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Preface

The interdisciplinary field characterized by keywords like "neural networks"

or "neural computation" has drawn much interest recently. Despite sharing

neural systems as a common topic, the motives and perspectives of the re­

searchers may indeed be very different: neurophysiologists are trying to con­

struct an appropriate model which provides insights for the functions and the

organization of brains; engineers and information scientists are aspiring to find

alternative paradigms to the traditional one introduced by von Neumann and

used as the basis of almost all machine computation to date; psychologists are

utilizing neural networks for elucidating the sensory and cognitive processes.

Nowadays, it seems that neuroscience has become one of the most im­

portant disciplines with subjects of general interest. It has exerted a strong

influence on various fields and physics is no exception. Although the theOl·eti­

cal approaches of physics to neural systems are relatively new in the field, the

past decade has seen surprising successes and rapid progress. There seem to

be several reasons. A first one is the enormous advance of computer systems.

These enable us to investigate neural network models extensively by simula­

tion. Such computational science is emerging as the third pillar of science next

to the theoretical and experimental one. In particular, recent workstations

provide us with a very convenient environment for developing sophisticated

simulation programs and for visualizing results in a way in intelligible to the

human mind. A second one is that many physicists in the statistical mechanics

community rushed into that field being fascinated by an analogy between neu­

ral networks and the so-called "spin glasses (SG)". These are systems which

have randomly distrihuted ferromagnetic and antiferromagnetic interactions.

The mean field theory of SG has yielded many surprising results. It seems that

many physicists have heen trying to climb the double-spiral staircase of neu­

ral networks and SG to reach a sanctuary for learning of "complex systems",

even though it is not guaranteed that the staircase is really connected to such a

sanctuary... Wherever it may lead though, I do not expect it to finish in a dead

end, which, of course, doesn't mean that there wouldn't be many obstacles.

In other words, the understanding and even the focal points of attention may

change a lot, but most likely some of the basic ideas and analogies inspired by

SG will remain.



In the present situation where different methodologies coexist, how can the

physical sciences contribute constructively to this field? In short, I believe it

lies in discovering universalities in artificial neural network models. Although

it goes without saying that all neural network models studied in physics are

extremely simplified and cannot directly be compared with the neural systems
of organisms, such simplified models do have the mighty advantage of allow­
ing for systematic analysis. Moreover they may shed light on the principles

underlying "computation" in biological systems, and on how those principles

differ from the ones that we have so successfully applied in digital computers.

Neural network models are also very rich sources of inspiration for the design

of artificial computing networks, and the theoretical results may very well find

their way into practical application.

To return to the broad context of complex systems (theory) I would like to

point out the recent attention which is given to the emergence of collective be­
havior in groups of simple elements. I feel that the terms "Connectionism" and

"Collectionism" symbolize the standpoint that complex behavior, not only in

brains but also in complex systems, can emerge from the collection and coop­

eration of numerous "rather simple" elements. Here I used the term "simple"

as an adjective for the basic units such as formal neurons in neural network

models, amino acid residues in proteins[41, 15, 100, 129], sand particles in

dunes[88]' model agents in economic systems[130] and so on. On the other

hand, the term "rather" indicates that such units should remain "reasonably"

complex, like, e.g., logistic maps in coupled map lattices[63, 128]. From a the­

oretical viewpoint, understanding the dynamical properties of large, coupled

systems is a challenging problem in its own right.

About the thesis

This thesis focuses on the Hopfield model of neural networks, which her­

alded the arrival of SG ideas into the arena of neural computation. The 1101'­

field model was/is extremely successful within the limits of the replica symme­
try (RS) approximation, which was originally introduced in the Sherrington­

Kirkpatrick (SK) model of SG[106]. However, several open questions remained.

1. How is a series of results in the RS discussion modified and affected by

replica symmetry breaking (RSB) ?

RSB was first introduced by Parisi[94, 95] to overcome some limitations

of tbe RS approximation and to complete the framework of the replica

method for an appropriate estimation of physical quantities.

2. How is a multivalley energy landscape organized? It is an origin of or an
obstacle to an associative memory function.

3. How is the Hopfield model related to the current SG model?

4. What can be known about several features which are hard to detect by

analytical approaches?

In the work reported here, several answers to these questions are supplied

for the first time. This was achieved by employing the full RSB formulation,

large-sca.Je numerical simulations and other methods. The problem in the first

question was tackled by exploiting the fact that the RS solution is unstable

in the SG phase, and even in ferromagnetic retrieval (FMR) phase (where the

system exhibits an associative memory) below a specific temperature. In the

low temperature limit, at any rate, only the full RSB solution can provide

a proper estimation of the order parameters and other physical quantities.

The full RSB formulation also answers the second question by providing us

with parameter characterizing the structure of multivalley energy landscape.

It turns out that the valley structure continuously changes from a simple one

with two basins to a complicated one. The theory developed here reveals non­

trivial asymptotic shifts of the system to the Sherringron-Kirkpatrick (SK)

model of SG, and the limit established thus is introduced as the important

concept of the "SK limit". Consequently, the third question is simultaneously

solved: in the "SK limit" the mean-field equations of the Hopfield model are

formally transformed into the SI< model of SG shining light on an interesting

facet of the relationship beween these models. The last question is treated

by a series of numerical analyses using finite size scaling, especially for the

basins of attraction and generalized remanent magnetization. The numerical

analysis also supports the presented notion of the "SI< limit" by showing that

the remanent magnetization in that limit attains same value as the one known

in the SG theory.

In this thesis, I have also tried to provide a clear account of the statisti­

cal mechanical idea underlying neural networks. I hope to provide valuable

information for both novices and experts alike. Furthermore, although the



discussions are rather concentrated on the mean-field theory of the Hopfield

model and its relationship to spin glasses, it is my hope that this thesis can

contrihute to the furtherance of "complex systems" in a broader sense.

The main contents of this work are as follows.

Chapter I: This part is a review of the material most relevant to this thesis

as prior knowledge. First, the history of the discipline is briefly outlined, and

the formal neuron and its time evolution are introduced. Short notes on the

notions of spin glasses and the rugged multivalley landscape are also provided.

Chapter 2: The Hopfield model is introduced, and its physical and bio­

logical relevance are stressed. In particular, the mean field theory by Amit,

Gutfreund and Sompolinsky (AG5) for the Hopfield model is traced in detail.

Chapter 3: The full R5B solution of the Hopfield model at finite tem­

perature is formulated using Parisi's RSB scheme in order to investigate the

multi valley structure of the rugged free energy. It is found that the result­

ing variational equations are equivalent to those for the SI< model as a limit,

i.e., the "51< limit" of the Hopfield model was established. This had previ­

ously been suggested several times but never been proven explicitly[8, 52, 45J.

lumerical solutions are obtained for the SG phase. These provide us with a

weight distribution of the valleys and its dependence on a parameter a == piN
for the rate of memory-loading. where p is the number of random patterns for

memories and N the system size. It turns out that the multivaUey structure

continuously changes from a simple one (corresponding to the Mattis state[75])

to a complicated one characterizing the coexistence of an infinite number of

metastable states (corresponding to the SK model) as a gets larger and goes
to the SK limit.

Chapter 4: The full RSB solution of the Hopfield model at zero temper­

ature (T = 0) is investigated. By using an RSB scheme by de Dominicis,

Gabay and Orland, a free energy functional in the so-called Sompolinsky ga'uge
and variational equations are formulated. The resulting equations are conve­

niently defined for numerical analysis since the singularity at T = 0 is for­

mally avoided. Elaborate numerical analyses have revealed that the critical

storage capacity for the memory patterns at T = 0 has to be corrected to

a, = 0.155 ± 0.002 which is larger than the corresponding values obtained

from both the RS (0.138) and the I-step R5B (0.144) discussions. Further­

more, the order parameter functions and frozen field distributions (FFD) both

in the SG phase and the FMR phase are determined. The FFD in the SG phase

shows a nontrivial double-peaked form, and how it depends on a. On the other

hand, the FFD in the FMR phase reveals its characteristic broken-symmetry.

It turns out that the FFD in the F 1R phase is slightly but nevertheless clearly

different from a Gauss distribution assumed in the RS discussion.

Chapter 5: Remanent overlaps, the generalized remanent magnetization,

and their basins of attraction are numerically studied for the Hopfield model

with zero temperature sequential dynamics. Relationships between remanent

overlaps and initial overlaps are obtained for relatively large a's. The asymp­

totic dependence of remanent overlaps on Q is also shown. Remanent overlap

in the SI< limit gives the same value of the 5K model[66J.

Chapter 6: This chapter is devoted to a surru11ary of this thesis and some

concluding remarks.

Some formal derivations that are somewhat complicated but important are

provided in the Appendices.
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Chapter 1

1.1 History

Introduction

Although it is not the aim of this chapter to closely trace the entire history

of theoretical approaches for studying brains or neural networks, let us briefly

touch several significant contributions (for details, see text books like[10, 48,

57, 112]).

o one will contradict that the study of neural network models begun with

the work of McCulloch and Pitts[76] in 1943, who introduced the notion of the

formal neuron as a two state threshold element and showned that networks of

such elements can implement any logical function. In other words, they proved

that a synchronous assembly of such formal neurons is capable in principle of

universal computation for suitably chosen connections between neurons. By

representing the state 5i of neuron i as firing (5i = 1) or not firing (5i = 0)

respectively, the time evolution can be represented as
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Summary and Discussions

Basins of Attraction

5.1 Introduction ...

5.2 Finite Size Scaling Analysis

5.3 SUlTUl1ary

Bibliography

(1.1)

where the time t is discrete and O(x) is the unit step function (Heaviside

function). The connection matrix J = (Jij) represents the strength of the

synapse connecting neuron j to neuron i. A positive or negative value of Jij

corresponds to an excitatory or inhibitory synapse, respectively. The absence

of a synapse can be represented by Jij = O. The cel1 specific pa,rameter Ui

refers to the threshold value [or neuron i; the weighted sum of inputs must

reach or exceed Ui for the neuron i to fire.

15
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Next, a hypothesis made by Hebb[53] about the way in which synaptic

strengths in the brain change in response to experience should be noted. Ilebb

suggested changes proportional to the correlation between the firing of the pre­

and post-synaptic neurons.

The significant notion of a formal neuron by McCulloch and Pills, and the

variable synaptic connection by Hebb were followed by the study of a variety

of models for associative memory, pattern recognition. various classification

tasks and even for combinatorial optimization problems.

The first noticeable wave of aelivity in this field occurred around 1960 due

to work by Rosenblatt[97] which focused on the problem of how to find an

appropriate synaptic connection for a particular computational task. lIe con­

centrated on networks called pel'ceptrons, in which the units were organized as

layers with feed-forward conneelions between one layer and the next. Rosen­

blatt was able to prove the convergence of a leaming algorithm of a "simple

perceptron"j literally the simplest class of perceptrons without any interme­

diate layers. That is to say, a general method was established to change the

synaptic conneelion iteratively so that a desired computation was performed.

Unfortunately after the appearance of the famous book Pel'cepll'Oll by 1I1insky

and Papert[S2] which pointed out limitations in the ability of perceptrons for

learning a task, like e.g. the exclusive or (XOR) problem, the computer science

community left the neural network paradigm untouched for almost 20 years.

It should be noted though that other such adaptive devices were sugge ted

independently by Amari[4, 5J, Caianiello[23], Grossberg[51], Kohonen[6 ] and

tvlarr[73, 74].

Let us concentrate on the roles of physics as the latest partner in neuro­

science. The first thread of development can be traced back to the analogy

between the aelivity of a neural network and the collective states of coupled

magnetic dipoles made by Cragg and Temperley[25, 26] in 1954. Twenty years

later, the same theme was taken up by Little[69, 70, 7JJ who made the anal­

ogy between synaptic noise and temperature, and suggested that persistently

firing states of neural networks appear just like the ordered phases in magnclic

systems.

The first major impael on physics was provided by Hopfield's work[5SJ on

a neural network with symmetric conneelions. He added some helpful physi­

cal insight by introducing an energy funelion, and by emphasizing the notion

of memories as dynamically stable attractors and the equilibrium thermody-

namical properties of random magnetic systems similar to spin glasses. His

papers triggered an explosive growth of the field, particularly in the statis­

tical physics cOnlll1unity, leading to a whole series of dramatic advances in

the understanding of symmetric networks and their properties. This was es­

pecially the case because neural networks may be viewed as distributed op­

timization problems, e.g., the Traveling Salesman Problem (TSP)[59]. The

Hopfield model was subsequently solved analytically by Amit, Gutfreund and

Sompolinsky (AGS)[S, 9J. This was the first successful, and non-trivial applica­

tion of statistical mechanics to neural networks, giving rise to a variety of new

and surprising results. I would like to deal with this model in detail by using

a formal theory of the replica method. The definition of the Hopfield model

and the results from statistical mechanics will be given in the next chapter.

The second influential development during this decade is the Backpropaga­

tion (BP) algorithm[99J which works quite well for adjusting the weights con­

neeling units in successive layers of multi-layer perceptrons. Actually, this had

already been discovered in the mid 70's[127J, but not received much attention

at that time. Due to the great ability of the BP model in overcoming nonlinear

separation problems such as the XOR problem, ref. [99] triggered a massive ex­

plosion of work on trainable neural networks which continues to this day. The

statistical mechanical approacbes for the multi-layer perceptrons[17, 101, 126J

seem to be a brand-new theme in the field of neural networks.

1.2 Spin Glasses

Slightly before the explosion of work on neural networks, spin glasses (SG)

emerged as a fascinating new topic in statistical physics around the mid 1970's.

An SG is a colleelion of spins (i.e., magnetic moments) whose low-temperature

state is a frozen disordered one and is completely different from the kind of

uniform or periodic pattern we are accustomed to finding in conventional mag­

nets. It is found that such a state originates from two essential ingredients.

First, there must be some sort of competition among the different interactions

between the spins, in the sense that no single configuration of spins is uniquely

favored by all the interactions (this is commonly called "frustration"). Sec­

ond, these interactions must be at least partially random. These faels suggest

that the SG state is intrinsically different from conventional forms of order
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and requires new formal concepts to describe it. This challenge has been the
fundamental motivation for theorists in this field. Many of the marvelous re­

sults and notions have been reported in several excellent review papers and

books[36, 124,37, 19, 125, 24, 81,113, 114,38].

