lunctions of x=p+d, the functions
posses singularities of order logx and 1/x, respectively, Then, it seems reasonable
to expect better transformations among functions with order of singularities in
between log x and 1/x , i.e. x~Y™ where m>1. Hence, we arrive at the radial

variable transformation of the form

Lo (5.98)

Numerical experiments in Chapter 10 (ef. Tables 10.26~10.38 and Fig.

10.29) show

1t optimum results are obtained for m
15.100)
Riz) (PR |]

which we shall call the L; =" transformation. Comparing Tables 10.24 and 10,32
or Fig. 10.28, and 10.29, we can expect that the L;="® transformation gives better

results than the log-L; transformation for the integration of both the potential

kernels u*, ¢* and the flux kernels du*/ix, and dg*/ix, . This is conflirmed for the

al results over curved elements in section 10.7.

flux kernels by numeric
However, for the potential kernels, the log-Ly transformation gives better

results than the L;~"® transformation. Hence, the best strategy is to use the

log-Ly transformation for the caleulation of potential or H, (7 matrices, and to use

the L; ='® transformation when flux caleulation is involved.
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(6) Single dial varinble transformations

nential 1

In order to weaken the near singularity in the radial variable near p=0, we

can also use exponential type radial transformations The exponential type

2, 14, 25

transformations themselves are not original 3 13 7, but the fact that

they are applied in th

radial variable o in the tangent plane S is new.
There are basically two ways of performing the exponential type radial
transformations in the radial variable o. The first way is to map the radial

variable o:[0, o(6) ]on to the half-infinite interval R :[—9°, 0]. The second way

is to map o on to the whole infinite interval R : [—, =] . Numerical
experiments in Chapter 10 show that the second procedure gives better results for
different nearly singular integrands F and different source distances d. Thisis
because the numerical integration error near the end point p=p (f) in equation
(5.39) and (5.42) is effectively reduced by the second procedure

Given the transformation to the whole infinite interval R : [—-=, +@]

there is anot choice of using the single or double exponential transformation.

(a) Single Expo

»ntial radinl variable transformation (SE)

First consider the single exponential transformation

. (5.101)
where

(5.102)

Here p:[0, ;] ismappedonto R:[ -, + %] asshownin Fig.5.15.

From equation (5.101),

e (5.103)
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Fig. 5.15 The Single Exponential Transformation

Pj
P(R) = = (1+tanh R)

2




g
?
'|

2R RS i | for R =4 = . (5.104)
R Reg =t ! (5.105)
so0 that @(R) converges exponentially to p, B8 R—+=_ and to 0 as R— -,

respectively. From equation (5,101},

d
di

(5.106)

2 cosh™R

s0 that

ion in the radial variable p in equation (5.42) is transfor

The integrs

equation (5.101) and {5.106) as

|  &iR)dR ; (5.108)

where

g R

(6.109)

dR

Therefore, the integral

J(#) can be approximated by the truncated trapezium rule

for the infinite ir

Jig) =, BN glkh) (5.110)

It can be seen from Fig. 5,15 that, since the integration points for the trapezium

rule in the variable R in equation (5.10) is equally spaced, the corresponding
integration pointsin the variable o are concentrated around the near singularity
at p=0 so that, effectively, the near singularity is weakened when transformed
to the variable R. Hence, the numerical integration in equation (5.10) results in

high precision and efTiciency.

As mentioned before, this single exponential transformation of equation

80) is superior to the *hall-infinite single exponential transformation’
alR) {1+ tanhit) (5.111)

which maps o : [0, o] on to R : [—99, 0] , since the transformation of equation

5.111) results in inaccuracy due to the truncation error at the end point p=p ,

where as for the transformation of equation (5.101), integration points in the

variable 5 are concentrated, not only around the near singularity at »=0, but

also around the end point o = o, + so that the truncation error of the numerical

integration near the end point o =, significantly reduced. This will be shown

in the numerical results in Chapter 10,

lial variable t

(b} Double Exponential re wation (DE)

Consider next the double exponential transformation ™ applied to the radial

variable ;
()= =L | (14 tank{ > sinh R )| (5.112)

Here again, o:[0, ] ismappedonto R:[—20, +2°] asshown in Fig. 5.16.

From equation (5.112)

ploy= =3 (5.113)

(5.114)

plR)~p (1-e? )

(5.115)

Ry ~p e’ for R —= =

so that o(R) convergesto o as R—+2,and p(R) convergesto 0 as R— —o=,
double exponentially, which is a faster convergence compared to the single
exponentinl transformation of equations (6.101), (5.104) and (5.105). From

equation (5,109),




Fig. 5.16 The Double Exponential Transformation

plr' L i
P(R) = = {1+ tanh ( 5 sinhR ) }

[5.116)

s0 that

(6.117)

Equations (5.1(

applied to calculate the

integral J{4)

ation using the single exponential or double

he interval h and the number of integration points

(6.110) can be determin

1 for a specific integrand function as

Bet h=1, for example, and calculate Jy , with increasing n until

r h= 1/2, 1/4, 1/8, — until

(5.119)

is satisfied tain the

The

shold value

qual to the required accuracy ¢ of the
integra
In order to speed

p ealeulations, it is recommended to calculate the

exponential type function such as coshi(x) by

ex = gxp (x)
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(5.120)

oshx = (ex +

ernal function cosh(x), so that ex and ei can be reused to

ad of cal

red exponential type functions such as sinh(x) or tanh(x) .

caleulate other reg

yle exponential transformation ,

For instance, for tI

(5.121)

cosh K .122)

e used, where e and 1/e® are computed only once for a given value for

should
R

Further CPU-time can be saved by calculating g(R) of equation (5.109) for

R=Fk and R &, (k=1

cosh {3 « iR
! f L (5.124)
it a (5.125)
£ 50 one ke sure that
o (=kh) + g (k) (6.126)
tantial rounding error, since from equation (5.109),

B i tieh) (5.127)
i i for relatively large k, since 1/r* becomes dominant when R— —o° j.e, when p—0.
- W e g 5 B
. In order to minimize such sources of error, it is best to perform the addition in
. equation (5.110) f consecutively., This will result in
-a

mall nu

bers to larg

wund off errs

dre formula), an

itians oor

point, com to the log-Ly and
> Gauss-Legendre formula, This is
speed up the single/double

and do/dR

One may 1 table

U6) be




rinteg

TS -
Double . i gle Yog-La log-Ly
Exponential | Exponential
1 0.5 1 1
¢ roo 1
d 1.5
1l 1
2 1 1
3 1
CPU tir
5.4 - ~0.9

1t ( ire
CPU-tin

1 i

£ le Tt f

g polar
rariable to

)

“uF

This couses a problem not only for nearly singular integrals but also for

singular integrals resulting from discontinuous elements ', for which case the
source can be very near the element edges.
This phenomenon may be considered as a near singularity in the angular

variable and can be explained as follows.

When £, is very close to the edge %, —% of the projected quadrilateral S

as shown in Fig. 5.17 , the value of g (#) , and hence the integrand with resp

the angular variable # in the integral

(5.39)

can vary rapidly as ¢ varies from 0 to A#,. Thus, a large number of integration
points are necessary to perform the angular integration numerically,

In order to overcome this difficulty of near singularity in the angular

variable, strategies similar to those taken in the case of near singularity in the

radial variable discussed in section 5.5, are proposed. Namely, a transformation
of the angular variable is introduced in order to weaken the near singularity in

the angular variable.

= angular variable tr

(1) Adaptive logari sformation

Fi e a logarithmic angular variable transformation which

st we pro
weakens the angular near singularity before applying the Gauss-Legendre
quadrature formula,

In order to do so, let us assume in equation (5.39) that

» (i) - (5.128)

since p (#) dominates the behaviour of the integral J{#) when %, is very near an

edgeof S,
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Fig. 5.17 Near singularity in the angular

variable 6

“ub

Consider next an angular transformation ¢ = #(¢) such that

at I (5.129)

where t(#) is given for e:

h region A; by

)= J ) dd

i PP it ol (5.130)
2 ll=sinif—a |]

Using t as the new variable for the angular integration in equation (5.39), we

obtain

- di (5.131)

Since

the integrand in (5.131)

expected to be a smooth function of ¢ compared to the
original strong variation of J(#) with respect to 4. H(#) acts as a transformation

that weake

s the near singularity in the angular variable 4.
Here it is interesting to note that both the radial and angular variable

transformations

Ripl= log Vp"+d (5.64)
Rip)=loglp+d ) (5.64)
and
1 # - 'Il
(1] : =} . (5.130)
3]

which work efficiently for the radial and angular near singularities respectively,

are logarithmic functions related to the near singularity so that

Rip) — s r=Veled = 0 (6.132)
and
1) =t ax g-e, = k= (5.133)
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function efficiently weaken

n variable in an optimal manner, when

vhich are the ca or the radial and

; respectively. By doing so, enough information is

integrand in the near

te the rapidly chang

J when sgnijl=0 asdefined by

simple, since it defines the p

rical experimen Chapter 10 confirm tk

lar l a5l

endre formula.

angular v

e/double

itial tran: itegration in the angular able, in order to

an then be

weaken the The truncated trapezium rule

ar variable.

tal of the

an apply

1 + tanhy (5.134)

(5.135)

+]. Hence, the integration in the angular

) e bt i (5.136)

where

and

= (5.137)

dd T ¢
= — Af s
de + x (5.138)
conh?® | ~sinht |

for the double exponential transformation of equation (5.135),
In both cases ,

..\ﬂl -

(I T alt) di (5.139)
) .

where

ali) = J (F(0)} = (5.140)

Henee, the integral of equation (5.139) can be calculated numerically using the

truncated tapezium rul

| amde~& Y atkh) . (5.141)
3 L b=-N

where h and N are determined by the required accuracy as in equations (5.118)

and (5.119),

5.7 Implementation of the PART Method

To sum up, the integral of equation (5.1) which we want to calculate, is

transformed as follows,




R
G
. g (ii} (D<d<]
S (5.142) e g " fdS  and q fd§
I ¢ i dg
44 (Rla foun) ’
det | — dt (5.143)
! dt o
and
det [ - (5.144) §
R{p) is the re able transforr rves to cancel or weaken
the (near) singularity ¢ 1/r. t#) is the angular variable transformation (iii) For planar elements with f=constant in equation (5.142),
eaken the r near singularity which arises when %, is near '
s of the approximately projected element 5. Ripl g
Now that th and angular (near) singularities have been weakened by S
he i i 5.143) : 2 (5.50)
{#) , the integral I; of equation (5.143) can be = log +d%) Br o1

al integration

applying stanc

for inte

[ 1/rdS, where = 1,3 occur in potential calculations

ables R and ¢

and o« = 3

ulations in three dimensional potential problems

{ef. Table & ), and
(1)
) | log v . ) - for a 3
ed way is to apply to
Ri(p) and 1(8) | —— for a=5 (5.146)
- " | ad%v
I transformation R(o) should be ch ollows : u
e (i} For integrals (d=0,a=1), for integrals of the type [, o/ dS , (a=38,5), which occur in flux caleulations of
e :
I | f ; | ) o three dimensional potential problems. The transformation of equations (5.50) and
1 eg - d§ an — [ !
o ] . o (5.146) correspond to performing the radial integral analytically, Hence, only one
|
| in potential problems, integration pointis required in the radial direction to obtain the exact value.
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I'hea ywmation (6} is given by

(logarithmic angular va le transformation) for each region A; (j=1~4).

N

radial and angular (near) singularities have been weakened

w that

(or cancelled) by the variable transformations R(p) and #(#) , the product Gauss-

Legendre quadrature formula can be safely applied to the integration in the

s R and |« wation (5.143), i.e

mputed when sgn(j) =0, in which case the

1 not be co

the line defined by edge-j

that t

area of region &;

T oa e R (5.148)

where

- L [=— (5.149)
£(oy == 1 I_' ——1) (5.150)

and

s — cos AP Ein o

the angle

i "y
t) - ghe. 1t | ;
cosh| — |
since
in -_—

and —

where

ws(ff—a ) > 0, ginee —— < F—n =

G).

Tk

nverse

) defined in

{5.153)

(5.156)

The tanh(t; fhj) and coshity (A} in equations (5.153) and (5.154) should be

caleulated using exp(t; (h;) and its reciprocal to save CPU-time, as

equation (5.120).

as done in




5.148) and (5.147) are respectively the

and :quations

position and weight of the k-th integration point of the N; point Gauss-Legendre

terval [—1, 1], which in this case is used for the

quadrature forn

ilar variable ¢,

integrationin t

In the transformed radial variable R(p) , the integration points Ry

(I=1-N; a given angular direction {4 are given by
Rla (t)] = R(D) R
R g LN 4

(0 + R0
. - (5.157)

gll, Ng) and w(l, Ng) are respectively the position and weight of the [-th
integration point of the N point Gauss-Legendre formula for the interval [—1,1],

which in this case is used for the integration in the transformed radial variable R.

to ealeulate f, r and |G| in equation (5.147), we need to know the

In or

point (g, 7g) In region &; of the (5, y,) parameter space, which is mapped

To do so, we use

linearly from the integration point ( 8(ty), o(Rg) ) in region

), (5.153) and (5.154) to obtain

equations (5

4 S ) [

g Ry | iy gl + Iy ﬂn-"".rali + 9e (5.158)
where

% x
and
(i) For Rip) tion (5.145),

(R)=R (5.159)

&= ) (5.160)

di

(ii) For the log-Lg transformation

(") e —d

dp R
dR

(5.64)

(5.161)

(5.162)

(6.163)

(5.164)

(5.165)

(iv) Forthe L;~"™ transformation R(s)= —(s+d)~'"™ of equation (5.99),

plR) = (-R)"™~d

i

(2) The use of trus
In thi se, equation (5.143) gives
" dd FlGle da
1. = |detL o | e
d S ey 1] 4= dit
so that
s [ Ny .
=T =|detL | bb, > S F!"I'l"fu ) ouin| 22
k=N, =k = ' | dR Ruth,
where
-153-

{5.166)

(5.167)

(5.168)

, (5.169)

(5.170)




val for the trapezium rule for the angular variable ¢

and hy and A, ar

and the radi ariable R , respectiv

For the single exponential transformation,

— (1 4 tanht (5.134)
| i
(6.137)
i 2
variable, and
th
plR) ™ =—— (1+tanhR) (5.171)
d s 1 £ 17"
(6.172)
it 2 cceh’R
for the radial variable
For the double exponential transformation,
0= <2 |1+ anh (5 st | (5.135)
d#
i (5.138)
= winht |
for the angular vari
e g fe | R
(R) = =——— | 1 + tanh| = sinh & I (5.173)
2 | 2 /
el =
dit ! (6.174)

Numerical experiments in Chapter 10 show that the single exponential

transformation (SE) is more efficient compared to the double exponential
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transformation, in the nun

r-of integration point

and CPU time, particularly

for nearly (0=<d<1) in the radial variable.

However, it is als wn in Chapter 10 that the log-L; and log radial

rmations with the Gauss-

egendre formula is more ¢ ent

compared to the single/double exponential transformation with the truncated

rule for the in

ration in the radial variable. Further, the log-1

radial vs

e transforr

tion is more robust compared to the log-Lg

transformation against different types of kernel and element geometry.

Ti ganization of a gram to calculate a (ne:

) singular integral

s fir dS would be the following

Given the nodes x'* (ik=—1,0, 1) of the curved quadrilateral element S,

and the s

‘e point x; and a table containing weights and positions of the

Gauss-Legendre quadrature formula,

(1) Find the source pr ion % y the Newton-Raphson method,

(3) to the curved element S at %,.
(4) four corner nodes of S on to the
(5) vjected quadrilateral § and the four

defined by ®;, &7 (j=1~4). Then, determine

the li

mapping matrices L; (j=1~4).
(6) Perform the numerical integration for each triangular region 3, j=1~4

( if sgn( /)¥0 ) in the angular and radial transformed variables ¢ and R

respectively, according to equation (5.147) .

Similar f sdures can be taken for a curved triangular element {and

arbitrary curved polygonal elements). For triangular elements, the method is




even more attractive since there are generally only three regions &; (j=1~3) to

perform the integration instead of four for quadrilateral elements.

ion to the Edge

_Moving

The angular variable transformation ¢ (8) of equation (5.30) was introduced
in order to weaken the angular near singularity and reduce the number of
angular integration points when the source projection £, is near the edge of the
element.

Although this has a considerable effect, the method still requires many
angular integration points when &, is very near the edge of the element. In order
to overcome this problem, the effect of deliberately moving the source projection
%¢ to the closest edgge of the element S was examined.

The procedure is as follows:

Taking the example when ®,=x(7,, 74} is closest to the edge corresponding to

1  Letx',=x(1,

2. Approximately project S on the polygon 5’ on the plane tangent to S at

Xg

Define the new source distance as o'm| x,—&' |

ar coordinates (p, 8) in 5, centred at &'y , apply the radial

4. Introduce pe

and an r variable transformation and integrate with respect to the

transformed variables. In the radial variable transformation, the
updated source distance d' isused.
If the initial source projection %, is close to two edges (i.e. a corner) of the
element S, %, is moved to the eorner,
The above procedure is advantageous, not only because it reduces the
number of angular integration points, but also because it reduces the number of

triangular regionsin S to integrate over.

Numerical experiment results in Chapter 10 indicate that when the source

projection R, is either outs

de the element 8, or when itisi

side S but very close to
the edge (namely when h; <d, where h; is the distance between &, and the nearest
edge-j of the projected element S), moving the source projection £, to the edge of
the element S leads to a considerable reduction of the number of integration

points.
5.9 Variable Transformation in the Parametric Space

So far, we have introduced polar coordinates (p, #) and radial and angular

varinble transformations R(p), ##) in the plane § tangent to the curved element
8 at the source projection %,
In a similar manner, we can also introduce polar coordinates (o, ) and radial

and angular variable transformations in the parametric space {7y 74) which

describes the curved element x{ 1

For instance, for a cur

1 quadrilateral element S defined by

one can proceed as follows :

15 5, 7,=1

(1) Find the point &,=x(7,

74) on 8, closest to the source point x;.

(2) Introduce polar coordinates (o, 6) centered at (7, §,) in the square defined by

-1 1.

T
(3)  Divide the square in to four triangular regions 4j, (j=1~4) as shown in

Fi

.5

415
(4) In each region 4;, introduce radial and angular variable transformations

R(p), #(0) similar to those defined in sections 5.5 and 5.6 for Z; in the tangent

plane, in order to weaken the (near) singularity.

(5) For each region A;, perform numerical integration with respect to the

transformed variables R(p) and t(#).




For radinl variable transformations R(p) which make use of the source

distance o

% , the equivalent source distance D can be defined for the

jj:ll':l]l'll.’l.l'l e\ 1 o) DY,
x(l,7,) —x(=1,7,) - (5.175)
x(p; 1) =x (g, =1 } (5.176)
o {5.177)

log (g 4D} (5.178)
and a Ly ~Y* transformation

R 24 (5.174)

can be defined.

Similar tr ns can be introduced for curved triangular elements in

the parame ) by defining an equivalent distance D similar to

equation (£

ATy ,] May seem

s variable transformations

ART method, which empl

ly projected element S in the tangent plane.

ance [) becomes when the elemer

irce distance d is always clearly defined for all

nation in S us

1 variable transfo

tran

CHAPTER 6

FARY ERROR ANALYSIS

6.1 The Use of Error Estimate for Gauss-Legendre Quadrature Formula

In this section we will perform an error analysis of the proposed numerical

integration (PART) method and explain why the log-Lg radial transformation
Rip) = tog VP + d (5.64)
corresponding to #=2 in
o g rdR (5.46)

leads to accurate numerical integration results with relatively few integration

points for integrals of the type [, Ur dS, whilst the radial transformations

corresponding to 37 2 l'able 5.1) give poor results. (cf. Chapter 10)

Since we are inter

d in the integration in the radial direction, consider

the integral

od (6.1)

For simplicity, take the case of constant planar elements (parallelogram or

ngular} so that the radial integration of equation (6.1) reduces to
)

J= ~ d; (6.2)

where




Applying the radial variable transformation corresponding to
p dg rtdi (5.46)

we obtain

J edRr (6.4)

! myon

We are now interested in estimating the error when applying the Gauss-
Legendre quadrature formula to equation (6.4) .
The error estimate for the n-point Gauss-Legendre formula when applied to

the integration over the interval [—1,1] :
.
] = % ( + i
I.“l\ dx 2w flz) +e(n (6.5)

iggiven by ¥

forsome —1<g< - (6.6)

where

Hence, the error E of applying the Gauss-Legendre quadrature formula

» the integration of a function F(t) over a general interval

of equation (6.5
t € [a,b] isgiven as follows:
1

| Fiya = 222
| Fleide 5 | .
la - 1 2

¥ |a+ b+ ztb=a) |

| dx

]. I,;m dx

+ E (F) A (6.7)
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where
a
Hx -
di
dx
and
| | Je+b+zib-a)
glz)=Fltiz)) = F| ——
st | 2

Here, f{x) maps the interval x € [—1,1] to ¢ € [a, b].

(6.10),
dg
dx
and
ot
P
where
d™F
AR
d™

E (F) — o (g

forsome a<c<bh,

where

P
e ——
Zn+ {2 §

Recall Stirling’s formula
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(6.8)

(6.9)

(6.10)

From equation (6.9) and

(6.11)

(6.12)

(6.13)

(6.14)

(6.16)

(6.16)




1 (6.17)

lim —

which means that n! is asymptotically equivalent to e~ "n" V2xn . The
approximation (6.16) is reasonably accurate for small values of n as well, as

shown in Table 6.1.

Table 6.1 Accuracy of Stirling's formula for smalln

e " n* V2

n

nl

1 0.922
2 0,960
3 0.973
4 0.980
0.983

6 0.9¢

7 0.988
8 0.990
8 0.991
1'_ 892

In fact equation (6.16) can be expressed by the following asymptotic
expansion
1 139

12n  2ggn’

t (6.18)

5180n°

Substituting Stirling’s formula (6.16) in equation (6.15), one obtains

- 162

Hence, from equation (6.14),

E(F) =p F™

forsome a<r<¥h

where

From equation (6.20), the lower bound L,(F) and upper bound

|Ex(F)| are given by

min

b
and
f-'_‘IF- = max :I'.'_‘.P'
as b
e
r, max |F* (0]
i b
respectively, sothat,
L (F) s [E(F)| S U (F)

Now we are ready to apply the error analysis to the integral

- 163

(6.19)

(6.20)

(6.21)

Un(F) for

(6.22)

(6.23)

(6.24)




g=| o de (6.4)
where,

FiR) rift) ® (6.25)

a= R0} (6.26)
and

b=Rip)) (6.27)
6.2 Case 7=2 (Adaptive Logarithmic Transformation : log-Ly )

First, the error analysis will be performed for the log-La radial variable

transformation corresponding to /=2 :

R log v + (5.64)
Since §=2 and

r=rtaV R rd = (6.28)
we have

FiR) = ¢* gi-a R (6.29)

which is shown in Fig. 6.1

Also,

R0} = logd

b= Rip)=logVel+d =logr, (6.30)
(2-0)R

1]

rli—t,t: e
for =2, o= 1~5

Fig. 6.1 Graph of F(R)
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where

Hence ,

FPE = g-oa™

which also stands for « =2, when

Fi(R) = 1

is a strictly increasing function of R , so that

min FPR) = F* (g

asRsb

= F
d
and
! F ) = F™p)
i
¥ (log r )
'
For 2
E(F = F2 )=

where a = c= b

For « = 3,
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(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

is a strictly decreasing function of R

and

Fim

(18]

R=b

. 80 that

"R = F*(b)

To sum up, we have Table 6.2,

Table 6.2

Minimum and maximum value of F#*r)
b) for =2, a=1~5

a min F (r) max F (1)
Sr=h ascab
1 d | r
4
2 0 0
3 r! | d-!
i
4 o | Ding -4
1
.:-l ”2“( -3 3"!1“‘ 1
4
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(6.33)

(6.40)

(6.41)




where

From equations (6.21) and (6.32) ,

5 =i : IM_“._ ¥z (6.42)
n 4 n 8n
If we define
| = 10" - (6.43)
log .|’ & log 10 (6.43)
2.30 k (6.44)

For nearly singular integrals d <

i (6.45)

so that k>0.

Hence,

(6.46)

From Table 6.2 and equations (6.22), (6.23) and (6.46), the lower bound Lp and

, for the error En(F) of applying the n-point Gauss-Legendre

the upper bound U,

quadrature formula and the radial variable transformation

Rig)= log (3=2) (5.64)

to the integral

is given by Table 6.3,

Table 6.3

Lower bound L,(F) and upper bound Un(F) of
numerical integration error E4(F) for f=2

a Ly (F) UnlF)
, | 8Lk f0.782k 1.81krj [ 0.782k J*
Vi L on Vn n
2 0 0
. 181k [0.782k 18k 0782k
' r vVin L n dvn ( n
4 1.81k "f:'iii.ig‘|7" 181k 1.56k 12
fy b d*vVn n
] 181k re:f.ﬁk]'-’ﬂ
5 ===
d*Vvn L n

To sum up, for

equation (6.40), (6.41) and (6.42) gives

L.\F) S E{F) = U(F) . (6.24)

i=2, since

.
la=2le g,
8 E 16.42)




0434 b (6.48)

Table 6.3 and equation (6.47) show that the adaptive logarithmic radial variable

transformation ( log-Lg )
Rip)= kg V o34 o - (A=2) (5.64)

in combination with the Gauss-Legendre quadrature formula has the very good
convergence behaviour of order O(n-") , for the integration in the radial
variable :

J=| " Sdp (e=1,2,3,---) . (6.2)

where n is the number of integration points for the transformed radial variable
R . This explains why the radial variable transformation R(p) corresponding to

=2 (log-Lg ) works well for nearly singular integrals of the type

| d8 | =dp (6.49)

For the radial variable transformation corresponding to =1 (cf, Table 5.1)

Rip)=V T d . (6.50)
we have

FhE (6.51)

FR) = r r! (6.52)
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and

From equation (6.52), for a=1,
FiR)=1
F*™(Ry=0

andfor « 22

Since FY"(R) is a strictly decreasing functionof R €[d,r] for a2,

min F*'@®) = F™ )
asRs6&
(Zn+a-2)! Tn—utl
SETT =0
and
max  Fg) = FM )
a R .
Rate=D! - _s0oai
= rrml ({ 5 = 0
lo—2)1
for a = 2,
Since

b—a=r o
equation (6.21) gives
r—d \/_— e.-J —dle |
rme e o ]

and
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(6.53)

(6.54)

(6.55)

(6.57)

(6.58)

(6.59)

(6.60)




(6.61)

where

(6.62)

[ in)

as shown in Table 6.4 .

Table 6.4 [,(n), (7 am 2)
' fa
2 1
.'S_ 2n+1
4.__ (2n+1Xn+1)
3

From equations (€ 6.23), (6.57), (6.58), (6.60) and (6.61), fora=2,

(6.63)

(6.64)

d)d'=" fim|

Hence, to sum up for the radial transformation R(p) corresponding to f=1,

t.

E (Fi=0 for a=1 (6.65)
and for =2 |

L (F) = E(F)= U_(F) - (6.24)
where, for nearly singular integrals, for which

0 —21 o =2 p| (6.66)
(6.67)

(6.68)

This suggesis that the 7=1 transformation does not work as efficiently as

the 7=2 (log-Lg), since
]
gm= () s (%) s (6.69)

excepl for the case when o =1, for which

Ei(Fy=0

This is shown in the numerical results (Chapter 10) where the =1
transformation is out-performed by the =2 (log-L2) transformation, except for

the case of weakly singular integrals (d=0, a=1).

=3 Transformati

For #=3 (efl. Table 5.1),

1
Rip) = ———— 5.70
W v (6.70)

so that




(6.80)

r asRab
and and
L.t by
yii— |1 s 79 max F { 3 [i]
f = = (6.73) Y (6.81)
" anfsb
Since
- Here
r e - (6.74)
R !
(2n}! f (n)
FiR)y=""=(-m)"? (6.75)
o™ (20 VxR [ () (6.82)
Hence, for
where
. a—3Y !
L L el s f.m T (6.83)
Fo (R ) =0 (6.76) o
G Eob (6.84)
and
E o (6.77) fm =1 (6.85)
From equation (6.21) ,
For o= 1
: . 11 (L_1)
F () - (6.78) 1% \a™e/®
e =i G E (6.86)
" n no |7 B |
Since
1 1
R - (6.79)
o
where 0<d< r for nearl gular integrals, and F “"(R) is a strictly A,
. . . x(1 1 | Ty
increasing function of —( === )d**f(n f 2
2\d " r/ Sl WY
RE - I—
=== 12
- j (z) > 0 (6.87)

one obtains




b |
U (F) P = | and
P I 1 )
b~ = — 2 aF
o = =4 (6.95)
<
=1 1 i i
{ ) e, rm ik | -
d " r /)" " 4 J Since
[X Ti\W X .+ 88 .
| 5 = . (6.88) Ve ) (6.96)
where s
L(F) = E(F) = U (F) (6.89) EUt = = =aR
= . . : o e = 6.97)
I'o sum up for Rig); =3, good convergence is expected for o= 34,5, - - = (=R .
( for planar elements), while for # =1, 2, equations (6.87), (6.88) and (6.89) suggest or
that the =3 transformation does not work as well as the f=2 (log-La) - i
’ o . ; : FiRy =2 *(-m ? a=1 (6.98)
transformation, for which it was shown in section 6.2 that !
" 3 . 1 o 1 " 3
Eif L (F U,k = | (6.90) FiR}=27 (-R) 4 r =2 (6.99)
= 1
FiRy=2 Y- ? ; «=3 (6.100)
6.5
FiR)= (-R)" =1 a=4 (6.101)
For = 1
| FiR)=2% (-m ? . e=5 (6.102)
Rip) _ h (6.91)
21 o
ete
s0 that
: Hence, for a =4,(n=1)
a [ (6.92)
F™ (R) =g (6.103)
=R (6.93) and
E, (Fi=0 (6.104)
where
r=v (6.94) For o # 4,




(—R) E

"R} | is a strictly increasing function of

R =
so0 that
P L e N T
min F*m®)| = | F* l e |
a SRS b
dt
and
|
mix ")
asRsb
7o
r [T 5=1=0) | t2e ]y
-V
From equalion (6,14),
- +1
E (F 'l
for some R€la, b], where
inn
(nt)

using Stirling’s formula of equation (6.16).
Hence,

(d\2| 241 yBn FR)

for some R € [a,b],

2n!

