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Preface

The interdisciplinary field characterized by keywords like “neural networks”
or “neural computation” has drawn much interest recently. Despite sharing
neural systems as a common topic, the motives and perspectives of the re-
searchers may indeed be very different: neurophysiologists are trying to con-
struct an appropriate model which provides insights for the functions and the
organization of brains; engineers and information scientists are aspiring to find
alternative paradigms to the traditional one introduced by von Neumann and
used as the basis of almost all machine computation to date; psychologists are
utilizing neural networks for elucidating the sensory and cognitive proce

Nowadays, it seems that neuroscience has become one of the most im-
portant disciplines with subjects of general interest. It has exerted a strong
influence on various fields and physics is no exception. Although the theoreti-
cal approaches of physics to neural systems are relatively new in the field, the
past decade has seen surprising successes and rapid progress. There seem to
be several reasons. A first one is the enormous advance of computer systems.
These enable us to investigate neural network models extensively by simula-
tion. Such computational science is emerging as the third pillar of science next
to the theoretical and experimental one. In particular, recent workstations
provide us with a very convenient environment for developing sophisticated
simulation programs and for visualizing results in a way in intelligible to the
human mind. A second one is that many physicists in the statistical mechanics
community rushed into that field being fascinated by an analogy between neu-
ral networks and the so-called “spin glasses (SG)”. These are systems which
have randomly distributed ferromagnetic and antiferromagnetic interactions.
The mean field theory of SG has yielded many surprising results. It seems that
many physicists have been trying to climb the double-spiral staircase of neu-
ral networks and SG to reach a sanctuary for learning of “complex systems”,
even though it is not guaranteed that the staircase is really connected to such a
sanctuary... Wherever it may lead though, I do not expect it to finish in a dead
end, which, of course, doesn’t mean that there wouldn’t be many obstacles.
In other words, the understanding and even the focal points of attention may
change a lot, but most likely some of the basic ideas and analogies inspired by

SG will remain.




In the present situation where different methodologies coexist, how can the
physical sciences contribute constructively to this field? In short, I believe it
lies in discovering universalities in artificial neural network models. Although
it goes without saying that all neural network models studied in physics are
extremely simplified and cannot directly be compared with the neural systems
of organisms, such simplified models do have the mighty advantage of allow-
ing for systematic analysis. Moreover they may shed light on the principles
underlying “computation” in biological systems, and on how those principles
differ from the ones that we have so successfully applied in digital computers.
Neural network models are also very rich sources of inspiration for the design
of artificial computing networks, and the theoretical results may very well find
their way into practical application.

To return to the broad context of complex systems (theory) I would like to
point out the recent attention which is given to the emergence of collective be-
havior in groups of simple elements. I feel that the terms “Connectionism” and
“Collectionism” symbolize the standpoint that complex behavior, not only in
brains but also in complex systems, can emerge from the collection and coop-
eration of numerous “rather simple” elements. Here I used the term “simple”
as an adjective for the basic units such as formal neurons in neural network
models, amino acid residues in proteins[41, 15, 100, 129], sand particles in
dunes[88], model agents in economic systems[130] and so on. On the other
hand, the term “rather” indicates that such units should remain “reasonably’
complex, like, e.g., logistic maps in coupled map lattices[63, 128]. From a the-
oretical viewpoint, understanding the dynamical properties of large, couple

systems is a challenging problem in its own right.

About the thesis

This thesis focuses on the Hopfield model of neural networks, which her-
alded the arrival of SG ideas into the arena of neural computation. The Hop-
field model was/is extremely successful within the limits of the replica symme-
try (RS) approximation, which was originally introduced in the Sherrington-

Kirkpatrick (SK) model of SG[106]. However, several open questions remained.

1. How is a series of results in the RS discussion modified and affected by
replica symmetry breaking (RSB) ?

RSB was first introduced by Parisi[94, 95] to overcome some limitations
of the RS approximation and to complete the framework of the replica

method for an appropriate estimation of physical quantities.

s energy landscape organized? It is an origin of or an

obstacle to an associative memory function.
How is the Hopfield model related to the current SG model?

What can be known about several features which are hard to detect by

analytical approaches?

In the work reported here, several answers to these questions are supplied
for the first time. This was achieved by employing the full RSB formulation,
large-scale numerical simulations and other methods. The problem in the f

question was tackled by exploiting the fact that the RS solution is unstable
in the SG phase, and even in ferromagnetic retrieval (FMR) phase (where the
system exhibits an associative memory) below a specific temperature. In the
low temperature limit, at any rate, only the full RSB solution can provide
a proper estimation of the order parameters and other physical quantities.
The full RSB formulation also answers the second question by providing us
with parameter characterizing the structure of multivalley energy landscape.
It turns out that the valley structure continuously changes from a simple one
with two basins to a complicated one. The theory developed here reveals non-
trivial asymptotic shifts of the system to the Sherringron-Kirkpatrick (SK)
model of SG, and the limit established thus is introduced as the important

concept of the “SK limit”. Consequently, the third question is simultaneou

solved: in the “SK limit” the mean-field equations of the Hopfield model are

formally transformed into the SK model of SG shining light on an interesting
facet of the relationship beween these models. The last question is treated
by a series of numerical analyses using finite scaling, especially for the
basins of attraction and generalized remanent magnetization. The numerical
analysis also supports the presented notion of the “SK limit” by showing that
the remanent magnetization in that limit attains same value as the one known
in the SG theory.

In this thesis, I have also tried to provide a clear account of the statisti-
cal mechanical idea underlying neural networks. I hope to provide valuable

information for both novices and experts alike. Furthermore, although the




discussions are rather concentrated on the mean-field theory of the Hopfield
model and its relationship to spin glasses, it is my hope that this thesis can

contribute to the furtherance of “complex systems” in a broader sense.

The main contents of this work are as follows.

Chapter 1: This part is a review of the material most relevant to this thesis
as prior knowledge. First, the history of the discipline is briefly outlined, and
the formal neuron and its time evolution are introduced. Short notes on the
notions of spin glasses and the rugged multivalley landscape are also provided.

Chapter 2: The Hopfield model is introduced, and its physical and bio-
logical relevance are stressed. In particular, the mean field theory by Amit,
Gutfreund and Sompolinsky (AGS) for the Hopfield model is traced in detail.

Chapter 3: The full RSB solution of the Hopfield model at finite tem-
perature is formulated using Par RSB scheme in order to investigate the
multivalley structure of the rugged free energy. It is found that the result-
ing variational equations are equivalent to those for the SK model as a limit,
i.e., the “SK limit” of the Hopfield model was established. This had previ-
ously been suggested several times but never been proven explicitly[8, 52, 45].
Numerical solutions are obtained for the SG phase. These provide us with a
weight distribution of the valleys and its dependence on a parameter a = p/N
for the rate of memory-loading, where p is the number of random patterns for
memories and N the system size. It turns out that the multivalley structure
continuously changes from a simple one (corresponding to the Mattis state[75])
to a complicated one characterizing the coexistence of an infinite number of
metastable states (corresponding to the SK model) as a gets larger and goes
to the SK limit.

Chapter 4: The full RSB solution of the Hopfield model at zero temper-
ature (7' = 0) is investigated. By using an RSB scheme by de Dominicis,

Gabay and Orland, a free energy functional in the so-called Sompolinsky gauge

and variational equations are formulated. The resulting equations are conve-
niently defined for numerical analysis since the singularity at 7' = 0 is for-
mally avoided. Elaborate numerical analyses have revealed that the critical
storage capacity for the memory patterns at 7 = 0 has to be corrected to
a. = 0.155 + 0.002 which is larger than the corresponding values obtained
from both the RS (0.138) and the I-step RSB (0.144) discussions. Further-

more, the order parameter functions and frozen field distributions (FFD) both

in the SG phase and the FMR phase are determined. The FFD in the SG phase
shows a nontrivial double-peaked form, and how it depends on a. On the other
hand, the FFD in the FMR phase reveals its characteristic broken-symmetry.
It turns out that the FFD in the FMR phase is slightly but nevertheless clearly
different from a Gauss distribution assumed in the RS discussion.

Chapter 5: Remanent overlaps, the generalized remanent magnetization,
and their basins of attraction are numerically studied for the Hopfield model
with zero temperature sequential dynamics. Relationships between remanent
overlaps and initial overlaps are obtained for relatively large a’s. The asymp-
totic dependence of remanent overlaps on « is also shown. Remanent overlap
in the SK limit gives the same value of the SK model[66].

Chapter 6: This chapter is devoted to a summary of this thesis and some
concluding remarks.

Some formal derivations that are somewhat complicated but important are

provided in the Appendices.
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Chapter 1

Introduction

1.1 History

Although it is not the aim of this chapter to closely trace the entire history
of theoretical approaches for studying brains or neural networks, let us briefly
touch several significant contributions (for details, see text books like[10, 48,
57, 112)).

No one will contradict that the study of neural network models begun with
the work of McCulloch and Pitts[76] in 1943, who introduced the notion of the
formal neuron as a two state threshold element and showned that networks of
such elements can implement any logical function. In other words, they proved
that a synchronous assembly of such formal neurons is capable in principle of
universal computation for suitably chosen connections between neurons. By
representing the state S; of neuron i as firing (S; = 1) or not firing (S; = 0)

respectively, the time evolution can be represented as

Si(t+1)=0(> J;S;(t) —wi |, (1.1)
J

where the time ¢ is discrete and 6(z) is the unit step function (Heaviside
function). The connection matrix J = (J;) represents the strength of the
synapse connecting neuron j to neuron i. A positive or negative value of J;;
corresponds to an excitatory or inhibitory synapse, respectively. The absence
of a synapse can be represented by J;; = 0. The cell specific parameter w;
refers to the threshold value for neuron #; the weighted sum of inputs must

reach or exceed wu; for the neuron 7 to fire.
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Ne»

strengths in the brain change in response to e:

a hypothesis made by Hebb[53] about the way in which synaptic

<perience should be noted. Hebb
suggested changes proportional to the correlation between the firing of the pre-

and post-synaptic neurons.

The significant notion of a formal neuron by McCulloch and Pitts, and the
variable synaptic connection by Hebb were followed by the study of a variety
of models for associative memory, pattern recognition, various classification
tasks and even for combinatorial optimization problems.

The first noticeable wave of activity in this field occurred around 1960 due

to work by Rosenblatt[97] which focused on the problem of how to find an

appropriate synaptic connection for a particular computational task. He con-
centrated on networks called perceptrons, in which the units were organized as

and the next. Rosen-

layers with feed-forward connections between one lay
blatt was able to prove the convergence of a learning algorithm of a “simple
perceptron”; literally the simplest class of perceptrons without any interme

diate layers. That is to say, a general method was established to change the

synaptic connection iteratively so that a desired computation was performed.
Unfortunately after the appearance of the famous book Perceptron by Minsky
and Papert[82] which pointed out limitations in the ability of perceptrons for

learning a task, like e.g. the exclusive or (XOR) problem, the computer science

community left the neural network paradigm untouched for almost 20 years.

It should be noted though that other such adaptive devices were suggested

aianiello[23]

independently by Amari[4, 5], 51], Kohonen[68] and
Mart[73, 74].

Let us concentrate on the roles of phy

as the latest partner in neuro-
science. The first thread of development can be traced back to the analogy

between the activity of a neural network and the collective states of coupled

magnetic dipoles made by Cragg and Temperley[25, 26] in 1954. Twenty years

later, the same theme wa

taken up by Little[69, 70, 71] who made the anal-

ogy between synaptic noise and temperature, and suggested that persistently

firing states of neural networks appear just like the ordered phas

in magnetic
systems.
The fi

a neural network with symmetric connections. He added some helpful phys

major impact on ph

cs was provided by Hopfield’s work[58] on

‘al insight by introducing an energy function, and by emphasizing the notion

s dynamically stable attractors and the equilibrium thermody-

of memories
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His

papers triggered an explosive growth of the field, particularly in the statis-

namical properties of random magnetic systems similar to spin glass

tical physics community, leading to a whole series of dramatic advances in
the understanding of symmetric networks and their properties. This was es-
pecially the case because neural networks may be viewed as distributed op-
timization problems, e.g., the Traveling Salesman Problem (TSP)[59]. The

Hopfield model was subsequently solved analytically by Amit, Gutfreund and

Sompolinsky (AGS)[8, 9]. This was the first successful, and non-trivial applica-
tion of statistical mechanics to neural networks, giving rise to a variety of new
and surprising results. I would like to deal with this model in detail by using
a formal theory of the replica method. The definition of the Hopfield model

and the results from statistical mechanics will be given in the next chapter.

The second influential development during this decade is the Backpropaga-

tion (BP) algorithm[99] which works quite well for adjusting the weights con-

necting units in successive layers of multi-layer perceptrons. Actually, this had
already been discovered in the mid 70’s[127], but not received much attention
at that time. Due to the great ability of the BP model in overcoming nonlinear
separation problems such as the XOR problem, ref. [99] triggered a massive ex-
plosion of work on trainable neural networks which continues to this day. The
statistical mechanical approaches for the multi-layer perceptrons[17, 101, 126]

seem to be a brand-new theme in the field of neural networks.

1.2 Spin Glasses

Slightly before the explosion of work on neural networks, spin glasses (SG)

ics around the mid 1970’s.

emerged as a fascinating new topic in statistical phy
An SG is a collection of spins (i.e., magnetic moments) whose low-temperature
state is a frozen disordered one and is completely different from the kind of
uniform or periodic pattern we are accustomed to finding in conventional mag-
nets. It is found that such a state originates from two essential ingredients.
First, there must be some sort of competition among the different interactions
between the spins, in the sense that no single configuration of spins is uniquely
favored by all the interactions (this is commonly called “frustration”™). Sec-
ond, these interactions must be at least partially random. These facts suggest
that the

SG state is intrinsically different from conventional forms of order
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and requires new formal concepts to describe it. This challenge has been the
fundamental motivation for theorists in this field. Many of the marvelous re-
sults and notions have been reported in several excellent review papers and
books[36, 124, 37, 19, 125, 24, 81, 113, 114, 38].

