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Chapter 1

Introduction

Carbon nanotubes (C 's) discovered by Iijima l are a new elass of quantum wire

having the structme of two-dimensional (2D) graphite sheet rolled up in a cyJindricaJ

form. The CN's arc grown on the negative end of the carbon electrode used in the de

arc-discharge evaporation of carbon. A CN consists of concentric tubes, each of which

has carbon-atom hexagons arranged in a helical fashion about the axis. The distance

of adjacent tubes is ,tbout 0.34 nm, i.e.. roughly the same as the distance of adjacent

honeycomb lattice planes of graphite. The diameter of each tube is usually between about

20 aud 300 Aaud the maximum length of a CN exceeds 11!m in general. The pmpose of

this thesis is to study the cffec:t.s of magnetic fields on electrouic states. optical absorption.

lal tice instability. and magnetic properties of carbon Ilitnotu bes.

UsuaJly. CN samples contain many other carbon particles (nanoparticles) which

sometimes cause undesirable effects in the st udy of the properties of CN·s. It was found

receutly that CN's can be purified through the removal of nanoparticles by oxidation 2 - 4

A single-shellnauotnbe with diameter ranging from 7 to 16 A was also produced.5 .6

In this thesis we shall study effects of magnetic fields on various electronic properties

of a single-shell carbon IllUlotubes. In a magnetic field passing through the tube axis, the

band gap changes with the period of the magnetic flux quantum due to the Aharonov­

Dohm (AB) effect. The AB effect manifests itself in optical absorption spectra and

magnetic properties. ln a magnetic field perpendicular to the tube axis. well-defined

Landau levels are formed at the Fermi energy originated from that of a 2D graphite.

This leads to intriguing properties of CN's including a considerable enhancement of

lattice distortion.

It was first shown in tight-binding models7- 17 that a single-shell CN's can be either

a metal or semiconductor depending on the diameter and the helical arrangement. A

condition for snch a characteristic change has been derived based on the band structme

of a 2D graphite sheet. Since the distance between adjacent layers is larger than that of

nearest-neighbor atoms, interlayer interadions can be negleded. In fact, a calculation

based on a model Hamiltonian for double layer nanotubes showed tJlat electronic states

arc not affected by the interlay<'r interaction appreciahly.ls

In all calculations mentioned ,thove. eff('cts of I he cmvature of the cylindrical surface
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have been ignored. Although the approximation is valid for CN's hiiving a large diameter.

the hybridization of (J and 7r states may play some roles in CN's with a small diameter.

In faet. ab initio pseudopotential calculations showed that the gap is lowered by more

than 50 % due to the hybridization for CN's with diameter ranging from 4.7 A to 7.0
A19

In this thesis. we shall confine ourselves to CN's with a large diameter for which such

curvature effects can be negleeted. We shall use a k·p method throughout this thesis and

compare the results with those in a tight-binding model whenever necessary. This thesis

is organized as follows: In Chapter 2, a brief review is given of experimental investigations

on electronic properties of CN's. Electronic states in magnetic fields are calculated in

Chapter 3, optical absorption spectra are studied in Chapter 4, and a lattice instability

is discussed in Chapter 5. Magnetic properties of a single CN and realistic ensembles of

CN's are studied in Chapter 6. Summary and conclusion are given in Chapter 7.

Chapter 2

Carbon N anotubes

In this Chapter, a brief review is given of experimental invcstigations on electronic

properties of CN's.

2.1 Discovery and Synthesis

Carbon nanotubes (CN's) were first produced by Iijima1 using a dc arc-dischMge

evapomtion of carbon in an argon-filled vessel (100 torr). The apparatus is very simibu to

that used for the production of C60 . The macroscopic quantities of CN's were synthesized

in a helium ittmosphere at ~ 500 Torr. 20 where a large quantity (~ 75%) of the consumed

graphite rod WiiS converted to CN·s. There have becn two different propoRlds on the

mechanism of the growth of CN·s. the open end growthl. 21 ,22 and closed end growth. 23