Here, let us only briefly survey the history of the mean field theory of SG

along the replica method which gives important conceptual backgrounds for

this thesis. The replica method was introduced by Edwards and Anderson[35]

to analyze the SG model and has been subsequently applied to a mean field

model of SG, the Sherrington-Kirkpatrick (SK) model[106] with infinite-range

interactions. The replica symmetric (RS) solutions of the SK model clarified

important properties of SG, but, at the same time, also a fatal theoretical

defect became apparent: negative entropy at low temperature. The immediate

question was of course whether this was caused by the replica method itself

or a consequence of the way it was applied. Fortunately, the answer was

that it was NOT a failure of the Replica Method as such but that are need

to use the so-called replica-symmetry-BREAKING (RSB) solution instead of

the RS solution, as was suggested by Almeida and Thouless (AT)[28]. In

the end, the RSB solution proposed by Parisi[94, 95] turned out to satisfy

all the conditions requested by AT. Moreover, Parisi's solution provided us

with a definite physical interpretation and estimated values for the physical

quantities. It also solved the negative-entropy problem. At the same time,

the number of metastable states was obtained as a function of temperature

by Bray and Moore[21]. It is obtained by counting the number of solutions of

the SG model proposed by Thouless, Anderson and Palmer (TAP)[117]. The

brand-new SG pictures suggested by the RSB theory was verified by several

investigations like Monte Carlo simulations[131] and direct numerical solutions

of the TAP equations[84, 85]. The subsequent research on the RSB solution by

Mezard, et al. revealed a surprising novel property of the metastable states:

the ultrametric organization of pure states. Although this property of the SG

phase was thought to be rather specific to the SK model, several investigations

have shown that this is not the case and that it is shared by other infinite­

ranged SG models[22, 115, 89, 90]. These abovementioned works form the

background of the present studies of the Hopfield model.

Taking up new arms, statistical physics recently focused with great success

on the emergence of collective behavior in large assemblies of elements. This

naturally was closely reflected in the advance of the theory on phase transitions.

Today nothing is surprising any more in attempting to connect ideas developed

in the study of SG to problems arising from or associated (however vaguely)

with biology. The SG theory, indeed, has had a rather large and unexpected

impact on some problems far from SG themselves in condensed matter.

Then, what al'e the notions from SG physics that have been used in bi­

ological applications and others? To borrow P. W. Anderson's words[14]'

they are "frustration", "quenched disorder", "replicas", "ultrametricity", and

"metastability", among others. While these notions probably do not apply

to real SG I , many other problems have effectively infinite-ranged interactions,

and a mean field theory (sometimes with replica symmetry breaking) may be

applicable to them. The fields of SG physics proper and that applying the

notions of it to problems in other disciplines have rather diverged. Several

works have suggested that the notions of SG can be applied to some biologi­

cal systems such as neural networks, prebiotic or adaptive evolution, random

polymers, protein foldings, and so on[112]' even though the discussions are

rather conceptual in each limited situation. The SG theory was also applied

to some combinatorial optimization problems and even information coding

theory[lll, 98, 87]

In particular, the neural network models may turn out to have more rele­

vance to their interpretation of "long-ranged" interaction than the mean field

models of SG themselves for real SG materials. This is because, e.g., axon of

an neuron can grow over a large area of the cortex, implying that the interac­

tions are essentially long-ranged, while a notion such as "ultrametricity" from

the mean field theory is never found in the more realistic short-ranged SG.

Furthermore, another important point is that, to good approximation in many

kinds of neurons, every firing of a given neuron is identical with every other

firing. That is, a cell has effectively just two meaningful states, firing and not

firing. It can therefore be described by a binary variable, opening the way for

adopting a spin analogy.

Progress in these areas and in biology-related investigations are strongly

coupled, and we can reasonably expect the flow of ideas to travel in both

directions. In other words, we hope that understanding spin glasses could be

a key that unlocks the secrets of many other "complex systems". Physics has

been an important factor in making spin glass theory such an active field in

ITheories for more realistic short-ranged models suggest that, unlike the infinite-ranged

model, no more than two pure states can exist for any temperature and field[61, 39].
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Which is the shortest route?

the last decade.

1.3 The Notion of Multivalley Energy (Fit­

ness) Landscapes

Last but not least, the idea introduced in this section is another central topic

of this thesis: the rugged or multi valley energy landscape. It may be one of

the most important notions of SG and has had many repercussions in other

fields.

Let us illustrate the problem of a rugged landscape by considering a per­

son who lost his way in a wooded and "rugged" mountain. Although almost

everybody would go downhill, such a strategy would be inadequate from the

viewpoint of a professional alpinist; for a craggy place around a mountain

stream may often prevent him from going down the rest of the way. Alpinists

would aim at a ridge with a fine view. At first their strategy seems to be

disadvantageous because they would go higher up, however, in the end they

would be able to find their way successfully. On the other hand, it is much

easier in the case of bald and gently-sloping hills like the ones of a golf course

where one would be able to reach the highest or the lowest place because one

has a distant view. Such a fine view, therefore, eliminates a hit-or-miss search.

That is, a sightless or random search should be an origin of difficulty for the

people who lost their way. Likewise, the reason that the Labyrinth of Knossos

functioned as a prison is that a maze is difficult for a human being to deal

with (even though the Minotaur was not a human!). It is because in the maze

there is only a limited view, and decisions for searching a proper way have to

be made "locally". These things are not only related to mountain climbing

or a labyrinth, but also to more general combinatorial optimization problems

which organisms often encounter through evolution. In fact the notion of the

"rugged landscape" can be applied to studying the problem of prebiotic[13]

and adaptive[64, 65] evolution with several successful results, even though we

should consider variable and adaptive landscapes[62, 65] if we want to address

evolution properly.

[n the language of spin glasses, a search for a ground state corresponds to

nothing but an optimization in a multi valley energy landscape. This is also

known as one of the "NP-complete" problems. Furthermore, the simulaled

annealing algorithm[67] has turned out to be very efficient for such optimization

problems. Analyses, using the replica method, again reveal the connections

between that algorithm and combinatorial optimization problems such as the

1hvelling Salesman Problem (TSP) and the matching problem[79, 42, 80].

The part of the title "multivalley energy landscape" of this thesis is moti­

vated by the topics mentioned above. [t may safely be said that the history

of evolution is a,n iterative adaptation both of a species and the environment.

Moreover, an adaptive evolution may promote a more complex environment[65]

which gives rise to a rugged "multi valley landscape". Such a situation can be

latent also in neural networks like the Hopfield model. One of the most plausi­

ble environmental adaptations in brains could be revealed as a morphological

variation of the network. A novelty of the Bopfield model in this sense is that

the structure of the multivalley energy landscape continuously varies as a pa­

rameter changes. This is also effectively related to an ability and a mechanism

of memory association. Corresponding topics will be discussed in Chapter 3.
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Chapter 2

Mean Field Theory for the
Hopfield Model

2.1 Introduction

The formal neurons and their dynamics defined as

(2.1)

introduced by McCulloch and Pitts[76] seemingly without a physical per­

spective at the start, can be reinterpreted as a globally coupled Ising sys­

tem. It exactly corresponds to the zero-temperature limit of Monte Carlo

dynamics[77, 1 J. J i} is an exchange interaction and -U; an external field on

spin i. The fact that both positive and negative J i} may occur even hints at a

possible analogy with spin glasses, with ferromagnetic and antiferromagnetic

interactions.

Furthermore, the analogy with spin systems can be extended to nonzero

temperature (T '" 0). This also has a biological basis in real neural systems:

the synaptic transmission is a "noisy" process and the potential on the post­

synaptic membrane is not determined precisely by the values hi == Lj JijSj -U;

but may fluctuate. We can therefore introduce a stochastic dynamics in which

Sit! + 1) = I with probability

1
P+(h i ) = 2" II + tanh(,Bh i )] ,

23

(2.2)
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where fJ (= liT) denotes a "pseudo inverse temperature". rote that T is

not a physical temperature and nothing but a parameter which controls the

steepness of the sigmoid P+(h;). Any sigmoidal function of h; with limiting

values of 0 and 1 at -00 and 00 will lead to similar behavior', but this choice

is particularly convenient because it corresponds exactly to finite-T Glauber

dynamics[491· For symmetric J;j, then, the system is guaranteed to obey equi­

librium statistical mechanics: it has a stationary distribution. In the context

of artificial computing networks it can actually be advantageous to introduce

this kind of noise, as we will see below.

ext, in the context of our spin system, the Bebb hypothesis mentioned

in the previous chapter can be stated as follows: the connection between two

cells is strengthened when the firing of one cell succeeds in causing the other

to fire, while if it fails to do so, the synapse is weakened. This idea can be

represented as a symmetric cOl'relation matl-i:c the so-called I-Iebb rule:

(2.3)

I A new technique of analysis[83 1 46 1 91] for non-monotonic functions of hi has revealed

much better memory retrieval circumventing spurious states.
2 Recenlly several new paradigms for information coding in the cortex were proposed[72 1

50,34, J07, 2,123] which suggests the so-called first syn,,!,se or dyn"m;c,,/ cell "ssclnb/y.

behavior (e.g., the critical storage capacity), which is important in applications

and desired in engineering.
Although there are, in fact, several studies for models with asymmetric

interactions[55, 56, 102, 103, 104, 431, I will follow what has turned out to be
a rather successful strategy, and concentrate on the symmetric case.

2.2 The Hopfield Model

Partially following the review by Gutfreund and Toulouse[52]' let us list several

interesting features of the Hopfield model from the point of view of statistical

mechanics.

• It is another solvable and rich model of a ra.ndom long-range system.

• It spans a whole range of intermediate models of behavior, between the

infinite range Ising ferromagnet where p = 1 (the Mattis model [75]) and

the Sf< spin glass model[106] where va -> 00 (the "SI< limit" of the

Bopfield modeI[120], see Chapter 3).

• It essentially has a mixed phase where the ferromagnetic retrieval (FMR)

state and the SG state coexist. The FMR state refers to a state which has

a macroscopic overlap with one of the memory patterns. Furthermore,

in more detail, the Almeida-Thouless (AT) transition (the RS-RSB tran­

sition) occurs on different lines for the FMR phase and the SG phase,

respecti vely.

• The existence of macroscopic free-energy valleys which are not ground

states of the system, at least between Tc the real first phase transition

line and TAl the transition line on which the metastable states for the

F~IR solution disappeaJ', is a novel property of this model. (See Fig. 2.3)

The major contribution of the Bopfield model to neural network theory was

to open a large galley of concepts, techniques and analogies, and to direct

the effort in a way which avoided the initial obstacles. The analysis of the

model leads to results and insights which go beyond the constraint of synap­

tic symmetry. It turned out to be a useful starting point for a variety of

modifications[20, 1, 11, 12, 110] which removed some of the constraints and

drawbacks of the original formulation of the model.
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2.3 The AGS Theory

where p is a number of random learning patterns and h" is a field conjugate

to one of a finite numbers (s « p) of "condensed patterns"{~n. Jij is an

interaction constructed from p random patterns (~r = ±1, I' = 1, . ,p) as

The Hopfield model is inherently connected with a self-coupled network

architecture. It is worth mentioning that a layered-network model, where

energy can be defined properly, can be analyzed by methods similar to the

ones of statistical mechanics[17, 101, 126J. It turns out that learning, i.e., the
dynamics in the space of interaction, can have feature similar to the ones seen

in neurodynamics.

In the next section, I will give an outline of the formal mean field theory

of the Hopfield model by Amit, Gutfreund and Sompolinsky (AGS)[8, 9]. In

particular I will concentrate on the nontrivial case where the number of learning

patterns is in the order of the system size N.

which can be obtained by Hebb rule if p random patterns are given as firing

patterns of Si(t) = (r in eq. (2.3) with the same prohability of firing for a

sufficiently long time (even though a proper normalization may be needed to

avoid divergence). We treat the Jii'S as frozen or quenched, so the influence

of the recall process on the memory is ignored. In other words, really in the

same way as a bond randomness was introduced in spin glasses where such

a randomness is expected not to vary significantly in short time scales of a

quenched process of spins, we assume that the synaptic connections change

much more slowly than the states of the neurons. That is, the Hopfield model

treats only the dynamical aspects of neurons, not the learning process at all.

Rather, it is concerned with a system in which the learning has been completed

and the synaptic connections Jij are given in (2.5).

(2.9)

(2.11)

(2.12)

(2.10)

Tr{n} exp (0:~2 L '"absa Sb +,8 L zasa)
a¢b (1

L(m~+h"W

0' 1 6 n Q'

- + - L L(m~)2 + -,8Trln[(I- ,8)1 - ,8QJ
2 2n "=la=1 2 n

0:,8 n 1
+-2 L '"abqab - -,8(( In ZO)) {{v} (as n -> 0),

n atb n

Zo

fn =

where

Now, we are interested in the average

((lnZ)) == JdJi}P({Jij}) In [Trsexp(-,8H)J. (2.6)

where the symbol Trs refers to the trace taken over N Ising spins as
N

TrsE({S;}) == II L E({S;}). (2.7)
i=lS.:;;;±l

The average (( In Z)) taken over the distribution P( {Jij }) of all random binary

patterns {(n gives the free energy averaged over quenched disorder. Byes­

timating the average (2.6) properly, one can obtain the average quantities we

want to know. Unfortunately it is very hard to calculate this average directly,

and it is not identical to log ((Z)) , which corresponds to annealing and could be

obtained much easier. To get meaningful results we must average the relevant

quantity, which is In Z, not Z.

Fortunately there is a technique, called the replica method, that enables

us to calculate the average of In Z. Since the average of a power of Z is more

easily obtained, we can use the limit

In Z = lim zn - 1, (2.8)
n-O n

which gives the free energy per spin averaged over the quenched patterns in

the form

(-I) ((zn))-1
f=lim lim - ---

n-oN-co,8N n .

Therefore a central discussion is estimation of the average of n-replicated par­

tition function zn and this is the basic idea of the replica method. The formal

derivation and limiting process of above free energy density are left to Ap­

pendix A. Let us go on to the essential discussion.

AGS introduced the free energy of the Hamiltonian(2.4) as follows,

(2.5)

(2.4)(Si = ±I),

Jii = 0,J ij == ~ t (r(j.
~:::;:1

1 N ,N

H = -- L JijSiSj - L h"L~rSi
2 1,j::::l /.1=1 i=l

The Hamiltonian for the Hopfield model is given by,
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denotes the random average for (s ~ p) "condensed patterns". I is a unit

matrix with n x n elements while Q is a replica matrix which gives the order

parameter qab, where n is a total number of replicas, and a (or b) denotes

an index for the a-th replica. By Tr{n} we denote explicitly that the trace is

taken over n-replicated binomial spins. The parameters in (2.10) are defined

as follows,

Here we note that the average

((OW}))W) == ~ t 2:= OW}
11=1 {"=±I

(2.13)

other words, if the network is in a state with large (macroscopic) overlaps with

a few of the memorized (condensed) patterns, the accumulation of the random

overlaps with all the other patterns creates a significant amount of noise.