(6.105)

(6.106)

(6.107)

(6.108)

(6.109)

(6.110)

so that,
L (F) min 2|
RS b
I d 2] 2+t £\
T : t\3) (6.111)
U_(F) mnx & (F)|
n n
asS RS b
4
i e
: t (6.112)

where

=t (6.110)

(6.113)
0 I.I‘- N |
so that
L (F) ~—d*=e (=) (6.114)
and
> 4
U_{F) ‘ & (6.115)

Ly can be estimated by the following theorem,




Theorem 6.1
¢ [1]1 :,I O(n- (6.116)
as n
Proofl
(1) Case a=0 f(l)
Since
L, l| (1+2) : (6.117)
i=1 ;
let us define
5" = logt :_ og( 1+ 2 (6.118)
1 2 \ F
and
fixym fog| 14 [ | (6.119)
where
Sl (6.120)
: L (6.121) X
0
Fa 0 v (6.122)
sothat [Tx) isastrictly decreasing function of x>0, asshown in Fig. 6.2.
Hence we have . o o
Fig. 6.2 f(x) =log(1 + ‘—_} , a>0
| log| 14+ = ) dx < st o< tog| 1+ = ) de ; (6.123)
I x x/
where
log| 14 - | dx = (x+a) log(z+a) —x logx . (6.124)
so that

-180- -181-




(2n+14a) log @n+14a) = (Zn+1)log Zn+1) = (1 +a)log (1 +a)

and
1+ = |d
\ = |dz=
lim | 1-'|pl 142 | dsx
Zn+a) bog (Zn+a) = 2n log 2n —aloga
From equations (6,118), (6.123), (6.125) and (6.126), one obtains
t i
where
14a
pa) te
o
)
|
g (t+a)*
- n
il
O (n®)
and
1 !
n
(Bt )B4
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(6.125)

(6.126)

(6.127)

(6,128)

(6.129)

flimding) >0 (6.130)

(6.131)
(3) Case a<0

Let b=—a . Then,
(6.132)

If b isaninleger less than 2n, t,=0 < Q(n®), so let us assume that b is not an

integer and let

s 0 (6.133)
where
k=1 b
st =3 wgf1-2| (6.134)
i=]
and
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imk

where k isdelined ns the integer which satisfies

k=1 < b =

Then, if we define

{ b
fix) = log| 1—=
=3

we have
fib40)
fl+ =)
and
J'- lx
x(

g™ 1 s [0S

(6.135)

(6.136)

(6.137)

(6.138)

(6.139)

(6.140)

i.e. f(x)isastrictly increasing functionof x for x >b, asshown in Fig. 6.3.

Hence,

& [}
where
5 log| 1
and
1
5 |
where

[ { b
Jl-lgll—-- lder = lx=b)loglx=b) = xlogz
! \ t

so that

(6.141)

(6.142)

(6.143)

(6.144)

+ 1
ATV o
v
A7
ANV
v
: ./. £x)
A/
%

f(x) = log(1 - 2

X




e (6.152)
(k=a=1) logik—a) + (k—1)logk (6.145)
and

k

Zn+1l—a) log(2a+1l—a) =

1) log(2n+1) [ ———
(k—b) =2

~(k—a) log tk—a) + klog k
(ke —a) log Gk )+ klogk (6.146)

From equations (6.132), (6.133), (6.141), (6.145) and (6.1486),

to<t <t : (6.147) {

where

A _ (6.148) & 2

t e X (6.149)

0in")

(6.153)

p PR I s
! [, ! ; (6.150) Hence ,

= _ i~ Ot (6.154)

t,. ~ 0% . (6.155)

(6.151)

which imply that

(6.156)




(6.157)

Q.E.D,

Returning to equations (6.113), (6.114) and (6.115), for the radial variable

transformation R(p) corresponding to , Theorem 6.1 implies that

1
o(n ?) (6.158)

Hence, for « & 4

L I|I"I ‘ d n
(1ym
Ll =t (6.159)
and
r 4 ==

—> = (6.160)

for near

where
(F E(F1| s U_(F) (6.161)

To sum up, the radial variable transformation R(p) corresponding to =4

is not expected o give good results for the integration of

r=|"'Eq ; (6.2)

eompared to the 7=2 (log-Lg) transformation, except for the case of o=4 for

planar elements, when E,(F)=0,

6.6 Case g

=5 Transformation

(cf. Table 5.1), sothat

where

and

b—a

Since

FiR) r
for «a =5,

F{R) =1
and

F R
so that

F.'nl F)y=0

R0}

(1]

ad’

(6.162)

(6.163)

(6.164)

(6.165)

(6.166)

(6.167)

(6.168)

(6.169)

(6.170)

(6.171)




(6.172)

(6.178)

Henece, |FY"'R)| isa strictly increasing function of Since

sl 1 1 | || 4 (6.179)
A (e - (6.172) p2Y T [
so that from Theorem 6.1,
min —I (@ I' Voo
aS RS =
n \ —‘-—-—} —> 0
(6.173)
and
and
|
m |¥ (R — ) 2 Py
' ir ¥ U (F "y > (<)
/ % i d
1= R=b
o | 1712 11 Gnsts [ Ly ’ e
| 5=+ |7 (6.173) i3] == (6.180)
From equations (6,108) and (6.109), for nearly singular integrals i.e,
B oL i o
; , 0 < — = 1 (6.181)
" (6.175) r

forsome R € [ab], - i i

Hence, the transformation R(p) corresponding to =5 is expected to give
where
poor results compared to the 7=2 (log-Lg) transformation for the integration of

(6.176)

e |$figar (6.2)
-

Hence , o
except for the case of «=5 for planar elements, when Eq(F)=0.

(6.177)




transformations

T'o sum up, we have been considering the error estimate E, when applying

the Gauss-Legendre formula after applying the radial variable transforamtion
pdp = rdR (d=1~6) i (5.46)

to the integration in the radial variable

J | ~dp & (e=1~5) (6.2)
0
which oceurs in the nearly singular integral
[ d8
I
i,
| L | e (6.49)
where S isa planar element, so that
r=r Vol + dt (6.3)
The error estimate E, for the radial variable transformations : 3=1~5 ,is
given for different orders of near singularity : «=1~5, in Table 6.5.
Table 6.5 Error estimale E, of integration using radial variable
trs |li|ll| 1=
| |
: 1 ) 3 | 4 5
1 0 [ 4= < B, < (r /dd )
2 n—in | 0 n-
3 4-"M<Ey<(r/(4d)f" | 0
4 4= < By < ((r A2d)}" ! 0 4~ < B, < {r f(2d)}™
b - < B, < {r. /[ (41d)}F" 0

Here,

o (6.31)
and

» 1 (6.45)
d

for nearly singular integrals.
From Table 6.1, the #=2 transformation :

Mg
Rip)= log V,p* 4 d° (5.64)

gives good convergence for all near singularities «=1~5 of the type in equations
(6.2) or (6.49), as will be confirmed by numerical results in Chapter 10,

The #=3 transformation also seems promising for « = 3. However, it should
be reminded that the above error analysis was performed for planar constant
elements. The effect of curvature and high order polynomial interpolation
functions in the integrand are not taken in to aceount. For instance, although the
error is E,=0 for g=1, «=1 for planar constant elements, it is found in the

numerical results in Chapter 10 that, the =1 radial variable transformation

T (6.50)

Rip) = logVp® + d* {0.64)

for the integration

L (6.182)

over a curved quadrilateral patch. This seems to indicate that the n-*"

convergence of the =2 (log-Lg) transformation is robust, not only with respect

to the value of o but also with respect to the curvature of the boundary element,




6.8

Error Analys

where the potentinl u(x,) and the potential derivative du/dx, ataninternal point

x; near the boundary S are given by

As will be shown in the nu al results in apter 10, the adaptive

logarithmie tran mation (log-Lg) of the type : '8

- and
R log V p* + d° (5.64)

works efficiently for nearly singular integrals arising in the calculation of the

1l u(x;) at a point x; very near the boundary, However, the radial

pote

Since the near singularity is essentially related to r and the radial variable

transformation of equation (5.64) does not work so efficiently for nearly singular

¢+ the nature of integral kernels in equations (2.45) and (2.48) can be summarized

integrals ari rom the calculation of the flux or the potential derivative duw/dx,

) asin Table 3.2, In other words
ata point x, very near the boundary. A ottink words;

This can be explained as follows if we recall the nature of nearly singular | «*'dS | 1 5 (6.183)
Thall i s o - .

integrals discussed in Chapter 3 *"%, Since in the vicinity of the source point x,

1
which is very near to the curved boundary, J . 3 5 4 (6.184)
; where as
[ 2 s |
e (8.128) oy B s L (6.185)
| &4 ~ 4§ 5
i s |, 5 (6.186)
=
regarding the order of near singularity.
Since
(3.129)
) I ‘l F dS
2 [P
- . : = ' da | ™ Fopdp (6.187)
= — 0 3ol | 0 0
\t. 4 1
’ where (p,f) are the polar coordinates in the plane tangent to S at %,
0 _3d
| (cf. equation (5.39) of section 5.4 ) , the radial component of the integrals of

(3.130) equations (6.183) to (6.186) can be summarized as




(6.188)

(6.189)

whereas
(6.190)
(6.191)
where the extra » compared to quations (6.183) to (6.186) accounts for the
Jacobian introduced by the polar coordinate system in equation (6.187), i.e.
d8 = pdp dd . (6.192)
and
L (6.193)
It was shown in the error analysis in section 6.2 that for the radial
integration :
/ i (a=1~5 (6.2}
the adaptiv
Rip) = log V p* + d* (5.49)

corresponding to 7=2 (log-L2) reduces the error E, of the radial numerical

integration by the Gauss-Legendre formula to an order of

s (6.194)

- 196 -

where n is the number of integration points in the radial variable. This

guarantees the efficiency of the logarithmic transformation (log-La) of equation

(5.64) for the integration of the radial integration J,, (a=1~5) of equation(6.2),

and hence of the integration

ds
o r =iy (6.195)
CH S
and
uix )= [ (gu*—ug*)ds (2.45)
r 5

for potentials near the boundary, which involve radial integrations Jy and Jy3,
as demonstrated by the numerical results in Chapter 10,
However, for flux (potential derivative) caleulations involving the integral

of equation (2.46), radial integrals of the type
(6.196)

aswell as

J = | L d e Ce=9.8) (6.187)
are required, as shown in equations (6.190) and (6.191), Hence, let us perform
an error analysis of the numerical integration of equation (6.196) when using

radial variable transformations of the type

pdp = " dR (5.61)

where

ol (6.197)

for planar elements. The integral of equation (6.196) is transformed by equation
15.61) to give
Rip)

S| D s (6.198)

o)
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Let the kernel of the integral of equation (6.198) be notified by

F(R) = pr" " (6.199)

as a function of the transformed variable R

Since from equation(5.61)

dp r
— 8 (6.200)
dfit
and from equation (6.199)
dF -, gy O
ds ¢ P (6.200)
@ £1y o2 2 | #ea-2
i P v (6.201)
where
dr o
dp = (6.202)

Hence, from equations (6.200) and (6.201) , one obtains

dF
dk d
| @-atl)p” 4 d"fr (6.203)
Hence ,
dF A
o =i § o (6.204)
I +0 P "

solongas d>0. This results from the fact that, from equation (6.200),

do d”
| AL g | (6.205)

while from equation (6.201)

for d=>0

Similarly, for higher derivatives

n the following theorem ;

Theorem 6.2

where a, ,." are consts tdependon p or R, and

where

For n=0, equation (6,207) gives

(6.206)

(6.206)

(6.207)

(6.209)

(6.210)

(6.211)




so that

which corresponds to equation (6.199),

For n=

i

1, equation (6.207) gives

and equation (6.208) and (6.209) give

.' |'I'|I-|-

‘.i" o

which agrees with equation (6.203).

For n

and (6.208) hold for n=m, ie.

and

where

(R pimd ol Y,
k=0
[T [
= | || {1 '_’;I[.["
Then , for n=m+1 one obtains,
1p d
I " =LF
T dR "
df
i
di
1 . = Im

and

R -..‘I t e o ) ¥

(6.212)

(6.213)

(6.214)

=2, we use mathematical induction. Assume that equations (6.207)

(6.215)

(6.216)

(6.215)

(6.217)

(6.218)

(6.219)

Since

so that

rdr = piy

From equation (6.221),

|

dR

and from equations (6,221) and (6.223)

dr
dit
Hence,
d g
di dit
| | ime2
in 1 —2m | —
| ol
and
dg _ dg d
dR de dR
L R R L
L Ty o
A=p
Y 0 pmi-2
A=0

(6.221)

(6.222)

(6.223)

(6.224)

(6.224)

(6.226)

(6.227)




Ui n s+ LN im1) 8 — 2m
N »
2 (=2} d" a_ ¢
-l
. " 1) \_ “.l."_-lg 12k
=
where, for k=10
d*a™
1
and for 1= k=m
e I . I — 2%+ (3-2kd2a™ )
| 1) —a—2m 2k + (3 -2k 2 |

and for k= m+1

(6.228)

(6.229)

(6.230)

(6.230)

(6.231)

Hence, equaions (6.207) and (6.208) hold for n=m+1 . Since equations

From wrem 6.2, the following corollaries are obtained.

Corollary 6.2.1

For integers n= 0,

n=1, by mathematical induction they are satisfied

Q.E.D.

F'™R)

Proof  Since r= V' +d® =d for p=0 and since the term including p'

is the dominant term in equation (6.207) for p= 40 . equation (6.232) is

asymptotically true for p=+0,
Corollary 6.2.2
Forn=1,
PRy | il [T o --;..-.I gitii=a 1 ds

- (6.233)

(6.234)

16.235)

one obtains

(6,236)
which gives
Corollary 6.2.3
For relatively large integers n=1,
FI 2 dh" o |
Tolt = 4n-1 (6.237)

From equation (6.20) , the error E.(F) of applying the Gauss-Legendre

formula to the integral J, 2 in the radial variable R in equation (6.198) is




=p. F'UUR) (6.238)

for some R € [a,b] and forsome p € [0, p, ], where
a = Ri0)

b= Rip) (6.239)

and from equation (5.50) ,

' (6.240)
Rig — for i 2
1
| log (% + d?) for A=2 (6.241)
and
- b-a V,-'-_ | b-a)e | (6.242)
4 n | Bn |I

Equations (6.238), (6.242) and Corollary 6.2.3 suggest that if the value

g €10,p] ofequation (6.238) isnear0, i.e. 0= p < p

- R(0)} d (6.243)

- d r =1)
o log d log d 2)
1 1 1
R - RiDy — - i=3)
r d d
1 1
E 4 - -
2d
1 1 1

(6.244)

equation (6.243) suggests that many integration points n are required for the

accurate integration of J, ¢ of equation (6.198), compared to the integration of

J; of equation (6.4) by the log-La (5=2) transformation, whre E o F)~n—* asin

equation (6.47) and Table 6.5.

To sum up, although |E.(F)| # o, the fact that
|I dF ot f I-u—_ 1 3.245
s f=1f x e (m=1) (6.245)

has a bad effect on the efficiency of the use of the Gauss-Legendre formula for the
integration of equation (6.198), Therefor it is clear that the radial variable

tr

formation R(p) of the type
pdp- = dR (5.486)

does not stand a good chance of accurately caleulating the integral J, 2, («=3,5)

of equation (6.196) and hence the potential gradient at an internal point near the

boundary,
This is true even for the adaptive logarithmic radial variable transformation

(log-Lg ) corresponding to f=2 :
Ris logV o2+ . (5.64)

which was so successful in calculating integrals J, for the potential. This fact is
depicted in Figure 6.4 which shows the kernel function
NR) = en® (6.199)

of equation (6,198) for i=2: «=3,5, ie.

FiRY=ar =¥

fa=3) (6.246)




(6.247)
where, from equation (5.64) ,

pR) = Ve I _ g3 (5.65)
(6.248)

FR) = ol

Comparing Fig. 6.4 with Fig. 6.1, it is seen that for the flux related kernel

of equation (6.196), the log-Lg transformation of the equation (5.64) ( 7=2) has
a problem, since the transformed kernel F(R)= p r#-* of equation (6,199) has an
infinite derivative at p=0 or B= R(0) = log d , so that the Gauss-Legendre

formula applied to the variable R is not expected to work as efficiently as it did
for the potential related kernel of equation (6.197) which renders a transformed
kernel FIR)= r"-* asseen in equation (6.25) , This problem can be overcome by

using the log-L; radial varinble transformation which was proposed in Chapter 5.

i Ing[.\/_ihd
R(0) = logd

Fig. 6.4 G

raph of F(R) =prP®
for B=2, 00=3,5
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ERROR ANALYSIS USING COMPLEX FUNCTION THEORY

In this chapter, we will give more precise error estimates for the numerical
integration in the radial variable, using complex function theory ©%, This also
renders a firm theoretical basis for the optimization of the radial variable

transformation.

7.1 Basic Theorem

The error

Etfi=10-1 (7.1)

for the integral
fre | Afie) s (7.3)

over the interval J=(-1,1) on the real axis is given by the following

theorem “**, considering f{z) as a function of the complex variable z .

Theorem 7.1

If f(z) is regular on K=[ =1, 1],
(7.4)
(7.5)
(7.6)
where
(7.7)
(7.8)
= W(a) MEY (7.9)

and the path C of the complex integrals encircles the integration points a

1
ap in the positive direction, asshown in Fig.7.1, and there are no singularities of

the function f(z) inside the path C.

@ 2] is called the g

characteristic function of the numerical integration

formula of equation (7.2) .




Figi 7.1

The integration path C
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For the Gauss-Legendre formula, which we are using,

dsx
J pln | x
| ' pidx (7.10)
Here , p.lx) is the n-th order Legendre polynomial defined on the interval
J=(~1, 1), and we adopt the zero points of this polynomial as the

integration points a,, a,, -, a_

7.2 Asymptotic Expressions for the Error Characteristics Function @,z

In order Lo derive theoretical error estimates of the numerieal integration
using Theorem 7.1, asymiotic expressions for the error characteristics function
Pufz) as n®land/or |z | ®1 becomesnecessary. In the following, we give

known asymptotic expressions for ®ylz) for the Gauss-Legendre formula ¢

(1) Case |z 1
p=c 2 | 1571 Lo e | (7.11)
, . | . |
where
b (7.12)
and
(7.13)
nl = VZzn n" o™ (7.14)
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for n® 1 , we obtain

“a el (7.15)

{7.16)

L
Il

(7.17)

where

(7.18)

3 (7.19)

and I(z) and K(2) are the modified Bessel function of the first and second

kind, resectively

(3 [ the Elliptic Contour as the Integral Path
In the estimation of the numerical integration error E,(f) by Theorem 7.1,
it isoften useful Lo take the ellipse £, :

Ve 1 El =1) (7.20)

as the path € of the comg

Jlex contour integral in equation (7.6).

The L at z=1%1 and encircles the interval
K=[-1,1] In fact, it collapses to the interval K=[-1, 1] when
equation (7.20), The major axis ¢ is

1 1
(o + — 7 91
and the minor axis is
1 1
y o
= 3
If the functi regular in &, , equation (7.8) of Theorem 7.1

and the asymptotic ( n# 1) expression of ©,(z) inequation (7

1
- 4 - d 1) (1
iJe 1
which gives
max .
{ .24
£(€ €

Ve
- nax '
: : £
Hence, it becomes important to estimate the maximum value of o (size of
the ellipse £, £

In order to do so, we derive the expression of , ¥) [orthe ellipse £
which passes through the point 2z = x + iy, in the following.

Equation (7.20) is equivalent to

".‘. .\'.'
-+ ~ =1

1 1 . 1 1 *

|....._.,l ST

2 v | |2 ol

which gives

T | (7.28)
'} 1
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where

Solving equation (7.28) for

int s>1 gives

+1 + ¥ x+1)0 +¥ ) (x=17+y"}

= (7.30)
>1, s>1 gives
Vi1 (1.31)
where
Voo Mty ‘_‘;__¥ fed 54 (7.32)

Note that aly) is a strietly increasing function of

*1 and o(1)=1

74 The S

le Point Method

Another technique which proves useful in the theoretical estimation of the

numerical inte

ion error using Theorem 7.1, is the saddle point method -+,
The saddle point s of a complex function f(z) is the point z=s at which

fiz) isregular and

f 1=0 f*(s)=( (7.33)
1 ade
As long as “ 0, we can express f(z)as
J{zl=exp g(z) (7.34)
[
which gives
f'lz)= g'(2) expyiz) (7.35)
7.3
Since
glsl=0 & ['(a)=0 (7.36)

the saddle points of gfz) and f(z) coincide

In the neighbourhood |z—s| €1 of

(7.37)
Let
' e, a=argg"(s), — x<a S =
z—s=re", r=lz—sl, 0= arg(z—us)
Then,
gleh=glal + Hgtleta) (7.40)

exp g (s) exp |

(7.41)
|. g"ls) o g |
11 = “ginla + 248
exg l 5 sin(a +20)
Now, let us consider the complex contour integral
I = I Jiz) ds (7.42)
o

along a path C. Let 2=s be the saddle point of f(z), where f(z) is expressed
as

Jiz) = exp glz)
in the neighbourhood of 2=5, Move the integration path C, without crossing
any singular points of f(z), so that it passes through the saddle point z=s in

the direction

= - (7.43)
(£ depends on the direction of the path ), so that
¢ "(s)
flz) ~ exp l.:c-l| up[_ % z=4s|? (7.44)

(7.0




(7.46)

where

[1og £} (7.47)

The contribution to the integral [ from | z—s|

< § isdominant, prov

(8) | is sufficiently large. Note that equation (7.46) gives an evaluation

of the complex integral I by the informalion of f(z) at its saddle point z=s.

If there are several saddle points of f(z), the sum of the last expression in

equation (7.46) is taken for these saddle points.

formed Radial Variable ; R

Integration in the

Using Theorem 7.1 and the techniques mentioned above , we will derive

theoretical error estimates for numerical integration using different radial

variable L rmations
The essence of the radial component of the boundary element integrals

for three dimensional potential problems can be expressed as

1o [ 8 (7.48)

fcen to Table

5.42).

in equatio

Table 7.1 Nature of nearly singular kernels of the radial component

integrals in 3-D potential problems

where r=Vp?+d® for planar elements. « and & are given in Table

4 is the upper limit of the radial integral

u* 1 1
= — L ; =
3 1
o
(LS 1
5 | 1 =
2

cation of the re variable transformation

gives

transforming R to x so that the interval R

mapped onto x:[—1,1], we obtain

iR
[=| — ‘—dr=| fix)ds
dit dx J_1
where
do di
FEa) o s e
dit dx
and
2R —{Rip )+ R(0}}
S =hci

Rip I—R(0)

to equation (7.48)

:[R(0),

(7.49)

(7.50)




Ri0)) = 4+ Ripg Y4+ R(0)
R L AL i e (7.53)

so that

= (7.54)

Now , Theorem 7.1 and the related techniques can be applied to the
numerical integration of f(x) in equation (7.50) using the Gauss-Legendre

rule.

7.6 Error An the Identity Transformation : R(g)=p

First, theoretical error estimates will be derived for the basic ease of

the identity transformation : R(p)=p, which is equivalent to using just

polar coordinates in the projected plane 8 (cof. Chapter 5) without any
radial variable transformation, This will clarify the nature of the (radial)
near singularity and the difficulty which results from applying the Gauss

Legendre formula directly to the radial variable o,

Since
KlOI=t. Blgg (7.55)
we have
¥
Rip) (7.56)
and
d 7B
(7.67)
dx
so that
1 1
j 2 3 (7.58)
r r x4+ 1+2Di) " (z41=-2D1)
where

is equivalent to the source distance relative to the element size . This

ntive source distance : D) is the parameter which essentially determines

the degree of near singularity,

Hence , we obtain

I ]’ d —| flz) de (7.67)
1
where
p ‘1 ; =
Ji :" ) 1l (7.58)
T
(z—(-1-2Di))}*""
or
'S 7T RC
flz)=Alz+1) ) L ({7.59)
where
FPRY Y
A=(-) (7.60)
The singularities of f(2) are
2d
rom 14— = —14+2Di
1
51 -1 -2Di (7.61)
z, and Z, are also branching points when o isodd.

The estimate for numerical integration error is obtained by

E(f)

z) fiz)ds (7.7

where the path C for the complex contour integral is taken as an ellipse

Eo:

=a , {z>1) (7.200

which does not contain the singular points 2, , 3, inside or on the ellipse, as

shown in Fig.7.2.




Fig. 7. 2 Singularities of f{z) and integration
path €. for the identity radial
variable transformation : R(P)=p
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Using the asymptotic expression

(7.16)
we oblain

E(Nl s 2ne™™ W5

(1) E

First, we will determine the size ¢ of the ellipse £+ which passes

mation of the size @ of the ellipse Eq

through the point

z, 142080 . 0<i<l

r+yi -
(7.62)

It is clear that this ellipse € does not contain z, or Z inside or on itself.

From equations (7.31) and (7.32), we obtain

s "
yi0 = V1400 +n

(7.63)
and,
D +Vr-1
Viswot s Ve mvivmot+oe*) + Dt 21 |, (0<t<l) (7.64)
s0 that
H1+2DevV1 40 200} né
- i = e o [ $ — =
an / . R F 1 - f m |
L VI1+D60® V2{DiV1+00® + (D0°) V1 + (D0
~ 0 3 (D=t<1) (7.65)

Hence , (D, ) is astrictly increasing function of both D and ¢ for

0<t<1 , with the following properties ;
(7.66)
(7.87)

e (7.68)




= -
: (DP1) = 4n (7.69)
The graph of o(D, t) v8 D for the case t=0.6 is shown inFig.7.3.
(2) Estimation of max | f(z) |
2€ Fa Q

(=
i Ii
Hai=A" (2417 (z-2 (7.70) = a
—
so that E =
-
Jiz) flz) (7.71) 6 c
w— O
Henee , we need only consider Im(z)=0 on the ellipse €s. Since f(z) has a ~ =
o ~
singularity of order {(z-2,)-*% at z,, it is obvious that | f(z} | takes the = ; g -
=
maximum value on €: when z is nearest to z, . =0
(_': W
Let z=z +Az I'hen, for Az | €1, < %
: . I =
i - i P e
Jial = A {Lag hr] * .
o
- —0
s ST
Then, for z==1+2Dti , 0<t<l, we have O =
Ar=z, —z, =—2D(1-1)i 7.93) _g-tqz}
To
a1 L o o
= (7.74) —_— -2
i fiafis ; s o 5P ]
Hence , for | Az 20 | 1=t | €1, which is the case for nearly singular b .
Q P~
integrals, where 0 <D=d/p €1 , | f(z)| is nearly maximum at = o
for all ze £« , and = L:
L b
) - fiz) o




(3) Error estimate Ey(f)

From equations (7.24) and (7.75), we obtain the error estimate

. y41ea (7.76)
!'.__\J- = =
where 0<t<1,.
Since we are interested in cases «=1,3,6 (cf. Table 7.1},
(1-1 *<10 (.77

implies t < 0.6 .

For the case t=0.6, equation (7.64) gives values of (D) for different
values of relative source distance D= d—rlu), as shown in Table 7.2 (cf. Fig.
7.3).

Table 7.2 Values of o(D) for t=08, for Rip)=p

o

10 1L.01

10 1.04

3x10-2 1.06

1.21
1.42

1.85
3.22

For nearly singular integrals whose relative source distance D is in the range

~10-" (7.78)

o in equation (7.76) takes the value

D: 10

Pt 104 ~1.42 (1.79)

(7.80)

ial variable tra

1ation Rp

The above theoretical estimate corresponds well with numerical

ient results, as will be demonstrated in Chapter 10, Equation (7.80)

explains why the

of polar coordinates in the projected plane S, alone,
does not give efficlent or accurate results for nearly singular integrals, thus

indicating the necessity of an efficient radial variable transformation R(pg).

g-Ly Transformation

In this s theoretical error estimates will be derived for the

in the radial variable using the Gauss-Legendre rule

(5.64)

The analysis will clarify guantitatively , the reason why the log-Lz

transformation works so efficien for the integration of potential kernels,

while it fails to do so for flux kernels and kernels including interpolation
functions

Equation (5.64) gives

RO)=Ind

Rip i=lnr
) ! i




-
where
7 ,\.___-'. i? (7.83) (1) Case : § = odd
and When & is a (positive) odd number, as in the integration of u* and ¢*
dp=r'dr (7.84) for the potential , where §=1 (cf. Table 7.1), the function f(z) of equation
for planar elements, where (7.92) is regular in the whole complex plane except for z=< | since (§—1)2
r=r'=valid = (7.85) is a non-negative integer.
and Hence , we can take the integration path as C: {z]| |z| =R® 1}in
1 e L ~a
plR) 1)1 (7.86) ji e by { gl el Ty (7.6)
Henee , of Theorem 7.1, and apply the asymptotic expression of @4fz) for |z | 21
- :.J ! Rip) =1 (187 in equation (7.11), and expand f(z) in Taylor series as
o ~” ROy =
A g fiz) : (7.95)
Equations (7.52) and (7.53) for the linear trasformation which maps
R:[ R0}, Rip;)] onto x:[—1,1] gives for 2# 2 , so that we obtain the error estimate
2R - lnlr d) .
- A (7.88) E (f)=~rcla,+ S ba (7.96)

)
Here, we have used the fact that

b)) = dilaley (7.89) (7.97)

for any integration path C that encircles z=0 in the positive direction once,
The a, in equation (7.95) can be obtained as follows. In equation (7.92),
(7.90) e
2L Sy i-t (7.98)
X —k | (lna)s
* o= }.. e J (—a™")

Thus,
=0

ml

whers P PG T (7.99)

is the coefficient of binomial expansion. Hence,




e

1

abl A

- | =——-#%)tina)rs

flz) f \_ 1 Gy @ (—a~"y*
k=0 =
-1 Fa—a¥l t
. || =——=k jhhalz
b Pk oRilhs &0

=0 ¢!

since
-t
l'! b -
ey 4]

Thus, we have

where
( ( K
i i
dyy=| —— =k |Ina
Since
+1=
a T
for
k=0

(7.100)

(7.101)

(7.102)

(7.103)

(7.104)

(7.105)

(7.108)

and

3 1 d—4 Y4 l—n
T2 a P

for a=13,6 (for 3-D potential problems), we have

max (3,5)

|
—k | 3
|

which gives

e ) {max 3.2

in equation (7.96), so that

E ()= ¢ #O(Ln) )
*l b |u'__
e 1=t
=(rd) ° lalr id)|2lair /d)
i e | f
N T _| N e Intr /d) 2
(r, d) alr i) ——L—
L o Ietd an |

- + \ &
Y paret( =222y )
}‘_l: 2

using Stirling’s formula .

