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NUMERICAL QUADRATURES FOR NEARLY SINGULAR INTEGRALS

IN THE THREE DIMENSIONAL BOUNDARY ELEMENT METHOD

by

KEN HAYAMI

ABSTRACT

This thesis proposes an accurate and efficient numerical integration method

for nearly singular integrals over general curved surfaces, arising in three

dimensional boundary element analysis. Nearly singular integrals frequently

occur in engineering problems involving thin structures or gaps and when

calculating the potential or flux near the boundary.

The proposed Projection and Angular & Radial Transformation (PART)

method finds the source projection, which is the closest point on the curved

element over which the integration is performed, from the source point;

approximately projects the element on to a polygon in the plane tangent to the

element at the source projection; introduces polar coordinates in the planar

polygon centred at the source projection; applies a radial variable transformation

in order to weaken the near singularity of the integral kernel; applies an angular

variable transformation to weaken the angular near singularity which arises

when the source projection is near the edge of the polygon; and finally uses the

Gauss-Legendre rule to integrate in the transformed radial and angular

variables.

As the near optimum radial variable transformations, the log-Ll

transformation: R(p) = log(p +d) and the Ll -115 transformation: R(p) = _ (p + d)-115

are proposed. Also, an efficient log-type angular variable transformation is

introduced.

Numerical experiments on planar and curved boundary elements for potential

and flux integrals containing interpolation functions arising in three dimensional

potential problems, show that the method is far more efficient compared to

previous methods such as Telles' method, for nearly singular integrals with

relative source distance D less than 0.06, and the tendency becomes more

pronounce as the relative source distance decreases. Here, the relative source

distance D is defined as the source distance relative to the element size. The

proposed method is robust concerning the type of integral kernel and position of

the source point.



Experiments also show that the log-Ll transformation is suited to potential

calculations, while the Ll-1I5 transformation is suited to flux calculations. When

the source projection lies outside the element, or when it is closer to the element

edge than the source point, it is shown that moving the source projection to the

nearest element edge improves the efficiency of the method substantially.

Theoretical error estimates using complex function theory are derived, which

quantatively explain the efficiency of the proposed radial variable

transformation.

The PART method is also shown to be applicable, with some modifications, to

weakly singular integrals and Cauchy principal value integrals arising in three

dimensional potential problems.
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THEORY AND ALGORITHMS



CHAPTER 1

INTRODUCTION

In three dimensional boundary element analysis, computation of integrals is

an important aspect since it governs the accuracy of the analysis and also because

it usually takes the major part of the CPU time.

The integrals which determine the influence matrices, the internal field and

its gradients contain (nearly) singular kernels of order 1/r a (a= 1,2,3,4,"') where

r is the distance between the source point and the integration point on the

boundary element.

For planar elements, analytical integration may be possible 1,2,6. However,

it is becoming increasingly important in practical boundary element codes to use

curved elements, such as the isoparametric elements, to model general curved

surfaces. Since analytical integration is not possible for general isoparametric

curved elements, one has to rely on numerical integration.

When the distance d between the source point and the element over which

the integration is performed is sufficiently large compared to the element size

(d> 1), the standard Gauss-Legendre quadrature formula 1.3 works efficiently.

However, when the source is actually on the element (d=O), the kernel 1/~

becomes singular and the straight forward application of the Gauss-Legendre

quadrature formula breaks down. These integrals will be called singular

integrals. Singular integrals occur when calculating the diagonals of the

influence matrices.

When the source is not on the element but very close to the element

(O<d~l), although the kernel 1/r a is regular in the mathematical sense, the

value of the kernel changes rapidly in the neighborhood of the source point and

the standard Gauss-Legendre quadrature formula is not practical since it would

require a huge number of integration points to achieve the required accuracy.
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These integrals will be called nearly singular integrals. Nearly singular

integrals occur in practice when calculating influence matrices for thin

structures, where distances between different elements can be very small

compared to the element size. They also occur when calculating the field or its

derivatives at an internal point very close to the boundary element.

Singular Integrals

I
Nearly Singular Integrals

( d==O) (O<d~l)

I. Analytical ( for planar elements only)

II. Numerical

(1) Weighted Gauss (1) Element Subdivision

(2) Singularity Subtraction (2) Variable Transformation
(+Taylor Expansion)

(i) Double Exponential
Transformation

(3) Variable Transformation
(ii) Cubic Transformation

(4) Coordinate Transformation (3) Coordinate Transformation

(i) Triangle to Quadrilateral Polar Coordinates
Transformation ( + modification)

(ii)Polar Coordinates

(5) Finite Part Integrals

Present Method:

Projection and Angular & Radial Transformation (PART)

Table 1.1 Classification of quadrature methods for (nearly) singular
integrals in three dimensional boundary element method.

Numerous research works have already been published on this subject and

they may be classified as in Table 1.1. These are numerical methods based on the

Gaussian quadrature formula or the truncated trapezium rule with modifications

-4-

to suit the (nearly) singular kernels which appear in the Boundary Element

Method (BEM).

Let us first briefly review the methods for singular integrals.

The weighted Gauss 4.5,19,20 method uses the kernel lIr as the weight

function for generating the Gauss integration points.

The singularity subtraction 21 with Taylor expansion 6 method expands the

singular kernel by the local parametric coordinates. The main terms containing

the singularity is subtracted and integrated analytically and the remaining well

behaved terms are integrated by Gaussian quadrature.

Then there are the coordinate transformation methods. The first type is the

method of transforming a triangular region into a quadrilateral region so that the

node corresponding to the singularity is expanded to an edge of the quadrilateral,

so that the singularity is weakened 7,8.21. The second type is that of using polar

coordinates (p, 0) around the source point in the parameter space 9, 15. This

introduces a Jacobian which cancels the singularity Ifr.

For higher singularities of order lIr which appear in elastostatics, the

method for calculating finite part integrals 10,11 may be used.

Although a rigorous comparison is not attempted, the use of polar

coordinates seems to be the most natural and effective way. In the present work

this idea is extended to taking polar coordinates around the source point in the

plane tangent to the curved element at the source point. Further, an angular

variable transformation is introduced which considerably reduces the number of

integration points in the angular variable.

Nearly singular integrals turn out to be more difficult and expensive to

calculate compared to singular integrals. They are becoming more and more

important in practical boundary element codes, since the ability and efficiency to

calculate nearly singular integrals governs the code's versatility in treating

objects containing thin structures, which occur in many important problems in

engineering. Examples are the electrostatic analysis of electron guns with

-5-



complex geometry, calculation of the magnetic flux in thin gaps occurring in

electric motors, to mention a few. The use of discontinuous elements 1 also

increases the chances of encountering nearly singular integrals. The stress of the

present work is on a new quadrature scheme for the accurate and efficient

evaluation of these nearly singular integrals.

The orthodox way to treat the problem is to increase the number of

integration points as the source to element distance d becomes small, and further

to subdivide the element so that the integration points are concentrated near the

source point 7, 12. Subdivision tends to be a cumbersome procedure and would be

inefficient when d is very small compared to the element size.

A recent trend is to transform the integration variables so as to weaken the

singular behaviour of the kernel, such as using the double exponential

transformation with trapezium rules 13.14. A more efficient self-adaptive method

using cubic transformation15 has been proposed. However, this method does not

give accurate results when the ratio of the distance d to the typical element size

is smaller than the order of 10-2, which is required in practice.

The use of polar coordinates in the parametric space with correction

procedures is reported to be efficient for potential problems 16.

In the present work a new coordinate transformation method is introduced,

in which the curved boundary element is approximately projected to the tangent

plane at the point on the curved element nearest to the source point, and then

polar coordinates are employed in the tangent plane with a further

transformation of the radial variable in order to weaken the near singularity,

after which the standard Gauss-Legendre quadrature scheme 17 is applied.

As the radial variable transformations, the log-L 1 and L 1 -115

transformations are introduced and shown to be robust and efficient for near

singularities of different orders.

Furthermore, the method is generalized to cope with arbitrary geometry of

the curved element, such as curved triangular as well as quadrilateral elements.

-6-

Then, an angular variable transformation is introduced to reduce the number of

integration points in the angular variable.

The method, which will be referred to as the Projection and Angular &

Radial Transformation (PART) method, enables one to calculate nearly singular

integrals accurately and efficiently, even when the distance d to element size

ratio is smaller than 10-2
• The method is also applicable to different types of

nearly singular kernels because of the robustness of the proposed radial variable

transformations.

-7-



CHAPTER 2 8 (x, x,): Dirac's delta function,

x: field point ,

BOUNDARY ELEMENT FORMULATION OF 3-D POTENTIAL PROBLEMS
x : source point,

Although the quadrature methods to be proposed are applicable to general

problems, let us take potential problems to illustrate the nature of the (near)

singularities of integrals and how the quadrature methods can be applied.

r = Irl ,

and

r = x - X
s

I

2.1 Boundary Integral Equation
as shown in Fig. 2.1 .

Using Green's identity:

(2.1)

The potential problem in a three dimensional domain V with boundary

surface S can be described by the following Laplace equation:

6u (x) = 0

Iv (F6G-Gb.F)dV = I (F~ -G~)dS
s an an

taking F= u and G = u*, we obtain

(2.5)

where

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)for

L(U6U-U 6u)dV= !s(Uq-U q)dS

I u (x) 8 (x, x ) dV = u (x ) for
V ' ,

I u(x) 8(x, x )dV
v '

I u(x) 8(x,x) dV = I (q u· - uq·) dS
v's

Substituting equations (2.1) and (2.3) into equation (2.5) gives

where

where

and

(2.4)

(2.3)

(2.2)au -
q(x) = - = q(x)

an

• 1
u (x,x)= -

s 4rrr

The fundamental solution u*( x, xs ) of the Laplace equation:

where a/an is the derivative along the unit outward normal vector n of the

boundary surface S at point x.

6, u·(x, x,) = -8(x,x,)

in the infinite domain is given by

ilu a2u a2u
6u=-+-+

ax2 a/ az 2

with the boundary condition;

u(x) = u(x)

where

- 8- - 9-



(2.11)

For the case when Xs E S, i.e. when the source point Xs is actually on the

surface S , the property of the Dirac's delta function yields

J u(x)o(x,x)dV=':::'- u(x)
v s 4rr s

(2.12)

(2.13)

(2.15)

(2.16)..!L (4" - w) i
4"r

"','"{: (x. E V)

(x f V)

w /4" (x. E S)

From equations (2.8-11),

c(x)u(x) = J (qu -uq )dS

• • s

For instance, w = 2lf when the surface S is smooth at X s .

where w is the solid angle subtended by V at X s on S as show in Fig. 2.2 .

where

Consider a part of a sphere S, of radius E centered at Xs as in Fig. 2.3 ,

where S =S'+S,. Since now X s E V, the left hand side ofequation (2.8) is

J u(x)o(x,x)dV=u(x) (2.14)
v • •

Instead of using the Dirac's delta function ofequation (2.11), equation (2.12)

can be derived for the case when X s E S as follows:

where

Next, the first term of the right hand side of equation (2.8) is

Js q u· dS = Js' q u· dS + Js, q u· dS

n

s

Fig.2.1 Source point Xs in region V
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Fig.2.2 Use of Dirac's delta function
at Xs E S

-12 -

n

Fig.2.3 Treatment of X s E S without
the use of Dirac's delta function
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The second term of the right hand side of equation (2.8) is

- Is u q+ dS = - Is' u q+ dS - Is, u q+ dS

where

(2.17)
J u (x) = U (x) on SIC S

l q(x) =q(x) on S2= S-SI

where the region V is an infinite region as shown in Fig. 2.4.

(2.23)

4:i u(x) (4,,_w)€2 W-+O) ( l-~ )u(x.) (2.18)

(2.26)

(2.27)

(2.28)

u - ~ - O(~)
4"R R

-(R,n)Q ( 1 )q-----O-
4"R3 R 2

Hence, on SR

Since the Green's identity of equation (2.5) is also valid for a multi connected

region, let us take a sphere SR of radius R centered at the source point X s E V,

such that S is included in the sphere SR, as shown in Fig. 2.5. The boundary

integral formulation of equation (2.12) becomes valid for the region VR enclosed

between surface Sand SR, i.e.

C(X)U(X)=I (qu+-uq+)dS+ I (qu-uq)dS (2.24)
S 6 S Sn

4rrr 4"R

+ (r, n) 1
q =--=---

4",3 4"R2

dS = R
2

dR sinO dOd¢ (2.25)

where (r, e, >f» is the polar coordinate system centered at xs , and R = IRI.
Let us take the limit of R~co. The value of u, q, on SR can be considered

as a solution of

where Q is the sum of the source term (e.g. electric charge) inside S, since S

may be considered as a point source of finite magnitude Q when observed from a

distant point x E SR as R~co.

(2.22)

(2.21)

(2.20)

(2.19)

I + I (r, n)
- u q dS = ----:J u d

s( B( 41l'r

Let us consider an exterior problem

L'>u(x) = 0 in V

From equations (2.8), (2.14) and (2.15-18),

I
+ + W

u(x)= lim, (qu -uq)dS + (l--)u(x)
s (-+0 S 41[' S

One advantage of the boundary element method, especially when treating

electromagnetic or acoustic problems is that exterior problems can be treated

without meshing the infinite exterior regions. A briefexplanation will be given in

the following for the three dimensioned potential problem.

2.2 Treatment of the Exterior Problem

Hence, equations (2.19) and (2.20) give

w I + +- u (x ) = ( q u - u q ) dS
4" s S

which corresponds to equation (2.12) for the case when X s E S.

Since for potential problems, u* - O(lh), q* - O(lh) (cf. equation (3.40) ) and

dS-O(,2) for xES in the neighborhood ofxs, where S now indicates the original

smooth surface, we obtain

lim I ' (q u+ -uq+)dS = I (q u+ -uq+)dS
£-0 s S

with boundary condition

-14 - -15 -
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as R - 00 ,so that the third term of equation (2.24) tends to zero as R-oo ,since

as R- 00.

2.3 Discretization into Boundary Elements

element Se

Fig.2.6 Discretization of S into
boundary elements Se

node

(2.32)

(2.30)

U(?1'?2) = L ~;(?1'?2)u;
J = 1

Hence, equation (2.24) becomes

c(x)u(x) = J (qu -uq)dS
• 8 S

Now the boundary element formulation can be derived from equation (2.12)

by discretizing the surfaces S into boundary elements Se, as shown in Fig.2.6.

Each element contains nodes xeJ (j = 1- ne), where u (or q) is defined from the

boundary condition, and q (or u) is to be solved.

The element is described by the parameters ('71' '72) and interpolation

functions <Pe} ('II' '/2)' (j = 1 - ne), which are defined so that

{(?1'?2l = ~ ~;(?1'?2){/ (2.31)
J = 1

where {e J is the value of{('71' '72) at node xeJ. can represent the potential u, its

normal derivative q = au/an or coordinates x, i.e.

for the exterior problem. Note that the boundary that has to be discretized is only

S and no mesh discretization in the infinite region is involved. Note also that the

unit outward normal n on S is defined in the opposite direction compared to the

interior problem as shown in Fig.2.5.
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n

q (~1' ~2) = L ¢~(~I'~2)q~ (2.33)

j = 1

and
n

x (~1' ~2) = L ¢~( ~1'~2) x ~ (2.34)
j =1

For a curved quadrilateral element shown in Fig.2.7.

Is dS = J 1 J 1 IGI d~l d~2 (2.35)
, -I -I

where

Since

J dS = i J dS
S ,=1 S,

where m is the total number of elements, equation (2.12) can be discretized as

11 2

1

-1 1
0

-1

Fig.2.7 Curved quadrilateral element Se
and parametric space (111,112)

(2.38)

(2.37)

J
1 J 1 I • k

¢,IGI u (x. x ,) d~ld~2
-I -I ,

k k "" ( k I I k I I)C,U·=L L g'eqe-h'eue
e e e =lj = 1 e e

where

and

or

-20-
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and the potential gradient at an internal pointxsE V is given by

Reordering the nodes throughout S, equation (2.37) can be written as
N N

cju i = L Gijqj-IHjju j
j=1 j=l

where N is the total number of nodes on S. Ifwe define

(2.39)

(2.40)
where

au
J

au· au·
(q - -u- )dS

sax. axs

(2.46)

(2.47)

(i*j)

(i=j)

equation (2.40) gives
N N

L Hjju j = L GjjU j
j=l j=1

which can be written in matrix form as

(2.41)

(2.42)

and

(2.48)

Correspondingly, after the discretized equation (2.44) is solved for the

boundary values u and q, the potential u(xs) at an internal point X s can be

calculated by

(2.43)
(2.49)

(2.51)

(2.50)

(2.53)

(2.52)

~ (aSI ql _ bsl ul)
L.- e e e e
1=1

~(x) =I.ax S
s e=l

where

and

where

Similarly, the potential gradient at an internal point X s EV can be

calculated by

(2.45)

(2.44)

• au·
q =­an4rrT'

U(x) = J (qu -uq )dS
S s

where

given by

u represents the Dirichlet boundary condition and q the Neumann boundary

Equation (2.43) can be rewritten as

so that the unknown u and q can be obtained by solving the system of linear

equations (2.44).

From equation (2.12) the potential u(xs) at an internal point xsE V is

condition.

- 22- -23 -



a'.l = ~gsl
ax, e

2.4. Row Sum Elimination Method

Fig.2.8 The solid angle co at Xs

subtending V

(2.56)

(2.55)

(2.54)

I

J
IJI ~[~_3r(r,n)1

-1 -I 4" r3 -r-5- d~1 d~2

sum elimination method in many cases.

For the three dimentional potential problem defined in the interior region,

consider the equipotential solution u(x) == 1 to the original Laplace equation

/';. u(x) = O. This implies that q(x) = au(x)/an = 0 on the boundary S.

Hence equation (2.12)

c(x ) = - J q' dS, s

The calculation of c(xs) in equation (2.13) when X s is a node shared by two or

more elements as shown in Fig.2.8 involves the calculation of the solid angle w

subtended by the region Vat X s on S. In order to avoid this, one many use the row

where r = x( '71' '72) - X s , and n is the unit outward normal vector of the

boundary element Se at x E Se .

and

and Uj== I, (j = 1-N) and qj == 0, (j = 1-N) in equation (2.42) gives

- 24- -25-



N

L H,) =0
)=1

(2.57) (2.64)
}=1 (j '" i)

Hence, From the above argument, the diagonal element Hii can be indirectly

For the exterior problem, a similar technique can be used with some

modification.

In the equation

c ( x ) u(x ) = J (q u -uq )dS + J (q u -uq )dS
s S S SR

(2.65)

(2.66)

and the calculation of the singular integral

lL= L h::
II x: = Xl

calculated by the row sum of Hij ( i '* j), so that the calculation of the solid angle

atnode Xi given by

c. = w(xi )

, 4"

(2.24)

(2.58)H.
')

N

L
J=l(j ~ i)

H .. =­
I)

let us assume the equipotential solution u(x)= 1 in the region V R ofFig.2.5.

Since
au

q = - == 0an
(2.59)

where

(2.67)

(2.68)

(2.69)

become unnecessary. This technique is equivalent to what is known as the use of

rigid body motion in elastostatics. On the other hand, it is a good check to

calculate Hii directly from Ci and Hij . For discontinuous elements!, Ci = 1/2 for

i = 1- N, and calculating the singular integrals Hii directly are reported to give

where u* = 1/(4ltr) and

more accurate results l5•

The diagonal element Gii has to be calculated directly by the singular

integral

(2.60)

(2.63)

(2.62)

- J q' dS
SR

c( x ) = - J q' dS
S S

J q'dS=J (r,n
3
)dS=-J --.!!..-dS=-l '(2.61)

SR SR 4"r SR 4"R
3

which gives

c, = - L Hi} + 1
)=1

Equation (2.61) is satisfied in the limit of R-co.

Hence, equation (2.60) gives

c( x ) = - J q' dS + 1
S S

The discretization of this equation as in equation (2.40) gives

Hence,
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CHAPTER 3

NATURE OF INTEGRALS IN 3-D POTENTIAL PROBLEMS

(3.1)

(3.2)f
' f u (r, n)u q dS = - - -- dS

S S 4rr r3

f ' f q 1q u dS = - - dS
S S 4rr r

From the previous chapter, the integrals which appear in three dimensional

potential problems are the following:

One also has to calculate integrals

11:: = L~L: ~; IGI u'(x,x; Jdryl dry2 (2.70)

and

kk

L~L: ~: IGI q' (x, x; J dryj dry2 (2.71)ge e =

which contribute to the non-diagonal element Hi) and Gi}. It will be shown in

Chapter 3 that the integrals he/I, ge/I (k* I) are not singular for three

dimensional potential problems in the sense that the integral kernels are order

0(1) or O(r), where r = I x - x/ I, since .pel (xl) = 0 for k * l.

related to the calculation of the potential u(xs) and the coefficients of the H, G

matrices, and

related to the calculation ofthe flux au/axs at x s.

As mentioned in the introduction (Chapter 1), these integrals may be

classified by the distance d between the source point X s and the boundary

surface S (or the boundary element Se ) .

When d = 0, they are called singular integrals.

When 0 <d <111, they are called nearly singular integrals.

When d> 1 , the integrals do not cause difficulties since they may be

calculated accurately using the standard Gauss-Legendre formula 1,3 with

relatively few integration points. (Here the distance d is defined relative to the

element size which is set to 1 .)

It is for the singular (d = 0), and nearly singular integrals (0 < d <111) that

special attention is necessary in order to calculate their values accurately.

f
au' f q r

q -dS = - - dS
sax, s 4rr r3

f
aq' f u [n 3r(r,nJ!

u-dS= - ---- dS
s ax s S 4rr r 3 r5 (3.3)
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3.1 Weakly Singular Integrals

Weakly singular integrals (d = 0) arise when calculating the diagonal terms

of the G and H influence matrices. This corresponds to integrals gell and hell in

equations (2.38) and (2.39), when e'=e and k=l.

e'=e means that the source point Xs is actually on the element surface Se,

so that r = Ix- Xs I becomes 0 at x = xs.

Furthermore, when k = I, one has to calculate

(3.5)

Hence, the numerator of the kernels of integrals geell, hel of equations (3.5)

and (3.6) take a nonzero value at x = x e
l , whilst the denominator is zero since

r= Ix - xell = O. This means that the kernel of the integrals are singular, and

special care is required for the evaluation of the integrals.

Let us now consider the order of singularity of the kernels of integrals gel

and hel.

For geell , since </>el('11' '12)= 1 and IGI* 0 at x/= x('1/. '7/), the order of

singularity is l/r.

For h"lI, the order of singularity is also l/r, since (r, n) /,.:J has a singularity

of order l/r when d = 0 •as shown in the following theorem.

J
I J 1II I •.

h = '" ('7 1' '7 2) IGI q (x,xl) d'7 l d '72ee -1 -1 e e (3.6)
Theorem 3.1

where

(3.10)

(3.11)

for 0 < r ~ 1

n = G/IGI

r=x-x.with

Proof:

Let the curved element be expressed by x = X('71' '72) and the source point be

where K n(,\) is the normal curvature of the curved element along a direction

A= d'72/ d'71 at a source point Xs on the element, and '11' '72 are the parameters

describing the curved element.

The unit normal is given by

(3.7)

(3.8)

(3.9)

x - x~

.
x('7l' '72) = L "'~('71,'72) x~

1=1

u'(x,x') = ...!......
e 41l'r

Interpolation functions are generally constructed so that

and

where

and

In other words, </>e l is the interpolation function corresponding to node x/. where
ax ax ar ar

G= -x-=-x-
a'7 1 a'72 a'7 1 a'72

(3.12)
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Taking Taylor expansions around X s one obtains, The 0(d'l2) term is given by

(3.20)

(3.16),

where, from the O(d>7) term of equation (3.13) and the O(d>7) term of equation
1 - 2 - - 2

+ 2: ( r'll d~l + 2 r'I2 d~ld~2 + r'22 d~2 )

(3.13)

where r,i == ar/ a'l, etc. and the bar - indicates the quantity at xs=x(;jl' ~2)'

and

(3.14)

(3.22)

(3.23)

(3.20)

(3.21)a·(bXc) = c (aXb)

and, from the 0(d'l2) term of equation (3.13) and the 0(1) term ofequation (3.16),

Hence, from equations (3.17), (3.18) and (3.23),

since

so that equation (3.20) becomes

(3.15)

(3.16)

(3.17)

(3.18)

(i= 1,2)

ar ar !- - - 2 I
G =-x - = r 'I + (r'll d~1 + r '12 d~2) + O(d~ )a~l a~2

ar - - - 2a;;; = r'l + r '1Id~l + r'i2 d~2+ O(d~ )

00) Lerm = 0

denote the first, second and third order terms of d'l, and d'l2' respectively.

Similarly one can express the derivatives of r as,

Hence, the cross product can be expressed by the following expression

and (r, G) can be calculated from equations (3.13) and (3.16) as follows:

since

(i=1,2)
(3.19)

(3.24)
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(3.30)

(3.29)

(3.32)

(3.33)

~ _ 03(d~2) {I + a (d~)}

r2
- °4(d~2){I+O(d~)}

°3(d~2)
=--- {I + O(d~)}

°4(d~2)

1 ( ; '11 d~12 + 2 ; '12 d~1 d~2 + ; '22 d~22 ) . ;;-
- -. +O(d~)

- - 2 (r 'I . r 'I d~12 + 2 r '1' r '2d~ld~2 + r '2' r '2d~22 )

(3.31)

Hence,

where

and

is the normal curvature of the curved element at X s ' (See for instance 24.)

Here, K n depends only on the direction specified by

i.e.

(3.25)

(3.26)

(3.27)

(3.28)

= IGI + O(d~)

= I G12
[ 1 + a (d~) )

= G + O(d~)

1- 2 - - 2- 3
= - 2 ( r '11 d~1 + 2 r '12 d~1 d~2 + r '22 d~2 ). n + a(d~ )

= (r, G) IGI-I

Hence, from equations (3.11), (3.24) and (3.28),

IG I = IG I [1 + a (d ~) r

From equation (3.16),

and

On the other hand, from equation (3.13),
From equation (3.31) and (3.32),

r2 =(r, r) (3.29)
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(or 0< r <C 1 (3.34)

Q.E.D.

(3.40)

and

Hence, for potential problems, singular integral,S arising from the diagonal

tenn of the H and G matrices are both of order Let us take, as an example, a 9-point (quadrilateral) Lagrangian element

where (r, 8) are the polar coordinates on the plsne tangent to the element at X"

and

) O(~) dS
s r (3.35)

where

and

1 1

«7,,7,)= L ;/7,) L ;.(7,)(P,q)
p __ l q--l

(3.41)

o( ~) dS - 0 ( ~) r dr dO
r r (3.42)

= 0(1) drdO
(3.36)

;,(7)= 7(7+ 1 )/2

This means that the integrals defining geell and he,/l in equations (3.5) and

(3.6) are only weakly singular. They can be calculated efficiently using polar

coordinates on the plane tangent at X s I as will be shown by numerical

experiments in Chapter 7.

(3.43)

(3.44)

(3.45)

2 ,
'1 1 '1(

? = °111]1
2 + 2 °12'1 1 '12+°22922 +O('1~

Here,

where

and let the source x,' be x(O, 0). Then for k* I, ¢,' in equation (3.37) and (3.38)

will be of the order O(~,) or O(~,) or O(~, ~,) in the neighborhood of

x,' = x(O, 0) and will not include a constant tenn. Also, in generallGI- 0(1) in

the neighborhood of xl. Hence, the kernel of the integrals in Bel', he,/" (k* I)

are either of the order O(~, I r), O( ~,I r) or O( ~,~,I r).

From equation (3.30), for x,' = x(O, 0),

(3.37)

(3.38)) ' )'M ,...
h = • IGI q (x,x) d7,d7,

u _I -1 r r

) ' )'11 I· ...
g = • IGI u (x,x )d7,d7,

u -1 -1 r I:

where

For the case when e'= e but k* i, it is shown in the following that the

numerators of the integral kernels also become zero at the source point xe' , so

that the integrals gte" and h,/' have a even weaker singularity compare to gr/'

and hu". From equations (2.38) and (2.39),

u·(xx lt )=....!...- - O(-r')
'f 4lfr (3.39)

IT we let ~,=O and ~,- 0,
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(3.46)
If 'II = 0, '72 - 0,

If '71 -=1= 0,

Hence

(3.54)

(3.55)(3.48)

(3.47)

2
~l

r
2 a22A2+2a12A+all+0(~3)

Ifwe let 'II -=1= 0,

and

since

(3.49) To sum up,

(because r,2 -=1= c r, 1) ,
(3.56)

(3.58)

(3.57)

~: ( 1 )? - a ~ or 0(1)

so that the Jacobian r in dS = r dr dB will cancell the singularity in <Pel I r2

and hence in ge/I and he/I, (k-=l= l). The diagonal terms heekk can be calculated by

using the row sum elimination (rigid body motion) technique. The calculation of

Hence, the kernel of the integrals in ge/1, he/ I (k-=l= l) are of the order 0(1) or

O(r) , which means that they have a even weaker singularity compared to O( lIr)

for integrals in gel and heell , and will not cause any substantial difficulty when

integrating them numerically.

This will also imply that, for problems where u* - O(lIr2), q* - 0(1Ir2) as

in three dimensional elastostatic problems, the nondiagonal terms ge/I, heell

(k-=l= l) can be calculated using polar coordinates around the source point x/, since

for these terms

(3.52)

(3.51)

(3.53)

(3.50)r(A) > 0 for all ,\

(ry~ry2 r=

Hence,

so that

Similarly,

and a22 > 0,

Similarly,

-38- -39-



geekk may require the calculation of the finite part of a hyper singular integral by,

for instance, Kutt's method 10.

3.2 Hyper Singular Integrals

s

Fig.3.1 Circular disc S

(3.59)

(a>2)

(a=2)log a- log.

f
a dr

( ra - 1
lim 2"
,->0

=+00

f ~= lim f2. dO fa 1 rdr
s r ,->0 0 'r"

For problems including higher order singularity Le. Is 1//"" dS ( a~ 2), the

singular integrals do not exist in the normal sense.

This can be illustrated by taking S as a circular disc of radius a with the

source point X s at its centre. (Figure 3.1) Consider now taking a smaller

concentric circular disc of radius E away from S and calculating the integral at

the limit as E -0. This gives

This means that the Cauchy principal value for Is 1//"" dS does not exist for

a~ 2. Instead, the integral must be defined by its finite part 10.50, which

corresponds to 2Jrloga, (a=2) and 2Jra2-"/(2-a) , (a>2) respectively in

equation (3.59) .

Alternatively, the physical concept equivalent to rigid body motion in

elasticity may be used to calculate the diagonal coefficients of the influence

matrices.
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(3.66)

(3.65)

(3.63)

(3.64)

a J au* 1 J rI """ q - dS = - q - dS
au Sa ax, 4rr Sa r3

a J aq* 1 J In 3r(r,nl)I tf '" u - dS = - u - - --- dS
a Sa ax, 4rr Sa ,3 ,6

In order to calculate the hyper singular integrals of equations (3.63), (3.64),

let us assume that X s = (0,0, d) and take the limit as d~O, i.e.

By taking polar coordinates (p,O) in the x, y plane centered at (0,0),

Cartesian coordinate (x, y, z) are introduced with the x, y, axis lying in the

tangential disc with (0,0,0) at the centre of the disc and the z-axis perpendicular

to the disc towards the inside of the region (opposite to the normal n).

For simplicity, let u and q in equation (2.46) be given by linear

interpolation:

: tangential derivative at X s on the boundary S) usually have finite values on the

boundary.

However, it will be shown in the following that the integrals Iau* and Iaq*

do have Cauchy principal values.

Since only the neighborhood of X s is relevant, so long as the singularity is

concerned, let us assume that the boundary S is smooth at X s and take a local

tangential planar disc Sa of radius a centered at X s as shown in Fig. 3.2, and

calculate the integrals Iau* and Iaq* for the planar disc Sa :

(3.62)

(3.61)

(3.60)

(2.47)

(2.46)

(2.48)

la tf "" Is u : :>S - JsI 0 ( ~ ) - 0 ( ~) ) dS

- Is O(~)dS

I """ f q au* dS - J 0 (~) dS
au sax. s ,2

au" 1 r
-(x,x 1 = -­
ax, ' 4rr r3

au f (au" aq")- = q- -u- dS
ax, S ax, ax,

since

where

from equations (3.31) and (3.32). Hence, the apparent singularities in the integral

in equation (2.46) is of order 0(11,.2) and 0(111.3), suggesting that the integral does

not have a finite value, which is contrary to the fact that q"" au/an and au/at (a/at

instead of interpolating on the boundary element. The integral of equation (2.46)

does have a Cauchy principal value and can be calculated directly using a method

similar to that of Gray 28 and Rudolphi et al. 61, or as a limit of a nearly singular

integral by the method which will be proposed in Chapter 11.

Let the source point X s be on the boundary element surface S. Since q and

u in equation (2.46) generally contain constant terms qo and Uo when expanded

by Taylor series around the source point x s, the order of singularity of the

integrals involved should be, roughly

For potential problems, integrals containing higher order singularities arise

when calculating the derivative of the potential at a point on the element by
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(3.69)

(3.68)

(3.67)

1 J2. Ja [ ) [n 3 r (r n) )I""a(d)=- d8 uo+p(ucos8+usin8) 3---5'- pdp
0, 4" 0 0 % Y r r

I :(d)= 2.. J2. d8 Ja [qO+p(q cos8+q Sin8»)~3 pdp
au 4rr 0 0 % Y r

and

where

and
S

z

(3.71)

(3.70)

r = J/+d
2

[
P~S8]

r=x-x. psm8

-d

(r ,n) = d

and

Noting that

y

n

Fig.3.2 Polar coordinates (p,8) on
a planar disc Sa

we obtain

J
2. Ja r

I = d8 3 pdp
qo 0 0 r
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(3.75)

[.( ]
dp

~3

f
2K 2K

. sin 20
smOcosOdO = f ~- dO = 0

o 0 2

f
2K f 2K2 1 +cos20

cos 0 dO = ~~- dO = "
o 0 2

since

.[:::]
f -p d dp

0~3

J: [,.:J d,

-..r;;:;-; 3

(3.77)

(3.76)

(3.78)

2d

dp

f(-p- d2 p )d
o 122 - j 2 2 3 P

vi p.+ d· p + d

= [vi p2+ d2 + __d_
2 _]a

.~o

=~+

f
2K

dO
o

[
,,:a]lim I =

d-+O qx

f
a 3

o J: 23 dp =
p + d

f
0

2K
dO foa r 2I qy ;:J p sin 0 dp

Noting that,

(3.72)

(3.73)

. [e~:J ?oo~
f dp
o r;-;3

V p<+ d<

U.J

f
2K

dO
o

lim
d-->O

so that

and
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in equation (3.70),

since

J

2.

dO
o

[ "0:
3
]

J
o

a _----C..-=-=-_ dp

-Jp
2+d

23
(3.79)

where

J

2.

dO
o

J
2rr Ja

= -3d 0 dO 0 /cosO dp = 0

(3.84)

(3.85)

1 - cos20

2
dO (3.80) (3.86)

(3.87)

(3.89)

~ + ~ )
d d

[~]

1

-Ja2+d2

[
1 d

2
]a

2" -J/+d2 - -J. 2 23 0
p +d

(3.88)
2"

J
2. Ja (-p 3d

2p )
= 0 dO 0 1"2"23 + 1"2"2 5 dp

Vp"+d" Vp"+d"

lim I
u

=
d--+O 0

Note that the singularities due to nJ,.J and -3r( r, n )/,-5 cancel each other out.

Hence,

and

(3.81)

(3.82)

(3.83)
[

p c~s 0]
psmO

-d

3d

-Jp 2+ d2
5

3 r (r, n J?- -r-5-=

I a . a J aq*ou. = 11m lou. (dJ= lim u- dS
d--oQ d-O Sa ax,

As for I aq* a, since

From equations (3.69), (3.73), (3.78) and (3.81),

Hence,
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Next,

\ = r dO J: [3-3 r ~:. n) } /oos 0 dp
1

2K Ia p3sinO 0058
I = -3d dO ---5 dp = 0

"xy 0 0 v'j;;i (3.94)

where

(3.90)
we have

(3.95)

(3.93)

(3.97)

(3.98)

(3.99)

(3.101)

(3.100)

I
"yz

1
2

K Ia p3sinO 0058 - 0
I = -3d dO ---5 dp -

"yx 0 0 J/+d2

I
20< Ia p3sinO 12K

__p3__ dp
I = -3d dO ~5 dp = -3"d 0 5

>/,p2+ d2"yy 0 0 p2+ d2

Similarly,

where

and

which gives

(3.91)

(3.92)

(3.93)

1 d2
1

----+----3-
-Ja2

+d
2

3 -Ja2+d2 3d

I
a (-p- -~ ) dp
o ~d23 §;d25vp"+d" p

d
3

)(
3d + 2

" vQ+d2 - .;;z;;j 3

I
a 3

= -3"d --P--5 dp
o v'j;;i

lo
a 3

--p-- dp =
Jp2+ d2

5

Noting that,

since

Hence,

Hence,
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au I aq. u

]
ax s I~u' a _ I~q'a =

4 2
• a [";'

u
(3.106)2.

2
(3.103)

qo u
~

2 2a

Hence, the contribution of the integration in the local disc Sa including x s ,

to the singular integral of equation (2.46), which give the potential derivative

au/axs at X s is

which is finite. Since the integral for the boundary surface S excluding Sa is

finite, the integral

(3.102)

From equations (3.70), (3.89), (3.96) and (3.102),

To sum up, for the linear interpolation

au J ( a u* aq* )- = q--u- dS
ax. s ax. ax.

x.E S (3.107)

gives a finite value (Cauchy principal value) when calculated in the above

manner, although the integral kernel has an apparent hyper singularity of order

O( 1/,-2) - O( 1/,-3), as seen in equations (3.60) and (3.61).

3.3 Nearly Singular Integrals

This is reasonable since, physically, one would expect finite values for

au/axs from the interpolation of u, au/an, au/at in the boundary S , where d=O.

When the source point is very near the surface, the integrals g:l, h/ of

equations (2.50) and (2.51), and aest, be'l of equations (2.54) and (2.55) have finite

values. But it is difficult to calculate them accurately and efficiently using the

standard Gauss-Legendre product formula, since the value of the kernels vary

very rapidly near the source point X s. In fact the nearly singular integrals

(3.65)

(3.104)

(3.105)

I a
~q'

and
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(O<d~l) turn out to be more difficult to calculate than the singular integrals

(d=O).

The accurate calculation of these nearly singular integrals is of practical

importance in boundary element codes. They may arise when calculating the H

and G matrices in cases where the elements are very close to each other, when

using discontinuous elements, or when it is necessary to calculate the potential

and its gradients at a point very near the boundary. Good examples are the

analysis of electron guns which have complex geometry and thin structures, or

the analysis of electromagnetic fields in thin gaps arising in motors, to name a

few.

To understand the problem, let us examine the nature of the near

singularity (0 < d ~ 1 ) in comparison with singularity ( d = 0 ), for the integral

kernels u*, q*, au*/axs and aq*/axs, which occur in three dimensional potential

d

problems.

Let Xs be the nearest point on the curved boundary element S to the source

point x s , and let the distance be

d = I x,- ;,1

as shown in Fig. 3.3. Xs will be cal1ed the source projection.

In general, r/r is a unit vector.

Hence,

( ~ n) = rosO
r ' rn

where 8rn is the angle between rand n as shown in Fig. 3.4, so that

u· =
4",

1 (r. n) 1 rosOrn
q* =- - -- = - - --

4" r3 4" r 2

-54-

(3.108)

(3.109)

(3.110)

(3.111)

Fig.3.3 Source projection X s and
source distance d
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(3.112)

dq* 1 In 3 (r,nlrj
iJx

s
= 4; ? - --r5--

(3.113)

(3.114)

(3.119)

(3.115)

(3.116)

(3.117)

(3.118)

~r
2

cos 8 rn

• 1 K n 1
q .... -4,; 2 r

cosO rn 4> 1

- .... t

For the singular case (d = 0) , since Xs = X s , taking the limit of x~ Xs

For the nearly singular case (0 < d ~ 1 ), taking the limit of x~ X s,

Now let us examine the behaviour of these kernels when the limit of x ~ X s

is taken.

Le. r~ 0,

Fig. 3.5. Since,

where t is the unit tangent vector in the direction of r (as r ~ 0) , as shown in

from equation (3.10),

Le. r~ d,

n

Fig.3.4 Angle 8rn between rand n

as shown in Fig. 3.6.
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s

Fig.3.S f - t (singular case)

-58-

Fig.3.6 t - n (nearly singular case)
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Table 3.1 Nature of (near) singularity near source projection Xs

(3.123)
r = [p oosO ]

psmO

-d

Noting that,

source point be X s= (0, 0, d), where (x, y, z) are Cartesian coordinates. The

planar element S lies in the xy-plane and the source projection is Xs = (0,0,0) , as

shown in Fig. 3.7.

Taking polar coordinates (p, B) in the xy-plane centred at xs, the near

singular kernels u*, q*, au*lax s, aq*laxs of equations (2.4), (2.7), (2.47) and (2.48)

for three dimensional potential problems can be expressed as follows:

For instance, for a given source distance d, ( O<d4,l ) , a given accuracy

requirement £, the integration of Is au*laxs dS and Is aq*lax s dS related to the

potential derivative aulaxs, requires far more i'ntegration points compared to the

integration of Is u* dS and Is q* dS related to the potential u(xs) , when the

log-Lz transformation is used. Looking at the nature of near singular kernels in

the limit of x - Xs (Table 3.1), this seems odd, since the order of near singularity

for q* and au*laxs are both 0(l/r2), and one would expect that they can be

integrated numerically with more or less the same number of integration points to

obtain the same accuracy (relative error).

In order to explain the behaviour of the near singular kernels in numerical

integration, it is necessary to consider not only the local behaviour of the kernels

in the limit of x-xs, but also the global behaviour of the kernels around x =xs

and in the total integration region S.

To do so, consider the case when the boundary element S is planar. Let the

For the nearly singular case (0 <d4, 1), the order of near singularity in the

limit as x - Xs is 1/r", (,,=1-3). However, as will be seen from numerical

results in Chapter 7, the nature of the integral kernel at the limit of x - Xs

alone, does not explain the difficulty in integrating these near singular kernels

numerically, using the log-Lz transformation which will be proposed in Chapter 5.

(3.120)

(3.121)

(3.122)

1 1
q ~ - 4" r 2

singular near singular
d=O O<d4,l

4rr u* 1/r 1/r

4rr q* - K n l(2r) -1/,2-

4rr au*laxs t/,2- nl,2-

4rr aq*laxs n/,-3 - 3/2 K n U,2- -2 n/,-3

Hence,

To sum up, the nature of the singular and near singular kernels in the limit

of x - Xs is given in Table 3.1. Notice the difference of the nature of singular

and near singular kernels.

For the singular case (d=O) , u* and q* are of order O(l/r) and the

integrals are weakly singular in the sense that the singularity is cancelled by the

Jacobian of the polar coordinate system centered at x s , i.e. dS - O(r) dr dB.

Integrals containing au*laxs , aq*laxs are hyper singular in the sense that

the order of singularity is 0(1/r2 ) and 0(11,-3) respectively and the singularity

cannot be cancelled by the Jacobian O(r) of the polar coordinates. However, as

shown in equations (3.104) and (3.105), these hyper singular integrals render

finite values (Cauchy principal value), which can be calculated using polar

coordinates centered at X s on the plane tangent to S at x s .
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(3.124)

Fig.3.7 The planar element S

(3.125)

(3.130)

(3.126)

(3.127)

(3.129)

(3.128)

4n:r

au* I" prosB

axs 4rr r3 4rr r3

I" = ff;d2

( ", n)

q* = - 4"r3 = - 4" r3

aq* 1 [ n 3d:, n))
ax =

4" 3
-

s r r

- 3d
pcosB

r5

3d
p sinB

4" r5

+ 3d2

r3 r5

(I", n) = d

u* =

and

one obtains,

Since the (near) singularity is determined by the radial ( p ) component, we

may neglect the angular ( 8 ) component when discussing the nature of near

singularity. Also, since for a planar element ( r, n) = d is constant, the nature of

yz
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near singularity of the kernels u*, q* au*laxs , aq*laxs can be summarized as in

Table 3.2.

Table 3.2 Nature of near singularity (0 <d«: 1) for 3-D
potential problems (planar element)

where (p, 8) are the polar coordinates centered a the source projection Xs in B

and pmax(8) is defined as in Fig. 3.8 .

Hence, the near singular integrals in three dimensional potential problems

involving the kernels u*, q*, au*laxs and aq*laxs in Table 3.2 can be expressed as

since S is a planar element.

Since the near singularity is essentially due to the radial component,

consider the radial component of the integral in equation (3.133):

Order of near singularity

u* 1/r

q* 1/,-3

au*laxs 1/,-3, pl,-3

aq*laxs 1/,-3, 1/r5 , plrS

J
2. JP (8) 6max p

I = dO - dp
o 0 r"

where a = 1,3,5 and 0= 1,2 and

r = J/+d2

(3.133)

(3.134)

(cf. Chapter 5-7, 10 )

Although the above analysis of near singularity was done for planar

elements, it can be considered that the essential nature of near singularity for

general curved elements is the same, since near singularity is dominant in the

neighborhood of xs, where

(3.135)

(3.136)

fmax fmoxJ = 0 F pdp o f(P) dp

where

f(P) = f, (p) e p

v'/+d2

f
3
(p) t.- --p--

r 3 Jp2+ d2
3

p
2

P
2

f3,2(P)
r

3
";;;:;;;3

f
5
(p) t.- --p--

r5 ";;;:;;;5

P
2

P
2

f5,2(P)
r5 ";;;:;;;5

so that, essentially, the nature of near singularity of the radial component of

integrals containing the kernels u*, q*, au*la x s, aq*la X s is given by Table 3.3.

(3.132)

(3.131)(r, n) - d

I = J
s

F dS

I
2< JPmax (8)
o dO 0 F pdp

For a constant planar element S,

Hence, the relative difficulty of numerically integrating f s au*laxs dB and

f s aq*lax s dS, compared to fsu* dB and f sq* dB , using the log-LZ transformation,

can be explained by the presence of kernels pl,-3 and plr5 in the first two

integrals.
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Table 3.3 Nature of near singular kernels of the radial

component integrals in 3-D potential problems

Order of near singulari ty

u* plr

q* pl,-3

a u* I aX s pl,-3, p2/,-3

aq* I aX s pl,-3, plrs, p2/rS

For planar elements, the radial component integral of equation (6.135) for

the kernel functions fl' f3' f3,2, fs and fS,2 of equation (6.136) can be expressed in

closed form as follows:

(3.137)

(3.138)

l.; p 2 + d2 ("ax
~-d

PIll&X

df3,2

dp

The graphs of the near singular kernels fl' f3' fJ.2' fs and fS,2 of the radial

component integrals are given in Figures 3.9 to 3.13. The characteristic feature

of the kernels f3.2 and fS.2, which appear in the calculation of the flux aulaxs, is

that

Fig.3.8 Definition of Pmax (8) for
a planar element S

- 66- -67 -



J =3

p

-1

p

-yp2+ d 23

1
--p2

Pmax

Pmax

- 69-

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - --

o

o

Fig.3.10 Graph of

Fig.3.9 Graph of

-----+-J++---=::::~:=:f:=:=------ p

(3.140)

(3.141)

(3.142)

[ - .Jp21+ d 2 Cax
1 1

- d .Jp~"" + d2

[ p3 3 j"max
3d2 J/+ d2 0

3
Pmax

-68-

J =5

These closed form integrals are useful for performing the integration in the

radial variable analytically for planar elements, as will be mentioned in

Chapter 5. They are also useful in checking numerical integration methods for

the radial variable, and will be used in Chapter 10.



p

-71-

. 3 13 Graph of fS,2=Fig..

f '(0) = 05,2

p
Pmax

-70-

Graph ofFig.3.12

1 6m..L _-p 125 d
3

1",'(0).0 P

Fig.3.11 Graph of



CHAPTER 4 (4.6)

SURVEY OF QUADRATURE METHODS FOR

3-D BOU DARY ELEMENT INTEGRALS

(4.7)

For potential problems,

In this chapter we shall review some of the quadrature methods related to

the three dimensional boundary element method in the literature according to

Table 1.1.

1
u' (x,x) = -

If 4rr ,.

q' (x,x.) = _ 1 ~
4" r3

(4.8)

(4.9)

As shown in Chapter 2, in three dimensional boundary element analysis,

integrals of the form

and
au'
ax. (x,x.) = 4" r3 (4.10)

are necessary for the calculation of Hand G matrices and potential u at an

internal point. For the potential gradient au/axs at an internal point xs, integrals

ofthe form

g;;= I_~ I_ll¢;IGlu'(x,X;,)d11d12

It;,; = rl L>;'Glq,(x,x;,) d11d12

(4.1)

(4.2)

aq' 1 [~3 - 3T(T
5
,n) I

;:- (x,x.) = 4" r r

where

r= (r l ,r2 ,r3 )T= x-x. = L ¢; (1 1,12 ) x; - x.
1=1

r = IT I = .J r~ + r~ + r~

(4.11)

(4.12)

(4.13)

4.1 Closed Form Integrals
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Closed form or analytical integration formulas for equations (4.1)-(4.4) are

available for constant planar triangular elements I, planar parallelograms 6 and

for planar triangular elements with higher order interpolation functions 2.29, in

the case of potential problems.

However, for general curved elements with constant or higher order

interpolation functions, it seems impossible to derive closed form integrals for

equation (4.1)-(4.4), let alone for potential problems. The main reason for this is

that the integrands include lIr", (a = 1-5) and IGI, where rand IGI are given by

the square root of a general polynomial of ('71' '72)' the order of which is higher

(4.3)

(4.4)

(4.5)X(1 1,12) = L ¢; (1
1
,1

2
) x;

1=1

I 1 I I 1 au'
a·

1 = ¢ IGI - d1 1 d1 2e -I -1 e ax
s
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become necessary.

Here </>/('7]> '72) is the interpolation function corresponding to node x/' and

is a polynomial of ('71' '12)' The field point x on the boundary element e is given

by

where x et, (l = 1- ne) are the coordinates of the nodes belonging to the element Se .

The Jacobian ofthe transformation x('7]> '72) is given by



than 4 for '11 and '12 respectively, for general curved elements which are expressed

by quadratic or higher order polynomials <t>e l ('11' '12) in equation (4.5).

It turns out that equation (4.18) is satisfied if xl' ... , x
n

are taken as the zero

points

P,,(X,)=O (;=1,2,··,n) (4.19)

4.2 Gaussian Quadrature Formula
ofthe Legendre polynomial:

Since closed form integrals are not available, numerical quadrature schemes

must be employed for general curved elements. and

1 d" (x2_0"
P(x)=----

n 2" n! dxn
(4.20)

(4.23)

(4.21)

(4.22)

(4.24)L w, L wj(x"xj )
i~1 j=1

(i= 1,2,"',n)

J
b b-a J 1 [a+b+X(b-a) I
(n dt = - ( dx

a 2 -I 2

W.=--,------­
nP,,'(x,) P

n
- I (x,)

2 2n + 1 ( 1)4
En (f) = n. ((2n) ( ~ )

(2n+ 1) [(2n)! r
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for some -1 < '1 < 1. 3,33

For integration over the interval [a, b] , equation (4.22) can be applied to

as will be shown in Chapter 6.

For two dimensional integrals, the product formula

The error for the Gauss-Legendre quadrature formula when applied to a

function rrx) defined in the interval x E [-1, 1] is given by

can be employed.

The Gauss-Legendre quadrature formula is optimal in the sense that it gives

exact results for polynomials of up to order 2n-l with n integration points.

However, the formula does not give exact results when the integrand rrx) is

singular or nearly singular.

The table for the Gauss-Legendre quadrature formula is given in 3 , and an

efficient algorithm for generating the table has been proposed by Golub and

Welsch 38.