Here, let us only briefly survey the history of the mean field theory of SG
along the replica method which gives important conceptual backgrounds for
this thesis. The replica method was introduced by Edwards and Anderson;
to analyze the SG model and has been subsequently applied to a mean field
model of SG, the Sherrington-Kirkpatrick (SK) model[106] with infinite-range
interactions. The replica symmetric (RS) solutions of the SK model clarified
important properties of SG, but, at the same time, also a fatal theoretical
defect became apparent: negative entropy at low temperature. The immediate
question was of course whether this was caused by the replica method itself
or a consequence of the way it was applied. Fortunately, the answer was
that it was NOT a failure of the Replica Method as such but that are need
to use the so-called replica-symmetry-BREAKING (RSB) solution instead of
the RS solution, as was suggested by Almeida and Thouless (AT)[28]. In
the end, the RSB solution proposed by Parisi[94, 95] turned out to satisfy
all the conditions requested by AT. Moreover, Parisi’s solution provided us
with a definite physical interpretation and estimated values for the physical
quantities. It also solved the negative-entropy problem. At the same time,
the number of metastable states was obtained as a function of temperature
by Bray and Moore[21]. It is obtained by counting the number of solutions of
the SG model proposed by Thouless, Anderson and Palmer (TAP)[117]. The
brand-new SG pictures suggested by the RSB theory was verified by several
investigations like Monte Carlo simulations[131] and direct numerical solutions
of the TAP equations[84, 85]. The subsequent research on the RSB solution by
Mézard, et al. revealed a surprising novel property of the metastable states:
the ultrametric organization of pure states. Although this property of the SG
phase was thought to be rather specific to the SK model, several investigations
have shown that this is not the case and that it is shared by other infinite-
ranged SG models[22, 115, 89, 90]. These abovementioned works form the
background of the present studies of the Hopfield model.

Taking up new arms, statistical physics recently focused with great su,

on the emergence of collective behavior in large assemblies of elements. This

naturally was closely reflected in the advance of the theory on phase transitions.
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Today nothing is surprising any more in attempting to connect ideas developed
in the study of SG to problems arising from or associated (however vaguely)
with biology. The SG theory, indeed, has had a rather large and unexpected
impact on some problems far from SG themselves in condensed matter.

Then, what are the notions from SG physics that have been used in bi-
ological applications and others? To borrow P. W. Anderson’s words[14],
they are “frustration”, “quenched disorder”, “replicas”, “ultrametricity”, and
“metastability”, among others. While these notions probably do not apply
to real SG!, many other problems have effectively infinite-ranged interactions,
and a mean field theory (sometimes with replica symmetry breaking) may be
applicable to them. The fields of SG physics proper and that applying the
notions of it to problems in other disciplines have rather diverged. Several
works have suggested that the notions of SG can be applied to some biologi-
cal systems such as neural networks, prebiotic or adaptive evolution, random
polymers, protein foldings, and so on[112], even though the discussions are
rather conceptual in each limited situation. The SG theory was also applied
to some combinatorial optimization problems and even information coding
theory[111, 98, 87]

In particular, the neural network models may turn out to have more rele-
vance to their interpretation of “long-ranged” interaction than the mean field
models of SG themselves for real SG materials. This is because, e.g., axon of
an neuron can grow over a large area of the cortex, implying that the interac-
tions are essentially long-ranged, while a notion such as “ultrametricity” from
the mean field theory is never found in the more realistic short-ranged SG.
Furthermore, another important point is that, to good approximation in many
kinds of neurons, every firing of a given neuron is identical with e other
firing. That is, a cell has effectively just two meaningful states, firing and not
firing. It can therefore be described by a binary variable, opening the way for
adopting a spin analogy.

Progress in these areas and in biology-related investigations are strongly
coupled, and we can reasonably expect the flow of ideas to travel in both
directions. In other words, we hope that understanding spin glasses could be
a key that unlocks the secrets of many other “complex systems”. Physics has

been an important factor in making spin glass theory such an active field in

ITheories for more realistic short-ranged models suggest that, unlike the infinite-ranged
model, no more than two pure states can exist for any temperature and field[61, 39].
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Which is the shortest route?

the last decade.

1.3 The Notion of Multivalley Energy (Fit-

ness) Landscapes

Last but not least, the idea introduced in this section is another central topic

of this thesis: the rugged or multivalley energy landscape. It may be one of

the most important notions of SG and has had many repercussions in other
fields.

Let us illustrate the problem of a rugged landscape by considering a per-
son who lost his way in a wooded and “rugged” mountain. Although almost
everybody would go downhill, such a strategy would be inadequate from the
viewpoint of a professional alpinist; for a craggy place around a mountain
stream may often prevent him from going down the rest of the way. Alpinists
would aim at a ridge with a fine view. At first their strategy seems to be
disadvantageous because they would go higher up, however, in the end they
would be able to find their way successfully. On the other hand, it is much

The Notion of Multivalley Energy (Fitness) Landscapes 21

easier in the case of bald and gently-sloping hills like the ones of a golf course
where one would be able to reach the highest or the lowest place because one
has a distant view. Such a fine view, therefore, eliminates a hit-or-miss search.
That is, a sightless or random search should be an origin of difficulty for the
people who lost their way. Likewise, the reason that the Labyrinth of Knossos
functioned as a prison is that a maze is difficult for a human being to deal
with (even though the Minotaur was not a human!). It is because in the maze
there is only a limited view, and decisions for searching a proper way have to
be made “locally”. These things are not only related to mountain climbing
or a labyrinth, but also to more general combinatorial optimization problems
which organisms often encounter through evolution. In fact the notion of the
“rugged landscape” can be applied to studying the problem of prebiotic[13]
and adaptive[64, 65] evolution with several successful results, even though we
should consider variable and adaptive landscapes[62, 65] if we want to address
evolution properly.

In the language of spin glasses, a search for a ground state corresponds to
nothing but an optimization in a multivalley energy landscape. This is also
known as one of the “NP-complete” problems. Furthermore, the simulated
annealing algorithm[67] has turned out to be very efficient for such optimization
problems. Analyses, using the replica method, again reveal the connections
between that algorithm and combinatorial optimization problems such as the
Travelling Salesman Problem (TSP) and the matching problem(79, 42, 80].

The part of the title “multivalley energy landscape” of this thesis is moti-
vated by the topics mentioned above. It may safely be said that the history
of evolution is an iterative adaptation both of a species and the environment.
Moreover, an adaptive evolution may promote a more complex environment|[65]
which gives rise to a rugged “multivalley landscape”. Such a situation can be
latent also in neural networks like the Hopfield model. One of the most plausi-
ble environmental adaptations in brains could be revealed as a morphological
variation of the network. A novelty of the Hopfield model in this sense is that
the structure of the multivalley energy landscape continuously varies as a pa-
rameter changes. This is also effectively related to an ability and a mechanism

of memory association. Corresponding topics will be discussed in Chapter 3.
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Chapter 2

Mean Field Theory for the
Hopfield Model

2.1 Introduction

The formal neurons and their dynamics defined as

St +1) =03 J5S;(8) —w
J

introduced by McCulloch and Pitts[76] seemingly without a physical per-
spective at the start, can be reinterpreted as a globally coupled Ising sys-
tem. It exactly corresponds to the zero-temperature limit of Monte Carlo
dynamics[77, 18]. J;; is an exchange interaction and —u; an external field on
spin 7. The fact that both positive and negative J;; may occur even hints at a
possible analogy with spin glasses, with ferromagnetic and antiferromagnetic
interactions.

Furthermore, the analogy with spin systems can be extended to nonzero
temperature (T # 0). This also has a biological basis in real neural systems:
the synaptic transmission is a “noisy” process and the potential on the post-
synaptic membrane is not determined precisely by the values h; = 3=; Ji; Sj—w;i
but may fluctuate. We can therefore introduce a stochastic dynamics in which
Si(t+1) =1 with probability

1
3 [1 + tanh(Bh;)],

93
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where 8 (= 1/T) denotes a “pseudo inverse temperature”. Note that 7" is
not a physical temperature and nothing but a parameter which controls the
steepness of the sigmoid P;(h;). Any sigmoidal function of k; with limiting
values of 0 and 1 at —oo and oo will lead to similar behavior!, but this choice
is particularly convenient because it corresponds exactly to finite-7' Glauber

5[49]. For symmetric J;;, then, the system is guaranteed to obey equi-
librium statistical mechanics: it has a stationary distribution. In the context
of artificial computing networks it can actually be advantageous to introduce
this kind of noise, as we will see below.

Next, in the context of our spin system, the Hebb hypothesis mentioned
in the previous chapter can be stated as follows: the connection between two
cells is strengthened when the firing of one cell succeeds in causing the other
to fire, while if it fails to do so, the synapse is weakened. This idea can be
represented as a symmetric correlation matriz the so-called Hebb rule :

aJ, s -
2L o< Si(0)S)(0). 3)
While the real details have not been sorted out yet, there is experimental
evidence for Hebb’s hypothesis, and most neuroscientists seem to accept it as
the only plausible working hypothesis, namely, (long-term) memory is stored
in such a way in the synaptic connection strengths?®.

Here we note that Hebb rule (2.3) introduces symmetric interactions J;; =

]

;i insidiously, which may be suitable and convenient for the formalism of sta-
tistical mechanics, but is biologically not very realistic. Because the channels
of communication in real neural systems are unidirectional, there is no reason
that neuron ¢ will be affected by neuron j in the same way as neuron j by
neuron . In fact, the existence of a connection from neuron i to neuron j does
not imply the existence of a connection in the opposite direction. Thus, the
assumption of synaptic sy

s a step backward from the point of view of
biological plausibility and was frequently criticized by neurobiologists, casting
doubt on the entire approach. In retrospect, the Hopfield model turned out to
be profitable both for statistical physics and for artificial neural network the-

ory. It has also provided us with an intuitive perspective of a neural network’s

'A new technique of analysis[83, 46, 91] for non-monotonic functions of h; has revealed
much better memory retrieval circumventing spurious states.

ZRecently several new paradigms for information coding in the cortex were proposed([72,
50, 34, 107, 2, 123] which suggests the so-called first synapse or dynamical cell assembly
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behavior (e.g., the critical storage capacity), which is important in applications
and desired in engineering

Although there are, in fact, several studies for models with asymmetric
interactions([55, 56, 102, 103, 104, 43], I will follow what has turned out to be

a rather successful strategy, and concentrate on the symmetric case.

2.2 The Hopfield Model

Partially following the review by Gutfreund and Toulouse[52], let us list several
interesting features of the Hopfield model from the point of view of statistical

mechanics.
It is another solvable and rich model of a random long-range

It spans a whole range of intermediate models of behavior, between the
infinite range Ising ferromagnet where p = 1 (the Mattis model [75]) and
the SK spin glass model[106] where /a — oo (the “SK limit” of the
Hopfield model[120], see Chapter 3).

It essentially has a mixed phase where the ferromagnetic retrieval (FMR)
state and the SG state coexist. The FMR state refers to a state which has
a macroscopic overlap with one of the memory patterns. Furthermore,
in more detail, the Almeida-Thouless (AT) transition (the RS-RSB tran-
sition) occurs on different lines for the FMR phase and the SG phase,

respectively.

The existence of macroscopic free-energy valleys which are not ground
states of the system, at least between T¢ the real first phase transition
line and T the transition line on which the metastable states for the

FMR solution disappear, is a novel property of this model. (See Fig. 2.3)

The major contribution of the Hopfield model to neural network theory was
to open a large galley of concepts, techniques and analogies, and to direct
the effort in a way which avoided the initial obstacl The analysis of the
model leads to results and insights which go beyond the constraint of synap-
tic symmetry. It turned out to be a useful starting point for a variety of
modifications[20, 1, 11, 12, 110] which removed some of the constraints and

drawbacks of the original formulation of the model.
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The Hopfield model is inherently connected with a self-coupled network
architecture. It is worth mentioning that a layered-network model, where
energy can be defined properly, can be analyzed by methods similar to the
ones of statistical mechanics[17, 101, 126]. It turns out that learning, i.e., the
dynamics in the space of interaction, can have feature similar to the ones seen
in neurodynamics.

In the next section, I will give an outline of the formal mean field theory
of the Hopfield model by Amit, Gutfreund and Sompolinsky (AGS)[8, 9]. In
particular [ will concentrate on the nontrivial case where the number of learning

patterns is in the order of the system size N.

2.3 The AGS Theory

The Hamiltonian for the Hopfield model is given by,

s N
o it v\ pra g
TSSO IS NS
b=l i
where p is a number of random learning patterns and A” is a field conju

to one of a finite numbers (s << p) of “condensed patterns”{¢!}. J;; is an

interaction constructed from p random patterns (§' = £1, u=1,...,p) as

1-Z
Ji= g e,
2 e=1

which can be obtained by Hebb rule if p random patterns are given as firing
patterns of S;(t) = € in eq. (2.3) with the same probability of firing for a
sufficiently long time (even though a proper normalization may be needed to
avoid divergence). We treat the J;;'s as frozen or quenched, so the influence
of the recall process on the memory is ignored. In other words, really in the
same way as a bond randomness was introduced in spin glasses where such
a randomness is expected not to vary significantly in short time scales of a
quenched process of spins, we assume that the synaptic connections change
much more slowly than the states of the neurons. That is, the Hopfield model
treats only the dynamical aspects of neurons, not the learning process at all.
Rather, it is concerned with a system in which the learning has been completed

and the synaptic connections J;; are given in (2.5).

The AGS Theory

Now, we are interested in the average
(Inz) = [ dJ;P({7;})In [Trs exp(~BH)]

where the symbol Trg refers to the trace taken over N Ising spins as

N
TesE{SH =11 3 E({S}). (2.7

i=15,=%1

The average ((In Z)) taken over the distribution P({J;;}) of all random binary
patterns {£/'} gives the free energy averaged over quenched disorder. By es-
timating the average (2.6) properly, one can obtain the average quantities we
want to know. Unfortunately it is very hard to calculate this average directly,
and it is not identical to log ((Z)), which corresponds to annealing and could be
obtained much easier. To get meaningful results we must average the relevant
quantity, which is In Z, not Z.

Fortunately there is a technique, called the replica method, that enables
us to calculate the average of In Z. Since the average of a power of Z is more
easily obtained, we can use the limit

” : =1
hZ=lm——, 2.8)
n—0 n
which gives the free energy per spin averaged over the quenched patterns in

O 5 ) 54
,1;““ 12"\(1\') (2.9)

the form

—0N. pi n
Therefore a central discussion is estimation of the average of n-replicated par-
tition function Z™ and this is the basic idea of the replica method. The formal
derivation and limiting process of above free energy density are left to Ap-
pendix A. Let us go on to the essential discussion.
AGS introduced the free energy of the Hamiltonian(2.4) as follows,
X

i o :
ot §+E§2:‘(771a) +2‘711|n[(l - B)I-5Q]

af

i anub = _j« In Z"»{i") (as n—0),

1
2n s nf

where

aff?
= Trpyexp ;, Z ra55%S% + B Z D
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Here we note that the average
(Of& Mg =

denotes the random average for (s < p) “condensed patterns”. I is a unit
matrix with n x n elements while Q is a replica matrix which gives the order
parameter ¢, where n is a total number of replicas, and a (or b) denotes
an index for the a-th replica. By Tr,; we denote explicitly that the trace is
taken over n-replicated binomial spins. The parameters in (2.10) are defined

as follows,
<<%;s:'<sz'>>>, (v=1...5)
XS,
Tab 1 (2.16)

where (---) denotes a thermal average, i.e., an average over that part of the
space of network states which the dynamics allows for. The average can be
regarded either as a time average or as an ensemble average. Here we note
that we used a special normalization of r,. Since each of the m#’s for u > s
(for uncondensed patterns) is O(1/ V/N), the sum is O(p/N) and the coefficient
makes it of order unity, even if p increases linearly with N. By egs. (2.14),

(2.15) and (2.16), the macroscopic order parameters are given as
1
=lim =% "m{

. 1
o L
= lim ey BTt

n—0n(n—1) by
m” denotes the mean overlaps between the states of the network visited by
the dynamics and the v-th memorized pattern. Retrieval is identified by a
large time-averaged overlap with consecutive single states. ¢ corresponds to
SG order parameter discriminating between SG freezing and paramagnetism.