A high-resolution electron micrograph of CN's is shown in Fig. 1, which suggests

that CN's consist of several concentric tubes. The distance between adjacent tubes is

about 0.34 nm, i.e., roughly the same as the distance of adjacent honeycomb lattice

planes of graphite. The diamcter of each tube is usually between about 20 and 300 A
and the maximum length of a CN exceeds 1/-1m. From electron diffraction patterns it is

found that each tube has carbon-atom hexagons arranged in a helical fashion about the

axis. Such a characteristic structure is directly confirmed by using a scanning tunneling

microscope (STM) as is shown in Fig. 224 ,25

CN's arc also synthesized by thermal decomposition of Benzene vapor. 26 Benzene

vapor was introduced, together with hydrogen, into a ceramic reaction tube in which the

substrate consisted of a centrally-placed carbon block. CN's can also be generated by

vapor condensation of carbon on an atomically flat graphite surface. 24

Single-shell nanotubes can be synthesized by arc-discharge evaporation of carbon

with catalyst. 5 ,6 In ref. 5 the cathode has a shallow dimple used to hold a small piece of

iron during evaporation. The evaporation chamber is filled with a gas mixture typically

consisting of 10 torr methane and 40 torr argon. Figure 3 shows an electron transmission

microgmph image of the obtained single-shell CN's and a histogram of the diameters of

50 tubles having a diameter ranging between 0.7 nm and 1.6 nm. A CN as long as 700

nm having a diitmeter of 0.9nm was found.
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Fig, 1 (Left) Electron microgmphs of CN's.

Fig, 2 (Right) Atomic re-olutiou STM image of a CN.

In ref. 6 holes of anodes are filled with mixtures of pure powdered metals (Fe, Ni. or

Co) aud graphite. These filled anodes were vaporized in 100-500 torr of helium. Some

eXi1.tllples of obtained single-shell CN's are shown in Fig. 4. The diameter of these CN's

turned out to be almost the Si1.me and lie in the mnge 1.2±0.1 Uili.

In general the tips of CN's are closed and have mauy variations in shapeH One

of the typical tips is given in Fig. 5. which shows that small and large cylinders are

connected topologically to a cone shi1.ped end without destroying the continuity of the

graphite heets. In this structure penti1.gons and heptagons playa key role. An i1.pex

indicated by arrow A in Fig. 5 must incorpori1.te a single pentagon into a hexagon sheet.

A pentagon in a hexagon sheet is a kind of defect in a topological surface, described

as a +60
0

wedge disclini1.tion and a surface is curved positively. The opposite sit nation

occurs at the point indicated by arrow B in which a heptagon exists. A heptagon in a

hexagon sheet gives defect described as a -600 wedge disclination and a surface is curved

negatively. The presence of both a +600 disclination and -600 disclination on a closed

hexagon surface restores the original shape,

Figure 6 shows nei1.l'ly regular cone-like terminations, which are quite common in

thicker tubes, Five pentagons are required for the apex to be closed. There is no

preferred distribution of such five penti1.gons at the tips. The arrangement of penti1.gons

shows signatures of the helicity in the hexagonal network of CN's.28

2.2 Purification

Fig, 3 (Left) An electron micrograph showing individual si,ngle-shell CN's (upper
pitnel) and i1. histogram showing the number of single-shell CN s of different chameters
(lower pi1.nel).

Fig, 4 (Right) A transmission electron micrograph imi1.ge of a single-shell CN.

The oxidi1.tion reactivity rates of the Ci1.pS are larger thi1.n the cylinder surfi1.ces.

because of the strong local curvature i1.nd imperfect geometry caused by the presence

of five pentitgons, Thus. CN's having open tips are produced through oxidittion2a .3o

The geometry of nanopi1.rticles. which are often yielded with C 's. much resemble that

of the tube caps, although they itre comparatively larger28 Therefore, nanoparticles are

similitrly consumed by oxidation although at it slower rate than the highly curved tips

of CN's and CN samples can be purified if the oxidation is allowed to proceed for long

durations.2 Figure 7 shows the drami1.tic improvement in the CN's-to-nitnopitrticle ratio

after the oxidation, To remove all the nitnopitrticles from the sitmples. oue has to oxidize

more than 99 % of the materi,tl. Similar purification methods through oxidation are

reported also by other groups,3,4

2.3 Electronic Properties
It was first shown in tight-binding models7- 17 that a single-shell CN's can be either

it metal or a semiconductor depending on the diameter and the helicitl arrangement. A

condition for such a characteristic change has been derived b,tSed on the bitnd stl'llcture of
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Fig, 5 (Up) Electron micrograph showing recurrent terminations of CN·s.