For =1, equation (7.111) gives

(e=2) e lnilr fd)y
i

E (f) ~ 1

Bn

(7.107)

(7.108)

(7.109)

(7.110)

(7.111)

(7.112)

which matches with equation (6.42), obtained by elementary error analysis

in Chapter 6.




For the nearly singular case, where the source distance d is very small

compared to the element size, ie. 0< D= dip <1 |

i (7.113)

(7.114)

g0 that equation (7.111) for §:0dd gives
E(f 11-n : D) (21 D) al)
E () ey P =) (20 D) ————
! pay Py ; (2n)1(2r+1)!

. . 4 [2=a+1 2
b €, (=D [_2—_;J| “
k=0 —
=1
+l-a ot
E T e lnD\® ‘
ol ) e (R
=0
(7.115)
Further, using equation (7,108) for 15455 ,

and since
b
we obtain

max (3, 8)e laD]*
8n

(7.117)

In summary , for §:odd we obtain the following theoretical error
estimates when using Lhe log-Ly radial variable transformation :

For &:odd

~ 2 | max(3p

-mD - |

|":" (7.118)

E () < (a®l, D¥1)
L] i

For =1

(7.119)
F._‘I_I’} < (=N D I ]
s

Roughly speaking,

e (7.120)

for d:odd .

These estimates correspond well with numerical results in Chapter 10,
and explain why the log-Ls: radial variable transformation gives efficient
results for the integration of potential kernels u* and ¢* (which do not

include any interpolation functions).

When 4 is a (positive) even number, as in the integration of du*/ax,
and dg*/ax, for the flux, where §=2 (cf. Table 7.1), the function f{(z) of
equation (7.84) has a branch point (singularity)

n

B B e ] o o
b In{r /d)

. (m:integer) (7.121)
as shown in Fig.7.4.
In this case, we can modify the condition of Theorem 7.1 to allow a

singularity of fiz) at the end point z=—1 of the interval K=[—-1,11] of

integration 47 | The path Cof the contour integral is taken as




(7.122)
as shown in Fig.74. &o is an ellipse
V-1 2 >1 (7.20)
which has z=%1 as its foci, and the branch points 2 y2_, are outside the
ellipse. €, and £_ are the real segment (—x,, —1—¢) in the positive and
negative directions , respectively.
1 1

X gher=il (7.123)

is the major axis of €0, Ce is acircle of radius 0<¢<1, with ils centre at

En z=-1,

In the f

wing, we will estimate the error En(f) according to Theorem

7.1, considering the contribution of each component of the path C.

(i) Contribution from the branch line €5, £_

In the equation

v (2] flz) dz (7.6)

Fig. 7. 4 Branching singularities z,, of L e iy < srapes ey fits (7.124)
z) and integration path for log-L, e
transformatioﬂ, 6 =even where z ¢f, and z € ¢

Applying the asymptotic expression

2k2)
~ 2o*'" . (a¥l) (7.17)

where

** cosh 2¢ on s Ui (7.125)




a? (1406} (7.137)

(7.19)
Thus, equation (7.128) can be expressed as
1
o feg~7 o2 T gt goay (7.138)
(7.126) - 5
and equation (7.124) can be written as a ™2 (ha) i )
(1.127) Hence , in equation (7.127),
-1
- = W ; (7.140)
fla )= fiz ) - " |.- — (0 <f<1)
(7.128) which gives
2-a fo )=Ja )= ' ; (7.141)
22,0y 0 (7.129)
it e 241
g=it-n? (na) * J¥+1-¢ \i4%)
=21 (7.130 - j =
i Now , equation (7.127) can be expressed as
If we ct >1 such that v E_- 1 K (2k2)
) B |I' =ty | 40)dt
! (7.131 4t =i Jp B 1 {2k =tk
50 that [t K (2k8)
=) e o (7.143)
) V- ||" {
( : e A 7.132)
L we obtain i
.II IH]I‘IJI :7'l4dl
{7.133 - 1w
MR i (7.134) /
1 J
L) i e = =eosh™ 'y, ~ V
1 1 2y and we have assumed
1
. nel ie. k=n+=-Pp1 . (7.145)
osiah) (7.135) 3
O<x,-1< ke, 0< g <1 i (7.146)
| 15 o i !
I, -1 s (7.136) D<eal (7.147)




For 0=i(=v- if we take ¢>0 such that
fo
2k = (In+1) v —~ %]
ie,
2
= 2
Zn+1¥

equation (7.189) gives
K

— logtk ) — ¥ + OGY®
T2k 0) -

Hence, if we take the limit as ¢ — 0 3

Since

we have

dt~0(c ? loge)=0
]

(7.148)

(7.149)

(7.150)

(7.1561)

(7.163)

(7.154)

(7.156)

(7.167)

Note also that if we let t=2k¢,

- K_[2kD) = K_Iul
| { dz — i
I I
[ 0 o
since
- KINI
t—de
Jo 1,0
is a constant which is independent of k.
From equations (7. , we have
‘ K (2k0) 25
F]

]

~0(a~*1)

Hence , equation (7.152) gives
i+l
| AR

E ~ 0 (lna)

T41-e  —2-9
tad | d n |

H“mb;\

1,(2k8)

(7.158)

(7.1569)

(7.160)




(ii) Contribution from the ellipse Eo

For the contribution E¢, to the error Eu(f) , from the ellipse Eo of
equation (7.20), we have

B, | <2ra™™ B85 |52 (7.161)

from equation (7.24).

L) Estimation of the size ¢ of the ellipse
According to equation (7.92), | f(z) | is boumded as long as z is finite
and =1, Hence, the ellipse Eo can be taken as close as possible to the

branch points :

(7.162)

Ina
50 long as the points z,, are just outside the ellipse €¢. Thus, we will
estimate the size o of the ellipse which hasits foci at z=+1 and passes

through

(0<t<1) (7.163)
From equations (7.29, 30), we obtain

g+ Vitg + V2gig+vi+g®) (7.164)

where

and D=d/p is the relative souce distance.

Equations (7,164, 165) give

Lbg+g + M+ V1+
) iy ora et
Vit V2gig+viegh)

Vitg

(7.166)

4mt

D(DYy D{l(1+D~HP WAy,

r (D1) =1+ WV

[T.lii”r
(0B),~ 8et D* (7.169)
and
dr Vst = n_
T P i e (7.170)

Note also that o(D.f) is also a strictly increasing function of 0< 1 <1, so0
that

(.0 < UD,1) (7.171)
The table and graph of #(D,f) for t=1.0 are given in Table 7.3 and Fig. 7.5,

respeclively ,

Table 7.3 Values of g(D) for t=1.0, for the log-L, transformation

(& :even)

Since Ye>0, 35>0:

le(Dt=1)=—al(D,i=1-3)| <« (7.172)

we may conclude that, for the nearly singular case, o in equation (7.161)

takes the value

D :107*~10~" (7.173)




=D

0.15

0.1
Fig. 7.5 Graphof o(D,t= 1.0) vs D for the log

1
0.05

0.01

‘]_'\

transformation (6 : even)

Z) Estimation of max | f(2) |

2¢ £

We will estimate max | f(z) | using

(7.128)

x I $ PR L)
T omt 32 T =WDD 2 >0 (7.174)
and
I ‘ (7.175)
= 1 1
B (7.176)

where z=x+iy, and x;, and y, are the major and minor axes of the ellipse
Eo , respectively .

Since, if ¢ is real,

we have

A\ = (7.178)
Similarly , we obtain
pletliing_y | <o o 'u""""‘
P s |
2a? 41
3 -
:3a ; (7.179)
since a>1.
Hence, for §=1, we have
L N 1 W &
p — T ] 0
max eyl s T8 ¥ a ] 2

2t Co b

(7.180)

where




ind(a,8) = — — (7.181) where y=0.577 is the Euler's constant, we obtain

. Z ” ~ 4 -
Summing up for the contribution from the ellipse €0, equations (7.161) - —log = —r+ ow@zh 5 (1Zla1) (7.188)

{7.180) give ™ . . '
and (7.180) give Thus, if we take 0<c< 1 such that | 2k | <€ 1 for z€ C,, we obtain

1
< x3 7% e Lp) pitdte - (7.182) B 2) ~ Dlog ki + 27 +0 kY’ (7.190)
where Since , we have
=3 L e N sh 2t ~ _opd
274693 for D:1077~10 (7.173) Az =24 1=1—cosh2f ~ 2" ., (7.181)
Con i ti T7.182) wi 7.16 M
omparing equation (7.182) with (7.160), we have ar | %1, (7.192)
E 4 | E
Ee (2% (7.183) and
for n®1. dz = —d Ldl
: "WEs (7.193)
Hence, for n®1 and | 2k | <€ 1, we obtain
(iii) Contribution from the small circle Ce E, = zl'- | ) (2) flz) dz
e . milpg ®

Finally , we will estimate the contribution E¢, from the small circle Ce. - U'I =) log (ke ) | —> 0 (7.184)

Hence , the contribution from C,, (¢ —0) is zero.

From equations (7.92~94), it can be proved that for z=—1+44z such

that | Az | <

(7.184) (iv) S
where
In summary , the contribution E,,, from the branch line €4 .. is

dominant in En(f). Henee, from equation (7.160), the theoretical error
As the asymptotic ex; 1 i i
K, ¢ estimate for the radial numerical integration using the log-L; transformation
1
{

with the Gauss-Legendre rule for the case : §=even , is given by

where

= o "oosh 20 (7.186)

N = T
Noting that 4 "“t}|t!.=rrl.rrll}" d ‘l"n"'"]

"

i zy 22
Kz) ~ ~142) [ y+ log > |+ i ow@eh , (lz| ; (7.187) =
' rr[|—|nn|=h”‘ i '|

D=1

12) ~ 14 o oz y (7.188)

—~O(n~""1)




where n is the number of integration points in the radial variable.

This theoretical estimate corresponds well with numerical results in
Chapter 10, and explains why the log-L; radial variable transformation is
inefficient and gives inaccurate results for the integration of flux kernels

2,

du*/dx; and dg*/dx, , which include terms corresponding to

Equation (7.195) also explains why the log-L; transformation tends to
be inefficient for the integration of kernels including interpolation functions
suchas ¢, of equation (9.17). Since ¢, (y,,7,) are polynomials of 5, and
73 » Which in turn include first order terms of o as in equation (5.40), ¢

include terms of order g, o2, o3, p4, which correspond to §=2,3,4,5 in the

radial integral of equation (7.48). According to equation (7.190), this means
that the numerical integration error drops only at the rate of O(n~?) and
O(n—5) for the components corresponding to §=2 and 4, respectively. This
matches with numerical experiment results for [, ¢, u*dS and [, fy g*dS

in Chapter 10.

7.8 Error Analysis for the log-L; Transformation

In this section , theoretical error estimates will be derived for the
numerical integration in the radial variable using the Gauss-Legendre rule
after applying the log-1, transformation :

Rig)= loglp+d) (5.85)
The analysis will clarify quantitatively , the reason why the log-1,
transformation is a robust transformation which works efficiently for the
integration of fMlux kernels as well as potential kernels and kernels including
interpolation functions.

Equation (5.85) gives

ROy =lInd | (7.196)

(7.197)

and

(7.198)

T (7.199)

Hence , the radial component integral of equation (7.48) can be expressed as

(7.200)
Viet-d P+ d

Then , equations (7.52, 53, 54) give
pl
ZR—In(l+-51=2hnd (7.201)
Lt

I|1."—’|
" d

Sl =) 4 (14 ) 4 2lnd (7.202)
d o

2




and

w(is-L) (7.203)
dit d

dx 2

Hence, the integral of equation (7.200) can be expressed as

1
1 fix)ds (7.204)
=
where
PR ) U T (7.208)
{w=- =" Hw-0+0 "2
BT (7.206)
. a' s .41
b - - d >0 3 (7.207)
ot id et (7.208)

V£ 1 (7.209)

which are equivalent to

In2 Amt1/2)n

3 "-:. . —1 4 {m - integer) (7.210)

Ina'
The singularities z=2_ , (m=0,+1, £2 ) are also branch points when «
is odd, as shown in Fig.7.6

Using the relative source distance :

b=~ ' (7.211)

we have

s0 that

lha'=hi1+D7}) njnl ~lhD . (7.212)

+

Fig. 7.6 Singularities z,, and branch
lines ( for o= odd ) of fiz) for

the log-L, transformation




which gives

In 2 4 i~ (7.213)
e T
=D}
Hence , the distance between the nearest singularities ;= :y to the end

point z= —1 is of order

]
|

—laD

f
of
This is the key to understanding why the log-L, transformation works far
efficiently compared to the identity transformation, where equation (7.61)
shows that the distance between the nearest singularities 2=z, toz=-1

is of order

(D) = Hf - ||
( P = e
=InDD/

(1) Error analysis using the saddle point method

In the equation

of Theorem 7.1, we can apply the asymptotic expression

(7.214)

of equation (7.11) for z€ C ; |z | 1.

If we define

Fiz) =

=" {w-0+}"""

from equations (7.205) and (7.214), where

(7.206)

(7.216)

we obtain
glz2) = log Fiz)

~ InA' = (Zn+1)logz + & log(w—1) + log w

-él-.qu.,--hu_'p,;,vm-|-=| , (el 1)

and
dg 2n+1 Ina"
—_——— — i+l =t —
daz 2 w—1
(lzl *»1)
(i) Case Re(2)®1
In this case,
Ina'
. {Retais)}
Jwl=e? Bl
where

a'm 4= >
o

If |Imiz) | ~1, we have

2| ~Rels) »1

which gives

1
% — 41

Hence , equation (7.218) gives

2n+1 Ina®

dy
gl = — ~ - +—(d+1=a) , (Helzi®1)
dz 2

Thus, the saddle point of F(z) of equation (7.215), which is given by

2(2n+1)

(d+l—a)lna’

(7.217)

(7.218)

(7.219)

(7.208)

(7.220)

(7.221)

(7.222)

(7.223)

(7.224)

(7.225)




The condition Re(s)® 1 implies
S T ALY (7.226)
since Ina' >0, From Table 7.1, for the basic integral kernels in three

dimensional potential problems, a,& and §+1—a take the values shown in

Table 7.4.

Table 7.4 Values for 3-D potential problem

kernels a & d+1—a
u* 1 1 1

Hence , only the case a=&=1 for the u* kernel gives a saddle point of

equation (7.225) satisfying Re(s)®1 for n>1

- 06

Equation (7.223) gives
1
= § (Re(zi® 1) , (7.227)

so that at the saddle point z=35,
It (Wsi-etion ) (7.228)

4EZn+1)

g~

Equations (7.38) and (7.45) give
s=aggtisi=0 (7.229)

(7.230)

=0 dr=idr

Applying the saddle point method along the contour C shown in Fig.7.7,

saddle point s »/

Fig. 7.7 Integration path C for the saddle point
method for the log-L, transformation




T
E L) P Flzldz
" 2% _fl_ »

(7.231)
for f—e+1>0 and n¥1.
Since ,
_ _'.fl‘!'l +1) ;
' G i—ahe ! (7.225)
we have
— na'
wi= e ? i (7.232)
w't! gntlge A (7.233)

(7.234)

Hence , equation (7.231) renders the following error estimate

For the log-L, transformation, with §—a+1>0, n¥1,
f @+1l—ale In(l+p fd)2m
— {In(l4p /d) } @VT+p )"0 A

1 +1/2 4{2n+1)

3 3 -I In? 2
ey (=D) D =]

~Ot=™ (7.235)

where D= d/p is the relative source distance.

This estimate corresponds well with numerical results for the integration of

1) in Chapter 10,

In this case,
Ina
== {Refa)+1}
w|=e¢ * 1

which implies

dg 2a+1 1+i | |
ds z =1=i [
24l e’ =
e 2 (7.237)
Hence ,
dg
= =0 (7.224)
d2l,ms
implies
2(2n+1)
A S (7.238)

which contradicts with Re(s)< —1.

Hence , there are no saddle points of Fiz)= d4(z) fiz) in the region Re(z)<€ —1.
(2) Error analysis using the elliptic contour : Eo

In order to obtain error estimates for general natural numbers o, &,
using equation (7.6) of Theorem 7.1, we turn to the asymptotic expression
‘ (7.186)
which is valid for n®1 and z ¢ C except for an arbitrary neighbourhood of
K=[-1,1]. The integration path C is taken as the ellipse Eo :
A7 . le>1) p (7.20)
which does not contain any singularities of f(z) of equation (7.205), inside .
More specifically , we will choose the ellipse Eo which passes through the
point

(7.239)




as shown in Fig.7.8. Then, we can use the equation

» o, —2In mHAX 2 ~
E(S . e JAE (7.24)

to estimate the error of numerical integration .

(i} Estimation of max | f(z) |

eE,

Since

— =l (7.241)

s 41 /\/
equation (7206 gives ™ 0 e R e -
- s

Siatins’ S LT (7.242) _/y

7
fiz)

(7.243)

Hence , we need only consider the region Im{z)=0,

It is also clear from equation (7.205) that | fleg )| =+=, where 2 is

iven by equation (7.210). Thus, we obtain

» 31 e |1-tl <1 el Fig. 7.8 Singularities of fiz) and integration
I - dafiad path €; for the log-1, transformation

(7.245)

we have

(7.246)

50 that




Hence , for

(7.248)
we have
wie)=(14i) I 1+ (7.249)
s0 that equation (7.205) gives
= 1== =
fz)=H X (1+0=i)d}ar ? (7.250)
where
e g agant 7.251)
B=(+1)i' 2 $a®t-vq.g) T4 ¢ (7.25

Thus, for

(7.252)

where

2 (7.253)

" ilna")
Finally, equation (7.244), (7.248) and (7.252) give the following :

For 1—1<=1, 0<t<l

flz)| ~ ER IR % ]llmii:;-ll-f"' “f1=n * (7.254)

For 0<D <1, ation (7.254) gives

e Y 5 L O

(ii) Estimation of

Next, we estimate the size @ of the ellipse €5 of equation (7.20) which

passes through the point z=2; of equation (7.239). Since,

t=xz+iy

(7.256)
where

where

Le.

7.261)

) Fo D>t (7

For D<1,

For D®1 ,
(7.264)
r the case t=0.6 is shown in Fig.7.9.

(iii) Error e

and (7.254) , we obtain

phEl=uiny o)

: e
tl-w_1opypttlee o 2 (7.265)
Dai

From equations (3.138~142), the analytical expression for

(7.266)




0.2

0.15

0.05
Fig. 7.9 Graph of (D,

0.6) vs D for the log-L,
=log(P+d)

transformation : R(P)

is given by Table 7.5.

Table 7.5. Closed form for [, ;= | 7 —do

a d [u.f'i (exact) ]-u.ri (D<1)
i il p(VIFD® -D) p;

1 (1/D — 1IVT+D)lp, 1/ (g, D)
3 P — =

| 2 In{(1+VI+DHID}= U VI+D? ~InD

1 {1/D*—~1/(1+D*)*}/(3p) 1/ {3(p; D)’}
b

2 1/ {3(p,DF (1 +D%)3%) 1/{3(p, D)}

Then , equation (7.265) and Table 7.5 give the estimate

error as in Table 7.6.

Table 7.6

for the relative

Estimates for relative error En(f)/1,,2
a o0 Enr\f} / [-r. d
1 1 3.0(~InD)D(1—p)-17 g~
1 1L3(=InD) (1-f)-3* g-n

1.3 23/~

(1—t)-

1.8(=InD) (1—p)-%2 g-2n

L8(—~InD) (1-1)-% g~




To maintain the constant coefficient of the error estimates at a

reasonable size,

(1<2) X' 10 (7.267)
Egives
J" 099 (a=1)
0< < 1=10-"1= 0.78 (a=3)
L 0.60 (a=5) . (7.268)

The wvalues of o)) for 1=0.6 are given in Table 7.7 (¢f, graph of

Fig.7.9).

Table 7.7 Values of o(}) for t=0.6, for the log-L, transformation

D a D

10-4 10-2

10 | A 3x10-*

10-% ) 10-1

10 .26 3x10-!

1
3

10

For nearly singular integrals , one typically has relative source
distances of the range
1

BT =0kg (7.269)

for which the size ¢ of the ellipse &, is

¢ 1.31~1.63 (7.270)
In summary , we obtain the following error estimate for the numerical

integration of
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7 KR as (7.266)

0 r*
using the log-L, radial variable transformation

Rip)=loglp+d)

(5.85)
and the Gauss-Legendre formula, for general natural numbers o ,6 :
i z
B |52t p M 4Dy D00 20
ln{1+07" p** -
gay (=lD) D= =2
where
1.31~1.63
for
D:w?=10! . (7.271)

where we have taken (=06 .
From Table the estimate for the relative error £ is given by
(7.272)
for the same values for o .
The theoretical estimate of equation (7.272) corresponds fairly well with
numerical experiment results in Chapter 10, The estimate also clarifies
quantatively , why the log-L, radial varinble transformation is, by far, more

efficient and robust compared to the log-Ly and identity transformations.

Error Analysis for the L, "= Transformation

In this section, theoretical error estimates will be derived for the numerical

integration in the radial variable using the Gauss-Legendre rule after applying

the L; " transformation :

Ripl=—lp+d) - . b9

To make the analysis easier, we will treat




Rip) = (pbd) ™ - (7.273) which gives
which is an equivalent transformation with a difference of signs. Then, . (7 ;Iu" 4 1hn~1
I— 1 a 1 . 1
R =d ™ (7.274) : = 2)" =2 14 "MI 7 ez =2 1.7 al77 (7.289)
Rip)=lp, +d (7.275) where
and .-
plRY=R™™—d (7.276)
d; a, =
e S (1.277) ' (7.285)
Hence, the radial component integral of equation (7.48) can be expressed as
sl Cn (g, D) - (7.286)
I= | J'fd. n
P ST (7.287)
= |'"‘"_' A -’ll dR where 0=A<1

The singularities of f(z) in the complex plane are analyzed in the following.

(7.278) Let méN, then the term {{z —2;)*—a;"} in equation (7.283) does not give rise

whors to singularities except forz==

The second term (z—z;)*~#-""m~! will be treated next. For the potential

kernels u*, ¢* and the fMlux kernels du*/dx,, dq*/ax,, the exponent (a —&—1)m—1

take the values shown in Table 7.8,

Table 7.8 Singularity at 2=z,
(7.280)

(a—d—=1)m—1
(7.281)

- —m—=1<0 singularity
- 1 i

m=1

]
R — l
i1+ 1|,>|“[

m—1

. —=1<0 singularity
1

= Al L = 3 e m-—1
C'mmi-17 2 F - —(t+m ™ (7.282)




Hence, z=2;={1+4"1/(1 —A"™) becomes a singularity for a=d=1 (u* kernel)
and a=3, §=2( du*/dx, kernel ),

Next, the third and the fourth terms in equation (7.283) has singularities at

(7.288)
where k€2, meEN.

For the case m=5 (L, ** transformation), the approximate values of the
singularities z; and z; are given in Table 7.9 for different values of the relative Zy

source distance [, Z,

Table 7.9 BSingularities 2, 2, form=5 o
o

z

1 = 0.217+2.261

0.1 4.2f —0.589+0.766 i

0.01 —0.740 4+ 0.484 i

0.001 —~0.791+0.390i

0,0001 38 —0.813+0.347 i

The position of the singularities z=2, .-: (k€Z) of f(z) for the case m=5
Ly * transformation), ) =0,01 is shown in Fig, 7.10. Fig‘ 71 O Slﬂgu|afllles Of f{z) for
The efficiency of the L; ** transformation in combination with the Gauss- LT—‘I.'S trananOrmation ( D = 0‘01 )

Legendre rule is determined by the maximum size o of the ellipse €,

{2t Vab 1 b=e (7.20)

with foci at z= £ 1, which does not have any singularities z;, z inside itself,




- -

11) and (7.32), the size of the ellipse €0 which passes

From equations
Table 7.10

2of ellipse ay, a

through z=2z; is given by

ssing throughz= 2z, 2;

O (7.289)
D 2 , q
where
| 4 Alm 1 14.5 2,47 28.9 4.74
T (1:290) 0.1 425 | 132 838 | 2.7
e L - . % 2 0.0 2.32 4.4
Similarly, the size of the ellipse £ ¢ which passes through =2, is given by A 3 1.18 441 1.80
r— = 0.001 1.67 1.14 3.01 1.68
5o =7t \',‘-’I_1 (7.201)
0.0001 1.38 1.12 2.32 1,62
where
¥ i 1
| - e - 2
: "2 TMA™ s — To te . o y : Eps :
1 4im T'o treat the problem more rigorously, note that ¢ is a strictly increasing
Vi + 1) £y \u T funection of v, since

(7.292)

where (7.294)

(7.293)

Table 7,10 gives the values of yy, ¥y, o9, o, for different values of D), which
indicate that the ellipse passing through z=2z; is smaller than the one which
passes through 2=2;. This indicates that the singularity at z=z; dominates the

3 . . : X where
convergence behaviour of the L; “** transformation.

(7.296)

and 0

Since

(7.297)




lorm=

and

for m=5,

and

we have

>0 *<x<]

where x* is given from equation (7.295) by

L 0.0487

(7.298)

(7.299)

(7.301)

(7.302)

(7.303)

gg<a, for D>D*=3%10""7 , m=6 (7.304)

This means that for m=5,D>D*=3x10-7, the ellipse passing though 2- s
is smaller than the one passing through 2=z, and hence the former is the eritieal
one.

Hence, for the case D>D*, we will consider the ellipse of equation (7,20)

which passes through the point

z =x +1y
1l 0 T

i il w4 s{sest) (7.305)
which is located just below the singular point .~  asshown in Fig. 7.11.

(i) Estimationof max |flz)]
z€E,
From equation (7.283), we have

fl =7

(7.306)

which implies
fiz) Jiz)

Hence, we need only consider the region Im(z) =

(7.307)

Ifwetake 0<|1—t|1, .~ istheclosestsingularity to the ellipse €, and

max | f(z) |

z€E,

~ | flz)]

-z =
1g 4

3

p Dyt gty g 2T TE (7.308)
4 \ 4dm /

- m

from equation (7.283)
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Fig. 7.11  Integration path €, for the

L5 transformation

Next, the size o of the ellipse €, of equation (7.20) passing through the point

z=z; ofequation (7.306) is estimated.

This can be done by using

and

(iii) Error estimate Ey (f)

The error Eul f ) for D> D* ¢an now be obtained from

|E (f)] < 2ne o

In order to maintain

(1=8) = =<

(7.309) ,
17.32)
(7.31)
max | fiz)| (7.26)
2€E,
10 (7.267)

for a=1, 3, 5 in equation (7.307), we set =0.6 as in equation (7.268). The values

and the graph of o (D) for t=0.6 are given in Table 7.11 and Fig. 7.12,

respectively.




2 ~
w0
€~ Table 7.11 Value of ¢ (D) for t=0.6, for
:- the L;~'® transformation
Q i
|
A 1 b D ¢
]
Q & - |
i = 10 _1.JG
] c 10-F 1.36
JN c 3x10-% 1.37
o =]
J - 10-4 1.38 3x10-1 1.96
@
] = 3x10-4 1.39 1 3.06
b
] iel 10-3 1.41 3 7.30
h =
E Ix10-4 1.44 10 23.6
0 © i | LES — =
~ — -
1© 0 For nearly singular integrals with typical relative source distances of the
] e range
! 2 D:10~%~ 10"
1 = thesize o of theellipse €. isin the range
=1 i e =
= o 1.41 ~ 1,87 (7.310)
] [ which is slightly larger than the corresponding ellipse for the log-1;
] 3 transformation.
] e
o Hence, from equations (7.26) and (7.308), we obtain the following error
1 |
19 Rl estimate for the numerical integration of
4O 5 ’
e C.] L ’op
1°e > A ,‘D i (7.266)
1 ~— :
o using the L, ~'"™ (m =5) radial variable transformation
| B
> -
1Qe © Ripl=(o+d) © (65.100)
b - " 1 A 1 M i 1 M " i i = O
Tp] o wn o and the Gauss-Legendre formula, for general natural numbers o, & :
! * 4 J
LU = = 2 JES A S L C
. = - 2 o2 2m 4 _ . opad-wkl g o lm I [ S S
s B nl<m 2 =(p,D) (1= (sin —)tu-n?e
o
[V




=5 ) (p. D e
pi-eg L ot
(1-0'%) ptl -
D1
where
141 1.67
for
D:10~? <~ 107! (7.311)
where we have taken 1=0.6.
From Table 7.6, the estimate of the relative error « is given by
g~g 0" (7.312)

for the same values for o,

The theoretical estimate of equation (7.312) corresponds fairly well with
numerical experiment results in Chapter 10, The estimate explains why the
Ly~ " transformation is slightly better compared to the log-L; transformation for

the model radial integral of equation (7.266) (cf. Tables 10.24, 10.32 and Fig. 10)

and for the Mlux integral Fi; & d§ (ecf. Table 10.50 and Fig. 10.39),
s / ox

t
7.10 Summary of T ical Error Estimates

In this chapter, we derived theoretical error estimates for numerical

integration by means of the theory of complex functions.

The basic radial component integrals

where

(7.313)

characterize the nearly singular integrals occurring in the boundary element
analysis of three dimensional potential problems .

We obtained the following error estimates E, for the numerical
integration of I, 4 using the Gauss-Legendre rule after applying each radial
variable transformation R(p).