The order parameter r describes the noise due to the uncondensed patterns. In
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other words, if the network is in a state with large (macroscopic) overlaps with
a few of the memorized (condensed) patterns, the accumulation of the random
overlaps with all the other patterns creates a significant amount of noise.

Here we stress that the parameter a = p/N refers to a storage level or rate

of memory loading, which changes the phase of the system.

With these three sets of parameters, the equations for the stable states of
the network can be written in the limit when the system size N becomes infi-
nite. These are the mean field equations which are exact for a fully connected

network.

2.3.1 Replica Symmetric Solutions

Most of AGS’s discussion have been carried out within the replica symmetric
(RS) theory, which assumes that each order parameter is symmetric under a
permutation of replica indices as

mY = m# (2.20)

Gab = 4, a#b (2.21)

V=0 a#b (2.22)
By noting that the matrix (1 — #)I — #Q, with the replica matrix Q given
by (2.21), has a nondegenerate eigenvalue 1 — 3 — (n — 1)fq and (n — 1)-fold
degenerate eigenvalues 1 — 3(1 — ¢), the free energy density can be represented
using the above RS order parameters after limiting processes of n — 0 properly
as

Ar(l — | 3
frs = %4‘2*](_—3—‘7)4'521”1"')2

a Bq
e [ln(l =) — m]

1
== /m,,(s)(( In 2 cosh 3 [\/5 +Y (m" + h"){”] ) (2.23)

where the essence of the derivation of the last term is the application of the
Hubbard-Stratonovitch identity (A.2) to the quadratic term (3, S*)* whic
appears in (2.11). In eq. (2.23), we used simplified expressions for Gaus

integrals

@Puy(e) = [~ 2 exp (- (2:24)
-0 V/27a
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Variation of frs with respect to m”, ¢ and r, leads to the equations for
the stationary states. All the solutions of frs, including local minima, are sta-
tionary states of the dynamical process, with barriers of O(N). The equations

are

s <<mnh 8 [\/T + 2‘”’“ & /’l')“ﬁ}»s
s ],

q
[1-58(1—-q)?

where the average ((---)); refers to the combined average over the £“’s in
€q. (2.13) and over the gaussian noise by the integral operator [ dP)(Z).

Here we note that at the saddle points the values of the parameters given
by egs. (2.25), (2.26) and (2.27) have just the physical meanings defined in
eqs. (2.14), (2.15) and (2.16), respectively.

2.3.2 Solutions at T =0

Now let us go on to the core of the AGS theory at T = 0. First we deal
with the solution for the so called “ferromagnetic retrieval (FMR) phase ”
corresponding to the case s = 1 and m' ~ 1 (we will represent it as m). We

use the identity in the limit 7' — 0 or 3 — oc:

9 rz/A
/d[)(i)“,tanh,}(/15+.1') = /_/ dzexp(=22/2)
7 Jo

= (-r('(.l'/\/'z./'\)
Appling this to eq. (2.25), with A' = 0, one can find that
m = erf(m/v2ar).

Next, the right hand side of eq. (2.26) has the limit unity as # — oco. But,
as 3 — oo, the appearance of the term C = f(1 — ¢) in the denominator in
eq. (2.27) requires the 3 — oo limit of this expression, which involves the term

of O(T) in ¢. Following similar calculations in eqs. (2.28), C can be represented

A 2 m?
C=lim f(1—q)=/—exp|——]. (2.30)
f—co Tar 2ar

as

Solutions at T =0

1.0

.=0.138
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Figure 2.1: Pattern overlap m (a) for a’s at T'= 0 (b) for T' at several values
of o [9].
The value of r in eq. (2.27), therefore, can be written as

r=(1-0)"? (2.31)
It is found that equations (2.29), (2.30) and (2.31) reduce to a single equation
for the variable y = m/\/ar, namely

erf(y)
U= e Ty i T
Y= 2o+ (2] v/m) exp(—3?).

This equation provides the dependence of the order parameter mon a at 7' = 0,

(2.32)

which is depicted in Fig. 2.1(a). The FMR solutions at a < a, ~ 0.138 have a
macroscopic projection on a given pattern. The solutions will have vanishingly
small overlaps with each of the other patterns. Those random overlaps are of
O(1/v/N). Fig. 2.1(a) tells us that the transition m ~ 1 to m = 0 is abrupt:
at a. the overlaps drop suddenly.
Here we note that the derivative of m” with respect to h* gives the linear
susceptibility xo as
dm"
Xo Yo
Gl

/IIP(” B cosh™*[B(v/arz + Y m")]

B —q).
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.=0.138

Figure 2.2: Linear susceptibility xo = #(1 — ¢) for SG and FMR phase.

Thus C' turns out to be nothing but xo. Fi 2 shows the dependence of xo
on a for both the FMR and the SG phase. The transition between SG and
FMR at a. can be seen as a bifurcation of xo. The line for the SG phase is

given by 1/(1 + /a)[9], which is independent of the temperature

2.3.3 Solutions at finite T’

If one focuses on egs. (2.25) and (2.26) at s = 1 and k' = 0, then one can
derive the reduced equations in the similar way as in the case 7' = 0. They

are given by
m= /4111,,(5)1;”111 [,1(\/“—-5 i m)] (2.34)
1= /1[[’“,15) tanh? [.f(\/nl‘f + mi]. 2.35)

where the expression of r is the same as in eq. (2.27).
These equations are solved numerically and yield the phase diagram shown
3(a). Above T, = 1 + \/a, in the paramagnetic phase region (A),
are neither FMR (m # 0,¢ # 0) nor SG (m = 0,q # 0) solutions for
any values of a, allowing only for the solution ¢ = m = 0. Below T}, there is
an SG phase characterized by the solution ¢ ~ T, — 7' > 0 and m = 0 (region
(B)). Below the line Ty (shaded region (C)), the FMR solutions ¢ # 0 and

m =~ 1 appear as locally stable states. In this region, the SG solution coexists

Generalized Almeida-Thouless line

(A)Para

Figure 2.3: (a) The AGS phase diagram. (b) Generalized Almeida-Thouless

line for the Hopfield model[9]

with the FMR one, but the free energy of the SG state is lower than the one
of the FMR state. In the darkly shaded region (D) below the line T, the
FMR free energy becomes the most stable state. The line T¢ therefore gives
the first order transition except at the point @ = 0,7 = 1 where the transition
is second order(7]. The small black triangle near a. is enlarged in Fig. 2.3(b)
to show the RSB region for the FMR phase.

The dependence of the FMR solution m on 7' is also depicted in Fig. 2.1(b).

The points where m drastically falls down to zero gives the line T);.

2.3.4 Generalized Almeida-Thouless (AT) line

Here we should note that the SG solution in the RS discussion above is unstable
for T < T,. The FMR solution, furthermore, becomes unstable to replica
symmetry breaking (RSB) below a temperature Tr shown as the shaded area in
Fig. 2.3(b). The curves refer to the generalized Almeida-Thouless (AT) line[28,
9] originally discussed for the Sherrington-Kirkpatrick (SK) model[106] about
the onset of the RSB instability where the sign of the “replicon” eigenvalue

becomes negative. This condition leads, in terms of m and h, to

/411)“,(5)0192msh‘“ B(varz +m+h) = [1 — B(1 - q))* (2.36)
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which gives the upper curve Ty, in Fig. 2.3(b) for an arbitrary temperature
by the numerical analysis. In the low temperature limit, cosh™(--) goes to a

delta-function and eq. (2.36) yields

—
P 8a 1
RIS o= 5D (*Z

which gives the white curve in Fig. 2.3(b).
Thus, although the FMR solution is stable between Ty and Tr; , the RS

solutions become unstable for all the finite values of « in the limit # — oo.
Hence the full RSB should be considered. Furthermore, in principle, the RS
solution cannot characterize the SG phase and the multivalley structure. In the
next chapter we will show how Parisi’s RSB scheme can be used for arbitrary
values of « in order to extract the variation of valley structure as o changes. In
particular, the RSB discussion is important for understanding the equivalence
between the SK model and the Hopfield model with large a.

Here we note that in this thesis “the Hopfield model” denotes to the system
with Ising variables in rather narrow sense. But, in fact, Hopfield and Tank[59]
has proposed another version with analogue neurons with continuous value.
This model has been analyzed within the replica symmetric discussions[105,
44, 45] in the similar way as the naive mean field model of SG[22, 115, 89, 90]
and the result reveals that the metastable “spurious” states of analogue model
is considerably suppressed compared with the Ising version. The phase diagram
in the same way as AGS also has been given and the critical storage capacity

gets larger than the one in the Ising version.

Appendix A: Mean Field Theory for a > 0

Using the replica method, let us estimate the following random average of £’s

for n replicated partition function as

- Y N{
(zry) = <<r;(

1 s oo o
—5Ppn +BY RY Y ErSt (A.1)
H v=1 i=lp=1 X

where by Trs we explicitly denote that the spin trace is taken over n-replicated
binomial spins with system size N. The random average ((---)) is taken over

# =41} (i1 =1,--+,N; p=1,-++,p). The quadratic terms in

i

p patterns {¢
eq. (A.1) can be decoupled by means of the Hubbard-Stratonovitch identity

exp(Aa?) = (A.2)

and ((Z")) becomes

(z) = r"’”"/-’<<'l‘rs‘/1—[—

up V&7

N
(YNBm, + ,1_\'/;“)% Z{fb’f) >>
= =1

(A.3)

Here let us concentrate on estimating the term (= L) on the second line in
eq. (A.3) which corresponds to the random average for “high” patterns {&/'}

(p=s+1,---,p) following as

P N 'i n
Ly << II Ilexp (\/;Z rrzif.\""f,“) >>
p=st+l i N p=1
p N 3 o
H Hcosh (\/; m;f‘\"")
p=atl i A =1

s N

exp Z Z In cosh i m;S'l")

p=s+1i=1 p=1
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where we have used £ gets 1 with probability 1/2. Since ln cosh(z) = 22
for < 1, L; reduces to

= eXp: [ Z Z Z Zm“m“\' S }

p=s+1i=1
By substituting (A.5) into (A.3), we obtain

u
dm;

z" = e P2 g
() = Tos ([T 75

up

nn

[ E S+ 3 S5 S memestsy

u=s+1 p=1 p=s+1i=1 p=10=1

><<<exp [—%ZZ m) +ZZ(\/—imp :L\'h”)% ‘ &

=1p=1 v=1p=1

where ((---)) .y denotes the random average for s of “condensed patterns”
{€¢}. By integrating of quadratic terms in the first exp(---) (= La) in (A.6)
and one can find out that

S e Sme )+ 5 ZJ

u=s+1 p=1

/H s 4\p [—— Z K omiml

upa

[det K ]7("73}/‘
P - =
exp {—;Trln I\} s (A7)

where K,, = 6,, — B/N¥;S{S? and it is used that p — s = p for large p of

order N. In the above caluculation, by Trln K, we explicitly denote that
4w = Z In Aﬁ‘ (A.8)
p=1

where A, are the eigenvalues of K. Here we need a complicated procedure to

diagonalize a matrix K7 in fact it will be found out that K is one of the replica
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matrices and its diagonalization needs some concentration, in particular, if one
addresses oneself to the replica symmetry breaking discussions.

By using a property of Dirac delta function, we obtain

exp ‘7"[|']n K| = dq,, exp ——llln((l - pB)I-BQ)
f

pFo
: 1o
x [T 8(gpr — = ; (A.9)
N
P
where I denotes a n dimensional unit matrix. A new set of auxiliary variables

Q = [g,0] is introduced, which should satisfy

=R ISho7 " for i
Qoo = { Tl SR (A.10)

0 otherwise.
Furthermore, by introducing a formal Fourier integral representation of the
) & g I
delta-function:

6z —a) = ZL/\ =) gy (A.11)
Tl J—ioco

for n(n — 1) {g,}, it is found as

hxl)[ Tr H /’LIIMM dg,, exp [‘~lrln((l - p)I— iQ]

oo

Nof? &
exp = o | Gpo —
D,

where we have left out unimportant prefactors and scaled the r,, by a factor
of Naf3? for later convenience.

Thus, after rescaling the m} variables as \/NB m} , by which variables m}
become order 1, we can write our full expression (A.6) for ((Z™)) as

dm?

7 ~Natn( Ngyns/2 i oo | 11 g0
(@) v [T 752 [ v [ o
X(.xl,‘\:[ 2len((l—dl—iQ ~¥ZM'H‘I~~‘EZZ”’ }
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{¢}
(A.13)



38 Appendix A: Mean Field Theory for a > 0

The last line of (A.13) (= L3) can be represented as a function of random
patterns {£/} and n-replicated binomial spins {Sf}, and can be further written

generally as

<<Hl|(/(£ }J>>M
<<(‘xp N (% g\; In Trsp exp F{€*, .s‘”}) >><<:’> (A.14)

where Trse indicates trace over n replicated binomial spins {S* (= 1)}. Here
let us note that s < N(— oo) guarantees Lz to be self-averaging and it can
be represented generally as

a2 1
=Y GE) =5 > GE) = (GE e (A.15)
N =1 2 Ev=+1 !

where we have succeeded in getting rid of the : dependence of the expression
as
Ls = exp (N((In Trsexp l-'{f”_.\"’)»w))v (A.16)
Here we note that in the end we do not need the average ((--- >)‘~E:,‘ in (A.14),
because the self-averaging of the i sum in (A.16) has already carried out all of
the pattern averaging.
Now we can write the whole expression for ((Z")) as an integral of the

exponential of something proportional to N:
NG
(z™y x/(\/;—;n,zm;)/(H./l,,‘",/r,,) e~ Nef{mar} (A.1T)
L v

- LS i s
f{maar} = ﬂ+;Zz(mml+;—jlr]n((]7.‘/)1—4Q;

2

where

v=1p=1
orBinE 1 5 "
+7§”rmqm = 5{(In Zo)) ey (A.18)

and

g s n
Zo = Trse exp (OIT Z LTS Z Z(m;’, Gt h"){”h"') (A.19)

< ofo v=1p=1

Chapter 3

Multivalley Structures of the
Rugged Energy Landscape with
Replica Symmetry Breaking

Discussion

3.1 Introduction
Recently the words “spin glasses (SG)” can be seen in diverse fields [81, 112].
They also have appeared in many papers for neural network models. If we
consider the Hopfield model[58, 8] globally and not uniformly connected
spin system, various SG like properties emerge. Its most significant character-
istics are the existence of a large number of metastable states and multivalley
structures in phase space which are also typical examples of “broken ergod-
icity”[93]. These properties were originally derived from an interpretation of
the replica-symmetry-breaking (RSB) solution given by Parisi[94] for the Sher-
rington and Kirkpatrick (SK) model[106] of SG, and were thought to be rather
specific to the SK model. More recent studies, however, have shown that this
is not the case and that they are shared by other infinite-range SG models[90].
In the present work, we will show that the Hopfield model too can be regarded
as such a model.