Fig, 6 (Down) Terminations with identical conical CitpS at the tips of CN's.

a two-dimcnsional (2D) gmphite sheet. A part of metallic CN's is classified into narrow­

gap semiconductor by including the effect of finite curvature. 7 Some typical examples

of cl1.lculatcd energy bands are shown in Figs. 8 and 97 Figure 8 (b) corresponds to a

CN classified as a narrow-gap semiconductor. Fig. 8 (c) as it semiconductor. and Fig. 9

(b) it metal. It has been noted that the gap of semiconducting CN's is roughly inversely

proportional to the diameter. 17 .18

Tight binding Present calculations
Tube Ref. [2J TB LDA

(6,0) -0.2 0.05 Metal (-0.83)
0,0) -I 1.04 0.09
(8,0) 1.22 1.19 0.62
(9,0) 0.04 0.07 0.17

Table 1 Band gap (in eV) of selected CN's. For the metallic case, the overlap of
the bands is given as it negative gap.

Electronic properties calculated by it tight-binding model itre significantly altered by

detailed plane wl1.ve ab initio pseudopo.tential calculations for CN's with small diametcr.19

Fig, 7 Low-magnification transmission electron microscope images of (a) typical
samples of CN's produced by the carbon-arc method, and (b) purified samplc of
CN's.

Some comparisons with the tight-binding calculation in ref. 7 arc shown in Table 1 in

which CN's denoted by (n,O) hl1.ve the structure shown in Fig. 8 (11.). In the psen­

dopotential citlcnlation a CN with (6.0) becomes a metal in contrast to thc narrow-gap

semiconductor predicted in a tight-binding model. In addition, CN's with (7.0) and (8.0)

become semiconductors. consistent with the tight-binlling c;,lculatiou, but give a nlllch

smaller gap. This discrepancy comes from a strong (T*-7f* hybridization due to the large

curvature of cylinder surface of narrow CN's.

The above studies itre all on single-shell CN·s. A calculation b'<sed on a model

tight-binding Hamiltonian for a double-layer nanotnbe shows that electronic states are

not affected by the interlayer interaction appreciably.18 This is becitnse of the fact that

the distance between adjacent interlayers (3.4 A) is larger than that between ncarest­

neighbor atoms (1.42 A). The electronic states of disclinations and caps have been studied

itlso. 3l ,32

Some experiments support the theoretical prediction on electronic stl1.tes. Cnrrent­

voltage characteristics were measured by a scanning tunneling spectroscopy (STS).33-35

Figure 10 (b) shows the result at the points shown in Fig. 10 (11.).34 The top inset shows

the conductance (dI/dV) curve and the bottom inset shows the I-V curve taken on the

gold substrate for comparison. The trace (I), taken on a tube with 8,7 nm diameter. has

an ohmic behavior, providing evidence for the metallic CN's. Two tubles (tri1.cc (2) for a

CN with 4.0 nm diameter and trace (3) for a CN with 1.7 lUll diameter) show plateans in
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Fig, 8 (Up) (a) The geometric configuration for C 's with (n.O). (h) The band
structnre of C with (12.0) (narrow-gap semiconductor). (c) The band structure of
CN with (13.0) (semiconductor).

Fig. 9 (Down) (a) The geometric configuration for CN' with (2n,n). (b) The band
structure of CN with (12.6) (metal).

Fig. 10 (a) STM micrograph of CN·s. (b) Current-voltitge characteristics taken at
(1). (2). and (3) in Fig. 10 (a). The top inset shows the conductance versus voltage.
The bottom inset shows a characteristic I-V taken on gold substrate.

(b)(a)

(CESR) were not observed and therefore it was concluded tlu\t C 's are semiconducting.

However in ref. 37 CESR was clearly observed. Since the intensity of CESR showed

no temperature dependence. leading to the conclusion that there exist met:1.llic <md/or

narrow-gap semiconducting CN's.