Let n be the number of integration points in the radial variable, and

d
Dm— >

be the relative source distance,

Then, for n®1 and D<1 (nearly singular),

(1} Identity tranformation ; R(g)=p

(2) log-Ly transformation : R{s)=log Vp +d?

ndd (potential),
I+l-g 4 o
o e Jmn:ia.f.]rlu“

"':-:' | Bn

&

d4)l=—u
= [ InD )\

n /

- N

(7.118,120)

For d=even (flux, interpolation functions},




(3) log-L; transformation : R(g)= log(p+d)

For §+1—,

>0 (e.g. a=&=1 for potential),

(8+l=ale D ]™

8n

where

for

where

for

(7.185)

(7.271)

(7.311)

These theoretical error estimates are compared with numerical
experiment results on one dimensional radial variable integration and
boundary element surface integrals with potential and fAux kernels , in
Chapter 10, The theoretical estimates bear remarkable resemblance with the
numerical experiment results, demonstrating the validity of the estimates
derived in this chapter.

The theoretical estimates in this chapter also give a clear insight
regarding the optimization of the radial variable transformation Ri(p) for
nearly singular integrals arising in boundary element analysis in general .

To be more precise, the singularities p,=xdi € C, inherent in the

near singularity of

== = . (7.314)

are mapped to R:=Rigps) by the radial variable transformation R(p). R
in turn, are mapped to z,= x(R,) by the transformation

IR .!Iil,.l|l!n||||

" =" X (7.49)
Rip )=R(0)

in the process of mapping the interval R:[R(0),R(p)] to the interval
x:[—=1,1] in order to apply the standard Gauss-Legendre rule.

As shown , for example , by equation (7.80) for R{g)=p and equation
(7.271) for R(p)= log(p+d), the numerical integration error is governed by

the maximum size ¢ of the ellipse Eq

>1) (7.20)

in the complex plane, which does not include the singularities z, inside.

Therefore , roughly speaking , the optimum radial wvariable
transformation R(p) is the transformation which maps the singularities
py=tdi, inherent in the near singularity, to 2z, =x{ R(p,)} which are as
far away as possible from the real interval 2:[—1,1], allowing an ellipse €5

of maximum size « .




PART Il

APPLICATIONS AND NUMERICAL RESULTS




CHAPTERB

NUMERICAL EXPERIMENT PROCEDURES

In the following chapters, results of numerical experiments performed on the
numerical integration methods proposed in Chapter 5 are given with comparison
with previous methods. Weakly singular integrals, nearly singular integrals and
hyper singular integrals (Cauchy principal value) arising in three dimensional
potential problems are treated. In this chapter the numerical experiment

procedures and types of elements used in the experiments are given.

8.1 Noteson Procedures for Numerical Experiments

All the numerical experiments were done on the NEC supercomputer SX-2
(peak performance 1.3GFLOPS) in double precision (except when stated
otherwise). The results for CPU-time presented in milliseconds (msec) were
consistent within a relative difference of about 1% for most cases and within 5%
for some exceptional cases.

When the Gauss-Legendre formula was used as the basic quadrature rule,
the number of integration points N was increased in the following series:

N= 1,2,3,4,5,6,7,8,9,10,11, 12, 14, 16, 20, 25, 28, 32, 35, 40, 45, 50, 55,

60, 64, 72, 80, 90, 100, 1110, 120, 128, 140, 150, 160, 170, 180, 190, 200,
210, 220, 230, 240, 250, 256, 300, 250, 400, 450, 500, (8.1)
until the numerical integration results converged. The integration table in

Stroud and Secrest® and the IMSL mathematical library™ based on the subroutine

GAUSSQUADRULE by Golub and Welsch®® were used to generate the

integration points and weights for the formula.
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The relative error ¢, of the numerical integration result [, was measured
by comparing it with the true value of the integral 1* , which was obtained either
by analytical integration, when it was possible, or by using the converged result
using the best method with sufficient number of integration points, For instance,
for nearly singular integrals, the result obtained by the PART method with the
angular varinble transformation (@) of equation (5.130) and the log-L; radial
variable transformation R(p) of equation (5.85), was used to oblain the converged

numerical integration result. Then the relative error ¢, was measured by

-1
A (8.2)
n ol -

When the value of the true (converged) integral [* itself is zero (or when | I* | is

less than a certain threshold value e.g. 10-'"), the absolute error
B= =] (8.3)

was used as the measure of convergence, instead of the relative error.

In most tables, the minimum number of integration points required to
obtain a relative error less than «=10-* is given with the CPU-time consumed,
as a measure of the efMiciency of the method.

In order to oblain the minimum number of integration points in each
variable required to achieve a relative error less than «, the following procedure
was taken. Taking the example of the PART method with integration in the
angular variable ((#) and the radial variable R(p), where N; and Ng are the
number ol integration points in the angular and radial variables, respectively,

(1} increase Ny and Ng as Ni=Ng=1,2.8,:--, according to the sequence of
equation (8.1), until the relative error becomes less than « at

Ni=Nr=Nuax (1),

set Np=Nmax(l) and increase Ny=1, 2, 3, -, according to the sequence of

equation (8.1), until the relative error becomes less than ¢ at

Ni=Nmax (2),

(3) set Ny=Nmax(2) and increase Ng=1, 2, 3, -, according to the sequence of
equation (8.1), until the relative error becomes less than « at Ng=Npmax(3),
so that the minimum number of integration points required are
Ni=Nmax(2) and Np=Nm.(3) for the angular and radial variables,
respectively.

When there are more than one component in the integral concerned, such as
in integrals related to the flux e.g. [, du*fax, dS , [, dg*/ax, dS or in integrals
containing interpolation functions e.g. [; ¢ u*dS,(i,j ==1,0, 1), the maximum
relative error among all the components concerned is taken as the (maximum)

relative error,

8.2  Geometry of Boundary Elements used for Numerical Experiments

In all cases, the 9-point Lagrangian element defined by equations (5.2), (5.3)
and (5.4), and shown in Fig. 5.1 is used to model the following (curved)
guadrilateral patches

(1) Planar rectangle (PLR)

A planar rectangle in the xy-plane defined by [ —a, a] X[ —b, b] , or

asshown in Fig, 8.1. The source point x, is given by

x =(xyd)
- 3

where d isthe source distance. The above planar rectangle will be called

PLR (a, b).




As a special case, the planar square of size 1 can be defined by PLR (0.5, 0.5).
The planar rectangle PLR (a, b) is modelled by the 9-point Lagrangian element of

equation (5.4) by setting

YL x(jk)=0ja,kb,0) ; jk=—-1,0, 1 (8.6)

2) ‘Spherical’ quadrilateral (SPQ)

A spherical quadrilateral on the spherical surface of radius a defined by

.‘I
r = pgin¥eoosd
y = agin¥eind
b
o o ¥ (8.7)
where W determines the latitude and @ is the longitude, as shown in Fig. 8.2,
—a 0 a x where W and @ are bounded by
Y1) S ¥ 5 wi-1)
d(=115 &= @) (8.8)
-b
The spherical quadrilateral is approximated by the 9-point Lagrangian

element of equation (5.4) such that parameters 5, and 5, correspond with angles &
and ¥, respectively, as

Fig. 8.1 Planar rectangle PLR (a, b) n=-1 =  &=0(-1

7, =0 - o =a(0)
-,-‘—I - o =0(1)
and
1= —1 .- ¥ =¥(-1)
7, =10 - ¥ =v(0)
g, =1 . v=%(1) 3 (8.9)

as shown in Fig. 8.3, |




Fig. 8.2 Sphere with radius «

-1 0 1y

()

¥ (0)

E~1)

Fig. 8.3 Spherical quadrilateral ( SPQ)




For instance, if we take
a=1

D(=1)= 30" , @(-D=-30", o()=30",

Wi-1)=120" , %(@=80", w¥(l)=860", (8.10)
we obtain a spherical quadrilateral subtending 60° in each direction ¢ and ¥, and
the size of the element is 1, i.e.

| =Q1,0) = x(~1,0)]| = I

| xi0,1) = x(0,=1)| = 1 (8.11)

This element, modelled by the 9-point Lagrangian element as in equation (8.8),
will be called SPQE0 .

It should be noted that the maximum relative discrepancy between the real
spherical quadrilateral and the ‘spherical’ quadrilateral SPQ60 (modelled by the
9 point Lagrangian element), is of the order of 10-3, Hence, in actual applications
a more accurate geometrical modelling becomes necessary, depending on the

required accuracy of the analysis.

(3} Hyperbolic quadrilateral (HYQ)
A hyperbolie quadrilateral is defined as the 9-point Lagrangian element
(ef. equation (5.4) ) whose nine nodes x#*; j k=—1,0, 1 are given in z, y, 2

coordinates as

Hyperbolic quadrilateral (HYQ)




asshown in Fig. 8.4
This element HYQ is described by

h

z= Xy
ab

(8.13)

In this case, the modelling of the hyperbolic quadrilateral by the 9 point
Lagrangian element is exact,

Setting

a=b=05 , h=025 (8.14)
gives the hyperbolic quadrilateral HYQ 1, which is described by

t=zy , -D5Szx,y=05 (8.15)
The size of the element is considered to be 1, since

| =(1,0) = x{=1,0)| = | x(0,1)—x(0,—1)|= 1 (8.16)

CHAFPTER 9

APPLICATIONS TO WEAKLY SINGULAR INTEGRALS

In this chapter, results of numerical experiments on weakly singular
integrals arising in three dimensional potential problems are presented.

Although weakly singular integrals are not as difficult to calculate as the
nearly singular integrals, difficulty may arise using polar coordinates, when the
source point is very near the edge of the element, as is the case for discontinuous
elements,

It will be demonstrated in this chapter that the method of using polar

coordinates in the plane S tangent to the element S at the source point x4, with the

angular variable transformation #(#) introduced in Chapter 5 (PART method with

Rip) = p), overcomes the above mentioned difficulty.

9.1 Check with Analytical Integration Formula for Constant Planar Element

First, the analytical integration formula for the integral

145 (9.1)

s

for a constant planar quadrilateral element is presented, so that the method and

code for numerical integration can be checked.




Using polar coordinates (p, §) centered at the source point x,, in each

trinngle ( j=1~4), as shown in Fig. 9.1,

fe=| =
4 rap (aAD
¥ | 'da | R 7S 9.2)
j=ilo o 1
where
(9.3)
S Xy
s —a )}l +sine ) 3
4 4 (9.4)
—a I} {1—sina . .
jTg R S Fig. 9.1 Planar quadrilateral element
For a rectangular planar element PLR (a, b) with the source point at
X5 =1y, ¥s, 0), asshown in Fig, 9.2, equation (9.4) can be expressed as
t A
I > = N (9.5)
! = 1/ |
since
h
a ) & il S (9.6)
B !
h
in a —— , f=1~4) , 9.7)

where




When the source point x, ison the j-th edge of the element, i.e.sgn(j)=0, thej-th
component of the summation in equations (9.4) and (9.5) is set to zero.
As an example, we take the planar square element 8 : PLR(0.5, 0.5), which

is described by

."I
-065 x5 06
-055 505
b
z =0 (9.9)
X
(x5, _"s] The typical size of the element is 1.
= In Table 9.1, the result of calculating
=0 0 a b
u* d§ (9.10)
is given, where
=y S s (9.11)
dnr
and the source point x;=x(y,, 7,) is set to x(0, 0), x(1, 0), x(1, 1) and x(0, 1), as
shown in Fig. 9.3. The numerical result obtained by using polar coordinates (p, #)
F!g 9.2 Planar rectangle PLR ({-" b ) with around the source point, and further using the angular transformation
source point at (x,,¥) s

(6.127)

introduced in Chapter 5, are compared with the analytical integration of equation

(9.4). The basic quadrature rule used for the integration in g, # and #(9) is the

Gauss-Legendre rule. The minimum number of integration points, Np, Ng and
Niigy, required in each variable to achieve a relative error (compared to the
analytical results) less than 10-° are given with the CPU-time.

Only one integration point is required in the radial variable, This is because

for planar elements r=p, sothat

[ 1
[ ut d§ = ’ e ' — pdp
d=r

: dd r dy
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Table 9.1 Weakly singular integ

I [qu*dS overthe unit planar square : PLR (0.5, 0.5)

Polar Coordinates Angular Transformation 1 \
= p ntegral (analytical)
Source potnt b——m—17— 17— _— — —y—

(n 22) PLUI L alative .
/ 2 NyxN. | total | CPU | re lative Ni %N, | total CPU relative 4r Jou*dS
(msec) error s (msec) error .

(0,0 61 ‘ 24 0.69 3x10 1x%1 4 0.20 | 3x10-1'8 3.5254943
(1,0) 6x1 ‘ 18 | 0.54 3x10-7 1x1 3 0.17 Tx10-16 2.40605891
(1,1) 4x1 ‘ 8 0.28 | ax10-7 131 2 0.13 | 6x10-1® 1.7627472
(0,1) Bx1 ‘ 18 ‘ 0.54 3x10-7 1x1 3 0.17 TX10-1* 2.4060591
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With the angular transformation t(#), only one integration point is required

in the angular variable, This is because

1 G. .n--l ._!I\
atds = — Y | |l.-r'r d
5 x = o 3
4 Has ) 9
1 i
s S r p g — dt
dx = Lo i
1 4 Hae )
=3 7 a (9.13)
ar < lyo
since
de 1
e (5.126)

di p Ao

In Fig. 9.4 the relative error « using polar coordinates ( p, & ) is plotted (in
log-scale) against the number of Gauss-Legendre integration points Ny in the
angular variable #. The source point is located at x,=x(0, 0)=(0, 0, 0) at the

centre of the planar square element. From the graph, it is estimated that

log e =015 -LIN, 19.14)

s0 that
I N
14| =]
13

(9.15)

(From now on the relative error will be plotted in log-scale in all the convergence

graphs showing the relative error vs. number of integration points.)

Relative

/

Error

Weakly Singular Integral
Js u*dS
S : planar square

PLR(0.5,0.5)
X,=x(0,0)

Fig. 9.4

Number of Angular
Integration Points

Relative error vs. Number of angular integration
points using polar coordinates (p,0)




Planar Rectangular Element with Interpolation Funetion By

Next, numerical integration is performed for the weakly singular integrals

¢ ut dS . lij==1,0,1) (9.16)
where

= s (9.11)

and ¢, (f,j==1,0, 1) are the 9-point Lagrangian interpolation functions defined

by
T ) = #0008, 0n,) (9.17)
where
#_ ()
(g} =1=19"
L% e . (6.3)
so that
¢ & %a (9.18)

Again taking the unit planar square §: PLR(—0.5, 0.5), Table 9.2 gives the
minimum number of Gauss-Legendre integration points N, Ny and Ny (4) In the

variables, o, # and t (f1), respectively, to achieve a relative error ¢ < 10-% for all

the components §, j=—1, 0, 1 of the integral of equation (9.16), using the polar

coordinates (, ind with the angular transformation ¢ () of equation (5.130).

The CPU-time and the maximum relative error for i, j=—1, 0, 1 are also given.

The actual value of the integral corresponding to the ¢,, component, calculated

by Ni g ] was

=N,=128 points is also given. The source point % =x(y
chosen similar to Table 9.1.

This time, more than one integration point is required in each variable,
because of the interpolation function ¢#,- However, only 3 integration points are

required in the radial variable, and the transformation {(#) decreases the

Table 9.2 Weakly singular integral [, ¢, 4" dS over the unit planar square: PLR(0.5
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angularintegration points by a factor of 1.6~1.8. The extra CPU-time for the
angular variable transformation is shown to be negligible.
Fig. 9.5 shows the relative error against the number of radial integration

points, and Fig. 9.6 shows the relative error against the number of integration

points in the angular variables # and #(#), for the case of x,=x(0, 0).
Next, the effect of the position of the source point x,, on the efficiency of the

numerical integration is investigated. Moving the source point x,=x(7, 7) from

#=0 to §=1.0 along the diagonal of the planar square element, Table 9.3 shows
the minimum number of integration points N, , Ny and Nyy) in each variable to
achieve a relative error less than 10-°, for the integrals [ ¢ u*dS, (i, j=
—1,0,1). Fig. 9.7 shows the number of angular integration points Ny using the
ordinary angular variable #, and Ny using the transformed angular variable #(#)
against 7 , which indicates the position of the source point x,=x(7, #) along the
diangonal of the element.

It is evident that as the source point approaches the corner (or edge) of the
element the number of angular integration points N increases rapidly. This is
due to the angular near singularity mentioned in section 5.6, This problem is
overcome by introducing the angular variable transformation #(#) of equation
(5.130), which weakens the near singularity in the angular variable ¢, Table 9.3
and Fig. 9.7 show that the transformation #¢) is robust against the change of
position of the source point in the element, and that the number of integration
points (, and hence the CPU-time,) can be reduced by a factor of more than 6 by
integrating in the transformed variable {(¢) instead of 4, as the source point
approaches the corner of the element (7>0.9). Hence, this angular
transformation #(#) becomes particularly useful when using discontinuous
elements, which employ source points near the edge or corner of the element.

For the case x;=x(0.9,0.9) (or 7=0.9 in Table 9.3), the maximum relative

error (for i, j= —1, 0, 1} is plotted against the number of radial integration points

Relative Error

/

Weakly Singular Integral
J s 9 u*dS

S : planar square

PLR(0.5,05)

X,=x(0,0)

t(0)
( Nygy=5)

Fig. 9.5

2

Number of Radial
Integration Points

Relative error vs. Number of radial

integration points




Table 9.3  Weakly singular integral [g ¢ u* dS over the unit planar square:

PLR(0.5,0.5)  ( effect of position of source point )
Relative Error

1 Weakly Singular Integral T'"l"”l‘?"":fl}"*-“%' Msulm; Tf::r{-:f"}rmmiun No Integral
Py 7 2y /)
7 L= s J drfe ¢ u*dsS
] = Nys . el
S J-S (P,)' u*ds Ny %X N, total Nygy X N, total (128 128pts., ()X o)
) S : planar square 0 8x3 96 5x3 B0 1.6 | 6.3283998 X 102
10 PLR(0.5,05) 0.2 9%3 108 5x3 60 | 18 | 9.5485251 % 102
2 XE= X[ 0 , 0 ) 0.4 123 144 6x3 72 2.0 1.8719597 X 10!
10 T 5 = - —

16 %3 4 3.2822709 x 10!

25X 3 i f 3 J 46027876 X 10!

4.6096971 X 10~

540 4 X 44780849 % 10"

600 3 g 3. 4,2744234 % 10-!

660 3 3. 3.9746827 > 10!

960 3.5329583 x 10!

100 x 3 1,200 3.2243822 X 10!

(128) X 3
. - L «=2X10-%
6 7 8 (128) X 3 ) : 15 »
Numb f Angular e=5x10-4 | 8x3 a6 2.8307336 % 10
umber of Angu c

Integration Points 1.0 7%3 4%3 24 18 | 27602086 % 10-1

96 3.0295234 X 10!

Relative error vs. Number of angular Position of source point: x;=x(7, 7). Relativeerror ¢ <10-%
integration points




in Fig. 9.8, and against the number of angular integration points in Fig. 9.9,
respectively.

Comparing Fig.9.6 (j7=0) with Fig. 9.9 (5=0.9), the angular near
M

singularity and the effect of the angular variable transformation 1 (#) is more
pronounced in the latter (7 =0.9),
Next, the effect of the aspect ratio bla of the planar rectangular element

PLR {(a, b), on the efficiency of the numerical integration is investigated. Selting

Position of Source Point

Number of angular integration points vs.

a=0.5 constant, b is varied from 0.5 to 5, so that the aspect ratio ranges from 1 to

10 . In each case, the minimum number of integration points required to achieve

relative errors less than 10" for ¢, j=—1,0,1 for the integral [, ¢ u*dS by the

e
1

method of polar coordinates {p, @) and the method using the angular variable

transformation (p, £(4)), in Table 9.4, Fig. 9.10 gives the convergence graph of the

0.6

maximum relative error for i, j= —1,0, 1 vs, the number of integration points in

)

n

the angular variable, for the case when the aspect ratiois 5 (a=0.5, b=2.5).

PLR(0.5,05)

XS=I(ﬁ,

It is evident that as the aspect ratio increases, the number of integration

T
ce =

points in the angular variable # in the method using polar coordinates (p, @)

S : planar square

increases rapidly, whereas with the method using the transformed angular

JS 0 u*dSs
0.4

variable ¢(#) of equation (5.130) the number of integration points increases very
slowly.

Weakly Singular Integral
Position of source point

%
4

From the above numerical experiments on weakly singular integrals

)

Jsu*dS and [g ¢ u*dS over the unit planar square and planar rectangles, the

R e

robustness of the angular transformation f (#) against the position of the source

0.2

point and the aspect ratio of the element is verified.

As for the weakly singular integrals [gq* dS and [, gyatds, results are

not given for planar elements, since (r, n)=0 and q*=—(r, n) / (4x")=0 for

r#0 so that the integrals take the value of zero, excluding the Cauchy principal

i

(relative error < 10
o
1
Fig. 9.7

value, which is defined as the limit as the source distance d—0 of the

Angular Integration Poin

corresponding nearly singu]ﬂrintegral,.'l'his will be mentioned in Chapter 10,
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Table 9.4 Wea singular integral [, ¢ u*dS over the planar rectangular element: PLR (0.5, b)
Asgerk Polar Coordinates ( Angular Transformation (o, #08)) | N, Integral .
: b T — ; 4nfef, u*dS
Bl Ng X N tatal Nig X N, total RO 128 % 128pts., H4) X p)
1 0.5 83 96 5% 3 60 1.6 5.3283998x 10~
2 1.0 113 132 6x3 72 1.8 6.8978324 10~
o 3 1.5 14 X 3 168 6x3 T2 23 7.4886094 <10~
v 5 2.5 20 X 3 240 7x3 84 29 | 7.9307007x10-2
10 5 283 336 8x3 96 3.5 8.1984132x10-*
Source point x,=(0,0,0), relative error < 109,
Relative Error
/
| e
Weakly Singular Integral
10 | s ¥y U ds
-2 .
10 L S : planar rectarjgle
aspectratio=5
-3 PLR(05,25)
105
w
o —4
T 10
=5
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-6
10 T
) I I P S (T . gy il BN g 1 i B
-
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Number of Angular
Integration Points
Fig. 9.10 Relative error vs. Number of angular integration points
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9.3 ‘Spherical’ Quadrilateral Element with Interpolation Function ¢

In the following, results of numerical experiments on weakly singular
integrals over curved boundary elements are given in order to demonstrate the
efficiency and robustness of the method proposed in Chapter 6 using polar
coordinates (o, @) in the plane S tangent to the curved element at the source point
x5 and the angular variable transformation £(#).

First, numerical results on the element SPQ60 defined in section 8.2 (2) is
given. This element is a 9 point Lagrangian element obtained by interpolating a
spherical quadrilateral subtending 60° in both the latitude and longitude on a
sphere of radius 1. The typical element size is 1.

(1) Resultsfor [;¢ u*dS

Numerical results on the weakly singular integral

‘ \-uu‘ll.‘; 3 {ihj==1,0,1) (9.186)
5

over the ‘spherical’ quadrilateral element SPQB0 are given in Table 8.5, where u*

and the 9 point Lagrangian interpolation funetions ¢, (i,j=—1,0, 1) are defined

as in equations (9.11) and (9.17). The source point x, isset to x(0, 0), x(1, 0),
x(1,1) and x(0,1). The minimum number of Gauss-Legendre integration points to
ichieve relative errors less than 10" for all the components ¢, (i,7=-1,0, 1),
using polar eoordinates (p, #) in the tangential plane S, and using the angular
variable transformation ¢ (#) are given in the table, similar to Table 8.2. This
time, 5~7 integration points are required (compared to 3 for planar elements) in
the radial variable o, due to the curved geometry of the element. The angular
transformation t (f) reduces the number of integration points by a factor of
1.3~1.7.

For the case x,=x(0, 0), the (maximum) relative error is plotted against the
number of radial integration points in Fig. 9.11 and against the number of

angular integration pointsin Fig. 9.12.

p

Table 9.5 Weakly singular integral Is‘d“u‘dﬁ over a ‘spherical’ quadrilateral: SPQ60
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Fig. 9.11 Relative error vs. Number of radial Fig. 9.12 Relative error vs. Number of angular
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= |
: Table 8.6  Weakly singular integral [ #,u*dS overa'spherical’ quadrilateral :
Next, the effect of the position of the source point x, is investigated by >
SPQE0 ( effect of position of source point )
moving it along the ‘diagonal’ of the element i.e. X;=x(7 02951
Table 9.6 gives the number of integration points N, , N¢ and Nyg in each
variable to obtain 8 maximum relative error less than 10-5 for the integrals Polar U‘-‘“T}i“m"s ngular Transformation Ni Integral
) (p,d (p, 1)) f y ;
fo¢, u*dS, (i, j==1,0, 1). Fig. 9.13 plots the number of angular integration i = Nuo dn sy utdS
] g
s (128 128pts., H#) X o)
points Ny and N;s against the position of the source point j NygxX N, total Nusy %X N, total

Similar to the case of the planar square element in Table 9.3 and Fig. 9.7, 0 8%5 160 ExE 120 1.3 5.6759090 X 10-2

the number of angular integration points Ny using just polar coordinates (p, #) = -
: = i 0.2 9x5 180 TXE 140 1.1 7.2742430 X 10-*
increases rapidly as the source point approaches the corner of the element (7—1). ) 2 — =T
The angular transformation (#) of equation (5.130) has a remarkable effect in 0.4 11 X5 220 BX5 160 1.4 1.9162430 X 10-!
reducing the number of angular integration points. The graph of Fig. 9.13 0.6 16 X 6 984 10X 6 240 1.6 3.3603243 % 10-!
roughly traces that of Fig. 9.7 for the planar square element except that at the
- g : : : : 0.8 0x7 560 11 X6 264 21 4.7758224 % 10!
maximum 14 integration points are required for #{#) in the spherical case,
compared to 8 in the planar case, to obtain a maximum relative error less than 0.9 40%7 1,120 14 % 7 392 29 4.80927656 % 10-!
)-8 = = G il
A 0.92 50 X 9 1,800 147 a92 | 35 | 4.6761673 x 10!
Also the number of radial integration points N, increases slightly as the
) ) ) ) ) g 0.94 50 % 7 1,400 14 %7 392 | 8.6 | 4.4668974 X 10-!
source point approaches the corner of the element, which was not seen for planar L
elements, This is considered to be due to the curvature of the element, 0.96 45 X7 1,260 14 %7 392 3.2 4.1559238 x 101
L = L Sas S =

For the case of x,=x(0.9, 0.9) , the maximum relative error is plotted 0.98 64 X7 1,792 12 % 7 336 | 53 | 3.6945555 X 10-!

against the number of radial integration points in Fig. 9.14, and against the
; A 0.99 90 X 7 2,520 14 X 7 392 | 64 | 3.3709633 x 10-!
number of angular integration points in Fig. 9,15, respectively.

Compared to the case of x,=x(0,0) in Fig. 9.11 and Fig. 9.12, the necessary 0.985 120 X 7 3,360 14x7 J92 8.6 3.1662071 x 10!
number of radial integration points (for relative error less than 10-% has 0999 | (128) %7 (3.584) 12 %7 336 | (11 2.9569854 X 10!
inereased from 5 to 7, and the angular near singularity and the effect of the

» [ . 1.0 TXT 98 Bx7T 84 1.2 2.8B27304 X 101
angular variable transformation ¢(#) is more pronounced.

Position of source point: x,=x(3, 7). Relative error ¢<10-5,
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For planar elements we had (r, n)=0, r= 0 and hence ¢*=0, r= 0. However,
for curved elements, (r, n)=0 as shown in Fig. 9.16, so that ¢*=0, In fact it was
proved in Theorem 3.1 (equation (3.10)) that

" (9.19)

(r,n}
Q. -

for 0<r<1, where K, is the normal curvature at x=x,. Hence, it is expected
that the integration of the weakly singular integral [ ¢ q* dS gives numerical
results similar to that of [, ¢ u*dS , for curved elements. In the following,
numerical resulls for the weakly singular integral [g ¢ ¢+ dS over the 'spherical’
quadrilateral SPQE0 are given.

In all the numerical experiments with weakly singular integrals over curved

elements, the unit outward normal n is defined by

(9.20)

where

(9.21)

Table 9.7 gives the number of integration points Ng, Ni (g and N, required

to obtain a maximum relative error less than 105 for the weakly singular integral

5 ends (9.22)

(ij=-1,0,1)
§

over the ‘spherical’ quadrilateral SPQ 60. The source point x, is chosen asx(0, 0),
x(1, 0), x(1, 1) and x(0, 1). Results similar to Table 9.5 for [ Fut dS are
obtained.

For the case x,=x(0, 0), the maximum relative error is plotted against the
number of radial and angular integration points in Fig. 9.17 and Fig. 9.18,
respectively.