Very useful for obtaining some insight into the complexity of a valley
structure is the basin of attraction which gives a quantitative measure for
5

the “spread” of valley. Therefore, in Chpter 5, we will numerically study

39
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relationships between remanent overlaps and initial overlaps in the Hopfield
model using Monte Carlo simulations and finite size scaling at zero tempera-
ture (7' = 0)[119]. Such relationships provides an intuitive understanding for
the valley structure in overlap space. In this chapter, we consider the valleys
in spin configuration space by obtaining the full RSB solution of the Hopfield
model. It turns out that the formulation obtained is equivalent to the one
for the original SK model in the limit \/a — oo, where a(= p/N) is the
rate of memory-loading, p the number of random patterns for memories and
N the system size. In this way we have also proved conjectures by several
authors[8, 52, 45] regarding the SG limit of the Hopfield model. Furthermore
the full RSB solutions are numerically obtained for the SG phase.

In the previous chapter, the replica symmetric (RS) solutions for the Hop-
field model was reviewed at a run. One of the main results is that the RS
solutions are stable in almost all regions that belong to the FMR phase where
the system behaves as an associative memory. We derived the mean field equa-
tions and critical storage capacity a. ~ 0.138 at 7' = 0 by extrapolating the
RS solutions to the RSB region. The RS solutions for the SG states, how-
ever, are unstable in the entire region 7' < T, (the SG transition temperature)
and the ones for the retrieval states become unstable at T' < Tg, the gener-
alized Almeida-Thouless line[28, 8] for the Hopfield model. To overcome this
difficulty, Crisanti et al. have concentrated on estimating the critical storage
capacity by considering the first step RSB scheme (which effectively means
taking K = 1 in Appendix B) and they obtained the value a, ~ 0.145[27]. On
the other hand, in this paper, the full RSB scheme will be employed to extract
several pieces of information regarding the multivalley structure of the free en-
ergy of the Hopfield model, which interpolates between the Mattis model and
the SK model. Furthermore, we will also reveal non-trivial asymptotic shifts
of the system to the SK model, i.e. the “SK limit”[120], using the notion of
the rugged free energy landscape.

In the next section, the weights of the valleys will be defined first. Next, the
statistical mechanical interpretation of the RSB solution and the relationships
between the order parameter function and the weight distribution of valleys
will be given. Next, Parisi’s RSB scheme[94, 95] is applied to the Hopfield
model. It turns out that the obtained RSB formulation is equivalent to that
for the original SK model as a limit. We numerically solve the resulting varia-

tional equations for the SG phase with rather large a’s and some values of the

Valleys 11

temperature. These solutions provide us with the weight distribution of the

valleys.

3.2 Valleys

First let us define the weights of the valleys. When the phase space is divided
into a number of valleys indexed by k, the weight of k-th valley Wy is defined
as the probability with which a randomly chosen initial state is in the k-th

valley. If the system is at equilibrium, Wy can be represented as
Wi = exp(=Bfi)/ S exp(=Bf) (L We=1), (3.1)
J k

where fj refers to the free energy of the k-th valley and 3 = 1/T. In connection

with Wy, Mézard et al[78] have defined a quantity
y= (W), (3.2)
k

where (--:); denotes the sample average. The quantity y roughly shows the
number and the width of the valleys and gives the relative distribution of the
weights of the valleys. For example, there is only one large valley for y = 1
while there are many valleys with small weights for y ~ 0.

Second, let m (S;), be the magnetic moment of the ith spin of the pth
pure state. Overlaps of magnetization between two pure states are defined as

follows,
Gpo mi ,Miq. (3.3)

It is noted that the self-overlap g,,(= ¢®*) denotes the Edwards-Anderson
order parameter. Using Boltzmann weights P,, P,, the distribution of the
overlap ¢ is represented as

Plg) = )" P,P6(q = Gpo))a-

The cumulative distribution function is defined as,

Y(q) = /7l dg'P(¢).
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Y (¢) also gives the density of pure states with an overlap larger than ¢. If we

now consider the function
, g ’
z(q)=1-Y(q) = / dq'P(q"), (3.6)
J-1

we see that its inverse g(z) exactly coincides with the RSB solution of the SG
order parameter, which is why it is called the physical interpretation of the
RSB solution[94, 31]. The case Y (¢"4) refers to the self-overlap of a pure state
by definition and is equivalent to y in eq. (3.2) since Wy = P, (one pure state
for one valley). Furthermore, Y (¢”4) is given by the length of the plateau
of q(x) whose functional form depends on . Hence, by obtaining the RSB

solutions for various values of a, the variation of y can be estimated.

3.3 The RSB scheme for the Hopfield model

3.3.1 The full RSB scheme

Following the formalism by AGS and Parisi’s recipe of taking a continuum
limit of partitions of replica matrices (Parisi gauge), the free energy for the

Hopfield model can be represented as the functional,

¥ e af 1
fo = % - 5 ;(m")‘ 4= =5 (rl 1)— /” l'(-l')fl(l)’l«")

__(0.’) (9(0,h + 2)) ey

a [ —Aq(0) 1de % v
+2.i{1—\(m+1“['“\'“HA/‘, T

which is maximized by the order parameter functions ¢(z), r(x) and minimized
by m*. Here ¢() and r(z) correspond to the order parameters (2.15),(2.16)
in the continuum limit, i.e., the SG order parameter function and the or-
der parameter function describing the noise due to the uncondensed patterns,
respectively. m” denotes the average overlap of the states and the v-th mem-
orized pattern (2.14). The terms including x(z) correspond to the third term
in eq. (2.10) and they are obtained by taking the continuum limits of the
eigenvalues of the replica matrix Q in eq. (2.10) since it has a recursive
structure. The details of the limiting process are left to the Appendix B.

The full RSB scheme 13

The average ((- “*){evy has the same meaning as eq. (2.13). Furthermore,
9(z,2)(0 <2 < 1,—00 < z < o0) is a solution of the following partial differ-

ential equation:

ST 2 oy 3
9= (!l + Bag ) (Parisi equation)
g(1,2z) = B In2cosh Vapz.

The derivations of the terms containing ¢(z, z) are similar to the case for the SK
model[94, 90, 33] and are left to Appendix C for details. y(z) and A correspond
to the local susceptibilities at scale z and the effective field, respectively (h”

denotes the external field, conjugate with the v-th condensed pattern) as

x(a), = d(l—z'q(.x')—/qu(.i')(lfi)‘ (3.10)

%V};(m"+h”)£“. (3.11)

Equation (3.7) cannot directly be maximized numerically since (0, z) de-
pends implicitly on r(z) through (3.8). Therefore we apply the schemes by
Sommers et al.[108] and Nemoto[85] to obtain the order parameter functions
g(z),r(z). They make g(z,z) independent of r(z) by introducing a Lagrange
multiplier function P(x,z). The new functional to be maximized is then de-

fined as

filrsg,9, Pl = folr,q,9] + /A dzP(1,z) {!/(L z)— % In 2 cosh \/c_\j:}

: = S ) 2 16
—/‘; ([.z'/;\ dzP(z,z) {j./+ 3 (y + Bzg )} (3.12)

The equations to be solved can be obtained by taking functional derivatives of

(3.12) with respect to ¢,r,g, P and m":

M= Ag(u” + 28z MM’

M(1,z) = tanh 3z
p = _(P" — 2Bz(PM))

1 ( (2 —h)?
T (i 01
0 P\ 2r(0)
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/\ dzP(z, 2)M(z, 2)? (3.17)

]

7 (1 < il / G m) (3.18)
40 = () -
= TP +»/U dig o (3.19)

mt = [~ dm( << el (7 (3.20)
\/27r(0) ,,
B = \/ap. (3.21)

In the above formalism, P(1,z) gives the internal field distribution. Further-

more if we consider only one condensed pattern(s = 1) and h' = 0, we can

estimate the sample average ((---)) in (3.16), (3.20), and obtain the following

, < (:—m/ﬁ)%)
exp.| —

equations:

P(0,z) -
V/271(0) 2r(0)

P / d=M(1,2)P(1,2), (3.23)

where we have re-written m! as m and have used m = [ dzM(z,z)P(z,2) =
const. It is noted that (3.22) and (3.23) coincide with the corresponding
equations for the SK model in a magnetic field. Consequently, in the same
way as for the SK model, the field distribution can be corrected to a non-
trivial function P(z,z) from the Gaussian distribution by the RS solution.

Equations (3.13) ~ (3.17) are similar to those for the SK model in which
A is scaled by \/a while (3.18) and (3.19) are specific to the present analysis.
When we take the limit \/a — oo while keeping B constant, we obtain that
x(z) — 0, r(z) = g(z) for arbitrary z and that m = 0. We thus find that
egs. (3.13) ~ (3.23) formally coincide with those of the SK model and obtain
the first result of this chapter. We have established the “SK limit” of the
Hopfield model. In this way we furthermore proved the similar conjectures for
the “SK limit” of the Hopfield model[8, 52, 45].

Here it is noted that the conditions ¢ = 0 again yield the mean-field
equations obtained from the RS discussion. Furthermore, the differentiation

of (3.17) with respect to x gi\'vs for ¢ # 0 the equation

(3.24)

Numerical analysis 15

This equation is equivalent to the condition for marginal stability in replica
space[8, 120]. If we apply the RS solutions to eq. (3.24), one can easily obtain
the equation for the generalized Almeida-Thouless line of the Hopfield model

(i.e. eq. (2.36))[8] as

af? sech* [ (varz + (m + ! )] =0 - 80 -9,
(3.25)
where ¢ and r correspond to the RS solutions of ¢(z) and r(z), respectively.

h' denotes the external field, conjugate to the 1st condensed pattern.

3.3.2 Numerical analysis

We have solved (3.13)~(3.23) numerically for some parameters. Analytical
results are known only near 7T, the SG transition temperature. Since we can
interpet the linear terms of (3.13), (3.15) as diffusion equations, by introducing
the Green function, the nonlinear partial differential equations (3.13), (3.16)

can be transformed to the following integral equations:

1

7 exp (—
Ven(r(z) — r(z)) 2(r(z
x \ TR
/ dz'G(z, z; 1, 2') tanh B2’ +/ dz'Br(a')z’
X /\ dz'G(z, z;2', 2 )M (2, 2/ )M
1 NP( 1u—m/\f )
(z)

U
27|

/ 4Gz (M, )P, ). (3.28)

This enables us to obtain M, P, m, r, ¢ and x by means of an iterative pro-
cedure in the order (3.27) — (3.22) — (3.23) — (3.28) — (3.17) — (3.18)
— (3.19) — (3.27) - For numerical integration and differentiation we dis-
cretized the variables  and z, dividing the intervals [0,1] and [-7.5,7.5] into 20
and 100 pieces, respectively, while we used a cubic spline for interpolation. We
iterated the above procedure until the maximum variance of all the variables
P, M,r,q and x became less than 107, which occurred typically in 700 — 900

iteration (dependent on o and f3).
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Some typical order parameter functions are shown in Figs. 3.1, 3.2 and 3.3
for a fixed value of the temperature (T(= 1/8) = 0.5) and for a = 0.5,1.0 and
2.0 (i.e., in the SG phase). We see that the larger a, the smaller r(z) and x(z),
but the larger ¢(z). Consequently in the SK limit ¢(z) and r(z) are naively
expected to be identical for arbitrary values of . The internal field distribution
P(1, z) is represented in Fig. 3.4 for several a’s and T"s. It is expected that the
smaller a, the nearer the system approaches the RS region at the temperature
considered. Then we can see that a gaussian form will be recovered for smaller
a or higher T' while a double-peaked form of P(1,z) emerges for larger a or
lower T'. Figure 3.5 concerns the variation of y for a at 7' = 0.5. We estimate
the values of y, the length of the plateau, by the point where dg(z)/dz is
less than 103, We see that y can be scaled as y ~ a™ (4 0.5 + 0.02).
Consequently, as « gets smaller the valleys with a large weight increase their
relative frequency proportionally to 1/\/a. Moreover, the larger a, the more
the number of relatively small basins increases. Here we would like to stress
that an exponent of ¥ ~ 0.5 implies that for large a, y scales according to
the SK limit (y = 0.5) and not according to the SG limit (y = 1.0) as thus
far thought[8, 52, 45]. Finally the a dependence of x(0) is given as circles
in Fig. 3.6, which shows good agreement with the line x(0) = 1/(1 + /a)
obtained analytically in ref. [8]. It also indicates that the accuracy of our
numerical analysis is sufficient. Moreover, maximum errors of the compatibility

condition (3.24) at a = 0.5,1.0,2.0 and 7' = 0.5 were less than about 4%.

3.4 Summary

We have formulated the RSB solution for the Hopfield model, obtained the
variational equations for the order parameter functions and found that they
are identical with equations for the SK model as a limit (the SK limit of the
Hopfield model). The order parameter functions are also numerically estimated
for the SG phase and from their functional form the asymptotic dependence
of the parameter y, characterizing the valley structure, on « is obtained.

Let us conclude this chapter by noting that the free energy (3.7) is invariant
for gauge transformation of ’2’. This enables us formalize a free energy with
the so called Sompolinsky gauge[109, 29]. In the next chapter, using the new

variational equations of the formalism, I will report important results for the

Summary

FMR and SG phase including an estimate for the critical storage capacity
within the full RSB theory[121].
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Figure 3.4: The internal field distribution P(1,z) at (a)T'" = 0.5 for o =
0.5,0.75,1.0,1.25,1.5,1.75 and 2.0 (bottom to top) and at (b)7' = 0.4,0.5,0.6

Figure 3.2: Order parameter function : r(z and 0.7 (bottom to top) for @ = 1.
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1:0
o

Figure 3.5: The asymptotic dependence of y on a at 7' = 0.5 (log-log plotted).

ks

1.4

o

Figure 3.6: x(0)(o) versus a for 7' = 0.5. The curve represents x(0) = 1/7, =

1/(1+ Va).