The direct electrical resistance measurements were performed first 011 :1. single C 's

bundle,38,39 At higher temperatures a typical semimetallic behavior was observed. A

magnetic field applied perpendicular to the sample axis reduces the resistivity. In ref. 3D

the resistance in the low temperature region exhibits a 10g:1.rithmic dependence on tem­

perature consistent with a 2D we:1.k 10c:1.lization. A theoretic:1.l calculation for CN' also

shows the characteristic temperature dependence.4o Recently the electrical resistance was

measured for an individual CN41 A magnetoconductance exhibits universal conductance

fluctuations similar to those observed in 'luasi-ID mesoscopic systems.

(b)(a)

1TubUle
Axis

the 1-V characteristics at zero current. showing that these CN's are semiconducting.The

conductance (top insert) corresponds to the density of states and exhibits 1/ JED -E type

singularities in the ID density of states at peaks. The energy gap of the semiconducting

CN's was estimated around V = 0 V and found to vary in inverse proportion to the

diameter as is predicted ill tight- binding calculations. 17 ,18

Another experiment carried out to study the electronic properties was the electron

spin resonance (ESR) for purified Cl ·s.36.37 In ref. 36 conduction electron spin resonance



Chapter 3

Electronic States

In this chapter we study electronic states of CN's near the Fermi energy in the

absence and presence of magnetic fields based on the effective-mass theory.42 Using a

tight-binding model, full energy bands in a magnetic field of metallic CN's are obtained

and the validity of the kp method in magnetic fields is demonstrated.43

This Chapter is organized as follows: In Sec. 3.1 the electronic states in magnetic

fields are studied in the effective-mass theory. The energy bands in a magnetic field

perpendicular to the tube axis are calculated in a tight-binding model in Sec. 3.2. The

higher order kp Hamiltonian is derived and the electronic states are studied in Sec. 3.3.

A summary is given in Sec. 3.4.

3.1 Effective-Mass Approximation

3.1.1 Hamiltonian

Although CN's take a multi-shell structure in general, we consider a CN consisting

of a single tube. Since the distance between adjacent layers is much larger than the bond

length between nearest-neighbor sites within a layer, characteristic features of CN·s are

expected to be obtained by those of a single nanotube. In fact. it was demonstrated by

a model calculation that the effect of the interlayer interaction on electronic states is

small. 1O Further, we assume an infinitely long tube for simplicity.

Every structure of single tube CN's can be constructed from a monatomic layer of

graphite as shown in Fig. 11 (a). Each hexagon is denoted by the chiral vector

(3.1)

(a)

(b)
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with basis vectors a and b, defined by

(3.2)

with lal=lbl=a=2.46 A, where the unit vectors (e~,e~) are fixed onto a graphite sheet

as shown in Fig. 11 (a). We shall construct a nanotube in such a way that the hexagon

at L is rolled onto the origin. For convenience, we introduce another unit basis vectors

10

Fig. 11 (a) A single layer of graphite. The structure of a nanotube is specified by
the chiral vector L = naa+nbb with a and b being primitive translation vector. The
primitive translation vector along the axis of CN·s is T. The unit vectors ex and ey
denoted by x and yare along the circumference and the axis of a CN, respectively.
Another unit vectors e~ and e~ denoted by x' and y' are fixed on the graphite sheet.
The angle T/ between e~ and L is a chiral angle. The vectors 71, 72, and 73 connect
nearest-neighbor A and B sites. (b) A carbon nanotube in the presence of magnetic
field H perpendicular to the tube axis and magnetic flux <j; passing through its cross
section.



Page 12 ClJapter 3 Electronic States
3.1 Eff('ctivl'-Mass Approximation Page 13

sense that the condnction and valence bands consisting of 7r stales tonch at the K and

K' points. whose wave vectors arc given by

In the following we shall consider CN's with a large diameter. For such nanotubes.

electronic states in the vicinity of the Fermi level are determined by the states ncar the

K and K' points and further effects of the curvatme of the graphite sheet can safely be

neglected.

In the vicinity of the K point electronic states arc described well by a k-p Hil.1llilton­

ian 45 We introduce wave vector k measured from the K point and consider the set of

functions

(3.7)K 27r (1, 1, ) ,27r 2 I= - -e +-e and K = - -e .
a3 x J3Y a3 x

M

Fig. 12 (a) Energy bands of a 2D graphite. (b) First Brillouin zone of a 2D
graphite.