(4.17)

(4.14)

(4.16)

(4.15)

(4.18)

J
1 "

E (f) = ( x) dx - ') W ( x )
n -1 ;-:1 1 I
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1 = I: (x) dx

E,,(xJ)=O j=O,J,"',2n-l

f - fA '" L w, (x,)
J=1

Let us consider a one dimensional integral

Numerical integration formulas for (4.14) is given in the form

is solved to obtain {xJ and {w,}, i = I-n.

where x, and w, are the position and weight of the i-th integration point,

respectively. The Gaussian quadrature formula 3 is known to give optimum

results, so long as {(x) does not include any singularity or near singularity. The

formula is derived in the following manner. Let a= -1, b = 1 and

E n(/) = 0 for every polynomial of degree ~ m if and only if E,,(xJ) = 0 ; i = 0, 1, ... ,

m. Since the formula has 2n free parameters {Xi} and {w;}, the equation

The weights {w,} and positions {x,} are determined to make the error E n(/) = 0 for

as high a degree polynomial ((x) as possible. Since,



Hence, the Gauss-Legendre quadrature formula itself may be used to

calculate the 3D boundary element integrals of equation (4.1)-(4.4) so long as the

distance d between the source point X s and the boundary element S is

sufficiently large compared to the element size.

when the source point is at X s = x( -1, -1) , since the term in { } is well

behaved, because the singularity due to lIr is cancelled by ('11 + 1)('12 +1).

This method was improved 4,5, 19 by using a two dimensional weight function

4.3 Quadrature Methods for Singular Integrals

(4.28)

(4.29)I F(x,xldS = I [F(X,Xl-F'(X,Xl! dS+ I F'(x,xldSs 8: S B 8 S 8

using

singular and can be integrated accurately using, for example, the Gauss-Legendre

quadrature formula.

This method was introduced in three dimensional boundary elements in 21 ,

where the exact integration of the subtracted singularity F*(x, xs) for planar

elements was calculated.
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where F*(x, xs) is a function which has the same singularity as F(x, xs) but is of

simpler form which can be integrated exactly. Then, F(x, xs) - F*(x, xs) is non-

(2) Singularity subtraction and Taylor expansion method 6.21

A classical way of dealing with kernel singularities is to subtract them out

so that F(x, xs), an integrand containing a singularity, would be dealt with

where x(ill' ~2) is the source point. Equation (4.28) approximates the distance r

so that the singularity cancellation is improved.

A further modification was introduced 20 where the first term of the Taylor

approximation for the distance r is employed. This method is reported to give

good results for planar parallelograms but relatively poor results on a spherical

patch.

(4.25)

(4.26)

(4.27)

A;?; 1I
I {(xl "
--dx = L W {(xl

-I (x+ I)A i=I' I

I
I"

1= w(xl{(xldx = L w/(xil
-1 i=l
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(1) The weighted Gauss method 4,5, 11, 19,20

In the one dimensional Gaussian formula, one can obtain { x, } and { Wi } so

that they would give optimum results for a particular weight function W(x) , i.e.

where w(x) = 1/ (x +1)A is singular at x = -1.

This can be applied to three dimensional boundary element integral, for

instance to equation (4.1) in the form

For instance, Kutt 10 has obtained quadrature points {Xi} and weights {Wi} for the

calculation of the finite part of the singular integral

Singular integrals arise when the source point X s lies in the boundary

element S over which the integration is performed. The straight forward

application of the Gauss-Legendre quadrature formula fails, since the integrand

goes to infinity when x coincideswithxs , Le. when r= Ix-xsl= 0

Various methods have been proposed to overcome this difficulty. Some of

them will be explained briefly in the following.



is no longer an improper integrand. Hence, one can apply a standard quadrature

rule to

Aliabadi, Hall and Phemister 6 introduced the idea of using Taylor series

expansion of the complete singular integrand to provide subtracted terms which

can be exactly integrated, though these integrations can be very laborious. They

also recognized that subtraction of only the first term containing the actual

singularity was not sufficient to produce a well behaved remainder integral and

that there was an advantage in subtracting further terms of the series. The

method is reported 6 to give an error of 6X 10-7 with only 64 integration points for

planar parallelograms. However, for a spherical patch, 24 X24 = 576 integration

points are required to achieve an error of 10-6•

1= rg(U)dU

to calculate the original integral.

One such transformation is the error function transformation 13.30

2 IU 2x = en (u) = - e -Y dy
";;0

which transforms the integral of equate (4.30) to

2 Im

21= -:r=- {( en(u)) e- u du
VTr _00

(4.35)

(4.36)

(4.37)

(3) Variable transformation methods

Variable transformation is a well-known technique for the evaluation of

improper integrals 36, 13.

For a one dimensional integral

the variable x is transformed by

(4.38)

(± for x~O)

? = ~ sinh I ~ (~ -~) 1
2 2 1-u 1+u

x(u) =
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unless they are prepared before hand as a table of integration points and weights.

Hence, as far as weakly singular integrals are concerned, the simple polar

coordinate transformation, which will be explained in the next section, seems

more efficient in cancelling the weak singularity of order lIr. For hyper singular

two dimensional rectangular region.

The double exponential transformation 32 was applied 27 in the form

in each direction of the two dimensional element for weakly singular integrals in

a three dimensional electrostatic problem.

Both methods are reported to give accurate results. However these methods

use extra CPU-time in the calculation of the exponential and error functions,

The integrand is now dominated by e- u2 and may be approximated accurately by

a truncated trapezium rule 31. This method has been applied in the boundary

element analysis of a three dimensional acoustic problem 22 for weakly singular

integrals by using the transformation of equation (4.36) in each direction of the

(4.33)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

jS (b) = 1

I = I 1 ((x) dx
-1
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x = jS(u)

jS(a)=-1.

jS'(u)= ~
du

g(u) = {(jS(u))jS'(u)

1= I:{(jS(U»)jS'(U)dU

The transformation x= ~(u) is chosen so that

where

so that

and
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integration points in the angular direction.

4.4 Quadrature Methods for Nearly Singular Integrals

- 81-

The Jacobian of the transformation: p cancels the singularity of order lIr. The

method is also mentioned in 15.25.

As shown in Chapter 2, the order of singularity of both u* and q* are of

order lIr for weakly singular integrals arising in three dimensional potential

problems. This explains the fact that the use of polar coordinates regularizes

these singularities, so that the Gauss-Legendre quadrature formula can be safely

applied to the variables p and 8.

In this thesis, this idea is extended to taking polar coordinates around the

source point in the plane tangent to the curved element at the source. This

enables one to treat near singular integrals and singular integrals in the same

frame work by introducing a variable transformation R(p) of the radial variable

p, which regularizes the (near) singularity. Further, an angular variable

transformation t(8) is introduced, which considerably reduces the number of

Nearly singular integrals turn out to be more difficult and expensive to

calculate compared to the (weakly) singular integrals mentioned in the

proceeding section.

Nearly singular integrals become important when treating thin structures,

where the distance between elements are very small compared to the element size

as shown in Fig. 4.1. The use of discontinuous elements is another source of

nearly singular integrals, since the distance between an element node and an

adjacent element can be very small compared to the element size, as shown in Fig.

4.2. Another important source of nearly singular integrals is the calculation of

the potential or potential derivatives at an internal point very near the boundary.

This arises for instance in the simulation of electron guns in cathode ray tubes,
(4.41)

(4.40)

(4.39)

that

where

(l+y
1
)y

2
- (l-y

1
)

2

The above Jacobian J('11' '12) regularizes the integration so that the Gauss­

Legendre quadrature formula can be applied.

(iD Polar coordinates

Rizzo and Shippy 9 introduced the method of using the polar coordinate

system (p, 8) centered at the source point ('II' '12) in the ('11' '12) parameter space, so

(4) Coordinate transformation methods

(i) Triangle to quadrilateral transformation

Lachat and Waston 7 introduced the transformation of a triangular element

to a square in the parameter space ('11' '12). In this transformation the corner at

which the singularity is placed becomes the fourth side of the square on which the

Jacobian of the transformation is zero. For example,

integrals of order liT'" (a;::; 2), the variable transformations mentioned here do not

work. For such cases the finite part of the integral may be calculated by the

method of equation (4.26) proposed by Kutt 10.



where the accurate value of the electric flux near the cathode is required in order
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Fig.4.2 The use of discontinuous
elements

to calculate the trajectory of electrons.

The stress of this thesis is on the calculation of these near singular integrals,

although singular integrals can be treated efficiently in the same frame work.

Previous methods will be briefly reviewed in the following.

(1) Element subdivision

The orthodox way to treat nearly singular integrals is to increase the

number of integration points as the source to element distance d diminishes

(compared to the element size) 7,12. However, the number of necessary integration

points with the standard Gauss-Legendre quadrature increases rapidly as d

decreases, as will be shown in Chapter 10.

The next thing to do is to subdivide the element so that the integration

points are concentrated near the source point 7,12 •

Element subdivision tends to be a cumbersome procedure and would still be

inefficient when d is very small compared to the element size. Another

disadvantage of element subdivision is that it suffers from the fact that the

highest polynomial degree which can be integrated exactly by the Gauss­

Legendre quadrature depends on the local number of integration points selected

for each sub-element. For instance, a one-dimensional quadrature which is

subdivided into three subelements and uses 2, 3 and 4 Gauss points,

respectively, can integrate exactly polynomial integrands of degrees 3,5 and 7

over each part (2n -1) , whereas if 9 points are used to integrate over the

complete element, a 17th-degree polynomial is allowable 15.

-82-

Fig.4.1 Boundary elements for thin
structures



A cubic transformation

let the projection of the source point X s on to the element r be x(il), and the

distance d as shown in Fig. 4.3 , where the element is described by

x('7),(-l;£'7;£l).

(2) Variable transformation methods

A recent trend is to transform the integration variables so as to weaken the

near singularity by the Jacobian of the transformation. The transformation also

has the effect of concentrating the integration points near the source point.

(i) Double exponential transformation

The double exponential transformation was originally proposed by

Takahashi and Mori 13.

For a one dimensional integral

I = II f(~)d~
-I

(4.45)
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(4.46)

(4.47)

(4.48)

(4.49)(3.618 ~ d)

(1.3 ~ d < 3.618)

(0.05 ~ d < 1.3)
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; (til ={0.85 + 0.24 log d

0.893 + 0.832 log d

1

I = I_~ r (~ (y) ) J(y) dy

~(-I) = -I

~ (I) = 1

J(y) = ~
dy

where

and

is introduced, such that

and J(y) takes a minimum value r (d) at y=y, in order to weaken the near

singular behaviour of f( '7(y» near '7 = il .

r (d) is an optimized function of the distance d given by

(4.43)

(4.44)

(4.42)

numerically.

This method has been applied to nearly singular integrals in boundary

elements in 14. 26. 16. However, it will be shown in Chapter 10 that it requires

many integration points when the source distance d is very small, and the

method consumes a lot of CPU-time for the evaluation of exponential functions in

equations (4.43) and (4.44), unless they are prepared before hand in a table.

proposed by Telles 15. The method is briefly explained in the following.

(ii) Cubic transformation method

A more efficient self-adaptive method using cubic transformation was

The method is efficient for the integration

where «x) has integrable singularities at x = ±1.

The method introduces the variable transformation

The truncated trapezium rule is applied to equation (4.44) to evaluate the integral

x = tanh ( ~ Sinh(t))

so that



In order to compare with methods proposed in this thesis for cases where d<0.05 ,

the function f (d) is interpolated between d= 0 and 0.05 to give

(O~d<O.05)~(d) = 2.62 d
(4.50)

The standard Gauss-Legendre quadrature formula is then applied to equation

(4.47).

-86-

(4.51)

(4.52)

(4.47)
d = _----:=----=2--=d__=_

1 I x(I, ?2) - x(-I, ?il

-87 -

For two dimensional integration, equations (4.45) and (4.47) are generalized

to give.

where cubic transformations '1t(Yt), '12(Y2) are applied to each direction '11' '12

respectively. In this case the distance parameters dl, d2 for each direction is

determined by

where Xs = xU?1' '12) is the source projection or the point on the curved element S

nearest to the source point x s . ('II' '12) can be calculated by the Newton-Raphson

method, as will be explain in Chapter 5.

Telles' method gives good results for d>10- 2, where d is the relative

distance compared to the element size. However, when 0<d<10- 2, the method

does not give accurate enough results even when 32X32 integration points are

used, as will be shown in Chapter 10.

x (1 )

r

x (-1)

Fig.4.3 One dimensional integral over r.



(3) Polar coordinates

The use of polar coordinates in the ('71' '72) parameter space, as in the

calculation of weakly singular integrals, alone does not give accurate results for

nearly singular integrals, as will be shown in Chapter 10. A method to improve

the result by correction procedures 16 is reported to be efficient for potential

CHAPTER 5

THE PROJECTION AND ANGULAR & RADIAL

TRANSFORMATION (PART) METHOD

problems.

However, in this thesis we take a different view and introduce a new method

5.1 Introduction

-89-

(5.1)I = I !.. dS
S r·

a = 1 for (weakly) singular integrals necessary for the calculation of H

Hayami and Brebbia 17 have proposed a new coordinate transformation

method to calculate singular and nearly singular integrals for curved boundary

elements 5.

and G matrices

where

Here, the method will be generalized to deal with arbitrary curved element

geometries and different types of integral kernels which arise in three

dimensional potential problems.

From Chapter 3 (cf. Tables 3.1 and 3.2), the (nearly) singular integrals

involved in the boundary element analysis of three dimensional potential

problems may be generally expressed as

and

a = 1,3,5 for nearly singular integrals necessary for the calculation of

potential and potential gradients at internal (external) points

very near the boundary S .

Here r = Ix - xsl is the distance between the source point X s and the field point x.

f is a function of xES, which does not have any (near) singularity in r.

Although the method is proposed for three dimensional potential problems,

integrals arising in other areas such as acoustic problems (Helmholtz equation),

-88-

by taking polar coordinates in the plane tangent to the element at the source

projection. Further, radial and angular variable transformations are introduced

in order to weaken the near singularity before applying the Gauss-Legendre

quadrature formula.



11 2
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Fig. 5.1 The 9-point Lagrangian element

(5.4)

(5.3)

(5.2)

can also represent the

1

L ¢j (ryl) ¢.(ry2) ((j,k)
.=-1
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1 1

X(ryl,ry2)= L L ¢j(ryl)¢.(ry2)x J
,·

J= -1.=-1

x j
,· = x(j,h), j,k=-l,O,!

1

{(ryl,ry2) = L
J=-l

where

where

and

For planar elements, the problem becomes simpler and closed form integrals such

as those given in Aliabadi, Hall and Phemister 6 or Kuwabara and Takeda 2,29 are

available.

for a 9-point Lagrangian element.

coordinates x( '71' '72) . The element S is defined by

Although the quadrature method to be proposed can be applied to general

curved elements (triangular as well as quadrilateral), we shall use the 9-point

Lagrangian element as an illustration (cf. Fig. 5.1) .

The interpolation in this element can be expressed as

elastostatics etc., may be regarded to take the form of equation (5.1), so that the

following analysis may also apply to such problems.

As the evaluation of (nearly) singular integrals becomes a difficult problem

for the case of curved elements these are the elements to be treated here in detail.

The ele-nent is isoparametric in the sense that



When calculating boundary element integrals, one needs to know a measure

of the distance d between the source point X s and the element S over which the

integral is performed. A rough estimate of d can be obtained by the distance d'

between X s and the centre of element x(O, 0), Le.

d'= I x(O,O} - x.1 (5.5)

5.2 Source Projection

The first step is to find the closest point fes = x(~ I' ~2) on the curved element

S to the source point xs . This point fes will be called the 'source projection'.

(~I' ~2) can be obtained by solving the set of nonlinear equations for ('II' '12):

Let us define the size [ of the element by ( x-x ~)=O
5' chI;

, (i = 1,2) (5.7)

If d' ~ [, the integration can be performed by the standard product Gauss­

Legendre quadrature formula 1.3.

It is when d' < [ that we need to devise a new scheme, since the standard

Gauss-Legendre formula alone does not give accurate estimates of the integral

efficiently. (From here on, we shall assume that the element has been normalized,

since x-xsJ..ax/a'li (i=1,2) is satisfied at fes=x(~1'~2),asshowninFig.5.2.

Let r = x - xs . Then, aria 'I i = ax/a 'I i ' (i = 1, 2) so that equations (5.7) is

equivalent to

(5.8), (i = 1, 2)

Here,

(5.6)1= max(lx(l,O}-x(-l,O}I,lx(O,l}-x(o,-l}l}

so that [=1 and d=d'.) r = x - x.
For such cases, this thesis proposes a new scheme : the Projection and

Angular & Radial transformation (PART) method 18.

The proposed method consists of the following steps:

(1) Find the point fes on the element S nearest to the source point xs .

(2) Approximately project the curved element S on to a polygon S in the plane

tangent to the element S at fe s •

(3) Introduce polar coordinates (p,8) in the projected element S.

(4) Transform the radial variable by R(p) in order to weaken the (near)

singularity (Ira in the integral of equation (5.1) .

(5) Transform the angular variable by t(8) in order to weaken the near

singularity in 8 that arises when fes is close to the edges of S.
(6) Apply the Gauss-Legendre quadrature formula to the transformed variables

Rand t in order to calculate the integral of equation (5.1) numerically.
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= L¢J(?1'?2}x
j -x.

j

(5.9)

where

since

L¢j (?I'?2)= 1
j

for complete interpolation functions. For instance for the 9-point Lagrangian

element of equations (5.2)-(5.4) ,

- 93-



1 1 1

L~j= L ~k(?l)L ~1(?2)= L ~k(?I)"'1
} k=-I 1=-1 k=-I

(5.10)

since

1

L ~k(?) = ?(?-1)/2 + 1_?2+ ?(?+1)/2 '" 1
k= -I

From equation (5.9) ,

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(i= 1,2)
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[
f l (?I'?2):O

f2 (?I' ?2) - 0

f(q+6q)= f(q) +

Hence, equation (5.9) is equivalent to

where

Let

Since

if we have an initial solution qo which is in the neighborhood of ij : f(ij) = 0,

Le. If(q;> I ~ 1, the iteration

where

-94-

The source projection XsFig. 5.2



[~ ~rd?1 d?2
(5.17)6'li

d{2 d{2
f ('li)

d?1 d?2

should converge to the solution, i.e.

This is what is known as the Newton-Raphson method, and 'l, will

converge to the true solution '1 very quickly, provided that the initial solution '10

is in the neighborhood of '1. In fact the method has the property of second order

In the actual application of the proposed integration method (PART), it

turns out that it is only when the source distance d=lxs-isl is relatively small

compared to the element (d~ 1), that the integral becomes (nearly) singular. This

means that the method should be applied when the source point X s is very close to

the element. In this case, the source projection is either lies inside the element S,

or very close to the edges of S even when it lies outside the element. Thisjustifies

the use of the Newton-Raphson method to obtain the source projection is, since

the convergence of the method is guaranteed in such cases due to the nature of the

interpolation functions ¢j'

convergence, Le. 5.3 Approximate Projection of the Curved Element

(5.20)

(5.19)

(5.21)
x4 = x(l,-I)

x3 = x(-I,-I)
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XI = xU, I)

G

Denote the four corner nodes ofthe element by

where

Next, the curved element S is approximately projected on to the plane

tangent to the curved element S at the source projection is.

First the unit normal vector ns to the element S at is=x (~1' ~2) is

calculated by

(5.18)

source point x s, particularly when is lies near or outside the edge of the element.

corresponding to the closest node x j.k, (j, k = -1, 0, 1) of the element, to the
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where I . I is a suitable norm for L::.'l.

For our problem of solving equation (5.7) to find the source projection is, the

Newton-Raphson method converges within few (3-4) iterations to give a relative

error of 10-6 , and consumes only about 1% of the total integration time. The

convergence is very good, so long as the solution is lies inside the element S .

Then, the initial solution can be set to 'lOT =('71' '72) =(0,0).

However, when the source projection lies far out side the element, Le.

I~II P 1 and I or 1~21 pI, the method may not converge to the true solution (~1' ~2) .

This is because the interpolation function ¢j (e.g. 9-point Lagrangian element)

diverges as 1'7I!pl and I or 1'72Ip1, i.e. the interpolation function ¢j gives a good

approximation of the function only when 1'7,I~ 1, (i= 1,2).

Hence, it may be safer to start with the initial solution



Then the perpendicular projection Xj of node Xj onto the plane tangent to the

curved element S at Xs is given by

;; .= x - [(X -;; ). n ) n
J J J , 8 8

(j= 1-4) (5.22)
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Fig. 5.3 Approximate projection of
the curved element

(5.23)

edge-j: edge corresponding to xj +1 -xj

fj : foot of perpendicular from Xs to edge-j

hj : length of the perpendicular ( hj= Ifj-xsi ),

Gj : angle between vectors fj-xs and Xj-Xs,

The curved element S is then mapped onto the planar quadrilateral S
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defined by xl' x2' x3 and x4' as shown in Fig. 5.3. This is an approximate

projection, since the exact projection of a curved edge of S would, in general, be a

curve in the tangent plane.

The consideration of exact projection will be given in a later section.

However, the approximate projection is shown to be sufficient and more efficient

for introducing the source distance d into the radial variable transformation

R(p), considering that it is the local behaviour of lira, r=lx-xsl, xES, that

dominates the (near) singularity of the integrand.

Next, one divides the projected quadrilateral S into four triangular regions

6.j , (j = 1-4) centered at Xs as shown in Fig. 5.4.

In each triangular region b.j defined by xs, Xj and Xj+ 1, one defines the following,

geometric quantities:



and

(5.24)

as shown in Fig. 5.5 .

Then,

(5.26)
h.=a.cosa

J J J

,gn(1) ={ 0
'72<1-E

1-E~'72~1+E

-1 1+E<'72

,gn(2) ={ : -1+E<'71

-1-E~'71~-l+E

-1 '71<-1-E

'gn(3) ={ : -1+E<'72

-l-E~ '72~ -l+E

-1 '72< -l-E

,g"(4) ={ : '71<1-E

1-E~ '71~ l+E

-1 1+E<'71 (5.27)

whereO<E~leg. E=10-6
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where sgn()), )=1-4 for curved quadrilateral elements are defined by the

position of the source projection (ill' il2) in the square -1~'71' '72~1 in the

parameter space (Fig. 5.7), i.e.

edge-4
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edge-3

edge-2

Fig. 5.4 Division of the projected quadrilateral S
into four triangular regions



Fig. 5.5 Triangular region ~ j
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Here it should be noted that in equation (5.27), sgn(j) was defined according

to the position of (~I' ~2) with respect to the square -1~ 'II' 'I2~ 1 in the ('11' '12)

parameter space, and not according to the position of the source projection

Xs =x (~I' ~2) with respect to the approximately projected quadrilateral S.
There is a subtle but substantial difference, since when Xs is very near the

edge of a curved element S, it can happen that Xs lies outside the projected

element oS in the tangent plane at Xs even though Xs lies inside the element S as

shown in Fig. 5.6, or vice versa. It may also happen that Xs lies on the edge-j of

element S i.e. sgn(j) = 0, but Xs lies inside S or outside S. In a word, the topology

of Xs with regard to S is not necessarily preserved for Xs with regard to S when Xs

is near the edge of a curved element S. An example of such a case is given in

chapter 10 for a 9-point Lagrangian element modelling a spherical quadrilateral

element.

Since the integral of equation (5.1) of interest, is defined on the element S

and on the ('11' '12) parameter space as in equation (5.28), the topology of the source

projection xs=x(~1' ~2) should be maintained for the correct evaluation of the

integral of equation (5.1) and hence (5.28). This is why sgn(j) of equation (5.27)

was defined according to the position of (~I' 7;2) with respect to the square

-1~ 'II' 'I2~ 1 in the('I1' '12) parameter space, and not according to the position of

Xs =x (7;1' '72) with respect to oS.

For the case of Fig. 5.6, sgn(4) = 1 and !:>84 is defined by equation (5.26) as

!:>84 >0 even though Xs l! S. For the case when sgn (j)=0 but Xs is not on the

edge -j of S, the integral Ij over!:>j is zero since the area of!:>j is zero, even though

!:>j has a finite area. In this case, detLj=O so that Ij=O in equation (5.39).

To sum up, the notion of mapping (approximately projecting) S onto S should

be more rigorously interpreted as mapping each triangular region !:>j in the

('II' '12) space to a triangular region 6j in S, maintaining the original topology of

(~1'7;2) with respect to the square -1~ 'II' '12~ 1 for Xs = x(~ l' ~2) in S. Hence, the
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(5.1)

(5.28)

(a> 0)I = f L ciS
S TO

Polar Coordinates in the Projected Element5.4

orientation of each triangle 6j, sgn(j) or the sign of the angle corresponding to 68j

are maintained as 6j is mapped to ~j.

The procedure of approximate projection explained so far, can also be applied

to curved triangular elements. In this case, S is divided in to three triangular

regions 61,62 and ~3.
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As mentioned before, the singular and nearly singular integrals occurring in

three dimensional boundary element method can be generally expressed as

where f is a well behaved function of x on S. Since the singularity is related to

the integration in the radial direction, it seems natural to separate the integral of

equation (5.1) into its radial and angular components. In this way, one can tackle

the problem of (near) singularity by considering only the radial component of the

integral.

Hence, first consider integrating equation (5.1) using polar coordinates in

the projected quadrilateral S, centered at the source projection xs , where Xs is

situated in the projected quadrilateral S as defined in the previous section.

Polar coordinates in the ('71' '72) parameter space have been previously used

to deal with singular integrals 9,15, but here they are generalized by using polar

coordinates in the projected quadrilateral and by introducing further variable

transformations in the angular and radial directions.

Using the ('71' '72) parameters defined in equations (5.2)-(5.4) and Fig. 5.1 ,

equation (5.1) becomes

s
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Fig. 5.6 Case where is E S but is ~ S



where

(5.29)

~4

~1

112

~3

~2

(5.30)IJ = f f ~ I G I d~l d~2
l;

J

Next, divide the square region of the integration in equation (5.28) into four

triangular regions 6.j (j=1-4) centered at (ill' il2) and situated in the ('71' '72)

space as shown in Fig. 5.7. Notice that (ill' il2) corresponds to the source

projection.

where 111

Let

Thus,
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Fig. 5.7 Four triangular regions in (111,11 2 ) space
(5.31)
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In order to map the projected quadrilateral S onto the curved element S ,

linearly map each triangular region 6.j in S (Fig. 5.4) onto each corresponding

triangular region 6.j in the ('71' '72) space (Fig. 5.7). This is done by defining

local Cartesian coordinates (~I' ~2) for each triangular region 6.j in S (Fig. 5.5) as

shown in Fig. 5.8, and then mapping t:,.j onto D.j (Fig. 5.9) .

The linear map from t:,.j to D.j which maps (0,0) to (ill' il2)' (a
j

, 0) to

('7/,'7l), and (aJ+ 1 cosD.Bj, aj + 1 sinD.Oj) to ('7/+ 1 ''7/+ 1) is given by



--------- ----- -----
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11 2

________________ J

Fig. 5.9 Region t1j
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~2

Fig. 5.8 (S1' S2) coordinates in region t1 j in S.



where

(5.37)
6.

i

II ~
r"

6.
i

~I = P oosO

Hence, the integral of equation (5.30) becomes

The above mentioned procedure for mapping the curved element S onto the

planar polygon S via the parametric space ('71' '72) is illustrated in Fig. 5.10.

Now one can introduce polar coordinates (p,8) in each triangular region 6.j

of the projected quadrilateral S, as shown in Fig. 5.11 .

(5.32)

(5.33)

j+l -
~1 - ~ 1

a j + 1 sinL'l8 j

~/ - -;j I
IJ=_--- +

12 a tanL'l8
J J

and

~i. - -;j 2

a tan L'l8
J J

+ a sinL'l8
J+I J

(5.34)
(5.38)

Th us, the integral of equation (5.37) becomes
From equations (5.32) and (5.33), one obtains

(5.39)

(5.41)

(5.40)

p dpd8

h

p/8) = cos (8 J_ a . )
J
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The upper limit p/8) of the integral in the radial direction p/8) is given by

and from equations (5.34) and (5.38) one can write

where hj, aj are defined in Fig. 5.5 of the previous section.

(5.36)

(5.35)
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so that the Jacobian of the linear mapping from (~I' ~2) to ('71' '72) is



112

~2

Fig. 5.11 Polar coordinates (P, e) in f1j

4

=L/·
j=1 }
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j. =1L.IJJ~d~ d~} } _ r ex \':'1 \':'2
!'1j

Fig. 5. 10 Mapping from S to S via the
parametric space (11 1, 112)

-1

Linear
map:

Lj
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5.5 Radial Variable Transformation

This section deals with two cases;

(i) when the source point X s is on the element and produces weak singularity

transformation enables one to calculate the weakly singular integrals very

efficiently. irrespective ofthe position of the source point X s on the element.

It is worth noting that in this method, the same set of integration points can

be used for the calculation of both Hand G matrices since the order ofsingularity

involved is the same. as demonstrated in Chapter 3.

(a=1)

and

(ii) when the source point X s is very near the element and results in a near

singularity.

(ii) Nearly Singular Integrals

It will be shown that nearly singular integrals ( 0<d~1 ) are much more

difficult to calculate efficiently compared to singular integrals (d=O). Using

polar coordinates alone, for instance, does not give accurate results when 0<d~ 1

These types of singularities or near singularities can be investigated by

looking at the integral in the radial direction in equation (5.39), Le.

-114-

(5.42).
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(1) Singularity cancelling radial variable transformation

To overcome this difficulty, Hayami and Brebbia 17 have proposed a

transformation of the radial variable p for the integral of equation (5.42). This is

done by approximating the distance r=lx-xsl by r'=Vp2+d2 as shown in

Fig. 5.12, which is equivalent to approximating the curved element by its

projection on to its tangent plane at xs .

(5.42)f
Pj(6) rlGI

J(8} = - pdp
o r·

In order to cope with the near singularity, a transformation of the radial

variable p will be introduced.

Since r - p in the proximity of X s , where p is the radial length along the

tangent plane at X s , the singularity O(1/r) is cancelled by p to give a regular

kernel of order 0(1). Hence, no extra transformation in the radial variable is

necessary for the weakly singular integrals. It will be shown in the numerical

results in Chapter 10 that the use of polar coordinates with the angular variable

(i) Weakly Singular Integrals

As shown in section 3.1 , the singular integrals (d = 0) arising in the

calculation of Hand G matrices in three dimensional potential problems are only

weakly singular and have kernels of order at most 0(1Ir) ,i.e. a = 1 in equation



Here it is worth noting that for general curved elements, f' does not

approximate f very well when x is far from the source projection xs . However,

the (near) singularity liT'" is only dominant in the neighborhood of xs, where

f-f', so that the transformation R(p) based on this approximation f' - f should

work efficiently for (near) singular integrals (O~ d ~ 1), even when the curvature

of the element is relatively large.

Hence, a radial variable transformation R(p) is introduced such that

s

S

Fig.5.12 Approximate distance r'=. -VP2+d 2 of r

pdp = r,adR = ";p2+ d2 a dR

This transforms the radial integral of equation (5.42) as follows:

J(8) = f p)(9) ~ pdp

o r a

f
R (p.(9» rlGI= ) - r,adR
R(O) r a

(5.43)

(5.44)

(5.45)

This operation has the effect of cancelling the singular behaviour of liT'" by f' a •

The transformation R(p) is defined by equation (5.43) as

R(P) = f --p-- dp
";p2+ d2 a
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which can be integrated analytically as follows:

From the definition ofthe approximate distance

r'=~

r'dr' = pdp

so that

R(p)= fL dp
r' a

-117 -

(5.46)

(5.47)

(5.48)



From equation (5.50), the inverse function peR) of R(p) is given by

I r'
- dr'
r' a

I r' (I-a) dr'

{
~

= 2-a

log r'

for a'* 2

for a = 2

for a'* 2

for a = 2

(a = 2)

(5.49)

(5.50)

(5.51)

Table 5.1 Radial variable transformation R(p)

and p(R), r'(R) for a = 1-5.

a R(p) peR) r'(R)

1 -Jp2+d2 v'R2_d2 R

2 log v'p2+d2 Je2R _d2 ell

1

~
1

3
- J p2+d2

- -
R2 R

1 J- 2: _d
2

~4 ----2(p2+d 2)

1
5 - J(_3R)-2/3 _ d 2 (_ 3R)-113

3 (p2+d2) 312
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It is found that the radial transformation (5.45) exactly cancels out the

(near) singularity in equation (5.44) when {"'constant for the case of planar

parallelogram elements and planar triangular elements ( IGI "'constant). This

means that only one integration point is required for the radial integration to give

(5.53)

(5.54)

I

68 . IP.(0) {pr+ 1

I. J de J --dp
a I 1.} 0 0 r(t

f = I {pr dS
a,r S ra

fa,r = L IdelL) fa.r,j
J

an accurate result, independent of the source distance d. In other words, the

integration in the radial variable was done analytically. In this sense, the

method is semi-analytical.

From this point of view, for a planar element S, (r= r), with {"'constant,

the radial component of the integrals

where y=O ; a=1,3,5 and y=l; a=3,5 (cf. Table 3.2) which occur in three

dimensional potential problems can be calculated analytically as follows.

(5.52)
(a = 2)

(a'* 2)

From equation (5.49) the function r(R) is given by

I

,'(HI = { ~~-"RI'-'

R(p), peR) and r(R) are given in Table 5.1 for a = 1-5.



and

I
M

J J (0) dO
o a, r,)

where

I
P/

O
) r/

J = - dp
a,1,) 0 ,tt

(5.55) R 5.2(P) = I p2 dp

J/+ d2 5

3
P

(5.60)

I
P/ O) /r --- dp
o $d2a

from equations (3.141) and (3.142) respectively.

For general curved elements, one can also use the radial variable

transformations of equations (5.50), (5.58) and (5.59). In this case, the radial

where

R
a

,8(P) = I __p_8_ dp

~a

(5.56)

(5.57)

variable transformations no longer cancell the (near) singularity exactly, since

the element is curved. Hence, more than one integration points are required for

the integration in the transformed variable R .

For instance, numerical results in Chapter 10 show that, for a spherical

quadrilateral element S, with f =constant, the approach works efficiently when

and 0=1'+1, sothat

0=1 a = 1,3,5 and

the source projection Xs is near the centre of the element, although it requires

additional radial integration points for the case d~1. However, as Xs moves

away from the centre of the element towards the edge of the element, the method

0=2 a = 3,5
seems to require more radial integration points and becomes inefficient.

-121-

Problems also arise for the case of planar quadrilateral elements which are

not parallelograms. This is caused by the fact that the mapping from the square

in the ('71' '72)-space to an element is linear only when the element is a planar

parallelogram.

Similarly, for curved elements the linear mapping Lj defined for each

region t,.j .in equation (5.34) does not give the exact point on the curved element

whose projection matches the integration point on the tangent plane, since this

inverse projection is defined by a nonlinear mapping.

At first thought, inaccuracy of the inverse mapping appears to be the main

reason for causing inefficient cancellation of the (near) singularity.

(5.58)

(5.59)

a = 1,3,5
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2

R 3 ,2(P) = I --p-- dp

Jp 2+ d2
3

For 0 = 2, which occurs in flux calculations

For 0=1,

from equation (5.49).



(2) Consideration of exact inverse projection and curvature of the element

in the radial variable transformation

In order to overcome these difficulties, the following modifications were

considered.

(i) Exact projection of the curved element S on to the plane tangent at x, .

(ii) Exact inverse projection from the integration point on the tangent plane to

the curved element using the Newton-Raphson method to account for the

nonlinear mapping.

(iii) A more accurate approximation of the distance r by taking the curvature of

the element at X, into account in the approximating distance r' and the

radial variable transformation R(p) based on this r'.

The combination of these modifications resulted in a significant decrease of

the number of necessary radial integration points, which remain almost constant

for very small values of the distance d , for the case when f =-constant in the

integration

f L dS
s ra

However, this approach has the following draw backs:

(i) It was found that when f1constant, for instance for integrals containing the

interpolation function:

f '!..!!. dS
s r a

the simple radial variable transformation

R(p) = f --p-- dp
~
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with the linear mapping of equation (5.23) based on Lj, requires more than

32 Gauss points to achieve a relative error < 10-6, for a planar square

element, as will be shown in Chapter 10.

For planar square elements, the 'approximate' projection of the

element S to S, the inverse projection using the linear mapping Lj, and the

'approximating' distance r' = Vp2 +d2 are all exact. Hence, the failure to

integrate f s <P,j Ira dS indicates that the above modifications are not

sufficient to calculate the integrals f s f lro dS for general curved elements,

let alone planar elements.

In fact numerical experiments on curved elements showed that the

above modifications do not help to decrease the necessary integration points

to calculate Jf Ira dS over curved elements when f" constant.

(ii) The two variable Newton-Raphson iteration has to be applied for each

integration point in order to find the inverse projection, which results in

excessive CPU time.

(iii) Since an exact projection of the curved element S to the tangent plane at X,

is performed, the projected quadrilateral S generally has curved edges. This

causes many complexities when performing the integration in S .

Another disadvantage of the singularity cancelling radial transformation

proposed so far is the fact that they require a different transformation for different

order of singularities a = 1-5. This implies that different sets of integration

points and calculation of the quantities like r, IGI, <Pij for them are required for

each a. For instance, different sets of integration points are required for the

computation of near singular integrals g...kl and h../ l of equation (2.38) and (2.39)

in order to obtain the influence matrices G and H.

Consequently a more simple but robust radial transformation is desired.
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(3) Adaptive logarithmic radial variable transformation (log-Lz)

In order to overcome the above difficulties, one resorts to the approximate

projection and the linear mapping from the tangent plane to the curved element

mentioned in sections 5.2 and 5.3.

However, this time, instead of using the same degree 0 of the radial

transformation as the (near) singularity lira, as in equations (5.43) and (5.44),

radial transformations with different degrees (3* 0 were attempted, Le.

and

pdp = r ,PdR

J
R(p ,(8» rl GI

J(8) = J - r,PdR
R(O) r a

(5.61)

(5.62)

efficiently nearly singular integrals whose kernels include the interpolation

functions ,p.; even when O<d~1, which was not possible with previous methods.

The log-Lz radial variable transformation also has the virtue that only one radial

transformation is necessary for kernels with near singularities of different orders,

such as in g...kl and h../ I in equations (2.38) and (2.39) for the G and H matrices,

or g:l, h:1in equations (2.50) and (2.51) for the potential at an internal point xs.

The reason why the adaptive logarithm radial transformation Oog-Lz) works

efficiently for nearly singular integrals of the type f s lIr-dS , (0 = 1,2,3, ... ) seems

to be the following:

(i) For O<d~1 , r'2 is sufficient to weaken the near singularity of lira

(0=1-5).

where 0=1-5and (3=1-5 independently.

As a result, it was found (cL Chapter 10) that the transformation

corresponding to (3 = 2 :

(ii) Since the lower and upper bounds of the radial integration is

R(O) = log d

and

(5.67)

pdp = r ,2 dR (5.63)

or

R(P) = log Jp 2+ d 2 (5.64)

which gives

p(R) = Je 2R _ d2 (5.65)

r'(R) = e
R (5.66)

works most efficiently for different types of near singularities lira, (0 = 1,2,3,4,5).

We shall refer to this transformation as the adaptive logarithmic transformation

(log-Lz) , since R(p) is the logarithm of the Lz - norm in the (p, d)-space.

As will be shown in the numerical results in Chapter 10, this log-Lz

transformation works efficiently for general curved elements, with arbitrary

position of the source projection xs. It also enables one to calculate accurately and
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(5.68)

respectively, the range of integration does not expand drastically as d becomes

very small. This enable the Gauss-Legendre quadrature formula to work

efficiently in the transformed variable R .

For higher degree transformations this is not the case, for example,

1
(5.69)R (0) = - d ({i=3)

1
({i=4)R (0) = -- (5.70)

Zd2

1
({i=5)R (0) = -- (5.71)3et

However, a more rigorous explanation for the optimality of the (3 = 2 Oog-Lz)

transformation will be given in Chapter 6.
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(4) Adaptive logarithmic radial variable transformation (log-Ll )

As will be shown by numerical experiments in Chapter 10, and explained by

the error analysis in section 6.2, the adaptive logarithmic transformation (log-Lz)

where

r = J p 2+ d2

for planar elements ,

(5.75)

R(P) = IOgJp 2+ d2 (5.64)
F (R) = p r 2

- a

and

(5.76)

6.8.

transformation for the potential derivative is given in the error analysis of section

In short, the near singular integrals for the potential derivative au/axs

include integrals of the type

(5.77)

(5.78)

(5.79)

(5.64)

(5.80)

dF dF ~
dii = dp dR

dF I- - +00
dR p=+o-

dR

dp

R(p) = logJ/+d2

(~ )(2,,) I = _ 00

dR p= +0

and similarly

so that

which means that the application of the Gauss-Legendre formula to the numerical

integration of F(R) = p r 2 - a with respect to the variable R in the integral of

equation (5.74) is expected to be inaccurate, or inefficient in that it requires a lot

of integration points.

The basic reason for this is that for the log-Lz transformation

(5.72)(a=3.5 )f
P) /

J '" - dp
(1,2 0 ret

which was proposed in the previous section (3) , works efficiently for nearly

singular integrals arising from the calculation of the potential u(xs) at a point Xs

very near the boundary.

However, the log-LZ transformation of equation (5.64) does not work so

efficiently for nearly singular integrals arising from the calculation of the flux

( ego electrostatic field E, magnetostatic field B) or the potential derivative

au/axs at a point X s very near the boundary. This is demonstrated by numerical

experiments in Chapter 10. The reason for the inefficiency of the log-Lz

The integral J
a

,2 of equation (5.72) is transformed by the log-Lz transformation

in the radial variable p, where

R (p) = log Jp 2+ d2

to give

f
R(P»

J '" ) pr 2- a dR
«,2 R<O)
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(5.73)

(5.64)

(5.74)

and

dR I- = +0
dp p= +0

as shown in Fig. 5.13, so that

dp /+d2

dii=

which results in

~ I - +00

dR p=+O-

in equations (5.77) and (5.78).
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(5.81)



In order to avoid this defect of the log-Lz transformation of equation (5.64),

one would like to have a radial variable transformation which retains the nice

R
logarithmic character of the log-Lz transformation and yet has the property

dR I- '* +0
dp p= +0

(5.84)

so that dpldR has a finite value at p= +0.

This can be satisfied by the transformation

which we shall refer to as the adaptive logarithmic radial variable transformation

(log-Ll), or the log-Lt transformation, since it is the logarithm of the Ll-norm in

log~ -----------

o

log d

~=o
dP

P

R(P)= log(p+d)

the (p, d)-space. Note that

R (0) = logd

From equation (5.85),

dR 1

dp p+d

(5.85)

(5.86)

(5.87)

(5.88)

which satisfies
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As will be shown in section 6.8 , the essential nature of the radial component

of the near singular integrals in three dimensional potential problems can be

represented by

(5.89)

(5.90)

dR I 1- = - '* 0
dp p=o d

dp I- = d'* 00

dR p=O

as shown in Fig. 5.14, so that
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The log-L2 transformation
R (P) = log ~ P2+d 2

Fig. 5.13



for the potential derivative au/axs . (cf. Table 3.3 of Chapter 3)

The integral of equation (5.91) is transformed by the log-L1 transformation

of equation (5.85) as

log (Pj +d )

log d ::

R

,
\

'/~9!i- 1
dP = d # 0

P

J - fP) ~ dp
a,B - 0 ra

where

0=1; a=1,3

for the calculation of the potential u(xs) and

0= 1; a = 3,5

0=2 ; a =3,5

since from equations (5.85) and (5.88)

~ = p+ d = eR

dR

Let the integrand of equation (5.92) be

where

(5.91)

(5.92)

(5.93)

(5.94)

(5.95)

Fig. 5.14 The log-L1 transformation
R( P) = log (P+d)
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and

dF e
R
/-

1I 2( ) 2R]- = -- r (o+1)p+od -ape
dR r o+ 2

(P+clJ/-
1

( 3 2 2 )= --- (o-a+l)p + (o-a) dp + (o+l)d p + o~
r a+ 2

so that

(0=1)

: (0=2)
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(5.81)

(5.97)



show that the transformation (5.98) gives better results for a=3, 0=1; a=5, 0=1

and a = 5, 0= 2 compared to the log-Ll, transformation. However, the results for

a =1, 0 =1 and a =3,0 =2 are very bad as shown in Table 10.25.

This then leads us to seek for Ll-type transformation which lie between

log(p+d) and (p+d)-I.

and elF/dB remains finite for the interval of R in equation (5.95), in contrast

with equation (5.78) for the log-Lz transformation.

Hence, the adaptive logarithmic radial variable transformation Oog-Ll)

stands a good chance for the efficient calculation of near singular integrals for the

potential derivative au/axs as well as the potential u(xs). This will be

demonstrated by numerical experiments in Chapter 10.

In fact, it turns out that the log-Ll transformation is more efficient than the

log-Lz transformation, not only for the flux calculation but also for the potential

calculation when curved elements and/or high order interpolation functions are

used. This can be explained by the presence of terms with 0;;; 2 in equation (5.91)

Numerical experiments on the model radial variable integrals

J

p 6

I = J ~dp
a,a a

o r

where

r=Jp 2 +d2

(10.45)

(10.46)

for such cases.

The log-Ll transformation is also more robust against the change of the

source distance d and the position of the source projection xs , compared to the

log-Lz transformation.

Thus, the log-Ll radial variable transformation is preferred to the log-Lz

When we look at the transformation as functions of x = p + d, the functions

posses singularities of order log x and lIx, respectively. Then, it seems reasonable

to expect better transformations among functions with order of singularities in

between log x and lIx, Le. x- 11m where m>l. Hence, we arrive at the radial

variable transformation of the form

transformation.
I

R(P)=-(P+dl m , m>l
(5.99)

(5) L I -JI5 transformation

Looking at the convergence results for the Lz-type transformation in Fig.

(5.100)
R(p)=-(P+dl 5
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Numerical experiments in Chapter 10 (cf. Tables 10.26-10.38 and Fig.

10.29) show that optimum results are obtained for m= 5,

However, for the potential kernels, the log-Ll transformation gives better

results than the LI -115 transformation. Hence, the best strategy is to use the

log-L J transformation for the calculation of potential or H, G matrices, and to use

the L1 -115 transformation when flux calculation is involved.

which we shall call the L I -115 transformation. Comparing Tables 10.24 and 10.32

or Fig. 10.28. and 10.29, we can expect that the L1-1/5 transformation gives better

results than the log-L1 transformation for the integration of both the potential

kernels u*, q* and the flux kernels au*/axs and aq*/ax s • This is confirmed for the

flux kernels by numerical results over curved elements in section 10.7.

(5.98)
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R(p)= _ (p+dl- 1

This leads us to try the corresponding Ll-type transformation

A natural question to ask then, is whether the log-L l transformation is the

optimum radial variable transformation based on the Gauss -Legende formula,

whether there are still better transformations.

10.18-10.22, we observe that, although the log-Lz transformation

R(p) = logy' p2 + d2 corresponding to f3= 2 is most robust for integrals fS 111'" dS ,

(a=1-5), the transformation R(p)= _(p2+d2)-112 corresponding to f3=3 shows

better convergence for the case a = 4,5.



-

~ ~~~~----

(6) Single and double exponential radial variable transformations

In order to weaken the near singularity in the radial variable near p = 0, we

can also use exponential type radial transformations 37. The exponential type

transformations themselves are not original 36, 13,32.14,26,16,30,27, but the fact that

they are applied in the radial variable p in the tangent plane S is new.

There are basically two ways of performing the exponential type radial

transformations in the radial variable p. The first way is to map the radial

variable p: [ 0, p}B) ] on to the half-infinite interval R : [- 00,0] . The second way

is to map p on to the whole infinite interval R : [_00, 00]. Numerical

experiments in Chapter 10 show that the second procedure gives better results for

different nearly singular integrands F and different source distances d. This is

because the numerical integration error near the end point p = p}B) in equation

(5.39) and (5.42) is effectively reduced by the second procedure.

Given the transformation to the whole infinite interval R: [_00, +00] ,

there is another choice of using the single or double exponential transformation.

p

-----------------------~---------------------------

--===:=:::::=------~--------- Ro

(a) Single Exponential radial variable transformation (SE)

First consider the single exponential transformation

where

(5.102)

Fig. 5.15 The Single Exponential Transformation
p.

P(R) = -t (1+tanh R)

(5.103)
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p(O) = r:J.
2

Here p: [0, p) is mapped on to R: [ _00, +00] as shown in Fig. 5.15.

From equation (5.101) ,

(5.101)

p)
p(R)= 2' O+tanhR)



-----_._-- ~-~~~~- -~-

for R .... + 00 (5.104) As mentioned before, this single exponential transformation of equation

(5.90) is superior to the 'half-infinite single exponential transformation'
for R .... _ 00 (5.105)

p(R) = p} (l + lanhR) (5.111)

J(O) = JP
j ~ pdp

o r a

The integration in the radial variable P in equation (5.42) is transformed by

equation (5.101) and (5.106) as

(5.112)p (R) = ~ I(l +lanh( ~ sinh R ) I

(b) Double Exponential radial variable transformation (DE)

Consider next the double exponential transformation 32 applied to the radial

variable p:

which maps p: [0, p) on to R : [- co, 0] , since the transformation of equation

(5.111) results in inaccuracy due to the truncation error at the end point p=p} ,

where as for the transformation of equation (5.101), integration points in the

variable p are concentrated, not only around the near singularity at p=O, but

also around the end point p = Pj' so that the truncation error of the numerical

integration near the end point p = Pj is significantly reduced. This will be shown

in the numerical results in Chapter 10.

(5.107)

(5.108)

(5.106)dp

dR

where

so that

so that p(R) converges exponentially to Pj as R~ + co, and to 0 as R~ - co,

respectively. From equation (5.101),

Therefore, the integral J(8) can be approximated by the truncated trapezium rule

for the infinite interval R : [_ co, + co] ;

Here again, p: [ 0, p) is mapped on to R : [- co, + co] as shown in Fig. 5.16 .

From equation (5.112) ,

g(R)= ~~
ra dR

(5.109)

p(O) = ~
2

(5.113)
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It can be seen from Fig. 5.15 that, since the integration points for the trapezium

rule in the variable R in equation (5.10) is equally spaced, the corresponding

integration points in the variable p are concentrated around the near singularity

at p=O so that, effectively, the near singularity is weakened when transformed

to the variable R. Hence, the numerical integration in equation (5.10) results in

high precision and efficiency.

-137 -

(5.115)

(5.114)

(or R .... - 00

{or R ....+ co

_'!..eR

p(R) - Pj (l - e 2

_~eIRI

p(R) - Pj e 2

exponential transformation of equations (5.101), (5.104) and (5.105). From

equation (5.109) ,

so that p(R) converges to Pj as R~ + co, and p(R) converges to 0 as R~ - co,

double exponentially, which is a faster convergence compared to the single

(5.110)J(O) - J h• n == h I g(kh)
k=-n



- - ---- - - --------------

so that

~
dR (5.116)

dp I 1f

dR p=o = 4' p}
(5.117)

p Equations (5.108), (5.109) and (5.110) can be similarly applied to calculate the

integral J(B) numerically.

follows:

(c) Implementation of the single and double exponential transformations

In the numerical integration using the single exponential or double

exponential transformation, the interval h and the number of integration points

2n + 1 in equation (5.110) can be determined for a specific integrand function as

Set h = 1, for example, and calculate Jh,n with increasing n until

(5.118)< ' ..
IJh, .. - Jh ... _11

IJh, .. 1

- - - - - -:..:;:-,;;;.-=--....--------

----.:.======~-----=-o+------------R

is satisfied to obtain J h == J h, n.

Repeat the process for h = 1/2, 1/4, 118,'" until

ei = llex

-139 -

(5.119)

ex = exp (x)

is satisfied to obtain the final result .

The threshold value 'h may be set equal to the required accuracy , of the

integration. It is advisable to set ' .. ~ 'h'

In order to speed up calculations, it is recommended to calculate the

exponential type function such as cosh(x) by

-138 -

Fig. 5.16 The Double Exponential Transformation
p.

P(R) = --t {1 +tanh (~ sinhR)}
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R.

For instance, for the single exponential transformation,

should be used, where ell and lIell are computed only once for a given value for

adding small quantities together first, instead of adding small numbers to large

numbers as in equation (5.126), thus minimizing round off errors.

The advantage of using the single or double exponential transformation in

combination with the truncated trapezium rule, is that they do not require any

integration tables (such as that of Gauss-Legendre formula), and also they have

the advantage that the results used for interval h can be reused for the

calculation with interval h/2 etc., where as in the Gauss-Legendre formula, the

position of the integration points are independent for different numbers of

integration points used.