The effect of the position of the source point x, is shown in Table 9.8 and

Fig. 9.19, similar to Table 9.6 and Fig. 9.13.
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Table 9.7 Weakly singularintegral [ $,q*dS over the ‘spherical’ quadrilateral: SPQ60
Polar Coordinates ( o, 8 ) Angular Transformation ( o, ##)) :
Source point Ny Integral
CPU [CPU/point| relati | CPU [CPU/point| relati N, A lagynted
(i3} . Jipoint| relative [\, . /point| relative 08 = :
nd Al (msec) | (wsec) error (NuiayXNp) total (msec) | (wsec) error (128128pts., £8)X o)
(0,00 Bx5 160 4.5 28 6x10-7] 6x4 96 |. 2.8 29 5x10-7 13 —2.6807077 x 10-?
(1,0) TX6 126 3.5 28 Tx10-7| 6x6 108 ] 3.1 29 9 x 10-7 1.2 —4.0201067 = 10-*
(1,1) TxX6 B4 2.4 209 6x10-7] 6x6 T2 | 2.1 29 4 x10-7 1.2 —1.1608845 x 10-!
(0,1) 10x 6 | 180 5.0 28 1x10-T] T%B 105 l 3.0 29 9 % 10-7 14 —4.4071135 = 10-*
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Table 9.8

Weakly singular integral [g .r-'-“q‘ dS over the ‘spherical’ quadrilateral :

SPQ60

( effect of position of source point )

Polar Coordinates

L\ngu]nr Transformation

N, Integral
el ik N:,” dn J'.g Py’ ds

NeX N, wial | Neox N, |wotal (128 128pts., H(6) X p)
0 BX5 160 6X4 96 1.3 —2.6807077 X 10-2
0.2 10 %5 200 TX5 140 1.4 —4.5622416 x 10-*
0.4 12X 6 288 ax5b 180 1.3 —B.6645831 % 102
0.6 20 %6 | 480 11 X6 264 1.8 —1,4822399 x 10!
0.8 25X 6 600 12 % 6 288 2.1 —2.0071886 X 10!
0.9 40 %X 6 | 960 14 %6 336 29 ~1.9613109 x 10!
0.92 40 % 6 960 14x6 336 29 —1.8953344 x 10!
0.94 45 % 6 1,080 11 %6 264 | 41 | —1.8000174 x 10"
0.96 65 X 6 1,320 14 %6 336 39 —1.6664471 x 10!
0.98 72X 6 1,728 : 14x8 336 5.1 —1.4774935 X 10!
0.99 90 % 7 14 X 6 336 6.4 —1.3492079 % 10!
0.995 110 % 6 2,640 14%86 336 7.9 —1.2694574 x: 1
0.999 (,I::_J':F:;c-‘iu‘l; + (3,072 10 %6 240 | (13) —1,1590655_:&_-10-’_
1.0 Txé 84 B6X6 T2 1.2 —1.1608845 x 10!

Position of source point: x,=x(3, 7). Relative error ¢e<10-%,
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For the case x,=x(0.9, 0.9) , the relative error is plotted against the number
of radial and angular integration points in Fig. 9.20 and Fig. 9.21, respectively,
Comparing the results obtained for [ $4q* dS with the corresponding

results for [ §,

u* dS, it is observed that they show very close resemblances.

This can be explained by the resemblance of the kernels

§* ~ —— u* for D<ral (9.23)

(ef. Theorem 3.1 and equation (9.19)), and the fact that the kernels u* and ¢* are
dominant in the region 0<r<1 near the source point x, , so that the
characleristics in the region 0<r<1 are reflected in the behaviour of the
integrals [¢ ¢ u*dS, [¢¢ q* dS, and the precision of the numerical integration

methods for them,

Relative Error
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9.4 Hyperbolic Quadrilateral Element with Interpolation Function $,

As another type of curved element, numerical experiment results on the
hyperbolic quadrilateral element HYQ1 defined in equation (8.15) of section 8.2
(3) are given in order to show the efficiency and robustness against element
geometry, of the method of polar coordinates with the angular transformation t (6)

for weakly singularintegrals.

(1) Results for [, g, u*dS

Table 9.9 gives the number of integration points Ny, Ny (5 and N, , required
to obtain a maximum relative error less than 10-% for the weakly singular
integral [ u*dS, (i,j=—1,0, 1) over the hyperbolic quadrilateral HYQL. The
source point Xy is located at x(0, 0), x(1, 0}, x(1, 1) and x(0,1).

For the case x;=x(0, 0) , the maximum relative error for ¢, j==1,0, 1 is
plotted against the number of radial and angular integration points in Fig. 9.22
and Fig. 9.23, respectively.

Table 9.10 and Fig. 9.24 show the effect of the position of the source point
Xg=%(7, 7}, 7 =0—1,0n the numerical integration and compare the use of # and ()
as the angular variable.

For the case x,=x(0.9, 0.9) , the relative error is plotted against the number
of radial and angular integration points in Fig. 9.25 and Fig, 9.26, respectively.
Compared to the case x,=x(0, 0) , the number of radial integration points N,
(required to achieve a relative error less than 10-7) increases from 4 to 7, and the

angular near singularity and the effect of the angular variable transformation t{#)

becomes more pronounced.
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Table 9.10 'Weakly singular integral [ #,u*dS over the hyperbolic quadrilateral:

HYQ1 ( effect of position of source point )

Relative Error Weakly Singular Integral
J-S ‘PU u'dS ]!u[nr:ZDO::i}innL\-s Anguin:']‘rn;{n?]ﬁmn.-‘LJ._m Ny Integral
i % £l | _.'\‘._ dr [o ¢, u*dS
g i Num p 5.
e S : hyperbolic quadrilateral NoxN, |total | NggyxN, |total (128 128pts., d)X p)
(HYQ1) 5
0 BX5 160 64 96 1.3 5.8486239 x 10-*
10 't = i
X;=x(0,0) 0.2 10 % 5 200 7x5 140 | 1.4 | 1.0198064 x 10-"

14 % E 280 £ 1.9736308 x 10!

20 X 6 480 3.4712015 X 10!

25 X 6 600 i 4.9061557 x 10~

40 % 7 1,120 £ T 26 . 4.8962891 x 10!

S0 X8 1,600 T 224 v 4.7417784 X 10

50x8 1,600 (B 256 3. 4.5040850 X 10

60 %7 1,680 i 4.1555278 X 10

80X 7 2,240 f i 3.6430300 X 1(

110X 7 3,080 £ 3.2883544 ¥ 10~

(128) % 7
L c=4%10-5 [(3.584) 3.0649529 X 10-"

r g R

8 (128) X 7 ,

c=6x10-¢ |(3,584) 2,8385477 X 10~

Number of Angular
Integration Points 4 Bx7 84 5X : 2.7591133 X 10~!

F|g 9.23 Relative error vs. Number of angular Position of source point: x;=x(7, 7). Relative error
integration points
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Table 9.11 Weakly singular integral [, ¢, q*dS over the hyperbolic quadrilateral: HYQ1
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Table 8.12 Weakly singular integral [, ¢ q¢*dS overthe hyperbolic quadrilateral:

- HYQl  (effect of position of source point )
Relative Error :

/] Weakly Singular Integral
Polar Coordinates  [Angular Transformation N Integral
J *ds . (p.80) (p,t5)) 4 -
s lpﬁ q R ] == dn ¢, u*dS
1 - Num o P s
NgxN, | total | NgpyxN, |total 128 128pln.; 40X p)
S : hyperbolic quadrilateral
-1 0 6X4 96 8x4 128 | 0.75 5.4181104%10-*
16k (HYQ 1) i _ . . _
0.2 x5 180 9x5 180 1.0 5.6473892x 107
Xs=x(0,0) T
-2 " 3
10' F 0.4 10 X 5 200 10 %5 200| 1.0 3.9303177x10-7

16 X 6 384 | 5.2697491x10-*

25 % 7 | . —1.6637769%10-?

2xT 5 . —1.1809626 % 10—

2xe6 9 B X 6 a8 ! 5.9762477x 103

1.4922905% 10-2

16 % 6 b 2.5 2.59090956x 10-*

14X 6 3.9 3.9253216x10-*

16 X 6 4.0 4.6947306 %107

- BOXT 16 % 6 5.0 5.1087330x 10-*

] 1
6 FA R i
Number of Angular

100 % 7 16 X 6 g 6.3 5.4558568 X 103

Integration Points : 66 72 6%6 1.0 5.5451645%10-2

F|g- 9.28 H.elative error vs. Number of angUIar Position of source point: x;=x(7, 7). Relative error ¢<10-5,
integration points
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9.5 Summary of Numerical Results for Weakly Singular Integrals

In this chapter, numerical experiment results were presented to verify the
effectiveness of the method of using polar coordinates ( p,#) in the plane tangent
to the boundary element at the source point x, , with the angular variable
transformation ¢ (8) proposed in Chapter 5, for weakly singular integrals arising
in three dimensional potential problems,

It was shown that the use of polar coordinates alone "' ' requires excessive
number of integration points in the angular variable §, when the source point x4
is near Lthe corner or edge of the element as in discontinuous elements, or for
elements with high aspect ratio.

It was also shown that the proposed angular variable transformation ¢ (4) of
equation (5.130) overcomes the above mentioned problem by weakening the near
singularity in the angular variable by the transformation. Numerical results for
kernels u* and q* with 9 point Lagrangian interpolation functions $y over
planar, ‘spherical’ and hyperbolic quadrilateral elements showed the robustness
of the transformation ¢(#) against the position of the source point, integral kernel
and element geometry.,

The effectiveness of using the radial variable p for weakly singular
integrals with kernels u* and g* with interpolation functions ¢, was also
verified, in accordance with Theorem 3.1, which implies that
q* ~ —Kn/2 u* ~0(1/r)~ O(l/p) for 0<p<1,

Summing up, the use of polar coordinates (o, #) in the tangent plane with
the angular variable transformation t (#), in combination with the Gauss-
Legendre quadrature rule, is & robust and elficient method for the caleulation of
weakly singular integrals [ ¢, u* dS and [o¢, ¢* dS over general curved
elements. Hence, the method can be safely applied to weakly singular integrals
which arise in the calculation of H, G matrices for three dimensional boundary

element analysis ( e.g. potential problem ),




Other methods for weakly singular integrals ® % '%. 20 haye not been
compared with the present method, which gives good enough results, mainly
because the stress of this thesis is on nearly singular integrals, which are more
difficult to caleulate, and also because the present method of polar coordinates
with angular variable transformation can be considered as a special case of the
proposed PART ( Projection and Angular & Radial Transformation ) method for
nearly singular integrals, indicating a unified approach to weakly singular and

nearly singular as well as hyper singular integrals, as will be shown in the

following chapters.
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this chapter, results of numeric rriments ¢
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As an example, we take th

planar square element S : PLR (0.5, 0.5) ,
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—-05 ==
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nent size is 1, so tha

source distance,
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= (0.25, 0.

The source point ,d ) will be set so that the source projection

is always




X = —(0.25,025,0)= x(0.5,05) (10.21)

as shown in Fig. 10.1 , and the source distance d is varied from 10 to 10-?in
order to see the effect of the source distance on the difficulty of numerical
integration. %, isset off the centre in order to represent the general unsymmetric
case where ®, = x(0, 0)

Numerical integration results for the integral [ u* dS using the singularity

1) , with and

cancelling radial variable transformation R(p
without the angular variable transformation (#) of equation (5.130) ; the product
type Gauss-Legendre formula * % % of equation (4.24) and Telles' cubic
transformation method '* of equation (4.51) are compared in Table 10.1. The
minimum number of integration points in each variable required to obtain a
relative error less than 107 is shown. Fig. 10,2 gives the convergence graph of

relative error ( in log seale ) vs. the number of integration points, for the case

ince d=0.1,

when the source dis
As shown in Table 9.1, only one radial integration point is required for the
integration

was =L | 5 (10.22)

when the radial variable transformation
I Val4d (10,19)
corresponding to

dp =" dR = (10.23)

is used, irrespective of the source distance d , whereas with the Gauss and Telles'

methods increasi

g number of integration points are required as the source

s. Thisis

distance decreas because for planar elements, r=r" in equations (5.43)
and (5.44), so that the near singularity due to 1/r in equation (5.44) and (10,22) is
exactly cancelled by the r’ in the Jacobian due to the transformation of equation

(10.19) and (10.23). In other words, the radial integration is done analytically.

Xs=(0.25,0.25.d)

Fig. 10.1

Unit planar square element S

and source point

Xs
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Next, the effectiveness of the radial variable transformation

Rip) = - — (10.20)
Vo +d
corresponding to
pdp =r'"dR ; (a=3) (10.24)

for the integration

. 1 [ iem)
q* d8 = - — ] ds
8 4z lg =
d 485
S ) (10.17)
Ix ]y =

over a constant planar element S, is demonstrated in Table 10,4 .
Again, the unit planar square element PLR(0.5, 0.5) with the source point at
x5 =(0.25, 0.25, d) is taken as an example. In this case, the unit outward normal

n isdefined as
n=- o (10.25)

where

Lo (10.26)

as shown in Fig. 10.1, so that

(10.27)

r,nj=d

Similar to the case of [ u*dS, a=1 in Table 10.1, only one integration
point is required for the radial variable, independent of the source distance d. For
the Gauss and Telles' methods, even more integration points are required when
0<d<1, since the order of near singularity is « =3 for q*, compared to « =1 for u*.
Fig. 10.5 shows the convergence graph for the case when the source distance is

d=10"" and the source projection ®;=x(0,0).




Table 10.4 Nearly singular integral [, ¢* dS over the unit planar square:

PLR{D.5, 0.5)

Rig)= =1/ V4 &, (a=8) =
Source |— Gauss Telle Integtal
£ Angular variable £ 1) :
listance = = N, dr foqg*dS
| . 3 cru
) ek v "’:z:‘:.{lﬂ\ Ny % N | tatal |:|-I:.._I 4 N Ny %Ny Lok} {imsec) (analytic
+ I —
10 101 | 40 | 1.4 431 16 | 0.70 | 2 ax3 9 : 0.40 | —9.9565067 % 1
1 i 1 4
10x1 0 | 1.4 5x1 20 | 0.88 0 ax4 12 0.47 | —1.0603981 %10~}
|
Tx1 28 1.0 3% 1 20 | 0.81 1.4 o 16 0, <10
; i : :
0.3 6x1 4 | 0.M1 1 '8 1.0 0.86 1 12 64 1 16419
A | |
0.1 . | 20 0.8( 1 28 1 0,71 3232 1024 1414 19¢ 4 TE08104
0.03 a1 1 0.57 1 B I 0 0.4 100 100 |11,000| 240 25%25 62 14 580681327
0,01 ax1 12 0.5 7 28 1.0 0.4 y [65.536] 1,430 i 5 2,025 i -6 1
! .
0.003 ax1 12 | 0.5 ax1 12 | 0.58 (] 1) |65,536] 1,420 2% T 5,184 | 113 | —6.2352619
|‘ ' |
0.001 axi 12 | 0.5 %1 28 | 1.0 0.43 1,430 100100 IIf.l.llllll 217 | —6.2672102
Source point x,=(0.25, 0.25, d). Relative error 10"
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This time, the angular variable transformation () does not pay off when
B paj

nd F

d=0.3. However, Table 1(

g. 10.6 show that when the source projection

%s=x(7, 7) is near the corner of the element (0.96=

2 1.0), the transformation
#(#) helps to reduce the number of integration points in the angular variable.
Hence, the angular variable transformation #(f) ensures the robustness of the
numerical integration method against the position of the source projection &,

This is demonstrated in the convergence graph in Fig. 10.7 for the case

=x(0.99, 0.99), d=10-1,
Table 10.6 demonstrates the effect of the aspect ratio of the element on the
q* dS .

numerical integration of [, It is shown that the radial variable

transformation method is robu

agninst the aspect ratio, where as the Gauss and

Telles' methods are strongly affected by the aspect ratio.

Summing up, it has been demonsirated that the singularity cancelling
radial variable transformations of equations (10.19) and (10.20) require only one
radial integration point for the exact evaluation of the nearly singular integrals

Jou*dS, (a=1) and [;q*dS (a=

respectively, when S is a constant planar

nent. The effectiveness of the angular variable transformation ({#), for cases

where the source projection %, is very near the element edge, and for elements

with high aspect ratio, was also demonstrated.

ANAr sgua

J.q*dS over the unit p
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10.3 _Application of the Singularity Cancelling Transformation to Elements with

Curvature and Interpolation Funections

The success of the singularity cancelling radial variable transformation R(p)

of equations (10.19) and (10.20) for constant planar elements, encourages us Lo

apply the method to curved elements and integrals including interpolat

funetions ¢ (7

(1) Applics

Results of applying the singularity cancelling radial variable

transformation

(10.19)

Rip=vel+d ta=1)

in combination with the angular variable transformation ((#) of equation (5.130),

to the nearly singular integral

[ urag =] A2 (10.22)
Is

are given

over the ‘spherical’ quadrilateral element SPQE0 defined in section 8.2,

in Tables 10.7, 10.8 and 10.9. In each case, the source projection was set to

with 7=0, 0.5 and 0.9, respectively. The source point x; was located at

x=x +do (10.28)

where the source distance d was varied from 10 to 10", The unit outward

normal n is defined by

n=G/|G (10.29)
L (10.30)
rlv.,I "'.l._,
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distanee

N total GEL N %N CPL (log-Ly, 128128
ee) | (msec)

10 5 LN _T 4 l 20 0.6 1.0519218 % 10

3 53 | G0 7 4% 5 20 0.62 3.65605101X10

1 5X3 60 1.7 P ] 25 0.72 1.0458484
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Average CPU

Table 10.8 Nearly singularintegral [ u* dS over the ‘spherical’ quadrilateral: SPQ60

( Source projection Xy=x(0.5, 0.5} )

Source

distance

Ripl=Vpg

d?

/ . la=1):
Angular variable: #8)

CPU

CPU

Integral

4r [qu* dS

| Nun ¥ Nai, sts 3 tal og-Lj, 128 % 128)
C 1)} Rip) total | (msec) total (mseo) (log-Ly, 128 X1
| i ;
10 620 480 12 45 4 0,68 1.0576605> 10"
3 620 480 12 4%5 20 0.68 3.6025808 X 10
— —— 4 ! - —
1 620 | 480 | 1 X4 ‘ 20 0.62 1.0467642
== b i == e
0.3 5x20 400 9.6 626 i 1.0 2.1748271
0.1 5x14 280 6.8 9%9 | 81 2.0 2.8377859
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0.01 628 672 16 2020 400 B.T 3.2263821
0.003 —l 6340 960 15%35 | 26 587902
0.001 660 1,440 14 45%50 ’ 47
2T usec

] -time per point :

rror <10

%, Source paint x4,

— Y



{ Source projection X

Source Telle
A r le; Ha)
distance | ix [ ds
- | oprr T3 T .
d N A CPL ol 5o . CP1 (log-Lj, 128 12
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10 ¢ ) 80 1 4%5 20 | (.68 1.0687T84 % 101
1
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| e
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0.001 10x90 3.600 85 4025 1,000 21 2.3379046
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Hence the source point X, is located towards the centre of the sphere (inside the
sphere when d=1). Fig. 10.8, 10.9 and 10.10 give convergence graphs for the
cases =0, 0,5 and 0.9, respectively, with the source distance fixed at d=0.01. = "
i o - O I |
The results indicate that, unlike for constant planar elements, more than L, % ", Y >
£ = o 2| @ = ] w w | o
one integration points are required in the transformed radial variable R and that 2 i ::: L § é Bl E| S 1:"3 » | ¥ @
; ; : @ s> s |lalz|l=| 2| 8| 2| 2| 8|
the number increases rapidly as the source distance d decreases, and as the % i L = ] @« iy ) = = = = =0
A y : G 2 la| ||l F|l || | 0| @
source projection %; approaches the corner of the curved elements. Compared with = = | I | ] I | I ] I
g
: i o ; g L=
Telles’ cubic transformation method of equation (4.51), the radial variable = 1
i . i 3 : . - 5 = 2 :7 ¥ = I g
transformation method of equation (10.19) (a=1) requires less number of 42| o} pic o | = | i3 wlazs| gl g L
3 OE = B[ G
integration points only for cases d=0.03 for §=0, and d50.003 for §=0.5. i = | L
- — -
= & -+ =] ]
g 5 g = el e o 2| 8 =]
s . 1 " . - o . s L & = i 5 L, = e “
Similarly, results of applying the singularity cancelling radial variable B = = = =y w
: 2 g & |
sformation = R |
™ e o
1 ’ g I e @ I =) -
R - = la=3) (10,20} z 2 = o * - = © £ = @ =
e e X w| x| | x| x| x| x| x| x|
2 ‘6 el o | | w| o| = v|las| | o
. i : - = = L ™ - w =)
with the angular variable transformation ##), to the nearly singular integral - ‘ﬁ__:' |
1] = E-
ir,n) ~ =
df=——| —— d§ (10.31) ,;o @ - Eg, | @ | ~ o= o~ | = I | e
iz | g ] - - — 21 =] - L] )
83 3| $s|0CE 4 =
3 : T ; T g o L 1] o
quadrilateral SPQ60, are given in Tables 10.10, 10.11 and L= e ] -
—_ - o -
£ : v . =3 - gl o al| o| o + [ x| 2| 2 ]
=0, 0.5 and 0.9, respectively. The corresponding 5 % 2 =} Pl e|lg|lalal s 28 a
g + g 2 i g
convergence graphs are given in Fig. 10.11,10.12 and 10.13 . il N £ = o E]
Y g 3 | ! ] c g = = 2
Similar to the case of [ u* dS, more than one integration points are & —I -] = 3 :
) = Bo L
. ! I B ) " . o © ) v w© e =< = 2
required in the transformed radial variable R, and the number increases rapidly = I_f_, é i % X X | X X ; L; 'Q ? E =
- = = ) wil w| o] || &l & © o | V
as the source distance dec ind the source projection Ry approaches the — = E =
o a8 B
. 5 e ; M L = i E
corner of the curved element. Compared to the Telles' method, this time the =t ok 1 8
= 28 [
. - 1 - . I . L - o
singularity cancelling radial variable transformation method becomes slightly 8 g o — § 2 ‘f, +
[~ e - = =1 | =
e Z = 2 8 = = - o | = o & 4
more competitive. Namely, the method outperforms Telles' method for the cases o -7 e e i B =
= =
d=0.1 (7=0), d50.01 (7=0.5) and d=0.001 (7=0.9). o




Table 10.11 Nearly al [. g* dS over the 'spherical’ quadrilateral: SPQ60
( Source projection %, =x(0.5, 0.5) }
Source B a]\:_.l\\_;_ I{.I_:S] Telles Integral
distance : 4r [.q*dS
d Ny X H tal ,:._Ii[h.‘_l_, Ny XN total u(;-_.}:f‘.. gLy, 128X 128)
10 ax20 400 9.8 3x 4 | 12 0.52 —9.4067128x10~"
3 5x20 400 9.9 i X 4 ‘ 16 0.60 -—1.-1;20;’;3.>< 10-1
1 620 480 12 X & 25 0.74 —1.0499297
0.3 614 336 8.4 T 49 1.3 —4.0862770
0.1 67 168 4.4 14 X 14 196 4.5 —B.4265768
0.03 Bx20 640 16 25 X 25 G625 14 —7.4555989
0.01 Bx32 1,024 25 40 % 45 1,800 40 —T7.74801489
0.003 B 45 1,440 a5 64 X 72 4,608 100 —7.8489797
0.001 9%110 3,960 a5 100 > 100 'I 10,000 217 —T7.8776623
Average CPU -time per point : 25500 28usec
Helat rrar<10 Source p x - ntre ol sphere

Table 10.12 Nearly singular integral [ q* dS over the ‘spherical’ quadrilateral: SPQ60

( Source projection ®%;=x(0.9,0.9) )

Source Rlp)=—lvig 4t Telles Integral
Angular variable: t(8) ers
distance 4 [oq*dS
d Nus*NRis) | total I [E;l:c{:;] Ny, XNy, total ‘gl;éi] (log-L1, 128X128)
10 6x32 768 19 x4 12 0.52 —8.5565994 X 10-%
3 BX28 672 17 4x%4 16 0.60 —1.1487448x 101
1 6X16 384 10 5X5 25 1.3 —1.0162495
0.3 Tx14 392 9.7 TX8 b6 1.5 —2.5547829
0.1 BXT 224 5.8 11x14 154 3.6 —3.7059921
0.03 10x 25 1,000 24 14x18 224 5.2 —5.5991854
0.01 1040 1,600 39 28x 32 896 20 —6.7346103
0.003 1472 4,032 96 50%55 2,750 60 —7.1833142
0.001 10128 5,120 122 BOxT2 5,760 125 —17.3129500
Average CPU -time per point : 25 usec 30usec

Relative error <10-%, Source point

X;, towards centre of sphere.
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Summing up, for curved elements, the singularity cancelling radial variable

transformations R(p)=Vp*+d?,(a=1) for u* and Rl(p)= —1/V '+ d2, (a=3) for
q* do not perform as dramatically or efficiently as they did on constant planar
elements. Particularly, these radial variable transformations are not robust
against the position of the source projection &, although the « =3 transformation

is slightly more robust than the «=1 nsformation. The other shortcoming of

the singularity cancelling transformation is that different sets of integration
points are required for the kerneles u* and q*, unlike the Telles' method. Hence, a
more robust and efficient radial variable transformation is required.

The angular variable transformation t(#) of equation (5.130) is robust
against the position of %, since the number of angular integration points

increases only slightly as &, approaches the corner of the element.

At this point, a more accurate cancellation of the near singularity by taking

into consideration the curvature of the element at the source projection &5, in the

radial variable transformation was attempted, as mentioned in Chapter 5. This
approach showed some effect in decreasing the number of radial integration
points. However, it has the following shortcomings.

(a)  Exact cancellation of u* or ¢* does not work efficiently when the
integral kernel includes interpolation functions ¢, as will be shown in
the next section.

(b}  Much CPU-time is required in determining the exact projection of the
integration peint x on the curved element, to the plane 5 tangentto §
at®;.

(8] The exact (instead of approximate) projection of the curved element S on
to the tangent plane S becomes complicated, since the edge of the

projected element is, in general, acurvein 5,

(d) Different sets of integration points are required for the kernels u* and g*.




(2) Appli wcluding interpolation functions

Next, the effect of applying the singularity cancelling radial

transformations of equation (10.19) and (10.20), to nearly singular integrals

including the interpolation functions ¢ is tested.

the unit planar square PLR(0.5, 0.5) is taken as the element,

: spurce projection is fixed at %;=x(0.5,0

The 9-point Lagrangian interpolation function

i,j==1,0,1 (10.32)

here

netion.

able transformation

larity cancellin

i Vel 4 of — (10.19)

nsformation #(#) of equation (5.127)

(10.3

1ber of integration points required to achieve a

10-f all the components ¢, ( -1,0,1)is

¢t type Telles' cubic transformation method of equation

itive error was estimated by comparing with results obtained by

Ng=128 points with the log-Lj radial variable transformation method,

ntioned later.)

over the un

u*ds

irintegral [, 4

ingul:

5
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I'he singularity cancelling radial variable transformation of equation

(10.19), a=1, which » ful with the integral [ u* dS over constant

18 80 suco

inar elements turns out to be inefficient for the integral [g ¢, u* dS ,

containing the interpolation function. The convergence graphs for the case

d=0.1 and d=0.01 are shown in Fig. 10.14 and Fig. 10.15, respectively. Only in
cases d=0.003, 0.001 where the source distance d is extremely small compared to

the element, the radial variable transformation R(p) of equation (10.19) is more

ient compared to Telles' method,

T'he reason for this is that when applying the Gauss-Legendre rule to the
variable R, obtained by the transformation of equation (10.19), the integration
points are ideally positioned to integrate L/r but they are far from ideal for the

nomial interpolation function ¢

Similarly, the effect of the singularity cancelling radial variable

sformation

R — A (a=3) (10.20)

in combination v the angular variable transformation #(#), on the nearly
singular integral

| (i,j=-1,0,1) (10.34)

own in Table 10.14, in comparison with Telles' method. The convergence

d=0.1 and 0.01 are shown in Fig. 10.16 and Fig. 10.17,
respectively

M

¢ integration points are required in the transformed radial variable R
because the integration points are not optimally placed to integrate #,/r as a
whole, instead of /7%,

Summing up, for nearly singular integrals with kernels including

interpolation functions ¢, the exactly cancelling radial variable transformations

oy (10.18)

Hence, a more effective

donot g cient numerical integration resu

nsformation (a n

robust radial variable

interpolation fune

curvature of element and position of source point ) is re




Source ) . ' I. E Integral
distanee - . = 4n [o #,, ¢*dS
total CPU Ny %Ny, total |, OE (log-Ly, 128X 128pts.)
| msec . I | msec)
T T
1 8x1 4,006 | 114 3% 4 12 0.53 27808842310
1
3 TXI12 : | 83 4x5 20 0.75 -3.1225319x 10
-y 1 8100 3,200 | 89 BX6 36 1.2 —2.9528453 %102
E —_ — —
: 0.3 8X72 2,304 64 9% 10 | 90 2.6 —2.5686670x10"
0.1 B8¥25 BOO 23 1414 196 5.3 —6.3441539 10!
0.03 TX28 T84 | 22 26%28 T00 19 —8.1669590x10"!
0.01 845 1,440 40 45%45 2,025 53 —B8.6279332x10!
0.003 BxT72 2,304 64 T2x72 5,184 136 —B.77562422% 10!
0.001 Ax 120 3,840 106 100100 10,000 262 —B.8157517x10!

Source point x,=(0.25, 0.25, d), relative error <10-%

Relative Error

/]

Nearly Singular Integral

JS 9 g"ds
S: planar square PLR(0.5,0.5)
Xs = X (05,05)

Q.

= 0.1

" 0BE -

a=3, g

T

10—r x P TR TN SN S U W | ‘/N.umberofp_
500 1000 Integration Foints

Fig. 10.16 Relative error vs. Number of integration points




g -
NGBS ., 10.4 The Derivation of the log-Lo Radial Variable Transformation
§EE
0 Oig
] E&a ?
55 (1) Application of radial variable transformations o dp=r"dR (3 o) to
1 integrals [, L/r' dS over curved elements
o . " s
F oo o In search for a more effective and robust radial variable transformation,
: o
1] . .
_4" e = transformations of the type
: = YP
! S
; 4 a e
/ dp=r'"dR (5.61)
; c
/ 1 K=l or
= L)
g . o % Rip) ,_’ (5.71)
- - uD1 G where
u —
o pERE - (5.48)
et T o
o v
o 1 g were attempted on nearly singular integrals of the ty
== @ - E b 4§
- - ds "
] g 2 - | = (10.35)
g R = ls 7
= w0 o
v, ¥ © 40 £ over curved elements. This time, 7 is not necessarily equal Lo o, unlike the
o = s (=}
_g, g— Lad J = exactly cancelling transformation. All the combinations of the transformation: /
(] o
= > : - A -
D ot W A and order of nearly singular integral: « were attempted for f=1~5, a=1~5.
B AR ] 5 ¥ sing g ; i
= @ Tables 10.15~10.19 give the number of integration points required to
™ L >
D = achieve relative error e<<10-* for the calculation of the integrals [. 1/r dS ,
= o & ]
7 @ . . . a . s
| = (a=1~5); by the radial variable transformations of equation (5.61) with 5=1~5,
. = 5 b= . A
n respectively. The transformations are given by
[
o Rip)= +d?
- —
o
g i Rip) ta=2)
5]
k= 4
w Rig} (g=3)
o L 1 1 1
[ ] I ] ] 1 1 I
o (Ve (=] o (=] (=] [=] o o Rip)= (g=4)
= - - - - - - -




Ripl= - ———— (10.36)

Ihe curved

S was chosen as the "spherical’ quadr

lateral SPQ60. The

source point x; was

such that the source projection is %,=x(0.5, 0.5), and

ource distance

10, 1, 0.1, 0.01, 0.001 towards the centre of the sphere,

I'able 10.2

» actual

ues of the integrals [¢ 1/rdS, (o=

ated by t od with the log-Lj radial variable transformation of

t robust and ble transformation, as will be

and the ang iable trar

ormation #(#) of equation (5.130),

integration points,

source distane =0.01, Table 10.21 gives the number of

n the transform

d radial variable R required to achieve

he cal

ls: [ UrdS | (a=1~5)

1~5 . Fig. 10.18~10.22 give the convergence

to calculate the

s; i=1--3, respectively

mation corresponding to

@

v ; ] (5.64)

of near singula

(particularly for

: transformation requires relatively few

der of nea

ingularity &, curvature of the

se¢ =4, and 5, the radial variable transformation

(10.37)

gives better results than the #=2 (log-Lg) transformation. (The required number
of radinl integration points is less than a half.)
These results can be explained by the error analysis in Chapter 6 (Table 6.5),

where it was shown for planar elements that the numerical integration error

En(F)in the radial variable is given by

E ()~ (10,38)
B 0
for the 7=2 (log-Lg) transformation, and
I (10.39)
0
for the =3 transformation, and
£ () : >4, (a=4) (10.40)
& =0 " fa=3)
for the =1, 4, b transformation.