Here we stress that the parameter 0== p/N refers to a storage level or rate

of memory loading, which changes the phase of the system.

With these three sets of parameters, the equations for the stable states of

the network can be written in the limit when the system size N becomes infi­

nite. These are the mean field equations which are exact for a fully connected

network.

nl~ ((~ 2((i(Sf))), (v = 1...s) (2.14)

qab ((~ 2((S?)(S;))), (2.15)

rab = ~ fJ(m~mb'))' (2.16)
Q Ji>/J

m V denotes the mean overlaps between the states of the network visited by

the dynamics and the v-th memorized pattern. Retrieval is identified by a

large time-averaged overlap with consecutive single states. q corresponds to

SG order parameter discriminating between SG freezing and paramagnetism.

The order parameter r describes the noise due to the uncondensed patterns. In

where (... ) denotes a thermal average, i.e., an average over that part of the

space of network states which the dynamics allows for. The average can be

regarded either as a time average or as an ensemble average. Here we note

that we used a special normalization of '·ab. Since each of the m~'s for II > s
(for ul1colldensed patterns) is 0(1/ .JR), the sum is O(p/N) and the coefficient

makes it of order unity, even if p increases linearly with N. By eqs. (2.14),

(2.15) and (2.16), the macroscopic order parameters are given as

2.3.1 Replica Symmetric Solutions

(2.24)

m~=mf.1 (2.20)

qab = q, a#b (2.21)

1'ab = r, a#b (2.22)

J JOO dx (x
2

)dP(a)(x) -+ r,;-::-:- exp --
-00 V27rCl 2a

IRS =

Most of AGS's discussion have been carried out within the replica symmetric

(RS) theory, which assumes that each order parameter is symmetric under a

permutation of replica indices as

By noting that the matrix (1 - {3)I - {3Q, with the replica matrix Q given

by (2.21), has a nondegenerate eigenvalue 1 - {3 - (n - 1){3q and (n - I)-fold

degenerate eigenvalues 1 - {3(1 - q), the free energy density can be represented

using the above RS order parameters after limiting processes of n -+ 0 properly

~ + a{3r(1 - q) + ~ 2:=(m v )2
2 2 2 v

+~ [In(1 - {3(1 - q)) - 1 _ ~~ _ q)]

-~JdP(I)(z)((ln2cosh{3 [.;arz+ ;;:(mV+hVW] )), (2.23)

where the essence of the derivation of the last term is the application of the

Hubbard-Stratonovitch identity (A.2) to the quadratic term O:::a saf which

appears in (2.11). In eq. (2.23), we used simplified expressions for Gaussian

integrals

(2.17)

(2.19)

(2.1 )

m tl = linl ~ Lm~
n-On (1

. 1 '"
q = l1!!A n (n -1) L..Jqab

a;<b

. 1 '"
r = l1!!A n(n _ 1) L..J rab·

a;<b



Variation of fRS with respect to m", q and 1', leads to the equations for

the stationary states. All the solutions of fRs, including local minima, are sta­

tionary states of the dynamical process, with barriers of O(N). The equations

where the average ((- . .))z refers to the combined average over the ("'s in

eq. (2.13) and over the gaussian noise by the integral operator JdP(I)(z),

Here we note that at the saddle points the values of the parameters given

by eqs. (2.25), (2.26) and (2.27) have just the physical meanings defined in

eqs. (2.14), (2.15) and (2.16), respectively.
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m" = (( tanh (3 [.;0,::; + ;;=(m" + h")C]))z

q = (( tanh
2

(3 [[.;o,:z + ;;=(m" +h")("]))Z
q

[1- (3(I-q)j2

(2.25)

(2.26)

(2.27)

Solutions at T = 0 31

1.0 1.0
lX, 0.1

T=O 0.05

E 0.5 E 0.5 a.--Q.Ol

0.<=0.138
(a) (b)

0.0 0.0
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a T

Figure 2.1: Pattern overlap m (a) for a's at T = 0 (b) for T at several va.lues

of a [9J.

The va.lue of r in eq. (2.27), therefore, can be written as

2.3.2 Solutions at T = 0 (2.31)

JdP(Z)(l)tanh(3(AZ+x) /!;fo X

/

A
dzexp(-z2/2)

_ erf(x/V2A) (2.28)

Next, the right hand side of eq. (2.26) has the limit unity as (3 -t 00. But,

as (3 -t 00, the appearance of the term C == (3(1 - q) in the denominator in
eq. (2.27) requires the (3 -t 00 limit of this expression, which involves the term

of OCT) in q. Following similar calculations in eqs. (2.28), C can be represented

Now let us go on to the core of the AGS theory at T = O. First we deal

with the solution for the so called "ferromagnetic retrieval (FM R) phase ",

corresponding to the case = I and m l ~ I (we will represent it as m). We

use the identity in the limit T -t 0 or (3 -t 00:

Appling this to eq. (2.25), with hi = 0, one can find that

(2.32)
erf(y)

y = ,j2Q + (2/ Vif) exp( _y2)

AO _ om" I
oh" ."-0

JdP(t) (z)(3 cosb-2 [(3( j(rrz +;;= m")J

(3(1 - q). (2.33)

This equation provides the dependence of the order parameter m on er at T = 0,

which is depicted in Fig. 2.I(a). The FMR solutions at er < ere ~ 0.138 have a

macroscopic projection on a given pattern. The solutions will have vanishingly

small overlaps with each of the other patterns. Those random overlaps are of

O(l/.,fiii). Fig. 2.I(a) tells us that the transition m ~ I to m = 0 is abrupt:

at ere the overlaps drop suddenly.

Here we note that the derivative of m" with respect to h" gives the linear

susceptibility AO as

It is found that equations (2.29), (2.30) and (2.31) reduce to a single equation

for the variable y == m/.jar, namely

(2.29)

(2.30)

m = erf(m/~).

C = lim (3(1 - q) = /2 exp (-~) .
(3-00 V;;;: 2err

as
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Figure 2.2: Linear susceptibility Xo = 11(1 - q) for SG and 17M R phase.
(a) (b)

2.3.3 Solutions at finite T

If one focuses on eqs. (2.25) and (2.26) at s = 1 and h J = 0, then one can

derive the reduced equations in the similar way as in the case '1' = O. They

are given by

Thus C turns out to be nothing but ),.0. Fig. 2.2 shows the dependence of Xo

on 0- for both the FMR and the SG phase. The transition between SG and

FMR at 0c can be seen as a bifurcation of \0' The line for the SG phase is

given by 1/(1 + JO)[9]' which is independent of the temperature.

where the expression of 7- is the same as in eq. (2.27).

These equations are solved numerically and yield the phase diagram shown

in Fig. 2.3(a). Above T. = 1 + .jQ, in the paramagnetic phase region (A),

there are neither FMR (m =!' 0, q =!' 0) nor SG (m = 0, q =!' 0) solutions for

any values of 0-, allowing only for the solution q = m = O. Below '1'., there is

an SG phase characterized by the solution q :e J~ - '1' > 0 and m = 0 (region

(B)). Below the line TM (shaded region (e)), the FMR solutions q =!' 0 and

m :e 1 appear as locally stable states. In this region, the SG solution coexists

2.3.4 Generalized Almeida-Thouless (AT) line

Figure 2.3: (a) The AGS phase diagram. (b) Generalized Almeida-Thouless

line for the HopfieJd model[9]

JdP(1) (z)0-11 2 cosh- 4 11( J(ITz + m + h) = [1 - 11(1 - q)]~ (2.36)

with the 17 1R one. but the free energy of the SG state is lower than the one

of the 17M R state. In the darkly shaded region (D) below the line Te , the

FMR free energy become the most stable state. The line Te therefore gives

the first order transition except at the point Q = 0, '1' = 1 where the transition

is second order[7]. The small black triangle near o-c is enlarged in Fig. 2.3(b)
to show the RSB region for the FMR phase.

The dependence of the FMR solution m on T is also depicted in Fig. 2.1(b).

The points where m drastically falls down to zero gives the line TM .

Here we should note that the SG solution in the RS discussion above is unstable

forT < '1'.. The FM R solution, furthermore, becomes unstable to replica

symmetry breaking (RSB) below a temperature TR shown as the shaded area in

Fig. 2.3(b). The curves refer to the generalized Almeida-Thouless (AT) line[2 ,

9] originally discussed for the Sherrington-I<irkpatrick (SI<) model[106] about

the onset of the RSB in tability where the sign of the "replicon" eigenvalue

becomes negative. This condition leads, in terms of m and h, to

(2.34)

(2.35)

m = JdP(I)(z) tanh [11( J(ITz + m)]

q = JdP(I)(z) tanh 2 [11( J(ITZ+ m)l.
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which gives the upper curve TRI in Fig. 2.3(b) for an arbitrary temperature

by the numerical analysis. In the low temperature limit, cosh-4
( •.. ) goes to a

delta-function and eq. (2.36) yields

which gives the white curve in Fig. 2.3(b).

Thus, although the FMR solution i stable between TM and Tnt, the RS

solutions become unstable for all the finite values of Q in the limit (3 -+ 00.

Hence the full RSB should be considered. Furthermore, in principle, the RS

solution cannot characterize the SG phase and the multivalley structure. In the

next chapter we will show how Parisi's RSB scheme can be used for arbitrary

values of Q in order to extract the variation of valley structure as Q changes. In

particular, the RSB discussion is important for understanding the equivalence

between the SI< model and the Bopfield model with large Q.

Here we note that in this thesis "the Hopfield model" denotes to the system

with Ising variables in rather narrow sense. But, in fact, Hopfield and Tank[59]

has proposed another version with analogue neurons with continuous value.

This model has been analyzed within the replica symmetric discussions[i05,

44, 45J in the similar way as the naive mean field model of SG[22, 115,89,90]

and the result re\'eals that the metastable "spurious" states of analogue model

is considerably suppressed compared with the Ising version. The phase diagram

in the same way as AGS also has been given and the critical storage capacity

gets larger than the one in the Ising version.

TR2 ::: fFi exp (-~)Vg; 2Q ,
(2.37)

Appendix A: Mean Field Theory for 0' > 0

Using the replica method, let us estimate the following random average of Cs
for n replicated partition function as

((zn)) = ((Trsexp C~(3tt (~~(rsrr

-~(3pn+(3~h"~t(;sr))) (A.I)

where by Trs we explicitly denote that the spin trace is taken over n-replicated

binomial spins with system size N. The random average (( ... )) is taken over

p patterns {(f = ±I} (i = I, .. ·, N; f-l = I, .. · ,pl. The quadratic terms in

eq. (A.I) can be decoupled by means of the Hubbard-Stratonovitch identity

I 100

x
2

exp(Aa2) = .j2; -00 dxex p(-2 + y'2;\ax) (A.2)

and ((zn)) becomes

((zn)) = e-{JpnI2//TrsJIId~exP(--21 t t(m~)2)
\\ lAP v2:rr /J.=s+1 p=l

xexp (IN/3 "El;m~~~(i'sr)

x exp (-~~;(m~?+~;(JN/3 m~ + (3Nh")~ ~(isr)))
(A.3)

Here let us concentrate on estimating the term (= Lr) on the second line in

eq. (A.3) which corresponds to the random average for "high" patterns {(f)
(f-l = s + I,'" ,p) following as
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(A.9)

(A.10)for P '" (J;
otherwise.

JIT dqpa exp [-~Trln((1 - fJ)I - fJQ)]
pia

X IT 6(qpa - ~ I=srsn,
p::f:.o ,::;:1

{
iV-I "N SPS~q _ L...,==I I I

pa - 0

where I denotes a n dimensional unit matrix. A new set of auxiliary variables

Q == [qpa] is introduced, which should satisfy

matrices and its diagonalization needs some concentration, in particular, if one

addresses oneself to the replica symmetry breaking discussions.

By using a property of Dirac delta function, we obtain

Furthermore, by introducing a formal Fourier integral representation of the

delta-function:
6(x - a) = -'!:""jiOO er(x-·)dl· (A.Il)

2"..1. -100

for n(n - I) {qpa}, it is found as

where we ha\'e left out unimportant prefactors and caled the r pa by a factor

of NafJ2 for later convenience.

Thus, after rescaling the m~ variables as Jfi1lj m~ , by which variables m~

become order 1, we can write our full expression (A.6) for ((zn)) as

(A.5)

(A.S)TrInK = L:ln~p,
p==1

JIT IT dm~ exp [-~ 2]m~? + !tv L: m~m~srsi]
1-/=,,+1 p:::::l .j2; p,p iJA-po

JIT d~ exp [- -21 L: Kpam~m~]
J-l,p v27r JJ.po

[det/(r1p-.)/2

exp [-~Trln K], (A.7)

J dm"
(IT 'FP )L2 =

IJ{) VL/Jr

By substituting (A.5) into (A.3), we obtain

where we have used ~r gets ±1 with probability 1/2. Since In cosh (x) "" x2 /2
for x «: 1, L J reduces to

where ~p are the eigenvalues of K. 1·lere we nccd a compLicated procedure to

diagona.lize a matrix K; in fact it will be found out that K is one of the replica

where J(pa == 6pa - fJ/ N Li SrSr and it is used that p - s "" p for large p of

order iV. Tn the above caluculation, by Trln J(, we explicitly denote that

where (( ... )) {~~} denotes the random average for s of "condensed patterns"

{~n· By integrating of quadratic terms in the first exp(···) c== L2 ) in (A.6)

and one can find out that
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(A.14)

The last line of (A.l3) (= £3) can be represented as a function of random
patterns {{r} and n-replicated binomial spins {Sr}, and can be further written

generally as

\\TrseXp (~F{{i,Sr}) )\e~}

II IT Trs exp (F{{i, SP}) \\
\\,=1 II {(~)

IIexp N (* f In Trsp exp F{{i, SP}) \\
\\ ,=1 II {(~),

where Trsp indicates trace over n replicated binomial spins {SP (= ±l)}. Here

let us note that s ~ N( -+ 00) guarantees £3 to be self-averaging and it can

be represented generally as

(A.l5)

where we have succeeded in getting rid of the i dependence of the expression

Chapter 3

Multivalley Structures of the

Rugged Energy Landscape with

Replica Symmetry Breaking

Discussion

£3 = exp (N(( In Trs exp F{{", SP} )){(U}). (A.16)

Here we note that in the end we do not need the average (( ... )){(~} in (A.14),

because the self-averaging of the i sum in (A.16) has already carried out all of

the pattern averaging.