However, the single and double exponential transformations consume

significantly more CPU-time per integration point, compared to the log-Ll and

log-Lz transformations combined with the Gauss-Legendre formula. This is

shown in Table 5.2. Chapter 10. (To further speed up the single/double

exponential transformations, one may prepare a table of values for p and dp/dR

of equations (5.101) and (5.106) before hand.)

(5.122)

(5.121)

(5.120)

(5.123)cosh (-R) = coshR

ooshx = (ex + ei )/Z

ooshR =

instead of calling the internal function cosh(x), so that ex and ei can be reused to

calculate other required exponential type functions such as sinh(x) or tanh(x) .

Further CPU-time can be saved by calculating g(R) of equation (5.109) for

R =k and R = -k, (k=l-n) at the same time, using the fact that

sinh(-R) = -sinhR (5.124)

Lanh(-Rl = -LanhR (5.125)

eLc.

However, in doing so one must make sure that the addition

g (-kit) + g (h") (5.126)

does not involve substantial rounding error, since from equation (5.109),

Ig(-h"lll> !g(hltll (5.127)

for relatively large k, since lira becomes dominant when R-> _00 Le. when p->O.

In order to minimize such sources of error, it is best to perform the addition in

equation (5.110) from k=N down to k= -N consecutively. This will result in

-140 - -141-
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can vary rapidly as 0 varies from 0 to D.8j • Thus, a large number of integration

points are necessary to perform the angular integration numerically.

In order to overcome this difficulty of near singularity in the angular

variable, strategies similar to those taken in the case of near singularity in the

radial variable discussed in section 5.5, are proposed. Namely, a transformation

of the angular variable is introduced in order to weaken the near singularity in

the angular variable.

This causes a problem not only for nearly singular integrals but also for

singular integrals resulting from discontinuous elements 1, for which case the

source can be very near the element edges.

This phenomenon may be considered as a near singularity in the angular

variable and can be explained as follows.

When Xs is very close to the edge xj +1 - x} of the projected quadrilateral S
as shown in Fig. 5.17 , the value of p}8) , and hence the integrand with respect to

the angular variable 8 in the integral

Table 5.2 Comparison of computation per integration point

Double Single
log-Lz log-Ll

Exponential Exponential

exponential 1 0.5 1 1

square root 1

division 2 1.5

multiplication 2.5 1

addition/subtraction 2 1 1 1

divide/multiply by 2 1.5 1

CPU time per

integration time 7.6 5.4 -0.2 -0.9

(I-' seconds on SX-2)

f
60. fP.(O) flGI

I = II j I } - I } I } I } } - d dO
} 11 22 12 21 0 0 r" P P

(5.39)
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since p/8) dominates the behaviour of the integral J(8) when Xs is very near an

edge of S.

(5.128)f
PfB> flGI

J (0 ) = - pdp - p. (0)
o rrt )

(1) Adaptive logarithmic angular variable transformation

First we propose a logarithmic angular variable transformation which

weakens the angular near singularity before applying the Gauss-Legendre

quadrature formula.

In order to do so, let us assume in equation (5.39) that

-142 -

As will be shown in the numerical results in Chapter 10, when using polar

coordinates, the number of integration points required for the angular variable to

produce accurate results increases rapidly as the source projection Xs = x (~l' ~2)

approaches the edge of the projected quadrilateral S.

Hence, over all, the log-Ll radial variable transformation in combination

with the Gauss-Legendre formula seems to be the best, considering accuracy,

robustness to different types of near singularity and CPU-time.

5.6 Angular Variable Transformation
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Using t as the new variable for the angular integration in equation (5.39), we

obtain

J(O) _ 1

P
J

(0)

the integrand in (5.131) is expected to be a smooth function of t compared to the

original strong variation of J(O) with respect to O. t(O) acts as a transformation

that weakens the near singularity in the angular variable O.

Here it is interesting to note that both the radial and angular variable

transformations

Consider next an angular transformation t = t(8) such that

~ = _1_ = cos(O-aj )

dt PJ(O) h
j

where t(O) is given for each region E,j by

t (0) = IP/0) dO

hJ 11+sin(0-a.»)= - log J
2 l-sin(O-a.)

J

(5.130)

(5.129)

(5.131)

I
M ItCM.) dO

J J(O)dO = J J(O) - dt
o 1(0) dt

II(Mjl !..!!2 dt

1(0) Pj(O)
Since

Fig. 5.17 Near singularity in the angular variable e

and

R(P)= logv'/+d2

R(P)= log(p+d)

(5.64)

(5.64)

h. 11+Sin(0-a.»)
teO) = ...l log J

2 l-sin(O-a)
(5.130)

which work efficiently for the radial and angular near singularities respectively,

are logarithmic functions related to the near singularity so that

and
R (p) -> co r'=~ -> (5.132)

teo) -> ± co 0-0.
J

±.":
2 (5.133)

-144 -
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Hence, the logarithmic function efficiently weakens the near singularity by

magnifying the scale of the integration variable in an optimal manner, when

Vp2 + d 2 ~ 1 and 1±sin(8 - a
J

) ~ 1 , which are the causes for the radial and

angular near singularities respectively. By doing so, enough information is

sampled to accurately integrate the rapidly changing integrand in the near

J
60 Jm dO

J J(O) dO = J(O) - dt
o _m dt

where

J

68 (O) flGI
J(O)= J - pdp

o ra

and

(5.136)

(5.42)

dO 68
J

dt = 2 oosh2 t

for the single exponential transformation ofequation (5.134), and

cosh t

singular range.

When Xs is right on the edge, the triangular region b.j collapses to a line and

it has no contribution to the integral. Hence, one can simply skip the integration

loop for that particular j when sgn(j) = 0 as defined by (5.27). Using this sgn(j)

makes the programming simple, since it defines the position of Xs with respect to

dO

dt
':....6.0
4 J 2 (" )cosh 2" sinh t

(5.137)

(5.138)

the edge-j.

Numerical experiments in Chapter 10 confirm the accuracy and efficiency of

the use of the logarithmic angular variable transformation of equation (5.130) in

combination with the Gauss-Legendre formula.

for the double exponential transformation of equation (5.135).

In both cases,

J

60.

o J J(O) dO =

where

(5.139)

where hand N. are determined by the required accuracy as in equations (5.118)

and (5.119).

Hence, the integral of equation (5.139) can be calculated numerically using the

truncated tapezium rule as

(2) Single and double exponential angular variable transformations

Just as in the case ofthe radial variable, one can also apply the single/double

exponential transformation to the integration in the angular variable, in order to

weaken the angular near singularity. The truncated trapezium rule can then be

applied to integrate in the infinite interval of the transformed angular variable.

For the integration in the angular variable in equation (5.39), one can apply

the single exponential (SE) transformation

aCt) '" J {O(t)} ~
dt

J
m N

_m a(t)dt - h "=~Na(kh)

(5.140)

(5.141)

-146 -
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1= J 1.- dS
S r a

5.7 Implementation of the PART Method

To sum up, the integral of equation (5.1) which we want to calculate, is

transformed as follows,

(5.135)

(5.134)

which map B: [0, l>BjJ onto t:[ - DO, + DO]. Hence, the integration in the angular

variable is transformed as

M
O(t) = -f (1 + tanht)

or the double exponential (DE) transformation
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R (P) = p (5.145)

(ii) For nearly singular integrals (0 <d<a; 1) ,

4

LI
}

}=l

(5.142) e. g. Is u' {dS and Is q' (dS

for flux calculation in potential problems,

for potential calculations and
where

and

I

M IP.( 8) {I GI
/. = IdetL I } dB } - pdp
J J 0 0 ret

(5.143)

e.g. I
au'
- {dS

sax,
and I

aq'

sax,
(dS

(5.144) R(P) = log(p+d) ( log-L
1

transformation) (5.85)

for integrals of the type Js lira dS, where a = 1,3 occur in potential calculations

and a = 3, 5 occur in flux calculations in three dimensional potential problems

(cf. Table 3.2 and equation (5.50», and

(iii) For planar elements with f =constant in equation (5.142),

R(p) is the radial variable transformation which serves to cancel or weaken

the (near) singularity due to lira. tee) is the angular variable transformation

which serves to weaken the angular near singularity which arises when Xs is near

the edges of the approximately projected element S.

Now that the radial and angular (near) singularities have been weakened by

the transformation R(p) and t(8) , the integral Ij of equation (5.143) can be

calculated accurately and efficiently by applying standard numerical integration

formulas to the integration in the variables Rand t.

(1) The use of Gauss-Legendre formula

{

2-a

(/+d2 )2
R(p) = ----

2-a

~ log (/+ d
2

)

for a '* 2

for a = 2
(5.50)

The best recommended way is to apply the Gauss-Legendre formula 3 to

(5.146)for a = 5

for a = 3

{

122 p
R(P) = log (p +Y p'+d') - ~

V/+d2

3
P
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for integrals of the type Jspira dS , (a = 3,5), which occur in flux calculations of

three dimensional potential problems. The transformation ofequations (5.50) and

(5.146) correspond to performing the radial integral analytically. Hence, only one

integration point is required in the radial direction to obtain the exact value.

-148 -

andI [ dS
s r

e.g.

in potential problems,

For weakly singular integrals ( d =0, a =1 ) ,(i)

R(p) and t(O).

The radial variable transformation R(p) should be chosen as follows:
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The angular variable transformation t(8) is given by

sin (1:;0. - a ) = sin I:; O. cos a . - cos 1:;0 sin a
j) ) ) ) J

Note also that

(5.151)

il) 11 +sin(O-a) 1
t (0) = - log

2 1-sin(O-a)
)

(5.130)
(5.152)

(logari thmic angular variable transformation) for each region t:,.j (j = 1-4) .

Now that the radial and angular (near) singularities have been weakened

(or cancelled) by the variable transformations R(p) and t(8) , the product Gauss­

Legendre quadrature formula can be safely applied to the integration in the

variables Rand t of equation (5.143), i. e.

for each region 6.j. ~ need not be computed when sgn(j) = 0, in which case the

source projection Xs lies on the line defined by edge-j so that the area of region 6.j

is zero and [j=O.

In the transformed angular variable t(8) , the integration points tk.

(k= I-Nt) are given by

(5.153)

(5.154)

(5.155)

(5.156)

where hj, sint:.8j, sin aj etc. are given in equations (5.25) and (5.26). The inverse

transform 8(til), which maps the integration point tk to the angle 8(tk) defined in

Fig. 5.10 for each triangular region "0 in S, is given by

Ck) sin asinO(tk)= cos a) tanh S + M
cosh -

il
)

cos a.

tanh(f)cosO (tk) --)- sina

COSh( f)

)

)

)

since
21

h
)e -1

tanh( f)sin(O-a )
21)

h
)

e ) + 1

and

cos (O-a ) J1-tanh
2(f) 1

)

COSh( f))

)

where
(5.148)

t(M.)+t(O)
)

t(M )-t(O)
t
k

= ) g(k,N
t

) +

The tanh(tk /hj) and cosh(t" /hjl in equations (5.153) and (5.154) should be

calculated using exp(t" /hjl and its reciprocal to save CPU-time, as was done in

equation (5.120).

where

and

il. 11 + Sil1 (M -a.)l
t (M ) = -.l. log ))

) 2 l-sin(M.-a.)
) )

ilj 11
- sin a j. 1

t(O)= Zlog~
)

(5.149)

(5.150)

cos (0 - a j ) > O. since 2" < 0 - a) < 2"
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g(k, Nt) and w(k, Nt) in equations (5.148) and (5.147) are respectively the

position and weight of the k-th integration point of the Nt point Gauss-Legendre

quadrature formula for the interval [-I, 11, which in this case is used for the

integration in the transformed angular variable t.

In the transformed radial variable R(p) , the integration points Rkl

(1= I-NI) for a given angular direction tk are given by

R(p)=log~

p(R)= Je2R _dz

where

r' = J/ + d
Z = eR

t."22Vr <-d<

(5.64)

(5.161)

(5.162)

(5.157) (5.163)

g(l, NR) and w(I, NR) are respectively the position and weight of the I-th

integration point of the NR point Gauss-Legendre formula for the interval [-1,11,

which in this case is used for the integration in the transformed radial variable R.

In order to calculate f, rand [GI in equation (5.147), we need to know the

point ('71kl' '7Zkl) in region t.j of the ('71' '7z) parameter space, which is mapped

linearly from the integration point ( 8(tk), P(Rkl» in region t.j. To do so, we use

equations (5.40), (5.153) and (5.154) to obtain

(iii) For the log-L I transformation R(p) = log(p +d) of equation (5.85),

p (R) = e R
- d

(iv) For the L1-lIm transformation R(p) = -(p+ d)-11m of equation (5.99),

p(Rl = (_Rl-m_d

(5.164)

(5.165)

(5.166)

(5.158) (2) The use of truncated trapezium rule

(5.167)

where

and

( i) For R(p) = p of equation (5.145),

In this case, equation (5.143) gives

I. = IdelL./ I~ ~dt I~ ~ ~ dR
J ) -co dt _lD r a dR

so that

(5.168)

p(R)=R

~=l
dR

(5.159)

(5.160)
where

(ii) For the log-Lz transformation

-152 -

F(p,B)=~
r a (5.170)



and ht and hR are the interval for the trapezium rule for the angular variable

and the radial variable R , respectively.

For the single exponential transformation,

6.0
O(t) = -t (1 +lanht)

dO

dt

for the angular variable, and

(5.134)

(5.137)

transformation, in the number of integration points and CPU time, particularly

for nearly singular integrals (0 <d~ 1) in the radial variable.

However, it is also shown in Chapter 10 that the log-Ll and log-Lz radial

variable transformations with the Gauss-Legendre formula is more efficient

compared to the single/double exponential transformation with the truncated

trapezium rule for the integration in the radial variable. Further, the log-Ll

radial variable transformation is more robust compared to the log-L2

transformation against different types of kernel and element geometry.

p {O (I)l
p(R) E -)-2- (l+lanhR)

~
dR

for the radial variable.

(5.171)

(5.172)

The organization of a program to calculate a (nearly) singular integral

JsfIra dS would be the following.

Given the nodes x,·k (i,k= -I, 0, 1) of the curved quadrilateral element S,

and the source point X s and a table containing weights and positions of the

Gauss-Legendre quadrature formula,

Numerical experiments in Chapter 10 show that the single exponential

transformation (SE) is more efficient compared to the double exponential

for the angular variable, and

For the double exponential transformation, (1) Find the source projection Xs = X(~l' ~2) by the Newton-Raphson method.

(2) Determine sgn(j) , 0= 1-4).

(3) Calculate the uni t normal ns to the curved element S at xs.

(4) Find the projection Xj , (j = 1-4 ) of the four corner nodes of S on to the

plane tangent to S at xs.

(5) Determine the geometry of the projected quadrilateral S and the four

triangular regions 6j (j =1-4) defined by xs, Xj (j =1-4). Then, determine

the linear mapping matrices Lj (j = 1-4).

(6) Perform the numerical integration for each triangular region 6j, j = 1-4

( if sgn( j)* 0 ) in the angular and radial transformed variables t and R

respectively, according to equation (5.147).

Similar procedures can be taken for a curved triangular element (and

arbitrary curved polygonal elements). For triangular elements, the method is

(5.173)

(5.138)

(5.135)

(5.174)
" cosh R
- p.{O(tjl ( )
4 ) 2 "

oosh - sinhRz

" oosht
-6.0
4) 2(" )cosh 2: sinh t

dO

dt

~
dR

p{O (Ill I (" )Ip(R) = -)-2- 1 + lanh 2: sinhR
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even more attractive since there are generally only three regions is.j (j = 1-3) to

perform the integration instead offour for quadrilateral elements.

5.8 Moving the Source Projection to the Edge

The angular variable transformation t (8) of equation (5.30) was introduced

in order to weaken the angular near singularity and reduce the number of

angular integration points when the source projection Xs is near the edge of the

element.

Although this has a considerable effect, the method still requires many

angular integration points when Xs is very near the edge of the element. In order

to overcome this problem, the effect of deliberately moving the source projection

Xs to the closest edge of the element S was examined.

The procedure is as follows:

Taking the example when xs=x (iiI' ii2) is closest to the edge corresponding to

Letx's=x(1, ii2)

2. Approximately project S on the polygon S' on the plane tangent to S at

3. Define the new source distance as d''''1 xs-x's I
4. Introduce polar coordinates (p, 8) in S', centred at x's , apply the radial

and angular variable transformation and integrate with respect to the

transformed variables. In the radial variable transformation, the

updated source distance d' is used.

If the initial source projection Xs is close to two edges (Le. a corner) of the

element S, XS is moved to the corner.

The above procedure is advantageous, not only because it reduces the

number of angular integration points, but also because it reduces the number of

triangular regions in S to integrate over.

- 156-

Numerical experiment results in Chapter 10 indicate that when the source

projection Xs is either outside the elementS, or when itis inside S but very close to

the edge (namely when hj <d, where hj is the distance between Xs and the nearest

edge-j of the projected element oS), moving the source projection Xs to the edge of

the element S leads to a considerable reduction of the number of integration

points.

5.9 Variable Transformation in the Parametric Space

So far, we have introduced polar coordinates (p, 8) and radial and angular

variable transformations R(p), t(8) in the plane S tangent to the curved element

S at the source projection xs.

In a similar manner, we can also introduce polar coordinates (p, 8) and radial

and angular variable transformations in the parametric space ('11' '12) which

describes the curved element x('11' '12)'

For instance, for a curved quadrilateral element S defined by

{x('11' '12) 1-1;;;;; '11' '12;;;;; I}, one can proceed as follows:

(1) Find the point Xs = x( ii l' ii 2)on S, closest to the source point xs.

(2) Introduce polar coordinates (p, 8) centered at (iiI' ii2) in the square defined by

-1;;;;; iiI' ii2;;;;;1.

(3) Divide the square in to four triangular regions c,j, (j = 1-4) as shown in

Fig. 5.7.

(4) In each region c,j, introduce radial and angular variable transformations

R(p), t(8) similar to those defined in sections 5.5 and 5.6 for"E.j in the tangent

plane, in order to weaken the (near) singularity.

(5) For each region c,j , perform numerical integration with respect to the

transformed variables R(p) and t(8).
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For radial variable transformations R(p) which make use of the source

distance d=lxs-xsl, the equivalent source distance D can be defined for the

parametric space ('11' '12) by,

CHAPTER 6

ELEMENTARY ERROR ANALYSIS

6.1 The Use of Error Estimate for Gauss-Legendre Quadrature Formula

In this section we will perform an error analysis of the proposed numerical

integration (PART) method and explain why the log-Lz radial transformation
(5.178)

(5.175)

(5.176)

(5.177)

R (p) = log (p +D)

= I x (I, ~ 2) - x (- I, ~ 2 ) I

12 =Ix(~l,l) -x(~l,-1)1

d
D=--­

max (1
1

,1
2

)

for example. Using such an equivalent source distance D, a log-LI transformation

and a LI- 1/S transformation
R (p) = log -Jp2 + d2

(5.64)

R(p) = _(p+D)-us
(5.174)

corresponding to f3 = 2 in

where Pj = p/8) is the upper limit of the radial variable in equation (5.42).

For simplicity, take the case of constant planar elements (parallelogram or

triangular) so that the radial integration of equation (6.1) reduces to

leads to accurate numerical integration results with relatively few integration

points for integrals of the type Is 1/T'" dS, whilst the radial transformations

corresponding to f3* 2 (cf. Table 5.1) give poor results. (cf. Chapter 10)

Since we are interested in the integration in the radial direction, consider

the integral

can be defined.

Similar transformations can be introduced for curved triangular elements in

. the parametric space ('11' '12) by defining an equivalent distance D similar to

equation (5.177) if necessary.

This variable transformation in the parametric space ('11' '12) may seem

simpler compared to the PART method, which employs variable transformations

in the approximately projected element S in the tangent plane. However, the

concept of the equivalent distance D becomes vague when the element has a

large aspect ratio, whereas the source distance d is always clearly defined for all

kinds of element geometry, so that the radial variable transformation in Susing

the source distance d itselfis preferred, so long as the source distance is employed

in the radial variable transformation, such as in the log-Ll and LI -I/S

transformations.

pdp = r'P dR

f
PJ rlGI

J= -pdp
o r"

J = fP
j !!- dp

o r"

(5.46)

(6.1)

(6.2)

where

r=r'=~ (6.3)
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Applying the radial variable transformation corresponding to

pdp = r'P dR

we obtain

[

R(P)

J = J r P-. dR
R(O)

(5.46)

(6.4)

where

and

a+b+ x(b-a)
t(x) = 2

dt b-a
;h=T

(6.8)

(6.9)

We are now interested in estimating the error when applying the Gauss­

Legendre quadrature formula to equation (6.4) .

The error estimate for the n-point Gauss-Legendre formula when applied to

the integration over the interval [-1, 1] :

Here, t(x) maps the interval x E [-1, 1] to t E [a, b]. From equation (6.9) and

[

I n

{(x) dx = L w. ((x.) + e if)
1 t t n

- i=1

is given by 3,33

for some -1 < '7 < 1 ,

where

((m)(x) .. d
m

{

dx nl

(6.5)

(6.6)

(6.10),

~ _ dF dt b-a dF

dx - dt ;h = T dt
and

where

dmF
]l.m) .. _

dtm

so that the error En(F) of equation (6.7) is given, from equation (6.12) by

(6.10)

(6.11)

(6.12)

(6.13)

Hence, the error En(F) of applying the Gauss-Legendre quadrature formula

of equation (6.5) to the integration of a function F(t) over a general interval

t E [a,b] is given as follows:

[
b b-a [I la+b+x(b-a)!

F(t)dt = - F dx
a 2 _I 2

b-a [I
- g(x) dx

2 _I

b -a [ ~ w. g (xl + e (g)!
2 L t t n

i=1

= b-a E g(2n) «')
2 n

(
b-a )20+1 2)= T En]l. 0 (r)

forsome a<r<b, (-1<~<1) ,

where

22"+1 (n!)4

En == (2n+ 1) {(2n)!}3

Recall Stirling's formula

(6.14)

(6.15)

b-a L wi g(\) + En(F)

l=1
(6.7) (6.16)
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which means that n! is asymptotically equivalent to e-nnn~. The

approximation (6.16) is reasonably accurate for small values of n as well, as

or

lim = 1 (6.17)

22'1+1 (n!)4

(2n+ I) {(2n!)}3

....r,,-( e )2'1 -2'1- i
- 2":1 n

(6.19)

From equation (6.20), the lower bound Ln(F) and upper bound Un (F) for

IEn(F)1 are given by

shown in Table 6.1.

Table 6.1 Accuracy of Stirling's formula for small n

e-nnn~
n

n!

1 0.922

2 0.960

3 0.973

4 0.980

5 0.983

6 0.986

7 0.988

8 0.990

9 0.991

10 0.992

In fact equation (6.16) can be expressed by the following asymptotic

expansion

Hence, from equation (6.14),

for some a < r < b ,

where

= (b-a )2'1+1 ,
P'l 2 n

_ b-a~ [(b_a)ej2n
4 n 8n

min

= P
n

min 1,...<2n)(r)1

a~ r~ b

and
Un(F)

= P
n

I,...<2n) (r) I

a~ r~ b

respectively, so that,

(6.20)

(6.21)

(6.22)

(6.23)

,t! = e-nnn·~(l +~ + _1 13_9_ + ... )
12n 288n 2 5180n3

Substituting Stirling's formula (6.16) in equation (6.15), one obtains

(6.18)

Now we are ready to apply the error analysis to the integral

(6.24)
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R(O) = log d

(5.64)

(6.28)

(6.29)

r= r'''' .Jp2 + d
2 = eR

R(p) = log.Jp
2 +d2

F(R) = r 2-. = e(2-alR

First, the error analysis will be performed for the log-Lz radial variable

fR(P l
J = J r P-. dR (6.4)

RW)

where,

F(R) '" r(R)P-, (6.25)

1
a = R (0) (6.26) d 2

and

b = R (pJ) (6.27)

1
-

d

transformation corresponding to (3 = 2 :

6.2 Case 13=2 (Adaptive Logarithmic Transformation; log-Lz)

we have

which is shown in Fig. 6.1.

Also,

Since (3 = 2 and

a = R (0) = log d

b = R(PJ) = log.Jp~+d2 = logrj (6.30)

Fig. 6.1 Graph
for

of F (R) == r ~-a = e (2-a) R

~= 2, ex = 1"'5
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where

Hence,
r

b - a = log 1
From equation (6.29) ,

which also stands for a = 2, when

F(R) '" 1

For a=1,

is a strictly increasing function of R , so that

min IF(2nl (Rl I = F(2n) (a)

a;!; R;!; b

= r 2nl Oogd)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

is a strictly decreasing function of R, so that

min Ir2nl (R) I = r2n ) (b )

a;!; R;!; b

2 (2-a)logr.
=(2_a)n e J

= (2_a)2n r. 2- a
J

= (2_a)2n ,,/p2 + d2 2-a
J

and

= (2_a)2n e(2-a) logd

To sum up, we have Table 6.2.

Table 6.2 Minimum and maximum value of ~2n)(r)

(a ~ r ~ b) for [3=2, a=1-5

(6.33)

(6.40)

(6.41)

= d
and

Ir2n)(RlI = r2n )(b)

a;!;R<;;b

(6.37) (2n)
min F (r)

a;!;r;!;b

(2n)
max F (r)

a;!; r;!; b

= r2n ) (log r
j

)

= r.
J

= ,,/p~ + d
2

For a=2.

where a ~ T ~ b

For a ~ 3,

-166 -

(6.38)

(6.39)

d r
J

2

r.-1
J

4 22" r.-2
J

32n r.-3
J
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From equations (6.21) and (6.32) ,
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is given by Table 6.3.

Table 6.3 Lower bound Ln(F) and upper bound U n(F) of
numerical integration error En(F) for f3= 2

r r.
J J

logd F( e IOgd) 2n

4 n 8n

Ifwedefine

r .
..l. = 10k

d

r
log 1= k log 10

- 2.30 k

For nearly singular integrals d ~ Pj

r j Jp~+d2 _ !J.
d = d d ~ 1

so that k>O.

Hence,

(6.42)

(6.43)

(6.43)

(6.44)

(6.45)

a Ln(F) Un(F)

1
1.81 k d (0.782 k Tn 1.81krj (O.782kJn

vn n ~ n

2 0 0

3 ~[O.782kr ~[O.782kJn
rjYn n dvn n

~ [1.S6kJ2n 1.81 k C·S

:

krn
4

rf~ n d2~

1.81 k
(2.3: krn 1.81 k

[2.3: krn
5 ---

rJ3~ d3vn

~kF(ke log 10 )2n
4 n 8n

To sum up, for f3 = 2, since

(6.24)

From Table 6.2 and equations (6.22), (6.23) and (6.46), the lower bound L n and

the upper bound Un for the error En(F) of applying the n-point Gauss-Legendre

quadrature formula and the radial variable transformation

_ ~ (0.782k )2n
vn n

R(p)= logJ/+d2 • (/l=2)

to the integral

-168 -

(6.46)

(5.64)

(6.2)

equation (6.40), (6.41) and (6.42) gives

r.
J

En(Fl _ I(a-2~: logd j2n

I0.783 (a_2)kj2n °
n ~

where
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r

log1
k = - 0.434 lOg2

log 10 d
(6.48)

and

a = R (0) = d

Table 6.3 and equation (6.47) show that the adaptive logarithmic radial variable

transformation (log-L2)
From equation (6.52), for a = 1 ,

(6.53)

R(P)= logY!/+d2
(f3=2) (5.64)

F(R)= 1 (6.54)

in combination with the Gauss-Legendre quadrature formula has the very good

convergence behaviour of order O(n -2n) , for the integration in the radial

variable:
and for a ~2 ,

(6.55)

[

Pj P
J= - dp

o r'
(a=l, 2, 3, .. ) (6.2) p<2n)(R) = (2n+a-2)! R- 2n -.+ 1 > 0

(a-2l! (6.56)

where n is the number of integration points for the transformed radial variable

R. This explains why the radial variable transformation R(p) corresponding to

[l= 2 (log-L2) works well for nearly singular integrals of the type

Since ji'l2n)(R) is a strictly decreasing function of R E [d, f
j

] for a~ 2,

min p<2n) (R) = p<2n) (r .)
J

1= [ ~
S r'

(a=l, 2,3,···) = (2n+a-2)! r. -2n-.+1 > 0
(a-2)! J

(6.57)

6.3 Case B= 1 Transformation

(6.49) and

= (2n+a-2)! d -2n-.+1 > 0
(a-2)!

(6.58)

For the radial variable transformation corresponding to [l= 1 (cf. Table 5.1): for a ~ 2.

we have

R(Pl=~ (6.50)

Since

b-a=r.-d
J (6.59)

equation (6.21) gives
r = r' = R (6.51)

(6.52)

and

Pn -

r. - d
_J_

4

~ I(rj-dle) 2n

n 8n
.(6.60)
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(2n+a-2)! = (2n)! (a(n)
(a-2)!

(6.61)
and for a;;; 2 ,

for a=1 (6.65)

where

(2n+a-2)!
(n) =---­

a (2n)! (a-2)!
(6.62) where, for nearly singular integrals, for which

(6.24)

as shown in Table 6.4 .
d

0< - ~ 1
r.

J

r_
..l. ~ 1
d

(6.66)

6.4 Case 8=3 Transformation

This suggests that the [3= 1 transformation does not work as efficiently as

the[3=2 (Iog-L2), since

This is shown in the numerical results (Chapter 10) where the [3 = 1

transformation is out-performed by the [3=2 (Iog-L2) transformation, except for

the case of weakly singular integrals (d=O, a= 1).

Table 6.4 fa(n) , ([3= I, a;;; 2)

a fa

2 1

3 2n+1

4 (2n+1)(n+1)

5
(2n+1)(n+1)(2n+3)

3

From equations (6.22), (6.23), (6.57), (6.58), (6.60) and (6.61), for a;;; 2,

d
1--

L n(F) - ~ (r
J

- d) r
j
I-a (a(n) (~ ) 2n

r
..l. _I

rr (d )2nU (F) - - (r._d)d 1
- a ((n) --

n 2) a 4

(6.63)

(6.64)

(
1 r. )2n

U (F) - _ . ..l. --::-7 =
n 4 d n-+Q)

( 1)2n (1)2n
En (F) - 4 ~ -;;:

except for the case when a = I, for which

For [3=3 (cf. Table 5.1),

1
R(p) = - ..jp2+ d2

(6.67)

(6.68)

(6.69)

(6.70)

Hence, to sum up for the radial transformation R(p) corresponding to [3 = I,

-172 -

so that
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a = R(O) = -d

1 1
b=R(p)=----=--

J -Jp~+d2 r j

(6.71)

(6.72)
min F"2n)(R) = F"2n)(_-d1 )= (2n+2-a)! d 2.+3- a > 0

(2-al!
a:£R:£ b

(6.80)

and

max F(2')(R) =F"2.>( _!..-)= (2n+2-a)! r.2.+3-a >
r

j
(2-a)! J

a:£R:£b

and

Since

b - a
dr.

J

1
r=r'=-Ii

F(R) = ,JJ-a = (_ R)a-3

Hence, for

(6.73)

(6.74)

(6.75)

Here

where

(2n+2-a)!

(2-a)!
(2n)! (.en)

(6.81)

(6.82)

a;;:; 3 (
a-3).n>2

(2n+2-a)!

(2-a)!(2n)! (6.83)

and

E.(F) == 0

For a = 1, 2

(6.76)

(6.77)

or

From equation (6.21) ,

(6.84)

(6.85)

F"2')(R) = (2n+2-a)! (_R)a-3-2.
(2-a)!

(6.78)
p. -

d ~j ~ I (~-~) e ) 2.

4 n 8 n
(6.86)

Since

1
:£ -R :£

r d
J

(6.79)

Thus, for nearly singular integrals (0 < d ~ rj ) and a= 1,2 ,

where O<d~ r
J

for nearly singular integrals, and F (2.) (R) is a strictly

increasing function of

one obtains

d
1--

n(1 1) (r.)2n_____ d3-a(n) __J

2 dr. a 4
J

(
1 )2.
- ~O4 n_a:J

and

(6.87)

-174-



- ~ --=--- - -

where

U (F) = p F(2nl(_.1-)
n n r

J

- ~ (~_!.-) r 3-. {.(n)
2 d r. J

J

r .
..1._1

(~r

(6.88)

(6.89)

and

Since

1

r = r' = (_ 2R) 2

~- 2
F(R) = r .p-. = (-2Rl 2

(6.95)

(6.96)

To sum up for R(p); (3 = 3, good convergence is expected for a = 3,4,5, ...

(for planar elements), while for a = 1,2, equations (6.87), (6.88) and (6.89) suggest

that the (3=3 transformation does not work as well as the (3=2 (log-L2)

transformation, for which it was shown in section 6.2 that

~- 2 ~- 2

= 2 2 (-Rl 2

or

3 3

F(R) = 2 2 (-Rl 2 0=1

(6.97)

(6.98)

(
1 )2nE(f) - L (F) - U (F) - -

n n n

6.5 Case B-4 Transformation

For (3=4 (cf. Table 5.1),

so that

1
a=R(O)=--

2 d 2

1
b = R(p ) = ---

J 2 r. 2
J

where

(6.90)

(6.91)

(6.92)

(6.93)

(6.94)

F(R)= 2- 1 (-Rl- 1

1 I

F(R)= 2 2 (-Rl 2

F(R) = (-R)o = 1

1

F(R) = 2 2 (-R) 2

etc.

Hence, for a = 4, (n ;::; 1)

F(2nl (R) 50 0

and

En (F) '" 0

For a '1= 4,

0=2

0=3

0=4

0=5

(6.99)

(6.100)

(6.101)

(6.102)

(6.103)

(6.104)
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~_2[2n( )1[l2n) (R) = 22 n ~-l-i
1=1

(-R)
2n+2-~

2

(6.105)
so that,

min

Hence IF(2n)(R) I is a strictly increasing function of

so that

" 2- 0 [ ( d )212n+ 1 ( 1 )2n-d 1- - t-
4 r" n 4

J

Un (F) a

a~R~b

(6.111)

min I [l2n) (R) I

a~ R ~ b

and

I [l2n)(_.2..-) I
2d2

(6.106)

where

(6.112)

(6.110)

(6.113)

a~ R ~ b

From equation (6.14),

= r. 4-a
J

I n(~-I-i) I
i=1 2

(6.107)

For nearly singular integrals

do < ~ 1
r

J

so that

"( b-a )2n+ I [l2n) (R)
E (F) = - e--

n 2 n (2n)!
(6.108)

" (1 )2nL (F) - -d 2- o t -
n 4 n 4

and

(6.114)

for some R E[a, b], where

en
22n + 1(n!)4

(2n+ 1) {(2n)!}2
(6.109)

(6.115)

using Stirling's formula of equation (6.16).

Hence,

for some R E [a,b] ,

-178 -

(6.110)

tn can be estimated by the following theorem.
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Theorem 6.1

nll+~I-o(na)
&=1

as n ~ 00.

(1) Case a>O

Since

let us define

S2n 50 log t
"

= I log(I+~)
1 i=1 '

and

{( x) 50 log ( 1+ ;)

where

{( + 0 l = + <XI

{(+<XI)=+O

(6.116)

(6.117)

(6.118)

(6.119)

(6.120)

(6.121) -¥-...£-L...i.:.....LJ...£-.<::...1. ..L....c.......L.J....:::....LJL---..l. -=-_x
{'(xl

x(x+a)
< 0 (6.122)

o 2 2n 2n + 1

so that f(x) is a strictly decreasing function of x>O, as shown in Fig. 6.2.

Hence we have

where

JIOg( 1+;) dx = (x+a) log (x+a) -x logx

so that

-180 -

(6.123)

(6.124)

Fig. 6.2 f(x) log(1 + E-) ,
X

-181-
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I
2n

+1 ( a)
~ ~n '" 1 log 1 +;- dx

= (2n+l+a) log (2n+l+a) - (2n+ 1) log (2n+ 1) - (l+a)log(l+a)

and

S ~n E I:n

log ( 1 + ; ) dx

(6.125)

- a (n a)

From equations (6.127), (6.128) and (6.129) ,

(6.129)

= (2n+a) log (2n+a) - 2n log 2n -aloga

From equations (6.118), (6.123), (6.125) and (6.126), one obtains

.in < In < In

where

(6.126)

(6.127)

2n

In '" n11+ ~ I - a (n
a

)
i=1

(2) Case a -0

(3) Case a < 0

Let b == -a. Then.

for a> 0 (6.130)

(6.131)

If b is an integer less than 2n, tn= 0 < O(na) , so let us assume that b is not an

integer and let

(2n+ 1 +a) 2n+1+a

(2n+ 1)2n+ 1 (1 +a)l+a

Ie (211+1+ a1 1"
n -><X> (1 +oll+a

2n b

In = n 11 --:-1
;=1 L

b > 0 (6.132)

- 0 (na )

and

In

(2n+a) 2n+a

(2n)2n aa

-182 -

S2n log InI

(6.128) S~-l + S2n
k (6.133)

where
k-I

log/l- TISk-I 2: (6.134)1
i=1

and

-183 -
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2n ( b)
S~ = L log 1- i (6.135)

i=.

where k is defined as the integer which satisfies

k-l < b < k (6.136)

Then, if we define

X

{(xl'" IOg( 1-; ) b>O (6.137) 0

we have

{(b+O l = (6.138)

{(+ 00 l = -0 (6.139)

and

b
x>b{'(xl = >0 for (6.140)x(x-bl

i.e. {(x) is a strictly increasing function of x for x> b. as shown in Fig. 6.3 .

Hence,

where

and

where

so that

£ ~n log ( 1 - i) + I~ log ( 1 - ;) dx

f log(I-;) dx = (x- bl log(x-bl -xlogx

-184-

(6.141)

(6.142)

(6.143)

(6.144)

Fig. 6.3 f(x) blog(1 - - ) , b > 0
X
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~~n = (2n-al log (2n-a) _ 2n log2n

-(k-a-1) log(k-al + (k-1)logk

and

s~n = (2n+l-a) log(2n+l-al - (2n+1) log (2n+ 1)

-(k-a) log (k-a) + k log k

From equations (6.132), (6.133), (6.141), (6.145) and (6.146),

where

S;-I + .2~n
e

and

(2n_bl 2n - b kk-l

(2n)2n (k _ blk-b-l

(6.145)

(6.146)

(6.147)

(6.148)

(6.149)

(6.150)

(2n+l_bl 2n+1- b

(2n+1)2n+1

(l __b_ l2n + 1

2n+l

(2n+l-bl b

(
_ek )b(I_~)b-k
2n+l-b k

Hence,

(6.152)

(6.153)

(6.154)

(1-!!.-) 2n
2n

(2n-blb

(k-blb

(1- ~lk-l
k

(6.151)

which imply that

(6.155)

- !e(k-bljb (1_~)I-k
n~OO 2n-b k for a < 0 (6.156)

(
b)l-k !eCh-bljb -b- 1-- -- n
h 2

-186 -

From equations (6.130), (6.131) and (6.156),
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Q.E.D.

(6.157) 6.6 Case B= 5 Transformation

For f3=5,

Returning to equations (6.113), (6.114) and (6.115), for the radial variable

transformation R(p) corresponding to f3 = 4, Theorem 6.1 implies that

1
R(p) = - ----

3..;;;;;1 3 (6.162)

2n I 2 I ( 1- ~)In = n 1 + ;.a - a n 2
i=l I

Hence, for a =1= 4

(
1 )2n
- ~O
4 n-+ oo

and

1-~
2

(6.158)

(6.159)

(cf. Table 5.1) , so that

a = R (0) = - 3cfl

b = R (pJ) = - 3r a
J

where

r. ==
J

and

(6.163)

(6.164)

(6.165)

( r )4n
- --!..- ~

2d n_ m

for nearly singular integrals Le.

(6.160)

Since

b - a = 1(1 1)
3 ~-;:a

J

(6.166)

d
< ~

r
J

1

r' (-3R) 3 (6.167)

where

(6.161)
F(R) = rP-' =3

5-.

3 (-R)

5-.

3 (6.168)

To sum up, the radial variable transformation R(p) corresponding to f3=4

is not expected to give good results for the integration of

for a = 5 ,

F(R) = 1

and

(6.169)

I = JP} E.. dp
o r'

(6.2)
F (2n)(R) = 0

so that

(6.170)

compared to the f3=2 (log-L2) transformation, except for the case of a=4 for

planar elements, when En(F)=O.

-188 - -189 -
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For a"* 5 ,

Hence, IF (2n)(RlI is a strictly increasing function of

(6.172)

(6.172)

Ln(F} == min IEn(F}1

a;'ii,R;'ii,b

Since

(6.178)

(6.179)

from Theorem 6.1 ,

Ln(F) -

(6.180)

-)--{-~~)'r(it
- [~(1rl2n ~ 00

UIl(F)

and
(6.173)

(6.173)

min 1p,(2n)(R}1 = 1p,(2n) ( - 3~)i

a;'ii,R;'ii,b

and

so that

From equations (6.108) and (6.109), for nearly singular integrals i. e.

(
b_a)2n+l rr

E (F) - - -
n 2 22n

p,(2n)(R}

(2n) ! (6.175)
o < '!:.-

r
}

<;; 1 (6.181)

Hence, the transformation R(p) corresponding to f3=5 is expected to give

poor results compared to the f3= 2 Oog-L2) transformation for the integration of

for some R E [a,b] ,

where

(6.176)

J
Pj P

I = - dp
o r a

(6.2)

Hence,
except for the case of a=5 for planar elements, when En (F) = 0 .

(6.177)

where

-190 - -191-
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6.7 Summary of Error Estimates for 11=1-5 transformations Here,

To sum up, we have been considering the error estimate En when applying

the Gauss-Legendre formula after applying the radial variable transforamtion

pdp = r ,PdR (P = 1-5) (5.46)

and
r
...l. ~ 1
d

(6.31)

(6.45)

to the integration in the radial variable

J

Pj P
J = - dp ; (a = 1 - 5 )

o r'

which occurs in the nearly singular integral

(6.2)

for nearly singular integrals.

From Table 6.1, the f3= 2 transformation:

R(P)= IOg~ (5.64)

The error estimate En for the radial variable transformations: f3= 1-5, is

1= J ~
5 r"

J
2a JPj P

= 0 dO - dp
o r"

where S is a planar element, so that

r = r '= .Jp
2 + d2

given for dilTerent orders of near singularity: a = 1-5, in Table 6.5 .

(6.49)

(6.3)

gives good convergence for all near singularities a = 1-5 of the type in equations

(6.2) or (6.49), as will be confirmed by numerical results in Chapter 10 .

The f3 '= 3 transformation also seems promising for a~ 3. However, it should

be reminded that the above error analysis was performed for planar constant

elements. The effect of curvature and high order polynomial interpolation

functions in the integrand are not taken in to account. For instance, although the

error is En=O for f3=1, a=l for planar constant elements, it is found in the

numerical results in Chapter 10 that, the f3= 1 radial variable transformation

I = J ~ (6.182)
5 r

over a curved quadrilateral patch. This seems to indicate that the n -2n

convergence of the f3= 2 (log-L2) transformation is robust, not only with respect

to the value of a but also with respect to the curvature of the boundary element.

Table 6.5 Error estimate En of integration using radial variable

transformation f3= 1-5

a
1 2 3 I 4 5

f3

1 0 4- 2n < En < (r/4d)2n

2 n -2n 0 n-2n

3 4-2a < En < {r/(4d)}2" 0

4 4-2n < En < {(r/(2dj}4n I 0 4-2" < En < {r/(2d)}4n

5 4 -2" < En < {r
j

/ (4 f d)}6" 0

R(P)=~

does not give accurate results compared to the f3= 2 (log-L2) transformation

R(P)= log~

for the integration

(6.50)

(5.64)

-192 - -193 -
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6.8 Error Analysis for Flux Calculations where the potential u(xs) and the potential derivative au/axs at an internal point

X s near the boundary S are given by

As will be shown in the numerical results in Chapter 10, the adaptive

logarithmic transformation Oog-Lz) ofthe type:

works efficiently for nearly singular integrals arising in the calculation of the

potential u(xs) at a point X s very near the boundary. However, the radial

transformation of equation (5.64) does not work so efficiently for nearly singular

integrals arising from the calculation of the flux or the potential derivative au/axs

at a point X s very near the boundary.

This can be explained as follows if we recall the nature of nearly singular

integrals discussed in Chapter 3 37.40. Since in the vicinity of the source point Xs

which is very near to the curved boundary,

Since the near singularity is essentially related to r and the radial variable

p, the nature of integral kernels in equations (2.45) and (2.46) can be summarized

as in Table 3.2. In other words,

u(x.) = Is (q u' - uq' ) dS (2.45)

and

au
Is

au' aq'
ax

(q - - u - )dS (2.46). ax
s

dx
s

(6.183)

(6.184)

I 1
- dS

s r

Is

Is u'dS

Is q'dS

(5.64)R(P)=log~

u'
4",

(3.127)

(3.128)

where as

I au' dS - I ~ dS + I f!- dS
sax. s r 3 S r 3 (6.185)

where (p,lJ) are the polar coordinates in the plane tangent to S at Xs

(cf. equation (5.39) of section 5.4 ) , the radial component of the integrals of

equations (6.183) to (6.186) can be summarized as

regarding the order of near singulari ty.

Since

(6.186)

(6.187)F pdpI
2

• IP (8)dO max

o 0

I = Is F dS

(3.130)

(3.129)

and

-194 - -195 -
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whereas

Is u" dS

Is q" dS

[

Pj P
J '" - dp
lOr

[

Pj P
J == -dp

3 0 r3

(6.188)

(6.189)

where n is the number of integration points in the radial variable. This

guarantees the efficiency of the logarithmic transformation (log-Lz) of equation

(5.64) for the integration of the radial integration J a , (a = 1-5) of equation(6.2),

and hence of the integration

for potentials near the boundary, which involve radial integrations JI and J3,

as demonstrated by the numerical results in Chapter 10.

However, for flux (potential derivative) calculations involving the integral

of equation (2.46), radial integrals of the type

u(x)= [ (qu"-uq")dS, s (2.45)

(6.195)

(6.196)(a = 3,5)

(a = 1-5)[
dS

I - -
a S r a

and

(6.191)

(6.190)

[
au"
-dS

sax,

where the extra p compared to quations (6.183) to (6.186) accounts for the

Jacobian introduced by the polar coordinate system in equation (6.187), i.e.

dS = pdp dO (6.192) as well as

and

Pj == Pmax(O) (6.193) [

Pj P
J == - dp

a 0 ra
(a =3,5) (6.197)

It was shown in the error analysis in section 6.2 that for the radial

integration:

are required, as shown in equations (6.190) and (6.191). Hence, let us perform

an error analysis of the numerical integration of equation (6.196) when using

radial variable transformations of the type
; (a = 1-5)

the adaptive logarithmic transformation of the type

(6.2)

pdp = r'P dR (5.61)

R(p)= log~ (5.49)
where

r'==~=r (6.197)

corresponding to f3= 2 (log-Lz) reduces the error En of the radial numerical

integration by the Gauss-Legendre formula to an order of
for planar elements. The integral of equation (6.196) is transformed by equation

(5.61) to give

(6.194)
[

R(P')

J P r p-a dR
R(O)

(6.198)

-196 - -197 -



Let the kernel of the integral ofequation (6.198) be notified by

F(R) = pr P- a

as a function of the transformed variable R .

Since from equation(5.61)

and from equation (6.199)

where

~ = ~(.J/+d2)= --p- =!:.
dp dp ~p2+d2 r

Hence, from equations (6.200) and (6.201) , one obtains

dF dF dp

dR dp dR

(6.199)

(6.200)

(6.200)

(6.201)

(6.202)

dF I = d P- a >
dp p= +0

for d>O.

Similarly, for higher derivatives

d"F
~")(R) = -

dR"

we obtain the following theorem;

Theorem 6.2

For integers n ;;; 0 ,

n 1-2ka
l

_
2k

p

k=O

where a l _ 2k
n are constants which do not depend on p or R ,and

a~_2n = IY{ (I-Zi) ) d
2n

1=1

where

(6.206)

(6.206)

(6.207)

(6.208)

= ; I(p-a+l) / + d2 ) r2p-a-2 (6.203)

for m< 1 (6.209)

Hence,

dF I d2p-a I- - -- - +00
dR p=+O - p p=+O -

so long as d>O. This results from the fact that, from equation (6.200),

dp I d
P I- - _ - +00

dR p=+O - p p=+o-

while from equation (6.201)

-198 -

(6.204)

(6.205)

Proof

For n=O, equation (6.207) gives

where, from equations (6.208) and (6.209),

I
-1

a~ = n(l-Zi») = 1
i=l

-199 -

(6.210)

(6.211)
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Since
so that

F"'0) (R) = F(R) = r P- a p

which corresponds to equation (6.199).

For n= I, equation (6.207) gives

and equation (6.208) and (6.209) give

°a_i = !.n (I-2i)1 d
2 = d

2

1=1

(6.212)

(6.213)

(6.214)

r = r'= J/+ d2

and from equation (6.220)

so that

rdr = pdp

(6.220)

(6.221)

(6.222)

(6.223)

which agrees with equation (6.203).

For n~ 2 , we use mathematical induction. Assume that equations (6.207)
From equation (6.221),

and (6.208) hold for n = m, i.e.

F(m) (R) = r(m+llP-a -2m L a~_2kpl-2k

k=O

and

!m-I 1n (I-2i)
1=1

(6.215)

(6.216)

dp r P

;m=-

and from equations (6.221) and (6.223)

dr = r P- I

dR

(6.224)

(6.225)

Then, for n = m+ lone obtains,

d{ dg
=;mg+{;m

where

{=- r(m+llP-a-2m

and

g =- L a~2k pl-2k

k=O

- 200-

(6.215)

(6.217)

(6.218)

(6.219)

Hence,

and

~
dR

~
dR

~~
dr dR

!(m+I)P-a- 2m 1 r(m+2JP-a-2(m+1J

~~
dp dR

= r P i (I-2k)a~~2k p-1-2k

k=O

- 201-

(6.224)

(6.226)

(6.227)



From equations (6.217), (6.226) and (6.227) ,

F(m+1)(R)=r(m+2)p-a-2l m+l) [i !(m+l)p-a-2m+I-2k}a~_2kpl-2•

• =0

+ i (1-2k) d 2 a~_2k p-I-2.j
.=0

m+l
'" r (m+2)p- a- 2(m+1) L a~+2~ pl-2k

.=0

where, for k = 0

(6.228)

(6.232)

Since r = V p 2 +d2 = d for p=O and since the term including pl-2n

is the dominant term in equation (6.207) for p= +0 , equation (6.232) is

asymptotically true for p = +0 .

Corollary 6.2.2

and for 1 ~ k ~ m

a~~+2~ =! (m+l)p-a-2m+I-2k+(3-2k)d2a;~2k)

and for k = m+1

(6.229)

(6.230)

For n;;::; 1,

p-+O

Applying Stirling's formula:

(6.233)

= !A(1-2i)) d 2(m+l)
t=l

from equation (6.216) .

(6.230)

(6.231)

to
2n-ln (I-2i)
1=1

one obtains

(4n-3 )!

(2n_l)!2 2n - 1

(6.234)

(6.235)

Hence, equaions (6.207) and (6.208) hold for n = m + 1. Since equations

(6.207) and (6.208) hold for n= 1 , by mathematical induction they are satisfied

20-1n (I -2i) - _2(2e)-2o n 2n-2
,=1

which gives

(6.236)

for all in tegers It;;::; 1 .

From Theorem 6.2, the following corollaries are obtained.

Corollary 6.2.1

Q.E.D.
Corollary 6.2.3

For relatively large integers n;;::; 1,

I ( nd)2nF(2n)(R) _ -2 d p-a n - 2 _

p= +0 2 e 4n-l
p (6.237)

For integers n;;::; 0 ,

- 202-

From equation (6.20) , the error En(F) of applying the Gauss-Legendre

formula to the integral J a ,2 in the radial variable R in equation (6.198) is
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for some R E [a,b] and for some p E[0, p), where

a = R(O)

= R(p)

and from equation (5.50) ,

(6.238)

(6.239)

equation (6.243) suggests that many integration points n are required for the

accurate integration of J a,2 of equation (6.198), compared to the integration of

J a of equation (6.4) by the log-L2 ([3=2) transformation, whre En(F) - n-2n as in

equation (6.47) and Table 6.5.