For curved elements, Eq(F)=0 does not hold strictly, even for a=4.

However, the convergence graphs of Fig. 10.18~10.22 indicate that for « =/,

either t | relative error is smaller or the initial rate of convergence is
faster compared Lo o
To sum up, the radial variable transformation; #=2 (log-Lz2) is the most

robust transformation concerning the order of near singularity o=

The 3=2
transformation gives best results for v =1~3, and the #=3 transformation gives
best results for «=4,5.

Considering the robustness for ¢ =1~5 and the optimality for ¢=1~3, the
=2 (log-Lg) radial variable transformation appears to be the most attractive

transformation.




1]’ quad ral: SPQE0

Source | 2 a=3 a=4 =5
distance |
d N N 1o Nttt 1 N N | Nia) X Nitio| total [Num*
|
| | |
10 6 %20 480 6 X 20 ‘ 480 6 20 480 Bx 16 ! 320 4 X 20 320
i el I £
1 6x20 | 480 | 6 x 20 ‘ 480 6% 20 | 480 6 % 20 | 480 6 X 20 480
0.1 bx14 280 | 6 X 25 | 600 7x 32 ‘ 896 7% 36 ‘ 880 T35 880
0.01 628 T X 40 ‘ 1,120 9%50 |1,800| exe0 [2160 9 % 64
0.001 6X60 |1440| 9 %120 |‘:..‘a::n 9 % 150 ‘Eu,-lfll_l 9% 170 | 6,120 | 9% 100
Average
CPU-time | 24 psec 24 | 28 usec 24 usec
per point
1

Number of integration poi
Source projection : &, =x(0.5,

Table 10.16 Nearly singular integral [ 1/r*dS over the ‘spherical’ quadrilateral: SPQG0

( Radial variable transformation 2=2 : Rip)=log Vo +d" )
Source a=1 a=2 a=3 r=4 a=5
distance L | T I
d Nun*Ng sl (N XNy 1l [INaay XN total |N: Vi total [N Nj
| . |
10 6 > 20 480 ‘ 320 6 X 20 480 5x 16 320 4 x 20 320
|
1 6% 20 480 6 % 20 480 6 x 20 480 6 %20 480 6% 20 480
|
0.1 ExX5 100 B 12 384 | BX 16 512 T =20 560 T %20 ‘ 5RO
= == — : 1
0.01 | 6xX8 192 TX8 224 8x11 J96 9% 14 S04 9x 14 504
0.001 6> 10 240 9% 10 460 9% 14 504 9 %16 576 99X 16 676
Average [
CPU-time 26 psec 25 psec 26 psec
per point |

Number of integration points nece ry for relative

0.5), source point towar

Source projection : R;=x(0.5,




L6E -

-86E -

SPQG0

DOUrce

distance

% N Ry

0.1

0.01

0.001

Average

per point

CPU-time

10n
1 3
total |A X
480 | 6 X 20
480 6 20
216 7% 8
| 16 i 8
| BOO BX 14
i + e
2 560 9 35
HBE

5 psec

Number ¢
Souree proj

Table 10.18

= x(0.3, 0.

Nearly sing

{ Radial variable {

tive error

<10-%

5), source pointtowards centre of sphere.

Source

distance

XNR

0.1

0.001

001 | 6

6 X 16

6 X 32

x 256

x10-%

T68

6,144)

6,144)

480 6 % 20

6x 16

600 7% 20

3,160

216)

BE60

5,400

9,216)

1,800 |

160

Bon

2,000

Average
CPU-time
per point

24 psec

v for relative error <10-%,

wards centre




=00 -

e 10,19 Ne ar i [ dS over the 'spherical’ quadr 1l: SPQ60
Radial ible tran 5 3 R 1/{3( " +d 18]
Sour 1 3 a=4
Source |
das | i T |
. < Ng NusiXNro| t XNRi)| total [Num®Nre)| total |D | total
d | |
| |
10 | &x20 450 | 4s0| 5x16 aoo| 4ax20 | 320
| | |
= i !
1 6 X 16 184 ‘ 6% 16 384 6 X 16 384
s L | =
0.1 ‘ 1,920 B X 1,72 ‘ 1,680 I T % 40 1,120 TX16 448
[ 6,144)| (8 . (92180 9 9216 | | 1,120
0.01 ! ' 3102 | | d 10 % 28
| 6.141)| (9%256 |9.216)| (9%256 |9,216) 800
0.001 | __ le=a%10 13%¢10-2 | 10 » 20
Average ! |
CPU-time | 26 usec 26 psec 28 psec
; |
per point | |
Number of integration p sary for relative error <10-%,
Source projection : R source point towards centre of sphere.
Table 10.20 Value of nearly singular integral [, 1/r*dS over th rilateral: SPQG0
{ Source projection: ®,=x(0.5,0.5) )
Source
distance 2 g 4 &
L4
|
10 1.0576605x10-1 1.0722041 %10 1.0870732x10-% 1 3T 10 1.1178239x10-®

1.0467642

1.0501187

0534972

1.0569000

1.0603272

0.1 2. 1.0589840x 10 | 5.2819788x10 271107 589253 % 107
_ : “ ;| i'
0.01 21 24321063 %10 6.1913243 X 10 3.1700026 10¢ 2.1147560x10
|
- = | |
0.001 0995 3.8615209x 10 6274135610 : 3.1446057 % 10" : 2.0964182x 107
Calculated by the log-L radial variable transformation : R(g) = log( d), and the angular variable

transformation :

) with Ngi=Nyn

128 points




=10 -
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Relative Error

(2586) 220 150 | s | 25
=5 10"
- (256) {256) (256) (256) ] 28
£ e=9X10-! [¢=8X10-? | e=1X10-? | £=2X10-5
Relative error ¢e<10-%. Source projection %:=x(0.5, 0.5).

Source d

wce d=0.01, towards centre of sphere.

Nearly Singular Integral

A
ds
1 ,[5 —a by radial transformation : B = 1
and angular transformation t(@)
101 S : 'spherical' quadrilateral SPQ60
Xs=x(0.5, 0.5)
d =0.01
1072
103
1074t "‘\.‘-'
s
: N
10°5} ~.
=
10°6
S
1 -T i 1 L i " L i 1 L i L
0 500 1000 1500

Number of

Integration Points

Fig. 10.18 Relative error vs. Number of integration points
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Nearly Singular Integral

J dS ;
s 7o Dby radial transformation : B=2 (log -

5 LQ]
and angular transformation t(@)
S : 'spherical’ quadrilateral SPQ60
Xs=x(0.5,0.5)
d =0.01
' 1 A i A i 1 A i i i L i i
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Number of

Integration Points

Fig. 10.18 Relative error vs. Number of integration points
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Nearly Singular Integral

Fig. 10.20 Relative error vs. Number of integration points

J:s dr—f by radial transformation : 8 =3
and angular transiormation t(@)

S : 'spherical' quadrilateral SPQ60
Xs=%(05,0.5)
d=0.01

o=1

o=2

L L ? I L L i L i 1 i i i 1 i i i =
500 1000 1500 2000
Number of
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Nearly Singular Integral

: [ S
Relative Error _|5 Er-"_ by radial transformation : B =4
4 and angular transformation t(@)
1 S : 'spherical' quadrilateral SPQ60

Xs=x(05,0.5)
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Fig. 10.21 Relative error vs. Number of integration points
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104 %
0 J‘ ds i
. s & by radial transformation : B=5
105} N and angular transformation t(6)
Bl S : 'spherical' quadrilateral SPQ60
e, -..___“m‘" a=5 is =X{ 05, 05)
108} Ml d =0.01
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Fig. 10.22 Relative error vs. Number of integration points




(2) Difficulty with flux caleulation \
c
In the previous section, it was shown that the log-L, radial variable 5 o
= @
transformation; Q= 9
—— 1€ e
Rip)= tog Vet d? (5.64) d ¥ 4{E t°
- i =0
&= R L
corresponding to 7=2 s the most robust radial variable transformation of the cl|l@ i 0
o|E i 3 @
type =| o { Q =
@ |a ! 48 =
= @ | o @
dp=r'* 4R (5.61) Elo ¢ qo X
ol= i x O
| @ ] | i T =
for the calculation of integrals DS 4 = ©
= o ] © E
ds T|l?— | . e =
s (a=1~5) — | O : © 2
'8 r" o = I' -1 -
il o ] 8 e
over a curved element S. =l il ! 1o g %
ol fro B e ! Lt g
However, the log-L, transformation of equation (5.64) works very poorly for = ! n D ""'__‘
. -
] = il
nearly singular integrals like ’ 8_'?“
o / 4 o
| - | ‘r O =
8 5 i 1 C o
’ 18 B
which arise in the calculation of the flux dw/dx; ata point x; very near the .;, 9 "@ E'r.'l
boundary using equation (2.46). ! o.E
'3 - _‘U_.)' w
In Fig. 10.23, the result of applying the log-L, radial variable / = 3
transformation with the angular variable transformation #(#) of equation (5.127)
o2 ]
is shown for the constant planar square element PLR (0.5, 0.5) o
o
0 16 0 (10.43) 0
R=y)
of size one ( ef. section 8.2 (1) ), with the source point at x,=(0.25, 0.25, d), where L
I'he integrals [ u*dS, [,q*dS related to the

stance is d=0,01

the source di
caleulation of the potential at x4, and the integrals [, du*/ax;dS , Js dq*iax, dS

were calculated. The relative error £ is

Relative Error
/]

related to the flux calculation at x, ,
plotted against the (necessary and sufficient) number of integration points

N=NXNg x4 where N, is the number of Gauss-Legendre integration points




for the angular variable t, and N r the radial variable R. N; was3,7,8and 12

the kernels »@%, du®/ix,, and dg*/ax, , respectively, for relative error :

From Fig. 10.23, it is evident that the log-L, | variable transformation

ssful with the integration of nearly singular potential kernels u*

out to be inefficient for the flux kernels du*/ax; and dg*/ax,.

vas analysed in sections 5.5 (4), 6.8 and 7.7 (2). In short, the

ly give rise to radial integrals with

graphs of numerical experiment results in

1 convergence of order n =" and

12 for the relative error,

‘dxsdS givesa convergence of order n

convergence of the log-L, transformation for the integration of

1 : odd, is also predicted by the

te En(f) =n=2" of equation (7.120) in ion 7.7(1).

Variable T

In order to overcome the difficulty with flux caleulation using the log-L,

radial variable transformation, in (4) we introduced the log-L, radial

variable transformation :

Rig) = log (o +d) (5.85)

In Fig. 10.24, the result of calculating the same integrals as in Fig. 10.23 but

with the log-L, instead of the log-L. radial variable transformation is given.

Notice the remarkable improvement of the log-L, over the log-L;, for the error

convergence for the flux integrals [g du*/ox,; dS and _f_,. dq*lixg dS . Note also
that the log-L, transformation works reasonably well for the potential integrals
Jou*dS and [ ¢*dS, as well.

The thecretical error estimate of section 7.8 (2) (iii) predicts the relative
error £ to be of order

. (7.266)

where #=1.40 for d=0.01 from Table 7.7, and n is the number of radial
integration points. This matches fairly well with the convergence graphsin

Fig. 10.24 , which give relative error of orders 1.6 " and 1.7 " approximately, for

dxy and dg*/dx, , respectively, for flux caleculations.

the integration of au*

cal error estimate of equation (7.229) in section 7.8 (1), using the

The theore

saddle point method, predicts an error of order n=*" for the case a=d=1, which
corresponds to the integration of u®. This explains the excellent convergence for

the u* kernel in Fig. 10.24.
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log-L; transformation
planar square element,

0.01

d:

2000 Numberof~

1500

Integration
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Fig. 10.24 Integration of potential and flux kernels

transformation

the log-L

using

10.6  Comparison of Radial Variable Transformations for

the Model Radial Integral [ ;

In section 3.3 (Table 3.2, 3.3) and section 7.5 (Table 7.1), it was shown that
the essential nature of nearly singular integrals occurring in the boundary

element analysis of three dimensional potential problems can be characterized by

the following model integral in the radial variable :

y o (10.45)
where

d” (10.46)

for planar elements, and = (#) isthe upper limit of the radial variable of the

integral in equation (5.42). The basic integral kernels in three dimensional
boundary element analysis give rise to «, § given in Table 7.1, which is reproduced

below.

Table 7.1 Nature of nearly singular kernels of the radial component

integrals in 3-D potential problems

u* 1 1
. 3 1
du? 3 1
X 2
dg* 3 1
axg 5 1
2




In the pres

nt section, we will compare the effect of different radial variable

transformations on the numerical integration of [, of equation (10.45). The

transformations to be compared are

(1) wsformations based on the Gauss-Legendre rule :

(i)  Identity transformation :

Ri;
(ii)
(iii)
Righ= log( )
(iv) 1 transformation :
1

and
(2) Transformations based on the truncated trapezium rule :

(i) Single

Exponential (SE) transformation

R = {1 + Llunh &)

Exponentinl (DE) Transformation

~sinh K} |

Numerical re

ined in sec

13.3 ( equ

d=p (V1+D®-D)

(10.47)

(5.64)

(5.99)

(5.101)

(6.112)

s will be compared with the following closed form integrals

ions (3.138~142) ) and section 7.8 (2) (iii) (Table

(10.48)

1 11 I
I =7 —| = = | (10.49)
Wd D Vi+p*
(10.50)
i
s ) (10,
|lr

Also, theoretical error estimates for the identity, log-L, and log-L,
transformations will be compared with numerical results.

Tables 10.22~41 give the number of (radial} integration points required to

obtain & relative error £<10-" for the integration of the model integral
equation (10.45), using each radial variable transformation in conjunction with

the Gauss-Legendre rule or the truncated trapezium rule, tto o.=1and

14

the source distance d was varied from 10 to 10-%. The integration error w

obtained by comparing with the analytical integration results of eq

(10.48~52),
Table 10.42 sums up the results of Tables 10.22~41. The number of

integration points required for the potential integrals (=1, =1 and a=3,d=1)

and the flux integrals {« = +2) are given.




re—— |
e Table 10.22 Identity transformation : Table 10,23 log-L, transformation ;
ive the rrgence graphs of the relative error of ¥ = ]
) ) i _ Rig)=p Rip)=log V' +d*
(in log scale) vs the number of radial integration points .
- F Source distance : d - & Source distance : d
formation, for the case d=0.01. : :
10 1 10-* [ 10-% | 10-7 10 1 1054 | 1072 | 10
1 1 3 5 12 35 80 1 1 2 a 4 5 [
1 3 G 16 60 190 - 1 2 3 4 5 6
3 ] e T 1
2 3 i 20 131 170 2 56 59 64 2 80
T = !
1 3 6 20 B4 210 1 2 3 6 8 10
] — —_ 5
2 3 T 25 60 190 2 55 G4 120 | 170 | 200
{Number of radial integration points n for (nfor e <1079)

relative error £ < 10-%.)

Table 10.24 log-L, transformation :

Table 10.256 L,~'™ transformation :
[m=1)
Rip=1 - Rip) == —
R (pl=log (o +d o) =— ﬁf
3 Source distance : d % 5 Source distance :
10 | 1 |10-!|10-% )10 10 1 |10~ |10-2|10-2
1 1 a4 5 8 ] 8 1 1 4 b 14 45 150
1 1 3 5 12 16 20 1 4 6 8 8 g
— a4
2 | G R e 2 | 3 6 | 12 | 85 | 110
" 1 3 | 6 14 20 25 > 1 3 (1 10 11 11 |
] — L
2 3 i} 14 20 20 2 4 ] 10 11 11

(nfor e <1079) (nfor e <10-%)




I'able 10.26 L, ~'™ transformuation :

l'able 10.27 L,

translormation

Table 10.30 L ~'"

transformation :

Table 10.31

L,~Y= transformation :

{(m=2) im=2.5) (m=4) {m=4.5)
1 T
) Vatd Rig) (o +d) +d) 4 Rip)==(p+cd) 44
Source distance ; o . Source distance : d —| . | 3 Source distance : d r £ Source distance : d
1w | 1 |10-t|10-?]10 1 | 10- | 10-2 10 1 |10-t|10-%| 10-2 10 | 1 |10-'|10-2 |10
1 1 3 | & | 8 16 | 28 1 |1 3 5 | 7 ] 14 1 1 3 | 6 7 a 12
1 3 | & | 9 10 12 | 1 3 6 10 | 14 16 : 1 3 6 10 14 16
3 ———— 3 t E
3 | 5 7 11 20 2 3 6 | 10 | 10 11 2 3 ] 10 12 | 14
) a | 6 11 12 14 1 a 5 12 | 16 | 20 | 1 3 6 12 16 | 20
5 5 5
4 | 6 10 14 14 2 3 [ 10 | 14 | 20 2 3 (i 12 16 | 16
tinctorse. £ 10750 (nfor e <10°%) (nfor e < 10-%)
Table 10.28 L able 10.29 L, =" transformation : Table 10.32 L,~"" transformation : Table 10.33 L,~"™ transformation :
(m {m=5) (m=>5.5)
A 1 i
Ripl==la+d Rip)=—(p+d) Rig) = —lp+d) * pad) 8
Source distance : d ” > Source distance : d - 3 Source distance : d
10 1 10 10 10 | 10 | 1o 10 1 . 10-! | 10-% | 10-2 10 | 1 10-! [ 1077 | 10
r T
1 1 i 5 8 11 20 1 1 3 ] ( 10 1 1 1 8 5 | 7 8 11 1 1 3 5 7 8 11
? = L — | | !
1 3 6 | 10 | 14 | 14 1 3 6 | 10 | 12 | 1 | s 5 o | 14 | 18 1 3 5 | 11| 14| 1

14

16

20

( nfor

( n for

{ nfor

£ <107%)




Table 1034 L

1 transformation

(m=8)

Table 10.35 L,

" transformation :

(m="T)

I'able 10,36 transformation :

{m=10}

Table 10.37 L, -

transformation :

m=100)

Ripl=— |
Source distance : d 3 Source distance : d
10-2 | 10-* ‘ 10 ] 1 |10-' [10-% |10
8 10 HIE I i 3 8 B 10
14 | 20 |4 3 5 | 11 | 14 | 18
— 3 — — —— e TSE—
14 14 2 3 [ 10 14 1
16 20 1 3 I 6 14 20 |

— 5 + —

20 20 2 4 1] 12 20 | 20

(n 10-9)

(nfor e <10-%

Table 10.

Table 10.39

td
10 1 10 10 10- 10
1 1 32 66 66 a0 30 1
1 32 66 i) 46 54
- T 3
70 68 62 58 58 |
5 1 1 | 92 |64 | a0 | 48 | 58 I |0 | e 32 | 66 | 72
2 70 58 50 38 48 2 22 22 a4 60 66

( Number of radia

relative error e <<10-%)

Table 10.40 Single Exponential (SE)

integration points n for

(nfor e <10-Y)

Table 10.41 Double Exponential (DE)

transformation with R(,

10

1816 |

1688

1916 | 1260

410

128

1688

3016 | 743 | 1032

1196

752

1360

1917 | 2318

202

26

31

1689

521

858

1370

B4

26

1360

(nfor e <10-%)

(nfor ¢ < 10-%)
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Relative
Error €

/ Radial Integration 7, 5= 2 dp

" log-L, transformation

7
R(p)=logp*+d? P

I
i

107 T T T T T T L S
10 20 30 40 50 60 70 80 % Radial
Integration
sl :
19 Points n

Fig. 10.26 Radial integral /.5 by log-L, transformation

Relative
Error €

1 Radial Integration /o5=J" & dp,(5=2)
1 log-L, transformation r=Jp?+d?
4 R(P) = log {p2+ d? p=1
ot d = 0.01
n : Number of Radial
102} Integration Points
10-2 _—o=5 86=2 ‘
. 2. (E~422%n2%)
I‘.E 10
r/_‘
105t a=3, 6§=2
( € ~0.266 xn ~295)
et
lnlj_{m n




Relative

Error € Radial Integration /5= [" 2 dp -
- - o 5 = foae=—r
1 log-Ly transformation \‘1' t
p, =
(P)=log (P )
Rip)=iog(P+.d) d = 0.01

~ 0.0398 x (1.88)72"

[a=1,8=1:¢
a=3,8=1:¢ ~ 6.31 < (1.64)7<"
8=2: ¢ ~ 0447 x (1.54)72"
0=5238=1:¢e~447 x(159)™2"
§=2:¢e~158 x(156)™2"

Radial Integration Points n

Fig. 10.28 Radial integral 7.5 by log-L, transformation

Relative

R0y S Radial Integration /us = [’ 2z dp

1 +
Ly 5 transformation r

n

I p,=1
R(p)=(p +d)?® d = 001
a=1, d=1: £~33 x29%
=3 8=1; €~51x1.8"
8=2:€~28x1.8"
=5 8=1:€~24 x1.7
5=2

T E~19 x1.7%

Radial Integration Points n




“gor-

Relative

Error €
4
Radial Integration /.5= [ £ dp
Single Exponential ( SE ) transformation
16! °\ l-‘[H]:%Hnanth}
R :[—ce o0 ]
102 "’:\/5"-!0‘;.[]:1. d=0.01
103}
104
10-% =3 0=1
=5 d=1
ey =3, 6=2
107 — T T —
= Radial
10-2 Integration
Points n
Fig. 10.30 Radial integral /,; by Single
Exponential (SE) transformation
Relative
Error £
2 . " p; po
Radial Integration /.5=[" £ dp
2 Double Exponential ( DE ) transformation
P E
10-'} p(R]—?{‘H-lanh{esth)}
R i[—eo e ]
102 r=Jp2+dz, p=1, d=0.01
104 4
104}
107 F
: 6=1
0% P = 5‘ ﬁ = 1
107 —r -
10 20 A 40 50 \GIE 0 podial
sl Integration
1 Points n
Fig. 10.31 Radial integral /.5 by Double
Exponential (DE) transformation




egendre rule

10.25, it is clear that the identity transformation
( just polar coordinates ) requires a huge number of radial integration points for

Is (D=dip 41).

nearly singular integ

The theoretical estimate of the error E, given in section 7.6 (3), equation

.T6) implies that

B~ (1=) 242 ) (10.53)

where, in order to maintain

t must satis

0.99

0<t<1-10-* 1 0.8

\ 0.60 (7.268)

1.1 (la=1)
1.13 1 =3)
1.12 (a=5) (10.54)

for D=d=0.01 ion (10.53). This theoretical estimate matches well with

numerical r

(ii) log-L2 transformation

Table 10.23 and Fig. 10.26 show that the log-L, transformation is very

efficien

for the integration of I when é=1, but on the other hand very
ineflicient for the integration of [, when §=2. Thisisin accordance with

Fig. 10.23. There, the log-L, radial v

iable transformation gave remarkably

od convergence for the calculation of the potential integrals J.u* dS and

fsq* dS , which correspond to o =§=1 and «=3, §=1, respectively. On the other

hand, the log-L; transformation gave very slow convergence for the flux integrals

g du*/ix; dS and *fixy dS , which contain components corresponding to

and o T'able 7.1).

The t

in section 7.7 (1), equation (7.120)

gives

" (10.56)

for §=1. This is in good agreement with the numerical results, which show fast
convergence fora=1,3,5 ; =1in Fig. 10.26,

For ¢

2, the theoretical estimate in section 7.7 (2), equation (7.180) gives
M T (10.57)

Fig. 10.27 shows the convergence graphs of relative error ¢ vs log,,n , for §=2.

The graphs give

(10.58)




2, (10.59)

which matehe

1ry well with the theoretical error estimate of equation (10.57).

‘able 10.24 and Fig. 10.28 show that the log-L, transformation works
efficiently and robustly for all types of model kernels which appear in the three

dime

al potential problem.
The theoretical estimate for the relative numerical integration error £ in

section 7.8, Table

% (10.60)
In order to maintain

ion (10.60), ¢ must sat

J’ 0.99 {e=1)
0<1<1=10 = | 0.78 (2=3)
| 0.60 (a=5) (7.268)

Hence, if we take the

~260) give

1.64 la=1)
= L.51 fa=3)
1.40 ( 3)

(10.61)

for D=d=0.01, in equation (10.60). This theoretical estimate for the relative

error corresponds well with the numerical results in Fig. 10.28, where

1.59 le=5,8=1)
\ 1.56 =2) - (10.62)

(iv}) L,~"™ transformation
Tables 10.26~37 and Table 10.42 indicate that for the potential integral, the

L, =" transformation with m

5 and 5.5 give best results and for the flux
integral, m=2, 2.5 and 5 give best results for source distances ranging from 10 to
10-*. On the whole, m=5 gives best results. The L;~'® transformation gives
better results compared to the log-1, transformation except for the case a=d=1,
d=10-?and «=3,§=2,d=10-* Fig. 10.20 shows that the L, ~'® transformation
gives better convergence compared to the log-L, transformation (e Fig. 10.28) for
the case d=0.01.

It is also interesting to nole that the pattern of the number of integration
points of the L, = transformation approaches that of the log-L, transformation
as m increases.

The theoretical estimate of the relative error ¢ of numerical integration using
the L —'® transformation given by equation (7.311) and Table 7.5 is

where t must satisfy

D<t<1=-10"* =94 0,78 (a=3)
L 0.60 la=5) (7.268)




Hence, if we take the maxi r t for each &, equations (7.31~32) and

(7.309) g

=5) (10.64)
for D=d=10.01, in equation (10.63).

This theoretical estimate for the relative error corresponds with the

numerical results in Fig. 10.29, where

(29
|
=1 L8
LT (e=5) (10.65)

rmation

Table 10.38

10.30 give numerical results for the numerical

» single exponential transformation

gration using

(5.101)

iR = (1+tanh R)

0, o, 1. The truncated trapezium rule is used for

e numerical procedure is given in section 5.5 (5), together

al (DE)

with the double formation. Although better than the

identity transf (1)(i) with the Ge Legendre rule for D=d =10-?, the

single exponential t mation requires more than twice as much integration

formation of (1) (iii) to obtain the same

points, compared to the log-L, trar
accuracy.
Table 10.40 gives numerical results for the single exponential

transformation

which maps R:[—22,0] to »:[0, 5. ]. This transformation gives poor results

compared to that of equation (5.101), which reduced the integration error by

concentrating the integration points near the end point p=p, aswell as p=0.

ansformation

(ii} Double Exponential (DE) t

Table 10.39 and Fig. 10.31 give numerical results for the double exponential

transformation

LAE (5.112)

which maps R :[—o, 9] to p:[0, »,1. This transformation requires even more
integration points for D=d =10-? compared with the single exponential
transformation of equation (5.98). Compared with the identity transformation,

the DE tran

rmation is more efficient for D=10-? and comparable for D=10-7

As with the SE transformation, the DE transformation

{10.66)

which maps R : [=%, 0]t p: [0, p,], gives poor results compared to the

s shown in Table 10.41.

(3) Summary

To sum up, numerical experiments on model radial variable integrals in this
section indicate that the most efficient and robust method for the numerical
integration in the radial variable, so far, is the L;~'" transformation with

m=3=5.5 in combination with the Gauss-Legendre rule.

t that the nume

Also important is the al results match very well with
the theoretical error estimates based on complex function theory, which was

given in Chapter 7.




10.7 Comparison of Different Numerical Integration Methods

on the ‘Spherical’ Element

In this section, different numerical integration methods will be compared

for the integration of r v singular integrals arising in potential caleculations

| #,ards (10.67)

L i =
| #io98 (10.68)

in three dimensional potential problems. The boundary element S is taken as the
‘spherical’ quadrilateral element SPQ60, which was defined in section 8.2,
equation (8.9) . 5PQ60 is a spherical quadrilateral subtending 60° in each

direction on a sphere of radius 1, modelled by the 9- point Lagrangian element of

equations (5,2) and (5.3), Iis typical element size is 1 as shown by equation (8.10),

The f 1ods will be compared :
1 wiuct Gauss-Legendre formula ?, given in section4.2.
9 self-adaptive cubic fi i ot} 1% oiven i
2, self-adaptive cubic transformation method '*, given in

3. The PART method with (and without) the angular variable transformation
ti#) ef equation (5.130), and with the radial variable transformations R(g) :
(i} Identity: Rip)=

(ii)log-La: Rip)=log Vi+d

(iii) log-Ly: R(p)

ince : o
First, the source point x, was positioned so that its projection %, on the

=0.5, and x; is situated towards the

element 5 is %,=x(0.5, 0.5), i.e, §,

centre of the sphere ata distance d from the element surface S

Figures 10.32~10.35 are the convergence graphs for the

Tep u*dS, [g9,9%dS, [o¢ duwix,dS and [.4¢ dgliax,dS, respectively,
for the source distance d=0.01 Here, ¢  is the 9- point Lagrangian
interpolation funetion corresponding to the node ( )=(i,JJ, 1e.