Now we can write the whole expression for ((zn)) as an integral of the

exponential of something proportional to N:

an 1 6 n a
- +- L L(m~? +-aTrln ((1- (J)I - (JQ)
2 2 "=1 p=1 21'

0:(J n I
+2 L l'pq qpq - f.i(( In Zo))W) (A. IS)

q,pq I'

where

and

J{m,q,I'}

(A.17)

(A.19)

3.1 Introduction

Recently the words "spin glasses (SG)" can be seen in diverse fields [ I, 1121.

They also have appeared in many papers for neural network models. If we

consider the Hopfield model[5S, J as a globally and not uniformly connected

spin system, various SG like properties emerge. Its most significant character­

istics are the existence of a large number of metastable states and multi valley

structures in phase space which are also typical examples of "broken ergod­

icity"[93]. These properties were originally derived from an interpretation of

the replica-symmetry-breaking (RSB) solution given by Parisi[94] for the Sher­

rington and Kirkpatrick (SK) model[I061 of SG, and were thought to be rather

specific to the SK model. More recent studies, however, have shown that this

is not the case and that they are shared by other infinite-range SG models[90].

III the present work, we will show that the Hopfield model too can be regarded

as such a model.

Very userul for obtaining some insight into the complexity of a valley

structure is the basin of attra.ction which gives a quantitative measure for

the "spread" of valley. Therefore, in Chpter 5, we will numerically study

39
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3.2 Valleys

(3.1)

(3.2)

(3.3)

(3.5)

(3.4)

Y(q) == 1.' dq'P(q').

where (-. ')J denotes the sample average. The quantity y roughly shows the

number and the width of the valleys and gives the relative distribution of the

weights of the valleys. For example, there is only one large valley for y = 1

while there are many valleys with small weights for y ~ O.

Second, let m;.p == (5;)p be the magnetic moment of the ith spin of the pth

pure stat.e. Overlaps of magnetization between two pure states are defined as

follows,

temperature. These solutions provide us with the weight distribution of the

valleys.

where Jk refers to the free energy of the k-th valley and (J = liT. Ll connection

wit.h Wb Mezard et al[78] have defined a quantity

First let us define the weights of the valleys. When the phase space is divided

into a number of valleys indexed by k, the weight of k-th valJey Wk is defined

as the probability with which a randomly chosen initial state is in the k-th

valley. If the system is at. equilibrium, Wk can be represented as

The cumulative distribution function is defined as,

It is noted that the self-overlap qpp(== qEA) denotes the Edwards-Anderson

order parameter. sing Boltzmann weights Pp , Po> the distribution of the

overlap q is represented as

relationships between remanent overlaps and initial overlaps in the 1I0pfieid

model using 10nte Carlo simulations and finite size scaling at zero tempera­

ture (T = 0)[119]. Such relationships provides an intuitive understanding for

the valley structure in ouel'iap space. In this chapter, we consider the valleys

in sl,in configuration space by obtaining the full RSB solution of the 1I0pfield

model. It turns out that the formulation obtained is equivalent to the one

for the original Sl\ model in the limit ..;0. -> 00, where a( == piN) is the

rate of memory-loading, p the number of random patterns for memories and

N the system size. In this way we have also proved conjectures by several

authors[8, 52, 45J regarding the SG limit of the Hopfield model. Furthermore

the fulJ RSB solutions are numerically obtained for the SG phase.

In the previous chapter, the replica symmetric (RS) solutions for the [rop­

field model was reviewed at a run. One of the main results is that the RS

solutions are stable in almost all regions that belong to the FMR phase where

the system behaves as an associative memory. We derived the mean field equa­

tions and critical storage capacity ac ~ 0.138 at T = 0 by extrapolating the

RS solutions to the RSB region. The RS solutions for the SG states, how­

ever, are unstable in the entire region T < Tg (the SG transition temperature)

and the ones for the retrieval states become unstable at T < TR , the gener­

alized Almeida-Thouless line[28, ] for the 1I0pfieid model. To overcome this

difficulty, Crisanti et a!. have concentrated on estimating the critical storage

capacity by considering the first step RSB scheme (which effectively means

taking J( = 1 in Appendix B) and they obtained the value ac ~ 0.145[27]. On

the other hand, in this paper, the full RSB scheme will be employed to extract

several pieces of information regarding the multivalley structure of the free en­

ergy of the Hopfield model. which interpolates between the Mattis model and

the SI< model. Furthermore, we will also reveal non-trivial asymptotic shifts

of the system to the SK model, i.e. the "SK limit"[120], using the notion of

the rugged free energy landscape.

In the next section, the weights of the valleys will be defined first. Next, the

statistical mechanical interpretation of the RSB solution and the relationships

between the order parameter function and the weight distribution of valleys

will be given. Next, Parisi's RSB scheme[94, 95] is applied to the Bopfield

model. It turns out that the obtained RSB formulation is equivalent to that.

for the original SK model as a limit. We numerically solve the result.ing varia­

tional equations for the SG phase with rather large a's and some values of the
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Y(q) also gives the density of pure states with an overlap larger than q. If we

now consider the function

we see that its inverse q(x) exactly coincides with the RSB solution of the SG

order parameter, which is why it is called the physical interpretation of the

RSB solution[94, 31]. The case Y(qEA) refers to the self-overlap of a pure state

by definition and is equivalent to y in eq. (3.2) since Wk = Pp (one pure state

for one valley). Furthermore, Y(qEA) is given by the length of the plateau

of q(x) whose functional form depends on o. Hence, by obtaining the RSB

solutions for various values of 0, the variation of y can be estimated.

x(q) == 1 - Y(q) = f, dq'P(q'), (3.6)

The average (( ... ))w) has the same meaning as eq. (2.13). Furthermore,

g(x, z)(O :'::: x :'::: 1, - <:; < 00) is a solution of the following partial differ­
ential equation:

. " (" {3 12) (P' . .) (A' 8A A' 8A)(38)9 = -2 9 + xg ansI equatIOn == 8x == 8z .

g(l,z) = {3-1In2cosh.jQ(3z. (3.9)

The derivations of the terms containing g(x, z) are similar to the case for the SK

model[94, 90, 33] and are left to Appendix C for details. x(x) and h correspond

to the local susceptibilities at scale x and the effective field, respectively (h"
denotes the external field, conjugate with the v-th condensed pattern) as

3.3.1 The full RSB scheme

3.3 The RSB scheme for the Hopfield model

Following the formalism by AGS and Parisi's recipe of taking a continuum

limit of partitions of replica matrices (Pa,oisi gauge), the free energy for the

Hopfield model can be represented as the functional.

Equation (3.7) cannot directly be maximized numerically since g(O, z) de­

pends implicitly on ,o(x) through (3.8). Therefore we apply the schemes by

Sommers et al.[10 ) and emoto[85] to obtain the order parameter functions

q(x), r(x). They make g(x,:;) independent of r(x) by introducing a Lagrange

multiplier function P(x,z). The new functional to be maximized is then de­

fined as

(3.11)

(3.10){3(I-xq(x)-l'q(X)dX),

Ja ~(m" + h")C.

jp[r,q,g) +{O dZP(1'Z){9(I,z)-~ln2cosh.jQ(3:;}

-l dx L", dzP(x, z) {g + ~ (g" + {3xg12 )} . (3.12)

y(x)

j,[r,q,g, P]

(3.7)

o l' o{3 (in' )- + - 2:)m"? + - '0(1) - r(x)q(x)dx
2 2" 2 0

1 dz ( _Z2 )
- ~exp -2

0
(0) ((g(O,h+z))){{V)

- V21rr(0) ,

o { -{3q(O) r' dx >.. }
+2j3 1 - A(O) + In[I - \(1)) +10 --; 1 - A(X) ,

The equations to be solved can be obtained by taking functional derivatives of

(3.12) with respect to q,r,g,P and m":
which is maximized by the order parameter functions q(x), r(x) and minimized

by rn". Here q(x) and r(x) correspond to the order parameters (2.15),(2.16)

in the continuum limit, i.e., the SG order parameter function and the or­

der parameter function descri bing the noise due to the uncondensed patterns,

respectively. m" denotes the average overlap of the states and the v-th mem­

orized pattern (2.14). The terms including x(x) correspond to the third term

in eq. (2.10) and they are obtained by taking the continuum limits of the

eigenvalues of the replica matrix Q in eq. (2.10) since it has a recursive

structure. The details of the limiting process are left to the Appendix B.

if = -~(MII + 2SxMM')
2

M(1, z) = tanh Sz

p = ~(PII - 2Sx(PM)')

II 1 ( (z-h)2)\\
P(O,z) = \\J2n(0) exp -~ II

{{v}

(3.13)

(3.14)

(3.15)

(3.16)
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JOO 2
q(x) = -00 dzP(x, z)M(x, z)

X(x) = 3a(l-xq(X)-lq(X)dX)

rx =~+rxdx~
() [1 - \,(0)]2 10 [1 - ,\(5:)]2

v 100 II vI. ( (Z_h)2)\\
m = -00 dz1l1 (0, z) \\( j2r.r(0) exp -~ II

WJ

~ =' va/3.

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

This equation is equivalent to the condition for marginal stahility in replica

space[8, 120]. If we apply the RS solutions to eq. (3.24), one can easily obtain

the equation for the generalized Almeida-Thouless line of the Hopfield model

(i.e. eq. (2.36))[8] as,

0/32 vh l: dze(-z'/2)sech4 [/3 (varz + (m + hI))] = [1- /3(1- q)J2,

(3.25)

where q and " correspond to the RS solutions of q(x) and r(x), respectively.

h I denotes the external field, conjugate to the 1st condensed pattern.

(3.24)

3.3.2 Numerical analysis

We have solved (3.13)~(3.23) numerically for some parameters. Analytical

results are known only near Tg , the SG transition temperature. Since we can

interpet the linear terms of (3.13), (3.15) as diffusion equations, by introducing

the Green function, the nonlinear partial differential equations (3.13), (3.16)

can be transformed to the following integral equations:

This enables us to obtain 111, P, m, r, q and X by means of an iterative pro­

cedure in the order (3.27) - (3.22) - (3.23) - (3.28) - (3.17) _ (3.1 )

- (3.19) - (3.27) . For numerical integration and differentiation we dis­

cretized the variables x and z, dividing the intervals [O,l] and [- 7.5,7.5] into 20

and 100 pieces, respectively, while we used a cubic spline for interpolation. We

iterated the above procedure until the maximum variance of all the variables

P, M, r, q and X became less than 10-6 , which occurred typically in 700 - 900

iteration (dependent on a and /3).

1 exp ( (z - Z')2) (3.26)
j2r.(r(x') - r(x)) 2(,'(x') - ..(x)) ,

loo dz'G(x, Z; 1, z') tanh ~z' +11

dx'~':(x')x'

x l: dz'G(x, z; x', z')M(x', z')M'(x', z'), (3.27)

__l_exp ( (y - m/va)') _ rx dx'~,:(x')x'
j2r.r(x) 2r(x) 10

x loo dz'G(x', z'; x, z) (M(x', z')P(x', z'))'. (3.28)

P(:r,z)

JIl(x, z)

G(x, Z; x', z')

P(O,z) = ~exp ( (z -2~~t)2) (3.22)
V21iT(0) ,. ,

= loo dzM(l,z)P(1,z), (3.23)

where we have re-written m' as mand have used m= !""'oo dzM(x, z)P(x, z) =

const. lt is noted that (3.22) and (3.23) coincide with the corresponding

equations for the SK model in a magnetic field. Consequently, in the same

way as for the SK model, the field distribution can be corrected to a non­

trivial function P(x, z) from the Gaussian distribution by the RS solution.

Equations (3.13) ~ (3.17) are similar to those for the SK model in which

/3 is scaled by va while (3.18) and (3.19) are specific to the present analysis.

When we take the limit va - 00 while keeping ~ constant, we obtain that

X(x) _ 0, ..(x) = q(x) for arbitrary x and that m = O. We thus find that

eqs. (3.13) ~ (3.23) formally coincide with those of the SK model and obtain

the first result of this chapter. We have established the "SK limit" of the

Hopfield model. In this way we furthermore proved the similar conjectures for

the "SK limit" of the Hopfield model[ ,52,45].

Here it is noted that the conditions it = T = 0 again yield the mean-field

equations obtained from the RS discussion. Furthermore, the differentiation

of (3.17) with respect to x gives for it '" 0 the equation

1 JOO 2-[--(-)-]2 dzP(x,z)M'(x,z) = 1.
1- X x -00

In the above formalism, P(l,z) gives the internal field distribution. Further­

more if we consider only one condensed patLern(s = 1) and hi = 0, we can

estimate the sample average (( .. )) in (3.16), (3.20), and obtain the following

equations:
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Some typical order parameter functions are shown in Figs. 3.1, 3.2 and 3.3

for a fixed value of the temperature (T( = 1/(3) = 0.5) and for Q = 0.5, 1.0 and

2.0 (i.e., in the SG phase). We see that the larger a, the smaller r(x) and ,\(x),
but the larger q(x). Consequently in the SK limit q(x) and l'(X) are naively

expected to be identical for arbitrary values of x. The internal neld distribution

P(l, z) is represented in Fig. 3.4 for several a's and T's. It is expected that the

smaller a, the nearer the system approaches the RS region at the temperature

considered. Then we can see that a gaussian form will be recovered for smaller

Q or higher T while a double-peaked form of P(l,z) emerges for larger a or

lower T. Figure 3.5 concerns the variation of y for Q at T = 0.5. We estimate

the values of y, the length of the plateau, by the point where dq(x)/dx is

less than 10-3
. We see that y can be scaled as y ~ Q-'" (-y = 0.5 ± 0.02).

Consequently, as a gets smaller the valleys with a large weight increase their

relative frequency proportionally to 1/.,fa. Moreover, the larger a, the lTlore

the number of relatively small basins increases. Here we would like to stress

that an exponent of 'Y ~ 0.5 implies that for large Q, y scales according to

the SI\ limit (-y = 0.5) and not according to the SG limit (-y = 1.0) as thus

far thought[8, 52, 45]. Finally the Q dependence of ,\(0) is given as circles

in Fig. 3.6, which shows good agreement with the line ,\(0) = 1/(1 + JQ)
obtained analytically in ref. [8]. It also indicates that the accuracy of our

numerical analysis is sufficient. Moreover, maximum errors of the compatibility

condition (3.24) at a = 0.5, 1.0,2.0 and T = 0.5 were less than about 4%.