To sum up, although IEn(F)I -=1= 00, the fact that

~ [(b-a)e )2n
n 8n

has a bad effect on the efficiency of the use of the Gauss-Legendre formula for the

integration of equation (6.198). Therefor it is clear that the radial variable

transformation R(p) of the type

{

1-~
(p2+ d2) 2

R(p) = 2-(1

log(/ + d 2 ) ~
and

b-a

4

{or

{or

(1 * 2

(1 = 2

(6.240)

(6.241)

(6.242)

(
dF )("') I- = (_1)",-1 ""
dR p=+O

pdp = r'P dR

(m!1;l) (6.245)

(5.46)

Equations (6.238), (6.242) and Corollary 6.2.3 suggest that if the value

p E [0, Pj] of equation (6.238) is near 0, i.e. 0 ~ P ~ p) ,

(6.243)

does not stand a good chance of accurately calculating the integral J a,2, (a = 3,5 )

of equation (6.196) and hence the potential gradient at an internal point near the

boundary.

This is true even for the adaptive logarithmic radial variable transformation

(log-L2) corresponding to [3=2 :

which was so successful in calculating integrals J a for the potential. This fact is

depicted in Figure 6.4 which shows the kernel function

r. r
)

«(1=1)
)

log r
j

logd - -Iogd «(1=2)

1
«(1=3)R(Pj) - R (0) +

d dr
)

1 1
«(1=4)- +

2d22r 2 2 d 2
)

1 1
«(1=5)- +

3 d 3
3 d 3 (6.244)3 r. 3

)
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F(R) = p r P-.

of equation (6.198) for [3= 2; a = 3,5, i.e.

- 205-

(a=3 )

(5.64)

(6.199)

(6.246)



- ---- -
- --

(a=5) • (6.247)

F(R)
where, from equation (5.64) ,

Comparing Fig. 6.4 with Fig. 6.1, it is seen that for the flux related kernel

of equation (6.196), the log-L2 transformation of the equation (5.64) ({3= 2) has

a problem, since the transformed kernel F(R) = p r p-. of equation (6.199) has an

infinite derivative at p=O or R= R(O) = log d, so that the Gauss-Legendre

formula applied to the variable R is not expected to work as efficiently as it did

for the potential related kernel of equation (6.197) which renders a transformed

kernel F(R) = r p-. as seen in equation (6.25). This problem can be overcome by

using the log-LI radial variable transformation which was proposed in Chapter 5.

2

--+-----==--------+---...,.........:=----R
I09(#)d 0

logd

+00

R(O)

dF
dR

(5.65)

(6.248)

p(R)=~

Fig. 6.4 Graph
for

of F(R) = Pr ~-a
~ = 2, ex = 3,5
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Theorem 7.1

CHAPTER 7

ERROR ANALYSIS USING COMPLEX FUNCTION THEORY

In this chapter, we will give more precise error estimates for the numerical

integration in the radial variable, using complex function theory"'''. This also

renders a firm theoretical basis for the optimization of the radial variable

transformation.

If f(z) is regular on K == [ -1, 1],

I = ~ f W(z)f(z)dz
2", c

I = ~ f W (z) fez) dz
n 21Z"1 C n

En (f) = 1 f <I> (z) fez) dz
21ri C n

where

W (z)

(7.4)

(7.5)

(7.6)

(7.7)

7.1 Basic Theorem

n A
I-J
j=1 z-a j

(7.8)

(7.9)
The error

En (n = I - In

of the numerical integration formula

(7.1)
and the path C of the complex integrals encircles the integration points a p a

2
,",

an in the positive direction, as shown in Fig.7.1, and there are no singularities of

the function f(z) inside the path C.

<I>n(z) is called the error characteristic function of the numerical integration

formula of equation (7.2).

(7.3)

(7.2)1-1,,= I AJf(a
J

)
J=1

for the integral

I = I_: f( x) dx

over the interval J ==( -1,1) on the real axis is given by the following

theorem ,0-<" considering f(z) as a function of the complex variable z .
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For the Gauss-Legendre formula. which we are using,

f
1 p.(x)

- dx
p.(z) -1 z-x

f 1 l p (x) dx
-1 •

(7.10)

Here, P.(x) is the n-th order Legendre polynomial defined on the interval

J = (-1, 1). and we adopt the zero points of this polynomial as the

integration points a p a2• •••• a. .

7.2 Asymptotic Expressions for the Error Characteristics Function <Pn(z)

In order to derive theoretical error estimates of the numerical integration

using Theorem 7.1. asymtotic expressions for the error characteristics function

<Pn(z) as n~1 and/or I z I ~1 becomes necessary. In the following. we give

known asymptotic expressions for <Pn(z) for the Gauss-Legendre formula ",45," .

(1) Case I z I ~ 1

Fig. 7. 1 The integration path C

-210-

where

2n3 + 3n2 _n_l

(2n+ 3) (2n-1)

and

22.+ 1 (n! )4

(2n) ! (2n+ 1) !

Using Stirling's formula:

n! - v'z;r;;:- n· e- 2•
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(7.11)

(7.12)

(7.13)
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K=[-1, 1],

(2) Case n ~ 1

(i) For al1 z E C except for an arbitrary neighbourhood ofthe real segment

(7.22)

(7.21)

1 1
Yo = 2 (" - ~)

and the minor axis is

The ellipse €" has the foci at z = ±1 and encircles the interval

K=[-1, 1]. In fact, it collapses to the interval K=[-1, 1] when a=1 in

equation (7.20). The major axis of €" is

1 1
,,=-(,,+-)
o 2 "

(7.15)(n~1 )

for n ~ 1 , we obtain

If the function f(z) is regular inside €", equation (7.6) of Theorem 7.1

and the asymptotic (n~1) expression of <pn(z) in equation (7.16) gives 48

(ii) For all z except for an arbitrary neighbourhood of z= 1,

Ko(2kt)
<Pn(z) - 2e- i

"
10 (2kt)

where

z = e i. cosh 2t

(7.16)

(7.17)

(7.18)

which gives

:S eu:: q ) max I f(z) I
I E.,(fl I - ,,2,,+1 zE t

q

where e(€,,) is the length of €".

(7.23)

(7.24)

1
k= n + ­

2 (7.19) Since

and Io(z) and Ko(z) are the modified Bessel function of the first and second

kind, resectively. "'0 have

(7.25)

7.3 Use of the El1iptic Contour as the Integral Path

In the estimation of the numerical integration error En(j) by Theorem 7.1 ,

it is often useful to take the el1ipse €" :

I z + ~I =", (,,>1) (7.20)

I En(fl I < 2",,-20 ~a€. I f(z) I (7.26)

Hence, it becomes important to estimate the maximum value of a (size of

the ellipse €,,), such that there are no singularities of f(z) inside the el1ipse €".

In order to do so, we derive the expression of a=a( x, y) for the ellipse €"

which passes through the point z = x + iy, in the following.

Equation (7.20) is equivalent to

as the path C of the complex contour integral in equation (7.6). (7.27)

which gives
,,2 2

- + ~ = 1
5 5-1

(7.28)
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where

II 1) 2
S==2:(Q+;;) >1 for q > I (7.29)

In the neighbourhood I z-s I ~ 1 of z=s,

fez) = expg(z)

Solving equation (7.28) for s under the constraint s> 1 gives

x
2 +l+ 1+ v'{(x+I)2+l 1 {(x_I)2+l 1

2

I~;~r
Next, solving equation (7.29) under the condition a> 1, s> 1 gives

(7.30)

Let

- expg(s) exp I~g"(S) (Z_S)2)

g"(s) = 1 g"(s) 1 eia
• a= arg g"(s), - ,,<a ~ "

z_s=re
i8

• r=lz-sl, O=arg(z-s)

(7.37)

(7.38)

(7.39)

where

(7.31)
Then,

g(z)-g(s) +~ r 2 e i (a+28)
2 (7.40)

Another technique which proves useful in the theoretical estimation of the

numerical integration error using Theorem 7.1, is the saddle point method 43,,,.

The saddle point s of a complex function j(z) is the point z=s at which

j(z) is regular and

Since

f'(z)= g'(z) expg(z)

which gives

(7.34)

(7.44)

(7.41)

(7.43)

I
g"(s) 2 1

- expg(s)exp -2-r cos(a+20)

fez) = exp g(z)

f (z) = expg(z)

as

exp Ii g";S) r 2 sin(a + 20)1

Now, let us consider the complex contour integral

I = Ie fez) dz (7.42)

along a path C. Let z=s be the saddle point of f(z), where j(z) is expressed

in the neighbourhood of z=s. Move the integration path C, without crossing

any singular points of j(z), so that it passes through the saddle point z=s in

the direction

a "O=--±-
2 2

(± depends on the direction of the path ), so that

fez) - exp Ig(S») expl-~ I z-s I 21

(7.32)

(7.33)

(7.34)

(7.35)

res) '" 0j'(s) =o.

y == VB=~ + v'(x-I)2+l > I
2

Note that aryl is a strictly increasing function of

y> 1 and a( 1 ) = 1.

7.4 The Saddle Point Method

As long as j(z)"* 0, we can express j(z) as

fez) = exp g(z)

g'(s)=O ~ j'(s)=O

the saddle points of g(z) and j(z) coincide.
(7.36)
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and

(7.45)

in the neighbourhood I z-s I < 0 of z=s.

Then,

where r=Vp 2+d 2 for planar elements. a and 0 are given in Table 7.1,

according to Table 3.3. p} = p} (8) is the upper limit of the radial integral

in equation (5.42).

1 = Ie f (z) dz

a 0

u* 1 1

q* 3 1

au* 3 1
axs 2

aq* 3 1
axs 5 1

2

Table 7.1 Nature of nearly singular kernels of the radial component

integrals in 3-D potential problems

(7.46)

(7.47)

f
m ! I g"(s) I 2)

_m exp - --2-- r dr

f
8 ! I g"(s) I 2) dexp ----r r

-8 2

i(-a±al ;-;;::--
-2-y~

e ~f(s)

where

g " ( s) = [~ !log! (z) )1 z = 8

The contribution to the integral I from I z-s I < 0 is dominant, provided

The application of the radial variable transformation to equation (7.48)
I g"(sJ I is sufficiently large. Note that equation (7.46) gives an evaluation

of the complex integral I by the information of fez) at its saddle point z= s.

If there are several saddle points of f(z) , the sum of the last expression in

equation (7.46) is taken for these saddle points.

gives

1= fR(P/ ~ ~dR
R(O) r a dR

(7.49)

7.5 Integration in the Transformed Radial Variable: R

Further, transforming R to x so that the interval R : [R( 0) , R( p})] is

mapped onto x: [-1 , 1], we obtain

(7.48)

Using Theorem 7.1 and the techniques mentioned above, we will derive

theoretical error estimates for numerical integration using different radial

variable transformations.

The essence of the radial component of the boundary element integrals

for three dimensional potential problems can be expressed as

f
P' /

1= } - dp
o ra

where

and

or

1 = f 1 ~ ~ ~ dx = f I !(x) dx
-1 ra dR dx -1

/ ~ dR
f(x) a ra dR dx

2R - { 11 (P j) + 11 (0»)

1I(Pj)-1I(O)

(7.50)

(7.51)

(7.52)
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numerical integration of f(x) in equation (7.50) using the Gauss-Legendre
(7.57)

is equivalent to the source distance relative to the element size. This

relative source distance : D is the parameter which essentially determines

the degree of near singularity.

Hence. we obtain

1 =fPj ~ dp =f 1 !(x)dx
o r a _I

(7.54)

(7.53)
R= {R(p)-R(O)}x +R(Pj)+R(O)

2

dR R (p) ) - R ( 0 )

dx 2

Now, Theorem 7.1 and the related techniques can be applied to the

so that

rule. where

7.6 Error Analysis for the Identity Transformation : R(p) = p
(

p) )0+1-. (z+OJ
!(z) ="2 -{Z---(--I-+-2-D-i-j-}.":"'-::-2-{..:..Z---(--1--2D-i)-}-.-,2

(7.58)

or

First, theoretical error estimates will be derived for the basic case of

the identity transformation : R(p) = p. which is equivalent to using just

polar coordinates in the projected plane S (cf. Chapter 5) without any

radial variable transformation. This will clarify the nature of the (radial)

near singularity and the difficulty which results from applying the Gauss­

Legendre formula directly to the radial variable p.

Since

(7.7)

(7.60)

(7.59)

(7.61)

(Pj )0+1-.
A= ­

Z

where

The singularities of fez) are
2d

Zl=-I+i~= -1+2Di

- 2d
ZI=-I-i~= -1-2Di

Zl and i 1 are also branching points when a is odd.

The estimate for numerical integration error is obtained by

E (f) = ..2...- f <I> (z) !(z)dz
n 2rri C n

(7.55)

(7.56)
p. (x +1)

R(p) =p = -)-2-

we have

and

~=~
dx 2

(7.57)
where the path C for the complex contour integral is taken as an ellipse

Ca:
so that

where

1 1

PJ (x + 1 + 2 D i)2 (x + 1 _ 2 D i)2r=2
(7.58)

(7.20)

which does not contain the singular points ZI ' it inside or on the ellipse. as

shown in Fig.7.2.

(7.59)
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Using the asymptotic expression

<I>n(z) - 2" (z+R=1)-2n-l
(7.16)

we obtain

(7.24)

(1) Estimation of the size (J of the ellipse Ca

First, we will determine the size (J of the ellipse Ca which passes

through the point

(7.62)

(7.63)

O<t<l

= x+yi

Z,= -1+2Dti

It is clear that this ellipse C a does not contain ZI or Zl inside or on itself.

From equations (7.31) and (7.32), we obtain

r (D,t) =.)1 + (Dt)2 +Dt

o

and,

a(D,t)=r+~

(7.64)

Fig. 7. 2 Singularities of feZ) and integration
path £a for the identity radial
variable transformation: R(P)=P

so that

aa t{l+2Dt.)I+(Dt)2 + 2(Dd} Dt2
-= +t+---
aD -J1+(Dt)2 -J2{Dtyfl+(Dt)2 + (Dt)2) -J1+(Dt)2

> (O<t<l) (7.65)

Hence, (J(D, t) is a strictly increasing function of both D and t for

0<t<1 , with the following properties:

a(D=O) = 1 (7.66)

a(O <D<; I) - 1 +V2Dt (7.67)

(7.68)
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" (D~1)-4Vt (7.69)

The graph of a( D, t) vs D for the case t=0.6 is shown in Fig.7.3.

Hence, for I t.z I = 2D I 1- t I ~ 1, which is the case for nearly singular

(2) Estimation of max I fez) I
zE c."

LO
T""

e:i

e:i

LO
o
e:i

T""
o
e:i

(7.70)

(7.71)

(7.72)

(7.73)

(7.74)

I f(z) I is nearly maximum at Z=Zt

I f(;) 1= I f(z) I

--
f(;)=AH1 -« (;+06 (;-Zl) 2 (;-;1) 2 = f(ij

From equation (7.58) ,

1 6z I =2V (I-I)

Hence, we need only consider Im(z)~O on the ellipse 1::". Since j(z) has a

singularity of order (z - Zl )-«12 at Zl' it is obvious that I j(z) I takes the

so that

maximum value on 1::" when z is nearest to ZI •

Let Z=ZI +t.z. Then, for I t.z I ~ 1 ,

o-~ --
If(z)I-AH1 -«26-«V 21621 2

and

J-~ -~
=2- l p

j

H1 -«V 21621 2

Then, for Zt= -1+2Dt i , 0<t<1, we have

62= z, -zl =-2V(l-l)i

integrals. where 0 < D == d IPj ~ 1

for all zE 1::" , and

z~r« 1 f(z) I - 1 f(z,) I

3« «
6-- --

- 2-«-1 p/+ I -« V 2 11-t 1 2 (7.75)
b ~....L---I.-LO.1..-.l--L..---JL-.....L-;:::",Ao-.--I._..L........L---JL-.....JLOL-....L.--I_..L........L---l 0

e:i
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(3) Error estimate En{f)

In summary, we have obtained an error estimate:

From equations (7.24) and (7.75), we obtain the error estimate

(7.76)

3a
J--

IE(f)I<D 2 a -2n_ a -2n where a=1.04-1.42 for D:10- 3 -10- 1
n N

for the numerical integration

(7.80)

values of relative source distance D == d/Pj' as shown in Table 7.2 (cf. Fig.

7.3).

(7.45)I
p J

1= } ~ dp
o r a

in the radial variable, (which characterizes the 3-D potential problem,) using

the identity radial variable transformation R(p) = p.

The above theoretical estimate corresponds well with numerical

experiment results, as will be demonstrated in Chapter 10. Equation (7.80)

explains why the use of polar coordinates in the projected plane S, alone,

does not give efficient or accurate results for nearly singular integrals, thus

indicating the necessity of an efficient radial variable transformation R(p) .

(7.77)

Table 7.2 Values of a(D) for t=0.6, for R(p)=p

Since we are interested in cases «=1,3,5 (cL Table 7.1) ,

where 0 < t < 1 .

0-0 2 <10

implies t < 0.6 .

For the case t=0.6, equation (7.64) gives values of (j(D) for different

(5.64) ,

D a

10- 4 1.01

10-3 1.04

3XlO-3 1.06

10-2 1.12

3X10-2 1.21

10- 1 1.42

3XlO- 1 1.85

1 3.22

For nearly singular integrals whose relative source distance D is in the range

7.7 Error Analysis for the log-L2 Transformation

In this section, theoretical error estimates will be derived for the

numerical integration in the radial variable using the Gauss-Legendre rule

after applying the log-L2 transformation

R(P)= logv'/+d 2

The analysis will clarify quantitatively, the reason why the log-L2

transformation works so efficiently for the integration of potential kernels,

while it fails to do so for flux kernels and kernels including interpolation

functions,

D: 10-3-10- 1 ,

a in equation (7.76) takes the value

p : 1.04 -1.42

(7.78)

(7.79)

Equation (5,64) gives

R(O)= lnd (7.81)

(7.82)
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where

(7.83) (l) Case : 8 = odd

and

for planar elements, where

r=r'=~=eR

and

~

p(R) = (e2R _d 2 )2

(7.84)

(7.85)

(7.86)

When 8 is a (positive) odd number. as in the integration of u* and q*

for the potential, where 8= 1 (cL Table 7.1). the function f(z) of equation

(7.92) is regular in the whole complex plane except for z = 00. since (8 -1)/2

is a non-negative integer.

Hence. we can take the integration path as C: {z I I z I = R i!> 1} in

E (f) = ~ f <t> (z) f(z) dz (7.6)
n 2rri C n

(7.96)

(7.95)

of Theorem 7.1 • and apply the asymptotic expression of <P n(z) for I z I i!> 1

in equation (7.11). and expand f(z) in Taylor series as

for z* 00 • so that we obtain the error estimate

En (f ) - en ( a 2n + b: 2 a 2n + 2 )

(7.87)

(7.88)

Hence,

Equations (7.52) and (7.53) for the linear trasformation which maps

R:[R(O),R(Pj)] onto x:[-l,l] gives
2R - In(rjd)

In(r /d)
J

for any integration path C that encircles z=O in the positive direction once.

and

(7.89)

and

Here, we have used the fact that

..!...- f zm dz = [I ; m=-I
21ri c O;m~-l

(7.97)

The at in equation (7.95) can be obtained as follows. In equation (7.92),

m!
mCk = (m-h)! h!

is the coefficient of binomial expansion. Hence.

~= In (r/dJ

dx 2

Thus, the integral of equation (7.87) can be expressed as

I =I 1 f(x)dx
-1

where

(7.90)

(7.91)

(7.92)

where

6-1
6-1

(e zln._ a-I) 2 = L
k=O

(6;1 -k) (In.). -1 k
6_1Ck e (-a )

2

(7.98)

(7.99)

8+1-a

bE ~(rd) 2
2 J

> 0 (7.93)

r j Jp/+d2

aE-=--->l
d d

(7.94)
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n ~

b I 8_I Ck (_a-I)k I
k=0"""2 t=o

8-1

since

/
e%= I

t=o e!

(7.109)

(7.108)

(7.107)

which gives

(d8,k)2 :5: {max (3,0) In (r/d) }2

8n - 32 n

Hence, for n ~ 1 ,

3 2-a I 0-4 o+l-a 0
--;:,;-;:,;- -;:,;--;:,;-

2 2 2 2 2 2

for «=1,3,5 (for 3-D potential problems), we have

Io+l-a -kl:5: max(3,o)
2 - 2 '

and

(7.100)

(7.101)

[(~-k )(lna)zf
e!

(8-;+I_ k )<lnO)% -I k

8-1 Ck e (-a )

2

I
k=O

8-1

f(z) = b

8-1

Thus, we have

[( 0_+1-0 -k) Ina)t
a

t
= b I 8-1 C

k
(_a-I)k 2 __.:...-_=-

k=O ""2 e!

so that in equation (7.96),

(7.102) in equation (7,96), so that

E,,(f) - c" a2n {1+0(1In)}

(7.110)

which matches with equation (6.42), obtained by elementary error analysis

in Chapter 6.

8-1

""2 (d )2n
a = b "C _8,k_

2n to 8.k (2n)! '

8-1

-2 2n 3+3n2_n_l n (d )2n+2
b

n
a

2n
+

2
=b IC 8,k

(2n+3)(2n-1) k=O 8,1< (2n+2)!

8-1

_ --;;-(d
8

/ (d
8k

) 20

n.,1 b .to~ C8,k (2'n)!

where

C
8

•k '" ~ C
k

(_a-I)k

2

(
O+I-a )

d8,k'" -2--k Ina

Since

2-a 0+1 -a o+l-a
-:5:---k;:';--

2 - 2 2

for

(7.103)

(7.104)

(7.105)

8+~-' [ )2n (n!)4
= (r.d) In(r.ld) 21,,(r.ld)

J J J (2n)! (2n+1)!

l;;r 8+1-. [ e In (r Id»)2o
-v'::'" (r d) 2 In(r Id) __J_

n.,1 4 n J J 4n

8-1

n k(o-a+1 )20I 8 _ICk(-dlr j ) -2-- k

k=O ""2

using Stirling's formula .

For 0=1, equation (7,111) gives

[

(a-2) e In (r .ld) )2n
En(fl - 8n J ,

(7.111)

(7.112)

0-1
-0;; ko;;O

2 (7.106)
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For the nearly singular case, where the source distance d is very small

compared to the element size, i.e. 0< D= d/P
j

4.1 ,

In summary, for 0: odd we obtain the following theoretical error

estimates when using the log-L2 radial variable transformation:

r. ...//+d2
...!. = _J 0-1
d d

so that equation (7.111) for 0: odd gives
3+1-a

(-lnO) (21nO)2. __(~n...:-!)4__
(2n)!(2n+l)!

;-1

(7.113)

(7.114)

For 0: odd

0'+1-« 2n
-2-! max (3,0) e InD I< (-lnO) 0

(V Bn

For 0=:1

2-a! 3 I 012nI En<f) I < (-lnO) 0 2 _e_n_
N Bn

Roughly s::-pe_a_k_in_g=--,__~~ _

I

0'+1-« 2n

I E.(fl I ~ 0-2-(':0) - n- 2n

(n~l, O~l)
(7.118)

(7.119)

(7.120)

;-1
3+1-a

~~ p,+I-a 0-2-(_lnO)(~)2n
4 n J 4n

Further, using equation (7.108) for l~a~5 ,

and since
;-1

;-1

(7.115)

(7.116)

for 0: odd.

These estimates correspond well with numerical results in Chapter 10,

and explain why the log-L2 radial variable transformation gives efficient

results for the integration of potential kernels u* and q* (which do not

include any interpolation functions).

(2) Case: 0 =: even

When 0 is a (positive) even number, as in the integration of iJu*/iJxs

and iJq*/iJxs for the flux, where 0=:2 (cf. Table 7.1), the function fez) of

equation (7.84) has a branch point (singularity)

we obtain
8+1-« 8-1

I E.(fl I < ~~ p/+l-a 0-2-0_0)2 (-lnO) ! max(3~~)e InOr
(7.117)

2"m
z = -1 + i --- , (m: integer)

m In (r. /d)
J

(7.121)
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as shown in Fig.7.4.

In this case, we can modify the condition of Theorem 7.1 to allow a

singularity of fez) at the end point z=: -1 of the interval K=:[-I, 1] of

integration 45,47. The path C of the contour integral is taken as
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as shown in Fig.7.4. ca is an ellipse

Iz+~ 1=0 0>1

(7.122)

(7.20)

(7.123)

---------~-x

---------~-x

1­
-----A7-r-J

branch lines

-----v:::....---x
Z-2

which has z= ±1 as its foci, and the branch points Zl ,Z_I are outside the

ellipse. f+ and f_ are the real segment (-xo' -1-c:) in the positive and

negative directions, respectively.
1 1

Xo= 2(0+;)

is the major axis of Ca. C£ is a circle of radius 0<£«:1, with its centre at

Z= -1.

In the following, we will estimate the error En(f) according to Theorem

7.1, considering the contribution of each component of the path C.

(i) Contribution from the branch line f ±! f

In the equation

- - - - - - - - - --x
Z-3

Fig. 7. 4 Branching singularities Zm of
j(z) and integration path for log-L2

transformation, 0 = even

-232-

E" (J ) = 1 f <I> (z) !( z) dz
2rri C n

of Theorem 7.1, the contribution from the branch lines f+ and f_ is

1 !1- 1
-, I-X }Ee e = ---:- !(z ) <I> (z ) dz + 0 !(z ) <I> (z ) dz

+, - 21ft -x
o

+ n + -1-( - n -

=~ 1- 1

-, {!(z )<I>(z+)-!(z)<I> (z) }dz
210 -%0 + n - n -

where Z+Ef+ and z_E f_ .

Applying the asymptotic expression
Ko (Zht)

<I>,,(z+)-Ze±i. • (n~1)
1
0

(Zht)

where
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(7.6)

(7.124)

(7.17)

(7.125)



and .-2

we obtain

K
O

(2kr)

<l>n(z+) =<l>n(z_) = -2 1
0

(
2k

r)

and equation (7.124) can be written as

1 J-1-,
E f + f-= ~ {f(z+)-!(z )}<I> (zt)dz

• 1l'"1 -:to - n

Next, equations (7.92-94) can be rewritten as

a-I (2-. )- -Inaz
f( z ) = ; ( e (z + I) In a -1 ) 2 e 2

(7.19)

(7.126)

(7.127)

(7.128)

- a 2 (I + O(f) }

Thus, equation (7.128) can be expressed as
(a-I).

f(Zt)-; e±i-2- r a-l. (o<r~1)

a-3 a+1

; '" 2 2 (Ina) 2 d HI - a

Hence, in equation (7.127),

(a -I) • (a - I) •

f(z+)-f(z_)-; (e i - 2-_e-;-2-jra- 1 • (O<r~1)

which gives

(7.137)

(7.138)

(7.139)

(7.140)

(7.142)

(7.141)

(7.143)

H2 a-I HI

;= ;(-1) 2 2 2 Ona) 2 d HI-.

Now, equation (7.127) can be expressed as

£
E - ~ J 2 - a-I ( 2 Ko(

2kr) j 4 d
f+.t- 2"i {o B r - 10(2kr) (- rJ r

- J{O a Ko(2kr) d

~ r 10(2kr) r
2

(7.129)

(7.130)

(7.131)

(7.132)

u-.2-.

r
a= ~ > 1

d

If we choose xo>1 such that

so that

we obtain

dz - 4e±i'rdr = -4rdr

Hence, in equation (7.128) ,

e(z+Olna -1 = ee±i1f 2{2 Ina _ 1

so that

(7.133)

(7.134)

(7.135)

where
a H3

(_1)2 2 2 ~
~ '" --,,--(Ina) 2 d a+ 1

-.

{ .. ~cosh-Ix - g
o 2 0 2

and we have assumed
1

i.e. k=n+-~1
2

i.e. 0 < ro ~ 1

(7.144)

(7.145)

(7.146)

(7.136) (7.147)

and
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i. e.

For if we take £>0 such that

2k{;;; (2n+1)~ ~ 1
2 (7.148)

Note also that if we let t == 2 k I; ,

1
m ,Ko(2k{) 1 1m K (t)

{U d{ __ t J ~dt -O(k- J - I )
o 'O(2k{) = (2k)HI 0 'O(t)

since

(7.158)

2
.~-­

(2n+ 1)2

equation (7.189) gives
Ko(2k {)

'o(2k {) - -log(k {) - r + O(k {)2

Hence, if we take the limit as £ - 0 ,

.£ K (2k{) ~

I 2 J 0 2
o { 'o(2k{) d{ - 0(. log <l ..... 0

so that equation (7.143) gives

E _ - I{O J Ko(2k{) d
l +, l - C {, (2k {) {

o 0

If we further choose Xo so that it satisfies

2k{o= (2n+1){o - (2n+1)~ ~ 1

we obtain

Since

we have

-236-

(7.149)

(7.150)

(7.151)

(7.152)

(7.153)

(7.154)

(7.155)

(7.156)

(7.157)

is a constant which is independent of k.

From equations (7.157) and (7.158), we have

I
{o J Ko(2k{) 1m J Ko(2k{) 1m J Ko(2k{)

o { lo(2k{) d{ = 0 { 'o(2k{) d{ - {o { 'o(2k{) d{

Hence, equation (7.152) gives
J+l

El+,l_ - 01 (Ina)2 d HI - u n- J -
I )

HI

D-:CI 01 (_lnD)2 DHI
-

a n- J- 1
)

-237-

(7.159)

(7.160)



(m Contribution from the ellipse Ea

For the contribution Ec:. to the error En(f) , from the ellipse Ea of

equation (7.20), we have

M V2;"i
dD (D~l) - D(-In D)312 D~+-;' +00 (7.170)

Note also that (1(D,I) is also a strictly increasing function of 0< 1 <1, so

I Et.. I < 21f,,-2n z~r. I fez) I

from equation (7.24).

(7.161)
and

Hence, a(D) is a strictly increasing function of D>O, where

,,(D~I) -I +J 21ft
-In D

" (D ~ I) - 81ft D2 ,

(7.168)

(7.169)

respectively.

The table and graph of (1(D,I) for 1=1.0 are given in Table 7.3 and Fig. 7.5,

CD Estimation of the size a of the ellipse

According to equation (7.92), I fez) I is boumded as long as z is finite

and o~ 1. Hence, the ellipse Ea can be taken as close as possible to the

branch points:

that

a(D,t) < ,,(D,l)
(7.171)

so long as the points Z±t are just outside the ellipse Ea. Thus, we will

estimate the size a of the ellipse which has its foci at z= ±1 and passes

through

where

and

From equations (7.29,30), we obtain

,,= q +~ + J2q(q+-Ji"+7)

(7.172)

D (1

10- 4 2.37

10-3 2.74

3X10-3 3.02

10-2 3.50

3X10-2 4.24

10- 1 5.93

3XlO- 1 10.4

1 36.3

Table 7.3 Values of a(D) for 1= 1.0, for the log-L2 transformation

(0: even)

Since 'v'€>0, 3 0 >0;

I a(D,t=J)-a(D,t=l-o) 1< £

(7.162)

(7.163)

(7.164)

(7.165)

(7.166)

(0 < t< I)

21f
z±I=-I±i~

21ft
z 5-1+;-

t In a

1ft 1ft 21ft

q %iii ~ = --r- = In(1+D- 2)

In(1)

and D=dlpj is the relative souce distance.

Equations (7.164,165) give

d" q l+q+q2+(I+q)~

~ = 1 + -v'i+7 + -Jl+7 V2q(q+v'l+qr) > 0

~ _ 41ft

dD - D(D2+1){ln(I+D-2)j2 (7.167)
we may conclude that, for the nearly singular case, a in equation (7.161)

takes the value

a: 2.74 -5.93 for D: 10-3_10- 1
(7.173)
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® Estimation of max I fez) I
zE cG

(7.174)

(7.175)

(7.176)

(7.179)

(7.128)

(7.178)

(7.177)

(7.180)

(~Ina), ~,
~e 2 o=a 2 0

2-a U-o: a
- = In a r 2 d 2 _ 1 8--
b 2 j D .. I 2" P j 8+1-a (-lnD) D 2 >0

I y I ~ y '" ~(G- ~)
o 2 G

~ ('+Il~+~'
%~r.lf(z)1 ~;3 2 a 0 2 2 0

8-1

3 2
D .. l -2- p/+ I

-. (-lnD) Diod(a,n

Since, if c is real,

I ecz I = e I c I %~ e I c I '0

we have

where z=x+iy, and xo and Yo are the major and minor axes of the ellipse

fa , respectively.

and

We will estimate max I fez) I using
z E t G

8-1 (2-a 1na)%
f(z) = ; [e(%+I)lna_ 1 ) 2 e 2

Hence, for 8;?; 1, we have

Similarly, we obtain

I e(%+I)lna_1 I ~ 2 e('o+lllna +1

= 2a'o+1 + 1

since a>l.

('II

e:i

LO,....
e:i

,....
e:i

LO
o
e:i

oo
N

o
M

o
cO

,....
o
e:i

b~-..L_--L.---'-_-l.-_.....&....-_...a::::::= __L.....----l

where
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Summing up for the contribution from the ellipse c(J, equations (7.161)

and (7.180) give

(I Z I ~ I)

ind(<<,o) == 0+1-«- (0-1+ 12-« I )xO

2

.-1
lEt. I < n: 3 2 P

j
HI-'(_lnD) Di.d(a••) ,,-2••

where

,,:2.74-5.93 (or D:IO-3 -10- 1

Comparing equation (7.182) with (7.160), we have

lEt. I ~ I Ee+.e_ I

for n~l.

(iii) Contribution from the small circle Co

(7.181)

(7.182)

(7.173)

(7.183)

where y = 0.577 is the Euler's constant, we obtain

Ko (Z) Z 2

I;;<Zl- -log 2' - y + O(Z)

Thus. if we take O<E<l: 1 such that I 2~ I <l: 1 for Z E C" we obtain

<l>n(z) - 2Iogk~+ 2y+O(kd

Since I?; I <l: 1 • we have

ill = z+l= 1 -cosh2~ - _2~2

I ill I ~ 1 •

and

dz =-4~d~

Hence. for n ~ 1 and 12k?; I <l: 1. we obtain

Ec =~ I <I> (z) fez) dz
r 211"1 Cr. n

(7.189)

(7.190)

(7.191)

(7.192)

(7.193)

Finally. we will estimate the contribution Ec, from the small circle Co.

From equations (7.92-94), it can be proved that for z= -1 +LJ.z such

that I LJ.z I <l: 1,

HI

-0[' 2 IOg (kd):: 0

Hence. the contribution from C., (0 ~O) is zero.

(7.194)

.-1 .+1

fez) - : ill 2 + 0 (ill 2 )

where
0+1 0-«+1

- == ~ (lna)2d-2 -
A 2

As the asymptotic expression for <I>n(Z) , we adopt
Ko (2k~)

<l>n(z) - 2e- in (n~l)
10 (2k~)

where

1
k=n+ ­

2

Noting that 49

Ko(Z) - -Jo(Z) ( y + log f)+ f + 0 (Z4) • (I Z I ~ 1 )

Z2
10(Z) - 1+ 4 +0(Z4) , (I Z I ~ I) •

-242-

(7.184)

(7.185)

(7.17)

(7.186)

(7.187)

(7.188)

(iv) Summary

In summary, the contribution Ee+.l _ from the branch line e+.e_ is

dominant in En(f). Hence, from equation (7.160), the theoretical error

estimate for the radial numerical integration using the log-Lz transformation

with the Gauss-Legendre rule for the case: o=even • is given by

(7.195)
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interpolation functions.

Equation (5.85) gives

7.8 Error Analysis for the log-LJ Transformation

integration of flux kernels as well as potential kernels and kernels including

(5.85)R(P)= log(p+d)

R(O) = In d (7.196)

R(P
J

) = In(Pj+d)
(7.197)

and

p(R) = e R-d (7.198)
dp R

(7.199)- =e
dR

In this section, theoretical error estimates will be derived for the

numerical integration in the radial variable using the Gauss-Legendre rule

after applying the log-L1 transformation:

The analysis will clarify quantitatively, the reason why the log-L1

transformation is a robust transformation which works efficiently for the

where n is the number of integration points in the radial variable.

This theoretical estimate corresponds well with numerical results in

Chapter 10, and explains why the log-L2 radial variable transformation is

inefficient and gives inaccurate results for the integration of flux kernels

ou*loxs and oq*loxs , which include terms corresponding to 0=2.

Equation (7.195) also explains why the log-L2 transformation tends to

be inefficient for the integration of kernels including interpolation functions

such as ¢ ij of equation (9.17). Since ¢ ij ( TIi' '12) are polynomials of '11 and

'12 ' which in turn include first order terms of p as in equation (5.40), ¢ij

include terms of order p, p2, p3, p4, which correspond to 0= 2, 3, 4, 5 in the

radial integral of equation (7.48). According to equation (7.190), this means

that the numerical integration error drops only at the rate of O(n -3) and

O(n - 5) for the components corresponding to 0= 2 and 4, respectively. This

matches with numerical experiment results for Is ¢ij u* dB and Is ¢ij q* dB

in Chapter 10.

Hence, the radial component integral of equation (7.48) can be expressed as

I
p 6
J P

1= - dp
o r"

= r(p/ (e R
_d)6 e R

dR

R(O) J(e R _d)2+i"

Then, equations (7.52,53,54) give

Pj
2 R - In ( 1 + d )- 2 In d

(7.200)

(7.201)

Pj Pj
X In ( 1 + d )+ In ( 1 + d )+ 2 In d

R =----------
(7.202)
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and

(7.203)

Hence, the integral of equation (7.200) can be expressed as

1 = L>(XldX
where

a' =0 1+ r:.J. > 1
d

fez) has singularities at

(7.204)

(7.205)

(7.206)

(7.207)

(7.208)

- - - - - - - - - - - -x Z;

-----<-----x Zl

branch lines for a= odd

~ +------------x zo

-1 _
- - - - - - - - - - - -x Z 0

a

.+1
-Ina'

w=oe 2 =l±i (7.209)

we have

(7.211)

The singularities 2 = 2 ~ • (m = 0, ±1, ±2,' .) are also branch points when a

is odd, as shown in Fig.7.6

Using the relative source distance:

------------x Z~

------------x Z=J

Fig. 7.6 Singularities z~ and branch
lines ( for a = odd) of f(z) for
the log-Ll transformation

(7.210)(m: integer l

which are equivalent to
± In2 (4m±1I2l1r

2=2 =0 -1 +- +i----
m Ina' Ina'

so that

(7.212)
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which gives we obtain

Hence, the distance between the nearest singularities z = zt to the end

point z= -1 is of order

OCI~D)
This is the key to understanding why the log-L1 transformation works far

efficiently compared to the identity transformation, where equation (7.61)

shows that the distance between the nearest singularities z =Zl' ZI to z=-1

is of order

g(z) '" log F(z)
TC

In 2 ± i-
t 2

z +1 - ---
o -lnD

(7.213)

- InA' - (2n+l)logz+ olog(w-I) + logw

a a
-2"log(w-l+il-2"log(w-l-i) , (Izl ~1)

and

dg 2n+1 Ina'! 0 a( 1-; 1+;))- - --- + - o+l-a+---- --+--
dz z 2 w-l 2 w-I+i w-l-i

( 1 z I J> I)

(i) Case Re(z) ~ 1

(7.217)

(7.218)

O(D) ~ 0(_1_)
-lnD

(1) Error analysis using the saddle point method

In this case,

~(Re(z)+I}
1 wi = e 2 ~ I (7.219)

where

In the equation

E (f) = ~ f <I> (z) fez) dz
n 21l'i C n

of Theorem 7.1, we can apply the asymptotic expression

(7.6)

a'''' 1+':..1. > 1
d

If I Im(Z) I - 1 , we have

Izl-Re(z)~1

(7.208)

(7.220)

is
2(2n+1)

(HI-a)lna' (7.225)

Thus, the saddle point of F(z) of equation (7.215), which is given by

¥.-I z=. =0 (7.224)

(7.221)

(7.223)

(7.222)

(Re(z) ~ I)

I I
T;;T ~ -I-z-I ~ I

Hence, equation (7.218) gives

g'(z) '" ~ __ 2n+1 + Ina' (o+l-a)
dz z 2

1 w 1 ~ I z 1 J> 1

which gives

or

(7.214)

(7.215)

(7.206)

(7.216)

(I z I ~ I)

A's c b'= ~d8+1-ac
n 2 "

z+1
-Ina'

w'" e 2

c
<I> (z) __n_

n 22n+ I

of equation (7.11) for z E C; I z I ~1.

If we define

F(z) == <I>,,(z) fez)

A' (w_I)J w

z2n+l {w_(l_i)}a/2 {w-(I +i)}a/2

from equations (7.205) and (7.214), where
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The condi tion Re(s)~ 1 implies

8+1-a>O,
(7.226)

since In a' >0. From Table 7.1, for the basic integral kernels in three

dimensional potential problems, a,o and 0+ I-a take the values shown in

Table 7.4.

Table 7.4 Values for 3-D potential problem

kernels a 0 o+l-a

u* 1 1 1

q* 3 1
-1

au* 1-- 3axs 2 0

3 1 -1
~ 1 -3axs 5

2 -2

------------x

------------x

c
-----------:.:--~x--l_---~-;

o-----------.=-:-:xx---r---...:-...--"'"'r__~

s ~ 1

------------x

------------x

Fig. 7.7 Integration path C for the saddle point
method for the log-L] transformation

(7.227)

(7.228)

(7.229)

(Re(z) ~ 1 )

Hence, only the case a=o=1 for the u* kernel gives a saddle point of

equation (7.225) satisfying Re(s)~1 for n~l.

Equation (7.223) gives
2n+l

g"(zl-T'

so that at the saddle point z=s,

2n+l {(8+I-a)lna'j2
g"(sl - T = 4(2n+Il

Equations (7.38) and (7.45) give

a = argg"(s) = 0

i(+~)

dz = e 2 dr = i dr (7.230)

Applying the saddle point method along the contour C shown in Fig.7.7,
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E (f 1 = ~ f F(zldz
n 21fl C

Iii) Case Re(z) ~ -1

K.~1 2' 2"
- -e ---F(sl

2"i I g"(sl I

_j i A' s-2n-l wJ+I-a
2,,(2n+1)

= __A_'__ s-2n w3+1-a

v'2" (2n+ 1)

for 0-«+1>0 and n~l.

Since,
2(2n+1)

(8+1-a1lna'

we have

~Ina'
w(sl = e 2

~
W&+l-a = e 2n + 1 al 2

(7.231)

(7.225)

(7.232)

(7.233)

In this case,

Ina' {Re(z)+1}

I wi =e 2 <U

which implies

dg 2n+1 Ina'[ a( 1-i 1+i)j- - --+- 8-a+1-8- - --+--
dz z 2 2 -1+i -1-i

2n+1 Ina'
=---+-

z 2

Hence,

dg I- -0
dz %=8-

implies
2(2n+1)

s---->o
Ina'

which contradicts with Re(s)~ -1.

(7.236)

(7.237)

(7.224)

(7.238)

From equations (7.216) and (7.15), we have

,,(lna')d J + I - a
A' = ----=----:-­

22n +1
(7.234)

Hence, there are no saddle points of F(z) = <pn(z) f(z) in the region Re(z)~ -1 .

(7.20)

Hence, equation (7.231) renders the following error estimate :

For the log-L1 transformation, with 0-«+1>0, n~l,

e~ [(8+1-a1e In(l+P.ld1j2n
En(f1-:I n+1I211n(l+p/d1}(dV1+pjld1Hl-a 4(2n+11)

_ 6+~-a (InD )2n
Dl>1 (-lnD) D ---;;-

(7.235)

where D= dIp) is the relative source distance.

This estimate corresponds well with numerical results for the integration of

u* , (<<=0=1) in Chapter 10.

(2) Error analysis using the elliptic contour: Co

In order to obtain error estimates for general natural numbers «, 0,

using equation (7.6) of Theorem 7.1, we turn to the asymptotic expression

<I>n(zl - 2" (z +~ 1-2n-1 (7.16)

which is valid for n~ 1 and z E C except for an arbitrary neighbourhood of

K=[-l, 1]. The integration path C is taken as the ellipse Co :

I z +~ I = a (a > 11

which does not contain any singularities of f(z) of equation (7.205), inside.

More specifically, we will choose the ellipse Co which passes through the

point

In 2 "t
z .. -1+- +i--
tina' 21na'

(0< t < 1) (7.239)
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which is located just below the singular point:

-253-



+ In 2 . l'[

Z '" -1+- +1--
o Ina' 2lna'

as shown in Fig.7.8. Then, we can use the equation

IE(n I;;;; 21tG- 2n max 1 fez) I
n zE £.

to estimate the error of numerical integration.

(i) Estimation of max I f(z) I
z ECa

Since
; +1
-Ina'

2

equation (7.205) gives

f(;)= fez)

which implies

I f(;) I = I fez) I

Hence, we need only consider the region Im(z)~0 .

It is also clear from equation (7.205) that I f <z; )I =+ 00 , where

the singular point given by equation (7.210). Thus, we obtain

z~a{. I fez) I - 1fez,) I for 11-1 1~ 1

If we define

+ (l-t);r.
6z E Zt - Z 0 = - 2 In a' 1

we have

rr
In2 +-i

Z,+1 =Z+O+l+& = __2_+&
2lna'

so that

2:[+1 Ina'
-Ina' -6.z

w(z,)=e 2 =(l+i)e 2

- 254-

(7.240)

(7.24)

(7.241)

(7.242)

(7.243)

(7.244)

(7.245)

(7.246)

(7.247)

-----------)1
Zii

Fig. 7.8 Singularities of fez) and integration
path t(J for the log-LI transformation
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where

equations (7.31) and (7.32) give

)2 }2 j2c c 2 c 2 c 2a= -p+ -p -pln2+1 + -p -pln2 + cp-p -pln2+1
2 4 2 4

Hence, for

1 6z I ~ 2.-
In a'

we have

[
In a' ( In a' )2)

w(z,) = (I+i) 1+ 2 6z+0 26z

(7.248)

(7.249)

In 2
--I
In a'

"I
Y = 2ln a' (7.257)

(7.258)

so that equation (7.205) gives

f(z ) = B' [6z -~ + Ina' {I+ (1-i)8) 6z1-~
, 2

where

(7.250)

) d
(7.259)p==---- D==- >0

In (I +D- 1) PJ

and

c == J In 2 )2 + ( ~ )2 0</<1 (7.260)
2

Thus, for

1 f(z,) 1 - 1 B' I 1 6 z I 2

Finally, equation (7.244), (7.248) and (7.252) give the following:
(7.264)

(7.263)

(7.262)

(7.261)D>O

a(D) - ) +~JI- D-+O
-lnD

da
->0 for
dD

It can be shown that oW) is a strictly increasing function of D>O , i.e.

and

For D~1,

For D~1 ,

a(D) - 2 cD

The graph of oW, t) vs D for the case t=0.6 is shown in Fig.7.9.

(7.251)

(7.252)

(7.253)

(7.254)

0<t<1,

1 a
1-~

1 B' 1 = 2 2 4 d8+l-a (In a') 2

For 1-t ~ 1,

-l-~ 1-~ -~a".i
B'= (i+l) i 8 2 4 d8+l-a (Ina') 2 e 8

«-2 It a

mt
x 1f(z)l- If(z )1_24 ,,-2 [In(l+':.J.)) d8+l-a(1_I)-2

zE (,.0 t d

1 6z 1 ~ 2.-
Ina'

where

For O<D ~1, equation (7.254) gives (iii) Error estimate En(f)

a-2 ('/

z~ra 1 f(z) 1- I f(z,) 1- 2 4 " 2 p/+l-a(_lnD) D8+ 1-a (1-1)

OJ) Estimation of r5

(7.255)
From equations (7.24) and (7.254), we obtain

a+2 l-~ [ PJ) 8+I-a -~ -2n
IE(f) 1<2 4

" 2 In(l+-) d (I-tl a
n rv d

Next, we estimate the size r5 of the ellipse Cit of equation (7.20) which

passes through the point Z=ZI of equation (7.239). Since,

(7.256)

«+2 l-~ _~

D~l 2 4 " 2 p/+l-a(_lnDlD8+I-a(l_tl 2 a- 2n

From equations (3.138-142) , the analytical expression for

!
Pj /

I = - dp
a,o 0 ra

(7.265)

(7.266)

where
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is given by Table 7.5.

Table 7.5. Closed form for

+

?
b

-258-

L{)

c:i

C\l
c:i

L{)

c:i

c:i

L()

o
c:i

o
c:i

o

a 0 la, a (exact) la,O' (D4, 1)

1 1 p} Vl+D2 -D) Pj

1 (lID -1/-Yl+7Y)lpj II (PjD)

3

2 In{(l+Vl+D2)1D}- lIVl+D2 -lnD

1 {1/ D3_ 1/(1 +D2 )312}/( 3p/) II {3(pj D)3}

5

2 1 I {3(PjD)2 (l+D2)312} 1/{3(Pj D)2}

Then. equation (7.265) and Table 7.5 give the estimate for the relative

error as in Table 7.6.

Table 7.6. Estimates for relative error En(f) !la, Ii

a 0 En(f) lIa,O'

1 1 3.0 (-lnD)D(1-t}-lfl (}"-2.

1 1.3 (-lnD) (l_t)-3fl (}"-2.

3

2 1.3 (1_tJ-3fl (}"-2n

1 1.8 (-lnD) (l_tJ-512 (}"-2n

5

2 1.8 (-lnD) (1- t)-512 (}"-2n
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To maintain the constant coefficient of the error estimates at a

The values of a(D) for t=0.6 are given in Table 7.7 (cf. graph of

Fig.7.9).

reasonable size,

(1-1) 2 < 10

gives

{

0.99

0< t < 1_10-a/2 = 0.78

0.60

(<<=1)

(<<=3)

(<<=5)

(7.267)

(7.268)

using the log-L1 radial variable transformation

R(P)=log(p+d)

and the Gauss-Legendre formula, for general natural numbers « ,0 :
a+2 a
- 1-- --

IE.(n 1;5 2 4 " 2p/+l-al.(l+D-l)DH1-aO_tl 2,,-2.

where

1.31 -1.63

(7.266)

(5.85)

for

Table 7.7 Values of a(D) for t=0.6, for the log-L
1

transformation
(7.271)

D (}

10- 10 1.16

10-8 1.18

10-6 1.21

10-4 1.26

3XlO- 4 1.28

10-3 1.31

3XlO-3 1.35

D (}

10- 2 1.40

3X10- 2 1.48

10- 1 1.63

3XlO- 1 1.94

1 3.05

3 7.23

10 23.4

where we have taken t=0.6 .

From Table 7.6, the estimate for the relative error E is given by

I € - ,,-2. I (7.272)

for the same values for a.

The theoretical estimate of equation (7.272) corresponds fairly well with

numerical experiment results in Chapter 10. The estimate also clarifies

quantatively, why the log-L, radial variable transformation is, by far, more

efficient and robust compared to the log-L2 and identity transformations.

In summary, we obtain the following error estimate for the numerical

integration of

(5.99)

In this section, theoretical error estimates will be derived for the numerical

integration in the radial variable using the Gauss-Legendre rule after applying

the L l -lim transformation :

7.9 Error Analysis for the L, -11m Transformation

R(P) =-(p+d) m. m>1

To make the analysis easier, we will treat

(7.269)

(7.270)

For nearly singular integrals, one typically has relative source

distances of the range

D: 10- 3 - 10- 1

for which the size a of the ellipse c" is

" : 1.31 -1.63
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which is an equivalent transformation with a difference of signs. Then,
I

R(O) = d m (7.274)

I

R(Pj)=(Pj+tiJ
m (7.275)

and

p(R) =R- m - d (7.276)

~ = _mR- m- 1
(7.277)dR

R (P) = (P+tiJ m. m>1 (7.273)
which gives

(~) =C [(Z_ZI)m - a~r (z _ z/a-8-l)m-l

1 1t a 1 rr a

[~-ZI)m_2-2 e4' aim) -2 [(Z_ZI)m_ 2 -2 e- 4' a
l
m)-2

where

b 1+611m
Z E-=--

I I-a 1_611m

2
0 1 =- 1_611m

(7.283)

(7.285)

Hence, the radial component integral ofequation (7.48) can be expressed as

I
Pj /

1= - dp
o r a

The singularities of f(z) in the complex plane are analyzed in the following.