6 () 8. n) . (10.69)

where

error is plotted against the number of integration points, The re

taken as the maximum relative error for all the interpolation functi

0, 1. The error was calculated by comparing with the result given by the PAR'

arithmic type

method with the :lf;;-l.l radial variable transformation and the I

angular variable tr rmiati

128 Gau endre integration points for the variables t and R, respectively
g ¥ I 3

g

The PART method with the lc , radial variable transformation is shown
to be the most efficient and robust method for different integral kernels. Note

also that for the integrals [¢ ¢, u* dS and [ ¢, q* dS , related to potential

caleulations, the l‘“;'[‘.- radial variable transformation does not show good
convergence as it did for the potential related integrals [, u*dS and [, ¢*dS on
the constant planar element in Fig. 10.23. The reason for this was explained
using the results of theoretical error estimates in section 7.7 (2), ie, ¢ ¥ contain
terms equivalent to p and o®, which give rise to terms corresponding to #=even
in the model radial integral kernels in equation (7.45).

For the flux kernels, Fig 10.34 and 10.35, the standard product Gauss-

Legendre formula did not converge within the scope of the graphs.
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Tables

d 10.46 compare the number of integration
points required f hod to achieve a relative error less than 10-% for the

same integrals [o ¢ u*dS, [. 4 q*dS, [ 4 du*/ix,dS and Is ¢, dq*lax, dS, for

different values of the s

ce distance from d=10 to 10-7, The source projection

% was set again to 8; =x(0.5, 0.5) on the curved quadrilateral element ; SPQG&0.

For the Gauss and Telles methods N, and N, represent the necessary and

sufficient number o

tegration points in the 5, and 7, directions, respectively, so

that the total number of integration pointsis N= N, %N,. For the PART method

{ identity, log-1

, and log-L,), N and Ny, (or N} are the necessary and sufficient
number of integration points in the transformed angular variable ¢ and the

transformed radial variable R ( or o ), respectively, so that N

XN, X4, since

ther

re generally four triangular regions &, (j=1~4) to integrate. ( For

triangular elem

» this becomes N=N XN X3, so that the PART methods
would require anly 3/4 of the integration points compared to quadrilateral

elements, On the other hand

1e Gauss and Telles methods basically require the

same number of int

rration points for triangular and quadrilateral elements, so

long as the product t rmuln is used. )

The actual value of the maximum relative error is shown in brackets when

the method failed to converge even with 256 integ

ration points in each variable.

Lis shown to be more or less the same

it basically one may judge the efficiency of each

ethod by r ol integration points required. The value of the integral
corresponding to ¢ of the x-component for flux integrs

PART method

), caleulated by the

i) ) with N

» =128, is also given [or each case. The

best methe

192

log-L,

¥ 6

ag

B

method

192

1800

fiffer

Com

* O()

e 10,43

N, XN,

30

ao0n

[ total

a0 X 100

per poant




BOUrce

0.03

0.01

0.003

0,001

¥ BT
110 > 110 | 1
T

3 X 256
(3 X 10-%)

256 % 256
(4 % 10-9) |
% 256
(3% 10-Y)

9 % 90

9 X 150

10 % 20

* 640

* 720

800

"

Average
CPU-time
per point

29 usec

ds

0.003

0.001

N,
|
|
14 |
» 40

N3N
Bx5
9%T
x 11
93¢ 20
14 0

* 1400

360

360

Average
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o
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Average

V= radial

Similar numerical experiments were done to compare the Ly

mation. The

Orr

variable of equation (5.99) with the log-L; tran

1gian element

parameter m was varied from 2 to 7. The same 9 point La

5) and the source point

SPQE0 was used with the source projection at £, =x(0.5, (

situated at a distance d towards the centre of the sphere.

ration points ( radial : Ny and

Tables 10.47~50 give the number of integ

achieve a relative error e< 10-°

total : N where N = Ny X Ny %X 4) requi

i%; dS and [g ¢ dg*fax, dS,

for the integrals [, ¢4 u®dS, [.¢ q*dS, [o 4,

respectively, The asterisk denotes the method with the least number of

integ n points

For the integral [ ¢ u* dS, the log-L transformation is the best, contrary

1 in Tables 10.24~37,

to the results with the model radial integral with o

2, due to the interpolation

This is probably due to terms corresponding to a=1, 4

function ¢

For the other integrals involving q*, du*/dx, and dq*/ax, , the Ly

ition gives the best results on the whole,

transfor

phs comparing the log-Ly and Ly

h integral for the case d=0.01.

thle 10.51 gives the total number of integration points required for

Next,

5 [ ¢, u*dS and | q* dS which appear in potential calculations.

ig ¥yt

the integrals

Similarly, Table 10.52 gives the number of integration points for the integrals.

Is#,

ju*/dx, dSand [ ¢ - dg*/ax; dS which are required in flux caleulations.

Table 10,51 shows that the log-L| transformation is preferred to the Ly~

transformation for potential calculations. This is due to the fact that the L !

requires more integration p than the log-Lj for the integral [ ¢, u*dS and
more than Ly ~V™ itself for the integral [, ¢ g*dS.
Table 10.52 shows that the Ly ~'® transformation requires the least number

of integration points for flux caleulations.
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Table 10.47 Number of integration pointsfor [ ¢ u*dS
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ta
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: Number of radial integration points

N: Total number of integration points




Table 10.48

Number of integration points for

( SPQ 60,

log-Ly

Ng N

01

320

0.03

504

504

0.01

16 | 640

800

790

640

L]

0.003

20 | 720

1120

200

900

0.001

20 | 800

40

1440

1008

Ng:
N:

Number of radial integration points

Total number of integration points

Table 10.49 Number of integration pointsfor [ 4,
( SPQ 60,

Ng

162

192

192

288

288

288

360

360

360

360

- 0S¥ -

0.3

360

360

324

324

0.1

504

432

0.03

1400

1120

0.01

1568

1200

1200

960

0.003

2240

1792

1568

b3
&
b3
=2

1120

0.001

log-Ly

Ngr N

L} 182

7 .2.52

9 | 360
10 | 3860
11 | 440
20 1120
20 '960
25 |1400
25 ;.40!}

3080

2240

1960

]
(-4

1400

Npg: Number of radial integration points
N:

Total number of integration points




(8PQ 60,

log-Ly Ly=43 Ly~125 Ly-a Ly-'as Ly~ Ly-t® Ly-ves Ly-® L=V

Ne | N |Ng | N |Ng| N|Ng| N |Ng| N |Neg| N|Ng| N|Ng| N |Ng| N |N;

i [} 192 6 192 6 192 6 192 6 192 [} 192 6 192 6 192 6 152 6 192

=3
]
£
-1

7 | 224 224

-3
2
13
-
[*]
b3
-1
)
]
>
-3
-3
]
1

224

9 360 g 360 9 360 ] 360 ] 360 9 360 9 3860 9 360 9 360 ) 460
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Table 10,51 Number of integration points for potential integrals

(8PQ 60, 7 =7,=05, «<10-%)

1500

Number of

Integration Points

d log-Ly L Ly Ly Ly 1 7 T L L
19 19 19 19 ) 19 192 1 1 19 192
- | h ¢ v .
192 182 192 19 192 19 1 192 192 19
1 . . . .
224 256 256 256 224 256 224 224 224 224
0.8 256 288 288 256 256 256 256 56 256
.
oo 0.1 308 J84 484 ab% J02 4352 J2( 320 120 20
e
0.03 504 576 504 504 480 504 306 480 480
.
.01 640 1120 1000 1000 880 800 800 800 ROO AOD
0.003 790 1600 1280 1120 1100 1000 1000 1000 80 800
0.001 . i
a00 1800 1760 1400 128 1232 1100 1000 1000 1
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Fig.10.40~43 compare in more detail, the effect of the source dista

d on the different methods for the calculation of [ ¢

Iy # dutlixg dS and Jg#, dq*/axs dS . Similar to Tables 10.43~50, the

number of integration points required for each method to obtain

error €< 107" for all ¢, y= =1,0,1 (and xz,y, 2 component ), was p

against the source distance o = 10-%~10. The element is the same

‘spherical’ quadrilateral SPQ60 with the source projection at &, =3
and the source distance is measured from the element towards the centre of

the sphere. Table 10.53 summarizes the results.

Table 10.53 Range of source distance d best suited to each method

log-L, | log-L,; L@ Telles l
$oou* d = 0,001 |d=0.04 - D04=4d = “..‘J! 0.5
_ g* d- u_uuﬂ|“.-"'}_,'_'“?“J7“'5u_m|1 < d<0.06]0.06 = d u.?i 0.6= d
§ = _—I d=0,03 |0.0003=d<0.04|0.04 = d <0.7 _n_.'_ L
- | - | d =007 0.07 =d <08 0.8
( S§:8PQ60, .= x(0.5,0.5), relative error < 10-%)

In order to save CPU-time, it is advisable to use the same set of

integration points for the calculation of [, ¢, u*dS and [o¢ q*dS in order

to calculate the potential wuixg) at x=x Similarly , the same set of

and

integration points should be used for the calculation of [, 4 du®/dx,d
Is# & dg*/ix;dS in order to calculate the flux ( potential derivative) dw/ix

at x=x;. Further, if one wants to calculate both potential and flux at the
same point x=x,, the same set of integration points should be used for all

the kernels: Jspllu‘ ds , g #;9° ds |, du*lix, dS and _r $ dgtlax, dS .




The strategy for the choice of numerical integration method with regard to

the source di i for each situation is given in Table 10.54 .

Table 1

Strategy for the choice of numerical integration method

L.ﬂh]:lljl_,l_f::'ll'm log - L, Ly W® Telles Gauss o
1
otential only d < 0.06 - 0.06 = d <0.6 06=d '
y =t S =T 4
flux only - d=0.07 0.07= d <0.8 08=d \
- . K b
potential and flux - d=0.07 007=d<08 08=d s
Oemo.
(S: SPQ6B0, % = x(0.5,0.5), relative error < 10-%) i%

The above results may vary depending on the position of the source

Ry, the geometry of the element 8. However , they may be

1sidered

15 0 rough guide for choosing the numerical integration method

ive) source distance d.
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: Re

Next , the

and efficiency of each numeri

T'he same ‘spherical’ quadrilateral S: SPQ60 is taken as the curv

element over which the integration is performed . The

long the diagonal of the

1) and outside

corner (

x x +dn 10.71)
. ' { 71)

where n is the unit normal at %; pointing towards the centre of the sphere
The source distance was fixed at d=0.01

The following three methods were compared :

1 5 PART method h the inl variable transformation and
the angular variable tran (i)
(i) Identi =
log-type :
4
tHe) (5.130)
a1l
2. Tel -adaptive cubic transformation method '®, given in section 4.4

(2) (ii)
Fig 10.44~47 are the graphs of the number of integration points
required to achieve relative error £ < 10-% for all i, j = =1,0,1(and x,y,2)

( position of the source projection %), for the calculation

Js#eqt a8, Jgdy

components , vs

of [o¢, u*dS, du*/dx; dS and [, #y dg*lax, ds,

respectively.
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transformation f equat

ile compared

reducing the number

ires a huge number of

the i o) , which reqg

n %, approaches the edge

ce project

i

method becomes advantageo

the edge (corner) of the element, The

source  proje = PProd

results However, the results are only for the
case W he PART method becomes more
advant

rojection %;=x1(3, )

ch method
1 £ PART
" log-L; , ¢

' 0 Z

q" 0= 3 0.96 <
potential ¢ 0 0.96

du*lix 1] i (.90 0.90 =

" lix 0 0.93 .93
i enle n 0 0.93 E
tent ux 0 7 i} =

$:8 01
of PART method & Telles' method in this

ince o was determined as the distance between

experiment , the source d

falls outside the

the source p

ojection

Xy and X;, e

element S,

de the element S, the

However , since the integration is performed only in
effective source e between the source point x, and the e S is,
the distance | x4 — %, | . Actually , the

t to %, lies on the edge of the element S, in this case. U

nearest p

nition of the effective source distance , the PART method ( in

this def

particular) and Telles’ method can be impre

ment S , but

jection R, lies on the

Also, even when the source p

very close to the element edge, resu by the PART method may be

sroved by artificially moving the source projection to the nearest point on

the edge , provided that the distance between the original source projection
%; and the closest element edge is smaller than or comparable to the source

distance d. This will be shown in the next section.




Moving th

e previous section, the angular va

» method s

sformation #(#)

srable effect in reducing the number of angular

urce projection X, is near the edge of the element.

| requires many angular integration points when

%, is very near the edge of the element. In order to overcome this problem, the

ef]

The pr

i

Taking the example

nent § was examined.

of deliberately moving the source projection £, to the closest edge of the

when %, =x(71, 72) is closest to the edge corresponding to

1 on a curved quadrilateral element,

1. Let® x(1, i

Introduce polar coordi

The

number ol ang

ot S on to the polygon 8 on the plane tangent to S

he new source distance as d =R, -1,

ite (o, #)in S’ | centredat®,’ ,apply the radial

nsformation and ir te with respect to the

In the radial transformation, the updated

r) of the

y because it reduces the

cause it reduces the number of

Numerieal experiments were done on the previous curved element SPQ60

for the integrals

d=0.1, 0.01 and 0.001 v

g*dS and [. ¢ dg*iax, dS for source distance

is the centre of the sphere. In the experiments, the

effect of moving the source projection (7,, 7,) to the nearest element edge for the

method was also examined
First, the source projection is situated along the diagonal of the element, i.e.

711) where 7; )~1.2 . Tables 10.66~61 compare the number of

integration points required to achieve a relative error less than 10-" for the

PART and Telles’ methods with and without moving the source projection ®; to

the element edge. Ny, Ny, Ny, N;indicate respectively, the number of integration

points required in the angular variable ¢, the radial variable R, for the PART
1) for Telles' method. N indicates the total

method, and variables 1) and ¥

number of integration points.

For the radial variable transformation in the PART method, the log-L; was
used for the integral j_u'-q.r‘d.‘\“. and the L;='® for Js# dq*/ax.dS, us recommended
in section 10.7 (1). For the angular variable transformation, #(#) of equation
(5.130) was used. h; indicates the distance between the original source projection
%, and the edge-1 of the projected element "_|I and hy4 the distance between x; and
edge-4. In this case, hig is the distance between X, and the nearest edge of 5. The
asterisk in the column for N indicates the method which required the least

number of integration points. The asterisk in the column for hy indicates the

becomes advantageous to move % to the element edge with
the PART method. Fig. 10.48~49 show the results in graphs for d=0.01, In the
present case, ®; is moved to the corner, so that the number of triangular regions to
integrate over is reduced from four to two.

Similar results are given in Tables 10.62~67 and Fig. 10.50~51, for the case
where the source projection X;=x (), 7,) is situated along 7,=0, j,=0~1.2. In
this case, &, is moved to & =x(1, 0), so that the number of triangular regions is
reduced from four to three.

Results show that, for the PART method, moving the source projection %, to

the element edge leads to a substantial reduction of integration points when the

original source projection %, lies inside the element S and h; <d (i.e. when the

-472-




of the projected

ce i; between the original source pro

al source distance d) or when R, lies outside the

an be as

uction of the necessary number of integration points

umber of

uction of the

s a factor of t I'he reduction is caused by the r

ected element to integrate over, and the reduction

er of integration points in the transformed angular variable #(#). On

the other hand, " method, there is no substant

1l improvement by

moving the source projection ( 7,) to the element edge. This is mainly because

rate over for Telles'

re is no reduction of the number of regions to integ

ethod.

Concerning the comparison between the PART method and Telles' methed,

ed. For d=0.1, Telle

the following is ob: nethod is superior expect for the

ionof [ dg*/ox;dS for the case j,=7,, (5, <1.1)in Table 10.59. For

d=0.01 and ¢=0,001, the PART method erior when the 1l source

1en Xy lies

de the element

and also for ;= 1.0

3E5

which it

inimum

miecally until it res

00015 at 3

with 7,. Note tl 0.0042 and not

se monotonicall

lained in section 5 by the

1001, the criteri Lt edge becomes

ild decide to

D, where D=dfl

we X to the e relative

mi

ance, (/s the size of the element S.) In the present case, the element

irc

size is =1, whic <d  as the criterion to move %,. In fact, this

rule matches well with all the numerical results in Tables 10.56~67. The

asterisk in the left most column for 7

7 to this criterion

i1, indicates the threshe




Table 10.5

76

Js b u*ds,

§: 8PQE0,

§i=#,=0~12,

d

Effect of moving the source projection %, to the element edge

Table 10.57 Effect of moving the source projection %, to the element edge

Je#,9*dS, S:8PQ60, 7

7,=0~1.2, d=0.01

Number of integration poin

ts for relative error <10-%

Number of integration points for relative error <10-%

log-Ly Telles
ey hy
original %, move X, original %, move R
NiXNz] N [NXNg| N |NXNJ] N |NiXN,| N

0 69 | * 216 |11x50] 1100 |14x16 35x40| 1400 .50 (.43
0.2 8X11 | * 352 |11x55] 1210 {2020 400 |40x40| 1600 0.42 0.36
0.4 Bx10 320 | 9x45 810 J14x14| * 196 |32x356| 1120 (.34 0.28
0.6 %11 396 | TX40 G660 |12 14| * 168 |28x28 T84 .24 0.19
na* 8x11 396 | 628 436 | 14X 16| * 224 |20 20 400 0.13 0.096
0.82 912 432 | 625 300 [14x16) * 224 120X 25 500 0.12 0.086
0.84 8x12 §32 300 |14x16] * 224 |20 20 400 0,10 0.077
0.86 9x12 432 | TX25 350 [16X 16| * 2566 |20 20 400 0.080 0.067
01,88 10x14 560 | Tx25 450 [ 1620 400 0,078 0.058
0.9 9% 14 504 | Tx25 360 |14 x16] * 224 |20 20 400 0.065 0.048
0,92 1014 560 280 [16X 16| * 256 |16 20 320 0.052 0,038
.94 11%12 328 | TxX16 224 1414 * 196 |14x14] * 196 0,040 0.029
0.96 111 28 | 616 196 0.027 0.019
0.99 14 T84 | 614 * 168 0.0067 | 0.0048
1.0 6x14 168 | 614 168 " 144 1] 1]
1.001 J11x14 616 | 6x 14 168 * 144 0.00067| 0.00048
L0056 J11x14 616 | Txi12 168 |12X12 144 J11x12| * 132 0.0034 0.0024
1.01 1012 480 | 6x12 144 J11312] * 132 |11x12] * 132 0.0067 0.0048
1.056 ax14 04 | 6X10 120 |11X11 121 |11x11] * 121 0.034 0.024
11 Bx14 448 | 6x10 120 |10>10] * 100 J10x11 110 0.068 0.048
1.15 BX16 512 | Tx10 140 [10x10] * 100 |10x11 110 0.10 0.072
1.2 Tx16 448 | 6x9 108 | 8x8 * 64| 9x9 81 0.14 0.096

log-Ly Telles
T h, hy
original &, move Rg original &, mave Ry
NeXNgl N NNyl N N.XN,| N N, %N, N

0 Gx14 | * 40x%45| 1800 0.5 .43
0.2 BX14 | * 448 45x50] 2250 0.42 0.36
0.4 816 | * 512 45x45| 2025 0.34 0.28
0.6 10<16] * 640 40%45| 1800 [200x250 55000 | 0.24 0.19
0.8 12X16] * 768 40x%40| 1600 higox170f 30600 | 0.13 0.086
0.9 16x20]* 1280 4040| 1600 [1za=140f 17920 | 0.065 0.048
0.92 14%16] * 896 |[10x120] 2400 |35x35| 1225 hwox110| 11000 | 0.052 0.038
0.94 1416] * 896 |9x100| 1800 [32xX32] 1024 [72X72] 5184 | 0.040 0.029
0.96 14X 16| * 896 | T2 1008 |28x32] = 896 |H0x55| 2750 | 0.027 0.019
0.98 * 112xX16 T68 | 640 | * 480 |25 28 700 |32x35| 1120 | 0,013 0.0087
0.99 14%20| 1120 | 628 | * 336 |26X25 625 (2625 625 | 0.0067 0.0048
0,995 |14x20| 1120 | 6X25 | * 300 20256 500 |20 25 500 | 0.033 0.0024
0.999 |16x20| 1280 | 6>20 | * 240 (2020 400 |20 20 400 | 0.00067 000048
1.0 620 240 | 6x20 | * 240 |20x20 400 |20x20 4001 0 0

1,001 J14x20| 1120 | 620 | * 240 16> 20 320 |20 20 400 | 0.00067 0.00048
1.002 J12x20 960 | 616 | * 192 |16x20 320 |16 20 320 | 0.0013 0.00087
1.005 |11x20| 880 | 6x14 | * 168 [16x20]| 320 |16x16| 256 0.0034 0.0024
1.01 10%20 BOO0 | 7x14 | * 196 |14X 16 224 |16X16 256 | 0.0087 0.0048
1.02 1020 BOD | 714 | * 1896 [14X16 224 [14%14| * 196 | 0.013 0.0097
1.04 9x20 720 | 6x12 144 [11x%12 132 J11x11] * 121 | 0.027 0,019

il | Bx20 640 | 610 120 | 88 * B4 |10x10 100 | 0.068 0,048
1.2 8x20 640 | 610 120 7x8 | * 66| 8x9 72| 0.14 0.096




Table 10.68  Effect of moving the source project to the element edge Table 10,69 Effect of moving the source projection %, to the element edge
feé.q*dS, 8:SPQE0 1.2, d=0.001 Ig ¢, dq*fax,dS, S§:8PQ60, 7,=7,=0~12, d=01
Mumber of integra r<10-9
Number of integration points for relative error <10-°
log-L Telles
o ki fa L;~18 Telles
original %, move X or move Ry ke ke
original %, original ®, move &,
INeXNu| N N X N N |Nixw| N
0 620 | * 480 1103 120] 13200 0.5 Ni<Ng| N [NeXNy N NiXNs| N NiXNi| N
0.2 Tx20 | * 560 100 120] 13200 0.36 0 8x10 | * 320 |16% 72| 2304 |25%25 625 |h0x 55| 2750 | 0.5 0.43
0.4 Bx20 | * 640 110x110] 12100 0.34 0.28 0.2 9% 14 504 |14x72] 2016 |20x26| * 500 |50x560]| 2500 | 0.42 0,36
0.6 10x20| * BOO L0 10000 ( 0.19 0.4 10%14| 560 |12x60| 1440 |20%20| * 400 |45x45]| 2025 ] 0.34 0.28
0.8 12x20] * 960 8100 0.13 0.096 0.6 11x12] 528 |oxs0| o900 |20x20] * 400 [40x40] 1600 | 0.24 0.19
0.9 J16x20)*1280 80X90 | 8100 0.065 0.048 08 % J11x14| 616 7x32| 448|20%20| * 400 [28x28]| 784 | 0.3 0.096
Dl |JRo20 |t abt Gaxhs || 9050 0.053 DiVas 082 |11x14| 16| 6x32 | * 384 |20%20| 400 |25%28] 700 | 0.2 0.086
! 20201* 16 G5 X656 3 1% 170] 266 0.0067 1.0048 y & 5
il | e ) iy g WU ] i 00:1, 00057 | 20:004 084 [J1ix14| 616 7x28 | = 392 |20x20| 400 {25%25| 625] 0.10 0.077
992 J20x20]* 16 B0 %6 36 28x 150] 19200 | 0.0053 0.003%
9084} 202204 1900 SOXOUT| 198001118 1o} 190K Nt 4 086 [1ix14| 616 7x28 |+ 202 |20x20]| 400 [25%25| 625| 0.000 0.067
0,994 J20x20]* 1600 60% 60 J600 f1oo=128] 12800 | 0.0040 00029
0.88 12x16 T68 | T>X2B | * 392 |20X 20 400 |25x% 25 625 | 0.078 0.068
0,996 J20x20 1600 | T=100|* 1400 | 55 x60 3300 (pox100] 9000 | 0.0027 *0.0019
0.9 14%14] 784 | 7x25 | * 350 [20%x20| 400 |20%25] 500 | 0.085 0.048
0.998% 120x25| 2000 | Tx64 | * BOG | 60X64 | 3840 |72x72| 5184 | 0.0013 0.00097
0.92 1414 T84 | TX25 | * 350 | 2020 400 |20 20 400 | 0,062 0,039
0.999 |16x20| 1280 | 7x35 | * 490 2250 [50x 50| 2500 | 0.00067 0.00048
0.94 16x16] 1024 | Tx25 | * 350 |20 20 400 | 2020 400 | 0,040 0.029
0.9992 [16%20| 1280 | Tx32 | * 44 2250 (45 50| 2250 | 0.00054 | 0.00039
0.96 1414 TB4 | T>x20 | * 280 [16X 20 320 |20 20 400 | 0,027 0.019
0.9999 |20 25| 2000 | 7X25 |* 350 | 40x40 1600 (35> 40| 1400 | 0.000067] 0.000048
T = 0.99 1614 896 | Tx16 | * 224 |[16X16 256 |16X 16 256 | 0.0067 0.0048
1.0 * 350 * 3560 1120 | 0 0
T 14 196 | Tx14 | * 196 |16X16 256 | 16X 16 256 | 0 ]
10001 }16x25] 1800 * 280 1120 | 0.000067| 0.000048 50 il i Eyo g ik ] :
7 Tx14 | * 196 ¢ 5 25 L0006 0.00048
1.0005 lizx2s| 1200 | 7220 |+ 280 1024 | 0.00033 0.00024 1.001 J14X14 T84 | Tx 14 196 |16 16 256 116X 16 56 | 0.00067
784 | 7x14 | * 196 |16 5 |16 256 | 0.008 0,0024
1001 |11x25| 1100 * 191 25 700 0.00067 | 0.00048 1006 |14x14| 784 |7X14 | *19616x16]) 266 |16X16| 256) 0.0034 | 0.0024
1.005 [11x 1100 | 614 | * 168 20%20| 400 | 0.0034 | 0.0024 101 |12x14| 672 7x14 | * 196 |14x16| 224 [14x16] 224 | 0.0067 | 0.0048
= f 0
101 |11x25| 1100|614 |* 168 | 14x%14 | 196 |14x16| 224| 00067 | 0.0048 105 |10x16| 640 |8x12|* 192 |14x14| 196 |14x14| 196 | 0.034 0.024
105 loxzal 1120 | ex11 12| 10x9 | *90lioxtol 100l 0.032 0.024 1.1 8ax16| 512|7x12| 168 [11x12] * 132 |12x12]| 144 | 0.068 0.048
1.1 9%28 | 1008 [ 6x%10 120 | 88 * 64| 9%9 31| 0.068 0.048 116 |8x20| 640|8x12 192 [10x10] * 100 [10x11| 110] 0.10 0.072
1.2 4% 28 895 | 610 120 * 49| 8x8 g4 | 014 0.096 1.2 9% 20 720 | Tx11 154 | 9x9 | * Bl |10x10 100 | 0.14 0.096
478




‘nble 10,60 Effect of moving the source projection £ to the element edge Table 10.61 Effect of moving the source projection £, to the element edge
[s ¢, 0q%a%,dS, S:8PQE0, =0~1.2 [¢#,dq% %, dS, S: SPQ60, (=ha=0~1.2, d 11
of integration points ative error <10~
Number of integration po for relative error <10-% L-1s rell
i lelles
Ly Te hy
5 k original £ move ®, move X |
by ‘
1%, move R; original & move X 3
INe XN N Nex Ny N Ny XNy N NyxXNgl N [
ViXNal N (NexXNe| N [MXNal N [NxcNs) N 0 8x25| * 800 190 190 36100 0.5 0.043
1] Bx20|* 640 B0xT721 4320 0.6 0.43 0.2 14> 28| * 1568 190 180] 36100 0,42 .036
0.2 1125]* 1100 72%x72| 5184 0.42 0.36 0.4 1625 * 1600 1903 190] 36100 0,34 0.028
0.4 14x20]* 1120 T2x 72| 5184 0.34 0.28 0.6 20 28] * 2240 170> 180| 30600 0,24 0.19
0.6  |16x25]* 1600 64x64| 4096 0.24 0.19 0.8 J2025|* 2000 160X 170| 27200 0.13 0.096
0.8 16x20]* 1280 BOxB0] 3aso0 0.13 0.096 0.9 25251 * 2500 160> 150] 22500 0,065 0.048
09 [20x20]* 1600 3025 [1s0x190| 34200 | 0.085 0.048 0i5: 2625 ]8 2600 1403140} 18600 AL Fils
| 0,92 |20x20|* 1600 2750 lisox160| 24000 | 0.052 0.039 0.99 J28X25]* 2800 110X 110f 12100 0.0067 0.0048 |
0,94 * 2000 2500 fzox 0,040 0,029 0.992 2825 |* 2800 100x110] 11000 0.0053 0.0039 | ['
0.96 2000 | 10X S0 | * 1800 2250 |90x90| B100 | 0.027 *0.019 0.994 §32x25|*3200 100> 110] 11000 [oox220l 44000 | 0.0040 0.0029 |
0,996 2500 |10 100] * 2000 | 20x100] 9000 (1602170 0.0027 *(.0019
0,98 * 1600 | 750 | * 700 1800 |50x565]| 2750 | 0.013 0.0087 |
0.998* 2500 | 8x64 |* 1024 | 90X 90 8104 120} 12000 | 0.0013 0.00097
.99 20%20] 16800 | 632 | * 384 1400 |36x40] 1400 | 0.0087 0.0048 |
0.999 2000 35 |* 490 | BOx 80 6400 {80x90] 7200 | 0.00087 0.00048
0.995 J20x20| 1600 | 628 | * 336 1024 |32>36| 1120 | 0.0033 0.0024
0.,9992 12 2000 * 384 | 80=80 6400 |B0x 80| 6400 | 0.00054 0.00039 i
0.999 125x25| 2500 ] Tx25 |* 350 T84 |28 %28 T84 | 0.00087 0.00048
0.9989 |25 2500 * 300 | 60X64 | 3840 [60x64| 3840 | 0.000067| 0.000048
Lo 240 | 6x20 | * 240 7841 0 0
1.0 100 * 300 | 6060 3600 |BOXE0| 3600)| O 0
L.0G1 1600 | 620 | * 240 |25x28 700 | 0.000687 0.00048 == [ P r
1.0001 J20x25]| 2000 | 6x25 | * 300 | 56565 BEXGO| 3300 | 0.000067] 0.000048
1.002 116>x20| 1280 | 620 | * 240 |26%25 325 | 0. 3 00097
S L e i IR CL PR A 1.0005 [16x25| 1600 | 6325 |+ 800 | 4545 50%50| 2600 [ 0.00033 | 0.00024
1.005 4% 20 3% 16 | * 192 |25%25 L roE Y (1124 4
1.005 J14Xx20| 1120 | 616 192 |25x25 25 625 | 0.0034 0.0024 1.001 |14x25| 1400 | 6x26 |* 300 | 40%40 | 1600 |45%45| 2025 | 0.00067 | 0.00048
101 J12X20] 960 ) 6x16 |* 192 |20X20| 400 ]20X20| 400 | 0.0067 | 0.0048 1005 |12x25] 1200 | 6320 |* 240 | 25%25 a5x28| 700| 00034 | 0.0024
1.02 11X20 BBO | 6x16 | * 192 [16%20 320 |14x16] 224 | 0.013 0.0087 1.01 12x25| 1200 | 6320 |* 240 | 20x20 400 [20x20 400 [ 0.0067 0.0048
1.04 1020 800 | Tx14 | * 196 |14x14|* 196 [14x14]* 196 | 0.027 0.019 1.05 11x25] 1100 | 7x14 196 | 12x11 | * 132 |[12x12 144 | 0.034 0.024 F=
|
i 1.1 10x26] 1000 | 7x12 168 | 10x9 | * 90 [11x11 121 | 0.068 0.048 1.1 11x28| 1232 | 7x12 168 | 9x9 * Bl j1ox11 110 | 0.068 0.048 '
i
| 1.2 11x25]| 1100 | 8x12 192 | 8x8 |* 64| 9x9 81| 0.14 0.086 12 11x32| 1408 | Tx12 168 | 8x7 * 56| 9x9 81 014 0.096
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Table 10,62 Effect of moving the source i tion % the element edge Table 10.63  Effect of moving the source projection %, to the element edge