3.4 Summary

We have formulated the RSB solution for the Hopneld model, obtained the

variational equations for the order parameter functions and found that they

are identical with equations for the SI< model as a limit (the Sf( limit oj the

HO]Jfieid model). The order parameter functions are also numerically estimated

for the SG phase and from their functional form the asymptotic dependence

of the parameter y, characterizing the valley structure, on a is obtained.

Let us conclude this chapter by noting that the free energy (3.7) is invariant

for gauge transformation of 'x'. This enables us formalize a free energy with

the so called Som]Jolinsky gauge[109, 29]. In the next chapter, using the new

variational equations of the formalism, I will report important results for the

FMR and SG phase including an estimate for the critical storage capacity

within the full RSB theory[121].
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Appendix B: Diagonalization of Parisi's matrix

0.3
We summarize some of the details involved in taking the n --+ 0 limit of the

term L == (0/(2,8n))Trln[(1 - ,8)1) - ,8Q] in the free energy (2.10). Here we

note that the essence of the following calculations is the diagonalization of the

Parisi's replica matrix and the proper taking of the limits. [n general, an n

dimensional Parisi matrix A = A o of level J\ is recursively defined as the J(-th

iterate of

0.2

(

Ak+1 akUHI

ClkUHI A k +!
Ak =

ak~k+J ak~HI

akuk+'l
akUk+1

A k+1

(B.1)

(B.2)

(B.3)

I,
APO = L(Pi - Pi+l)ai + a,

i;O

I,
Ak = L(Pi - Pi+r)Cli - PkClk + a,

i=k

wbich is nondegenerate, and as

L = 2;n In [1 -,8 (1 + ~(Pi - Pi+r)qi)]

+~ I)~ -~)In [1-,8 (1 + t(Pi - Pi+l)qi - Pkqk)] .(B.4)
2,8 k=O PH I Pk i=k

Let us write the first and the second term by 0/(2,8)L
"

0/(2,8)L2 , respectively.

If we change the order of the summation of k(like in a partial integration), L 2

which are Po(l/PHI - I/Pk)-fold degenerate for each k(k = 0,1,· .. , J\). The

matrix Q in L is a Parisi matrix whose diagonal elements are zero(q = 0).

Consequently, we use the eigenvalues for evaluating L and obtain

with AI,·+I = a representing the value of the diagonal elements. Uk denotes

the Pk x Pk matrix whose elements are all j. Each matrix A k is specified by its

dimension Pk and the coefficient ak of nondiagonal submatrices U k+J • Thus

A o is determined by the series of integers n = Po > PI > ... > PI, > 1'1>"+1 = 1,

where naturally pk needs to divide pk-I in order for successive submatrices to

fit correctly, and the series of coefficien ts {ao, al,· ., aI>", aF<+I = a}.
By the recursive definition, the eigenvalues A of A are obtained[92] as

2.0

1.9

1.0
a

1.4
a

0.9

0.5

0.4 L........~_....L-_~_'---~_....L-_~

0.4

0.6

o
NO.5

Figure 3.5: The asymptotic dependence of yon a at T = 0.5 (log-log plotted).

Figure 3.6: X(O)( 0) versus 0 for l' = 0.5. The curve represents X(O) = 1/1'9 =

1/(1 + va)·
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can be rewritten as

L 2 = -~ In [1- 13(1 + f,(]'i - Pi+l)q, - 1'0qo)]
1'0 ,=0

+Et {In[1 - 13(1 +,II(l'i - I'i+dqi -]'k-Iqk-d]

- In[l - 13(l + ~(I'i - I'i+dq, - I'kQk)]}

+ In[l - 13(1 - q/, )]. (B.5)

Now, while denoting the terms in L2 by L 21 ,L22 .L23 , we obtain after taking

the continuum limit J( ---; co and the limit 1'0(= n) ---; 0,

(B.6)

(B.7)

where we set qo = q(O), q/, = q(l), 1', - 1',+1 = dx and qj_1 - qj = q(x)dx. The

first term of L 21 is canceled out by L I yielding L'21' Finally, L can then be

represented as 0./213 (L'21 + L22 + L 23 ).

Appendix C: Derivation of the Parisi equation

Here we briefly trace a derivation of Parisi equation (3.8) following schemes[94,

33,29, 90] for taking a continuum limit of the partition function (2.11) defined

in the replica space. It is convenient to write the partition function in the

matrix form as

(C.l)

where (T and u are the n (= I'o)-dimensional column vectors whose elements

are a o and 1, respectvely. By applying the parametrization of the Parisi matrix

A o in Appendix B to R which is divided into 1'0/1'1 x 1'017'1 blocks, we can

rewrite (C.l) as

where we have used the Hubbard-Stratonobitch identity (A.2) for the quadratic

term O::~O/PI u;(Tl.k)2 In the above calculation, (Tl.k denotes the k-th 1'1­

dimensional subvector of I'o-dimensional vector (To == (T and there are 1'0/1'1

such subvectors in the way as

(C.3)
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At this point in time, we can succeed in representing Zo(z) by ZI(Z + z) , the

one-step replica-symmetry-breaking (RSB) partition function, with PO/PI x
PO/PI submatrices R 1 and Vb and PI-dimensional subvector 0"1 and UI'

Similarly one can construct an I-step RSB partition function generally by

iterative equation as

energy per component I ing spin, we introduce

GI(Z) == ~ In ZI(Z), (C,7)
PI

Concerning this variable, we can get the following recursive formula:

where

Furthermore, by rescaling the z/~ variable as Z, we can write as

(C.IO)

(C.g)

1 j dz z2
GI(z) = -In exp(-----)

PI J2rr(r, - r,-rl 2(rl - l'l-rl

x [exp [PI+IG,+I(Z + z)]J(P,jPI+tl, (C.S)

l d- -2

-Inj ~eXP(-':""2)exp [PIG,+1(Z +~z)]
PI v2rr
1 dz Z2
-Inj-exp(--)
PI .j2; 2

x exp [PI(G,+I(Z) + Z}"I -1'1_IG;+1 + ~z2(rl - rl-tlG;'t, +" .)]
1 dz z2

GI+,(z)+;lnj .j2;exp(-'2)

(
1 + - ~G' +z2Pl~G'2 + Z2PI (I'1 - l'l-tl Gil + ...)

X zP,vr, - r'_1 1+1 2 1+1 2 1+1

1 ( (1'1 - l'l+rl (G'2 Gil))G,+I(z) +; In 1 + --2--PI PI '1+1 + 1+1

G () ("1- "1.1) (G12 Gil)1+1 Z + --2- PI 1+1 + '+',

G,(Z)

where R ,+, and V ,+1 refer to the PI+,-dimensional diagonal and non diagonal

submatrices of PI-dimensional Parisi matrix R ,. respectively. O"I+I,k denotes

the k-th PI+I-dimensional subvector of PI-dimensional column vector 0"1 as

where we used }1'1 - 1'/+1 «: 1. Now we can take the continuum limit where

J( --t 00, G,(z) --t G(x,z), PI --t X and rl - r,-l --t -i'dx and by transforming

the variable by g(x, z) == (G(x, z) + q(1)/2)/(J we can get Parisi equation as

(C,5)

The above procedure ends at k = j{ + 1 as

T"{I} exp [~(R/,+, - q/"VJ(+I)O"J(+I + ZO"I<'+I]

exp(-%)2cosh z, (C.6)

where we have used R/{+1 = 0, VJ(+I = 1 and O"J(+I = 1. To get the free

dg
d:;;

g(1, z)

_~~ [~g + (Jx (~)2]
2 dx dz 2 dz

1
lJln2coshz, (C.11)
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For the Hopfield model, after rescaling the variables r(x) and z as

ot32,,(~,),

vial3=.

we can get expressions relating to gin (3.7) and (3.8).

(C.12)

(C.13)

Chapter 4

Replica Symmetry Breaking

Discussion at Zero

Temperature

4.1 Introdcution

Since the llopfield model[58, 8] and its family of neural network models[10, 57J

have been fully researched in the context of the spin glass (SG) theory[81, 112J

and other new technics of analysis[46], studies on the Hopfield model in itself

may seem to have a rather classical flavor nowadays. However there are still

important open problems: low temperature behavior in the phase where the

replica symmetric (RS) solutions are unstable and, in particular, the critical

storage capacity (oc) in the low temperature limit ((3 =liT -+ 00). This

chapter discusses the RSB solution of the Hopfield model in order to consider

such topics.

AGS have shown that the replica symmetric (RS) solution is stable in
almost all regions which belong to the FMR phase, and by extrapolating to

the RSB region they derived the mean-field equations at T = 0 and determined

Oc = 0.138. Crisanti, Amit and Gutfreund[27], moreover, have examined the

one-step RSB solution and have corrected Q c from 0.138 to 0.144. However at

T = 0 both the RS solution and the RSB solution become unstable when only a

finite number of steps is used. Therefore the full (infinite steps) RSB solution

should be considered, where Q c is expected to be corrected to a still larger

value. Moreover, only the full RSB discussion provides us with an appropriate

57
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which are parameterized by {I'd and {ed, respectively, in the same way as Qo

and Do in Q. Consequently. <I> can be represented as

estimation for the order parameter functions and the frozen field distribution

which is expected to give some helpful information if one addresses oneself to

dynamical profiles[6, 86].

In section 4.2, the RSB scheme by de Dominicis, Cabay and Orland (DCO)

[30,29,90] is examined with the help of the so-called Sompolinsky gauge[l 09].

DCO's RSB scheme uses a different replica matrix (the DCO matrix) from the

one employed in Parisi's RSB scheme[94, 95]. In particular, in subsection 4.2.1,

the diagonalization of the DCO matrix is outlined because the corrcsponding

terms in the free energy only appear in the Hopfield model, and not in the SI<

model[L06] which was investigated in the RSB discussions of refs. [94,30,29].

Here we note that the resulting "gauge in variance" of the free energy functional

plays an important role since it enebles us to numerically solve the variational

equations avoiding a singularity originating at T = O. Such a numerical soLu­

tion at T = 0 cannot be achieved within the framework of Parisi's RSB schcme.

In scction 4.3, we numerically solve thc variational equations at T = 0 for both

the SC and the FM R phases for several values of Q.

4.2 The full RSB formulation

<I> !.TrRQ = ~ [Tr(Ro - Eo)(Qo - Do) + (nlpo - I)TrRoQo]
n Po

~ ['::TrQoRo - TrDoRo - TrQoEo + TrDoEo]
Po Po

.:: (t(qll" - q'-lr,-dpi - qKrK + iff)
Po 1=0

- (t(d1rl - dl_Ir,_dpl - dKr/,' + cif)
1=0

- (t(q1el - q/-lel-I)PI - qh'eK + ii e)
1=0

K

+2Jdle, - d,-1C,-I)PI - dgeg + de
1=0

K

-qg"K - I:(6~')ql + 6~q),·tl
1=0

-q(I)I'(I) - ~ 10' (t.,(x)q(x) + t.,(x)7-(x))dx. (4.2)

4.2.1 Diagonalization of the DGO matrix

Here let us concentrate on calculating the third and fourth terms in the free

energy (2.10) with the help of DCO's RSB scheme. The essence of the following

calculation is the diagonalization of the DCO matrix. In the scheme, the n x n

dimensional DCO's replica matrix Q in (2.10) is recursively defined as

In the above calculation. by Tr we explicitly denote that the summation is

taken over all the elements of the Parisi matrix as

I 1 ~ K
-TrAo = - I: AO.Gb = I:(a; - a;_,)p; - aK + a (a_1 == 0), (4.3)
Po Po G.b ;=0

where Qo and Do are the Po x Po Parisi matrices parameterized in the Appendix

B. Hcre wc note that the diagonal elements of Qo and Do are if = qK and

ci = dg + q/,. To get a proper solution, onc should take the limits Po ::'P P, ::'P

... ::'P pg -> (X) (we will call this the DCO limit) and J( -> (X) before n -> O.

First, let us consider the term <I> == (1 In) L:~#b "abqab in eq. (2.10). We will

denote the diagonal and off-diagonal submatrices of R = {rad by Ro and Eo

(

Qo - Do Qo

Qo Qo - Do
Q= : :

Qo ...

Qo ]Qo

Qo~ Do

(<1.1)

where AO,Gb denotes the (a, b) element of the Po x Po Parisi matrix. We further­

more used that d, - d
'
_1 = 61') Ipi , e,- e'_1 = 61') Ip" 61q

) = t.q(x)dxl/3 and

6i') = t. r (:r)dxl/3[29. 90] in the DCO limit and J( -> (X). 6 r (x) and 6 q(x) cor­

respond to Sompolinsky's nonergodicity functions[109] determining the gauge

of x[29, 108J together with 1'(X) and q(x) respectively as x = -Ti:::.q(x)jq(x) =

-Ti:::. r (x)ll'(X) (Parisi's x). Here we note that these functions are scaled by /3

since the Parisi equations (4.16) and (4.18) to appear later are scaled in the

sallle way.

Second, Let us consider the diagonalization of the DCO matrix as a prelim­

inary of the calculation of the term L == IlnTr In[(1 -/3)1) -/3Ql in eq. (2.10).

Since the Parisi matrices Qo and Do are commutate[95], one can write the



60 Replica Symmetly Breaking Oiscussion a,t Zero Temperature, Diagonalization of the OGO matrix 61

where m = n/po and f.\ denote the eigenvalue of Q. Consequently, with

respect to the coefficients (I], a2. ", am, one can obtain that

common eigenvector u.\ of Qo and Do as

[

Qo - Do Qo ..

Qo Qo - Do

Qo

Qo ] [a1U.\] [a1U.\]Qo a2u.\ a2 u ,\
. . = f.\ .

Qo ~ Do am:u.\ am:u.\

(4.4)

where k = 0,1" ", I<. We also used ill'l ) == p;(d; - d;_1 )[90J. The numbers

of degeneracy of fO.po, fO,k, fl.p, and fl.k are 1, Po(1/Pk+1 -I/p.), n/po -I and

(n - Po)(I/p<+1 - I/Pk), respectively. The total number of degeneracy is n as

can be easily checked. Now it is possible to obtain the term L == l/nTr In[(I­

,8)1) - ,8Q] in the continuum limit by substituting the above eigenvalues in L
and taking the proper limits. The details of the limitation process are left to

the Appendix D.

which is P0(1/Pk+1 -I/Pk)-fold degenerate for each k(k = 0, I,'" ,!<)[120, 92].