Let mE N, then the term {(Z_ZI)m _alm}o in equation (7.283) does not give rise

I
RlP) ) (R-m _tiJ8 (_mR- m - l )

= dR
R(O) {(R-m _tiJ2 +d2 } an

= II (z) dz
-I (7.278)

C= m(_l)8-m-1 2 m- 2 (P
j

D)8-a+1 (1_6 1/m )-m

D
6=--

1+D

where 0~t><1

(7.286)

(7.287)

(R m
_ P~rR 1a - 8- I)m-l

(z)=C' )

[Rm__1 )0/2 [R m__1 )0/2
(1-i)P j D (l+i)PjD

all 1

C'=rn(_l)8 2-
1

- 2 p/-
a

--;;;D8- a [D--;;;-O+DJ--;;;)

where
I

R=2- 1 Pj m(_az+b)

I 1

a=D m_(l+D) m

b=D m+(l+DJ m

d
D=-

Pj

>0

>0

(7.279)

(7.280)

(7.281)

(7.282)

to singularities except for z= ()().

The second term (Z_ZI)la-O-I) m-I will be treated next. For the potential

kernels u*, q* and the flux kernels au*/ax., aq*/ax., the exponent (a -0 -1)m-1

take the values shown in Table 7.8.

Table 7.8 Singularity at Z=ZI

a 0 (a-o-1)m-1

u* 1 1 -m-1<0 singularity

q* 3 1 m-1

au* 3 1 m-1
--
ax. 2 -1<0 singularity

3 1 m-1

~ 5 1 3m-1
ax.

2 2m-1
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(7.288)

Hence, Z=Zl =(1 +t::."m
) I (1-t::."m

) becomes a singularity for a=o= 1 (u* kernel)

and a=3, 0=2 (du*/dx s kernel).

Next, the third and the fourth terms in equation (7.283) has singularities at
I

2'- 2,;; ( 1±..!.... + ~ ) .i
z=z±;;;;;:z +--e 4m m

k I l_",Um

where kEZ, mEN.

For the case m=5 (LI-II> transformation), the approximate values of the

singularities Zl and zij are given in Table 7.9 for different values of the relative

source distance D.

Table 7.9 Singularities Zi> zij for m = 5

D z, Zo

1 14.5 0.217 + 2.26 i

0.1 4.25 -0.589+0.766 i

0.01 2.32 -0.740+0.484i

0.001 1.67 -0.791 +0.390 i

0.0001 1.38 -0.813+0.347 i

The position of the singularities z = z" z; (kEZ) of f(z) for the case m= 5

(LI-IS transformation), D =0.01 is shown in Fig. 7.10.

The efficiency of the L,-lIs transformation in combination with the Gauss­

Legendre rule is determined by the maximum size a of the ellipse c l1

IZ+~ 1=11 (7.20)

with foci at Z = ±1, which does not have any singularities Zl, Zk inside itself.

-264-

Fig. 7.10 Singularities of f(z) for

L1-
1/5 tranasformation (0 = 0.01 )
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Similarly, the size of the ellipse co which passes through 2 = 2~ is given by

From equations (7.31) and (7.32), the size of the ellipse Co which passes

through Z=ZJ is given by

where

where

1

2 (1 +/:,2:.y
a =y +~=---

I 1 1 1 _/:,1Im

1 +/:,1Im
y =2 =---

I 1 1- /:,1Im

ao=Yo+~

(7.289)

(7.290)

(7.291)

Table 7.10 Size of ellipse 00, 01

passing through z= zii, ZI

D Yl=ZI Yo °1 °0

1 14.5 2.47 28.9 4.74

0.1 4.25 1.32 8.38 2.17

0.01 2.32 1.18 4.41 1.80

0.001 1.67 1.14 3.01 1.68

0.0001 1.38 1.12 2.32 1.62

To treat the problem more rigorously, note that ° is a strictly increasing

function of Y, since

where
~ = 1+ --y- >0
dy v7=l for y> 1

(7.294)

Table 7.10 gives the values of Yo, n, 00, 01 for different values of D, which

indicate that the ellipse passing through z=zii is smaller than the one which

passes through Z=ZJ. This indicates that the singularity at z=zii dominates the

convergence behaviour of the LI-'I> transformation.

(7.295)

(7.296)

J 1 I-- 1--
_ x2 +2 nl_2 2nt xcos ..!!-

4m

let

j I 1-- 1--
= l+x- 1+2 m _2 2m ros"':'­

4m

= I + /:, 11m _ j +2 -;, _ 2 1- f,;; cos"'::""
4m

where

x=/:,1Im = (1 ~Drm

and O~ x<1.

(7.293)

1
1--

2 2m sin ...!!......
4m

+i---""="::':
1_/:,1Im

1

1+/:, -11m _2
1
-2:. cos"'::""

4m

Since

F(O)

I

_2 2m < 0 (7.297)
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form*oo, i.e.

and

form=5,

and

(7.298)

(7.304)

This means that for m=5, D>D*=3XI0-7 , the ellipse passing though z=z(;

is smaller than the one passing through Z=Zlo and hence the former is the critical

one.

Hence, for the case D>D*, we will consider the ellipse of equation (7.20)

which passes through the point

z, = Xo + tyo

(7.305)
, (0 < t< 1)

1
1-- Tr

2 2m sin -
4m

1 1
- 1--

I+£:>m -2 2m cos "'::""
4m-------:-;---- + i --__-

1_£:>llm 1 _£:>Vm

(7.299)

> 0
1 .!..

1-- rr
x2 _2 2m xcos- + 2

4m

1 1

x2 _ 2
1
-;;; x cos...::.... + 2 - -;;; cos2...::....

4m 4m
1-

dF

dx

we have

F(x) < 0 O<x<x*

= 0 x;::::x* which is located just below the singular point z(;, as shown in Fig. 7.11.

> 0 x*<x<l (7.300)

where x* is given from equation (7.295) by (i) Estimation of max I f(z) I
z E€a

+1

and

1 / 1 1

2 -z;;;cos~ +Vl+2 -;;; _ 21-~ cos...!!...- -1
4m 4m

x* = ----;----~==;====;====---
1 / 1 1

2 -~cos..!!- -VI +2-; 2
1
-2; cos..!!.-

4m 4m

~ 0.0497

(7.301)

From equation (7.283), we have

I f(;) I = fez)

which implies

I f(;) I = I fez) I

Hence, we need only consider the region Im(z) ;;; O.

(7.306)

(7.307)

so that

x· lIl

D* =-- ~ 3X10- 7

l_x· lIl

{or 0;;; D < D*

(7.302)

Ifwe take 0 < 11- t II, z (; is the closest singularity to the ellipse € G and

max I f(z) I
Z E€G

(or

{or

D=D*

D*< D (7.303)
I f(zt) I

(7.308)

from equation (7.283)
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(iD Estimation of (J

Next, the size (J of the ellipse E a of equation (7.20) passing through the point

Z=ZI of equation (7.305) is estimated.

This can be done by using

Zt = x + iy

I
1-- 1f

1+6. Um -2 2/11 COB­
4m

--------~

z~

z,

1_6 11111

I

21-~ sin ~
4",

y=---~

I_D. l/m

~+y(~
y=

2

and

a = y + v'7=-l

(7.309) ,

(7.32)

(7.31)

Fig. 7. 11 Integration path ta for the

L11
/
5 transformation

(iii) Error estimate En (f)

The error E n( f ) for D >D* can now be obtained from

I En (f) I < 2rra- 2n
max I f(z) I

Z EEa

In order to maintain

(1-I) 2 < 10

(7.26)

(7.267)

-270-

for a = 1,3, 5 in equation (7.307), we set t = 0.6 as in equation (7.268). The values

and the graph of (J (D) for t=0.6 are given in Table 7.11 and Fig. 7.12,

respectively.
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and the Gauss-Legendre formula, for general natural numbers a, 0:

(7.310)

(7.266)

(5.100)

D a

10-2 1.48

3XlO- 2 1.54

10- 1 1.67

3X10- 1 1.96

1 3.06

3 7.30

10 23.6

Value of a(D)fort=0.6, for

11 : 1.41 - 1.67

Table 7.11

D a

10-6 1.36

10-5 1.36

3 X 10-5 1.37

10-4 1.38

3X10- 4 1.39

10-3 1.41

3X10-3 1.44

Hence, from equations (7.26) and (7.308), we obtain the following error

the L1-115 transformation

-273-

For nearly singular integrals with typical relative source distances of the

range

the size a of the ellipse c l1 is in the range

using the L1 -11m (m = 5) radial variable transformation

which is slightly larger than the corresponding ellipse for the log-L 1

transformation.

1

R(P)=(P+d) 5

estimate for the numerical integration of

f
P , /

I = J -dp
«,8 0 rex

\!2
I"
--.,

"b
+

a 2:-

~
ct

C\J C
0 0

.~

E
0

1i5
c

L.() jg
0 \!2

I"
,j
Q)

-E
.E

0 a
Cf)

>
<0
0

II
L.()
0 a-0

b
'0
.r:

'r" 0-
0 eu

b 0 (5
~ ~ L.() 0 C\J0

r---:
OJ

u::
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_ DH1 -. (1_t.1I5 ),,-2.

_ (1_D1I5) D6+1-. ,,-2n

D~1

where

" : 1.41 - 1.67

for

where we have taken t=0.6.

From Table 7.6, the estimate of the relative error € is given by

€ __ q-2n

(7.311)

(7.312)

characterize the nearly singular integrals occurring in the boundary element

analysis of three dimensional potential problems.

We obtained the following error estimates En for the numerical

integration of la,8 using the Gauss-Legendre rule after applying each radial

variable transformation R(p) .

Let n be the number of integration points in the radial variable, and
d

D= - >0
PJ

be the relative source distance.

Then, for n~ 1 and D ~ 1 (nearly singular) ,

(1) Identity tranformation ; R(p) - p

for the same values for rJ.

The theoretical estimate of equation (7.312) corresponds fairly well with

numerical experiment results in Chapter 10. The estimate explains why the

L1 -1/5 transformation is slightly better compared to the log-L1 transformation for

the model radial integral ofequation (7.266) (cf. Tables 10.24,10.32 and Fig. 10)

and for the flux integral I ~. ~ dS (cf. Table 10.50 and Fig. 10.39).
s l) ox,

7.10 Summary of Theoretical Error Estimates

In this chapter, we derived theoretical error estimates for numerical

integration by means of the theory of complex functions.

The basic radial component integrals

I =IP

} t!... dp
a,~ 0 ret

where

3
~-- ex

E < D 2 ,,-2..("

__ a- 2n

where

" : 1.04 -1.42

for

(7.80)

(2) log-L2 transformation; R(p)= log yP2+d2

For o-odd (potential),

J+l-a
-2- [maX(3,8lel.Dj2n

E < (-I.D)D
n rV 8 n

6+1-«

_ D 2

r=Jp 2+ d 2. a,8EN, (7.313)
__ n -2n

For o-even (flux, interpolation functions),

(7.118,120)
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HI

En - (-lnD) 2 D J+ I - o n- J - I

(3) log-L, transformation : R(p) = log ( p +d)

For o+l-a > 0 (e.g. a=o=l for potential),

6+1-« 2
-2- I(o+l-a) e InD) n

E - (-lnD)D
n 8n

J+~-" (InD)2n
-D -

n

-... n- 2n

(7.195)

(7.235)

These theoretical error estimates are compared with numerical

experiment results on one dimensional radial variable integration and

boundary element surface integrals with potential and flux kernels, in

Chapter 10. The theoretical estimates bear remarkable resemblance with the

numerical experiment results, demonstrating the validity of the estimates

derived in this chapter.

The theoretical estimates in this chapter also give a clear insight

regarding the optimization of the radial variable transformation R(p) for

nearly singular integrals arising in boundary element analysis in general.

To be more precise, the singularities P± = ±diE C, inherent in the

near singularity of
1

For general a,o E N r" J;2;;l0 (7.314)

(7.49)

(7.20)

E < (-lnD) D HI - o ,,-2n
nN

-... a- 2n

where

1.31 - 1.63

for

(4) L)-1/5transformation: R(p) = _(p+d)-115

I

En - (l_D 5)D HI -",,-2n

-... 0- 2'1.

where

" ; 1.41 - 1.67

for
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(7.271)

(7.311)

are mapped to R± =R(P±) by the radial variable transformation R(p). R±

in turn, are mapped to z± = x(R ±) by' the transformation
2R - { R (p j ) + R ( 0 ) }

R(Pj)-R(O)

in the process of mapping the interval R: [R(O), R(Pj) ] to the interval

x: [-1, 1] in order to apply the standard Gauss-Legendre rule.

As shown, for example, by equation (7.80) for R(p)=p and equation

(7.271) for R(p)= log(p+d) , the numerical integration error is governed by

the maximum size 0 of the ellipse Co

Iz+~I=", (,,>1)

in the complex plane, which does not include the singularities z± inside.

Therefore, roughly speaking, the optimum radial variable

transformation R(p) is the transformation which maps the singularities

p±=±di, inherent in the near singularity, to z±=x{R(p±)} which are as

far away as possible from the real interval z: [-1,1], allowing an ellipse Ca

of maximum size o.
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PART II

APPLICATIONS AND NUMERICAL RESULTS



CHAPTER 8

NUMERICAL EXPERIMENT PROCEDURES

AND ELEMENT GEOMETRY

In the following chapters, results of numerical experiments performed on the

numerical integration methods proposed in Chapter 5 are given with comparison

with previous methods. Weakly singular integrals, nearly singular integrals and

hyper singular integrals (Cauchy principal value) arising in three dimensional

potential problems are treated. In this chapter the numerical experiment

procedures and types of elements used in the experiments are given.

8.1 Notes on Procedures for Numerical Experiments

All the numerical experiments were done on the NEC supercomputer SX-2

(peak performance 1.3GFLOPS) in double precision (except when stated

otherwise). The results for CPU-time presented in milliseconds (msec) were

consistent within a relative difference of about 1% for most cases and within 5%

for some exceptional cases.

When the Gauss-Legendre formula was used as the basic quadrature rule,

the number of integration points N was increased in the following series:

N = 1,2,3,4,5,6,7,8,9,10,11,12,14,16,20,25,28,32,35,40, 45, 50, 55,

60,64,72,80,90,100,1110,120,128,140,150,160,170, 180, 190, 200,

210,220,230,240,250,256,300,250,400,450,500, (8.1)

until the numerical integration results converged. The integration table in

Stroud and Secrest3 and the IMSL mathematicallibrary39 based on the subroutine

GAUSSQUADRULE by Golub and Welsch38 were used to generate the

integration points and weights for the formula.
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The relative error en of the numerical integration result In was measured

by comparing it with the true value of the integral 1* ,which was obtained either

by analytical integration, when it was possible, or by using the converged result

using the best method with sufficient number of integration points. For instance,

for nearly singular integrals, the result obtained by the PART method with the

angular variable transformation t(8) of equation (5.130) and the log-Ll radial

variable transformation R(p) of equation (5.85), was used to obtain the converged

numerical integration result. Then the relative error en was measured by

_ /Tn-T',e = --n T'
(8.2)

Nt=Nmax (2),

(3) set N t=Nmax(2) and increase NR=l, 2, 3, ... , according to the sequence of

equation (8.1), until the relative error becomes less than E at NR =Nmax(3),

so that the minimum number of integration points required are

Nt=Nmax(2) and NR=Nmax(3) for the angular and radial variables,

respectively.

When there are more than one component in the integral concerned, such as

in integrals related to the nux e.g. Is au*laxsdS, Is aq*laxsdS or in integrals

containing interpolation functions e.g. Is <P IiU* dS ,(i,J = -1,0,1), the maximum

relative error among all the components concerned is taken as the (maximum)

When the value of the true (converged) integral 1* itself is zero (or when I1* I is

less than a certain threshold value e.g. 10- 10 ), the absolute error

relative error.

8.2 Geometry of Boundary Elements used for Numerical Experiments

(8.3)

-a;;; x ~ a

In all cases, the 9-point Lagrangian element defined by equations (5.2), (5.3)

and (5.4), and shown in Fig. 5.1 is used to model the following (curved)

quadrilateral patches.

(l) Planar rectangle (PLRl

A planar rectangle in the xy-plane defined by [-a, al X[- b, bl, or

was used as the measure of convergence, instead of the relative error.

In most tables, the minimum number of integration points required to

obtain a relative error less than E = 10 -6 is given with the CPU-time consumed,

as a measure of the efficiency of the method.

In order to obtain the minimum number of integration points in each

variable required to achieve a relative error less than E, the following procedure

was taken. Taking the example of the PART method with integration in the

angular variable t(8) and the radial variable R(p), where Nt and NR are the

number of integration points in the angular and radial variables, respectively,

(1) increase Nt and NR as N t=NR=l, 2, 3, ... ,according to the sequence of

equation (8.1), until the relative error becomes less than E at

Nt=NR=Nmax (1),

(2) set NR =Nmax(l) and increase Nt = I, 2, 3, ... , according to the sequence of

equation (8.1), until the relative error becomes less than E at

- 279-

-b ;:;; y;:;; b

z = 0

as shown in Fig. 8.1. The source point X s is given by

x, = (x, y. d)

where d is the source distance. The above planar rectangle will be called

PLR(a, b).
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As a special case, the planar square of size 1 can be defined by PLR (0.5,0.5).

The planar rectangle PLR (a, b) is modelled by the 9-point Lagrangian element of

equation (5.4) by setting

y

xi,. = x (j, k) = (ja,kb,O) ; j,k = -1,0, 1

(2) 'Spherical' quadrilateral (SPQ)

A spherical quadrilateral on the spherical surface of radius a defined by

asinwcos<1>

(8.6)

where 'l' determines the latitude and <:P is the longitude, as shown in Fig. 8.2,

where 'l' and <:P are bounded by

The spherical quadrilateral is approximated by the 9-point Lagrangian

element ofequation (5.4) such that parameters '7
1
and '7, correspond with angles <:P

and 'l', respectively, as

b

a a a

-b

x

y = a sin wsin<1>

acosw

<1>(-0;;; <1>;;; <1>(1)

(8.7)

(8.8)

Fig. 8.1 Planar rectangle PLR (a, b)

- 281-

?l =-1 <1> = <1> (-0

?l = a <1> = <1> (0)

?l = 1 <1> = <1> (l)

and

?2= -1 w = w (-0

?2 = a w = w (0)

?2= 1 w=w(l) (8.9)

as shown in Fig. 8.3.
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z

Fig. 8.2 Sphere with radius a

- 283-

z

Fig.8.3 Spherical quadrilateral ( Spa)
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For instance, if we take

a= 1

we obtain a spherical quadrilateral subtending 60· in each direction <I> and 'It, and

the size of the element is 1, i.e.

(3) Hyperbolic quadrilateral <HYQ)

A hyperbolic quadrilateral is defined as the 9-point Lagrangian element

(cf. equation (5.4) ) whose nine nodes x j,k; j, k = -1, 0, 1 are given in x, y, z

coordinates as

This element, modelled by the 9-point Lagrangian element as in equation (8.8),

will be called SPQ60 .

It should be noted that the maximum relative discrepancy between the real

spherical quadrilateral and the 'spherical' quadrilateral SPQ60 (modelled by the

9 point Lagrangian element), is of the order of 10-3. Hence, in actual applications

a more accurate geometrical modelling becomes necessary, depending on the

required accuracy of the analysis.

h

-h

h

(8.10)

(8.ll)

$(-1)=-30·, $(1)=30·

I x(l,O) - x(-I,O) I

I x (0,1) - x (0, -I ) I

"'(-1)=120·, "'(0)=90·, ,.,(1)=60·,

$(-1)=-30·

xj,k = ja (j,k=-l,O,I)

yJ.k = kb (j,k=-I,O,I) Fig. 8.4 Hyperbolic quadrilateral (HYO)
and

(8.12)
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as shown in Fig. 8.4.

This element HYQ is described by

h
z = -"y

ab
(8.13)

CHAPTER 9

APPLICATIONS TO WEAKLY SINGULAR INTEGRALS

In this case, the modelling of the hyperbolic quadrilateral by the 9 point

Lagrangian element is exact.

The size of the element is considered to be I, since

gives the hyperbolic quadrilateral HYQ I, which is described by

Setting

a = b = 0.5

z = "y

h = 0.25

-0.5;;>",y;;> 0.5

(8.14)

(8.15)

In this chapter, results of numerical experiments on weakly singular

integrals arising in three dimensional potential problems are presented.

Although weakly singular integrals are not as difficult to calculate as the

nearly singular integrals, difficulty may arise using polar coordinates, when the

source point is very near the edge of the element, as is the case for discontinuous

elements.

Ix(l,O)-x(-l,O)I= Ix(O,l)-x(O,-l)l= 1 (8.16)
It will be demonstrated in this chapter that the method of using polar

coordinates in the plane S tangent to the element S at the source point xs, with the

angular variable transformation t(8) introduced in Chapter 5 (PART method with

R{p) = p), overcomes the above mentioned difficulty.

9.1 Check with Analytical Integration Formula for Constant Planar Element

First, the analytical integration formula for the integral

1 • = 4" J u· dS = J ~
u S S r

(9.1)

- 287-

for a constant planar quadrilateral element is presented, so that the method and

code for numerical integration can be checked.
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Using polar coordinates (p, 8) centered at the source point xs, in each

triangle (j = 1-4), as shown in Fig. 9.1,

I ~S r

4 IA8 IP
/

O
) PI )dO - dp

j=1 0 0 r

where

r=~=p

for singular integrals (d = 0) over planar elements. Hence,

4 ro
, r'(O)

I u• I ) dO ) dp

j=l o 0

4 rI ) p. (0) dp
j=1 o )

4 ('0 hI ) --)-d8
o oos(8-a.)j=l )

4 h. [{I+ sin(LIB.-a.)}(I+ sina.) I
I ....!. log )) )

)=1 2 {1-sin(LlBj-a j )} (1- sinaj)

For a rectangular planar element PLR (a, b) with the source point at

X s= (xs•Ys, 0), as shown in Fig. 9.2, equation (9.4) can be expressed as

(9.2)

(9.3)

(9.4)

X,

Fig. 9.1 Planar quadrilateral element

since

4 h (a + h. a+ h )_" ) I )+1 )+1 ) )-1

Tu' - f;;l '2 og a
j
+

1
- h

j
+

1
. a

j
- h

j
_

1

sin (/;0 - a ) = b
) )

(9.5)

(9.6)

where

sin a
)

h~_l • (j = 1 _ 4)

)

(9.7)
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y

b

When the source point X s is on thej-th edge of the element, i.e. sgn(j) =0, thej-th

component of the summation in equations (9.4) and (9.5) is set to zero.

As an example, we take the planar square element S: PLR(0.5, 0.5), which

is described by

- 0.5 ;;;; x;;;; 0.5

- 0.5 ;;;; y;;;; 0.5

and the source point xs =x('1" 'I,) is set to x(O, 0), x(l, 0), x(l, 1) and x(O, 1), as

shown in Fig. 9.3. The numerical result obtained by using polar coordinates (p, 8)

around the source point, and further using the angular transformation

---a~------~----\----+-a--X

-b

Fig. 9.2 Planar rectangle PLR (a, b) with
source point at (xs , Ys )

z = 0

The typical size of the element is 1.

In Table 9.1, the result of calculating

Is u· dS

is given, where

u· =
4"r

h} II + sin(O-aj ) 1
teo) = - log

2 1- sin(O-a
j

)

(9.9)

(9.10)

(9.11)

(5.127)

introduced in Chapter 5, are compared with the analytical integration of equation

(9.4). The basic quadrature rule used for the integration in p, 8 and 1(8) is the

Gauss-Legendre rule. The minimum number of integration points, Np, No and

Nt(oJ, required in each variable to achieve a relative error (compared to the

analytical results) less than 10-6 are given with the CPU-time.

Only one integration point is required in the radial variable. This is because

for planar elements r= p, so that

Iu· dS = IdO IL pdp

=-i; IdO Idp (9.12)
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Table 9.1 Weakly singular integral Is u* dS over the unit planar square: PLR (0.5, 0.5)

Polar Coordinates Angular Transfonnation
Integral (analytical)

Source point
(r;I, r;2)

NOXNp total
CPU relative

Nt (Ol XNp total
CPU relative 4rrIs u*dS

(msec) error (msec) error

(0,0) 6xl 24 0.69 3XI0-7 lXl 4 0.20 3XI0- 16 3.5254943

(1,0) 6Xl 18 0.54 3XI0-7 lXl 3 0.17 7XI0- 16 2.4060591

(1,1) 4xl 8 0.28 9XI0- 7 lXl 2 0.13 6Xl0- 16 1.7627472

(0,1) 6Xl 18 0.54 3 X 10-7 lXl 3 0.17 7XI0- 16 2.4060591



With the angular transformation t (8), only one integration pointis required

in the angular variable. This is because

[
1 4 [68) [Pj(e)

S
u· dO = - L dO dp

4" )=1 0 0

1 4 ['(68/ dO
= - L p . (0) - dt

4" j=l 1(0) ) dt

Relative Error
Weakly Singular Integral

5s u* dS

since

1 4 ['(68'>- - L ) dt
- 4" j=l '(0)

dO I

dt - p}O)

(9.13)

(5.126)

-1
10

S: planar square
PLR ( 0.5 , 0.5 )

X s = x( 0 ,0)

In Fig. 9.4 the relative error € using polar coordinates ( p, 8 ) is plotted (in

log-scale) against the number of Gauss-Legendre integration points No in the

angular variable 8. The source point is located at xs=x(O, 0)=(0, 0, 0) at the

centre of the planar square element. From the graph, it is estimated that

-2
10

so that

!oglO € = O.15-1.1Ne (9.14)

(9.15)

-4
10

-5
10

2

(From now on the relative error will be plotted in log-scale in all the convergence

graphs showing the relative error vs. number of integration points.)

10- 71--_--L.__..L-__L.-_--..L..__....L...-_---J__.........

3 4 5 6
Number of Angular

Integration Points
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Fig. 9.4 Relative error vs. Number of angular integration
points using polar coordinates (p ,8 )

-296-



o
C':>

I

~
X
C':>

00
...<

......
00

I

~
X
LQ

o
C':>

I
o
......
X

'"00

'"~o
'"t-
~

00
...<

I

~
X
C':>

o
C':>

00
...<'"...<

I

~
X
"<l'

(5.3)

(9.17)

(9.11)

(9.16)

(9.18)

f ¢ .. u* dS (i,J= -1,0,1)
s IJ

1
u* =­

4",

where

so that

and ¢ij' (i,j= -I, 0,1) are the 9-point Lagrangian interpolation functions defined

by

where

Again taking the unit planar square S: PLR( -0.5,0.5), Table 9.2 gives the

This time, more than one integration point is required in each variable,

because of the interpolation function ¢ij' However, only 3 integration points are

required in the radial variable, and the transformation t (0) decreases the

9.2 Planar Rectangular Element with Interpolation Function ¢ij

Next, numerical integration is performed for the weakly singular integrals

minimum number of Gauss-Legendre integration points N p , No and Nt (0) in the

variables, p, 8 and t (8), respectively, to achieve a relative error € < 10- 6 for all

the components i,j= -1,0,1 of the integral of equation (9.16), using the polar

coordinates (p, 8) and with the angular transformation t (8) of equation (5.130).

The CPU-time and the maximum relative error for i,j= -1,0,1 are also given.

The actual value of the integral corresponding to the ¢ 11 component, calculated

by Nt (0) =Np =128 points is also given. The source point xs =x('71' '72) was

chosen similar to Table 9.1.
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Relative Error
Weakly Singular Integral

fs<f>ijU*dS

10- 71--_---1....__1....-_...I-_----J'--_-'--_

2 3 4 5
Number of Radial

Integration Points

Relative error vs. Number of radial

integration points

Xs = x( 0 , 0 )

S: planar square
PLR ( 0.5 , 0.5 )

\
\
\
\
\
\
\
\
\

\._---./8, (N s =8)

t (8), \
II

( Nt(s) = 5 )

Fig. 9.5

-4
10

-6
10

-2
10

-3
10

-1
10

angular integration points by a factor of 1.6-1.8. The extra CPU-time for the

angular variable transformation is shown to be negligible.

Fig. 9.5 shows the relative error against the number of radial integration

points, and Fig. 9.6 shows the relative error against the number of integration

points in the angular variables 8 and 1(8), for the case of X s= x(O, 0).

Next, the effect of the position of the source point xs, on the efficiency of the

numerical integration is investigated. Moving the source point X s =x(ij, 'I) from

'I =0 to 'I =1.0 along the diagonal of the planar square element, Table 9.3 shows

the minimum number of integration points N p , N 8 and Nt(O) in each variable to

achieve a relative error less than 10-6, for the integrals Is ¢u u* dS, (i,j=

-1,0,1). Fig. 9.7 shows the number of angular integration points No using the

ordinary angular variable 8, and Nt(O) using the transformed angular variable 1(8)

against 'I , which indicates the position of the source point xs=x(ij, 'I) along the

diagonal ofthe element.

It is evident that as the source point approaches the corner (or edge) of the

element the number of angular integration points No increases rapidly. This is

due to the angular near singularity mentioned in section 5.6. This problem is

overcome by introducing the angular variable transformation 1(8) of equation

(5.130), which weakens the near singularity in the angular variable 8. Table 9.3

and Fig. 9.7 show that the transformation 1(8) is robust against the change of

position of the source point in the element, and that the number of integration

For the case X s= x(0.9, 0.9) (or 'I = 0.9 in Table 9.3), the maximum relative

error (for i,j= -I, 0,1) is plotted against the number of radial integration points

points (, and hence the CPU-time,) can be reduced by a factor of more than 6 by

integrating in the transformed variable 1(8) instead of 8, as the source point

approaches the corner of the element (r; > 0.9). Hence, this angular

transformation 1(8) becomes particularly useful when using discontinuous

elements, which employ source points near the edge or corner of the element.

- 299-
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Relative Error

Table 9.3 Weakly singular integral f s ¢ ii u* dS over the unit planar square:

PLR(0.5,O.5) (effect of position of source point)

Polar Coordinates Angular Transformation Integral
(p,B) (p, t(B» No

'I -- 4rrfs ¢11 u*dS
NI(o) (128 X 128pts., t(B) Xp)NoX N p total NI(o) X N p total

0 8X3 96 5 X 3 60 1.6 5.3283998 X 10-2

0.2 9X3 108 5X3 60 1.8 9.5485251 X 10-2

0.4 12 X 3 144 6X3 72 2.0 1.8719597 X 10- 1

0.6 16 X 3 192 6X3 72 2.7 3.2822709 X 10- 1

0.8 25 X 3 300 7X3 84 3.6 4.6027876 X 10- 1

0.9 40 X 3 480 7X3 84 5.7 4.6096971 X 10- 1

0.92 45 X 3 540 8X3 96 5.6 4.4780849 X 10- 1

0.94 50 X 3 600 8X3 96 6.3 4.2744234 X 10- 1

0.96 55 X 3 660 8x3 96 6.9 3.9746827 X 10- 1

0.98 80 X 3 960 8x3 96 10 3.5329583 X 10- 1

0.99 100 X 3 1,200 8X3 96 13 3.2243822 X 10- 1

0.995
(128) X 3 (1,536) 8X3 96 (16) 3.0295234 X 10- 1

E=2X10- 6

0.999
(128) X 3 (1,536) 8x3 96 (16) 2.8307336 X 10- 1

E=5X10- 4

1.0 7X3 42 4X3 24 1.8 2.7602986 X 10- 1

e

Xs = x( 0 , 0 )

S: planar square
PLR ( 0.5 , 0.5 )

Weakly Singular Integral

fs<pijU*dS

Number of Angular
Integration Points

-710 t-----l--_L....-_......L-_---I__-I.-_----L__....I...._---'--r

2 3 4 5 6 78

-6
10

-3
10

-5
10

-1
10

-4
10

-2
10

Fig. 9.6 Relative error vs. Number of angular
integration points

Position of source point: xs=x(i;, 'I). Relative error E <10-6•
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From the above numerical experiments on weakly singular integrals

Is u* dS and Is ¢u u* dS over the unit planar square and planar rectangles, the

robustness of the angular transformation t (8) against the position of the source

the angular variable, for the case when the aspect ratio is 5 (a = 0.5, b= 2.5).

It is evident that as the aspect ratio increases, the number of integration

As for the weakly singular integrals Is q* dS and Is ¢ ij q* dS , results are

not given for planar elements, since (r, n)=O and q*= -(r, n) I (4rr,-3)=0 for

r* 0 so that the integrals take the value of zero, excluding the Cauchy principal

value, which is defined as the limit as the source distance d~O of the

corresponding nearly singular integral. .This will be mentioned in Chapter 10.

point and the aspect ratio of the element is verified.

points in the angular variable 8 in the method using polar coordinates (p, 8)

increases rapidly, whereas with the method using the transformed angular

variable t (8) of equation (5.130) the number of integration points increases very

slowly.

in Fig. 9.8, and against the number of angular integration points in Fig. 9.9,

respectively.

Comparing Fig.9.G (;7 = 0) with Fig. 9.9 (7 = 0.9), the angular near

singularity and the effect of the angular variable transformation t (8) is more

pronounced in the latter (7 = 0.9).

Next, the effect of the aspect ratio bla of the planar rectangular element

PLR (a, b), on the efficiency of the numerical integration is investigated. Setting

a=0.5 constant, b is varied from 0.5 to 5, so that the aspect ratio ranges from 1 to

10. In each case, the minimum number of integration points required to achieve

relative errors less than 10-6 for i,j= -1,0,1 for the integral Is ¢iju*dS by the

method of polar coordinates (p, 8) and the method using the angular variable

transformation (p, t (8)), in Table 9.4. Fig. 9.10 gives the convergence graph of the

maximum relative error for i,j= -I, 0,1 vs. the number of integration points in

c
0
.~

..... c
Ol .-
(1) 0
C 0-

(1)

Co ~
::J

::J
0Ol (/)

C
aj 0
0 c
..... 0
(1) :;::::;

..0 ·Ui
E 0
::J a..

Z

(/)

c
'0
0-

C\J
ci ,.....

0>

Ol
u:::

0

<.0
ci

o
O>c
ci.g ~

"w
o

0...
co
o

ol()

X
II

xU)

I~

I~

l()
ci

(1)