SPQEC ), §y=0~1.1 i 1 fe#,q*dS, S:8PQ60, §,=0, 1.2, d=0.01

for relative error <10~ Number of integration points for relative error <10-¢

-1y Telle log-L, Telles
| } hy
riginal £ move % ] original &, move Xy original X, move Rg
NexNel N INexNu|l N N %N N INyxNs N NXNgl N [NxNp| N |NixNy] N |V N
) Gx9 16 [20x40] 2400 (1416 1632 1120 | 0.43 0 614 | * 336 40> 45| 1800 0.43
l 11 108 | 16x4 192( 1 1 'l .46 0.2 Tx14 |* & 45x40] 1800 0.36
4 10 12x35| 1260 [14x16] * 224 [82x28| 896 | 0.28 0.4 Tx14 | * 392 40x45| 1800 0.28
] 10 60 | 8x28 3T 1 G6l* 1 B26 | 019 0.6 9x16 |* 576 40x45] 1800 65000 | 0.18
1.8* 11 1 b 14X 16| * 224 | 20X 401 0.095 0.8 1116 * 704 40x45| 1800 28800 | 0.085
LU 11 ! $20 % AE 0.085 0.9 14X16] * B96 [20x110| 6600 |35x45| 1575 1tox1zo] 13200 | 0.046
0.84 l R0 | 14X 10 i 320 [* 0.076 0.92 16X 16| * 1024 [ 16x90 | 4320 |32x45] 1440 pooxio0] 10000 | 0.036
| .56 . 2 £ i 1 | 1 0,066 0.94 1616 * 1024 |11 %72 ] 2376 |35x45]| 15756 |Gax80| 5120| 0.026
! bty 1 il dd6 (1 614 224 10566 0.98 16X 161 * 1024 | B 55 1440 |56x35] 1925 | 0.016
| £ 1 | 6] 336 |14x1 v 1 '.J ¥ 994 46 0.98* 125%16| 1600 | 7x35 1400 |* 0.0080
| l 1 X1 336 [14 %16 16 | * 224 | 0,036 0.99 J28x16] 1792 | TX25 1125 [28x 45| 1260 | 0.00087
(.54 1 1 7 ' 204 |14%16 4 |1 4|* 196 | 0.026 0995 |26%16] 1600 | 720 1125 |25x40] 1000 | 0.0017
0.96 1312 624 | Tx14 204 [12x 14]* 168 |12X14|* 1668 | 0.016 0.999 |20x20| 1600 | 7x20 900 {20x45 900 | 0.0037
089 J17x11| 48 | 1 7l B 4|+ 198 {14x14]* 196 | 000087 1.0 Tx20 | * 420 | 7x20 900 [20x45| 900 | 0.0042
1.0 711 231 | 7% 11 231 |1a%14]* 196 [14x14]|* 196 | 0.0042 1.001 |14x20| 1120 | 7x16 |* 336 |20x45 900 |2045| 900 | 0.0048
L001 J9x12 | 1 31 (1414 196 1421 i 1 1.002 |20%20| 1600 | 716 | * 336 |20x%45 900 {20 45 900 | 0.0053
1.005 J15%1 720 | X1l 231 |14 %14 14:] | 14x14]* 196 | 0.0068 1.005 |20x20] 1600 | Bx16 | * 384 |20x45 900 |20 %45 900 | 0.,0068
L.01 12%11 ; 28 | Tx11 231 [14%1 :] * 196 | 1414 00094 1.01 20%20]| 1600 | 814 | * 336 [14x45 630 | 16x40 640 | 0.0094
1,05 J12x19 576 | 8310 14|+ 140 |11x14| 154 | o030 1.02 |20x20| 1800 | 7x12 |* 252 [12x40| 480 |12x35] 420| 0.015
= 1 12x13] 624 10 210 |11x14] # 4|* 154 | 0.058 1.04 |16x20| 1280 ] 7x10 |* 210 |[10x32| 320 |11x25] 275 0.025
|; 1.16 1011 440 | THB |™ 168 |12x14|" 4]* 168 | 0.083 1.1 16x20] 1280 | "9 189 | 725 | * 175 |12x20 240 | 0.056
II 1.2 11%13 572 | T8 168 [10> 14| * 140 |11x12]* 132]| 0.11 1.2 1420 1120 | 6x8 144 | Tx16 112 [10x10]* 100 | 0.11
II
I 8 484




t of moving the

5: 5PQe0,

Table 10.65

T # 0q*lagy dS ,

Effect of moving the souree proje

&§: 5PQ60 ,

=0,

ction R, o the element edge

Number of integration points for

i ha
move Xy
N¢ XN N NixNy N Ny N ViXNs| N

0 * 480 110> 120,
0.2 * 480 100X 110 0,36
0.4 g 110X120 0.28
0.6 g 100 110] 11000 0.18
0.8 * B8O 90110 | 9900 0.085
0.9 12X20 * 96l 7920 0.0486
0.95 . 9800 0.021
0.99 e 1 |20 (128)] (7680) B640 J220x 100] 22000 | 0.00087
0.992 * 3200 N16%X(128) (6144) |60x120| T200 |170x80| 15300 | 0.00015
0.994 * 2560 | 11X100 | 8300 |60x110| 6600 ) 12600 | 0.0012
0.996 2000 | 964 60X110| 6600 |1ooxs0| 9000 [*0.0(
0.998* | 8020 G400 Tx40 S50x110| 5500 |sox110] 6600 | 00032
0,988 §110x20 8800 45x110 6500 | 0.0037
0.9992 | 120 9600 . 4050 | 0.0038
099499 | 120 x2( 9600 . 4950 d850 | 0.0042
1.0 7 * 420 . 11 0.0042
10001 |12 9600 | TX20 |* 420 |32x110 11 0.0043
1.0005 f128 (10240) | Tx14 * 294 |26X100| 2500 0.0045
1.001 024 %14 |* 204 <100 2500 | 0.0048
1.005 B400 | 6x14 |* 252 14%72 1008 |20x64| 1280 | 0.0068
1.01 6600 | Tx12 |* 25 12X 60 1450 700 | 0.0094
L.056 2500 | Tx10 | * 210 | 10x25 250 [11x25 2756 | 0.030
1.1 2026 2000 7x9 189 | 8x20 160 |11x12]* 132 | 0.066
1.2 14X 25 1400 | 6x8 144 | TX16 112 |[10%10]|* 100 | 0.11

L,-1%
T I hy
original %, move R, original %, move £,
INiXNg] N [NxNg| N [NixXNs| N N N
0 Bx10 | * 320 |25%x55| 4126 |265X25 60x45] 2250 | 043
0.2 Bx14 448 |20x50]| 3000 |20x20] * 400 |50x45]| 2250 | 0.36
0.4 9x12 432 11445 1890 |20x25] * 500 |4540]| 1800 | 0.28
0.6 12%12 576 |11x40] 1320 |20%20] * 400 |40%32| 1280 | 0.189
0.8 14x14 T84 | 9%25 675 |20%25] * 6500 |28%25 700 [* 0.095
0.82 14x%14 T84 | 925 20X%25] * 500 |28%25 T00 | 0.085
0.84 14%14 784 | B%25 600 |20 25| * 500 |26%25 625 | 0.076
0.86 14%16 896 | 925 2020] = 400 |25x20 500 | 0.066
0.88 16214 896 | 920 540 |20<20] * 400 |25%20 500 | 0.056
0.9 20 14] 1120 | 925 675 |2025| * 500 |25x20]| * 500 | 0.046
092 |20x14| 1120 ] 9%20 540 |20x25| 500 |20%20] * 400 | 0.036
094 |16x14| 896 |9x20 540 |20 20| * 400 |20%20] * 400 | 0.026
096 |20x14| 1120|916 432 [20<20| * 400 |20%20| * 400 | 0.016
0.29 25x14| 1400 | 9x14 | * 378 |20X 20 400 |20 20 400 | 0.00087
1.0 9x14 d78 1 9x14 378 |16 20| * 320 [16x20| * 320 | 0.0042
1.001 |14x14 T84 | 914 378 |16>20| * 320 |16x20| * 320 | 0.0048
1.005 J20x14| 1120 | 9xX14 378 |16 20| * 320 |16x20| * 320 | 0.0068
1.01 1614 BO6 | 914 178 |16 20| * 320 |16x20(| * 320 | 0.0094
1.05 1614 B96 | Ox12 924 |14%20| * 280 [14x20| * 280 | 0.030
1.1 16>16]| 1024 | 811 | * 264 [14X%20 280 | 1420 280 | 0.056
1.15 1416 896 | 8X11 287 |12X20 240 [14x16] * 224 | 0.083
1.2 1416 896 | BX10 270 |11X16| * 176 |12X16 192 0.11
486 -




Table 10.66 ot of moving the souree pre 2.1t element sdge Table 10.67 Effect of moving the source projection %, to the element edge
[o ¢, dq*aR, dS, S: SPQB0 =0, §,=0~12, d=001 Is#, dq*a%;dS, S:SPQ60, 7,=0, #=0~L2, d=0.001
ion points for relative error <10~ Number of integration points for relative error <10-°
Ly~ Pelles Ly-'® Telles
7 by T hy
i original %, maove & original & move R, original %, move R4 original &, move £y
NNyl N [NxNgl N [NixNo] N |NxNy| N NiXNp| N |NxNg| N | NyxNe| N [NXN:| N
0 Bx20 | * 640 BOxT72] 4320 0.43 0 8256 | * BOO 190 190] 36100 0.43
02 [toxzo|* 800 72%72| 5184 0.36 02 111X25]°1100 190%190] 36100 0.36
0.4 1020 | * 800 7960l 4320 0.88 0.4 1125 | * 1100 190 % 190| 36100 0.28
4 51*14 90| 342 18
0.6 12X20|* 960 64%72| 4608 0.19 0.6 1425 | * 1400 180> 190| 34200 0.1
1} 4%25]* 00 70 801 32300 0.095
0.8 |1ax20|* 1120 80x60| 3600 0.095 L et 170%180) 32 5
0.9 2525 | * 2500 150 190] 28500 0.046
0.9 2020 | * 1600 55X 60| 8300 l180x 200 00 | 0.046
0.95 25X 25 | * 2500 140 190] 26600 0.021
0.92 2020 * 16800 [20= 110 6600 |55x60| 3300 sol 24000 | 0.086
0.99 4525 | * 4500 1103 190( 20800 0.00087
0.94 20201 * 1600 6> 100f 4B00 |55x%60| 3300 fizox128] 16360 | 0.026
0.992 |46x25 |* 4500 110 190| 20900 0.00015
0.96 26X 20* 2000 |12x72 50x60| 3000 |90x60]| 5400 | 0.016 =
0.994 |40 25 |*4000 110X 190| 20900 [240x1560) 36000 | 0.0012
*0.98 32X 26| 3200 | x50 45%60| 2700 |60 x 64 3840 |* 0.0060

0.996 [40x25] 4000 [11x90]* 2970 {100X190] 19000 psox170] 30600 |* 0.0022

0.99 32x20| 2580 | 828 | * 672 |40x60| 2400 |40x64| 2580 | 0.00087

*0.998 110256 11000 | 850 |* 1200 0.0032
0,985 |32x20| 2560 . 39XT2] 2520 2520 | 0.0017 0.999 lis50x25] 7500 | 832 [+ 768 0.0087
0.999 J20x20| 1600 * 480 |32xT72] 2304 0.0037 0.9992 ax28 |+ g72 0.0038
1.0 820 | * 480 | 8x20 |* 28x72| 2016 |28x72| 2016 | 0.0042 0.9999 a%25 |* 600 0.0042
1.001 }25x20| 2000 ] 8X16 | * 384 |28x72| 2016 |28X72) 2016 | 0.0048 1.0 | 8x25 [+ 600 ] 8x2s |+ 600 |64x190] 12160 [sexia0] 12160 [ 0.0042

L.002 |256x20] 2000 384 |28 2] 2016 |2RXTE 2016 | 0.0063 1.0001 8% 25 600 0.0043

1.005 J2Bx20

L 384 |5 1800 |25 72 18(

0.0068 1.0005 8x25 |+ 600 0.0045

1.01 28%20| 2240 384 |2 1600 |20x 64| 1280 | 0.0084 1.001 Ax25 GO0 0.0048

1.02 28X20| 2240 ’ B B8O (20x55| 1100 0,015 1,006 [L00% 25| 10000 | 820 480 | 25120 | 3000 [28x110| 3080 | 0.0068

1.04 25%20( 2000 1645 20 |16 40 640 | 0.025 1.01 72x25| 7200 | BX20 2090 1800 |20xB0| 1600 | 0.0094

1.1 20%20] 1600 %39 288 (14325 aso | 0.056 1.05 32x25| 3200 | 8x14 11x45 495 | 1632 512 | 0.03

2500 | 8% 11 9x32 288 11620 0.056

1.2 16%25| 1600 8% 25 200 l12x16l* 192 | o.11 1.1 25X 25

1.2 20x28| 2240 | 8X11 Bx25 200 [12X 16 0.11
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10.8 Summary of Nu Nearly Singular Int

1ent results were pr

pr

previous methods.

lial varia

where & is the order of near sin, f the integ

ed to eval

wsed for nearly singular

transformation R{p)

1el, was shown to

require only one radial integration point for the accurate integration of u* and g*

over const

ling interpolation functions ¢, the method does not work as

Telles' cubie transformation method

Then the log- lial variable transformation

arity cancelling transformation

ir integrais

of different ¢

SPQB0 . How eth : ito ba in : i

kerne

dg*/dxy , as well as the potential kerr

elements.

tant planar elements. However, for curved elements and kernels

iently as

., was

(5.856

s shown to work efficiently for the integration of the flux kernels du®*/dx; and

u* and g%, over constant planar

Further, the L; - "™ radial variable transformations

Ripl==lp+d) im=>1} (5.99)
were introduced to improve on the log-L; transformation
Different radial variable transformations were tested for the model radial

variable integrals

I ,=|" —dp (10.45)

Results showed that the log-L; and L;~'® radial able transformations with
the Gauss-Legendre rule perform far better compared to the identity and log-L,
transformations with the Gauss-Legendre rule, and the single nnd double

exponential transformations with the truncated trapezium rule, The L;~'®

transformation gave better results compared to the log-L; transformation except

for the case a =/ , d=10"%and a= 2,d=10-?% It was also shown that the

theoretical error estimates of Chapter 7 based on complex function theory,

matches well with numerical experiment results.

Finally, different numerical integration methods were tested for the

integration of
| ¢ u*dS | ¢ .q*dS, and é
] IR Jgtu
5 5

over the ‘spherical’ quadrilateral element SPQS0 of unit size.

First, the effect of the source distance d, with the source projection fixed at
®s=x (0.5, 0.5 ), was tested. As a result, it was shown that for potential and flux
caleulations,

(1) For d<0.08, the PART method with the log-L, and L,~"® radial variable
transformations and the log-type angular variable transformation

i [ 14sin(d-
)= — log
2

130)

l—gin(f—a )
4

works most efficiently.




The log-L, transformation is suited to g

ile the L

s [ gsu*dS and [, &;0*

Mux celculations involving the integ

¢y ou*/ax, dS and [ 4, dg

(2) For 0.08 0.8

" cubic transformation method works most

siently

(3) For d = 0.8, the product Gauss-Legendre method works most efficiently.

Next, the effect of the position of the source projection %,=x(7,, §2) was
examined for 3, =7:=0~1.2 and §;=0, 7, =0~1.2, with source distance, d=0.1,
0.01 and 0.001.

5 for the PART method

It was shown that the number rration

with the log-L; and 1, radial variable transformations can be reduced

considerably by deliberately moving the source projection %, to the nearest edge

of the element S, when %,€S or when %,€8 and h;<d where h; is the distance

between the ¢

nal source projection %, and the arest edge-Jj of the projected

element S,

Further, i shown that the PART met pr , is superior to
I'elles’ method for %,€5 and %,€8, 7; = 1,01, for source distances d=0.01 and
0.001,

It so shown that the log-type angular variable transformation #(§) of

equation (5.130) works very effect and is indi

sable when the source

projection %; lies near the element edgei.e. when 0.7<7<1.1.

CHAPTER 11

APPLICATION TO CAUCHY PRINCIPAL VALUE INTEGRALS

Because of the robustness and efficiency of the PART method with the log-L,
and Ly ~"®radial variable transformations, one is tempted to see how close one can
let the source point x; approach the element surface (d—0) and still obtain the
accurate value of the nearly singular integral.

This is of particular interest for the Nux integrals [, du*/ix, dS and
Jgdg*lix, dS | since in the limit of d—0, or when the source point X, is on the
element, they become strongly singular, and they exist only in the Cauchy
principal value sense, whereas the potential integrals [ u* dS and [ q*dS are
only weakly singular, i.e. u* ~ O(1/r) for d=0 (cf. section 3.1) and can be easily
caleulated just using polar coordinates centered at x; in the plane tangent to the
element at x, ( PART method with R(p)=p ).

In fact, it turns out that one can calculate these Cauchy principal value
integrals by setting the source distance d sufficiently small and calculating the
corresponding nearly singular integral by the PART (log-L,) method. To be more

specific, let

,’-—;_ + u‘n. (11.1)

where 0<d<1and n, is the unit normal to the boundary surface S at x;€S,
and calculate the corresponding integral with the source pointat x,_ .

First , we will calculate the nearly singular integral for the planar square
element PLR (0.5, 0.5) , mentioned before, letting the source point

%' =(0.25, 0.25, d) approach the element surface (d—0), In order to see how the

nearly singular integral converges to the Cauchy principal value of the




nypers

can be ealeulated analytically as follows :

For a planar rectangular element

z)l —a=x=a,—-b=y=b,z=0},

gular integral as d—0, we will compare the fc

ource point

rmer with the latter, which

®¢=(xy , ¥¢ , 0) on the element S, the Cauchy principal value integral can be

caleulated as the limit of d—0, where x;=(x;, s,

wtiox dS= (L ., 1 (g i
s W,z Che, "2
where :
] h
oS | ,__E| s
L Bl 4 | e :
B

|
! |
u i
Lan
— {sina ) log| —
ta
4 1
and ’
| (1}
1
1*fix dS ==
4
~ =
j=i
where
d, =tan" | =

d), to give

(11.3)

(11.4)

ll—l,

#,=r + tan ) tan~ | — |

' y +b/

¥
7+ (1L.7)
3
e, BT (11.8)
¥ =gt ‘
and

hy=b=y, . hy=x+a =y +b, h=a-x (11.9)

For the planar square element PLR (0.5, 0.5), a=b=1/2 and x,=y,
The result of numerical experiments on the planar square element

PLR (0.5, 0.5) is given in Table 11,1, where the source distance d and the number

of int

ation p s for the angular (f) and radial (R) variables using the PART

(log-L, transformation) method, required to a ve an accuracy of (relative
error < 10-% compared to the analytical value of the hypersingular integral (d=0),
are shown. For the x, y, component integrals (*) of [, dg*/ax,; dS , partial

quadruple precision was necessary, and the absolute error was taken, since the
1 ¥

true values are both zero.

Table 11.1 Convergence of nearly singular integrals to Cauchy principal value
integrals ( planar square element: PLR(0.5,0.5) )

(11.5)

(11.6)

Integral Component| Source Number of Value of integral
distance | integration points
T T (analytical, d=0
| d NexNg [ totat analytical, d=10)
| =y 10-* | 8%x25| 800 —1.1122013% 10!
I g du*lax, dS 1
: z 10 10 X 32 1280 —5.0000000%10-!
\E TP 4 10-# 20 % 80 | 6400 0
[ dq*lax,dS
. : E 10-* |20 x50 | 4000 1.2712670

Similarly, one can ealeulate the Cauchy principal value integrals

[ du*/ax; dS and [3dq*/ax, dS over curved elements, as the limit as d—0 of nearly

singular integrals . As an example, we take the ‘spherical’ quadrilateral element

- 496




ry for caleulating the

¢y contains terms like

juation 3.130), which take very large absolute

when integrated in t

cil experiments demonstrate the robu
sformation) method with regard t

on of Cauchy principal va

+0) of nearly singular integrals.

CHAPT

CONCLUSIONS

This thesis was primarily concerned with the numerical integration method

for the accurate and efficient caleulation of nearly singular integrals over general

curved surfaces, which plays an important role in three dimensional boundary

element ans

Nearly singular integrals frequently arise in engineering problems, when
analysing thin structures or thin gaps, when using boundary elements with high
aspect ratio and when calculating the potential or flux very near the boundary.
The thesis is divided into two parts. In the first part, the theory and
formulation of three dimensional boundary element method (BEM) for potential

problems is presented, and the nature of nearly singular, weakly singular and

hypersingular integral kernels is analysed by focusing on the radial component of

the kerne Previous work on numerical integration methods for three

dimensional BEM is brie

y reviewed before proceeding to describe the new

technique developed to deal with nearly singular integrals. This technique has

been described in detail in Chapter § and is referred to as the “Projection and

Angular & Radial Transformation (PART) method”. The method consists of the

following stages:

(1) Find the closest paint £; on the curved element S from the source point x,.

(2) Approximately project the element S on to a polygon Sin the plane tangent

toSatR;.

(3) Introduce polar coordinates (o, #) centred at £, in 5.

(4) Apply a radial variable transformation R(p) in order to weaken the near
singularity inherent in the integral kernel.

Apply the log-type angular variable transformation



ASpec

n the transformed radial and ang

variables R ar

gsingular integrals, which in the calculation of the

wls of H and G matrices for three dimensional potential problems, the

ient results.

ntity radial variable transformation Rip)=p givese

rals, the singularity ca radial variable

For nearly singular int 1’

transformation gives the exact result with only one integration point in

variable for constant planar elements. For curved elements, th

e source di

sformation R(;

ot results for near

the log-L, transformation R{g)=loglps+d) and

ition R( = —(p

ations and the Iatter to flux caleulati

ntial ¢

1 with

The pe

r the single or double exponential tran

rule for the radial and an

runcated t » integration is

ition of the PART

Finally, the detailed implemen

» of the method lies in the fact that the

arities are separated so that they can be analysed and

rom each other.

ited independently

An elementary error analy was presented in Chapter 6, explaining why

the

L, radial variable transformation ( corresponding to order #=2 ) gives best

results among other singularity cancelling transformations corresponding to

#2. In Chapter 7, complex function theory was used to derive more rigorous

theoretical error estimates for different radial variable transformations

showed that the PART method using the log-L, radial variable

transformation converges with error of the order n~**, where n is the numbe
radial integration points, for integrations arising from potential calculations,

n

whereas the method converges only at a rate of n~? for integrations arising
fux calculations. For the log-L, transformation, the theoretical error estimate is
of the arder o~ for both types of integrals, where o :1.31~1.63 for

D :10-7~10-", where D is the source distance relative to the element

Similarly, for the L, =" transformation, the error is predicted to be of the order

h well

o~ where o: 1.41~1.67 for D: 10-*~10-'. These error estimates mat

with numerical experiment results. This method of using complex function th

for the theoretical error estimate also gives a clear perspective for
construction of the optimum radial variable transformation.
The second part of the thesis presented numerical experiment results for

new numerical integration technique. In Chapter 9, the PART method with

identity radial variable transformation and the log-type angular varia

transformation was applied to weakly singular integrals and gave accurate

efficient results for planar and curved elements with interpolation functions. In

particular, the effect of the angular variable transformation #(#) in decreasing

number of angular integration points when the source point x, is near the element

edge, as in discontinuous elements and elements with high aspect ratio

demonstrated.
Chapter 10 presented numerical results for nearly singular integrals, which

was the primary concern of this thesis. First, results for constant planas

elements were presented, together with the closed form integral. The singul:

cancelling radial variable transformation corresponding to  pde= r*dR ,

oved

r=WVg*+d? isthe source distance and o is the order of near singularity, pr

to be more efficient compared to the Telles and Gauss methods when the relative




log-type anguls ble transformation () was

source distance D=0.1
hown to be effective when the source projection &; isnear the element edge.

al variable transformation

I'he same

igularity canc

+d? isthe approximate source

r*diR , where r'=V

to curved elements and kernels with interpolation

wn to be inefficient compared to Telles' cubic
To overcome this difficulty, the log-Ls; radial variable

¥ +d? , which corresponds to the singularity

eancelling transformation for « =2, was introduced and shown to be most efficient

yust among other transformations corresponding to «% 2, for integrals of

1-5 overa

[ 1/r*dS with different orders of near singularity

- element showed that the

il experiments on a pl

formation is inefficient for integrals arising from flux

f order n—?, where n is the number of

the converge

5, a5 predicted in Chapter 7. To solve this difficulty, the

wmtion Rig)=lc +d ) was introduced and was

rals over a

: compared for the model

kernels. For

al and {1

snidre tity transformation

log-L, transformation and the Lyi-"®

Num results showed that the

here ¢ ; 1.66~1.88 for a=5 ~1 and D=0.01. This

esponds well with the theoretical estimate of Chapter 7 which predicts

1.40~1.64 . The L,~'® transformation showed error convergence of the order

where o: 1.7~2.9 for o=5~1 and D=0.01. This corresponds with the

theoretical error estimates of Chapter 7 which predicts o: 1.48~1.79. The identity
and log-L, transformations also gave convergence results which were consistent
with the theoretical estimates. The single and double exponential

transformatio

based on the truncated trapezium rule were also compared. Asa
result, they required 2~3 times as many integration points compared to the log-L

transformation to obtain the same level of accuracy, On the whole, the L=}

transformation with m =5 gave best results for the model radial integrals
Finally, the product type Gauss, Telles' methods and the PART method witl

the identity, log-L,, log-L, and L, =" (m = 2) radial variable transformations and

identity, log-type angular varinble transformations were compared for th

wenrly

singular integrals [, ¢ u*dS, [, ¢ g*dS arising from potential caleulations

and Jg ¢, dutlaxy dS , [, ¢, dq*axy dS  from Mux calculations over a curved

surface element 5. Results showed that the PART method with the log-L, or
L; =Y radial variable transformation and the log-type angular variable

transformation is the most robust method with re

rd to the type of inte

kernels, source distance d and the position of the source projection %, in S

T'o be more precise, the effect of the relative source distance [ with t
source projection fixed at %,=x(0.5, 0.5) was investigated for a ‘spherical’
quadrilateral element S. As a result, we obtained the following guide for the
choice of numerical integration methods :

For D < 0.06 , use the proposed PART method with the log

radial variable transformation and the log-type angular variable transformation

( The log-L, gives better results for potential integrals and the L, ~'® gives better
results for flux integrals.)

For 0.06 = D = 0.8 , use Telles' cubic transformation method.

For D > 0.8 , use the product Gauss-Legendre method.

The effect of the position of the source projection ®%y3=x{j ) was also

0~1.2 and =0~1.2, with source distances d=0.1,

examined for ,=7

0.01 and 0.001. Results showed that the PART method can be substantially




erately moving th

purce projection ®; to the element edge

when %5 ¢ 5, 0r X5 € Sand #;<d, i.e. when the original %, is outside the element, or

the

jjected element than the source

o an edge of the

this strategy, the PART method becomes superior to Telles'

method when %,€S and %,€8, 7, <1.01 for source distances d=0.01 and 0.001.

of the log-type angular variable transformation in the PART

i was also verified by comparing with resulls obtained by the identity

angular variable transformation (¢((#)=§). The effect becomes pronounced when

ource projection approaches the element edge (

7=0.7),

Chapter 11 showed that the PART method with the log-L; radial variable

rmation can be applied to the calculation of Cauchy principal value

arising from flux ealculations on the boundary

. This was done by taking

the source dist:

y small to give an approximation of the limit as

i==0. Numerical results hed with analytical integration results for a planar
nent surved element with interpolation functions were also
presented

In summa

proposed a robust and efficient numerical

gration method for ne

ly singular integrals with arbitrary small source

ce o, which had bee

an open problem in three dimensional boundary

element analysis. The thesis treated the three dimensional potential problem as

e, but th be applied to other prob ch
statics. The method may also be applied to two dimensional problems by
g the log-1 | nsformation. These topics are left for future
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