By substituting (4.8) and (4.9) into (4.6) and (4.7). the eigenvalues of the DCO

matrix therefore can obtained as

fo,p, = -til~'l)-qK+2:.{t(Pj-Pj+l)qJ+q!,}, (4.10)
,=0 Po ]=0

fO,k - till'l ) - qK + 2:. {t(Pj - Pj+l)qj + qK - Pkqk} , (4,11)
i=k+l Po j=k

[

>''l ~ >'d >.. ~ >'d :: >.: ] [ :: ] [ :: ] (4.5)

>''l >.. _ >'d am = f.\ am

where >''1 and >'d denote the eigenvalues of Qo and Do, respectively. Thus, the

eigenvalue c.\ of the DGO matrix is represented by

Co = m>''l - >'d (nondegenerate) (4.6)

fl = ->'d (l=1,2, .. ·,m-I)(m-I-folddegenerate). (4.7)

which is nondegenerate, and

The eigenvalues of a Parisi matrix are known to be
K

>'po = 2)p; - p;+da, + ii,
i=O

(4.14)

a I' a,8'2 + 2~(m")2 + 2"(1) (1 - q(l))

-~ l (6r(x)q(x) + 6 'l (x),'(x)) dx

100 dz ( _Z2 )- J exp -2(0) ((cp(O,z+h)))Wl
-00 27rr(0) r

a { -,8q(O) fo' ,8q(x)}+ - --- + In[1 - X(I)]- dx---
2,8 I-X(O) , 0 I->.(x)

+100
dzP(1, z) {cp(l. z) - ~ In2 cosh v'a,8z}

_ [I dx [00 dzP(x, z) {<p + r(x) cp" _ .6r(x) cpf2} ,
)0 L oo 2 2

j, =

4.2.2 Free energy functional and the Parisi equations

After the calculations in the previous subsection and others for the Parisi

equation[94], the free energy for the Hopfield model can be represented as a

functional (the Sompohnsky gauge):

which is maximized by the order parameter functions r(x), q(x), ilr(x). il'l(x),
cp(x, z), P(x, z) and minimized by m". Dots and primes denote the derivatives

with respect to x and z, respectively. The average (( ... ))Wl has the same

meaning as eq. (2.13). Here q(x) and "(x) correspond to the order param­

eters in the continuum limit, i.e., the SG order parameter function and the

order parameter function describing the noise due to the uncandensed pat­

terns, respectively. m" denotes the average overlap of the states and the v-th

memorized pattern. The term involving X(x) (defined in the Appendix) cor­

responds to L == l/nTr In[(1 - ,8)1) - ,8Q) in the continuum limit mentioned

in the previous subsection. The last two terms, including the function cp(x,z),

(4.9)

(4.8)

(<1.13)

(4.12)

K

>'k = L(P, - P,+I )a; - Pkak + ii,
i=k

J{

- L il~q) - qK,
i==O
!{

- Lil~'l) - qg,
i=k+l

fl,k
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In the above formalism P(I, z) gives the internal field distribution. When

we consider only one condensed pattern(s = 1) and hi = 0, we can estimate

the sample average (( ... )) in (4.19). (4.25), to obtain the following equations:

are introduced via a Lagrange multiplier function P(~·, z) in the scheme for nu­

merical analysis by Sommers et 0.1.[108], Nemoto[85], Takayama[1l6] and the

author[120J. Those two terms should vanish when the maximum of the free

energy is reached. The derivations are similar to the case for SG models[29, 90J

and the details of derivation are left to Appendix E. The definition of the local

field h is given as

(4.15)

13= jQfJ.

I ( (z - m/vaV)P O,z = ---exp
( ) j2n(0) 2r(0).

m = i: dzM(I,z)P(1,z),

(4.26)

(4.27)

(4.28)

(4.31)

(4.32)

(4.33)

(4.29)

M(I,z) = 21i(z)-1

M'(I, z) = 28(z)

q(l) =i: dzP(I,z) = 1

1]00 I 2
1 = [I _ y(x)]2 -00 dzP(x, z)M (x, z) .

By differentiating once more, one can obtain the equation

o = q(x) i: dzP(x, z)/II"(x,4

+2t.q(x) [1.", dzP(x,z)M'(x,Z)2 + [I - \(xW/vo] (4.30)

which implies that eqs. (4.20) and (4.21) are essentially equivalent; those two

equations determine only the gauge relation between q(x) and L'J.q(x) (e.g. the

Parisi gauge is given by t.q(x) = -J3xq(x), providing us with the variational

equations with Parisi's RSB scheme[120J). This gauge relation also holds for

the pair of 1·(X) and t.,(x) via eqs. (4.23) and (4.24).

In the limit fJ --+ 00, one can easily see that eqs. (4.17), (4.20) and (4.21)

reduce to

where we have written ml as m and have used m = J::"oodzM(x,z)P(x,z) =

const. It is noted that (4.27) and (4.28) coincide with the corresponding

equations for the SI< model[106, 85] under a magnetic field. Consequently, in

the same way as for the SI< model, the field distribution is found to a non­

trivial function P(x, z) which is clearly different from the Gaussian distribution

obtained by the RS solution.

Here we note that differentiation of the two functions q(x) (eq. 4.20) and

L'J.q(x) (eq. 4.21) with respect to x gives for t.q(x),q(x) of 0 the equation for

the condition for marginal stability in replica spacerS, 120]:

(4.24)

(4.25)

(4.23)

(4.16)

(4.19)

(4.22)

(4.20)

(4.17)

(4.1 )

(4.21)

(JII=~)

With regard to Sompolinsky's nonergodicity functions[109] L'J.,(x) and L'J.q(x),
we note that the free energy (4.14) is 'gauge invariant' since eq. (4.14) and

its variational equations still hold if x is replaced by some monotonic function

u(x) with u(O) = 0 and u(l) = l.

Now, the generalized 'Parisi equations' for the I-lopfield model can be ob­

tained by taking the functional derivatives of (4.14) with respect to the order

parameter functions after the variable transformations jQt.,(x) --+ t.,(x) and

jQt.q(x) --+ t.q(x) as,

111 = - r(x) M" + t.,(x)M III'
2

M(I,z) = tanh 13=
p = 1'(X) P" + t.,(x)(PII!)'

2

~~
I ((Z-h J2 )\\

P(O,z) = ~exp -~ II
y27rr(0) Wl

q(x) = i: dzP(x, z)JII(x, Z)2

13(1- q(I)) + L'J.q(x) - L'J.q(1) = i: dzP(x, z)M'(x, z)

y(x) = Ja [13(1 - q(I)) + L'J.q(x) - L'J.q(I)]

. q(x)
1'(X) = [I - A(X)]2

. t.q(x)
L'J.,(x) = [I - X(x)]2

]
00 II I ( (z - h)2) \\

m" = -00 dzM(O, z) \\(" j2n(0) exp -~ II
Wl
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4.3 Numerical analysis at T = 0

Moreover, by substituting equation (4.33) into eqs. (4.21) and (4.22) and set­

ting x = 1, one has

For several values of Q, we have solved (4.16)~(4.28) numerically both for the

SG phase and the FMR phase. Since we can interpret the linear terms of

(4.16) and (4.18) as diffusion equations, by introducing the Green function,

the nonlinear partial differential equations (4.16), (4.18), (4.27) and (4.31) can

be transformed to the following integral equations at T = 0:

which is also supported by numerical studies of the 51< model in an external

field[16). Thus it is found that the two functions \:(x) and D..(x) are essentially

equivalent

D.,(x) = jQ\(x) =I: dzP(~',z)JlI'(x,z), (4.35)

where we set D..(I) = 0 according to definition[109].

For numerical integration and differentiation we have di cretized the vari­

able x, dividing the interval [0,11 into 40 ~ 100 pieces. The variable z is also

discretized, dividing the interval [-A,A) into 100 pieces, where the value of A is

determined differently for P(x,z) and M(x,z) because P(x,z) spreads over a

wider range of z than JII(x, z) which is expected to change its value drastically

near z = 0 (i.e., very close to a step function, especially in the F 4R phase), e.g.

A = 12.0 and A = 0.05 for P(x,z) and M(x,z), respectively. FUl'thermore, we

have used a cubic spline for interpolation. Quadratic functions and hyperbolic

tangents are also used for extrapolations of In(P(x,z)) and M(x,z), respec­

tively, both defined on the entire range of z. We have carried out the above

iterative procedure until the maximum variance of all the variables P, M, ", q

and X is less than 10-6 .

Once a set of solutions (m, q, ", x, P, lvl) for a value of Q is obtained, a new

solution at an adiabatically shifted value of Q is calculated (i.e., the previously

obtained solutions are included as an initial condition). Thus we detect the

vanishing point of the metastable states corresponding to the FMR phase and

obtain Qc.

(4.34)JQA(I) = MI - q(I)1 = P(I, 0) = 0,

where erf(x) == 2/;r Je; exp (-t 2 )dt denotes the error function. This enahles us

to obtain M, P, m, ", q and X by means of an iterative procedure in the order

(4.37) --> ( (4.27) "'" (4.28) ) --> (4.38) --> (4.20) --> (4.23) --> (4.37) .... In

the SG phase, D.,(x) (D.r(x),X(x)) can be determined a priori by choosing a

special gauge of Parisi's x. On the other hand, in the FMR phase, D..(x) has

to be determined through eq. (4.35) at each step of the iterative procedure.

Details are explained in the following subsections for each phase.

4.3.1 SG solution

4.3.2 FMR solution

In the FMR phase, since a dependency of X(O) on Q is not given explicitly like

in the SG phase above mentioned, X(O) has to be determined self-consistently

during the numerical calculations. Therefore we apply the special gauge

(4.39)

(4.40)x(x) = X(O)(I - x),

,"",,(x) = 10(1 - x)/(I + 10).

Let us take a closer look at the solutions in the SG phase. Here we note that

D..(O) in the SG pha e depends only on 0' as D..(O) = ,;0/(1 + ,jQ)[ ], which

is independent of the temperatUl'e. Therefore one can see that D.,(O) --> I in

the "SK limit (,;0 --> 00)[120)". Consequently we choose the special gauge

For several values of Q in the SG phase. q(x) and r(x) are shown in Figs. 4.1

and 4.2, respectively, where q(O) = 0 denotes m = O. The frozen field distri­

bution P(I, z) is depicted in Fig. 4.3 in which we see the symmetry and the

typical form of a double-peak.

(4.36)

(4.37)

(4.3 )

C(x, z; i, i) = I exp ( ~(-:-;~_--'.':)-;-2-:-;-)
)2;r("(i) - "(x)) 2(r(x) - "(x))

i\I(x,z) = erf ( z ) -1' diir(i)
)2(1'(1) - "(x)) r

X ["" dzG'(x,z; i,i)JII(i, i)M'(i, z)

P(x,z) = ~exp ( (y -2,:,(/.10)Q)2) + r diAr(i)
y2;rr(x) , x Jo

x [0 d':G'(i,.:;~.,z)(JII(x,z)P(x,z))'
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where \(0) is reset by eq. (4.35) during each step of the iterative procedure.

The values for \(0) are shown in fig. 4.6 together with the ones obtained by
the RS discussion.

For several values of Q in the F 1R phase, q(x) and r(x) are shown in

Figs. 4.4 and 4.5, respectively. We note that in Fig. 4.4(a), the q(x) for

a = 0.1,0.11,0.12 are so close to unity that it is difficult to distinguish them.

Therefore, at Q < 0.13 the RS solutions are almost recovered, altbough one

can see that q(O) '" 1 even at Q = 0.1. The frozen field distributions P(l,z)
for several values of a are given in Fig. 4.7 in which we can see the broken­

symmetry. Their main peak is nearly Gaussian but they have a second peak
as was also the case in Fig. 4.1.

The percentage of errors, (1- m)j2, in the FM R phase is shown in Fig. 4.8

as a function of a at T = O. For comparison, the results of the present

calculations are plotted together with the predictions of the RS theory[8] and

the 1-step RSB theory[27]. It clearly shows that a c is somewhat higher than

the values obtained by the RS (0.138) and 1-step RSB (0.144). We determined

a c in the following way. That is, at a = 0.153 the RSB solution with finite In

was found, on the other hand, at Q = 0.157 and beyond, no RSB solution with

finite m was found. At 0.153 < Q < 0.157, the calculation converges to an

unexpected solution, therefore. it is concluded that Q c = 0.155 ± 0.002. These

results are remarkable in the sense that RSB is directly observed, tbe order

parameter functions and frozen field distributions are explicitly determined for
a's.

4.4 Summary and Discussion

We have formulated the RSB solution of the llopfield model with the Som­

polinsky gauge at T = a and obtained the variational equations. Extensive

numerical analyses were carried out, both for the SG and the FMR phases, in

the most interesting region where the FMR phase disappears. The first result

of this paper is that the storage capacity a c at T = a is corrected to a value

which is higher than the ones obtained by the RS and one step RSB discussions.

Our result is the first self-consistent estimation of the critical storage capacity

using the full RSB scheme. Another interesting aspect of this result is that it

also indicates that RSB promotes the stability of the FMR solution against the

increase of the so-called "slow" or "stochastic synaptic" noise[10J originating

in a's increase. The second major result of this paper is that the frozen field

distribution (FFD) P(l, z) is corrected to a non-Gaussian form for both the

SG phase and the FMR phase. It is found that the FFD for the FMR phase is

only slightly different from the Gaussian form obtained in the RS discussion.

Therefore, as far as the FMR phase is concerned, the AGS theory is able to

go beyond the RS approximation even at T = O. This situation also explains

why the dynamical evolution of m in the FMR phase can approximately be

described by only a few macroscopic variables[6, 86J. However, we note that

the FFO for the SG phase cannot be fitted by any Gaussian form. Thus, it

is quite natural that the description for the convergence to the SG phase fails

if one tries to describe it in the same way as the dynamics which converges

to the FMR phase. The convergence to the SG phase, if anything, can very

effectively be described by assuming the phenomenological non-Gaussian form

of the field distribution introduced in ref. [54J.
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Figure 4.3: The frozen field distribution P(l,z) at f3 ---> 00 in the SG phase

for Q = 0.1, 0.12, 0.14, 0.145, 0.15, 0.155, 0.16, 0.18 and 0.2 (bottom to top).
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Figure 4.1: Order parameter function q(x) in the SG phase for Q = 0.1,0.12,

0.14,0.145,0.155,0.16,0.18 and 0.2 (top to bottom)

Figure 4.2: Order parameter function r(x) in the SG phase for Q = 0.1, 0.12,

0.14, 0.145, 0.155, 0.16, 0.18 and 0.2 (top to bottom)
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Appendix D: Diagonalization of the DGO matrix

In this Appendix we summarize the details of the calculation of the term

L =: I/nTr In[(1 -13)1) -I3QJ in eg. (2.10). By using the eigenvalues (4.10) ~
(4.13), L can be represented as

(D.3)

-l3qo -l3q(O)

I -13(1- L:t~o t,~q) - qJ() --> 1 -13(1 - q(I» + f~ dx6q(x)
-l3q(O)
1- X(O).