Col()
::J •
0-

0
(/)-

CI)

~~~:::::o:::::::;:::::~---------------------­

--'O..l'O...
~
'\ <:

<D ~ ',_

<: ~
'\'

I

~\
~

I
I
I,,

I

~
I

I
I
I
I

q
I
I
I
\,,,
~,

I

I

9
I
I

~
I
I

~
I
I
I
I,
I

0>
I
I
I

I
I

$
c-
·0 to

0... 1

o
c .....
.Q v
(U ....
o,e
2 Q>
c

- Q)
.... >ro ..;::;
::i~
OlQ)~.I.-.....J_...J._...I.._...L..-_.l.-.....J_...J._...I.._..l-_I..-.....l_.....I.<~-'

c~«

- 303- - 304-



Relative error vs. Number of radial

integration points
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Weakly Singular Integral

5s <Pij u* dS

2

8,
( Ns = 40 )

Fig. 9.8

Relative Error
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Table 9.4 Weakly singular integral Is ¢,) u* dB over the planar rectangular element: PLR (0.5, b)

Aspect
Polar Coordinates (p, 8) Angular Transfonnation ( p, t(8) ) No Integral

b -- 4"Is ¢11 u* dB
ratio NoXNp total Nao) X N p total NI(o) (128 X 128pts., t(B) Xp)

1 0.5 8x3 96 5X3 60 1.6 5.3283998 X 10-2

2 1.0 11 X 3 132 6X3 72 1.8 6.8978324 X10-2

3 1.5 14 X 3 168 6x3 72 2.3 7.4886094 X10-2

5 2.5 20 X 3 240 7X3 84 2.9 7.9307007x 10-2

10 5 28 X 3 336 8X3 96 3.5 8.1984132X 10-2

Source point X s= (0,0,0), relative error < 10-6 .

Relative Error

Relative error vs. Number of angular

Weakly Singular Integral

fs<f>iju*dS

S : planar rectangle
aspect ratio = 5
PLR ( 0.5 , 2.5 )

20
Number of Angular

Integration Points

integration points

~e

15105

Fig. 9.10
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(9.16)U,J=-l,O,l)

For the case X s = x(O, 0) •the (maximum) relative error is plotted against the

number of radial integration points in Fig. 9.11 and against the number of

angular integration points in Fig. 9.12.

over the 'spherical' quadrilateral element SPQ60 are given in Table 9.5, where u*

and the 9 point Lagrangian interpolation functions ¢ij' (i,j= -1, 0,1) are defined

as in equations (9.11) and (9.17). The source point X s is set to x(O, 0), x(l, 0),

x(l,l) and x(O,l). The minimum number of Gauss-Legendre integration points to

achieve relative errors less than 10-6 for all the components ¢ ij' (i,j= -1, 0, 1),

using polar coordinates (p, 8) in the tangential plane S, and using the angular

variable transformation t (8) are given in the table, similar to Table 9.2. This

time, 5-7 integration points are required (compared to 3 for planar elements) in

the radial variable p, due to the curved geometry of the element. The angular

transformation t (8) reduces the number of integration points by a factor of

(l) Results for [s.i;ju* dS

Numerical results on the weakly singular integral

J
¢ ,u'dSs IJ

spherical quadrilateral subtending 60° in both the latitude and longitude on a

sphere of radius 1. The typical element size is 1.

given. This element is a 9 point Lagrangian element obtained by interpolating a

9.3 'Spherical' Quadrilateral Element with Interpolation Function ¢ ij

In the following, results of numerical experiments on weakly singular

integrals over curved boundary elements are given in order to demonstrate the

efficiency and robustness of the method proposed in Chapter 5 using polar

coordinates (p, 8) in the plane S tangent to the curved element at the source point

X s and the angular variable transformation t (8).

First, numerical results on the element SPQ60 defined in section 8.2 (2) is

- 310-
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Relative Error

\, ;Vf(8) , (Nt(8)=6)

")'"
8 , ( N 8 = 8 ) """

10- 71--_......l....__L....-_......L..._----J'--_.....z...._--;;;1""

2 3 4 5
Number of Radial

Integration Points

8

X s = x( 0 , 0 )

Weakly Singular Integral

Is <r>iju*dS

S : I spherical I quadrilateral
(spa 60)

Relative Error

-5
10

-4
10

-6
10

-3
10

-1
10

-2
10

10- 7~_--I...__L....-_......L..._----J__...I.-_~__-=-_-:7
6
Number of Angular

Integration Points

Weakly Singular Integral

Is <r>ij u* dS

S : I spherical I quadrilateral
( spa 60)

Xs = x( 0 ,0)

-4
10

-2
10

Fig. 9.11 Relative error vs. Number of radial

integration points
Fig. 9.12 Relative error vs. Number of angular

integration points
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Next, the effect of the position of the source point X s is investigated by

moving it along the 'diagonal' of the element Le. xs=x(il, il), O~ il~ 1.

Table 9.6 gives the number of integration points N p , No and Nt(O) in each

variable to obtain a maximum relative error less than 10-6, for the integrals

JS <P l) u* dB , (i, j = -1, 0, 1). Fig. 9.13 plots the number of angular integration

points No and Nt(O) against the position of the source point il .

Similar to the case of the planar square element in Table 9.3 and Fig. 9.7,

the number of angular integration points No using just polar coordinates (p, 8)

increases rapidly as the source point approaches the corner of the element (il-1).

The angular transformation 1(8) of equation (5.130) has a remarkable effect in

reducing the number of angular integration points. The graph of Fig. 9.13

roughly traces that of Fig. 9.7 for the planar square element except that at the

maximum 14 integration points are required for 1(8) in the spherical case,

compared to 8 in the planar case, to obtain a maximum relative error less than

10-6•

Also the number of radial integration points N p increases slightly as the

source point approaches the corner of the element, which was not seen for planar

elements. This is considered to be due to the curvature of the element.

For the case of X s= x(0.9, 0.9) , the maximum relative error is plotted

against the number of radial integration points in Fig. 9.14, and against the

number of angular integration points in Fig. 9.15, respectively.

Compared to the case of X s = x(O, 0) in Fig. 9.11 and Fig. 9.12, the necessary

number of radial integration points (for relative error less than 10-6) has

increased from 5 to 7, and the angular near singularity and the effect of the

angular variable transformation 1(8) is more pronounced.

- 313-

Table 9.6 Weakly singular integral JS <PiJ u* dB over a 'spherical' quadrilateral:

SPQ60 (effect of position of source point)

Polar Coordinates ~ngularTransformation Integral
(p,8) (p, 1(8)) No

il -- 4Jf Js <P11 u* dB
Nt(O) (128 X 128pts., 1(8) X p)NOXNp total Nt(O) X N p total

0 8X5 160 6X5 120 1.3 5.6759090 X 10-2

0.2 9X5 180 7X5 140 1.1 7.2742430 X 10-2

0.4 11 X 5 220 8X5 160 1.4 1.9162439 X 10- 1

0.6 16 X 6 384 10 X 6 240 1.6 3.3693243 X 10-1

0.8 20 X 7 560 11 X 6 264 2.1 4.7758224 X 10- 1

0.9 40 X 7 1,120 14 X 7 392 2.9 4.8092765 X 10- 1

0.92 50 X 9 1,800 14 X 7 392 3.5 4.6761673 X 10-1

0.94 50 X 7 1,400 14 X 7 392 3.6 4.4668974 X 10-1

0.96 45 X 7 1,260 14 X 7 392 3.2 4.1559238 X 10- 1

0.98 64 X 7 1,792 12 X 7 336 5.3 3.6945555 X 10- 1

0.99 90 X 7 2,520 14 X 7 392 6.4 3.3709633 X 10-1

0.995 120 X 7 3,360 14 X 7 392 8.6 3.1662071 X 10- 1

0.999 (128) X 7 (3,584) 12 X 7 336 (11) 2.9569854 X 10- 1

1.0 7X7 98 6X7 84 1.2 2.8827304 X 10- 1

Position of source point: X s=x(il, il). Relative error E:< 10-6•
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(9.21)

(9.20)

(9.22)

(9.19)

(i,j=-l,O,l)

K
n

K
n- - - =-- u·

8"r 2

f ¢ .q*dS
S lJ

(r, n)
q*=--

4"r
3

G
n = iGi

where

over the 'spherical' quadrilateral SPQ 60. The source point X s is chosen as x(O, 0),

x(I,O), x(l, 1) and x(O, 1). Results similar to Table 9.5 for Is ¢iju*dS are

obtained.

Table 9.7 gives the number of integration points No, Nt (0) and N p required

to obtain a maximum relative error less than 10- 6, for the weakly singular integral

that the integration of the weakly singular integral Is ¢ ij q* dB gives numerical

results similar to that of IS¢iju*dS ,for curved elements. In the following,

numerical results for the weakly singular integral Is ¢ ij q* dB over the 'spherical'

quadrilateral SPQ60 are given.

In all the numerical experiments with weakly singular integrals over curved

elements, the unit outward normal n is defined by

For the case xs=x(O, 0), the maximum relative error is plotted against the

number of radial and angular integration points in Fig. 9.17 and Fig. 9.18,

respectively.

The effect of the position of the source point X s is shown in Table 9.8 and

Fig. 9.19, similar to Table 9.6 and Fig. 9.13.

for 0 < r~ 1, where K n is the normal curvature at x = xs. Hence, it is expected

for curved elements, (r, n)==O as shown in Fig. 9.16, so that q*==O. In fact it was

proved in Theorem 3.1 (equation (3.10)) that

(2) Resultsfor [st.j~

For planar elements we had (r, n) == 0, r=t- 0 and hence q* == 0, r=t- O. However,
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Table 9.7 Weakly singular integral Is <Pi} q* dS over the 'spherical' quadrilateral: SPQ60

""'""o

Polar Coordinates (p, B ) Angular Transformation ( p , t(B) )
No Integral

Source point -- 4" IS<Pll u* dS
('11''12) No X N p total CPU CPU/point relative

Nt(O)XNp total CPU CPU/point relative Nt(O)
(msec) (",sec) error (msec) (",sec) error (128XI28pts., t(B)Xp)

(0,0) 8X5 160 4.5 28 6 X 10-7 6X4 96 2.8 29 5 X 10-7 1.3 -2.6807077 X 10-2

(1,0) 7 X 6 126 3.5 28 7 X 10-7 6X6 108 3.1 29 9 X 10-7 1.2 -4.0201067 X 10-2

(1,1) 7X6 84 2.4 29 6 X 10-7 6x6 72 2.1 29 4 X 10-7 1.2 -1.1608845 X 10- 1

(0,1) 10 X 6 180 5.0 28 1 X 10-7 7 X 5 105 3.0 29 9 X 10-7 1.4 -4.4071135 X 10-2



Relative Error

10- 7L--...L----l..2--3.L....--....l..---:-5-~

Number of Radial
Integration Points
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Number of Angular
Integration Points
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Fig. 9.17

Weakly Singular Integral

f s <t'ij q*dS

S : I spherical I quadrilateral
(Spa 60)

\

\~8, (Ns=8)
t (8) , \

\

( Nt(s) = 6) .~

Relative error vs. Number of radial

integration points
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Relative Error
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Fig. 9.18

Weakly Singular Integral

fs<t'ijq*dS

S : I spherical I quadrilateral
(Spa 60 )

Xs = x( 0 ,0)

t(8)

Relative error vs. Number of angular
integration points
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Table 9.8 Weakly singular integral Is <P ii q* dS over the 'spherical' quadrilateral:

SPQ60 ( effect of position of source point)

Polar Coordinates Angular Transformation Integral
(p,O) (p, 1(0» Nil

'I -- 4/l" Is <Pu q*dS
Nt(lJ)

(l28X128pts.,1(0)Xp)
NIJXNp total Nt(IJ)XNp total

0 8X5 160 6X4 96 1.3 -2.6807077 X 10-2

0.2 10 X 5 200 7X5 140 1.4 -4.5622416 X 10-2

0.4 12 X 6 288 9X5 180 1.3 -8.6645831 X 10-2

0.6 20 X 6 480 11 X 6 264 1.8 -1.4822399 X 10- 1

0.8 25 X 6 600 12 X 6 288 2.1 -2.0071886 X 10- 1

0.9 40 X 6 960 14 X 6 336 2.9 -1.9613109 X 10- 1

0.92 40 X 6 960 14 X 6 336 2.9 -1.8953344 X 10- 1

0.94 45 X 6 1,080 11 X 6 264 4.1 -1.8000174 X 10- 1

0.96 55 X 6 1,320 14 X 6 336 3.9 -1.6664471 X 10- 1

0.98 72 X 6 1,728 14 X 6 336 5.1 -1.4774935 X 10- 1

0.99 90 X 7 2,520 14 X 6 336 6.4 -1.3492079 X 10- 1

0.995 110X6 2,640 14 X 6 336 7.9 -1.2694574 X 10- 1

0.999
(128) X 6

(3,072) 10 X 6 -1.1890655 X 10- 1(=3X1O- 4 240 (13)

1.0 7X6 84 6X6 72 1.2 -1.1608845 X 10- 1

Position of source point: xs=x(r;, 'I). Relative error «10- 6•

-323 -

I!="

~

en en
0 >

CJ)

C
~

'0
CO a Q.

CD c
.§ 0

.;:: .~

-0 Cco 0>

~ ::J CD '0
0".--., C Q.

0>
~CD a CDC CO (0 a ro ~

.~ a I!=" ::J ::J
ro CD 0.. 0> 0

:J
CI) ..c ---- I!=" c CJ)

-0 Q. co
0> .. CJ) >< '0c

U5 0- Il '0
::::-. (J)

~
c

9- CI) >< ..... 0>- 0 CD :-e32 Cf) ..0co '-> E
CJ)

CD 0

3 ::J 0..
Z

en
"'!

cria
m~ 0>:3 c: i.Lg> '0
~c...

c:a .Q

Q) ro a....
.0 Ol a a
E2 a LO
:J c:z-

-324_



(cf. Theorem 3.1 and equation (9.19)), and the fact that the kernels u* and q* are

dominant in the region O<r~l near the source point X s , so that the

characteristics in the region 0 < r~ 1 are reflected in the behaviour of the

integrals Is ¢ ii u* dS , Is¢ ii q* dS, and the precision of the numerical integration

methods for them.

X s = x( 0.9 , 0.9 )

S: I spherical I quadrilateral
(spa 60)

Weakly Singular Integral

Is <Pij q* dS

Relative Error

-1
10

(9.23)for 0 < r <! 1

For the case X s =x(0.9, 0.9) , the relative error is plotted against the number

of radial and angular integration points in Fig. 9.20 and Fig. 9.21, respectively.

Comparing the results obtained for Is ¢ii q* dS with the corresponding

results for Is ¢ ii u* dS, it is observed that they show very close resemblances.

This can be explained by the resemblance of the kernels

-4
10

t (8) ,

( Nt(e) = 14 )

8, (Ne = 40 )

',I....
10- 71--_--I..__..L..-_--L.__..l...-_--...__....I...-_""7'

2 3 6
Number of Radial

Integration Points

Fig. 9.20 Relative error vs. Number of radial
integration points
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(1) Resultsfor [S.¢..ij~*gs,

Table 9.9 gives the number of integration points No, Nt (0) and N p , required

to obtain a maximum relative error less than 10-6 for the weakly singular

integral f S ¢ ij u* dS , (i,) = -1, 0, 1) over the hyperbolic quadrilateral HYQl. The

source point Xs is located at x(O,O), x(l,O), x(l, 1) and x(O, 1) .

-328-

9.4 Hyperbolic Quadrilateral Element with Interpolation Function rl>ij

As another type of curved element, numerical experiment results on the

hyperbolic quadrilateral element HYQ1 defined in equation (8.15) of section 8.2

(3) are given in order to show the efficiency and robustness against element

geometry, of the method of polar coordinates with the angular transformation t (8)

for weakly singular integrals.

For the case X s = x(O, 0) , the maximum relative error for i,) = -1, 0, 1 is

plotted against the number of radial and angular integration points in Fig. 9.22

and Fig. 9.23, respectively.

Table 9.10 and Fig. 9.24 show the effect of the position of the source point

xs=xUj, ~), ~ =O~1,on the numerical integration and compare the use of8 and t(8)

as the angular variable.

For the case xs=x(0.9, 0.9), the relative error is plotted against the number

of radial and angular integration points in Fig. 9.25 and Fig. 9.26, respectively.

Compared to the case X s = x(O, 0) , the number of radial integration points N p

(required to achieve a relative error less than 10-6) increases from 4 to 7, and the

angular near singularity and the effect of the angular variable transformation t (8)

becomes more pronounced.

(f)

>

lQ
:::J
OJ
C
co

'0
Q;

.D
E
:::J
Z

"-

g
0.>

0.>
>
.~

(j)
a:

men
-Sc
0>'0
~c...
_Co.g
~ro
Q)~

.00>
E2
:::I C
z-

o
"¢ (f)

.~
o
a.
c
o

~
OJ
0.>
Co

(")

LO
C\J

o
C\J

o

LO

LO

~
(1j
:::J
0-0

<0

-0
~o....
'C (j)
0.>_

..c
0-
(/)

(\/
C\l cry '<t LO to I"- m1

0
1
0

1
0 '0 1

0
1
0

1
0

OJ
u:::

-327-

~
0>
0.>
C

e
LU
Q)"""...._-~_=-.l.-_~.l.-_-:::::-L..-_~L..-_~__~__~
>
.~ 0
Q)
a:



c.,
t<>
'f'

Table 9.9 Weakly singular integral fS <P IJ u* dS over the hyperbolic quadrilateral: HYQ1

Polar Coordinates (p, 8 ) Angular Transformation (p, t(8) )
NO IntegralSource point
-- 4" fS<Pll u* dS

CPU CPU/point relative CPU CPU/point relative Nt(O)(YJ1,YJ2) NoXNp total Nt(OlXNp total (128 X 128pts., t(O) X p)(msec) (,usee) error (msec) (,usee) error

(0,0) 8X5 160 4.4 28 6 X 10-7 6X4 96 2.8 29 4 X 10-7 1.7 5.8486239 X 10-2

-

(1,0) 9x6 162 4.5 28 4 X 10-7 6x6 108 3.1 28 1 X 10-7 1.5 8.6850181 X 10-2

(1,1) 6X7 84 2.4 28 1 X 10-7 5X7 70 2.0 29 7 X 10-7 1.2 2.7591133 X 10- 1

(0,1) 9x6 162 4.5 28 4 X 10-7 6x6 108 3.1 28 1 X 10-7 1.5 8.6850181 X 10-2
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Relative Error

Fig. 9.23

Weakly Singular Integral

fsCi'ijU*dS

S : hyperbolic quadrilateral
(HYQ 1 )

Xs = x( a , a )

8

Number of Angular
Integration Points

Relative error VS. Number of angular
integration points
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Table 9.10 Weakly singular integral Is ¢ij u* dS over the hyperbolic quadrilateral:

HYQ1 (effect of position of source point)

Polar Coordinates IAngular Transformation Integral
(p,O) (p,I(O)) No

i; -- 4/f Is ¢11 u* dS
NI(Ol (128 X 128pts., 1(0) Xp)NoXNp total NI(OlXNp total

0 8X5 160 6X4 96 1.3 5.8486239 X 10-2

0.2 10 X 5 200 7X5 140 1.4 1.0198064 X 10- 1

0.4 14 X 5 280 7 X 5 140 2.0 1.9736308 X 10- 1

0.6 20 X 6 480 8X6 192 2.5 3.4712015 X 10- 1

0.8 25 X 6 600 9X6 216 2.8 4.9061557 X 10- 1

0.9 40 X 7 1,120 9X7 252 4.4 4.8962891 X 10- 1

0.92 50 X 8 1,600 8X7 224 6.3 4.7417784 X 10- 1

0.94 50 X 8 1,600 8X8 256 6.3 4.5040850 X 10 - 1

0.96 60 X 7 1,680 9X7 252 6.7 4.1555278 X 10- 1

0.98 80 X 7 2,240 9X7 252 8.9 3.6439300 X 10- 1

0.99 110x7 3,080 9x7 252 12 3.2883544 X 10- 1

0.995
(128) X 7

(3,584) 9X7 252 (14) 3.0649529 X 10- 1£=4X10- 6

0.999
(128) X 7

(3,584) 10 X 7 280 (13) 2.8385477 X 10-1£=6X10- 4

1.0 6X7 84 5X7 70 1.2 2.7591133 X 10- 1

Position of source point: xs=x(i;, i;). Relative error £<10- 6•
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Compared to the 'spherical' quadrilateral (SPQ60). the hyperbolic

quadrilateral (HYQ1) requires less ( 9 compared to 14 ) angular integration

points in the variable t(8) as ~-1 for the integral JS ¢ ij u* dS , and slightly more

(16 compared to 14) for the integral JS¢ijq* dS.

is near the corner.

(p, 8) on the plane tangent to the element at X s , works efficiently. However, as

the source point approaches the corner of the element, the number of integration

points required in 8 increases rapidly. On the other hand, the use of the

transformed angular variable 1(8) of equation (5.130) overcomes this problem, i.e.

relatively few angular integration points are required even when the source point

and 1(8).

For the case X s = x(0.9, 0.9) , the relative error is plotted against the number

of radial and angular integration points in Fig. 9.30 and Fig. 9.31, respectively.

Results on the hyperbolic quadrilateral element HYQ1 for the weakly

singular integrals JS ¢ij u* dS and JS ¢ij q* dS , give similar results as those on

the spherical element SPQ60. Namely, the method of using polar coordinates

(2) Resultsfor rs.iv~

Table 9.11 gives the number of integration points required to achieve a

relative error less than 10-6 for the integral Js ¢ij q* dS over the hyperbolic

quadrilateral HYQ1 for the same set of source points as in Table 9.9.

For the case X s = x(O, 0) , the maximum relative error is plotted aginst the

number of radial and angular integration points in Fig. 9.27 and Fig. 9.28,

respectively. For this case, No happens to be less than Nt (0) .

Table 9.12 and Fig. 9.29 show the effect of the position of the source point

xs=x(~, ~), ~=0-1, on the numerical integration by the angular variables 8

c
o

~
0)
Q)

c

u:i
>

ro
:::J
0)
C
ctl

<.0
N

O'l

o
Q)

.D
E
:::J
Z

0)

u:::

o
C'?

L{)

o
N

L{)
N

L{)

o

O'l

o

O'l

o

C1)

~a0>­-eI
~'"--
>.
.c

",','.

"'\/~,/

~ //'
,',','.

///

;,///

,"
,/

l,.
~
~.

•
4.. ,

e
UJ
Q>~l.-_--J.__...J...__..L...._--J__.....L.__...J.-__J.-_.....J

> M ~ ~ ~ ~

.~ 0 10 10 10 10 10 10
Qi
a:

-335- -336-



~
-;'l

Table 9.11 Weakly singular integral f S ¢ ijq* dS over the hyperbolic quadrilateral: HYQ1

Polar Coordinates ( p , 8 ) Angular Transformation ( p, t(8) )
No IntegralSource point
-- 4rrfs 16 ll u*dS

('71,'72) CPU CPU/point relative CPU CPU/point relative Nt(o)NoXNp total Nt(OlXNp total (128 X 128pts., t(8) X p)(msec) (,usee) error (msec) (,usee) error

(0,0) 6X4 96 2.8 29 7 X 10-7 8X4 128 3.7 29 4 X 10-7 0.75 5.4181104 X10-2

(1,0) 8X5 120 3.4 28 5 X 10-7 7X5 105 3.0 29 2 X 10-7 1.1 -3.8030661 X 10-2

(1,1) 6 X 6 72 2.1 29 3 X 10-7 6X6 72 2.1 29 4 X 10-7 1.0 5.5451645 X 10-2

(0,1) 8X5 120 3.4 28 5 X 10-7 7x5 105 3.0 29 2 X 10-7 1.1 -3.8030661 X 10-2
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Relative Error

Table 9.12 Weakly singular integral Is 1>u q* dS over the hyperbolic quadrilateral:

HYQ1 ( effect of position of source point)

Polar Coordinates !Angular Transformation Integral
(p,8) (p, 1(8» No

i; -- 4IrIs 1>l1 u*dS
Nt(o) (128 X 128pts., 1(8) Xp)NoXNp total Nt(O) X N p total

0 6X4 96 8X4 128 0.75 5.4181104 X 10- 2

0.2 9X5 180 9X5 180 1.0 5.6473892X10- 2

0.4 10 X 5 200 10 X 5 200 1.0 3.9303177 X 10- 2

0.6 16 X 6 384 12 X 6 288 1.3 5.2697491 X 10-3

0.8 25 X 7 700 12 X 7 336 2.1 -1.6637769 X10- 2

0.9 32 X 7 896 16 X 6 384 2.0 -1.1809626 X10-3

0.92 32 X 6 896 16 X 6 384 2.0 5.9762477 X 10-3

0.94 35 X 7 980 14 X 6 336 2.5 1.4922905 X10-2

0.96 40 X 7 1,120 16 X 6 384 2.5 2.5909095 X10- 2

0.98 55 X 6 1,320 14 X 6 336 3.9 3.9253216 X 10- 2

0.99 64 X 7 1,792 16 X 6 384 4.0 4.6947305 X10 - 2

0.995 80 X 7 2,240 16 X 6 384 5.0 5.1087330X 10- 2

0.999 100 X 7 2,800 16 X 6 384 6.3 5.4558558X 10- 2

1.0 6X6 72 6x6 72 1.0 5.5451645 X 10- 2

8765

Xs = x( 0 , 0 )

S: hyperbolic quadrilateral
(HYQ 1 )

8

4
Number of Angular

Integration Points

Weakly Singular Integral

5s <Pij q* dS

-1
10

-2
10

-3
10

-5
10

-4
10

-6
10

-710 t---........---L--..L..----'-__l--_-l-_--L.__..L.....,.

2 3

Fig. 9.28 Relative error VS. Number of angular
integration points

Position of source point: xs=x(i;,i;). Relative error £<10- 6 •
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8, (N s = 32 )

'\(,
t (8) , .""

",

( Nt (S) = 16 ) '.

xs = x( 0.9 , 0.9 )

S: hyperbolic quadrilateral
( HYQ 1 )

Weakly Singular Integral

Is <i'ij q* dS

Fig. 9.30

Relative Error
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9.5 Summary of Numerical Results for Weakly Singular Integrals

In this chapter, numerical experiment results were presented to verify the

effectiveness of the method of using polar coordinates ( p, 8) in the plane tangent

to the boundary element at the source point xs , with the angular variable

transformation t (8) proposed in Chapter 5, for weakly singular integrals arising

in three dimensional potential problems.

It was shown that the use of polar coordinates alone 9,15,16 requires excessive

number of integration points in the angular variable 8, when the source point X s

is near the corner or edge of the element as in discontinuous elements, or for

elements with high aspect ratio.

It was also shown that the proposed angular variable transformation t (8) of

equation (5.130) overcomes the above mentioned problem by weakening the near

singularity in the angular variable by the transformation. Numerical results for

kernels u* and q* with 9 point Lagrangian interpolation functions ¢ij over

planar, 'spherical' and hyperbolic quadrilateral elements showed the robustness

of the transformation t (8) against the position of the source point, integral kernel

and element geometry.

The effectiveness of using the radial variable p for weakly singular

integrals with kernels u* and q* with interpolation functions ¢ iJ was also

verified, in accordance with Theorem 3.1, which implies that

q* - -K,J2 u* - O(lIr) - O(lIp) for O<p~ 1 .

Summing up, the use of polar coordinates (P. 8) in the tangent plane with

the angular variable transformation t (8), in combination with the Gauss­

Legendre quadrature rule, is a robust and efficient method for the calculation of

weakly singular integrals Is ¢ij u* dB and IS¢ij q* dB over general curved

elements. Hence, the method can be safely applied to weakly singular integrals

which arise in the calculation of H, G matrices for three dimensional boundary

element analysis (e.g. potential problem).
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Other methods for weakly singular integrals 6.8. 19, 20 have not been

compared with the present method, which gives good enough results, mainly

because the stress of this thesis is on nearly singular integrals, which are more

difficult to calculate, and also because the present method of polar coordinates

with angular variable transformation can be considered as a special case of the

proposed PART ( Projection and Angular & Radial Transformation) method for

nearly singular integrals, indicating a unified approach to weakly singular and

nearly singular as well as hyper singular integrals, as will be shown in the

following chapters.

CHAPTER 10

APPLICATIONS TO NEARLY SI GULAR INTEGRALS

In this chapter, results of numerical experiments on nearly singular

integrals arising in three dimensional potential problems, which is the main

interest of this thesis, are presented. The PART (Projection and Angular & Radial

Transformation) method proposed in Chapter 5, with its different types of radial

variable transformations R(p) and the angular transformation t(8), will be

evaluated.

10.1 Analytical Integration Formula for Constant Planar Elements

First, the analytical integration formula for the integral

I • == 4" J u· dS = J~ (l0.1)
U s s r

for a constant planar quadrilateral element is presented, so that the numerical

integration methods / codes can be checked.

Using polar coordinates (p, 8) centered at the source projection xs, in each

triangle 6j, (j= 1-4), as shown in Figures 5A, 5.5, 5.8 and 5.10,

where

where

4

lu· == L [u-,j
j=1

J

I>8.

I •. == J dB
u ,J 0

r=~

(10.2)

(l0.3)

(lOA)
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for planar elements, where d is the source distance, or the distance of the source

point X s from the element S.
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where cosf'J.8j is given by equation (5.26). For sgn(j) =0 , Xs lies on edge-) of S =S,

so that the area of t:.j becomes zero, Le. Iu*,j = 0 .

Similarly, for the kernel q*,

Iq' '" 4rr Js q* dS

Since,

J

P .(8)

J. (0) '" ) e. dp
U .j 0 r

J
P .(8)

'" ) --p- dp
o Vp2+d2

_[ 122] Pj(O)
- vp"+d"

o

= .JP~(O) + d
2

- d

where

(10.5) where

J
(r, n)

- -dS
s r3

4

L lq',j
j=l

J
AB. JPj(81 -d· p

lq',)' = ) dO -- dp
o 0 r3

(10.11)

(10.12)

h
p(O) '" --)-

) cos (0 -a )
)

J
AB

I •. = j J. (0) dO
u ,J 0 U .J

(10.6) since (r, n) = d , where the outward unit normal n to the planar element S is

taken so that n points to the other side of S regarding the source point xs .

Since, r=Vp2+d2 for planar elements,

J
68 Vh 2 + d2 oos2 (0 - a )

= )) ) dO - 1::.0. d
o oos(O-a)) )

[

ooS(I::.O-a)· (h.sina + .Jh.
2 + d2

00s
2
a) 1= h log ))))) )

) oos a) . {- hj sin (!::.OJ-a j ) +-../hj 2 + d2
coS

2
(!::.O) -a j)}

I (
-dsin(!::.O .-a.) I

+d cos- I ~)

)

for sgnC))* O. Note that

oos(I::.O -a) > 0
) )

since

for sgn(j)* O. t:>.Bj can be calculated from

- 347-

(10.7)

(10.8)

(10.9)

(10.10)

J
AB

) p
Jq' (0) '" - d -3 dp

,) 0 r

= -d [_--1-1 p)(O)

~o

d
=-----1

VPj (0)2+ d2

d cos (0 - aj ) _ 1

Vh 2+ d2 oos2 (0 - a .)
) )

J

AB.

lq' . (0) '" ) Jq' . (0) dO
,) 0 ,J

(
d sin (!::.O .- a )I ( d sina. )

= sin-
I
~) + sin-

1
Vh.2+ ~2 -!::.OJ

) )
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for sgn(j)*0, where t18j is calculated by equation (10.10).

For sgn(j)=O, Iq*,j=O .

It is interesting to note that, from equations (10.11) and (10.14), the limit

J
1 4 1

lim q* dS = - 4,;" L 68 j = - 2:
d-+O+ S )=1

(10.15)

10.2 Singularity Cancelling Radial Variable Transformation for Constant

Planar Elements

In this section, numerical experimental results are given to show the

effectiveness of the singularity cancelling radial variable transformation

proposed in Chapter 5:

gives the Cauchy principal value of the weakly singular integral Is q* dS ; d = 0 ,

with the source point X s just inside the region V regarding S. This corresponds

to equation (2.18) with w = 2". , where the limit was taken with the source point X s

inside a small hemisphere of radius «-0). (Refer also to the end ofsection 9.2.)

pdp = r'" dR

or

R (p) = J --p-- dp

-J/+d2
"

for calculating the integrals

Is u* dS

and

(a=1 )

(5.43)

(5.45)

(10.16)

dS

J q* dS = - ~ J~ - d J
s 4" S r3 - - 4,;" S r"

over constant planar elements S, for which

r' '" -Jp
2+ d2 = r

From Table 5.1, for a = 1 we have

R (p) = -Jp
2+d2

and for a=3
1

R (p) = - ";p2+
d

2

(a=3 ) (10.17)

(10.18)

(10.19)

(10.20)

As an example, we take the planar square element S: PLR (-0.5, 0.5) ,

which is defined by

-0.5 :;; x :;; 0.5, -0.5:;; y :;; 0.5, z = 0 (8.24)

- 349-

The element size is 1, so that the source distance d is equivalent to the relative

source distance.

The source point Xs= (0.25,0.25, d) will be set so that the source projection

is always
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;;: s = - (0.25.0.25,0) = x (0.5,0.5) (10.21)

as shown in Fig. 10.1, and the source distance d is varied from 10 to 10-3 in

order to see the effect of the source distance on the difficulty of numerical

integration. Xs is set off the centre in order to represent the general unsymmetric

case where Xs '* x(O, 0) .

Numerical integration results for the integral Is u* dS using the singularity

cancelling radial variable transformation R(p)=Vp2+d2 , (a=l) , with and

without the angular variable transformation t(O) of equation (5.130) ; the product

type Gauss-Legendre formula 3,38,39 of equation (4.24) and Telles' cubic

transformation method 15 of equation (4.51) are compared in Table 10.1. The

minimum number of integration points in each variable required to obtain a

relative error less than 10-6 is shown. Fig. 10.2 gives the convergence graph of

relative error (in log scale) vs. the number of integration points, for the case

when the source distance d = 0.1 .

As shown in Table 9.1, only one radial integration point is required for the

x

y

---....,...,-+---r--::-t----t::--;:--~x

s

integration

f
J f dSu' dS = - -

S 4rr S rO

when the radial variable transformation

II (p) = Vp2+d2

corresponding to

(10.22)

(10.19)

Fig. 10.1 Unit planar square element S
and source point Xs

pdp = rO« dR (a=l) (10.23)

is used, irrespective of the source distance d, whereas with the Gauss and Telles'

methods increasing number of integration points are required as the source

distance decreases. This is because for planar elements, r= r' in equations (5.43)

and (5.44), so that the near singularity due to l/r in equation (5.44) and (10.22) is

exactly cancelled by the r' in the Jacobian due to the transformation of equation

(10.19) and (10.23). In other words, the radial integration is done analytically.
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~

Table 10.1 Nearly singular integral Is u* dS over the unit planar square: PLR(O.5,0.5)

R(p)=Vp2+d2 , (a=l)
Gauss TellesSource Integral

distance
Angular variable 0 t(O)

NO 4". Isu* dS

CPU CPU
--

total CPU CPU
d NoxNR total Vv'I(O) XNR total NI(o) N'7t XN 7)2 (msec) Ny 1 XNY2 total (msec) (analytical)

(msec) (msec)

10 10 X 1 40 1.3 4 Xl 16 0.68 2.5 2X2 4 0.091 2x2 4 0.29 9.9854681 X 10 2

3 10 X 1 40 1.3 5 X 1 20 0.81 2.0 3x3 9 0.20 3 X 3 9 0.40 3.2813410X 10 1

1 10 X 1 40 1.3 4 Xl 16 0.68 2.5 4x5 20 0.44 2x3 6 0.35 8.8974473x10 1

- -

0.3 9 X 1 36 1.2 5 X 1 20 0.81 1.8 9X9 81 1.8 6x6 36 0.99 1.8868165

0.1 9 X 1 36 1.2 5 X 1 20 0.81 1.8 25 X 25 625 13 9 X 10 90 2.2 2.6127678

0.03 9 X 1 36 1.2 6X1 24 0.92 1.5 64 X 64 4,096 88 11X11 121 2.8 2.9818223

0.01 9x1 36 1.2 3 X 1 12 0.57 3.0 160 X 160 25,600 554 20 X 20 400 8.8 3.1011123

0.003 9 X 1 36 1.2 3 X 1 12 0.57 3.0 250 X 250 62,500 1,350 35 X 35 1,225 27 3.1443680

256 X 256
0.001 9 X 1 36 1.2 3 X 1 12 0.57 3.0 (.=2X10- 4 ) 65,536 1,410 45 X 50 2,250 49 3.1568704

0 9 X 1 36 1.2 1 X 1 4 0.35 9.0 - - - - - - 3.1631456

Source point xs=(O.25, 0.25, d), relative error £ <10-6

Relative Error

;

Relative error vs. Number of integration points

....x-·_x......... Gauss.,-_._-_._.__._._._.-,.

200 Number of
Integration Points

150100

Nearly Singular Integral

f u* dS
s

S: planar square PLR (0.5, 0.5)

Xs = x (0, 0)

d = 0.1

,.................. Telles
"" ...........

A---. .. -......e

Fig. 10.2

10-1

C..:>
c:.n.,.



Table 10.1 and Fig. 10.2 also show that the angular variable transformation

t(8) of equation (5.130) is useful in reducing the number of integration points in

the angular variable. This is shown more clearly in Table 10.2 and Fig. 10.3

where the effect of moving the position of the source projection Xs = x( ij, ij) from

centre ij = 0 to the corner ij = 1 along the diagonal is shown, keeping the source

distance constant at d= 10- 1• Fig. 10.4 shows the convergence graph for the case

when the source projection is near the corner of the element i.e. Xs = x(0.9, 0.9),

wi th the source distance d = 10 - 1.

The angular variable transformation t(8) becomes particularly effective

when the source projection Xs is situated near the corner or edge of the element S.

Hence, the transformation t(8) gives a robust numerical integration method for

the angular variable.

For the Gauss and Telles methods, the required number of integration points

decreases as Xs approaches the corner or edge of the element. This is because the

integration points of the Gauss and Telles methods are concentrated near the

corner or edge of the element, so that the near singular integral is integrated more

accurately when the source projection (around which the integral kernel changes

most rapidly) is situated near the corner or edge of the element, compared to when

it is situated in the centre of the element.

Table 10.3 shows the effect of the aspect ratio of the element on the

numerical integration. The source projection is set to xs=x(O, 0) and the source

distance is fixed at d = 10 -1. Again, the robustness of the angular variable

transformation t(8) against the aspect ratio of the element is shown, compared to

using 8 as the angular variable or using the Gauss and Telles' methods. With the

product type formulas of Gauss and Telles, the number of integration points

increases approximately proportionally to the aspect ratio.
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Number of Integration Points

9

S: unit planar square PLR ( 0.5 , 0.5 )
Source projection x5 = X (11. Ti )
Source distance d = 0.1
Relative error < 10 - 6

f u* dS.
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Nearly Singular Integral______._.__....c.,
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.-< Next, the effectiveness ofthe radial variable transformation..:;

'" ~
0 0 "<i'

"<i' ~ .... .,.; <0 r:-:

O~
T R(p) = _ 1 (10.20)

~I
~

(J) "<i' (J) Vp2+d2
p,v> c-i .... ....05

oj OC! 0 "<i'
corresponding to

V> 0 C'l

'" .8 OC! I:- C'l 0
~.-< C'l

::0 ~ ::
pdp=r,adR (a=3 ) (10.24)

.n :<: OC! (J) ~
10 OC!

0 X X X
C'l C'l

~
X X X for the integration

~ ~ OC! OC! OC! OC!
H :<:p, Is q* dS

1

Is
(r, n)

a.; O~
- - --dS

b'o I:-
~

(J) 10
~

4" ra
p,v> .-< C') (!)

~
05

d
J~"<i' 0 0 0 0 -- (a=3 ) (10.17)

V> 2 g: ;1; 0 0 0 4" S ra
.... V> .8

OC! 0 0
oj <: "

.-<- .-<- cQ (!)-

~

~
oj

oj

" over a constant planar element S, is demonstrated in Table 10.4 .
0. £ OC! 10

~
0 0

I

'" C'l 10 ;::j "<i'

-E '" X X X X
C'l ~ Again, the unit planar square element PLR(O.5, 0.5) with the source point at

X X

'"
-E :f OC! 00 10 10 10 V

1;
<..., C'l C'l C'l C'l C'l .... xs =(O.25, 0.25, d) is taken as an example. In this case, the unit outward normal
0 0
0 ....

(f) ....

"" ~ ~I ~ '" n is defined as
*

C'l .-< C') (!) I:- '"::l u
,...< ,...; ,...< ,...< ,...< :> G

...::; :<: '..3 (10.25)
'" ~ IGI""~
V>

O~ ~oj 0 (J)

~ '" p,v> OC! (J) .-< C'l ~ where
-E 05 0 0 ,...< ,...<

.e ax ax
0
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'; ~ II .8 C'l C'l C') C') "<i' '"t:!
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~
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Z ;€ '"u Similar to the case of Is u* dS , in Table 10.1, only one integration.... a=l
C') II O~ (J)
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g

~ ~ "" p,v> OC! C') OC! (f) point is required for the radial variable, independent of the source distance d. For
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'" ~ ::0 0'
::0 .~ 3 a the Gauss and Telles' methods, even more integration points are required when
as "<i' C'l 0 ;g 0

E-< oj
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II O<d<li I, since the order of near singularity is a =3 for q*, compared to a = 1 for u*.....
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Fig. 10.5 shows the convergence graph for the case when the source distance is
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<I; Z (!) OC! 0
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Table 10.4 Nearly singular integral Is q* dS over the unit planar square: PLR(0.5,0.5)

R(p)= -1/ -Vp2+d2 , (a=3)
Gauss TellesSource Integral

Angular variable 8 t(B)
distance No 4" fsq* dS

CPU CPU
--

N'I1 XN 'I2 total
CPU

NYI XNY2 total CPU
d NoXNR total NICB)XNR total NlCO) (msec) (msec) (analytical)

(msec) (msec)

10 10x1 40 1.4 4X1 16 0.70 2.5 3x3 9 0.20 3x3 9 0.40 - 9.9565067 X10-3

3 10X1 40 1.4 5X1 20 0.88 2.0 3X4 12 0.27 3X4 12 0.47 -1.0603981 X 10 1

1 7x1 28 1.0 5X1 20 0.81 1.4 5X6 30 0.68 4X4 16 0.58 -7.1920527x10 1

0.3 6X1 24 0.91 7X1 28 1.0 0.86 12X12 144 3.1 8X8 64 1.6 -2.7346419

0.1 5X1 20 0.80 7x1 28 1.2 0.71 32X32 1024 22 14X14 196 4.5 -4.7608104

0.03 3X1 12 0.57 7X1 28 1.0 0.43 100X110 11,000 240 25X25 625 14 -5.8061327
--

256x256
0.01 3X1 12 0.57 7X1 28 1.0 0.43 (,=2X10- 6) 65,536 1,430 45x45 2,025 45 -6.1235154

256x256
0.003 3X1 12 0.57 3x1 12 0.58 1.0 (,=2X10- 3) 65,536 1,420 72x72 5,184 113 -6.2352619

28
256X256

65,536 1,430 100 X 100 10,000 217 -6.26721020.001 3x1 12 0.57 7X1 1.0 0.43 (,=2X10- 1)

Relative Error
\

Number of
Integration Points

...............~

~

'" 'n-........... Telles
...........................

Nearly Singular Integral

J q* dS
s

S: planar square PLR (0.5, 0.5)

xs=x(O,O), d=0.1

Fig. 10.5
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This time, the angular variable transformation t(B) does not payoff when

d~ 0.3. However, Table 10.5 and Fig. 10.6 show that when the source projection

Xs = x(~, ~) is near the corner of the element (0.96~~~ 1.0), the transformation

t(B) helps to reduce the number of integration points in the angular variable.

Hence, the angular variable transformation t(B) ensures the robustness of the

numerical integration method against the position of the source projection xs•

This is demonstrated in the convergence graph in Fig. 10.7 for the case

xs=x(0.99,0.99), d=10- 1•

Table 10.6 demonstrates the effect of the aspect ratio of the element on the

numerical integration of Js q* dS. It is shown that the radial variable

transformation method is robust against the aspect ratio, where as the Gauss and

Telles' methods are strongly affected by the aspect ratio.

Summing up, it has been demonstrated that the singularity cancelling

radial variable transformations of equations (10.19) and (10.20) require only one

radial integration point for the exact evaluation of the nearly singular integrals

Js u* dS, (a = 1) and Js q* dS (a =3), respectively, when S is a constant planar

element. The effectiveness of the angular variable transformation t(B), for cases

where the source projection Xs is very near the element edge, and for elements

with high aspect ratio, was also demonstrated.
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Curvature and Interpolation Functions
p..,if> ~ <ci ".: ..... C'lOs ..... .....

if> '2 ~
0 0

~
0 The success of the singularity cancelling radial variable transformation R(p)

00 lD ~
Cll B C'l C':l lD lD

:<:> ~ .;:
of equations (10.19) and (10.20) for constant planar elements, encourages us to

.n ~ ;:; 0 lD
~

0

ci
C'l C'l .q< apply the method curved elements and integrals including interpolation
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X X X X X X to
;::: ;:; ;:; ;:; ~ ;:;H
~

..... functions <Pij( '11' '12)'p..,

;,;
~~ 0

bo lD f= .q< t- C'l

I
p..,if>

C':l 00 ~ .q<OS ..... ....... (1) Application to curved elements

'2 0 0 0 0 ~
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0 0 lD 0 C':l Results of applying the singularity cancelling radial variable
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<IS
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£ 0 0 ~I
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.....
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.....

Xx V (a = 1) (10.19)
Cll

'- X X;; 0 £
0 0 lD 0 ~oo

0
0

.q< .q<
C':l .q<

~~C/:J :;:; Cll in combination with the angular variable transformation t(8) of equation (5.130),"d
~

*
Cll
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0 t- ~ lD ~ .::

--::: Cll 00 ~ lD .q< C':l ~ to the nearly singular integral
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~~ C'l !su. ciS 1 I ciS (10.22)
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~
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Table 10.7 Nearly singular integral Is u* dS over the 'spherical' quadrilateral: SPQ60

( Source projection Xs = x(O, 0) )

Source
R(p)=Vp2+d2 , (a=l)

Telles Integral
Angular variable: t(O)

distance 4". fsu* dS

d Nt(O)XNR(p) total CPU
NYIXNY2 total CPU (log-Ll,128X128)

(msec) (msec)

10 5X3 60 1.7 4X5 20 0.62 1.0519218 X 10- 1

3 5X3 60 1.7 4X5 20 0.62 3.5505101 X 10- 1

1 5X3 60 1.7 5X5 25 0.72 1.0458484

0.3 5X4 80 2.2 7X7 49 1.2 2.3999977

0.1 5X6 120 3.1 10Xll 110 2.5 3.1707996

0.03 5x12 240 5.9 16X20 320 6.9 3.4722881

0.01 4X20 320 7.7 28X28 784 17 3.5598394

0.003 4X35 560 13 25X25 625 13 3.5905652

0.001 5X45 900 21 50X50 2,500 53 3.5993500

Average CPU -time per point: 26!'sec " 25!'sec

Relative error E < 10-6 • Source distance d=O.Ol, towards centre of sphere.

Table 10.8 Nearly singular integral Is u* dS over the 'spherical' quadrilateral: SPQ60

( Source projection Xs = x(0.5, 0.5) )

Source
R(p)=Vp2+d2 , (a=l); Integral

Angular variable: t(8)
Telles

distance 4".fs u*dS

d Nt(O)XNR(p) total CPU
NYI XNY 2 total

CPU (log-Ll' 128 X 128)
(msec) (msec)

10 6x20 480 12 4X5 20 0.68 1.0576605 X10- 1

3 6X20 480 12 4X5 20 0.68 3.6025808 X10- 1

1 6X20 480 11 5X4 20 0.62 1.0467642

0.3 5X20 400 9.6 6X6 36 1.0 2.1748271

0.1 5X14 280 6.8 9X9 81 2.0 2.8377859

0.03 6X20 480 12 llX16 176 4.0 3.1353675

0.01 6x28 672 16 20X20 400 8.7 3.2263821

0.003 6X40 960 23 35X35 1,225 26 3.2587902

0.001 6x60 1,440 34 45X50 2,250 47 3.2680995

Average CPU -time per point: 24!'sec " 27!'sec

Relative error <10- 6 • Source point Xs , towards centre of sphere.



Table 10.9 Nearly singular integral Is u* dS over the 'spherical' quadrilateral: SPQ60

( Source projection Xs = x(O.9, 0.9) )

Number of
Integration Points

Xs = x ( 0, 0)

d =0.01

S : 'spherical' quadrilateral SPQ 60

f u* dS
s

Nearly Singular Integral

Fig.10.8 Relative error vs. Number of integration points

i
~
\
i*:r\
1\
:l, t.

: :\
\ J.
:/ ~
~ ..".

".

'~"-"-"-L>.......
.....................

rv a = 1 . t(8). ..............: Telles

(Nt(Sl= 4) '",,-.. -- ·~""""··""""""A

Relative error < 10-6 . Source point xs , towards centre of sphere.

Source
R(p)=Vp2+d2 , (a=l);

Telles Integral
Angular variable: 1(8)

distance 47rIs u*dS

d N t(8) X NR(p) total CPU
Ny j XNY2 total

CPU (log-Ll, 128 X 128)
(msec) (msec)

10 6X20 480 12 4X5 20 0.68 1.0687784 X 10 1

3 5X25 500 12 4X5 20 0.68 3.7004261X10- 1

1 5X20 400 10 4X4 16 1.1 1.0298690

0.3 6X25 600 14 6x6 36 1.0 1.7293821

0.1 6X20 480 12 7X7 49 1.3 2.0268382

0.03 7x25 700 17 9X12 108 2.6 2.2105752

0.01 9X32 1,152 27 20X20 400 8.7 2.2935015

0.003 10X55 2,200 51 28X28 784 17 2.3276379

0.001 10X90 3,600 85 40X25 1,000 21 2.3379046

Average CPU -time per point: 24,usec " 31,usec
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Hence the source point Xs is located towards the centre of the sphere (inside the

sphere when d~l). Fig. 10.8, 10.9 and 10.10 give convergence graphs for the

cases 'I =0, 0.5 and 0.9, respectively, with the source distance fixed at d=O.Ol. 00 I I

The results indicate that, unlike for constant planar elements, more than CI:l ;::l ;:; ;:;
'Ol '"0 X X X

* 00 0 <0
~ ""' <0 lC lC '<l'

~one integration points are required in the transformed radial variable R and that 0 j c:r ;::l <0 t- C'l t- lC '<l' 00
0> 00

~
t- o C'l 00 '<l' ""'<0

~ t-
~ '<l' 0> '<l' '<l' 0> C'l

G' .:l S 0> 00 lC ""' 0> t- oo 0>
the number increases rapidly as the source distance d decreases, and as the p., '" <0

~
'<l' 00 C'l 00 0> <0 00

UJ '<l'

~
00 0 t- o t- O> 0 0
ai ...; ...; ..; ~ ~ ~ 00 00

source projection Xs approaches the corner of the curved elements. Compared with
~ I I I I I I I I I

Telles' cubic transformation method of equation (4.51), the radial variable $
~

~ ::Ju lC '<l' '<l'
<0 M

U

transformation method of equation (10.19) (a = 1) requires less number of '<l' lC t-
C'l

Q)

ro p.,~ 0 0 0 ...; .0 ~
0 0 </l
'<l' ;:; <0 'I..

50 uE C'l <0
integration points only for cases d~ 0.03 for 'I =0, and d~ 0.003 for 'I =0.5. C'l

1 'Ol ;::l ~
lC '<l' '<l' 0 0 00 0
C'l <0 C'l 0 0 0 ;:;

..<:I </l S C'l t- oo <0

Similarly, results of applying the singularity cancelling radial variable .~ 8
Q) ,...{ '<l'" ti ~

Q) 0 ~ ..<:Itransformation -E >< ~... II :: 31 Q)

~
00 lC C'l(10.20) > ,.; 2;R(p) =- v'

p
2 + d 2

(a = 3) 0 '<l' '<l' lC 00 C'l '<l' t- Q)

CI:l X X X X X X X X X X .bg ;: ""' '<l' lC 00 ;:; lC 0 '<l' 3 ~'"0 :e C'l '<l' <0
* 2;

with the angular variable transformation t(8), to the nearly singular integral c:r </l
Q) "E~ '8 ro

f q* dS = - ~ f~ dS (10.31) 'Ol p.

::J]
u ~

Q) ""' 00 M t- M lC Q) ."5
~ C'l </lS 4" S r3 e c;;- p.,</l ...; ...; C'i C'i ..; ai ~

0> 'I..g UE C'l lC t-

.~ II § C'l .;UJ "over the 'spherical' quadrilateral SPQ60, are given in Tables 10.10, 10.11 and ...
.~ro

~~10.12 for the cases 'I = 0, 0.5 and 0.9 ,respectively. The corresponding ~ '3 0 0 C'l 0 0 '<l' C'l 0 0
'"tl ro '<l' <0 t- ;:; ::; 00 t- o

~ P.
I': + 'J:: .8 ""' <0 C'l Q)

·til ,...{ C'i' u
convergence graphs for d = 0.01 are given in Fig. 10.11, 10.12 and 10.13. '" ro ...

>, '<. > gs:: ... I:l UJ
Similar to the case of Is u* dS , ro

__ ro

!more than one integration points are Z I~ '0
C'l ""' ""' lC 00 ~

00 0 0 P.
I

required in the transformed radial variable R, and the number increases rapidly l~
C'l lC 0> ...

;:; X X X X X X X X X X
Q) ;:;

lC lC <0 lC lC P.

~ ~
." <0 <0 <0 <0

S V
as the source distance decreases and the source projection Xs approaches the

~
...

Q) .~

~corner of the curved element. Compared to the Telles' method, this time the :0 ::Jro
Q)Eo< p.,

singularity cancelling radial variable transformation method becomes slightly Q)
Q)

""' M U 'bu

""' M 0 gu I': g:, ~... ""' M 0 0 0
g 11 '"tl ;:; 0 0 0 0 0 0

~ ~more competitive. Namely, the method outperforms Telles' method for the cases
UJ :.a >

d~O.l ('1=0), d~O.Ol ('1=0.5) and d~O.OOl ('1=0.9). <
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Table 10.11 Nearly singular integral Is q* dS over the 'spherical' quadrilateral: SPQ60

( Source projection Xs = x(0.5, 0.5) )

Source
R(p)= -ltvp2+d2 , (a=3);

Telles Integral
Angular variable: 1(8)

distance 4". Isq* dS

d N t(8)XNR(p) total CPU
NYI XNY2 total

CPU (log-Ll, 128 X 128)
(msec) (msec)

10 5X20 400 9.8 3 X 4 12 0.52 - 9.4067128 X 10-3

3 5X20 400 9.9 4 X 4 16 0.60 -1.1562058 X 10- 1

1 6X20 480 12 5 X 5 25 0.74 -1.0499297

0.3 6X14 336 8.4 7 X 7 49 1.3 -4.0862770

0.1 6X7 168 4.4 14 X 14 196 4.5 -6.4265768

0.03 8x20 640 16 25 X 25 625 14 -7.4555989

0.01 8x32 1,024 25 40 X 45 1,800 40 -7.7480149

0.003 8X45 1,440 35 64 X 72 4,608 100 -7.8489797

0.001 9x110 3,960 95 100 X 100 10,000 217 -7.8776623

Average CPU -time per point: 25,usec " 28,usec

Relative error < 10-6 • Source point xs, towards centre of sphere.

Table 10.12 Nearly singular integral Is q* dS over the 'spherical' quadrilateral: SPQ60

(Source projection xs= x(0.9, 0.9) )

Source
R(p)= -ltvp2+d2

Integral
Angular variable: 1(8)

Telles

distance 4". Is q* dS

d Nt<.o) XNR(p) total CPU
NYI XNY2 total

CPU (log-Ll, 128 X 128)
(msec) (msec)

10 6x32 768 19 3X4 12 0.52 -8.5565994X 10-3

3 6X28 672 17 4X4 16 0.60 -1.1487449x 10- 1

1 6X16 384 10 5x5 25 1.3 -1.0162495

0.3 7x14 392 9.7 7X8 56 1.5 -2.5547829

0.1 8X7 224 5.8 11X14 154 3.6 -3.7059921

0.03 10X25 1,000 24 14X16 224 5.2 -5.5991854

0.01 10X40 1,600 39 28x32 896 20 -6.7346103

0.003 14X72 4,032 96 50X55 2,750 60 -7.1833142

0.001 10x128 5,120 122 80X72 5,760 125 -7.3129500

Average CPU -time per point: 25,usec " 30,usec

Relative error < 10 -6. Source point x s , towards centre of sphere.
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.~

(d) Different sets of integration points are required for the kernels u* and q*.

atxs ·

(c) The exact (instead of approximate) projection of the curved element Son

to the tangent plane Sbecomes complicated, since the edge of the

projected element is, in general, a curve in S.

Summing up. for curved elements. the singularity cancelling radial variable

transformations R(p)=-";p2+d2• (a=l) for u* and R(p)= -11-";/+d2• (a=3) for

q* do not perform as dramatically or efficiently as they did on constant planar

elements. Particularly. these radial variable transformations are not robust

against the posi tion of the source projection xs• al though the a = 3 transformation

is slightly more robust than the a = 1 transformation. The other shortcoming of

the singularity cancelling transformation is that different sets of integration

points are required for the kerneles u* and q*. unlike the Telles' method. Hence, a

more robust and efficient radial variable transformation is required.

The angular variable transformation t(8) of equation (5.130) is robust

against the position of xs, since the number of angular integration points

increases only slightly as Xs approaches the corner of the element.

(b) Much CPU-time is required in determining the exact projection of the

integration point x on the curved element, to the plane S tangent to S

At this point, a more accurate cancellation of the near singularity by taking

into consideration the curvature of the element at the source projection xs , in the

radial variable transformation was attempted, as mentioned in Chapter 5. This

approach showed some effect in decreasing the number of radial integration

points. However, it has the following shortcomings.

(a) Exact cancellation of u* or q* does not work efficiently when the

integral kernel includes interpolation functions ¢IJ' as will be shown in

the next section.
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(2) Application to integrals including interpolation functions

Next, the effect of applying the singulari ty cancelling radial

transformations of equation (10.19) and (10.20), to nearly singular integrals Ji
CI)

p..
I I I I I I'"0 00 I I I

~ ~ ~ ~
0 0

~ ~ ~ ~including the interpolation functions rpij is tested. OJ .' ...... ......
:0 5'0

;:j X X X X X X X X X X
0

~
00 I:-

~
0) 00

~
00 "" "" "<J'For simplicity, the unit planar square PLR(0.5, 0.5) is taken as the element, .n .2$ ~

LQ 0) 0) "<J' "" 00 0)

..:; ~ ...... "<J' 0 [:: "<J' "" I:- 00
~0 00 "" 0

~ :g <D LQ