Appendix B: Diagonalization of Parisi’s matrix

We summarize some of the details involved in taking the n — 0 limit of the
term L = (a/(26n))Trin[(1 — B)I) — 3Q] in the free energy (2.10). Here we
note that the essence of the following calculations is the diagonalization of the
Parisi’s replica matrix and the proper taking of the limits. In general, an n
dimensional Parisi matrix A = Ay of level K is recursively defined as the K-th
iterate of
Arti @Ugpr o0 axUpp
apUpqr A cor apUpyy
i} . ¢ (B.1)
”kUk+I aUpqr -+ Apa
with Aj4 = @ representing the value of the diagonal elements. Uy denotes
the px x px matrix whose elements are all 1. Each matrix Ay is specified by its
dimension p; and the coefficient a; of nondiagonal submatrices U4y, Thus
A, is determined by the series of integers n = po > py > --+ > pg > prq1 = 1,
where naturally py needs to divide px_; in order for successive submatrices to
fit correctly, and the series of coefficients {ao, ay aK,ag4 = a}.
By the recursive definition, the eigenvalues A of A are obtained[92] as
K
Apo = Y (Pi — pis1)ai + @, (B.2)

i=0
which is nondegenerate, and as

K
A= Z(p, — Pit1)@i — prag + a, (B.3)

i=k
which are po(1/prs1 — 1/pk)-fold degenerate for each k(k = 0,1,---,K). The
matrix Q in L is a Parisi matrix whose diagonal elements are zero(¢ = 0).

Consequently, we use the eigenvalues for evaluating L and obtain

K
a
= mlll[lvd(l+Z(p,—p,+l)q,)]

i=0

) 1 | [ 8 ( ﬁ: B.A)
+—3 (———)In |1 -4 |1+ D; — Pi+1)qi — Peqk | | -(B.4
23 g} e M) l=k(l Pis1 ki | | -(

Let us write the first and the second term by a/(28) Ly, a/(23) L, respectively.

If we change the order of the summation of k(like in a partial integration), Ly
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can be rewritten as

1 K
Bog = 77 In [l —A(1 + th, — pis1)qi — /»M\,;}
o

i=0

k=0 i=k—1

K-1 K
1
+ o5 {]n[l =B+ Y (pi = pis1)@i — Pr-19x-1)]
ke

K
—In[l — B(1 + > _(pi — piy1)gi — I’k’lk)]}

i=k

+In[l — B(1 — gk)]. (B.5)

Now, while denoting the terms in Ly by Lay, Laj, L3, we obtain after taking

the continuum limit X — oo and the limit po(=n) — 0,

B4(0)

1 K
,;h. [1 =B+ Y (pi — pis)a) | — T [ @)

=0

K-1
1 B; 11— qk
> (55)n -+ o —a)
k=0 \Pk 1—B(1 + Z24(pi — pis1)gi — Prgr)

= <i> Bpi(gr-1 — ax)
o \pe) 1= B0+ SEi(pi — pisa)ai — prar)
1 3q(z
,/ de . 4(z) ; (B.6)
Jo 1= B[l - [; dig(z) — xq(x)],
Infl — B(1 — q(1))], (B.7)

where we set go = ¢(0), gx = g(1), pi — pis1 = dx and ¢;_, — ¢; = ¢(z)dx. The
first term of L, is canceled out by L, yielding L’;,. Finally, L can then be

represented as a/23(L'y + Lay + Las).

Appendix C: Derivation of the Parisi equation

Here we briefly trace a derivation of Parisi equation (3.8) following schemes[94,
33, 29, 90] for taking a continuum limit of the partition function (2.11) defined
in the replica space. It is convenient to write the partition function in the
matrix form as
Zy(z) = Trgny exp (%(T”R(r B :uTa> (C.1)

where o and u are the n (= pg)-dimensional column vectors whose elements
are o, and 1, respectvely. By applying the parametrization of the Parisi matrix
Ao in Appendix B to R which is divided into po/p1 % po/p1 blocks, we can
rewrite (C.1) as

| Po/p ro m/p p/pm
Zo(z) = Trmyexp |:; Z lr-fleo,_k he Z ”[kUI”I_k’ 4z Z ul’a-,‘,\.:|

< Sk &

k

ro/m1

Tr{n) exp |:; > a1 (R — Uy ) oy i
LA

ro po/p1 : ro/p1 .
1 2
+T( E wuo) +2 E U Oy
™ k

27rg

g Ll ) Pl
x Tr{ny exp {; Z al’_k(R, —roUy)oie + (24 2) Z ullrn_k
T &

| vo/m
X ['l'rm)vxp [;{T{(R; —roUy)oy + (2 + :)uTﬂ,H

52
cxp(v)—) [Z(z + :)]"“/”I
2T %
where we have used the Hubbard-Stratonobitch identity (A.2) for the quadratic
term (S0 uloy )% In the above calculation, oy, denotes the k-th p-

dimensional subvector of po-dimensional vector ap = & and there are po/p;

such subvectors in the way as

T
00 = |01,1,712) """ »T1po/m (C.3)
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At this point in time, we can succeed in representing Zo(z) by Zi(2 + z) , the energy per component Ising spin, we introduce

one-step replica-symmetry-breaking (RSB) partition function, with po/p; x
, < 2 ; 1
po/p1 submatrices R, and Uy, and p,-dimensional subvector oy and u,. Gl =—
P

Similarly one can construct an l-step RSB partition function generally by

In Z)(z)

lterative equation as Concerning this variable, we can get the following recursive formula:
32

1 ¢ 3
Zi(z) = Trypyex [— T(Ri — i U)oy + zul ] :
4 s 201( i e Q= _’“/\/ ‘XP(il’(l':*l’r-H)

27 (ry — 11-1)

B i Pi/Pisr
Ir(p) exp [.’ Z ”l+1 s(Rigr — U)ok x [exp [P Giga (3 + :)”(r:/mn y

2

Pu/prea PPt
1 where
4 kR k

=T i -
+ ( ) > ot Umomp +2 > w0k : 7
Gg4(z) = —;q,\'+|1124’\).~.‘|\: (C.¢

- Pl
I'ryp ) exp |:* Z ”Ll,k(RiH = 1 U41) 0 141 4 Furthermore, by rescaling the 2//rf — rj—; variable as Z, we can write as
k
AT now 3 : . . s ‘
+ (—)( > uloau)’+z ZA: w0 Si(z) = 5 n, Wor xp(——-) exp [I’/ Tip1(z + v — ’l—|~)]

)
M k

xp(— - )
/\/_H (ri—ri1) [‘\I)( 2(ry — 1)

1 Plrs I'A/}’ux i
xTryp,) exp s Z U‘HA(RH.] — U)ok +(2+ 2 Z MHWHM

= (1‘4,](‘)1'[711“/

2(ry —71-1)

dz Z :
exp(— Ziga (2 + 2) P/ (C.4) Zpiri—r " Zpi(r —risq)
F ‘)[m )] v o T e Zpiv/r ige Pi( 1.) 11)7’?,H+>__

27 (1 — ri-1)
- l+(l 1+1)

where Ry, and Uy, refer to the p;y;-dimensional diagonal and nondiagonal ~ Gui(z)+—1In
P

submatrices of pi-dimensional Parisi matrix Ry, respectively. &4+ denotes
% T —Ti-1 2 "
= (11+|[:'1’<—.) )(p,(v,“+(”“)_

(PG + G ))

the k-th pi41-dimensional subvector of pi-dimensional column vector o as

T 1 - .
. (C. where we used \/rj — 131 < 1. Now we can take the continuum limit where
K — oo, Gi(z) = G(z,z), p = z and r; — r—; — —rdz and by transforming

The above cedur Is at k = K as . i .
i NONE R PRI ARG i otiilies the variable by g(z,z) = (G(z,2z) + ¢(1)/2)/B we can get Parisi equation as

o= [”!H.h”Hl.z-"'~’7Hl,m/7q“

5 1
Zg4(2) = 1!(1)(’XP [Z(RI\H — gk Uk41)0k4 + Nﬂ'!\+l} dg l}
o= Bz <—)
dz

exp(— Z ))(k)\ll (C.6)

where we have used Rg41 = 0, Ugyy = 1 and gy = 1. To get the free
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For the Hopfield model, after rescaling the variables r(z) and z as

r(z) — af’r(z),

zZ = \/:.1.:

we can get expressions relating to g in (3.7) and (3.8).

Chapter 4

Replica Symmetry Breaking

Discussion at Zero

Temperature

4.1 Introdcution

Since the Hopfield model(58, 8] and its family of neural network models[10, 57]
have been fully researched in the context of the spin glass (SG) theory[81, 112]
and other new technics of analysis[46], studies on the Hopfield model in itself
may seem to have a rather classical flavor nowadays. However there are still
important open problems: low temperature behavior in the phase where the
replica symmetric (RS) solutions are unstable and, in particular, the critical
storage capacity (a.) in the low temperature limit (3 = 1/T — o). This
chapter discusses the RSB solution of the Hopfield model in order to consider
such topics.

AGS have shown that the replica symmetric (RS) solution is stable in
almost all regions which belong to the FMR phase, and by extrapolating to
the RSB region they derived the mean-field equations at 7' = 0 and determined
a. = 0.138. Crisanti, Amit and Gutfreund[27], moreover, have examined the
one-step RSB solution and have corrected a. from 0.138 to 0.144. However at
T = 0 both the RS solution and the RSB solution become unstable when only a
finite number of steps is used. Therefore the full (infinite steps) RSB solution
should be considered, where o, is expected to be corrected to a still larger

value. Moreover, only the full RSB discussion provides us with an appropriate

57
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estimation for the order parameter functions and the frozen field distribution
which is expected to give some helpful information if one addresses oneself to
dynamical profiles[6, 86].

In section 4.2, the RSB scheme by de Dominicis, Gabay and Orland (DGO)
[30, 29, 90] is examined with the help of the so-called Sompolinsky gauge[109].
DGO’s RSB scheme uses a different replica matrix (the DGO matriz) from the
one employed in Parisi’s RSB scheme[94, 95]. In particular, in subsection 4.2.1,
the diagonalization of the DGO matrix is outlined because the corresponding
terms in the free energy only appear in the Hopfield model, and not in the SK
model[106] which was investigated in the RSB discussions of refs. [94, 30, 29].
Here we note that the resulting “gauge invariance” of the free energy functional
plays an important role since it enebles us to numerically solve the variational
equations avoiding a singularity originating at 7' = 0. Such a numerical solu-
tion at 7' = 0 cannot be achieved within the framework of Parisi’s RSB scheme.

ion 4.3, we numerically solve the variational equations at 7' = 0 for both

the SG and the FMR phases for several values of a.

4.2 The full RSB formulation

4.2.1 Diagonalization of the DGO matrix

Here let us concentrate on calculating the third and fourth terms in the free
energy (2.10) with the help of DGO’s RSB scheme. The essence of the following
calculation is the diagonalization of the DGO matrix. In the scheme, the nxn

dimensional DGO’s replica matrix Q in (2.10) is recursively defined as

Q-Ds Q - Qo
Q Q-D -+ Qo
2 2 s : €2,
Q o Q=D

where Qg and Dy are the py x py Parisi matrices parameterized in the Appendix
B. Here we note that the diagonal elements of Qo and Dy are ¢ = gx and
d=dg + qx. To get a proper solution, one should take the limits po > py >
<> pr — oo (we will call this the DGO limit) and K — oo before n — 0.
First, let us consider the term ® = (1/n) 37, apqas in eq. (2.10). We will
denote the diagonal and off-diagonal submatrices of R = {r,;} by Ro and Eqy

Diagonalization of the DGO matrix

which are parameterized by {r;} and {e;}, respectively, in the same way as Qo

and Dy in Q. Consequently, ® can be represented as

) ;ll‘RQ e [Tr(Ro — Eo)(Qo — Do) + (n/po — 1) TrRoQq]

Do

[l%'l 1QoRo — TrDoRo — TrQoE, + Tl'DuEu]
0

Po
K

n
= (Z('Im = Q-1Ti-1)p — KTk + fﬁ‘)

1=0

K
(Z(d!"l —di_yri-)pr — dgr + d r‘)

=0

K
(Z(qm = qi-1€1-1)P1 — qr €K + f)f)
=0
K 2
+ > (dier — diorery)pr — dxex + dé
=0
K

—qKTK — Z(Af”q: +A0r)

=0

1. .
—q(1)r(1) — 3 / (A (x)g(z) + Ay(z)r(z))da. (4.2)
2 Jo

In the above calculation, by Tr we explicitly denote that the summation is
taken over all the elements of the Parisi matrix as

: K
L’l‘rA\. = L ’i: Aoap = Z(u, — @i )pi—ag +a (a_y =0), (4.3)
Po Po . =0
where Ay ,; denotes the (a,b) element of the py X po Parisi matrix. We further-
more used that dj—d;_, = Af“/p, e —el_] = r_\}"/p,A _\ﬁ"] = ..Aqu)zl.r/J and
A = A, (z)dx/B[29, 90] in the DGO limit and K — co. A,(z) and A,(z) cor-
respond to Sompolinsky’s nonergodicity functions[109] determining the gauge
of (29, 108] together with r(z) and ¢(z) respectively as = = —'l'j,,(.r)/(',(.r) =
—TA,(z)/#(z) (Parisi’s z). Here we note that these functions are scaled by 3
since the Parisi equations (4.16) and (4.18) to appear later are scaled in the
same way.
Second, let us consider the diagonalization of the DGO matrix as a prelim-
inary of the calculation of the term L = 1/nTrIn[(1 — $8)I) — Q] in eq. (2.10).
Since the Parisi matrices Qo and Dy are commutate[95], one can write the
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common eigenvector uy of Qg and Dy as

Qo — Dy Qo L Qo
Qo Qo —-Dp --- Qo

Qo w0 Qo —Dyo apuy apuy
where m = n/p and €, denote the eigenvalue of Q. Consequently, with
respect to the coefficients ay,az, -+ -, @y, one can obtain that
Ag — M A
A Ay — A
Aq

9

A —

q Ad Am m
where A, and \; denote the eigenvalues of Qg and Dy, respectively. Thus, the

eigenvalue €, of the DGO matrix is represented by
€ = MmA;— Ay (nondegenerate) (4.6)
9 -\ (1= ,ooo,m—1)(m —1-fold degenerate).  (4.7)
The eigenvalues of a Parisi matrix are known to be

K
A = Z(p, — pit1)a; +a,

i=0
which is nondegenerate, and
K

AL — Z(p‘ — Pi+1)ai — prax + a,
=k

which is po(1/pks1 — 1/px)-fold degenerate for each k(k = 0,1, - -+, K)[120, 92].
By substituting (4.8) and (4.9) into (4.6) and (4.7), the eigenvalues of the DGO
matrix therefore can obtained as

K n K
g = — LAY — g+ =3 (0 —pis)as +ax ¢ (4.10)
=0

g
i=0 Po

1
Po

K K
T
—Z_\i”' S {leh —Pis1)qi + qx — Ilulk} ,
i=k

i=k+1
K

*ZAE’“ — 9K,

=0

K ©
Etih=rg

i=k+1
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where £ = 0,1,---, K. We also used A!” = pi(d; — d;—1)[90]. The numbers
of degeneracy of €y, €0, €1, and € are 1, po(1/prs1 — 1/px)s n/po — 1 and
(n — po)(1/prs41 — 1/pi), respectively. The total number of degeneracy is n as
can be easily checked. Now it is possible to obtain the term L = 1/nTrIn[(1 —
B)I) — BQ] in the continuum limit by substituting the above eigenvalues in L
and taking the proper limits. The details of the limitation process are left to

the Appendix D.