Here we denote the four terms in L by LI , £2, L3 and L., respectively. First,

by substituting eg. (4.10) into L 1, it is found that

L = ~ In[1 -13(1 + fO pe )]
n '

+~ t Po (~ - !-) In[1 -13(1 + fOod]
n k=O PHI Pk

+* (~ - I) In[1 -13( 1+fl ope )]

+~ t(n - Po) (~ - !-) In[1 -13(1 + flodL (D. I)
n k=O PHI Pk

Let us denote the first and second term in L, by LII and £12 respectively.

After taking the DGO limit and I< --> , only the term for j = 0 in the

summation of j in L I2 survives, thus we have

0.050

0.045 G--------€l RS
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G--------fJ 1-step RSS

C\I ---- Full RSS
:::::.. 0.035
E

I 0.030
T"""

If 0.025a.:
0 0.020a.:
a.: 0.015
W
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0.10 0.11 0.12 0.13 0.14 0.15 0.16

a
Figure 4.8: Percentage of errors (I - m)/2

where we used qo = q(O), q". = q(l) and t,jq) --> (6 q(x)ll3)dx. The definition

of xix) is given by

x(x) - 13(1 - q(I» + 6 q (x) - 6 q (I). (D.4)
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Next, the logarithm in L 2 can be expanded with respect to n and it is obtained

that

Here we denote the first and second term in L2 by L21 and (-fJ)L22 , respec­

tively. After changing the order of summation (like in a partial integration),

L22 becomes

(D.ll)-fJq(O) 11 fJq(x)
L = --(-) - dX--(-) + In[l - x(l)]

1-xO 0 I-xx

Lastly L 4 can be expressed as

After summing up all the terms (and taking the DGO limit where not done

yet), we finally obtain

The first term (L 41 ) can be represented by changing the order of summation

like in L22 as

L 41 = In[1 - fJ(1 - q(l))]

+ IE ~ {In[l - fJ(l - Et.~q) - ql{)] - In[l - fJ(1 - ifI t.~q) - (/I,.)]}

1 I,
--In[l - fJ(l- Lt.i - qf{)J

Po ;=1

In[l - fJ(l - qf{)]

In[l - X(l)] (D.10)

(D.5)

(D.6)

where we used PI,"+I = 1. The first and third term vanish in the DGO limit.

If, furthermore, we use qk-l - qk = q(x)dx and take the DGO and the J( --> 00

limits, L 22 finally can be reduced to

(D.7)

The third term of equation (A-I) becomes

L3 = 2. In[1 - fJ(1 - t t.~q) - qh)]
Po ;=0

-~ln[l- fJ(l- tt.lq) - qf{)]
n i=O

(D.S)
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Appendix E: Derivation of the Parisi equation in the
Sompolinsky gauge

The first term £1 in exp(···) in rhs of (E.4) can be represented with lower

subblocks of replica matrices and subvectors as

Here let us concentrate on the calculation of the continuum limit of the par­

tition fucntion (2.11) including the DCO matrix. Calculations are essentially

similar to the ones in Appendix C, where the "finite-step RSB partition func­

tion" is represented in recursive formula. The DCO matrix in the replica

partition function is R, which is parametrized in the same way as the DCO
matrix Q (4.1) as

where R, and Eo are the Po x Po Parisi matrices parameterized in Chapter

3. Here, Po needs to divide n (i.e. n > Po), which is diA'erent from the case in

Appendix C. Using this another type of replica matrix, let us again derive the

formulation for the continuum limit of the partition function:

The second term £2 can be represented similarly with lower subblocks of

replica matrices as

We note VI = tt,Uf denotes PI-dimensional matrix whose all elements are all

1.

(E.7)(TO,i = [UI,illUl,i21'" lffl,i(n/po)]T.

where UI,;j denotes i-th PI-dimensional column subvectors dividing po-dimensional

column vector uO" to Polp, blocks as
(E.l)

(

R, - Eo R,

R, R, - Eo
R= . .

Ro ...

(
1 T T )Zo(z) = Tl'{n} exp 2"u Ru + ztt u . (E.2)

1 nip.
= 2" L u~,R,uo",

i,i'

(E.4)

where u and u are the n-dimensional column vectors whose elements are u.

and 1, respectvely. In a similar way as in Appendix C. one can represent as

(E.9)
njpo pO/PI

£3 = L Z; L ufUt"j'
J

Finally, the third term £3 in rhs of (E.4) can be represented as

By substituting (E.6), (E.8) and (E.9) into (E.4) and using again the

J-1ubbard-Stratollovitch identity (A.2), one can represent Zo(z,) as a one-step(E.5)

(8.3)Zo(=) = Zo({=, = =}),

where

1~ l~ ~ ~

Zo(z;} = Tr{n}exP 2" ~ u~,;(-Eo)uo';+2"(~ uo,;fR,(l( UO,i) + l( z;u~uo"

~

£, £2 £3

Here uo,; denotes i-th po-dimensional column subvectors dividing n-dimensional

column vector u to nlpo blocks as,
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Generally, we define "k-steps RSB partition function" and represent it by

k + I-steps one as

(E.14)

(E.15)

~h({z;}) == .E£..lnZk({z;})
npk

Gk(z) = g,({z; = z})

By substituting (E.14) into (E.13) and noting L'l.~r) = 8ekPk, we get the follow­

ing recursion formula:

gk( {z;}) = npo In j dP(crkl(w) [IT j dP(-Cek) ('Ii)] exp (npogk+1(W + zi + 'Ii))
~ ; ~

npO InjdP(crk)(W) [nilj ~d'li]
Pk ; 211'(-L'l.k )

x exp !Pk ( __1 -(r) 't' 71? + 2':gk+l(W + Zi +1/;)]) (E.16)
2(-L'l.k) i Po

j dP(crk)(W) [~O j dP(_Cekl (I/i)] TrnPk l7'O exp [Pk~+' {

1 nlpo
-2 ~ Uk+l,;j(Ek+1 - ekUI)uk+I,;j

1 nlpo nlpo
+2(~ Uk+l,ij)(Rk+1 - 7'kUk+l)(~ Uk+I,;j)

+ ~(Zi+W+l/;)Uk+llTk+I,;j}]

_ j dP(crk)(W) [n~o j dP(-Cekl ('1i)] [Zk+I(W +Zi + 1/;)l~klpk+' (E.13)

where 8rk = rk - l'k_l and 8ek = ek - ek_l·
Here let us introduce the free energy defined at each step of RSB as

(E.ll)j JOO dx (x
2

)dP(a)(x) == ,,;;-:-:-exp--
-00 v21ra 2a

1 nlpo nlpo
+2(~ uLj)(R l -7'oUd(~ UI,;j)

+ ~(Zi +W+ 77i)U;Ul'i j }]

j dP(ro)(W) [n~o j dP(-eo)(7/i)] [TqnpJlPo}e(for any ifolP'

- j dP(ro)(W) [n~ j dP(-eO)(I/i)] [Z,(w + Zi + '1;)ro 1p, (E.I0)

Zo(Z;) = j dP(ro)(W) [n~o j dP(-eO)('1i)] Tqn} exp [P~' {

1 nlpo
-?' ~ uLj(E, - eOU1)ITl.ij

- i

RSB partition function as

where a short notation for Gaussian integra.ls is used as

Zd{z;}) ==



the generalized Parisi equation in the Sompolinsky gauge can be obtained as

where dots and primes denote the detivatives with respect to x and z, respec­

tively. Here we note that contribution j for the free energy via. cp(x,z) can

be given in the limit n -> 0 as

80 Appendix E: Derivation of the Parisi equation in the SompoJinsky gauge

where we have used J = J(Xl,X2.···,X,v) and j = Jlx,;x give ~ = N1!:.
Thus the integration of rhs in (E.16) can be replaced by its integrand at the
saddle point as

where we have used the transformed variable tV = w/~ for the Gaussian

integration and also~ « 1.

Here let us consider the boundary condition where the above iterative pro­

cedure by substituting k = J( + I to (E.l2) as

After taking the continuum limit:

k
J( -> 00, K -> x, ~r) -> Ar(x)dx,

ark -> -r(x)dx,

'1Hz) = -~r)~ -> -Ar(x)G'dx

Gdz) -> G(x,z),

the eqs. (E.18) and (8.20) reduce to

dG(x,y) = _~ d
2
G +~ (dG)2

d:1; dx dz2 2 dz

"(1)
G(I, z) = -2 + In 2 cosh z.

By taking the transformation

<p(x, z) = (G(x, z) + r(I)/2)/(3,

. j' /I (3 A ,2
<p= -2"CP + "2'-'rCP

1
cp(l,z)= :aln2coshz

(E.20)

(8.21)

(8.22)

(E.23)

(8.24)

(8.25)

(E.26)

where we have used P"+l = 1. We have also used definitions of the diagonal

element of Parisi matrix as e== C/, + rK, ;. == ""'. Thus the boundary condition

of G(z) can be given as

j 1 J { ('10)2 c}:aGoz = dP(¢rolw) - 2~0 + G,(z +w + '10)

JdP(r(O))(w)G,(w + z)

JdP(r(o))(W )G(O, w + z) (8.27)
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where one cannot neglect 8ro bacause r_1 = O. For the Hopfield model. after

rescaling variables as

"(x) ==? 0.,82r (1·),

z ==? .jQ,8z,

",,(x) ==? 0.,82~,(X),

(E.2 )

(E.29)

(E.30) Chapter 5
we can obtain the terms contributing to the free energy functional (4.14).

Basins of Attraction

5.1 Introduction

The most significant characteristic of globally coupled systems such as the

Hopfield model is the existence of a large number of (meta)stable states and

multi valley structures in phase space. Indeed one expects that an initial state

evolves until the bottom of a valley is reached where the system is permanently

trapped.

In Chapter 3, we showed that the multivalley structure can be measured

by its valleys' "depth" given by energy through the RSB discussion. In this

chapter, we focus on the basin of attraction which is another quantitative

measure: the "spread" of the valley.

In fact, many theoretical studies have reported relationships between re­

manent overlaps and initial overlaps in the Hopfield model with sequential[9,

40,60] or synchronous[47, 6, 54] dynamics. Although these contain some nu­

merical analysis, the system size and the number of samples were rather small.

Moreover, a systematic numerical analysis which includes finite size effects on

the zero temperature(T = 0) sequential dynamics has never been performed

yet.

This chapter reports remanent overlaps and the basins of attraction for the

I-lopfield model with zero temperature sequential dynamics, in order to extract

some information for the vaJley structure. Here the remanent overlap defined

later refers to a macroscopic order parameter, which corresponds either to the

overlap with a memorized pattern or to it generalized remanent magnetization.

According to the finite size scaling analysis, the distribution of the remanent

83
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Here it should be noted that the overlap represents a generalized magne­

tization, i.e., m'> becomes the usual magnetization by the transformation

S; = (fSi' We expect that the overlap m"(t --+ 00) does not vanish on a

considerably wide range of 0: at T = O. We will call this nonzero value the

"remanent overla.p(rn~ == mJ~(oo))".

whereO(x) is the step function (O(x) = 1 for~' > 0 ;-lforx::; 0). The timet is

given in units of Monte Carlo steps(r-ICS). Thus we will deal with a dynamics

which is deterministic except for a random order of spin flips. At T = 0, the

model is expected to converge rapidly to a final state which is stable with

regard to one spin flip.

Let us now consider the time-dependent macroscopic order parameter,

called the pattern ove7"lap,

overlap m, approaches a delta function as the system size becomes larger. This

implies that at T = 0 and N --+ the value of m, is determined by the initial

overlap and the parameter 0:(= pIN), the rate of memory-loading, where p is

the number of random patterns for memories and N the system size. l-Ience

the dependence of the value of m, on the initial overlap and on a parameter

n is obtained. Here we concentrate on relatively large values of 0: where the

system is in the spin glass phase. The above dependence of m, enables us

to get the relationship between remanent overlaps and initial overlaps, which

leads to a distribution function of the remanent overlap. We have also studied

the asymptotic dependence of m, on n and have obtained the power-law decay

of m, to the value corresponding to the remanent magnetization obtained in

the SI< model. This supports the equivalence between the r-Iopfield model in

the "SI< limit(.;a --+ 00)" and the SI< model.

The system under consideration has the Ising spins {S,} and the Hamilto­

nian (2.4) with interaction (2.5). Here we concentrate on the zero temperature

sequential dynamics,

(5.3)N. = NmaxlP = Nmaxl(nN)

5.2 Finite Size Scaling Analysis

(e) Return to (a).

(d) Evaluate the m';'s, which are regarded as one set of one m., and

then update the histogram of m, accordingly.

(a) Generate a set of random patterns {("), to form one interaction

matrix J = Pi]} from eq. (2.5).

(b) Prepare p sets of initial states {Si(t = OJ} which have the same

initial overlap ml>(O) with each pattern (".

(c) Execute the Monte Carlo dynamics (5.1) for each l' until the system

converges to a stable state (empirically, at T = 0, the system rapidly

evolves towards a stable state in about 20 MCS/S). Therefore p sets

of m; are obtained simultaneously for each J. This is advantageous

because one can reduce the number of samples {J}.

Considering finite size effects and fluctuations between samples, we have inves­

tigated the remanent overlap at T = 0 from various initial states at various

values of n with the use of Monte-Carlo simulations and the finite size scaling

analysis.

'We take sample averages in several steps, as follows:

The abo\'e procedure is executed N. times,

The total number of runs Nmax was determined by the requirement that the

resulting distribution of remanent overlaps does not change significantly any

more under increasing Nmax . In comparison with previous similar studies[40,

60,47,6], we would like to note that our value of Nmax can be considered as

rather large.