and the point is set at X s = (0.25, 0.25, d) with various source distances " S ~ 2,'i "" 00 "" ~ ""source ~ "<J' LQ I:-
~

I:- "<J'
~H b.o I:- "" 00 "" "" "<J'

10-3 ~ d ~ 10. The source projection is fixed at xs=x(0.5, 0.5). p..
~

C'i 0) C'i 0) ,..; C'i C'i C'i C'i

~The 9-point Lagrangian interpolation function oj
::; ;:Ju LQ "" LQ

55 "<J' <D 00 I:- 00
0) ;p..3\ 0 0 0 ,..; C'i ;:: ~(10.32) '" Os I:-

¢,j (1 1 ,12) = ¢i (1 1) ¢ j (12) i,j= -1,0,1 oj

.:
oj

where P..

'" 0 LQ
0 LQ "<J'

'8 UJ <D LQ :g 0
~ ~0 ...... "" ~ "" "<J'

¢-1 (1) = 1(1- 1 )/2
::; Q.) <D ....... "" .nQ.)

Q.)

~ E-<

'"2
Q.) ::¢o (1) = 1- 1 ~

~ "" "<J' LQ 00 0 ~? 0 LQ ""CI) X X X X X ...... "" "<J' LQ I:-

'"0 "" "<J' LQ l:- X X X X X I

¢1 (1) = 1 (1+1) 1 2 (5.3) *
.;:

~
LQ

~
LQ "" ~;:j ~ "" LQ I:-

~
V

'"
~

0

is used as the interpolation function. '";:J~ '"5 00 0 0 ...... 0) I:- ...... ""
Q.)

OJ p..UJ 0) <D 00 <D
~ ~

<D "<J' Q.)

First, the effect of the singulari ty cancelling radial variable transformation ~ ...... § Os "b
.5 II

~R(P)=V/+d2 (10.19) -.::- Qj
(a = 1) '" • :D

~
2,'i "<J' 0 0 0 0 g 0

~oj

~ ;:: 00 "<J' <D "<J';;
~ .~

0 00 "" 0) "<J' "" LQ Sbo "<J" ""
",,' c-i ",,' ",,' .n ",,' .......

.nin combination with the angular variable transformation tce) of equation (5.127) .~ + ~
""£

C'lQ... @ 0
on the nearly singular integral

II ], l 00 00 0 0 .n
'" ""Z ~ ~ g 0 0 ...... LQ 0 "<J'

~ .: 0) 00 ...... ...... 00 <D 8J ¢ u* dS i,j= -1,0,1 (10.33) 3--<: X X X X X X X X X X IIs 'J

""
~

'" 00 I:- <D 00 I:- 0) 0) I:- <D .;......
:€~ .~is shown in Table 10.13. The number of integration points required to achieve a

Q.)

relative error less than 10-6 for all the components rpij' ( i, j= -1,0,1 ) is :D p..
oj

Q.)
Q.) "" ...... Q.)

E-< u 8 ...... 0 0 u
u .: "" ...... 0 0 0 '"'" '"c:l gcompared with the product type Telles' cubic transformation method of equation ::;

~ ~ 0 0 0 0 0 0
0 ww ;.a

(4.51). (The relative error was estimated by comparing with results obtained by

N t = 128, N R = 128 points with the log-L1 radial variable transformation method,

mentioned later.)
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do not give efficient numerical integration results. Hence, a more effective and

robust radial variable transformation (against interpolation function <PI)'

curvature of element and position of source point) is required.

The singularity cancelling radial variable transformation of equation

(10.19), a = 1, which was so successful with the integral Is u* dS over constant

planar elements turns out to be inefficient for the integral Is <Pij u* dS ,

containing the interpolation function. The convergence graphs for the case

d=O.l and d=O.Ol are shown in Fig. 10.14 and Fig. 10.15, respectively. Only in

cases d=0.003, 0.001 where the source distance d is extremely small compared to

the element, the radial variable transformation R(p) of equation (10.19) is more

efficient compared to Telles' method.

The reason for this is that when applying the Gauss-Legendre rule to the

variable R, obtained by the transformation of equation (10.19), the integration

points are ideally positioned to integrate l/r but they are far from ideal for the

polynomial interpolation function <Pi}'7!' '72)'

Similarly, the effect of the singularity cancelling radial variable

transformation

R(P)= -J/+ d2

1
R (P) = - -J/ + d2

(a = 1 for u*)

(a = 3 for q*)

(10.19)

(10.20)

1
R (P) = - -Jp2 + i (a = 3) (10.20)

in combination with the angular variable transformation t(8), on the nearly

singular integral

J 1> q* dSs IJ
(i,J= -1,0,1) (10.34)

is shown in Table 10.14, in comparison with Telles' method. The convergence

graphs for the cases d=O.l and 0.01 are shown in Fig. 10.16 and Fig. 10.17,

respectively.

Many integration points are required in the transformed radial variable R

because the integration points are not optimally placed to integrate <Pi/r2 as a

whole, instead of 1/r2.

Summing up, for nearly singular integrals with kernels including

interpolation functions <P v' the exactly cancelling radial variable transformations
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Fig. 10.16 Relative error vs. Number of integration points

Table 10,14 Nearly singular integral Is 1(1) q" dS over the unit planar square: PLR(O,5,O,5)

,

Number of
Integration Points

Is <i'ij q* dS

s: planar square PLR ( 0.5 , 0.5 )

Xs = x ( 0.5 , 0,5 )

d = 0.1

Nearly Singular Integral

t
t
~
\
1
'4

'l>

\
\.
\
\i rv Telles

Source point X s = (0.25,0.25, d), relative error < 10-6•

-7, , ! , , , , , , , , ':>

10 500 1000

-6
10

-5
10

-4
10

-3
10

Relative Error

Source
R(p)= _1I-Jp

2+d2 , (0=3);
Telles Integral

Angular variable: t(O)
distance 4" Is 1> 11 q*dS

d NI(O) X NR(p) total CPU
NYI XNY2 total

CPU (log-Ll, 128 X 128pts,)
(msec) (msec)

10 8X128 4,096 114 3X4 12 0,53 -2.7808842X10- 4

3 7X120 3,360 93 4X5 20 0,75 -3.1225319 X 10-3

1 8x100 3,200 89 6x6 36 1.2 - 2.9528453 X 10-2

0.3 8x72 2,304 64 9X10 90 2.6 - 2.5686670 X 10- 1

0.1 8X25 800 23 14X14 196 5.3 - 6.3441539 X10- 1

0.03 7X28 784 22 25X28 700 19 - 8.1669590 X10- 1

0.01 8X45 1,440 40 45X45 2,025 53 -8.6279332X10- 1

0.003 8x72 2,304 64 72X72 5,184 136 -8.7752422X 10- 1

0.001 8X120 3,840 106 100X100 10,000 262 -8,8157517X10- 1
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lOA The Derivation of the log-Lz Radial Variable Transformation

(1) Application of radial variable transformations 0 do = r'P dR (8* a) to

integrals rs lira dS over curved elements

In search for a more effective and robust radial variable transformation,

transformations ofthe type

pdp = r'P dR

or

R(p)= I L dp
r'P

where

r' == Vp 2 + d 2

were attempted on nearly singular integrals of the type

(5.61)

(5.71)

(5.46)

I ~ (10.35)
s r a

over curved elements. This time, [3 is not necessarily equal to a, unlike the

exactly cancelling transformation. All the combinations of the transformation: [3

and order of nearly singular integral: a were attempted for [3= 1-5, a = 1-5.

Tables 10.15-10.19 give the number of integration points required to

achieve relative error E < 10-6 for the calculation of the integrals f s lira dS ,

(a = 1-5); by the radial variable transformations of equation (5.61) with [3= 1-5,

respectively. The transformations are given by

e
w
~~__--t=.:::Il.......IL-.__.L-__..L-__..L..__...L..__--L__....J

~
Qj
0:

R(P)= V/+d
2

R (P ) = log ';p 2 + d 2

1
R(p)= - V

p2 +d 2

1

R(P)= - 2(p2+
d

2)

({J=l)

((J=2)

({J=3l

({J=4)
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gives good results for all types of near singularity a=1-5, (particularly for

d~ 0.1). This log-Lz radial variable transformation requires relatively few

integration points, regardless of the order of near singularity a, curvature of the

element and source distance d.

The curved element S was chosen as the 'spherical' quadrilateral SPQ60. The

source point X s was given such that the source projection is Xs = x(0.5, 0.5), and

the source distance d= 10, I, 0.1, 0.01, 0.001 towards the centre of the sphere.

Table 10.20 gives the actual values of the integrals Is liT"" dS, (a=1-5)

calculated by the PART method with the log-LI radial variable transformation of

equation (5.85) (, which is the most robust and reliable transformation, as will be

shown later on) and the angular variable transformation t(8) of equation (5.130),

with NR =Nt = 128 integration points.

For the case: source distance d=O.Ol, Table 10.21 gives the number of

integration points NR in the transformed radial variable R required to achieve

relative error E < 10- 6 for the calculation of the integrals Is lIr" dS , (a = 1-5)

with the transformations: (1= 1-5. Fig. 10.18-10.22 give the convergence

graphs of relative error E vs. the number of integration points to calculate the

integrals

Is 1/r" dS , (a = 1-5) by the radial variable transformations: (1 = 1-5, respectively.

The results show that the radial variable transformation corresponding to

R Cp) = log v'/ + d 2

gives better results than the (1= 2 (log-LZ) transformation. (The required number

of radial integration points is less than a half.)

These results can be explained by the error analysis in Chapter 6 (Table 6.5),

where it was shown for planar elements that the numerical integration error

En(F) in the radial variable is given by

(10.39)

(10.38)

(10.40)(a*(3)

(a=(3)

(a=I,Z)

(a=3,4,5 )

a=Z

(a= I, 3,4, 5)

I > 4 -2"
E (F)

rt = a

I
-2"

E (F)- n ,
nO,

I > 4- 2"
E (F)
" = 0

for the (1 = 2 (log-Lz) transformation, and

for the (1 = 3 transformation, and

for the (1 = I, 4, 5 transformation.

For curved elements, En(F) = 0 does not hold strictly, even for a = (1.

However, the convergence graphs of Fig. 10.18-10.22 indicate that for a =(1,

either the initial relative error is smaller or the initial rate of convergence is

faster compared to a* (1.

To sum up, the radial variable transformation: (1= 2 (log-Lz) is the most

robust transformation concerning the order of near singularity a = 1-5. The (1= 2

transformation gives best results for a = 1-3, and the f3=3 transformation gives

best results for a = 4,5 .

Considering the robustness for a = 1-5 and the optimality for a = 1-3, the

(1 = 2 (log-Lz) radial variable transformation appears to be the most attractive

(5.64)

(10.36)«(3=5)
3~3

RCp)=

(1=2:

As an exception, for the case a = 4, and 5, the radial variable transformation

corresponding to (1 = 3 :

transformation.

1
R(p)= -----

~
(10.37)
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Table 10.15 Nearly singular integral Is 11r" dS over the 'spherical' quadrilateral: SPQ60

( Radial variable transformation El: R(p) = -Vp2 + d 2 )

Source a=l a=2 a=3 a=4 a=5

distance

d Nt(O)XNR(p) total Nt(O)XNR(p) total Nt(O)XNR(p) total Nt(O)XNR(p) total Nt(O)XNR(p) total

10 6 X 20 480 6 X 20 480 6 X 20 480 5 X 16 320 4 X 20 320

1 6 X 20 480 6 X 20 480 6 X 20 480 6 X 20 480 6 X 20 480

0.1 5 X 14 280 6 X 25 600 7 X 32 896 7 X 35 980 7 X 35 980

0.01 6 X 28 672 7 X 40 1,120 9 X 50 1,800 9 X 60 2,160 9 X 64 2,304

0.001 6 X 60 1,440 9 X 120 4,320 9 X 150 5,400 9 X 170 6,120 9 X 190 6,840

!Average

CPU-time 24,usec 23,usec 24,usec 23,usec 24,usec
per point

Number of integration points necessary for relative error < 10-6 •

Source projection: Xs = x(0.5, 0.5), source point towards centre of sphere.

Table 10.16 Nearly singular integral Js lira dS over the 'spherical' quadrilateral: SPQ60

( Radial variable transformation E.']; : R(p) = log v'/ + d 2 )

Source a=l a=2 a=3 a=4 a=5

distance

d Nt(O)XNR(p) total Nt(O)XNR(p) total Nt(O)XNR(p) total Nt(O)XNR(p) total Nt(O)XNR(p) total

10 6 X 20 480 5 X 16 320 6 X 20 480 5 X 16 320 4 X 20 320

1 6 X 20 480 6 X 20 480 6 X 20 480 6 X 20 480 6 X 20 480

0.1 5X5 100 8 X 12 384 8 X 16 512 7 X 20 560 7 X 20 560

0.01 6x8 192 7X8 224 9 X 11 396 9 X 14 504 9 X 14 504

0.001 6 X 10 240 9 X 10 360 9 X 14 504 9 X 16 576 9 X 16 576

!Average

CPU-time 26,usec 25,usec 25,usec 24,usec 26,usec
per point

Number of integration points necessary for relative error < 10- 6 •

Source projection: Xs = x(0.5, 0.5), source point towards centre of sphere.

,
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Table 10.17 Nearly singular integral Is 11r" dS over the 'spherical' quadrilateral: SPQ60

( Radial variable transformation El. : R(p) = -11 Vp2 + d2 )

Source a=l a=2 a=3 a=4 a=5

distance

d N/(O)XNR(p) total N/(O)XNR(p) total Nt(O) X NR(p) total N/(O)XNR(p) total Nt(O)XNR(p) total

10 6 X 20 480 6 X 20 480 6 X 20 480 5 X 16 320 4 X 20 320

1 6 X 20 480 6 X 20 480 6 X 20 480 6 X 16 384 6 X 16 384

0.1 6 X 10 240 6X9 216 7x8 224 7 X 11 308 7 X 11 308

0.01 6 X 35 840 8 X 25 800 8 X 14 448 9X6 216 9X6 216

0.001 6 X 110 2,640 8 X 80 2,560 9 X 35 1,260 9X5 180 9X6 216

Average

CPU-time 24 flsec 24 flsec 24 fl~ec 25 flsec 25 flsec
per point

Number of integration points necessary for relative error < 10-6 .

Source projection: Xs = x(0.5, 0.5), source point towards centre of sphere.

Table 10.18 Nearly singular integral Js lira dS over the 'spherical' quadrilateral: SPQ60

( Radial variable transformation~ : R(p) = -11 {2 (p2 + d2)} )

Source a=l a=2 a=3 a=4 a=5

distance

d Nt(O)XNR(p) total Nt(O)XNR(p) total Nt(O)XNR(p) total N/(O)XNR(p) total Nt(O)XNR(p) total

10 6 X 20 480 6 X 20 480 6 X 20 480 5 X 16 320 4 X 20 320

1 6 X 16 384 6 X 16 384 6 X 16 384 6 X 16 384 6 X 16 384

0.1 6 X 32 768 6 X 25 600 7 X 20 560 7 X 14 392 8 X 12 384

0.01 (6 X 256 6,144) 6,160 5,400 1,800 800
E=5X10- 6 7 X 220 9 X 150 9 X 50 8 X 25

0.001 (6 X 256 6,144) (9 X 256 9,216) (9 X 256 9,216) 160 2,000
E=4X10- 1 E=5X10- 2 E=3X10- 4 8X5 10 X 50

Average

CPU-time 24 flsec 23 flsec 24 flsec 24 flsec 24 flsec
per point

Number of integration points necessary for relative error < 10- 6 .

Source projection: Xs = x(0.5, 0.5), source point towards centre of sphere.
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Table 10.19 Nearly singular integral Is 1/,..' dS over the 'spherical' quadrilateral: SPQ60

( Radial variable transformation d..=..Q : R(p) = -11 { 3 ( p2 + d21 3/2) )

Source a=l a=2 a=3 a=4 a=5

distance

d Nt(O)XNl/(p) total Nt(8l XNl/(p) total N t(8) X Nl/(p) total N t(8) XNl/(p) total N t(8) X NR(p) total

10 6 X 20 480 6 X 20 480 6 X 20 480 5 X 16 320 4 X 20 320

1 6 X 16 384 6 X 16 384 6 X 16 384 6 X 16 384 6 X 16 384

0.1 6 X 80 1,920 6 X 72 1,728 7 X 60 1,680 7 X 40 1,120 7 X 16 448

0.01 (6 X 256 6,144) (8 X 256 8,192) (9 X 256 9,216) 9 X 256 9,216 1,120
€=2X10- l €=3X10- 2 E=lX10- 3 €=2X10- 5 10 X 28

0.001 (6X256 6,144) (9X256 9,216) (9X256 9,216) 9X256 9,216 800
€=9X10- 1 €=3X10- 1 €=lX10- 2 €=lX10- 4 10 X 20

[Average

CPU-time 27 psec 26 psec 27 psec 26 psec 28 psec

per point

Number of integration points necessary for relative error < 10-6
.

Source projection: Xs = x(0.5, 0.5), source point towards centre of sphere.

Table 10.20 Value of nearly singular integral Is 1/ra dS over the 'spherical' quadrilateral: SPQ60

( Source projection: Xs= x(0.5, 0.5) )

Source
distance a=l a=2 a=3 a=4 a=5

d

10 1.0576605 X 10- 1 1.0722041 X10- 2 1.0870732 X10-3 1.1022767 X 10-4 1.1178239 X 10-5

1 1.0467642 1.0501187 1.0534972 1.0569000 1.0603272

0.1 2.8377859 1.0589840 X 10 5.2819788 X 10 3.2411271 X 102 2.2689253 X 103

0.01 3.2263821 2.4321063 X 10 6.1913243 X 102 3.1700026 X 104 2.1147560X106

0.001 3.2680995 3.8615209 X 10 6.2741356 X 103 3.1446057 X 106 2.0964182 X 109

Calculated by the log-Ll radial variable transformation: R(p) = log(p +d), and the angular variable
transformation: 1(8) with NR(p) =Nt(8) = 128 points.
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corresponding to f3 = 2 is the most robust radial variable transformation of the

However, the log-L2 transformation of equation (5.64) works very poorly for

nearly singular integrals like

0>u::
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(5.64)

(5.61)

(10.43)

J
iJq'dS

S ax,

R(P)=log~

J
au'
-dS,

sax,

J
~ (a=I-5)

s r"

pdp = r'P dR

-0.5 ,; r. y ,;; 0.5, z=O

transformation:

type

for the calculation of integrals

over a curved element S.

(2) Difficulty with flux calculation

In the previous section, it was shown that the log-L2 radial variable

which arise in the calculation of the flux aulaxs at a point X s very near the

boundary using equation (2.46).

In Fig. 10.23, the result of applying the log-L
2

radial variable

transformation with the angular variable transformation t(O) of equation (5.127)

is shown for the constant planar square element PLR (0.5,0.5) :

of size one ( cf. section 8.2 (1) ), with the source point at X s = (0.25, 0.25, d), where

the source distance is d= 0.01 . The integrals Is u*dS, Is q*dS related to the

calculation of the potential at xs , and the integrals Is au*laxs dS , Is aq*laxs dS

related to the flux calculation at X s , were calculated. The relative error E: is

plotted against the (necessary and sufficient) number of integration points

N =N,XNn X4, where N, is the number of Gauss-Legendre integration points
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10.5 The log-Ll Radial Variable Transformation

In order to overcome the difficulty with flux calculation using the log-Lz

radial variable transformation, in section 5.5 (4) we introduced the log-L1 radial

variable transformation :

where a =1.40 for d =0.01 from Table 7.7, and n is the number of radial

integration points. This matches fairly well with the convergence graphs in

Fig. 10.24, which give relative error of orders 1.6- 11 and 1.7- 11 approximately, for

the integration of au*/axs and aq*/axs ,respectively, for flux calculations.

The theoretical error estimate of equation (7.229) in section 7.8 (I), using the

saddle point method, predicts an error of order n -2n for the case a = 0= I, which

corresponds to the integration of u*. This explains the excellent convergence for

(5.85)

(7.266)E. _ (1-2"

R(p) = log (p+d)

In Fig. 10.24, the result of calculating the same integrals as in Fig. 10.23 but

with the log-L1 instead of the log-Lz radial variable transformation is given.

Notice the remarkable improvement of the log-L1 over the log-Lz for the error

convergence for the flux integrals f s au*/axs dS and f s aq*/axs dS. Note also

that the log-L1 transformation works reasonably well for the potential integrals

f s u* dS and f s q* dS , as well.

The theoretical error estimate of section 7.8 (2) (iii) predicts the relative

error 0: to be oforder

I
Pj /

I ,= -dp,
«,f} 0 r"

From Fig. 10.23, it is evident that the log-L2 radial variable transformation,

which is so successful with the integration of nearly singular potential kernels u*

and q* , turns out to be inefficient for the flux kernels au*/axs and aq*/axs .

The reason for this was analysed in sections 5.5 (4), 6.8 and 7.7 (2). In short, the

potential kernels essentially give rise to radial integrals with 0= 1 only, in

for the angular variable t, and N R for the radial variableR. Nt was 3, 7, 8 and 12

for the kernels u*, q*, au*/axs , and aq*/axs , respectively, for relative error :

0:<10- 6 •

where as the flux kernels involve radial integrals with 0 = 2 as well as 0= I, which

causes the difficulty with the log-L2 transformation.

In fact, for 0=2, the theoretical estimate of equation (7.190) in section 7.7

(iv) for the log-L2 transformation predicts an error estimate of order n -6-1 = n -3,

where n is the number of integration points in the radial variable. This matches

remarkably well with the convergence graphs of numerical experiment results in

Fig. 10.23, where f s au*/axs <is gives a convergence of order n -3.1 and

f s aq*/axsdS gives a convergence oforder n -3.0 for the relative error.

The excellent convergence of the log-L2 transformation for the integration of

the potential kernels u* and q*, where 0 = 1 : odd, is also predicted by the

theoretical error estimate En (f) - n -2n of equation (7.120) in section 7.7 (1) .

the u* kernel in Fig. 10.24.
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0>u::

(1Q.46)

(10.45)

a (}

u* 1 1

q* 3 1

au* 3 1
ax; 2

aq* 3 1
ax; 5 1

2

I
p 8

I = J!:... dp
a,8 0 r a

where

below.

for planar elements, and p/,'" p/B) is the upper limit of the radial variable of the

integral in equation (5.42). The basic integral kernels in three dimensional

boundary element analysis give rise to a, (} given in Table 7.1, which is reproduced

In section 3.3 (Table 3.2, 3.3) and section 7.5 (Table 7.1), it was shown that

the essential nature of nearly singular integrals occurring in the boundary

element analysis of three dimensional potential problems can be characterized by

the following model integral in the radial variable :

Table 7.1 Nature of nearly singular kernels of the radial component

integrals in 3-D potential problems

10.6 Comparison of Radial Variable Transformations for

the Model Radial Integral la.o
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In the present section, we will compare the effect of different radial variable

transformations on the numerical integration of 1•. 8 of equation (10.45). The

transformations to be compared are

(1) Transformations based on the Gauss-Legendre rule:

(i) Identity transformation:

R(pl=p

(ii) log-L2 transformation :

R(P) = log -Jp
2 +d2

(iii) log-L 1 transformation:

R(p) = log(p+d)

(10.47)

(5.64)

(5.85)

/-2-2 Pj
132 = log(p.+Vp. +d )-logd- T"'J'"':?

, )) Vp/+d2

_ (1+Vl:;:D2) 1- log --D-- - Vl:;:D2

1( 1 1) 1 (1 1)
IS. 1 =:3 "jJ - J. 2 2 3 =;3 ;J - 123

p. +d p) vl+D-
)

(10.49)

(10.50)

(10.50)

(10.51)

(iv) L
1

-l/m transformation:

1I(p) = _ (p +dl m

and

(5.99)

(10.52)

7.5).

Numerical results will be compared with the following closed form integrals

obtained in section 3.3 ( equations (3.138-142) ) and section 7.8 (2) (iii) (Table

(2) Transformations based on the truncated trapezium rule:

(i) Single Exponential (SE) transformation

p(H) = ':.i (I + lanh R)
2

(ii) Double Exponential (DE) Transformation

p) I " )p(ll)= "2 l+lanh(zsinhRl

(5.101)

(5.112)

(10.48)

Also, theoretical error estimates for the identity, log-L2 and log-L 1

transformations will be compared with numerical results.

Tables 10.22-41 give the number of (radial) integration points required to

obtain a relative error E <10-6, for the integration of the model integrals 1•. 8 of

equation (10.45), using each radial variable transformation in conjunction with

the Gauss-Legendre rule or the truncated trapezium rule. Pj was set to p)= 1 and

the source distance d was varied from 10 to 10-3• The integration error was

obtained by comparing with the analytical integration results of equation

(10.48-52).

Table 10.42 sums up the results of Tables 10.22-41. The number of

integration points required for the potential integrals (a = 1,0= 1 and a = 3,0= 1)

and the flux integrals (a= 3; 0= 1,2 and a = 5; 0= 1,2) are given.
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Figures 10.25-31 give the convergence graphs of the relative error of

numerical integration E (in log scale) vs the number of radial integration points

n for each radial variable transformation, for the case d = 0.01 .

Table 10.22 Identity transformation:

R(p)=p

0 Source distance: da

10 1 10- 1 10-2 10-3

1 1 3 5 12 35 80

1 3 6 16 60 190
3

2 3 5 20 55 170

1 3 6 20 64 210
5

2 3 7 25 60 190

(Number of radial integration points n for

relative error E < 10-6 .)

Table 10.24 log-L 1 transformation:

R(p)= log(p+d)

a 0 Source distance: d

10 1 10- 1 10-2 10-3

1 1 3 5 8 9 8

1 3 5 12 16 20
3

2 3 6 11 11 16

1 3 6 14 20 25
5

2 3 6 14 20 20

(nfor E < 10-6 )

Table 10.23 log-L2 transformation:

R(p) = log Vp2 +d2

a 0 Source distance: d

10 1 10- 1 10-2 10-3

1 1 2 3 4 5 6

1 2 3 4 5 6
3

2 55 55 64 72 80

1 2 3 6 8 10
5

2 55 64 120 170 200

(nfor E < 10-6 )

Table 10.25 L
j

-11m transformation:
(m=l)

1
R(p) =- p+d

a 0 Source distance: d

10 1 10- 1 10-2 10-3

1 1 3 5 14 45 150

1 3 6 8 9 9
3

2 3 6 12 35 110

1 3 6 10 11 11
5

2 4 6 10 11 11

(nfor£<10- 6 )
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Table 10.26 L
1

-11m transformation:

(m=2)

1
R(p)=---

yP+d

a 0 Source distance: d

10 1 10- 1 10-2 10-3

1 1 3 5 8 16 28

1 3 6 9 10 12
3

2 3 5 7 11 20

1 3 6 11 12 14
5

2 4 6 10 14 14

(nfor c < 10-6 )

Table 10.28 L
I

-11m transformation:

(m=3)

lZ(p) =-(p+d) - 3

a 0 Source distance: d

10 1 10- 1 10-2 10-3

1 1 3 5 8 11 20

1 3 6 10 14 14
3

2 3 6 9 11 10

1 3 6 12 16 16
5

I 2 3 6 11 16 16

(nfor c < 10- 6 )

Table 10.27 £1 -11m transformation:

(m=2.5)

~

lZ(p) =-(p+d) - 2.5

a 0 Source distance: d

10 1 10- 1 10-2 10-3

1 1 3 5 8 14 25

1 3 6 8 12 14
3

2 3 5 9 10 14

1 3 6 11 14 16
5

2 4 6 12 14 16

( n for c < 10-6 )

Table 10.29 L
1

-11m transformation:

(m=3.5)

1

lZ(p) =-(p+d) 3.5

a 0 Source distance: d

10 1 10- 1 10-2 10-3

1 1 3 5 7 10 16

1 3 6 10 12 16
3

2 3 6 10 11 12

1 3 5 12 16 20
5

2 3 6 11 16 20

(nforE<10- 6 )

Table 10.30 L
1

-11m transformation:

(m=4)

I

R(P)=-(P+d) 4

a 0 Source distance: d

10 1 10- 1 10-2 10-3

1 1 3 5 7 9 14

1 3 6 10 14 16
3

2 3 6 10 10 11

1 3 5 12 16 20
5

2 3 6 10 14 20

(nfor c < 10-6 )

Table 10.32 L
1
-llm transformation:

(m=5)

1

lZ(P)=-(P+d) 5

a 0 Source distance: d

10 1 10- 1 10-2 10-3

1 1 3 5 7 8 11

1 3 5 9 14 16
3

2 3 6 10 12 14

1 3 6 11 16 20
5

2 3 6 12 16 20

(nfor c < 10-6 )

Table 10.31 L I -lIm transformation:

(m=4.5)

1

R (p) =-(p+d) 4.5

a 0 Source distance: d

10 1 10- 1 10-2 10-3

1 1 3 5 7 9 12

1 3 6 10 14 16
3

2 3 6 10 12 14

1 3 6 12 16 20
5

2 3 6 12 16 16

( n for c < 10-6 )

Table 10.33 L I -11m transformation:

(m=5.5)

I

R(p) =-(p+d) 5.5

a 0 Source distance: d

10 1 10- 1 10-2 10-3

1 1 3 5 7 8 11

1 3 5 11 14 11
3

2 3 6 7 14 12

1 3 6 11 16 20
5

2 3 6 12 20 20

(nfor E < 10-6 )
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Table 10.34 L
I

-11m transformation:

(m=6)

I

R(P)=-(P+d) 6

a 0 Source distance: d

10 1 10- 1 10-2 10-3

1 1 3 5 7 8 10

1 3 5 11 14 20
3

2 3 6 10 14 14

1 3 6 14 16 20
5

2 3 6 12 20 20

(nfor E < 10-6 )

Table 10.36 L
I

-11m transformation:

(m=10)

.!..
R(P)=-(P+d) -10

a 0 Source distance: d

10 1 10- 1 10-2 10-3

1 1 3 5 8 5 9

1 3 5 11 16 20
3

2 3 6 10 14 16

1 3 6 14 20 20
5

2 3 6 11 20 25

(nfor E < 10-6 )

Table 10.35 L
I

-11m transformation:

(m=7)

I

R(P) =-(p+d) 7

a 0 Source distance: d

10 1 10- 1 10-2 10-3

1 1 3 5 8 8 10

1 3 5 11 14 16
3

2 3 6 10 14 16

1 3 6 14 20 20
5

2 3 6 12 20 20

(nfor E < 10-6 )

Table 10.37 L
I

-11m transformation:

(m=100)

-.2...
R(P) =-(p+d) -100

a 0 Source distance: d

10 1 10- 1 10-2 10-3

1 1 3 5 8 9 8

1 3 5 12 14 20
3

2 3 6 11 16 16

1 3 6 14 20 25
5

2 3 6 10 16 25

(nfor E < 10-6 )

Table 10.38 Single Exponential (SE)

transformation with R(p) : [_ 00, + 00]

a 0 Source distance: d

10 1 10- 1 10-2 10-3

1 1 32 66 66 30 30

1 32 66 56 46 54
3

2 70 68 62 58 58,

5 1 32 64 40 48 58

2 70 58 50 38 48

(Number of radial integration points n for
relative error E< 10 -6 )

Table 10.40 Single Exponential (SE)

transformation with R(p): [-00,0]

a 0 Source distance: d

10 1 10- 1 10-2 10-3

1 1 1916 1015 64 21 13

1 1916 1185 1260 410 128
3

2 3016 743 1032 1196 752

5 1 1917 2318 202 26 31

2 1370 858 521 84 26

( n for E < 10-6 )

Table 10.39 Double Exponential (DE)

transformation withR(p): [_00,+00]

a 0 Source distance: d

10 1 10- 1 10-2 10-3

1 1 22 22 38 38 38

1 22 22 36 66 70
3

2 22 22 38 36 68

5 1 22 22 32 66 72

2 22 22 34 60 66

(nfor E < 10-6 )

Table 10.41 Double Exponential (DE)

transformation with R(p): [-00,0 1

a 0 Source distance: d

10 1 10- 1 10-2 10-3

1 1 1688 872 55 17 17

1 1688 883 498 266 72
3

2 1360 717 825 479 528

5 1 1689 1741 126 35 38

2 1360 728 439 32 68

( n for E < 10-6 )
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Table 10.42 Number of radial integration points for

potential and flux integrals (c: < 10-6 .)

Potential integral flux integral
a=l,o=l; a=3,0=1,2

radial a=3,0=1 a=5,0=1,2
transformation Source distance: d Source distance: d

10 1 10- 1 10-2 10-3 10 1 10- 1 10-2 10-3

identity 3 6 16 60 190 3 7 25 64 210

log-L2 2 3 4 5 6 55 64 120 170 200

log-L 1 3 5 12 16 20 3 6 14 20 25

L1 -1 3 6 14 45 150 4 6 12 35 110

L
I

-112 3 6 9 16 28 4 6 11 14 20

L
I

-1/2.5 3 6 8 14 25 4 6 12 14 16

L I - 1I3 3 6 10 14 20 3 6 12 16 16

L
1

- 113.5 3 6 10 12 16 3 6 12 16 20

LI - 1I4 3 6 10 14 16 3 6 12 16 20

L
I

-114.5 3 6 10 14 16 3 6 12 16 20

L
I

-115 3 5 9 14 16 3 6 12 16 20

L I - 115.5 3 5 11 14 11 3 6 12 20 20

L
I

-116 3 5 11 14 20 3 6 14 20 20

L 1
1/7 3 5 11 14 16 3 6 14 20 20

L
1

-1I10 3 5 11 16 20 3 6 14 20 25

L
1

-11I00 3 5 12 14 20 3 6 14 20 25

single exponential
32 66 66 46 54 70 68 62 58 58

(SE)
double exponential

22 22 38 66 70 22 22 38 66 72(DE)
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(1) Transformations based on the Gauss-Legendre rule

(i) Identity transformation

From Table 10.22 and Fig. 10.25, it is clear that the identity transformation

(just polar coordinates) requires a huge number of radial integration points for

nearly singular integrals (D == d /Pj ~ 1 ) .

The theoretical estimate of the error En given in section 7.6 (3), equation

(7.76) implies that

1.17 (a=o=l)

1.14 (a=3,0=1)

(J = 1.14 (a=3,0=2)

1.13 (a=5,0=1)

1.12 (a=5,0=2) (10.55)

Hence, if we take the maximum values for t, equation (7.64) gives

where, in order to maintain

(1-1) 2 < 10

t must satisfy

{

0.99

0< t< 1-10-2/• = 0.78

0.60

(a=l)

(a=3)

(a=5)

(10.53)

(7.77)

(7.268)

(ii) log-LZ transformation

Table 10.23 and Fig. 10.26 show that the log-L2 transformation is very

efficient for the integration of I •. , when 0= 1, but on the other hand very

inefficient for the integration of [•. , when 0= 2. This is in accordance with

Fig. 10.23. There, the log-L2 radial variable transformation gave remarkably

good convergence for the calculation of the potential integrals Isu* dS and

Is q* dS , which correspond to a =0= 1 and a = 3,0= 1, respectively. On the other

hand, the log-L2 transformation gave very slow convergence for the flux integrals

Is au*/axs dS and Is aq*/axs dS , which contain components corresponding to

a =3,0= 2 and a = 5,0=2, respectively (cf. Table 7.1).

The theoretical estimates of the error En in section 7.7 (1), equation (7.120)

numerical results in Fig. 10.25, where

for D=d=O.Ol in equation (10.53). This theoretical estimate matches well with

for 0= 1. This is in good agreement with the numerical results, which show fast

convergence for a = I, 3, 5 ; 0= 1 in Fig. 10.26.

For 0= 2, the theoretical estimate in section 7.7 (2), equation (7.190) gives

{

1.15

(J = 1.13

1.12

(a=l)

(a=3)

(a=5) (10.54)

gives

En - n - 2n (10.56)

(10.57)

Fig. 10.27 shows the convergence graphs of relative error E vs loglon, for 0= 2.

The graphs give
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E - 0.266 X n -2.95 (a=3.o=2)
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• _ (I-I) 2 0 - 2"
(10.60)

(iii) log-LJ transformation

which matches very well with the theoretical error estimate of equation (l0.57).

1.88 (a=o=l)

1.64 (a=3,0=1)

(J= 1.54 (a=3,0=2)

1.59 (a=5,0=1)

1.56 (a=5,0=2) (10.62)

It is also interesting to note that the pattern of the number of integration

points of the LJ-11m transformation approaches that of the log-LJ transformation

(iv) L
l

- JIm transformation

Tables 10.25-37 and Table 10.42 indicate that for the potential integral, the

LJ-JIm transformation with m=3.5, 5 and 5.5 give best results and for the l1ux

integral, m = 2, 2.5 and 5 give best results for source distances ranging from 10 to

10-3. On the whole, m=5 gives best results. The LJ -Jl5 transformation gives

better results compared to the log-L l transformation except for the case a =0= 1,

d= 10-3 and a =3, 0= 2, d= 10-2. Fig. 10.29 shows that the L1- Jl5 transformation

gives better convergence compared to the log-LJ transformation (cfFig. 10.28) for

the case d=O.01.

(7.77)

(7.268)

(10.59)

(a=l)

(a=3)

(a=5)
{

0.99

0< t < 1_10- 2/0 = 0.78

0.60

(I-I) 2 < 10

• - 4.22 x" -2.99 (<<=5,0=2)

in equation (l0.60), t must satisfy

Table 10.24 and Fig. 10.28 show that the log-L l transformation works

efficiently and robustly for all types of model kernels which appear in the three

dimensional potential problem.

The theoretical estimate for the relative numerical integration error E in

section 7.8, Table 7.6 gives

In order to maintain

as m increases.
Hence, if we take the maximum values for t, equations (7.258-260) give

{

1.64

(J = 1.51

1.40

(a=l)

(a=3)

(a=5) (10.61)

The theoretical estimate of the relative error E of numerical integration using

the LI- 1/5 transformation given by equation (7.311) and Table 7.5 is

where t must satisfy

for D=d=O.Ol, in equation (10.60). This theoretical estimate for the relative

error corresponds well with the numerical results in Fig. 10.28, where

{

0.99

0< t < 1_10- 2/0 = 0.78

0.60

(a=l)

(a=3)

(a=5) (7.268)
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Hence, if we take the maximum values for t for each a, equations (7.31-32) and

(7.309) give

p(R)=P
J

(l+lanhR) (5.11)

{'79
(a=l)

(J = 1.62 (a=3)

1.48 (a=5) (10.64)

for D = d=O.Ol, in equation (10.63).

This theoretical estimate for the relative error corresponds with the

numerical results in Fig. 10.29, where

which maps R: [_00, 0] to p: [0, PJ] . This transformation gives poor results

compared to that of equation (5.101), which reduced the integration error by

concentrating the integration points near the end point P=Pj as well as P=0 .

(ii) Double Exponential (DE) transformation

Table 10.39 and Fig. 10.31 give numerical results for the double exponential

transformation

which maps R : [- 00, 00] to p: [0, p). This transformation requires even more

integration points for D=d ~ 10-2, compared with the single exponential

transformation of equation (5.98). Compared with the identity transformation,

the DE transformation is more efficient for D = 10-3 and comparable for D = 10-2•

As with the SE transformation, the DE transformation

{" (a=l)

(J = 1.8 (a=3)

1.7 (a=5) (10.65)

(2) Transformations based on the truncated trapezium rule

(il Single Exponential (SE) transformation

Table 10.38 and Fig. 10.30 give numerical results for the numerical

integration using the single exponential transformation

P
J

[ " lp(R) ="2 1+ lanh( 2: sinhR)

p(R)=PJ(I+tanh(~SinhR)) ,

(5.112)

(10.66)

(5.101)P
J

p(R) = "2 (I +tanh R)

which maps R : [- DG, 'Xl] to p: [ 0, p) . The truncated trapezium rule is used for

the integration in the transformed variable R : [- 00,00] .

The detail of the numerical procedure is given in section 5.5 (5), together

with the double exponential (DE) transformation. Although better than the

identity transformation (l)(i) with the Gauss-Legendre rule for D =d ~ 10-2 , the

single exponential transformation requires more than twice as much integration

points, compared to the log-L 1 transformation of (1) (iii) to obtain the same

accuracy.

Table 10.40 gives numerical results for the single exponential

transformation

-433 -

which maps R : [- 00, 0 ] to p : [0, P
J

] , gives poor results compared to the

transformation ofequation (5.12), as shown in Table 10.41.

(3) Summary

To sum up, numerical experiments on model radial variable integrals in this

section indicate that the most efficient and robust method for the numerical

integration in the radial variable, so far, is the L I - 110> transformation with

m=3-5.5 in combination with the Gauss-Legendre rule.

Also important is the fact that the numerical results match very well with

the theoretical error estimates based on complex function theory, which was

given in Chapter 7.
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In this section, different numerical integration methods will be compared

for the integration of nearly singular integrals arising in potential calculations

10.7 Comparison of Different Numerical Integration Methods

on the 'Spherical' Element

J ~. u'dS
')

S

and flux calculations

J
au'

~ .. -dS
I) ax

S 8

J ~ij q'dS
S

J
a '~ .!!- dS

I) ax
S 8

(10.67)

(10.68)

(1) Effect of the source distance: d

First, the source point X s was positioned so that its projection Xs on the

element Sis xs=x(0.5, 0.5), Le. 71J =~2=0.5, and X s is situated towards the

centre of the sphere at a distance d from the element surface S .

Figures 10.32-10.35 are the convergence graphs for the integrals

fs¢uu*dS, fS¢,jq*dS, fS¢ijaulaxsdS and fs¢uaqlaxsdS,respectively,

for the source distance d=O.Ol. Here, ¢') is the 9- point Lagrangian

interpolation function corresponding to the node ('11' '12)=(i,j), i.e.

(10.69)

in three dimensional potential problems. The boundary element S is taken as the

'spherical' quadrilateral element SPQ60, which was defined in section 8.2,

equation (8.9). SPQ60 is a spherical quadrilateral subtending 60° in each

direction on a sphere of radius 1, modelled by the 9- point Lagrangian element of

equations (5.2) and (5.3). Its typical element size is 1 as shown by equation (8.10).

The following methods will be compared:

1. Gauss: The product Gauss-Legendre formula 3, given in section 4.2.

2. Telles: Telles' self-adaptive cubic transformation method 15, given in

section 4.4 (2) (ii) .

3. The PART method with (and without) the angular variable transformation

t(O) of equation (5.130), and with the radial variable transformations R(p) :

(0 Identity: R(p)= p

(iOlog-L2: R(p)= logvp2+d2

(iiOlog-Ll: R(p)= log(p+d)

(iv)L]-llm: R(p)=_(p+d)-lIm

- 435-

where ¢h), (i = -1,0,1) is defined in equation (5.3). In the graphs, the relative

error is plotted against the number of integration points. The relative error is

taken as the maximum relative error for all the interpolation functions i,j = -I,

0,1. The error was calculated by comparing with the result given by the PART

method with the log-L j radial variable transformation and the logarithmic type

angular variable transformation t(8) of equation (5.130), with Nt =NR = 128, i.e.

128 Gauss-Legendre integration points for the variables t and R, respectively.

The PART method with the log-L1 radial variable transformation is shown

to be the most efficient and robust method for different integral kernels. ote

also that for the integrals Is 1>,) u* dS and Is 1>u q* dS , related to potential

calculations, the log-L2 radial variable transformation does not show good

convergence as it did for the potential related integrals f S u* dS and f S q* dS on

the constant planar element in Fig. 10.23. The reason for this was explained

using the results of theoretical error estimates in section 7.7 (2), i.e. 1>,) contain

terms equivalent to p and p3, which give rise to terms corresponding to o=even

in the model radial integral kernels in equation (7.45).

For the flux kernels, Fig 10.34 and 10.35, the standard product Gauss­

Legendre formula did not converge within the scope of the graphs.
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Tables 10.43, 10.44, 10.45 and 10.46 compare the number of integration

p~ints required for each method to achieve a relative error less than 10-6 for the

same integrals Js 1> I) u* dB , Js 1> ij q* dB , Js 1> ij au*/axs dB and Js 1> ij aq*/axs dB, for

different values of the source distance from d= 10 to 10-3• The source projection

Xs was set again to xs=x(O.5, 0.5) on the curved quadrilateral element: SPQ60.

For the Gauss and Telles methods N 1 and N 2 represent the necessary and

sufficient number of integration points in the 'II and '12 directions, respectively, so

that the total number of integration points is N =N
I
XN

2
• For the PART method

(identity, log-L2 and log-L 1), Nt and N R (or N
p

) are the necessary and sufficient

number of integration points in the transformed angular variable t and the

transformed radial variable R ( or p ), respectively, so that N =N
t
XN R X4 , since

there are generally four triangular regions "Ej , (j = 1-4) to integrate. (For

triangular elements, this becomes N=Nt XN
R

X3, so that the PART methods

would require only 3/4 of the integration points compared to quadrilateral

elements. On the other hand, the Gauss and Telles methods basically require the

same number of integration points for triangular and quadrilateral elements, so

long as the product type formula is used. )

The actual value of the maximum relative error is shown in brackets when

the method failed to converge even with 256 integration points in each variable.

The average CPU-time per integration point is shown to be more or less the same

for different methods, so that basically one may judge the efficiency of each

method by the number of integration points required. The value of the integral

corresponding to 1> II ( of the x-component for flux integrals ), calculated by the

PART method ( log-L I ,tCO) ) with Nt=NR = 128, is also given for each case. The

best method for each distance d is indicated by *.
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Table 10.44 Comparison for different methods for Is <Pi) q* dS

source Gauss Telles Identity (Polar) log-L2 log-L
J Integraldistance

d N j XN
2 total N

j
XN

2 total NtXNp total NtXNR total NtXNR total Is <P11 q* dS

10 4X5 * 20 4X5 20 8X5 160 8 X 128 4096 8X5 160 -2.4452062X 10-5

3 5 X 5 * 25 5X5 25 8X6 192 8 X 128 4096 8X6 192 - 2.6509634 X10-4

1 6X6 * 36 6x6 36 8X6 192 8 X 110 3520 8X7 224 -2.3551983X10- 3

0.3 12 X 14 168 8x8 * 64 8 X 10 320 9 X 110 3960 8X8 256 -2.3437238X 10- 2

0.1 32 X 35 1120 14 X 14 * 196 7 X 16 448 9 X 55 1980 7 X 11 308 -5.8702728 X10- 2

0.03 110 X 110 12100 25 X 25 625 9 X 28 1008 9 X 40 1440 9 X 14 * 504 -7.4058844 X 10-2

256 X 256
65536 9 X 50 1800 9 X 28 1008 10 X 16 * 640 -7.7822266X10- 20.01

(3 X 10- 6)
45 X 45 2025

256 X 256
65536 9 X 90 3240 9 X 28 900 9 X 20 * 720 -7.9027356 X10- 20.003

(4 X 10-3)
72 X 72 5184

256 X 256
65536 9 X 150 5400 9 X 20 * 720 10 X 20 800 -7.9359758 X10-20.001

(3 X 10- 1)
100 X 100 10000

IAverage
28,usec 30,usec 29,usecCPU-time 27,usec 31,usec

per point

Table 10.45 Comparison [or different methods [or JS <Pi) au*/axs dS

source Gauss Telles Identity (Polar) log-L2 log-L
J

Integral

distance JS <P 11 au*/axs dS

d N j XN2 total N j XN2 total NtXNp total NtXNR total NtXNR total ( x-component)

10 5 X 6 * 30 5 X 6 30 8X5 160 8 X 128 4096 8x6 192 2.1740212X10- 5

3 6X6 * 36 6x6 36 9X7 252 9 X 170 6120 9X7 252 2.3158820 X10-4

1 6 X 7 *42 7X8 56 10 X 7 280 10 X 256 10240 10 X 9 360 1.9793103 X 10-3

0.3 14 X 14 196 10 X 10 * 100 9 X 11 396 9 X 180 6480 9 X 10 360 1.6292413 X 10- 2

0.1 40 X 40 1600 14 X 16 * 224 9 X 20 720 10 X 210 8400 10 xlI 440 3.0043614X 10- 2

14 X 256
14336 2.9820882 X 10- 20.03 150 X 150 22500 32 X 32 * 1024 14 X 40 2240

(8 X 10-6)
14 X 20 1120

256 X 256
65536

14 X 256
14336 2.8428787 X10- 20.01

(2 X 10- 3)
50 X 50 2500 12 X 64 3072

(2 X 10-6)
12 X 20 * 960

256 X 256
65536

14 X 256
14336 2.7777735 X10- 20.003 90 X 100 9000 14 X 120 6720 14 X 25 * 1400

(13) (5 X 10-6)

256 X 256
65536

14 X 256
14336 2.7575715X10- 20.001 120 X 120 14400 16 X 170 10880 14 X 25 * 1400

(62) (4 X 10-6)

Average
CPU-time 31,usec 33,usec 32,usec 33,usec 34,usec
per point
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Table 10.47 Number of integration points for Is ¢ij u* dS

(SPQ60, >i,=>i,=0.5, .<10-6 )

log-Ll Ll-ll2 Ll-112.5 Ll-ll3 Ll-113.5 Ll-1I4 Ll-1I5 Ll-1/5.5 Ll-1I6 Ll-ln

d
NR N NR N NR N NR N NR N NR N NR N NR N NR N NR N

10
6 192 6 192 6 192 6 192 6 192 6 192 6 192 6 192 6 192 6 192

3 6 192 6 192 6 192 6 192 6 192 6 192 6 192 6 192 6 192 6 192

1
7 224 8 256 7 224 7 224 7 224 7 224 7 224 7 224 7 224 7 224

0.3 * * * *
8 224 9 252 9 252 9 252 9 252 9 252 8 256 8 224 8 224 8 224

0.1
9 288 12 384 12 384 11 352 11 352 11 352 10 320 10 320 10 320 10 320

0.03 *12 336 20 560 16 448 16 448 14 392 14 392 14 392 14 392 14 392 14 392

0.01 *14 560 28 1120 25 1000 25 1000 20 880 20 800 20 800 20 800 20 800 20 800

0.003 *16 640 40 1600 32 1280 28 1120 25 1100 25 1000 25 1000 25 1000 20 880 20 800

0.001 *20 800 45 1800 40 1760 35 1400 32 1280 28 1232 25 1100 25 1000 25 1000 25 1000

N R : Number of radial integration points

N: Total number of integration points
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Table 10.48 Number of integration points for Is <PO) q* dS

(SPQ60, ii,=ii,=0.5, 0<10-6 )

log-Ll Ll-ll2 Ll-II2.5 Ll-ll3 Ll-II3.5 Ll-1/4 Ll-1/5 Ll- l/5.5 Ll- 1/6 Ll-ln

d
NR N NR N NR N NR N NR N NR N NR N NR N NR N NR N

10
5 160 5 160 5 160 5 160 5 160 5 160 5 160 5 160 5 160 5 160

3 6 192 6 192 6 192 6 192 6 192 6 192 6 192 6 192 6 192 6 192

1
7 224 8 256 8 256 8 256 7 224 7 224 7 224 7 224 7 224 7 224

0.3
8 256 9 288 9 288 8 256 8 256 8 256 8 256 8 256 8 256 8 256

0.1 * * * * *11 308 11 352 11 352 10 320 10 320 10 280 10 280 10 280 10 280 10 280

0.03 *14 504 16 576 14 504 14 504 12 480 12 432 12 432 11 396 12 480 12 480

0.01 * * *16 640 20 800 20 720 16 640 16 576 16 576 14 504 14 504 14 504 14 560

0.003 * *
20 720 28 1120 25 900 25 900 20 720 20 720 20 720 16 640 16 576 16 576

0.001 * * * *
20 800 40 1440 28 1120 28 1008 25 900 25 900 20 720 20 720 20 720 20 720

N R : Number of radial integration points

N: Total number of integration points

Table10.49 Numberofintegrationpointsfor IS<Pij au*/axsdS

(SPQ60, iil=ii,=0.5, 0<10-6)

log-Ll Ll-112 Ll-112.5 Ll-ll3 Ll-1/3.5 Ll-1/4 Ll-1/5 Ll-1/5.5 Ll-1I6 Ll-ln

d
NR N NR N NR N NR N NR N NR N NR N NR N NR N NR N

10
6 192 6 192 6 192 6 192 6 192 6 192 6 192 6 192 6 192 6 192

3 *7 252 8 288 8 288 8 288 8 288 8 288 8 288 8 288 8 288 8 288

1
9 360 9 360 9 360 9 360 9 360 9 360 9 360 9 360 9 360 9 360

0.3 * * * * * * *10 360 10 360 10 360 9 324 9 324 9 324 9 324 9 324 9 324 9 324

0.1 *11 440 14 504 14 504 12 432 12 432 12 432 11 396 12 432 12 432 12 432

0.03 * * * *20 1120 25 1400 20 1120 20 1120 20 1120 16 896 16 896 20 1120 16 896 16 896

0.01 * * * * * *20 960 28 1568 25 1200 25 1200 20 1120 20 960 20 960 20 960 20 960 20 960

0.003 * *25 1400 40 2240 32 1792 28 1568 25 1400 25 1400 25 1400 25 1400 20 1120 20 1120

0.001 * * * * *
25 1400 55 3080 40 2240 35 1960 32 1792 28 1568 25 1400 25 1400 25 1400 25 1400

N R : Number of radial integration points

N: Total number of integration points



Table 10.50 Number of integration points for Is 1>'1 aq*/axs*dS

(SPQ60, 111=ii,=0.5, 0<10-6 )

~,.....

log-Ll Ll- l12 Ll-112.5 Ll-1/3 Ll-1/3.5 Ll-1/4 Ll-1I5 Ll-l/5.5 Ll-1/6 Ll-ln

d
NR N NR N NR N NR N NR N NR N NR N NR N NR N NR N

10
6 192 6 192 6 192 6 192 6 192 6 192 6 192 6 192 6 192 6 192

3 7 224 7 224 7 224 7 224 7 224 7 224 7 224 7 224 7 224 7 224

1
9 360 9 360 9 360 9 360 9 360 9 360 9 360 9 360 9 360 9 360

0.3 * * * *10 360 9 324 10 360 10 360 9 324 10 360 9 324 9 324 10 360 10 360

0.1 * * *14 616 12 480 12 480 12 528 14 560 14 560 14 560 12 528 12 528 12 480

0.03 * *20 1120 16 896 16 896 20 1120 20 1120 20 1120 20 1120 20 1120 20 1120 20 1120

0.01 * * * * *25 1400 25 1400 20 1120 20 1120 20 1120 20 1120 20 1120 25 1400 25 1400 25 1400

0.003 *28 1568 32 1792 25 1400 20 1120 25 1400 25 1400 25 1400 25 1400 25 1400 25 1400

0.001 * * * *35 2240 40 2560 32 2048 25 1600 25 1600 25 1600 25 1600 28 1792 28 1792 28 1792

N R: Number of radial integration points

N: Total number of integration points

Fig.10.36 Convergence graph for i qJij u* dS
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d log-Lj Lj-112 Ll-II2,5 Lj-1/3 Lj-1/3.5 Lj-1/4 Ll-1/5 Lj-1/5.5 Lj-1I6 Lj-lfl

10
192 192 192 192 192 192 192 192 192 192

3 192 192 192 192 192 192 192 192 192 192

1 '" '" '" '" * '"224 256 256 256 224 256 224 224 224 224

0.3 256 288 288 256 256 256 256 256 256 256

0.1 *
308 384 384 352 352 352 320 320 320 320

0.03 *
504 576 504 504 480 504 432 396 480 480

0.01 *
640 1120 1000 1000 880 800 800 800 800 800

0.003 *
720 1600 1280 1120 1100 1000 1000 1000 880 800

0.001 *
800 1800 1760 1400 1280 1232 1100 1000 1000 1000
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Fig.10.40-43 compare in more detail, the effect of the source distance

S 0 0 0 C'<
d on the different methods for the calculation of Is ¢ i) U * , Is ¢ ij q* dS ,

C'< 00 0 0 0
I

~
00

~ ~
00 ~

0 0 E Is ¢ij au*/axs dS and Is ¢ij aq*/axs dS . Similar to Tables 10.43-50 , the
~

C'< "<I' ;:: "<I'
•. .-<

number of integration points required for each method to obtain relative

~ C'< 00 0 g 00 0 0 0 C'< error f:< 10-6 for all i,j=-l,O,l (and x, y, z component), was plottedI m 00 <rJ C'<
~

0 0 m

~
.-< C'< CQ CQ lQ ;:: "<I' ;:;*.-<

against the source distance d = 10-4 -10. The element is the same

~ C'< 00 0 "<I' 00 0 g g C'< 'spherical' quadrilateral SPQ60 with the source projection at Xs = x (0.5, 0.5)
I ~ :sl <rJ C'< ::;:; ~

m
CQ *CQ ;:: "<I' ;:; and the source distance is measured from the element towards the centre of

<J} ~ *.-<

0;
b1 the sphere. Table 10.53 summarizes the results.
2l ~ C'< 00 0

~
0

B
0 0 0

.S I ~
0 0m 00

~ ~ "<I' <rJ
:0< ~

.-< C'< *CQ *.-< •. .-< *.-<

" Table 10.53 Range of source distance d best suited to each method
C

....
I<.E 0 ~ C'< 00 0 0 0 0 0 g g

<J} I

~ ~ integral

~
.-<

~
00

~ ~ ~ "<I' <rJ log -L2 log-L
J

L
j
-1/5 Telles GaussV ~

C'< *.-< *.-< *.-< kernel
'"0-

.~ cD ¢ .. u* d ~ 0.001 d~0.04 0.04 ~ d ~ 0.5 0.5 ~ d
0 S C'< 00 0 "<I' 0 0 0 0 C'< u

ro II I ~
00 <rJ C'< <rJ

~ ~
0 m

0.002~ db1 C'< CQ *CQ lQ "<I' ;:; ¢ij q* d ~ 0.002 0.001 ~d<0.06 0.06 ~ d ~0.7 0.6 ~ dS *.-< *.-< ~0.0072l '0:-

II

~
,,; ¢i) au*/axs d~0.03 oooo3~d<0.04 0.04 ~ d <0.7 0.7 ~ d

S C'< 00 0 0 00 0 0 00 0
.... cO I

~
00 <rJ <rJ C'<

~
0 <rJ <rJ

ell

S C'< CQ CQ lQ ~ ~ ~ ¢ij aq*/axs d ~0.07 0.07 ~ d <0.8 0.8 ~ d.n <rJa (]I

" Po<
( S : SPQ60, XS= x(0.5, 0.5) , relative error < 10-6 )Z (/J

S C'< 00 0 g "<I' 0 0 C'< 0

::;:; I ~
00 <rJ 0

~
0 m "<I'

C'< CQ CQ *lQ ~ ;:; C'<

~ ~ C'<

ell

::0 S 0 00 0 0 In order to save CPU-time, it is advisable to use the same set of
ro C'< 00 0

~
;gE-< I

~ :sl ~
0

~ ~ ~
S •• lQ ;:: C'< CQ integration points for the calculation of Is ¢ ij u* dS and Is ¢ ij q* dS in order

to calculate the potential u(xs) at X=Xs · Similarly, the same set of
S C'< C'< 0 0 ;:: 0 0 00 0

~ ~
lQ <rJ <rJ

~
0 <rJ "<I' integration points should be used for the calculation of Is ¢ ij au*/axs dS and.,C'< CQ CQ <rJ ;:: ~

C'<
C'<

Is ¢ ij aq*/axs dS in order to calculate the flux (potential derivative) au/axs

CQ .-<
at X=Xs · Further, if one wants to calculate both potential and flux at the

CQ .-<
'"0 ~

CQ .-< 0 0 0 0
0 0 0 0 0 0 same point x = xs , the same set of integration points should be used for all0 0

the kernels: IS¢iju*dS, IS¢ijq*dS, IS¢ijau*/axsdS and IS¢ijaq*/axsdS.
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The strategy for the choice of numerical integration method with regard to

the source distance d for each situation is given in Table 10.54.

Table 10.54 Strategy for the choice of numerical integration method

calculation
log-L1

L
I
-1/5 Telles Gaussitem

potential only d < 0.06 - 0.06 ~ d <0.6 0.6 ~ d

flux only - d~0.07 0.07 ~ d <0.8 0.8 ~ d

potential and flux - d~0.07 0.07 ~ d <0.8 0.8 ~ d

(S: SPQ60, XS = x(0.5, 0.5), relative error < 10-6)

The above results may vary depending on the position of the source

projection xs , the geometry of the element S. However, they may be

considered as a rough guide for choosing the numerical integration method

according to the (relative) source distance d.
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{
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(2) (ii).

(10.71)

(5.130)

(10.70)

the curved

The source

~s= x(~.~)