4.2.2 Free energy functional and the Parisi equations

After the calculations in the previous subsection and others for the Parisi
equation[94], the free energy for the Hopfield model can be represented as a
functional (the Sompolinsky gauge):

. i afl
fo = 5452+ Sor(1) (1 - (1)

L :
- % A (A,Lz')q(;r) + _\q(.z')r'(a')> dx
Ty
- [ = () (00,2 + b,
oo yf2mr

a [ —pq(0) 1 Bq(z)
sy . et = iz
+2,1{ 7\“”+ln[l x(1)] /01117\(”}

+[‘ (I:I'(L:){;Ll.:)—%Inhmh \/m:}

b ME Lo e 0 ot
—A dx /:‘\([.I’(Al. - T } (4.14)

which is maximized by the order parameter functions r(x), g(x), A.(x), A,(z),
¢(x,2), P(z,z) and minimized by m”. Dots and primes denote the derivatives
with respect to 2 and z, respectively. The average ((--+))(o; has the same
meaning as eq. (2.13). Here ¢(z) and r(z) correspond to the order param-
eters in the continuum limit, i.e., the SG order parameter function and the
order parameter function describing the noise due to the uncondensed pat-

¥ denotes the average overlap of the states and the v-th

terns, respectively. m
memorized pattern. The term involving x(z) (defined in the Appendix) cor-
responds to L = 1/nTrin[(1 — 8)I) — AQ] in the continuum limit mentioned

in the previous subsection. The last two terms, including the function p(z, z),
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are introduced via a Lagrange multiplier function P(z, z) in the scheme for nu-

merical analysis by Sommers et al.[108], Nemoto[85], Takayama[116] and the

author[120]. Those two terms should vanish when the maximum of the free
energy is reached. The derivations are similar to the case for SG models 0]
and the details of derivation are left to Appendix E. The definition of the local

field h is given as

1 2
= L RYNEY. 1.15
\/Zzlm + h¥)¢ (4.15)

With regard to Sompolinsky’s nonergodicity functions[109] A,(z) and A,(z),
we note that the free energy (4.14) is ‘gauge invariant’ since eq. (4.14) and
its variational equations still hold if & is replaced by some monotonic function
u(z) with u(0) = 0 and u(1) = 1.

Now, the generalized "Parisi equations’ for the Hopfield model can be ob-
tained by taking the functional derivatives of (4.14) with respect to the order
pdmmv(t'l fun(hons after the variable transformations \/_A (z) = A.(z) and

\/_A A,(z) as,

= /X dzP(z,2)M(z,2)*
31 — q(1)) + Ag(x) — A,(1) = [ dzP(z,5)M'(z, 3)
P

X@) = 2= [B(1 = q(1)) + Ay(2) = A,(1)]
o ie)
)= T—x@)P

Ay(e)
[1— x(=)}?

P /‘N dEM(0,3) <<E"+(n)exp
L& e

A(z) =
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B = /ap. (4.26)

In the above formalism P(1,z) gives the internal field distribution. When
we consider only one condensed pattern(s = 1) and k' = 0, we can estimate
the sample average ((---)) in (4.19), (4.25), to obtain the following equations:

1:7m/\/:)»’)

2r(0)

s / d=M(1,2)P(1,2),

where we have written m' as m and have used m = [*3, dzM(z,z)P(z,z) =
const. It is noted that (4.27) and (4.28) coincide with the corresponding
equations for the SK model[106, 85] under a magnetic field. Consequently, in
the same way as for the SK model, the field distribution is found to a non-
trivial function P(z, z) which is clearly different from the Gaussian distribution
obtained by the RS solution.

Here we note that differentiation of the two functions ¢(z) (eq. 4.20) and
A,(x) (eq. 4.21) with respect to x gives for A,(.rLf/(.l') # 0 the equation for
the condition for marginal stability in replica space(8, 120]:

1
TGP

By differentiating once more, one can obtain the equation

- / d2P(z, z)M'(z, 2)?. (4.29)

0 = "itz) /\ dzP(z, 2)M"(2,2)?
+2A‘J,Lr) {/\ dzP(z,z)M'(z,2)* + [1 — x(z)*/Va (4.30)

which implies that egs. (4.20) and (4.21) are essentially equivalent; those two
equations determine only the gauge relation between ¢(z) and Ay(z) (e.g. the
Parisi gauge is given by .‘A,,(.rj = —.;.r(}l.l'). providing us with the variational
equations with Parisi’s RSB scheme[120]). This gauge relation also holds for
the pair of r(z) and A,(.r) via egs. (4.23) and (4.24).

In the limit 3 — oo, one can easily see that egs. (4.17), (4.20) and (4.21)
reduce to
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Moreover, by substituting equation (4.33) into egs. (4.21) and (4.22) and set-
ting z = 1, one has
Vax(1) =31 —q(1)] = P(1,0) =0, (4.34)

which is also supported by numerical studies of the SK model in an external
field[16]. Thus it is found that the two functions y(z) and A,(z) are essentially
equivalent

A(z) = Vax(z) = /\ dzP(z,2)M'(z,2), (4.35)

where we set A (1) = 0 according to definition[109].

4.3 Numerical analysis at 7' =0

For several values of a, we have solved (4.16)~(4.28) numerically both for the

SG phase and the FMR phase. Since we can interpret the linear terms of

(4.16) and (4.18) as diffusion equations, by introducing the Green function,
the nonlinear partial differential equations (4.16), (4.18), (4.27) and (4.31) can

be transformed to the following integral equations at 7' = 0:
1 (z—2)* )
expi{ — . - (4.36)
v 27(r(2) — r(z)) ( 2(r(z) — r(z))

z 1 .
s e R R e
(\/' (1 ~))) /’

x/‘ 220, = B MG M (55)
1

BN i
= xp | — diA, (7
\/_zm_(“ Xp (=) ) +>/“ A (Z)

x/; 4363, 2 2, 2) (M(3,2) P2, 2))’ (4.38)

where erf(z) = 2/7 [ exp (—t*)dt denotes the error function. This enables us
to obtain M, P, m, r, ¢ and x by means of an iterative procedure in the order
(4.37) = ( (4.27) = (4.28) ) — (4.38) > (4.20) — (4.23) — (4.37) ---. In
the SG phase, Ay(z) (A.(z),x(z)) can be determined a priori by choosing a
special gauge of Parisi’s . On the other hand, in the FMR phase, A, () has
to be determined through eq. (4.35) at each step of the iterative procedure.

Details are explained in the following subsections for each phase.
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For numerical integration and differentiation we have discretized the vari-
able z, dividing the interval [0,1] into 40 ~ 100 pieces. The variable z is also
discretized, dividing the interval [-A,A] into 100 pieces, where the value of A is
determined differently for P(z,z) and M(z,z) because P(z,z) spreads over a
wider range of z than M(z, z) which is expected to change its value drastically
near z = 0 (i.e., very close to a step function, especially in the FMR phase), e.g.
A =12.0 and A = 0.05 for P(z, z) and M(z, z), respectively. Furthermore, we
have used a cubic spline for interpolation. Quadratic functions and hyperbolic
tangents are also used for extrapolations of In(P(z,z)) and M(z,z), respec-
tively, both defined on the entire range of z. We have carried out the above
iterative procedure until the maximum variance of all the variables P, M,r,q
and y is less than 107°.

Once a set of solutions (m, g, r, x, P, M) for a value of a is obtained, a new
solution at an adiabatically shifted value of a is calculated (i.e., the previously
obtained solutions are included as an initial condition). Thus we detect the
vanishing point of the metastable states corresponding to the FMR phase and

obtain a..

4.3.1 SG solution

Let us take a closer look at the solutions in the SG phase. Here we note that
A,(0) in the SG phase depends only on a as A,(0) = \/a/(1 + \/a)[8], which
is independent of the temperature. Therefore one can see that A,(0) — 1 in
the “SK limit (y/a — 00)[120]”. Consequently we choose the special gauge
Ay(z) = Va(l = 2)/(1 + Va). (4.39)
For several values of a in the SG phase, ¢(x) and r(z) are shown in Figs. 4.1
and 4.2, respectively, where ¢(0) = 0 denotes m = 0. The frozen field distri-
bution P(1,z) is depicted in Fig. 4.3 in which we see the symmetry and the

typical form of a double-peak.

4.3.2 FMR solution

In the FMR phase, since a dependency of x(0) on a is not given explicit
in the SG phase above mentioned, x(0) has to be determined self-consistently

during the numerical calculations. Therefore we apply the special gauge

x(0)(1 — ), (4.40)
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where x(0) is reset by eq. (4.35) during each step of the iterative procedure.
The values for x(0) are shown in fig. 4.6 together with the ones obtained by
the RS discussion.

For several values of a in the FMR phase, ¢(z) and r(z) are shown in
Figs. 4.4 and 4.5, respectively. We note that in Fig. 4.4(a), the g¢(z) for
a = 0.1,0.11,0.12 are so close to unity that it is difficult to distinguish them.
Therefore, at o < 0.13 the RS solutions are almost recovered, although one
can see that ¢(0) # 1 even at a = 0.1. The frozen field distributions P(1, z)
for several values of a are given in Fig. 4.7 in which we can see the broken-
symmetry. Their main peak is nearly Gaussian but they have a second peak
as was also the case in Fig. 4.1.

The percentage of errors, (1 —m)/2, in the FMR phase is shown in Fig. 4.8
as a function of e at 7" = 0. For comparison, the results of the present
calculations are plotted together with the predictions of the RS theory[8] and
the 1-step RSB theory[27]. It clearly shows that . is somewhat higher than
the values obtained by the RS (0.138) and 1-step RSB (0.144). We determined
a. in the following way. That is, at a = 0.153 the RSB solution with finite m
was found, on the other hand, at @ = 0.157 and beyond, no RSB solution with
finite m was found. At 0.153 < a < 0.157, the calculation conve to an
unexpected solution, therefore, it is concluded that a. = 0.155 + 0.002. These

results are remarkable in the sense that RSB is directly observed, the order

parameter functions and frozen field distributions are explicitly determined for

a’s.

4.4 Summary and Discussion

We have formulated the RSB solution of the Hopfield model with the Som-
polinsky gauge at 7' = 0 and obtained the variational equations. Extensive
numerical analyses were carried out, both for the SG and the FMR phases, in
the most interesting region where the FMR phase disappears. The first result
of this paper is that the storage capacity a. at T = 0 is corrected to a value
which is higher than the ones obtained by the RS and one step RSB discussions.
Our result is the first self-consistent estimation of the critical storage capacity
using the full RSB scheme. Another interesting aspect of this result is that it

also indicates that RSB promotes the stability of the FMR solution against the
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increase of the so-called “slow” or “stochastic synaptic” noise[10] originating
in a’s increase. The second major result of this paper is that the frozen field
distribution (FFD) P(1,z) is corrected to a non-Gaussian form for both the
SG phase and the FMR phase. It is found that the FFD for the FMR phase is
only slightly different from the Gaussian form obtained in the RS discussion.
Therefore, as far as the FMR phase is concerned, the AGS theory is able to
go beyond the RS approximation even at 7' = 0. This situation also explains
why the dynamical evolution of m in the FMR phase can approximately be
described by only a few macroscopic variables[6, 86]. However, we note that
the FFD for the SG phase cannot be fitted by any Gaussian form. Thus, it
is quite natural that the description for the convergence to the SG phase fails
if one tries to describe it in the same way as the dynamics which converges
to the FMR phase. The convergence to the SG phase, if anything, can very
effectively be described by assuming the phenomenological non-Gaussian form

of the field distribution introduced in ref. [54].
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1,0

Figure 4.1: Order parameter function ¢(z) in the SG phase for o = 0.1, 0.12,
0.14, 0.145, 0.155, 0.16, 0.18 and 0.2 (top to bottom)
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-12.0

Figure 4.3: The frozen field distribution P(1,z) at # — oo in the SG phase
for a = 0.1, 0.12, 0.14, 0.145, 0.15, 0.155, 0.16, 0.18 and 0.2 (bottom to top).
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Figure 4.2: Order parameter function r(z) in the SG phase for a = 0.1, 0.12,
0.14, 0.145, 0.155, 0.16, 0.18 and 0.2 (top to bottom)
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Figure 4.4: Order parameter function : (a) ¢(2) in the FMR phase for a =
0.1, 0.11, 0.12, 0.13, 0.14, 0.145, 0.15, 0.153 (top to bottom) (b) q(0) versus a
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Figure 4.5: Order parameter function : (a) r(z) in the FMR phase for o =
0.1, 0.11, 0.12, 0.13, 0.14, 0.145, 0.15, 0.153 (bottom to top) (b) r(0) versus a
(c) r(z) for a = 0.153

Summary and Discussion

o

Figure 4.6: x(0) vs. a

Figure 4.7: Frozen field distribution P(1,z) for a = 0.1,0.12,0.14, 0.153
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Figure 4.8: Percentage of errors (1 —m)/2

Appendix D: Diagonalization of the DGO matrix

In this Appendix we summarize the details of the calculation of the term
L =1/nTrn[(1 — B)I) — Q] in eq. (2.10). By using the eigenvalues (4.10) ~

(4.13), L can be represented as
1
—1In[1 — B(1 + €op)]
n

1.5 1 1
Po (7 — 7> In[l — B(1 + o))
Pk+1 Pk
s (1 = 1) Infl — B(1 + €150)]

n \po
(D.1)

1 K 1 1
+=Y (n—po) (— - —) In[l — B(1 + €4)].
Pk+1 Pk

" k=0
Here we denote the four terms in L by Ly, Ly, Lz and Ly, respectively. First,

by substituting eq. (4.10) into Ly, it is found that

1 K n K '
—ln|1-5 (1 -3 A9 - f,,\-> ——B83 (P — Pi+1)0; + 4k
n P |j=

i=0

: )] ! '|~i/l’0){):5‘=u(lb — Pi+1)q; + 9k}

1 ( (2

—In|1-8[1=-)Y A" —gx -

n { g 1- (1 - oK, AP — gx)
(D.2)

+0(n).