Finally histograms for certain values of m(O) and 0: are obtained for var­

ious system sizes (N = 200,500,1000,2000). Figure 5.1 is an example of the

histogram of m, at m(O) = 0.5 and 0: = 0.5. Dependence of average values

(m,) and variance ((m, - (m,))2) on N is obtained by varying the system size

N. The average (m,) can be extrapolated to a non-zero value depending on 0:

(5.1 )

(5.2)m"(t) = ~ ~(;Si(t).

Si(t + 1) = O( L J,j SAt))
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Figure 5.1 also represents the basins of attraction of Lhe remanent overlap

m, from the specific value of the initial overlap m(O) = 0.5 for different system

sizes at a = 0.5. With the increase of size N, the distribution P",(m,; m(O)) of

m, from the initial overlap m(O) = 0.5 approaches a delta function as follows,

where F",(m(O)) denotes a function of initial overlap m(O) with a parameter

0', which is mentioned later.

After taking into account these scaling relationships, we get the remanent

overlaps at N -+ 00. The remanent overlaps depend both on m(O) and Q as

given in Fig. 5.2. The result explicitly shows thaL the final attracting state

(remanent overlap) can be given from an initial state (initial overlaps) if 0' is

given.

1.00.5

m(O)

1.0

(5.5)

(5.4)

)
2 1

((m, - (m, ) ) ~ N.

const.
(m,(N; m(O), 0')) ~ m,(oo;m(O),a) + .Jiii,

while the variance is scaled to zero as,

and m(O) as,

Figure 5.3: Dependence of remanent ol'crlap m, on m(O) for various values of

0.10 ,------------,

Figure 5.1: The basins of attraction

for different system sizes.

Our results also give the characteristic dependence of stable states on initial

states even in the parameter range corresponding to the 51< model (0 -+ 00).

Here let us see the dependence of m, on m(O) with a certain value of 0'. As

shown in Fig. 5.3, m, is represented as a monotonic increasing function of m(O)

with the parameter a : m, == F",(m(O)). At a rather small value of 0'(= 0.1)

below the critical storage capacity O'c (~ 0.155) (see Chapter 4), Fo.,(m(O))
is steep at a rather small region of m(O) and saturates to unity at the high

m(O) region. This indicates that the system has rather large basins for the

corresponding pattern; almost all initial states tend to go to the corresponding

patterns. At an intermcdiate region(O' < 1), F",(m(O)) increases slowly. At

Q = 0.2 we get

(5.7)m, = l';dm(O)) ~ m(Op, "I ~ 0.73

Figure 5.2: Dependence of remanent

overlap m, on two parameters, Q and

m(O).

[!J=200
---- soo
--- 1000
--- 2000

I
~\
I,
I I

1'1'I'
f/ '\

~/l"
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"'~~ 0.05
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in the rather high m(O) region. The limiting values of m.'s with Q --+ 00 are
shown in the bottom of the curve in Fig. 5.3.

In addition to the functional form of m, = Fo(m(O)), we also obtain the dis­

tribution function P,,(m,) from the random initial states obeying the uniform

distribution:

where P,,(m,; mol refers to the distribution function of ms from the initial

state m(O) = mo with Q. In the above calculations we have used the first result

(5.6) that P,,(m,; mol is represented as a delta function. We have also used the

existence of the inverse function F;;l since F" is a monotonically increasing
function.

Equations (5.7) and (5.8) imply that the distribution function P,,(m,) for

the remanent o\'erlap also has a power-law dependence on m,. Thus stable

states are distributed continuously in the space of overlap and the measure of

basins of attraction follows the power law in the space of overlaps. This result

is consistent with the power law distribution of remanent overlaps as obtained

numerically in ref. [3].

To summarize our results so far, flows in the overlap space are schematically

shown in Fig. 5.4. In the figure, upper column represents the map of m,

from m(O). Lower column represents flows on the space of overlap and spin

configuration space schematically. The lower vertical axis shows the "spread

of configuration space". The dotted curve N(m) schematically represents the

upper limit of the number of states in the configuration space with overlap m,

e.g. N(l) = 1. In the lower part, solid arrows at the shaded area represent

flows from initial states with m(O) to stable states with m,. For example, an

initial state with m(O) = I is attracted to the fixed point(A) with remanent

overlap mI' However almost all states with m(O) = m, except the point A are

attracted to a state with m, = mz(point B or C). These sequences are iterated

infinitely as mz --+ m3, m3 --+ m. and so on. Actually the states attracting

initial states(like points A, B and C) exist infinitely in the configuration space,

while there are much more remaining states with the same overlap attracted

onto states with lower overlaps. In other words, the fixed points like A, B or

C have no measure in the configuration space on the set of states with the

same overlap. Since there exist infinite stable states like points A, B or C, the

stable states are distributed on a Cantor set on the hyper plane with the same

overlap. Our results support a similar conjecture by Amari and Maginu[6] and

provides us with a more intuitive understanding of the structure of the stable

states in the overlap space.

m(O)

Fa (m(O))
.......

.....

"".. .....----
""""""

"I

I

/--N(m)
I

I
I

I
I

Figure 5.4: The schematic flows on the space of overlaps.

(5.8)

JP,,(m,; m~)dm~

Jo(m, - F,,(m~))dm~

J'( I))dm~ IU ffis - 1ns -dn"Ls
dm~

J'( l)dFo-'(m~)d I
u1ns-ms~ 1Tt s

dF;;'(m,)

~
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Figure 5.5: The basins of attraction for different values of a: distributions

of remanent overlaps m. from initial states with m(O) = 0.5 at = 200 for

several values of a.

Figure 5.6: Dependence of remanent overlap m. on a for two initial overlaps

at m(O) = 1 and 0.5. The initial state m(O) = 1 corresponds to a ferromag­

netically ordered configuration while m(O) = 0.5 to a state with 750/< of spins

1.

where m~ 0.08, (3 ~ 0.5 for m(O) = 0.5 and m~ 0.14,,B ~ 0.3 for m(O) = 1.

Indeed m. ~ 0.14 agrees very well with the remanent magnetization of the

5K model reported by Kinzel[66]. On the other hand the value m. ~ 0.08 from

m(O) = 0.5 probably coincides with the remanent overlap when we quench the

The second result concerns the dependence of m. on a. Distribution of

m. from the initial overlap m(O) = 0.5 at N = 200 for various values of a

are given in Fig. 5.5. Figure 5.5 also represents the dependence of the basins

of attraction of m. on the value of a. Accordingly we study the asymptotic

dependence of m. on a. As shown in Fig. 5.6, m. == Gm(O)(a) monotonically

decreases for a high a region as,

(3)0 (5.9)

system from a specific initial state where 75% of spins get 1 and others -1.

We note that there remains a finite remanent overlap(magnetization) m. even

for an initial state with m(O) f- 1.

Figures 6 also suggests that the HopfieJd model gradually approaches the

5K model according to a power law with the increase of a, which implies that

the transition occurs very slowly from the Hopfield model to the 5K model.

Hence we conclude that there are more intermediate models worthy of study,

which differ both from the I-1opfield model and the fully investigated 5K model.

These intermediate models also have rich and complex structures of the basins

of attraction that interpolate the above two models.
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5.3 Summary

To summarize this chapter, we have obtained values of remanent overlaps m,

from various initial overlaps m(O) with a parameter 0'. This result shows the

basins of attraction of the Hopfield model in the space of overlaps. At a certain

value of 0' we get a power-law decay of the distribution of m,. Furthermore

the remanent overlap m, is shown to decay to m with the increase of 0'. The

value m from m(O) = 1 corresponds to remanent magnetization and agrecs

with that from the SK model, showing the equivalence of the Hopfield model

with .;a -> 00 with the SK model.

Chapter 6

Summary and Discussions

The main topic of this thesis is an analysis of the Hopfield model; the phys­

ical model of neural networks. It consists of formal neurons represented by

two-state binary variables. It also has symmetric synaptic-connections (inter­

actions), whose weights are determined by the I-Iebb rule. The noisy response

of each neuron, as suggested by physiological experiments, is realized by in­

troducing some stochasticity into the dynamics of the model. In the language

of statistical physics, the Hopfield model is very similar to the spin glasses

(SG), and has become one of the most celebrated paradigms in both statistical

physics and neural networks.

The most important point I would like to stress is tbat the Hopfield model

has enabled us to carry out a clear and rich quantitative analysis. The analysis

was possible because the model is defined as an energy system via its Hamilto­

nian. It therefore allows us to use traditional methods of statistical mechanics,

including tcchniques such as the replica method.

I would now like to summarize the main findings of this thesis. First, it was

shown that the lIopfield model shares a significant feature of the SG phase in

having a multivalley energy landscape (Chapter 3). This is highly non-trivial

and could never have been clarified without the help of the RSB scheme. It

was found that such a multivalley energy landscape changes its structure as

the parameter 0' varies. The complexity of such landscapcs has been measured

by using a quantity which characterizes their valley structure, and which was

defined in eq. (3.2) as

y= ((2: Wn).
k

(Wk : weight of the k-th valley),
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At the same time, y also corresponds to the inverse of the partition ratio. Let

us briefly illustrate the meaning of y: if, e.g., y ~ 1, there is only on simple

valley, while an infinite number of small valleys coexist if y ~ O. With the help

of Parisi's physical interpretation of the RSB solution[96]' it was then shown

in Chapter 3 that y can be obtained via order parameter function q(x). In

fact, the dependence of y on 0 is obtained as

which means that y vanishes in the limit .;a --+ 00. Therefore, in this limit,

the multi valley energy landscape of the I-Iopfield model is composed of an

infinite number of small valleys and attains the most complex structure. This

structure corresponds to the one discovered in the naive mean field model of

SG by quenched dynamics[89]. Here, at first glance, the result "y --+ 0 in

the limit .;a --+ 00" seems to contradict a prediction for the SI< model[78]

which states that y ~ I However the dependence of y on 0' in eq. (6.2) is

obtained without keeping ~ (= .jO.(3) constant, where {3 denotes the usual

inverse temperature (liT). Accordingly, the "effective inverse temperature

~ " becomes infinitely large in the limit .jO. --+ • which may be interpreted

as the result of a quenched dynamics.

By solving the Parisi equations numerically for several values of a and at

several temperature, the order parameter functions (Figs. 3.1. 3.2 and 3.3)

and the internal field distributions P(l. z) of the SG phase are determined for

the first time in the present work. In this way. the non-trivial dependence of

P(I,z) on a and the temperature is clarified (Fig. 3.4). It is found that the

typical double-peaked form of P(l. z) becomes sharper as the temperature gets

lower and a gets larger just like SG. Hence it can be said that a plays the role

of an inverse temperature.

Furthermore, it is found that the Parisi equations of the Hopfield model

formally coincide with those obtained for the SI< model[ 5] in the limit .;a --+

00 while keeping ~ constant. We call this the "SI< limit" of the Hop field model.

The SI< limit characterizes an asymptotic dependence of the Hopfield model

on 0'. Consequently the Hopfield model approaches the SI< model as 0' gets

larger.

On the topics above-mentioned, we have restricted our attention mainly

to the SG phase at a rather large value of 0' where the FMR phase does

not appear. Now let us summarize the topics developed in Chapter 4 which

94
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(6.2)
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shed light on the region where the RSB solutions of the G and the Fl\IR

phase coexist. This low temperature region below the AT line (Fig. 2.3(b))

had been unclear so far. In such a region the RS solution for both the SG

and FMR phases are unstable and one should consider the RSB. Therefore

tbe full RSB with the so-called Sompolinsky gauge is formulated. The focal

attention is on the numerical estimation of the order parameters and other

physical quantities at zero temperatme (T = 0). When we address the zero

temperature case, the RSB scheme with the Sompolinsky gauge is defined

conveniently for numerical analysis, wbile the RSB scheme with Parisi's is

inconvenient since it cannot overcome the singularity at T = O. Extensive

numerical analyses were carried out, both for the SG and FMR phases, in

the most interesting region where the FMR phase disappears. Consequently,

it is shown that the critical storage capacity at T = 0 needs to be corrected

to O'c = 0.155 ± 0.002 which is larger than the capacities previously obtained

by both the RS (0.138)[8, 9] and the I-step RSB (0.144)[27] discussions. Our

result is the first self-consistent estimation of the critical storage capacity using

the RSB scheme. Another interesting aspect of our results is that it also

indicates that RSB promotes the stability of the FMR solution against the

increase of the so-called "slow" or "stochastic synaptic" noise[10] originating

in a's increase. At the same time, the order parameter functions and the

frozen field distributions at zero temperature are determined. It is clarified

for the SG phase that the order parameter functions (Figs. 4.1 and 4.2) and

frozen field distributions (Fig. 4.3) do not vary drastically around ac. Hence

the disappearance of the metastable F 1R states does not affect the SG phase.

On the other hand, the order parameter function q(x) in the FMR phase

shows a typical dependence on a. In particular, q(O) decreases as a --+ ac,

showing that the variety of overlaps between two pure states increases abruptly

near O'c. Consequently the transition where the FMR states (dis)appear is

accompanied with an abrupt (dis)appearance of many pure states which have

different patterns of spin configurations but the same macroscopic overlaps

with one of the learning patterns.

Here we note that P(l, z) in the SG phase has a non-trivial form and cannot

be approximated by any Gaussian distribution at all. This is the main reason

why one cannot describe the dynamics of the Hopfield model by a finite number

of macroscopic time-dependent order parameters (it should be a function as

q(x) !) in such a way that it converges to the to the spurious state or the SG
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state, while one can approximately describe a dynamics which converges to the

F~[R states[6, 47J. Due to the lack of an explicit description of the dynamics

which leads to the spurious state, in Chapter 5, the 10nte Carlo simulation

and the finite size scaling analysis is carried out in order to investigate the

behavior of macroscopic order parameters, such as the remanent overlal'. The

analyses also clarified the dynamics in the complex energy valley lead to a final

state, which is at most a point attractor. This yields a definite value for the

overlap because only the zero temperature sequential dynamics was considered.

The main result is that the value of the remanent overlap is determined by

the initial overlap and is only influenced by 0" if N -4 00. This has enabled

us to establish a mapping of initial overlaps to remanent overlaps (Fig. 5.4).

Such a mapping is further useful for imagining the composition of the spurious

(meta)stable states. It is found that the (meta)stable states form a Cantor set

on the hyper plane with the same overlap. Here we note that the remanent

overlap from a certain value of initial overlap in the limit .;a -4 00 coincides

with the remanent magnetization previously studied for the SI< model. This

can be considered as indirect evidence for the Sf< limit of the Hopfield model.
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