The same 'spherical' quadrilateral S: SPQ60 is taken as

boundary element over which the integration is performed.

projection

where n is the unit normal at Xs pointing towards the centre of the sphere.

The source distance was fixed at d=O.01.

Next. the effect of the position of the source projection Xs on the

accuracy and efficiency of each numerical integration method. is

investigated.

(i) Identity: 1(8 )=8 ,

(ii) log-type:

(2) Effect of the position of the source projection: Xs

hj (l+Sin(l1-o j )j
t (11 ) = "2 log 1 _ sin (11- 0 )

J

2. Telles' self-adaptive cubic transformation method 15. given in section 4.4

is moved along the diagonal of the element from the centre ( i; = 0) to the

corner (i; = 1) and outside ( i; = 1.1). The source point is positioned at

The following three methods were compared:

1. The PART method with the log-L1 radial variable transformation and

the angular variable transformation t (8 ) :

Fig 10.44-47 are the graphs of the number of integration points

required to achieve relative error E: < 10-6 for all i. j = -1. 0.1 (and x,y, z)

components. vs i; (position of the source projection xs ), for the calculation

of Is ¢ij u* dS. Is ¢ij q* dS, Is ¢ij au*/axs dS and Is ¢ij aq*/axs dS.

respectively.
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The figures clearly show the effect of the angular variable

transformation t(8) of equation (5.130), particularly when "i2; 0.7, in

reducing the number of integration points in the angular variable compared

to the identity transformation t(8)=8, which requires a huge number of

angular integration points as the source projection Xs approaches the edge

of the element (,,-1).

Telles' cubic transformation method becomes advantageous as the

source projection Xs approaches the edge (corner) of the element. The

results are summarized in Table 10.55 . However, the results are only for the

case when the source distance d=O.Ol. The PART method becomes more

advantageous as the source distance d decreases.

Table 10.55 Position of source projection xs=x (",,,)
suited to each method

Type of kernel PART method Telles
log-L

J
,t(8)

<P v u* 0;;;; ,,;;;; 0.92 0.92 < "

<P,) q* 0;;;; " ;;;; 0.96 0.96 < "

potential calculation 0;;;; ,,;;;; 0.96 0.96 <"

<P v au*/axs 0;;;; " ;;;; 0.90 0.90 <"

<P v aq*/ax s 0;;;; " ;;;; 0.93 0.93 <"

flux calculation 0;;;; " ;;;; 0.93 0.93 < "

potential & flux calculation 0;;;; ,,;;;; 0.93 0.93 < "

(8: SPQ60, d= 0.01)

In the implementation of the PART method and Telles' method in this

experiment, the source distance d was determined as the distance between

Xs and xs , even when the source projection xs=x ("1' "2) falls outside the

element 8, i.e. when I "1 I >1 or 1"2 I >1 ( I " I >1 in the case above).
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However, since the integration is performed only inside the element 8, the

effective source distance between the source point X s and the element 8 is,

generally speaking, larger than the distance I X s - Xs I. Actually, the

nearest point to X s lies on the edge of the element 8 , in this case. Using

this definition of the effective source distance, the PART method ( in

particular) and Telles' method can be improved.

Also, even when the source projection Xs lies on the element 8 , but

very close to the element edge, results by the PART method may be

improved by artificially moving the source projection to the nearest point on

the edge, provided that the distance between the original source projection

Xs and the closest element edge is smaller than or comparable to the source

distance d. This will be shown in the next section.
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(3) Moving the source projection Xs to the closest element edge

As shown in the previous section, the angular variable transformation tee)

of equation (5.130) has considerable effect in reducing the number of angular

integration points when the source projection Xs is near the edge of the element.

However, the method still requires many angular integration points when

Xs is very near the edge of the element. In order to overcome this problem, the

effect of deliberately moving the source projection Xs to the closest edge of the

element S was examined.

The procedure is as follows:

Taking the example when Xs =X(~l, ~z) is closest to the edge corresponding to

'71 = Ion a curved quadrilateral element,

1. Letxs' = x(l, ~z)

2. Approximately project S on to the polygon S' on the plane tangent to S

atxs ' .

3. Define the new source distance as d' == Ixs-xs'l

4. Introduce polar coordinate (p, e) in S' ,centred at xs' ,apply the radial

and angular variable transformation and integrate with respect to the

transformed variables. In the radial transformation, the updated

source distance d' is used.

If the initial source projection Xs is close to two edges (i.e. a corner) of the

element S, XS is moved to the corner.

The above procedure is advantageous, not only because it reduces the

number of angular integration points, but also because it reduces the number of

triangular regions IS.j in S to integrate over.

Numerical experiments were done on the previous curved element SPQ60

for the integrals Is 1>,} q* dS and Is 1>ij aq*laxsdS for source distance

d= 0.1,0.01 and 0.001 towards the centre of the sphere. In the experiments, the

- 471-

effect of moving the source projection (~1' ~z) to the nearest element edge for the

Telles' method was also examined.

First, the source projection is situated along the diagonal of the element, i.e.

xs=x (~1' ~I) where ~1=~z=0-1.2. Tables 10.56-61 compare the number of

integration points required to achieve a relative error less than 10-6 for the

PART and Telles' methods with and without moving the source projection Xs to

the element edge. Nt, N R , N I , N z indicate respectively, the number of integration

points required in the angular variable t, the radial variable R, for the PART

method, and variables Y1 (~l) and Y2 (~z) for Telles' method. N indicates the total

number of integration points.

For the radial variable transformation in the PART method, the log-L1 was

used for the integral Is 1>ijq*dS, and the L l - 1/5 for I s1>ijaq*laxsdS, as recommended

in section 10.7 (1). For the angular variable transformation, tce) of equation

(5.130) was used. hi indicates the distance between the original source projection

Xs and the edge-1 of the projected element S, and h4 the distance between Xs and

edge -4. In this case, h4 is the distance between Xs and the nearest edge of S. The

asterisk in the column for N indicates the method which required the least

number of integration points. The asterisk in the column for h4 indicates the

value for h4 where it becomes advantageous to move Xs to the element edge with

the PART method. Fig. 10.48-49 show the results in graphs for d=O.01. In the

present case, Xs is moved to the corner, so that the number of triangular regions to

integrate over is reduced from four to two.

Similar results are given in Tables 10.62-67 and Fig. 10.50-51, for the case

where the source projection xs=x (~1' ~z) is situated along ~z=O, ~1 =0-1.2. In

this case, Xs is moved to xs' = x (1, 0), so that the number of triangular regions is

reduced from four to three.

Results show that, for the PART method, moving the source projection Xs to

the element edge leads to a substantial reduction of integration points when the

original source projection Xs lies inside the element Sand hj <d (i.e. when the
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distance h} between the original source projection is and an edge of the projected

element S is less than the original source distance d) or when is lies outside the

element S. The reduction of the necessary number of integration points can be as

much as a factor often. The reduction is caused by the reduction of the number of

triangular regions~}in the projected element to integrate over, and the reduction

of the number of integration points in the transformed angular variable t(O). On

the other hand, for Telles' method, there is no substantial improvement by

moving the source projection (~1' ~2) to the element edge. This is mainly because

there is no reduction of the number of regions to integrate over for Telles'

method.

Concerning the comparison between the PART method and Telles' method,

the following is observed. For d = 0.1, Telles' method is superior expect for the

integration of f s ¢vaq*laxs dS for the case ~ 1 = ~2 ' (~l < 1.1) in Table 10.59. For

d=O.Ol and d=O.OOl, the PART method is superior when the original source

projection is =x (~1' ~2) is inside the element S and also for ~I~ 1.01 when is lies

outside the element.

Finally a minor note for the case ~2=0, ~I =0-1.2. It is noticed, for

instance in Tables 10.64 and 10.67 that as ~l increases from 0, h4 decreases

monotonically until it reaches a minimum of 0.00015 at ~I =0.992, after which it

starts to increase monotonically with ~I' Note that for ~l = 1, h4 =0.0042 and not

h4 =0. This phenomenon was explained in section 5.3 as being caused by the

curved element, where in this case is rl S even when is E S. Hence, for the case

d=O.OOl, the criterion h4 <d for moving is to the element edge becomes

misleading, as shown in Tables 10.64 and 10.67. Instead, one could decide to

move is to the edge in this case if (1-~1)/2<D,where D=dll is the relative

source distance. (l is the size of the element S.) In the present case, the element

size is 1=1, which gives (1-~1)/2<d as the criterion to move is. In fact, this

rule matches well with all the numerical results in Tables 10.56-67. The
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asterisk in the left most column for ~l = ~2 or ~l indicates the threshold value for

~ 1 according to this cri terion.
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Table 10.56 Effect of moving the source projection Xs to the element edge

fs<pvq*dS. S: SPQ60. ~,=~,=0-1.2. d=O.l

Number of integration points for relative error <10- 6

log-L1 Telles

~1=~2 hi h.
original Xs move Xs original Xs move Xs

NtXNR N NtXNR N N1XN, N NIXN, N

0 6X9 * 216 llX50 1100 14X16 224 35X40 1400 0.50 0.43

0.2 8Xll * 352 llX55 1210 20x20 400 40X40 1600 0.42 0.36

0.4 8X10 320 9X45 810 14x14 * 196 32X35 1120 0.34 0.28

0.6 9Xll 396 7X40 560 12X14 * 168 28x28 784 0.24 0.19

0.8 * 9Xll 396 6x28 336 14X16 * 224 20X20 400 0.13 *0.096

0.82 9X12 432 6x25 300 14X16 * 224 20X25 500 0.12 0.086

0.84 9X12 432 6X25 300 14X16 * 224 20X20 400 0.10 0.077

0.86 9X12 432 7X25 350 16X16 * 256 20X20 400 0.090 0.067

0.88 10X14 560 7X25 350 16x20 320 20x20 400 0.078 0.058

0.9 9X14 504 7X25 350 14X16 * 224 20X20 400 0.065 0.048

0.92 10X14 560 7x20 280 16X16 * 256 16X20 320 0.052 0.039

0.94 llX12 528 7X16 224 14X14 * 196 14X14 * 196 0.040 0.029

0.96 llX12 528 6X16 192 12X14 * 168 14X14 196 0.027 0.019

0.99 14x14 784 6X14 * 168 12X14 * 168 12X14 * 168 0.0067 0.0048

1.0 6X14 168 6X14 168 12x12 * 144 12X12 * 144 0 0

1.001 llX14 616 6X14 168 12x12 * 144 12X12 * 144 0.00067 0.00048

1.005 llX14 616 7X12 168 12X12 144 llX12 * 132 0.0034 0.0024

1.01 10X12 480 6X12 144 llX12 * 132 llX12 * 132 0.0067 0.0048

1.05 9x14 504 6X10 * 120 llXll 121 llXll * 121 0.034 0.024

1.1 8X14 448 6X10 120 10X10 * 100 10Xll 110 0.068 0.048

1.15 8X16 512 7X10 140 10X10 * 100 10Xll 110 0.10 0.072

1.2 7X16 448 6x9 108 8x8 * 64 9x9 81 0.14 0.096
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Table 10.57 Effect of moving the source projection Xs to the element edge

fs<pijq*dS. S: SPQ60. ~1=~2=0-1.2. d=O.Ol

Number of integration points for relative error <10-6

log-L I Telles

~l =~2 hi h.
original Xs move Xs original Xs move Xs

NtXNn N NtXNn N N,XN, N N,XN, N

6X14 * 336 40x45 1800 0.5 0.430

0.2 8X14 * 448 45X50 2250 0.42 0.36

0.4 8X16 * 512 45X45 2025 0.34 0.28

0.6 10X16 * 640 40X45 1800 200X250 55000 0.24 0.19

0.8 12x16 * 768 40X40 1600 180X 170 30600 0.13 0.096

0.9 16X20 * 1280 40X40 1600 128x 140 17920 0.065 0.048

0.92 14X16 * 896 10 X120 2400 35X35 1225 100X 110 11000 0.052 0.039

0.94 14X16 * 896 9X100 1800 32X32 1024 72X72 5184 0.040 0.029

0.96 14x16 * 896 7x72 1008 28x32 * 896 50X55 2750 0.027 0.019

0.9S- * 12x16 768 6X40 * 480 25X28 700 32X35 1120 0.013 * 0.0097

0.99 14x20 1120 6X28 * 336 25X25 625 25X25 625 0.0067 0.0048

0.995 14x20 1120 6x25 * 300 20x25 500 20X25 500 0.033 0.0024

0.999 16x20 1280 6X20 * 240 20X20 400 20X20 400 0.00067 0.00048

1.0 6x20 240 6X20 * 240 20X20 400 20X20 400 0 0

1.001 14x20 1120 6X20 * 240 16X20 320 20x20 400 0.00067 0.00048

1.002 12x20 960 6X16 * 192 16x20 320 16X20 320 0.0013 0.00097

1.005 llx20 880 6x14 * 168 16X20 320 16X16 256 0.0034 0.0024

10x20 800 7X14 * 196 14X16 224 16X16 256 0.0067 0.00481.01

1.02 10x20 800 7x14 * 196 14X16 224 14X14 * 196 0.013 0.0097

1.04 9X20 720 6X12 144 llX12 132 llXll * 121 0.027 0.019

1.1 8x20 640 6X10 120 8X8 * 64 10X10 100 0.068 0.048

1.2 8X20 640 6X10 120 7x8 * 56 8x9 72 0.14 0.096
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Table 10.59 Effect of moving the source projection Xs to the element edge

fS¢I} aq*laxsdS, S: SPQ60, ij,=ij2=0-1.2, d=O.l

Number of integration points for relative error < 10-6

L, -1I5 Telles

ij,=ij2 hi h4

original Xs move Xs original Xs move Xs

NtXNn N NtXNn N N , XN2 N N,XN2 N

0 8X10 * 320 16x72 2304 25x25 625 50X55 2750 0.5 0.43

0.2 9X14 504 14X72 2016 20x25 * 500 50X50 2500 0.42 0.36

0.4 10x14 560 12x60 1440 20X20 * 400 45X45 2025 0.34 0.28

0.6 llX12 528 9X50 900 20X20 * 400 40X40 1600 0.24 0.19

0.8 * llx14 616 7X32 448 20X20 * 400 28X28 784 0.13 * 0.096

0.82 llX14 616 6X32 * 384 20X20 400 25X28 700 0.12 0.086

0.84 llx14 616 7X28 * 392 20X20 400 25X25 625 0.10 0.077

0.86 llX14 616 7X28 * 392 20X20 400 25x25 625 0.090 0.067

0.88 12X16 768 7X28 * 392 20X20 400 25X25 625 0.078 0.058

0.9 14X14 784 7X25 * 350 20X20 400 20X25 500 0.065 0.048

0.92 14X14 784 7X25 * 350 20X20 400 20X20 400 0.052 0.039

0.94 16X16 1024 7x25 * 350 20X20 400 20X20 400 0.040 0.029

0.96 14X14 784 7X20 * 280 16x20 320 20X20 400 0.027 0.019

0.99 16X14 896 7X16 * 224 16X16 256 16X16 256 0.0067 0.0048

1.0 7X14 196 7X14 * 196 16X16 256 16x16 256 0 0

1.001 14X14 784 7X14 * 196 16X16 256 16X16 256 0.00067 0.00048

1.005 14X14 784 7X14 * 196 16x16 256 16X16 256 0.0034 0.0024

1.01 12X14 672 7X14 * 196 14X16 224 14X16 224 0.0067 0.0048

1.05 10X16 640 8X12 * 192 14X14 196 14X14 196 0.034 0.024

1.1 8X16 512 7X12 168 llX12 * 132 12x12 144 0.068 0.048

1.15 8X20 640 8X12 192 10X10 * 100 10Xll 110 0.10 0.072

1.2 9x20 720 7Xll 154 9x9 * 81 10X10 100 0.14 0.096

f¢q*dS S'SPQ60 ij =ij =0-12 d=OOOl

Table 10.58 Effect of moving the source projection Xs to the element edge

S u I 2 . , ---

Number of integration points for relative error < 10- 6

log-L, Telles

?1=?2 hi h4

original Xs move Xs original Xs move Xs

NtXNn N NtXNn N N , XN2 N N,XN, N

0 6x20 * 480 110X120 13200 0.5 0.433

0.2 7X20 * 560 100X120 13200 0.42 0.36

0.4 8X20 * 640 110Xll0 12100 0.34 0.28

0.6 10X20 * 800 100X100 10000 0.24 0.19

0.8 12X20 * 960 90X90 8100 0.13 0.096

0.9 16x20 * 1280 90X90 8100 0.065 0.048

0.95 16X20 * 1280 64X64 4096 0.033 0.024

0.99 20x20 * 1600 55X55 3025 150X 170 25500 0.0067 0.0048

0.992 20X20 * 1600 60X60 3600 128X 150 19200 0.0053 0.0039

0.994 20X20 * 1600 60X60 3600 100X 128 12800 0.0040 0.0029

0.996 20x20 1600 7X100 * 1400 55X60 3300 90X 100 9000 0.0027 * 0.0019

0.998* 20x25 2000 7X64 * 896 60X64 3840 72X72 5184 0.0013 0.00097

0.999 16X20 1280 7x35 * 490 45X50 2250 50X50 2500 0.00067 0.00048

0.9992 16x20 1280 7X32 * 448 45X50 2250 45X50 2250 0.00054 0.00039

0.9999 20x25 2000 7X25 * 350 40X40 1600 35X40 1400 0.000067 0.000048

1.0 7X25 * 350 7X25 * 350 32X35 1120 32x35 1120 0 0

1.0001 16x25 1600 7X20 * 280 32x35 1120 32X35 1120 0.000067 0.000048

1.0005 12X25 1200 7X20 * 280 28X28 784 32X32 1024 0.00033 0.00024

1.001 llX25 1100 6X16 * 192 25X25 625 25X28 700 0.00067 0.00048

1.005 llX25 1100 6X14 * 168 20X16 320 20X20 400 0.0034 0.0024

1.01 llX25 1100 6X14 * 168 14X14 196 14X16 224 0.0067 0.0048

1.05 10X28 1120 6Xll 132 10x9 * 90 10X10 100 0.034 0.024

1.1 9X28 1008 6X10 120 8X8 * 64 9X9 81 0.068 0.048

1.2 8x28 896 6X10 120 7x7 * 49 8x8 64 0.14 0.096
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Table 10.60 Effect of moving the source projection "s to the element edge

Number of integration points for relative error <10- 6

L
I

-1/5 Telles

i;1=~2 hi h4

original "s move "s original Xs move Xs

NtxNn N NtXNn N N l xN2 N N I xN2 N

0 8x20 * 640 60X72 4320 0.5 0.43

0.2 11X25 * 1100 72X72 5184 0.42 0.36

0.4 14X20 * 1120 72x72 5184 0.34 0.28

0.6 16x25 * 1600 64X64 4096 0.24 0.19

0.8 16X20 * 1280 60x60 3600 0.13 0.096

0.9 20X20 * 1600 55X55 3025 J80X190 34200 0.065 0.048

0.92 20X20 * 1600 50X55 2750 150X 160 24000 0.052 0.039

0.94 25x20 * 2000 50x50 2500 120X128 15360 0.040 0.029

0.96 25X20 2000 10X90 * 1800 45X50 2250 90X90 8100 0.027 * 0.019

0.98 * 20X20 1600 7X50 * 700 40X45 1800 50X55 2750 0.013 0.0097

0.99 20X20 1600 6x32 * 384 35X40 1400 35X40 1400 0.0067 0.0048

0.995 20X20 1600 6X28 * 336 32x32 1024 32X35 1120 0.0033 0.0024

0.999 25X25 2500 7X25 * 350 28X28 784 28X28 784 0.00067 0.00048

1.0 6x20 * 240 6X20 * 240 28X28 784 28x28 784 0 0

1.001 20X20 1600 6X20 * 240 25X28 700 25X28 700 0.00067 0.00048

1.002 16x20 1280 6X20 * 240 25X25 625 25X25 625 0.0013 0.00097

1.005 14X20 1120 6X16 * 192 25X25 625 25X25 625 0.0034 0.0024

1.01 12X20 960 6X16 * 192 20X20 400 20X20 400 0.0067 0.0048

1.02 11x20 880 6X16 * 192 16X20 320 14X16 224 0.013 0.0097

1.04 10X20 800 7X14 * 196 14X14 * 196 14X14 * 196 0.027 0.019

1.1 10X25 1000 7X12 168 10x9 * 90 11X11 121 0.068 0.048

1.2 11X25 1100 8X12 192 8X8 * 64 9x9 81 0.14 0.096
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Table 10.61 EfTect ofmoving the source projection "s to the element edge

I) I

Number of integration points for relative error < 10-6

L
1
-1/5 Telles

~1=~2 hI h4

original Xs move Xs original "s move Xs

NtXNn N NtXNn N N 1 XN2 N N I XN2 N

0 8X25 * 800 190x190 36100 0.5 0.043

0.2 14X28 * 1568 190X190 36100 0.42 0.036

0.4 16X25 * 1600 190X190 36100 0.34 0.028

0.6 20X28 * 2240 170X180 30600 0.24 0.19

0.8 20X25 * 2000 160X170 27200 0.13 0.096

0.9 25X25 * 2500 150X150 22500 0.065 0.048

0.95 25X25 * 2500 140x140 19600 0.033 0.024

0.99 28x25 * 2800 110x110 12100 0.0067 0.0048

0.992 28x25 *2800 100X110 11000 0.0053 0.0039

0.994 32X25 *3200 100X110 11000 200x220 44000 0.0040 0.0029

0.996 25X25 2500 10 X100 *2000 90x100 9000 150X170 25500 0.0027 *0.0019

0.998* 25X25 2500 8x64 * 1024 90x90 8100 100X 120 12000 0.0013 0.00097

0.999 20X25 2000 7X35 * 490 80X80 6400 80x90 7200 0.00067 0.00048

0.9992 20X25 2000 6x32 * 384 80X80 6400 80X80 6400 0.00054 0.00039

0.9999 25x25 2500 6x25 * 300 60X64 3840 60X64 3840 0.000067 0.000048

1.0 6x25 300 6x25 * 300 60X60 3600 60X60 3600 0 0

1.0001 20X25 2000 6X25 * 300 55X55 3025 55X60 3300 0.000067 0.000048

1.0005 16x25 1600 6X25 * 300 45X45 2025 50X50 2500 0.00033 0.00024

1.001 14X25 1400 6X25 * 300 40x40 1600 45X45 2025 0.00067 0.00048

1.005 12x25 1200 6X20 * 240 25X25 625 25X28 700 0.0034 0.0024

1.01 12X25 1200 6X20 * 240 20x20 400 20X20 400 0.0067 0.0048

1.05 11x25 1100 7x14 196 12xll * 132 12x12 144 0.034 0.024

1.1 11X28 1232 7X12 168 9X9 * 81 10X11 110 0.068 0.048

1.2 11x32 1408 7X12 168 8X7 * 56 9X9 81 0.14 0.096
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Table 10.62 Effect of moving the source projection x, to the element edge

I s l6 ij q""dS. S: SPQ60, 72=0, ?1=0-1.2, d=O.l

Table 10.63 Effect of moving the source projection Xs to the element edge

IS¢ijq*dS, S: SPQ60, 72=0, 71=0-1.2, d=O.Ol

N umber of integration points for relative error < 10 6

log-L1 Telles

71 h4

original Xs move Xs original Xs move Xs

NtXNJI N NtXNJI N N 1 XN2 N N 1xN2 N

0 6x9 "" 216 20X40 2400 14x16 224 35x32 ll20 0.43

0.2 7Xll 308 16x40 1920 14X14 "" 196 40x32 1280 0.36

0.4 7X10 280 12X35 1260 14X16 "" 224 32X28 896 0.28

0.6 9X10 360 8X28 672 12X16 "" 192 25X25 625 0.19

0.8 "" 10Xll 440 7X25 525 14X16 "" 224 20X20 400 0.095

0.82 9Xll 396 7X20 420 14X16 "" 224 20X16 320 0.085

0.84 llXll 484 7X20 420 14x16 "" 224 20X16 320 "" 0.076

0.86 llXll 484 6X20 360 16X16 "" 256 20X14 280 0.066

0.88 llXll 484 7X16 336 14X16 "" 224 16x14 "" 224 0.056

0.9 llXll 484 7X16 336 14X16 "" 224 16X14 "" 224 0.046

0.92 13xll 572 7X16 336 14X16 "" 224 16x14 .. 224 0.036

0.94 12X11 528 7X14 294 14X16 224 14X14 "" 196 0.026

0.96 13X12 624 7X14 294 12X14 "" 168 12X14 "" 168 0.016

0.99 17Xll 748 7X12 252 14x14 "" 196 14X14 "" 196 0.00087

1.0 7Xll 231 7xll 231 14X14 "" 196 14X14 * 196 0.0042

1.001 9x12 432 7Xll 231 14X14 * 196 14X14 * 196 0.0048

1.005 15X12 720 7Xll 231 14X14 * 196 14X14 * 196 0.0068

1.01 12Xll 528 7Xll 231 14X14 * 196 14X14 * 196 0.0094

1.05 12X12 576 8X10 240 10X14 * 140 llX14 154 0.030

1.1 12X13 624 7X10 210 llX14 * 154 llx14 * 154 0.056

1.15 10Xll 440 7X8 * 168 12X14 * 168 12X14 * 168 0.083

1.2 llX13 572 7x8 168 10X14 * 140 llX12 * 132 0.11
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Number of integration points for relative error < 10-6

log-L1 Telles

71 h4

original Xs move Xs original Xs move Xs

NtXNJI N NtXNJI N N I XN2 N N 1 XN2 N

0 6X14 * 336 40X45 1800 0.43

0.2 7x14 * 392 45X40 1800 0.36

0.4 7X14 * 392 40x45 1800 0.28

0.6 9X16 * 576 40X45 1800 220X250 55000 0.19

0.8 llX16 * 704 40X45 1800 160XI80 28800 0.095

0.9 14X16 * 896 20x110 6600 35X45 1575 J laX 120 13200 0.046

0.92 16x16 * 1024 16X90 4320 32X45 1440 lOOX 100 10000 0.036

0.94 16x16 * 1024 llx72 2376 35x45 1575 64X80 5120 0.026

0.96 16X16 * 1024 8X55 1320 32X45 1440 55X35 1925 0.016

0.98 * 25x16 1600 7X35 * 735 28x45 1260 35X40 1400 *0.0060

0.99 28x16 1792 7X25 * 525 25x45 ll25 28x45 1260 0.00087

0.995 25x16 1600 7X20 * 420 25X45 ll25 25X40 1000 0.0017

0.999 20X20 1600 7x20 * 420 20x45 900 20X45 900 0.0037

1.0 7x20 * 420 7x20 * 420 20X45 900 20X45 900 0.0042

1.001 14X20 ll20 7x16 * 336 20X45 900 20X45 900 0.0048

1.002 20X20 1600 7X16 * 336 20X45 900 20X45 900 0.0053

1.005 20X20 1600 8X16 * 384 20X45 900 20X45 900 0.0068

1.01 20x20 1600 8X14 * 336 14X45 630 16X40 640 0.0094

1.02 20x20 1600 7x12 * 252 12X40 480 12X35 420 0.015

1.04 16X20 1280 7X10 * 210 10X32 320 llx25 275 0.025

1.1 16x20 1280 7x9 189 7X25 * 175 12x20 240 0.056

1.2 14X20 ll20 6x8 144 7X16 ll2 10X10 * 100 O.ll
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Table 10.64 Effect ofmoving the source projection Xs to the element edge Table 10.65 Effect of moving the source projection Xs to the element edge

Is ¢ii aq*/axsdS, S: SPQ60, ~2=0, ~1=0-1.2, d=O.l

Number ofintegration points for relative error < 10-6

L
I
-1/5 Telles

~t h4

original Xs move Xs original Xs move Xs

NtXNR N N/XNR N N 1 XN2 N N 1 XN2 N

0 8X10 * 320 25X55 4125 25X25 625 50X45 2250 0.43

0.2 8X14 448 20X50 3000 20X20 * 400 50X45 2250 0.36

0.4 9X12 432 14X45 1890 20X25 * 500 45X40 1800 0.28

0.6 12X12 576 11X40 1320 20X20 * 400 40X32 1280 0.19

* 0.8 14X14 784 9X25 675 20X25 * 500 28X25 700 * 0.095

0.82 14X14 784 9x25 675 20X25 * 500 28X25 700 0.085

0.84 14X14 784 8X25 600 20X25 * 500 25x25 625 0.076

0.86 14X16 896 9x25 675 20x20 * 400 25X20 500 0.066

0.88 16X14 896 9x20 540 20X20 * 400 25X20 500 0.056

0.9 20X14 1120 9x25 675 20x25 * 500 25X20 * 500 0.046

0.92 20X14 1120 9x20 540 20x25 500 20x20 * 400 0.036

0.94 16X14 896 9X20 540 20x20 * 400 20X~0 * 400 0.026

0.96 20X14 1120 9X16 432 20x20 * 400 20X20 * 400 0.016

0.99 25X14 1400 9x14 * 378 20X20 400 20X20 400 0.00087

1.0 9X14 378 9X14 378 16X20 * 320 16x20 * 320 0.0042

1.001 14X14 784 9X14 378 16x20 * 320 16x20 * 320 0.0048

1.005 20X14 1120 9X14 378 16X20 * 320 16x20 * 320 0.0068

1.01 16x14 896 9x14 378 16x20 * 320 16x20 * 320 0.0094

1.05 16X14 896 9x12 324 14X20 * 280 14X20 * 280 0.030

1.1 16X16 1024 8x11 * 264 14X20 280 14X20 280 0.056

1.15 14X16 896 9X11 297 12X20 240 14X16 * 224 0.083

1.2 14X16 896 9X10 270 11X16 * 176 12X16 192 0.11

Is</> q"'dS, s: SPQ60, ~2=0, ~1=0-1.2, d=O.OOl
I) ---

Number of integration points for relative error < 10-6

log-L1 Telles

~l h.
original Xs move Xs original Xs move XS

N/XNR N NtXNR N N t XN2 N N 1 XN2 N

0 6x20 * 480 110X120 13200 0.43

0.2 6X20 * 480 100X110 11000 0.36

0.4 7X20 * 560 110X120 13200 0.28

0.6 9x20 * 720 100X110 11000 0.19

0.8 11X20 * 880 90x110 9900 0.095

0.9 12X20 * 960 72X110 7920 0.046

0.95 20x20 * 1600 90X110 9900 0.021

0.99 35x25 * 3500 20X(128) (7680) 72X120 8640 220x 100 22000 0.00087

0.992 40X20 '" 3200 16X(128) (6144) 60X120 7200 170x90 15300 0.00015

0.994 32X20 * 2560 11X100 3300 60X110 6600 140X90 12600 0.0012

0.996 25X20 2000 9X64 * 1728 60X110 6600 100x90 9000 * 0.0022

0.998* 80X20 6400 7X40 * 840 50X110 5500 60X 110 6600 0.0032

0.999 110X20 8800 7X28 * 588 45X110 4950 50X110 5500 0.0037

0.9992 120X20 9600 7X25 * 525 45X110 4950 45X90 4050 0.0038

0.9999 120X20 9600 7x20 * 420 45X110 4950 35X 110 3850 0.0042

1.0 7X20 * 420 7X20 * 420 35X110 3850 35X 110 3850 0.0042

1.0001 120X20 9600 7x20 * 420 32X110 3520 35Xl10 3850 0.0043

1.0005 128)X20 (10240) 7X14 * 294 25X100 2500 0.0045

1.001 128)X20 (10240) 7X14 * 294 25x 100 2500 0.0048

1.005 80X20 6400 6x14 * 252 14X72 1008 20X64 1280 0.0068

1.01 55X25 5500 7X12 * 252 12X60 720 14X50 700 0.0094

1.05 25X25 2500 7X10 * 210 10X25 250 11X25 275 0.030

1.1 20X25 2000 7X9 189 8X20 160 11X12 * 132 0.056

1.2 14X25 1400 6X8 144 7X16 112 10X10 * 100 0.11
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Table 10.67 Effect of moving the source projection Xs to the element edge

fS¢ij Jq*/JxsdS, S: SPQ60, »2=0, »1=0-1.2, d=O.OOl

Number of integration points for relative error < 10-6

L1-1/5 Telles

»1 h4

original Xs move Xs original Xs move Xs

NtXNn N NtXNn N N 1 XN2 N N 1XN2 N

0 8X25 * 800 190x190 36100 0.43

0.2 11X25 * 1100 190X190 36100 0.36

0.4 11X25 * 1100 190X190 36100 0.28

0.6 14X25 * 1400 180X190 34200 0.19

0.8 14X25 * 1400 170x190 32300 0.095

0.9 25X25 * 2500 150X190 28500 0.046

0.95 25X25 * 2500 140X190 26600 0.021

0.99 45X25 * 4500 110X190 20900 0.00087

0.992 45X25 * 4500 110X 190 20900 0.00015

0.994 40X25 * 4000 110X 190 20900 240X 150 36000 0.0012

0.996 40X25 4000 11x90 * 2970 100X 190 19000 180X 170 30600 * 0.0022

* 0.998 110x25 11000 8X50 * 1200 0.0032

0.999 150X25 7500 8X32 * 768 0.0037

0.9992 8x28 * 672 0.0038

0.9999 8x25 * 600 0.0042

1.0 8x25 * 600 8X25 * 600 64X190 12160 64X 190 12160 0.0042

1.0001 8X25 * 600 0.0043

1.0005 8x25 * 600 0.0045

1.001 8X25 * 600 0.0048

1.005 100X25 10000 8X20 * 480 25x120 3000 28x11O 3080 0.0068

1.01 72X25 7200 8x20 * 480 20x90 1800 20X80 1600 0.0094

1.05 32x25 3200 8x14 * 336 11X45 495 16X32 512 0.03

1.1 25X25 2500 8x11 * 264 9X32 288 16x20 320 0.056

1.2 20X28 2240 8X11 264 8x25 200 12X16 * 192 0.11

f ¢ Jq*/Jx dS S· SPQ60 » -0 » -0-12 d-O 01

Table 10.66 Effect of moving the source projection Xs to the element edge

S s 2- 1 - -

Number of integration points for relative error < 10-6

L1-115 Telles

»1 h4

original Xs move Xs original Xs move Xs

NtXNn N NtXNn N N 1XN2 N N 1XN2 N

0 8X20 * 640 60X72 4320 0.43

0.2 10X20 * 800 72X72 5184 0.36

0.4 10X20 * 800 72X60 4320 0.28

0.6 12X20 * 960 64x72 4608 0.19

0.8 14X20 * 1120 60X60 3600 0.095

0.9 20X20 * 1600 55X60 3300 180X200 36000 0.046

0.92 20X20 * 1600 20X110 6600 55X60 3300 150X 160 24000 0.036

0.94 20X20 * 1600 16x100 4800 55X60 3300 120X 128 15360 0.026

0.96 25X20 * 2000 12x72 2592 50x60 3000 90X60 5400 0.016

* 0.98 32X25 3200 9X50 * 1350 45X60 2700 60X64 3840 * 0.0060

0.99 32X20 2560 8X28 * 672 40X60 2400 40x64 2560 0.00087

0.995 32X20 2560 7X25 * 525 35X72 2520 35X72 2520 0.0017

0.999 20X20 1600 8X20 * 480 32X72 2304 32X72 2304 0.0037

1.0 8X20 * 480 8x20 * 480 28x72 2016 28x72 2016 0.0042

1.001 25X20 2000 8X16 * 384 28X72 2016 28x72 2016 0.0048

1.002 25X20 2000 8X16 * 384 28X72 2016 28X72 2016 0.0053

1.005 28X20 2240 8X16 * 384 25X72 1800 25x72 1800 0.0068

1.01 28x20 2240 8x16 * 384 25X64 1600 20X64 1280 0.0094

1.02 28X20 2240 8X14 * 336 16X55 880 20X55 1100 0.015

1.04 25X20 2000 8X14 * 336 16x45 720 16X40 640 0.025

1.1 20X20 1600 8x11 * 264 9X32 288 14X25 350 0.056

1.2 16X25 1600 8X10 240 8X25 200 12X16 * 192 0.11
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10.8 Summary ofNumerical Results for Nearly Singular Integrals Further, the L1 -11m radial variable transformations
1

R (P)= -(p+d) m, (m>l) (5.99)

were introduced to improve on the log-L1 transformation.

Different radial variable transformations were tested for the model radial

variable integrals

In this chapter, numerical experiment results were presented to evaluate

the numerical integration methods (PART) proposed for nearly singular

integrals in Chapter 5, in comparison with previous methods.

First, the singularity cancelling radial variable transformation R(p)

corresponding to
I - IPj ~ dp
a,8 - 0 r a

(10.45)

where a is the order of near singularity of the integral kernel, was shown to

require only one radial integration point for the accurate integration of u* and q*

over constant planar elements. However, for curved elements and kernels

including interpolation functions <Pij' the method does not work as efficiently as

Telles' cubic transformation method.

pdp=r'·dR (5.43) Results showed that the log-L1 and Ll -1I5 radial variable transformations with

the Gauss-Legendre rule perform far better compared to the identity and log-L2

transformations with the Gauss-Legendre rule, and the single and double

exponential transformations with the truncated trapezium rule. The L l -1/5

transformation gave better results compared to the log-L1 transformation except

for the case a =0= 1, d= 10-3 and a=3, 0= 2, d= 10-2. It was also shown that the

which corresponds to the singularity cancelling transformation for a = 2, was

shown to work efficiently for nearly singular integrals

of different orders of near singularity over the 'spherical' quadrilateral element

SPQ60. However, the method is shown to be inefficient for the integration of the

kernels au*/ax s and aq*/ax s arising from flux calculation.

Next, the log-L1 radial variable transformation

calculations,

I ¢ ~dS
s t) ax

s

andI du'
¢. -dS

1) ax
s s

(1) For d<0.06, the PART method with the log-L1 and LI -1I5 radial variable

over the 'spherical' quadrilateral element SPQ60 of unit size.

First, the effect of the source distance d, with the source projection fixed at

Xs = x (0.5, 0.5 ), was tested. As a result, it was shown that for potential and flux

theoretical error estimates of Chapter 7 based on complex function theory,

matches well with numerical experiment results.

Finally, different numerical integration methods were tested for the

integration of

(5.64)

(10.35)I d_S. (a=l -5)
S r

R(p}= log Jp2+ d 2 •

Then the log-L2 radial variable transformation

was shown to work efficiently for the integration of the flux kernels au*/ax s and

aq*/ax s , as well as the potential kernels u* and q*, over constant planar

elements.

R(p}= log(p+d} (5.85) transformations and the log-type angular variable transformation

hj [l+sin(O-a j }j
t(O)="2 log l-sin(O-a} (5.130)

J

works most efficiently.
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CHAPTER 11

APPLICATION TO CAUCHY PRINCIPAL VALUE INTEGRALS

Because of the robustness and efficiency of the PART method with the log-L l

and Ll -115 radial variable transformations, one is tempted to see how close one can

let the source point X s approach the element surface (d-O) and still obtain the

accurate value of the nearly singular integral.

This is of particular interest for the flux integrals Is au*/axs dS and

Is aq*/axs dS , since in the limit of d-O, or when the source point X s is on the

element, they become strongly singular, and they exist only in the Cauchy

principal value sense, whereas the potential integrals Is u* dS and Is q*dS are

only weakly singular, i.e. u* - O(l/r) for d=O (cf. section 3.1) and can be easily

calculated just using polar coordinates centered at X s in the plane tangent to the

element at X s (PART method with R(p) = p).

In fact, it turns out that one can calculate these Cauchy principal value

integrals by setting the source distance d sufficiently small and calculating the

corresponding nearly singular integral by the PART (log-L1) method. To be more

The log-L1 transformation is suited to potential calculations involving the

integrals Is <Pi) u* dS and Is <Pv q* dS , while the L I -115 transformation is suited to

flux calculations involving the integrals Is <Pv au*/axsdS and Is <PI) aq*/axs dS .

(2) For 0.06 ~ d ~ 0.8 , Telles' cubic transformation method works most

efficiently.

(3) For d ~ 0.8 , the product Gauss-Legendre method works most efficiently.

Next, the effect of the position of the source projection Xs = x(? 1> ?2) was

examined fOr?1 = ?2=0-1.2 and ?2=0,?1 =0-1.2, with source distance, d=O.l,

0.01 and 0.001.

It was shown that the number of integration points for the PART method

wi th the log-L l and L1-115 radial variable transformations can be reduced

considerably by deliberately moving the source projection Xs to the nearest edge

of the element S, when xs~S or when xsES and hj<d where hj is the distance

between the original source projection Xs and the nearest edge-j of the projected

elementS.

Further, it was shown that the PART method thus improved, is superior to

Telles' method for xsES and xs~S, 'It < 1.01, for source distances d=O.Ol and

0.001.

It was also shown that the log-type angular variable transformation 1(8) of

equation (5.130) works very effectively and is indispensable when the source

projection Xs lies near the element edge i.e. when 0.7;5? ;51.1.

specific, let

x'=x+dn. . . (11.1)
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where 0< d <l: 1 and Ds is the uni t normal to the boundary surface S at X sES ,

and calculate the corresponding integral with the source point at x: .

First, we will calculate the nearly singular integral for the planar square

element PLR (0.5,0.5) ,mentioned before,letting the source point

xs' = (0.25,0.25, d) approach the element surface (d-O). In order to see how the

nearly singular integral converges to the Cauchy principal value of the
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3 (a-x)
8

4
= -" + tan-I --' ,

2 y. +b
hypersingular integral as d~O,we will compare the former with the latter, which

can be calculated analytically as follows:

For a planar rectangular element

S: {x=(x,y, z) I -a~x~ a, -b~y~b, z=O}, with the source point

xs=(xs , ys , 0) on the element S, the Cauchy principal value integral can be

calculated as the limit of d~O, where X s = (xs, Ys, d), to give

and

(11.7)

(11.8)

(11.9)

J au'tax dS = (I, • f, • f,. {
8 aU. X. aU. Y. aU ,z

S
where

For the planar square element PLR (0.5,0.5) , a= b = 1/2 and Xs = Ys = 1/4.

The result of numerical experiments on the planar square element

f
au

'.
x
= 2.. ±[(SinO. Il!Og! h; )-(SinOl!Og! __h_

j
-.

l
)

4" j=1 ;+ COs(Oj+1 - a;l ; cos(O;- a;

I,. = 2.. ±[-(COSO. I l !Og! h; ) + (cosO l!Og! __h_
j
_-

l
)

aU ,y 4" ;+ cos(O. - a 1 ; cos(O - a
;=1 ;+1 ; ; ;

and

where

(
&-y )

8 = tan- 1 --' ,
1 a-xB

tan(~+nil
tan(Oj~ a

j
+ ~)

(
O;+I- a; If)

tan --- + -
2 4 1

(
0 - a ); ; If

tan -2- + 4'

(
&-y )

8 = 7C- tan- 1
--' ,

2 xs+a
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(11.3)

(11.4)

(11.5)

(11.6)

PLR (0.5,0.5) is given in Table 11.1, where the source distance d and the number

of integration points for the angular (I) and radial (R) variables using the PART

(log-L1 transformation) method, required to achieve an accuracy of (relative

error< 10-6 compared to the analytical value of the hypersingular integral (d = 0),

are shown. For the x, y, component integrals (*) of f s aq*laxs dS , partial

quadruple precision was necessary, and the absolute error was taken, since the

true values are both zero.

Table 11.1 Convergence of nearly singular integrals to Cauchy principal value
integrals (planar square element: PLR( 0.5, 0.5) )

Integral Component Source Number of Value of integral
distance integration points

d NtXNn total
(analytical, d=O)

x,y 10-4 8 X 25 800 -1.1122013 X10- 1

f s au*laxsdS
10-7 10 X 32 1280 -5.0000000X 10- 1z

* X ,y 10-8 20 X 80 6400 0
f s aq*laxsdS

10-4 20 X 50 4000 1.2712670z

Similarly, one can calculate the Cauchy principal value integrals

f s au*laxs dS and fsaq*laxs dS over curved elements, as the limit as d~O ofnearly

singular integrals. As an example, we take the 'spherical' quadrilateral element
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SPQ60 mentioned before with the source point on the element at xs=x (i71' '12)'

where '11 = '12 = 0.5 . Numerical results are shown in Table 11.2. The value of the

source distance d and the required number of integration points to achieve a

relative error< 10-6 compared to the converged result (d~O) is given. The actual

value of the converged result for the Cauchy principal value integrals are also

given. In this case, partial quadruple precision was necessary for calculating the

integral f s aq*laxs dS . This is because aq*laxs contai~s terms like p cos81,-5 (cf.

equation 3.130), which take very large absolute values near the source point X s

and cancel each other when integrated in the angular direction, so that rounding

error becomes significant.

Table 11.2 Convergence of nearly singular integrals to Cauchy principal value
integrals ('spherical' quadrilateral element: SPQ60 )

Integral Component Source Number of Value of integral
distance integration points

d NtXNR total
(converged)

x 10-6 16 X 40 2560 4.0224494X 10- 1

fs au*lax s dS y 10-8 16 X 45 2880 -9.9926710X10- 2

z 10-8 16 X 45 2880 -6.1706620Xl0- 1

x 10-7 25 X 80 8000 -1.0959943

fs aq*laxs dS y 10-8 25 X 90 9000 2.221675Xl0- 1

Z 10-7 25 X 80 8000 -2.3174413XI0- 1

The above numerical experiments demonstrate the robustness of the PART

(log-Ll transformation) method with·regard to the source distance d , by applying

it successfully to the calculation of Cauchy principal value integrals as the limit

(d~O) of nearly singular integrals. This may prove useful especially when

calculating Cauchy principal value integrals with the source point at the corner or

on the edge of the element, in which case previous techniques 28 would not work.
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CHAPTER 12

CONCLUSIONS

This thesis was primarily concerned with the numerical integration method

for the accurate and efficient calculation of nearly singular integrals over general

curved surfaces, which plays an important role in three dimensional boundary

element analysis.

Nearly singular integrals frequently arise in engineering problems, when

analysing thin structures or thin gaps, when using boundary elements with high

aspect ratio and when calculating the potential or flux very near the boundary.

The thesis is divided into two parts. In the first part, the theory and

formulation of three dimensional boundary element method (BEM) for potential

problems is presented, and the nature of nearly singular, weakly singular and

hypersingular integral kernels is analysed by focusing on the radial component of

the kernels. Previous work on numerical integration methods for three

dimensional BEM is briefly reviewed before proceeding to describe the new

technique developed to deal with nearly singular integrals. This technique has

been described in detail in Chapter 5 and is referred to as the "Projection and

Angular & Radial Transformation (PART) method". The method consists of the

following stages:

(1) Find the closest point Xs on the curved element S from the source po!nt X s .

(2) Approximately project the element S on to a polygon S in the plane tangent

to S at xs .

(3) Introduce polar coordinates (p, 8) centred at Xs in S.

(4) Apply a radial variable transformation R(p) in order to weaken the near

singularity inherent in the integral kernel.

(5) Apply the log-type angular variable transformation
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in order to weaken the angular near singularity, which arises when Xs is very

near the edge of S or when S has a high aspect ratio.

(6) Use the Gauss-Legendre formula in the transformed radial and angular

variables R and I .

For weakly singular integrals, which appear in the calculation of the

diagonals of Hand G matrices for three dimensional potential problems, the

identity radial variable transformation R(p) = p gives efficient results.

For nearly singular integrals, the singularity cancelling radial variable

transformation gives the exact result with only one integration point in the radial

variable for constant planar elements. For curved elements, the log-L2 radial

variable transformation R(p) = logYp2 +d 2 , where d is the source distance, gives

more efficient results for near singularities of different orders. For general

kernels, including kernels arising in flux calculation or kernels with interpolation

functions, the log-L I transformation R(p) = log(p + d) and the L 1 -liS

transformation R(p) = _(p+d)-li5 are more robust and efficient, where the

former is more suited to potential calculations and the latter to flux calculations.

The possibili ty of using the single or double exponential transformation wi th

the truncated trapezium rule for the radial and angular variable integration is

also discussed. Finally, the detailed implementation of the PART method is

discussed. The advantage of the method lies in the fact that the radial and

angular (near) singularities are separated so that they can be analysed and

treated independently from each other.

An elementary error analysis was presented in Chapter 6, explaining why

the log-L2 radial variable transformation ( corresponding to order f3 = 2) gives best

results among other singularity cancelling transformations corresponding to

(3''' 2. In Chapter 7, complex function theory was used to derive more rigorous
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theoretical error estimates for different radial variable transformations. The

analysis showed that the PART method using the log-L
2

radial variable

transformation converges with error of the order n -2n, where n is the number of

radial integration points, for integrations arising from potential calculations,

whereas the method converges only at a rate of n -3 for integrations arising from

flux calculations. For the log-L I transformation, the theoretical error estimate is

of the order <7-
2n for both types of integrals, where <7: 1.31-1.63 for

D : 10-3-10- 1
, where D is the source distance relative to the element size.

Similarly, for the L1-115 transformation, the error is predicted to be of the order

<7-
2n

, where <7: 1.41-1.67 for D: 10-3-10- 1• These error estimates match well

with numerical experiment results. This method of using complex function theory

for the theoretical error estimate also gives a clear perspective for the

construction of the optimum radial variable transformation.

The second part of the thesis presented numerical experiment results for the

new numerical integration technique. In Chapter 9, the PART method with the

identity radial variable transformation and the log-type angular variable

transformation was applied to weakly singular integrals and gave accurate and

efficient results for planar and curved elements with interpolation functions. In

particular, the effect of the angular variable transformation 1(8) in decreasing the

number of angular integration points when the source point X s is near the element

edge, as in discontinuous elements and elements with high aspect ratio, was

demonstrated.

Chapter 10 presented numerical results for nearly singular integrals, which

was the primary concern of this thesis. First, results for constant planar

elements were presented, together with the closed form integral. The singularity

cancelling radial variable transformation corresponding to pdp = r« dR , where

r = Y p2 + d 2 is the source distance and a is the order of near singulari ty, proved

to be more efficient compared to the Telles and Gauss methods when the relative
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source distance D~ 0.1. The log-type angular variable transformation t(8) was

shown to be effective when the source projection Xs is near the element edge.

The same singularity cancelling radial variable transformation

corresponding to pdp = r'a dR , where r' =Yp2 + d 2 is the approximate source

distance, was applied to curved elements and kernels with interpolation

functions, and was shown to be inefficient compared to Telles' cubic

transformation method. To overcome this difficulty, the log-L2 radial variable

transformation R(p) = logYp2 + d 2 , which corresponds to the singularity

cancelling transformation for a = 2, was introduced and shown to be most efficient

and robust among other transformations corresponding to a-=F 2, for integrals of

the type Is lIr a dS with different orders of near singularity a = 1-5 over a

curved element S.

However, numerical experiments on a planar element showed that the

log-L2radial variable transformation is inefficient for integrals arising from flux

calculations. In fact, the convergence was of order n- 3, where n is the number of

radial integration points, as predicted in Chapter 7. To solve this difficulty, the

log-L
I

radial variable transformation R(p)=log(p+d ) was introduced and was

shown to work efficiently for flux integrals as well as potential integrals over a

constant planar element.

Next, different radial variable transformations were compared for the model

ract.al component integrals I
a

•• = ~PJpJ I r" dp for potential and flux kernels. For

transformations based on the Gauss-Legendre rule, the identity transformation

R(p) = p , the log-L2 transformation, the log-L I transformation and the Ll-1/m

(on ~ 1) transCormations were compared. Numerical results showed that the

lug-L
j

transformation is a robust and efficient transformation with error

\.onvergence of order <1- 2n where <1: 1.56-1.88 for a=5 -1 and D=O.Ol. This

corresponds well with the theoretical estimate of Chapter 7 which predicts

<1: 1.40-1.64. The L
I
-1/5 transformation showed error convergence of the order

<1- 2" where <1: 1.7-2.9 for a=5-1 and D=O.01. This corresponds with the
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theoretical error estimates of Chapter 7 which predicts <1: 1.48-1.79. The identity

and log-L2 transformations also gave convergence results which were consistent

with the theoretical estimates. The single and double exponential

transformations based on the truncated trapezium rule were also compared. As a

result, they required 2-3 times as many integration points compared to the log-L1

transformation to obtain the same level of accuracy. On the whole, the L
I

-11m

transformation with m = 5 gave best results for the model radial integrals.

Finally, the product type Gauss, Telles' methods and the PART method with

the identity, log-L2, log-L
1

and L
I

-11m (m~ 2) radial variable transformations and

identity, log-type angular variable transformations were compared for the nearly

singular integrals Is rfij u* dS, Is rfij q* dS arising from potential calculations

and Is rfijau*laxs dS, Is rfij aq*laxs dS from flux calculations over a curved

surface element S. Results showed that the PART method with the log-L
1

or

L1-1/5 radial variable transformation and the log-type angular variable

transformation is the most robust method with regard to the type of integral

kernels, source distance d and the posi tion of the source projection Xs in S .

To be more precise, the effect of the relative source distance D with the

source projection fixed at xs =x(0.5, 0.5) was investigated for a 'spherical'

quadrilateral element S. As a result, we obtained the following guide for the

choice of numerical integration methods:

For D < 0.06 , use the proposed PART method with the log-L
I

or L
1

-1/5

radial variable transformation and the log-type angular variable transformation.

(The log-L1 gives better results for potential integrals and the LI -liS gives better

results for flux integrals.)

For 0.06 ~ D ~ 0.8 , use Telles' cubic transformation method.

For D > 0.8 , use the product Gauss-Legendre method.

The effect of the position of the source projection xs=x(~l' ~2) was also

examined for ~l = ~2=0-1.2 and ~2=0, iii =0-1.2, with source distances d=O.l,

0.01 and 0.001. Results showed that the PART method can be substantially
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improved by deliberately moving the source projection Xs to the element edge

when Xs i S, or Xs ESand hj<d, i.e. when the original Xs is outside the element, or

inside the element but closer to an edge of the projected element than the source

point xs. Using this strategy, the PART method becomes superior to Telles'

method when xsE S and xs~S, '11 < 1.01 for source distances d = 0.01 and 0.001.

The effect of the log-type angular variable transformation in the PART

method was also verified by comparing with results obtained by the identity

angular variable transformation (1(8) = 8). The effect becomes pronounced when

the source projection approaches the element edge ('I~ 0.7).

Chapter 11 showed that the PART method with the log-L1 radial variable

transformation can be applied to the calculation of Cauchy principal value

integrals arising from flux calculations on the boundary. This was done by taking

the source distance d sufficiently small to give an approximation of the limit as

d-O. Numerical results matched with analytical integration results for a planar

element. Results on a curved element with interpolation functions were also

presented.

In summary, the thesis proposed a robust and efficient numerical

integration method for nearly singular integrals with arbitrary small source

distance" d, which had been an open problem in three dimensional boundary

element analysis. The thesis treated the three dimensional potential problem as

n example, but the method can also be applied to other problems such as

elastostatics. The method may also be applied to two dimensional problems by

using the log-L I or L1 -1/5 transformation. These topics are left for future

research.
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