Let us denote the first and second term in Ly by L;y and L,, respectively.

After taking the DGO limit and K — oo, only the term for j = 0 in the

summation of j in L,, survives, thus we have

—Bq(0)
L, = K A = T
1= B= AP —g)  1-B(1—q(1)) + fy dzA,(z)

k=0
—A3q(0) (D.3)
1 —x(0) ’

—Ba

where we used ¢o = ¢(0), gx = ¢(1) and Aiq' — (A‘l(.z‘)/’,i):l.l'. The definition

of x() is given by
x(z) = B(1 —q(1)) + Ay(x) — Ay(1). (D.4)
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Next, the logarithm in L, can be expanded with respect to n and it is obtained Lastly L4 can be expressed as

B 1 D
LS 1 Vg = <7 — 7) In|1-p8(1- AP —qx)
L, = Do Y <— = —) In [] - B( Z AY —qx) : k=0 \Pk+1 Pk :%;1

N k=0 \Pk+1 Pk i=k+1 :
G Po K 1 1 3 K @
i ( 1 l)z,"km-p,mq.m,\ — Prg == e L D 1 > AP —g)| (D9
= e = k+1 3 i=k.
Pky1 Pk) 1—B(1 — zl k+lA(q —uk) k=0 Tl

+0(n) (D.5) The first term (Ly;) can be represented by changing the order of summation

that

g A like in Lo, as
Here we denote the first and second term in L, by Ly and (—f3)La,, respec-

tively. After changing the order of summation (like in a partial integration), i In[l — B(1 — ¢(1))]
L4, becomes K-1 K o K o
¢ + In[l —3(1 =Y A" — k)] —In[l — B(1 — A — k)]
L = L ZEe(pi—pin)ai + ax — poto Z { [ § )] =1l (:Az;l
20} o i .
Po 1-B(1- 5K, Al — qx)
L= {Z(’\.L 1(Pi = Pir1) g + g — Pr-19r—1

1 K
——Infl = B(1 -3 A —gx)]
Po i=1

k=0 Pk

B - LK, AP - qx) In[l — B(1 — gx)]
_TEdpi ’]71+1)(/1 + ax ,[,W} = In[l - x(1)]. (D.10)

1Bl - K0 87 — gx)
_PKYK — PE+19K + 4K — PKYK
1—B(1 —gx)

After summing up all the terms (and taking the DGO limit where not done
(D.6) yet), we finally obtain

where we used py4; = 1. The first and third term vanish in the DGO limit. 1 =Pd0) _ /' el 2% e (D.11)
: SR )

If, furthermore, we use gx_; — ¢ = ¢(z)dz and take the DGO and the K — oo 1= x(0)
limits, Lz, finally can be reduced to

= —(ge1 — )

k=0 1—pB(1- Z‘l;k Af(” —4K)

Ly =

ot /l (1.1' ’I( ) ¥

~ Jo 1 - B(1 - q(1) + [} dzA(2)
X Ty q(z)

= /“ dx T )

The third term of equation (A-1) becomes

Ly = ——ln[l—d ZA"’—q, )]

i=0

K
=L i e e
n

i=0
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Appendix E: Derivation of the Parisi equation in the
Sompolinsky gauge

Here let us concentrate on the calculation of the continuum limit of the par-
tition fucntion (2.11) including the DGO matrix . Calculations are essentially
similar to the ones in Appendix C, where the “finite-step RSB partition func-
tion” is represented in recursive formula. The DGO matrix in the replica
partition function is R, which is parametrized in the same way as the DGO
matrix Q (4.1) as

Ro—Es Ro Rk Ro
R, Ra =B == Ry

R=
R, S A

where Ry and E, are the py x py Parisi matrices parameterized in Chapter
3. Here, py needs to divide n (i.e. n > py), which is different from the case in
Appendix C. Using this another type of replica matrix, let us again derive the

formulation for the continuum limit of the partition function:
Z Tryny exp ( o'Ro + :u”'rr) )

where o and u are the n-dimensional column vectors whose elements are o,

and 1, respectvely. In a similar way as in Appendix C, one can represent as
Zo(2) = 2o({zi = z}), (E.3)

where

n/po n/po n/po n/po

" 1 "
Y 05:(—Eo)aoi+5(3 7o) Ro( Y 70,) + 3 ziug oo,

Ly L, L

e 1
Zo(zi) = Trinyexp 3

(B4)

Here o, denotes i-th po-dimensional column subvectors dividing n-dimensional
column vector o to n/py blocks as,

.
Oi= {”0.1-”u,zv RS (E.5)

The first term L, in exp(---) in rhs of (E.4) can be represented with lower

subblocks of replica matrices and subvectors as

n/po 1 Po/m

po/p1
T o T
L= Y3 X elsBions =5 3 olUiony

i 3 )
n/po 1 Po/p1 0 po/p1
o =
Y. 01 i(B1—eU)ay; —— | 3 of
3

i

—3
(E.6)

where & ;; denotes ¢-th p;-dimensional column subvectors dividing po-dimensional

column vector g ; to py/p1 blocks as

O = ["'1,mf7‘x.‘z»"‘-”|.L(u/,m)

We note U; = 1L,u,7 denotes p;-dimensional matrix whose all elements are all
1%
The second term L, can be represented similarly with lower subblocks of

replica matrices as

Ly

o (Po/m Po/m
7 ; T
>i o{ ;R +10 5 ol Uioyiy
J #7
po/p1 po/m
T " . v g
Z ”1,,»,(R| —- VnUn)O'l.xU + 7o Z U[,,_,Ul"’l.uy
i 73"

po/

n n/m n/po . (nlrovelm 5
Z(Z”le;)l(RI*"nUl)(z '71,u)+m Z Z"{”l.l/)
i i ¥ J

(E.8
Finally, the third term Lj in rhs of (E.4) can be represented as
n/po  po/m

Ls= Z z; Z u?«r,vu, (E.9)
J

i

By substituting (E.6), (E.8) and (E.9) into (E.4) and using again the

Hubbard-Stratonovitch identity (A.2), one can represent Zy(z;) as a one-step
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RSB partition function as

Zo(z) = /zl[’ (w [

1 "o
‘—)Z E1*0»U )o 1
n/po

Ll
+E(Z ”z,‘/)(Rl — Uy )( Z ?155)

n/po Po/p1
T /dl‘ o)) | Trimyexp | Y {
i

n/po

+Z +u+11,u a‘l,,H

Po
} ['lv"wm/m)t‘ﬁ" ot

= [dPy(w [H/({I‘ ) ()

n/po
= [dPuw { (Z1(w + 2 + )/

po/p1

(E.10)

H/dl’ o) (i)

where a short notation for Gaussian integrals is used as

L -
[ dPw (@) E[\ \/()1_\\}) (-;—J (E.11)

Generally, we define “k-steps RSB partition function” and represent it by
k + l-steps one as

n/po

- Y of(Bi — ex-1Uy) oy

] n/po n/po n/po
Z”xl )Ry — e U )( Zf’A, +Z~zu}.0k‘} (E.12)
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—ber | D Tipm
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Z ”A+lu
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+6r (Z i "kT+1”k+Lq)
i i
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"(Ripr — riUppr)( L Thp1,ij)

n/Po Pk [Pkt

+Z Z 3’:"14.1”k+1.u}
J
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= /dl"‘\,A w) H/IIP( 5en) (1) | Trapy/po €Xp | 2 {
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| nfeo

1
= Ori1,ii(Brpr — e Ur)opga;

25
1 n/po n/po

5 Z "Ll.u)(RHl — 1 Uga)( Z Thiij)

n/po
+ 3 (24w )l O

= /(1[’”A (w [

where éry = ri — rr—1 and dep = ex — €x—1.
Here let us introduce the free energ\' defined at each step of RSB as

G ({=z}) = T In Zy({z:}) (E.14)
(E.15)

Gi(2) = G:({zi = 2})

By substituting (E.14) into (E.13) and noting Ak = Sexpx, we get the follow-

n/po
[Zepr(w + 2+ i )]“”‘“' (E.13)

Al /41/(“(‘)('/‘)

ing recursion formula:

Gl = m/di (i) (0 [

n/po
exp (—gk+1(lL' it ’I,))

I [ dPcsa(m)

wlih
=00 ln/dl'm, i [1‘[/ (LS Dt dn}

il n/po n
Z '](2 + —Grp(w+ 2z +m)
= Po

(E.16)

Kexp app | ———=re
2(-AY))

F

When we consider the DGO limit (p — o0), we can estimate the integration
with respect to n; by the saddle point method. By differentiating F by 7;, the

saddle point 7 can be given as
1F z “ 0Gy.
S =0 — U —AL))— (—_gHI)
po \ Omi
{mi=ng}

LT -
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1—A‘f’\'”"‘w +z41n5)

i dz !
where we have used f = f(zy,2,+++,2y) and _(: = flees Eive 4 \T,L
ThaE Phetnteetation O rh o (L 6) [con e xeplacid by its inbeerant abithe
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where we have used the transformed variable w = w/\/ér; for the Gaussian
integration and also /éry << 1.
Here let us consider the boundary condition where the above iterative pro-
cedure by substituting k = K + 1 to (E.12) as

1 ™/ | */ro n/po :|

Zr41(2) = Trapgpr/meXP [——Z’L e =Bt = Zi'*’l\ 24z Zﬂ,

: e e e "
= [[rm(-xp{—gr,\n'+:GH (E.19)

where we have used pgy1 = 1. We have also used definitions of the diagonal

element of Parisi matrix as € = ex + g, 7 . Thus the boundary condition

of G(z) can be given as

Grn(?) = (’—‘) In Zica(2)

NPK+1

= 1
In [Il‘{”l‘_\]) {—57'7\(7“, + :(7}
7
7%\ + In2cosh z (E.20)

After taking the continuum limit:

i
K — oo, o x, AY' — A
bry. — —1(z)dz,
(ndG . n
ni(z) = =A) ek —A(z)G'dx
dz

Gi(z) = G(, 2),

the eqs. (E.18) and (E.20) reduce to

dz dz dz?

dG(z,y)  drd’G A, (dG)?
3 2 \dz

1
G(1,2) = —Ll + In 2 cosh z.

By taking the transformation
o(z,2) = (G(z,2) +r(1)/2)/8,

the generalized Parisi equation in the Sompolinsky gauge can be obtained as

GhT
gA,;l

(E.26)

where dots and primes denote the detivatives with respect to z and z, respec-

tively. Here we note that contribution f for the free energy via. p(z,z) can

be given in the limit n — 0 as

1
;—j(;(,::/dl)u,.‘,,(uv){ (ZA)

/(1/1,(.,)](::))(7,(71! +z)
[ dPon(w)G(0,w+2)

n(z+w+ 1/0)}
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where one cannot neglect érg bacause r_; = 0. For the Hopfield model, after

rescaling variables as

r(z) = af*r(z),
z =3 afz,

A, (z) = oA (z),

we can obtain the terms contributing to the free energy functional (4.14).

Chapter 5

Basins of Attraction

5.1 Introduction

The most significant characteristic of globally coupled tems such as the
Hopfield model is the existence of a large number of (meta)stable states and
multivalley structures in phase space. Indeed one expects that an initial state
evolves until the bottom of a valley is reached where the system is permanently
trapped.

In Chapter 3, we showed that the multivalley structure can be measured
by its valleys’ “depth” given by energy through the RSB discussion. In this
chapter, we focus on the basin of attraction which is another quantitative
measure: the “spread” of the valley.

In fact, many theoretical studies have reported relationships between re-
manent overlaps and initial overlaps in the Hopfield model with sequential[9,
40, 60] or synchronous([47, 6, 54] dynamics. Although these contain some nu-
merical analysis, the system size and the number of samples were rather small.
Moreover, a systematic numerical analysis which includes finite size effects on
the zero temperature(T" = 0) sequential dynamics has never been performed
yet.

This chapter reports remanent overlaps and the basins of attraction for the
Hopfield model with zero temperature sequential dynamics, in order to extract
some information for the valley structure. Here the remanent overlap defined
later refers to a macroscopic order parameter, which corresponds either to the
overlap with a memorized pattern or to a generalized remanent magnetization.

According to the finite size scaling analysis, the distribution of the remanent
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overlap m, approaches a delta function as the system size becomes larger. This
implies that at 7= 0 and N — oo the value of m, is determined by the initial
overlap and the parameter a(= p/N), the rate of memory-loading, where p is
the number of random patterns for memories and N the system size. Hence
the dependence of the value of m, on the initial overlap and on a parameter
a is obtained. Here we concentrate on relatively large values of @ where the
system is in the spin glass phase. The above dependence of m, enables us
to get the relationship between remanent overlaps and initial overlaps, which
leads to a distribution function of the remanent overlap. We have also studied
the asymptotic dependence of m, on a and have obtained the power-law decay
of m, to the value corresponding to the remanent magnetization obtained in
the SK model. This supports the equivalence between the Hopfield model in
the “SK limit(y/a — 00)” and the SK model.

The system under consideration has the Ising spins {S;} and the Hamilto-
nian (2.4) with interaction (2.5). Here we concentrate on the zero temperature

sequential dynamics,

Si(t+1)=0(3 J;; S;(t)) (5.1)
J

where 0(z) is the step function (6(z) = 1forz > 0 ; —1forz < 0). The time ¢ is
given in units of Monte Carlo steps(MCS). Thus we will deal with a dynamics
which is deterministic except for a random order of spin flips. At 7' = 0, the
model is expected to converge rapidly to a final state which is stable with
regard to one spin flip.

Let us now consider the time-dependent macroscopic order parameter,

called the pattern overlap,

&1Si(t).

Here it should be noted that the overlap represents a generalized magne-

tization, i.e., m* becomes the usual magnetization by the transformation

n
Rt

considerably wide range of a at 7' = 0. We will call this nonzero value the

We expect that the overlap m*(t — o) does not vanish on a

"remanent overlap(m4 = m*(00))”.

Size Scaling Analysis
5.2 Finite Size Scaling Analysis

Considering finite size effects and fluctuations between samples, we have inves-
tigated the remanent overlap at 7' = 0 from various initial states at various
values of a with the use of Monte-Carlo simulations and the finite size scaling
analysis.

We take sample averages in several steps, as follows:

(a) Generate a set of random patterns {€#}, to form one interaction
matrix J = {J;;} from eq. (2.5).
Prepare p sets of initial states {S;(t = 0)} which have the same
initial overlap m#(0) with each pattern £~.
Execute the Monte Carlo dynamics (5.1) for each p until the system
converges to a stable state (empirically, at 7' = 0, the system rapidly
evolves towards a stable state in about 20 MCS/S). Therefore p sets
of m¥ are obtained simultaneously for each J. This is advantageous

because one can reduce the number of samples {J}.

(d) Evaluate the m“’s, which are regarded as one set of one ms, and

then update the histogram of m; accordingly.

(e) Return to (a).
The above procedure is executed N, times,
= Noael/P = Noael (@) (Naz =2 x 109. (5.3)

The total number of runs N,,,, was determined by the requirement that the
resulting distribution of remanent overlaps does not change significantly any
more under increasing Nyq:. In comparison with previous similar studies[40,
60, 47, 6], we would like to note that our value of Ny, can be considered as
rather large.

Finally histograms for certain values of m(0) and « are obtained for var-
ious system sizes (N = 200,500, 1000,2000). Figure 5.1 is an example of the
histogram of my at m(0) = 0.5 and o = 0.5. Dependence of average values
(m,) and variance ((m, — (m,))?) on N is obtained by varying the system size

N. The average (m,) can be extrapolated to a non-zero value depending on o
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and m(0) as,

const.
(my(N;m(0),a)) ~ my(co;m(0),a) + cons

while the variance is scaled to zero as,

1

((my — (my))?) ~ N (5.5)

Figure 5.1 also represents the basins of attraction of the remanent overlap
m, from the specific value of the initial overlap m(0) = 0.5 for different system
sizes at a = 0.5. With the increase of size N, the distribution P,(m,;m(0)) of

ms from the initial overlap m(0) = 0.5 approaches a delta function as follows,
P, (ms;m(0)) ~ 8(ms — Fy(m(0))) as N — oo, 5.6)

where F,(m(0)) denotes a function of initial overlap m(0) with a parameter
a, which is mentioned later.

After taking into account these scaling relationships, we get the remanent
overlaps at N — oo. The remanent overlaps depend both on m(0) and a as
given in Fig. 5.2. The result explicitly shows that the final attracting state
(remanent overlap) can be given from an initial state (initial overlaps) if a is

given.

o
°
o)

Py (m0.5)

0,00 LBl i b Sug
-0.2-0.1 0.0 0.1 0.2 0.3 04 05 06 0.7
m

Figure 5.1: The basins of attraction Figure 5.2: Dependence of remanent
overlap m, on two parameters, a and

m(0).

for different system sizes.

Finite Size Scaling Analysis

1.0

05
m(0)

Figure 5.3: Dependence of remanent overlap m, on m(0) for various values of

a.

Our results also give the characteristic dependence of stable states on initial
states even in the parameter range corresponding to the SK model (a — ).

Here let us see the dependence of m, on m(0) with a certain value of a. As
shown in Fig. 5.3, m, is represented as a monotonic increasing function of m(0)
with the parameter a : m, = F,(m(0)). At a rather small value of a(=0.1)
below the critical storage capacity a. (~ 0.155) (see Chapter 4), Fy,(m(0))
is steep at a rather small region of m(0) and saturates to unity at the high
m(0) region. This indicates that the system has rather large basins for the
corresponding pattern; almost all initial states tend to go to the corresponding
patterns. At an intermediate region(a < 1), F,(m(0)) increases slowly. At

a = 0.2 we get

my = Fya(m(0)) ~ m(0)”, ~~0.73
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in the rather high m(0) region. The limiting values of m,’s with a — oo are
shown in the bottom of the curve in Fig. !

In addition to the functional form of m, = F,(m(0)), we also obtain the dis-
tribution function P,(m;,) from the random initial states obeying the uniform

distribution:

= /['{,(m,: mg)dmy,
= /5(”15 — F,(mg))dmy
/
= /5(7115 - m"))ﬁ
Feidinl

i
= /6(711”77/19)( o

dF (my) _
= e M (5.8)
dm

where P,(m,;mg) refers to the distribution function of m, from the initial
state m(0) = mg with a. In the above calculations we have used the first result
(5.6) that P,(m,;myg) is represented as a delta function. We have also used the
existence of the inverse function ;! since F, is a monotonically increasing
function.

Equations (5.7) and (5.8) imply that the distribution function P,(m,) for
the remanent overlap also has a power-law dependence on m,. Thus stable
states are distributed continuously in the space of overlap and the measure of
basins of attraction follows the power law in the space of overlaps. This result
is consistent with the power law distribution of remanent overlaps as obtained
numerically in ref. [3].

To summarize our results so far, flows in the overlap space are schematically
shown in Fig. . In the figure, upper column represents the map of m;
from m(0). Lower column represents flows on the space of overlap and spin
configuration space schematically. The lower vertical axis shows the “spread
of configuration space”. The dotted curve N(m) schematically represents the
upper limit of the number of states in the configuration space with overlap m,
e.g. N(1) = 1. In the lower part, solid arrows at the shaded area represent
flows from initial states with m(0) to stable states with m,. For example, an

initial state with m(0) = 1 is attracted to the fixed point(A) with remanent

Finite Size Scaling Analysis

Figure 5.4: The schematic flows on the space of overlaps.

overlap m;. However almost all states with m(0) = m; except the point A are
attracted to a state with m, = m,(point B or C). These sequences are iterated
infinitely as my — ma, m3 — my and so on. Actually the states attracting
initial states(like points A, B and C) exist infinitely in the configuration space,
while there are much more remaining states with the same overlap attracted
onto states with lower overlaps. In other words, the fixed points like A, B or
C have no measure in the configuration space on the set of states with the
same overlap. Since there exist infinite stable states like points A, B or C, the
stable states are distributed on a Cantor set on the hyper plane with the same

overlap. Our results support a similar conjecture by Amari and Maginu[6] and

provides us with a more intuitive understanding of the structure of the stable

states in the overlap space.
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Figure 5.5: The basins of attraction for different values of a: distributions
of remanent overlaps m, from initial states with m(0) = 0.5 at N = 200 for

several values of a.

The second result concerns the dependence of m, on a. Distribution of
m, from the initial overlap m(0) = 0.5 at N = 200 for various values of a
are given in Fig. 5.5. Figure 5.5 also represents the dependence of the basins
of attraction of m, on the value of a. Accordingly we study the asymptotic
dependence of m, on a. As shown in Fig. 5.6, ms = Gno)(a) monotonically

decreases for a high a region as,

my, = Gu)(a) = m + A a P, >0 9)

where 72 ~ 0.08 , 8 ~ 0.5 for m(0) = 0.5 and m ~ 0.14, # ~ 0.3 for m(0) = 1.
Indeed m, ~ 0.14 agrees very well with the remanent magnetization of the
SK model reported by Kinzel[66]. On the other hand the value m, ~ 0.08 from

m(0) = 0.5 probably coincides with the remanent overlap when we quench the

Finite Size Scaling Analysis
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Figure 5.6: Dependence of remanent overlap m, on a for two initial overlaps
at m(0) = 1 and 0.5. The initial state m(0) = 1 corresponds to a ferromag-
netically ordered configuration while m(0) = 0.5 to a state with 75% of spins

s

system from a specific initial state where 75% of spins get 1 and others —1I.
We note that there remains a finite remanent overlap(magnetization) m, even

for an initial state with m(0) # 1.

Figures 6 also suggests that the Hopfield model gradually approaches the
SK model according to a power law with the increase of a, which implies that
the transition occurs very slowly from the Hopfield model to the SK model.
Hence we conclude that there are more intermediate models worthy of study,
which differ both from the Hopfield model and the fully investigated SK model.
These intermediate models also have rich and complex structures of the basins

of attraction that interpolate the above two models.
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5.3 Summary

To summarize this chapter, we have obtained values of remanent overlaps m,
from various initial overlaps m(0) with a parameter a. This result shows the
basins of attraction of the Hopfield model in the space of overlaps. At a certain
value of a we get a power-law decay of the distribution of m,. Furthermore
the remanent overlap m, is shown to decay to m with the increase of a. The
value m from m(0) = 1 corresponds to remanent magnetization and agrees
with that from the SK model, showing the equivalence of the Hopfield model

with \/a — co with the SK model.

Chapter 6

Summary and Discussions

The main topic of this thesis is an analysis of the Hopfield model; the phys-
ical model of neural networks. It consists of formal neurons represented by
two-state binary variables. It also has symmetric synaptic-connections (inter-
actions), whose weights are determined by the Hebb rule. The noisy response
of each neuron, as suggested by physiological experiments, is realized by in-
troducing some stochasticity into the dynamics of the model. In the language
of statistical physics, the Hopfield model is v imilar to the spin gla
(SG), and has become one of the most celebrated paradigms in both statistical
physics and neural networks.

The most important point [ would like to stress is that the Hopfield model
has enabled us to carry out a clear and rich quantitative analysis. The analysis
was possible because the model is defined as an energy system via its Hamilto-
nian. It therefore allows us to use traditional methods of statistical mechanics,
including techniques such as the replica method.

I would now like to summarize the main findings of this th; First, it was
shown that the Hopfield model shares a significant feature of the SG phase in
having a multivalley energy landscape (Chapter 3). This is highly non-trivial
and could never have been clarified without the help of the RSB scheme. It
was found that such a multivalley energy landscape changes its structure as
the parameter a varies. The complexity of such landscapes has been measured
by using a quantity which characterizes their valley structure, and which was

defined in eq. (-

y= <(Z [lf)) (W) : weight of the k-th valley)
&
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At the same time, y also corresponds to the inverse of the partition ratio. Let
us briefly illustrate the meaning of y: if, e.g., y ~ 1, there is only on simple
valley, while an infinite number of small valleys coexist if y ~ 0. With the help
of Parisi’s physical interpretation of the RSB solution[96], it was then shown
in Chapter 3 that y can be obtained via order parameter function g(z). In

fact, the dependence of y on « is obtained as
y~a’ (y ~ 0.5), (6.2)

which means that y vanishes in the limit \/a — oo. Therefore, in this limit,
the multivalley energy landscape of the Hopfield model is composed of an
infinite number of small valleys and attains the most complex structure. This
structure corresponds to the one discovered in the naive mean field model of
SG by quenched dynamics89]. Here, at first glance, the result “y — 0 in
the limit /& — co” seems to contradict a prediction for the SK model[78]
which states that y ~ 1 However the dependence of y on o in eq. (6.2) is
obtained without keeping A (= V/aB) constant, where 3 denotes the usual

inverse temperature (1/7"). Accordingly, the “effective inverse temperature

7 becomes infinitely large in the limit \/a — oo, which may be interpreted
as the result of a quenched dynamics.

By solving the Parisi equations numerically for several values of a and at
several temperature, the order parameter functions (Figs. 3.1, 3.2 and 3.3)
and the internal field distributions P(1,z) of the SG phase are determined for
the first time in the present work. In this way, the non-trivial dependence of
P(1,z) on a and the temperature is clarified (Fig. 3.4). It is found that the
typical double-peaked form of P(1, z) becomes sharper as the temperature gets
lower and o gets larger just like SG. Hence it can be said that a plays the role
of an inverse temperature.

Furthermore, it is found that the Parisi equations of the Hopfield model
formally coincide with those obtained for the SK model(85] in the limit \/a —
oo while keeping 3 constant. We call this the “SK limit” of the Hopfield model.
The SK limit characterizes an asymptotic dependence of the Hopfield model
on a. Consequently the Hopfield model approaches the SK model as o gets
larger.

On the topics above-mentioned, we have restricted our attention mainly
to the SG phase at a rather large value of a where the FMR phase does

not appear. Now let us summarize the topics developed in Chapter 4 which
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shed light on the region where the RSB solutions of the SG and the FMR
phase coexist. This low temperature region below the AT line (Fig. 2.3(b))
had been unclear so far. In such a region the RS solution for both the SG
and FMR phases are unstable and one should consider the RSB. Therefore
the full RSB with the so-called Sompolinsky gauge is formulated. The focal
attention is on the numerical estimation of the order parameters and other

physical quantities at zero temperature (T'=0). When we address the zero

temperature case, the RSB scheme with the Sompolinsky gauge is defined
conveniently for numerical analysis, while the RSB scheme with Parisi’s is
inconvenient since it cannot overcome the singularity at 7' = 0. Extensive
numerical analyses were carried out, both for the SG and FMR phas in
the most interesting region where the FMR phase disappears. Consequently,
it is shown that the critical storage capacity at 7' = 0 needs to be corrected
to a, = 0.155 £ 0.002 which is larger than the capacities previously obtained
by both the RS (0.138)[8, 9] and the 1-step RSB (0.144)[27] discussions. Our
result is the first self-consistent estimation of the critical storage capacity using
the RSB scheme. Another interesting aspect of our results is that it also
indicates that RSB promotes the stability of the FMR solution against the
increase of the so-called “slow” or “stochastic synaptic” noise[10] originating
in a’s increase. At the same time, the order parameter functions and the
frozen field distributions at zero temperature are determined. It is clarified
for the SG phase that the order parameter functions (Figs. 4.1 and 4.2) and
frozen field distributions (Fig. 4.3) do not vary drastically around a.. Hence
the disappearance of the metastable FMR states does not affect the SG phase.
On the other hand, the order parameter function ¢(z) in the FMR phase
shows a typical dependence on a. In particular, ¢(0) decreases as a — a.,
showing that the variety of overlaps between two pure states increases abruptly
near a.. Consequently the transition where the FMR states (dis)appear is
accompanied with an abrupt (dis)appearance of many pure states which have
different patterns of spin configurations but the same macroscopic overlaps
with one of the learning patterns.

Here we note that P(1, z) in the SG phase has a non-trivial form and cannot
be approximated by any Gaussian distribution at all. This is the main reason
why one cannot describe the dynamics of the Hopfield model by a finite number
of ma opic time-dependent order parameters (it should be a function as

q(z) !) in such a way that it converges to the to the spurious state or the SG
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state, while one can approximately describe a dynamics which converges to the
FMR states[6, 47]. Due to the lack of an explicit description of the dynamics
which leads to the spurious state, in Chapter 5, the Monte Carlo simulation
and the finite size scaling analysis is carried out in order to investigate the
behavior of macroscopic order parameters, such as the remanent overlap. The
analyses also clarified the dynamics in the complex energy valley lead to a final
state, which is at most a point attractor. This yields a definite value for the
overlap because only the zero temperature sequential dynamics was considered.
The main result is that the value of the remanent overlap is determined by
the initial overlap and is only influenced by a if N — oo. This has enabled
us to establish a mapping of initial overlaps to remanent overlaps (Fig. 5.4).
Such a mapping is further useful for imagining the composition of the spurious
(meta)stable states. It is found that the (meta)stable states form a Cantor set
on the hyper plane with the same overlap. Here we note that the remanent
overlap from a certain value of initial overlap in the limit \/a — oo coincides
with the remanent magnetization previously studied for the SK model. This

can be considered as indirect evidence for the SK limit of the Hopfield model.
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