(a) (b)
(3.8)

with i = A. B where A and B represent the two 7r bitnds degenemte at the K point itnd

\[IAK and \[IBK arc their Bloch fnnctions.* These fnnctions are orthonorlllitl: 46

(3.9)

(3.11)Fk(r) = J (:~2 exp(ik-r) Ci(k).

where Fk(r) is the envelope function defined by

-rj;(r)=L J(:~2C'(k)¢ik(r)= L Fk(r)\[I,K(r). (3.10)
~A.B ~A.D

We consider the region of small k where interband matrix elements between the 7r­

electron states and others can be ignored. Theil. the wave fnnction uear the K point can

be expanded as

Substituting eq. (3.10) into the Schrodinger equation. we obta.in the following 2 x 2 k·p

equation near the K point:

(3.3)

(3.4)

(3.5)

(ex,ey ) ,lS shown in Fig. 11. The direction of ex or x is along the circumference of CN,

i.e., ex=LIL with

with

and ey or y is along the axis of CN. Further. the origin x = 0 is chosen always at a point

corresponding to the top side when the sheet is rolled and the point x = LI2 at point

corresponding to the bottom side as is shown in Fig. 11(b).

A primitive translation vector in the e y direction is written as

where p is the greatest common divisor of na-2nb and 2na-nb. The first Brillouin zone

of the nanotube is given by the region -7rIT <;, ky <7rIT with
(3.12)

* The k-p Hamiltonian is also obta.ined from a tight-binding model and the envelope
functions correspond to orbitals at A and n site as will be shown later. Thns, we choose
the notation (A itnd B) for two 7r bands.

(3.6)

The unit cell is formed by the rectangular region determined by Land T.

Figures 12 (a)44 and (b) show the electronic stittes and the first Brillouin zone of

2D graphite sheet. respectively. A gmphite sheet is it zero-gap semiconductor in the

where 1 is a band parameter itnd k is a wave vector operator defined by

k= -i~+ .!:...A.cn (3.13)
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with integer M and I' (= O. ±1). Thus. the K point in the graphite shl'et is lIlil.pped onto

1.'0 = +27rJl-/3T of the one-dimensionil.l Brillouin wne. Similil.rly, we Cil.n show thil.t thl' K'

point is mapped to ko= -27r1,/3T.

Effects of a ffiil.gnetic field il.re included by the vector potential A appeiu'ing in the above

operator. The energy origin has been chosen il.t the Fermi level of a graphite sheet.

Similarly. the k-p Hamiltoniil.n near the K' point is given by

(3.14)

where

lIl,,+mb = 31Y! +1" (3.22)

It is noted that eqs. (3.12) il.nd (3.14) are rewritten in terms of Pauli mil.trix 0'= (crx. cry)

as

1'(crxkx+cryky)FK(r) = EFK,

1'(crxkx -cryky)FK'(r) = EFK,.
(3.15)

3.1.2 Band gap

In the il.bsence of a magnetic field perpendicular to the axis. the l'nvdope func­

tions in the x direction are plane waves ex exp(il>:x). Thus. discrete wave vectors in the

circumference direction arc obtained as

(3.24)

(3.23)

(3.25)

where the upper (+) and lower (-) signs represent the conduction and valence bands.

respectively. The corresponding wave functions are written as

where n is an integer. Noting that the wave function in the axial or y direction is

proportional to exp(iky). we get energy levels il.round K and K' points
(3.16)

(3.17)

.p(r+L) = 'IjJ(r) exp(27ri<p),

These equations have the same form as Weyl's equation for neutrinos.

The electronic states of CN's are obtained from eq. (3.15) by imposing the generalized

boundary condition in the circumference or x direction such as

where

with <p = 1>/1>0, where 1> is the total magnetic flux passing through the cross section of C

and 1>0 = chie is the magnetic flux quantum. A Bloch function at the K point changes

its phase according as

The corresponding conditions for the K' point are given by

(3.26)
I>:v<p(n)-ik

VI>:v<p(n)2+k2

with

where upper and lower signs in eq. (3.25) correspond to valence and conduction bands.

respectively.

Because of the one-dimensional energy band. the density of states remains nonzero

even for 10 = 0 and the system is metallic for 11 = O. This is quite in contrast to the graphite

sheet for which the density of states vanishes at 10=0 even if the band gap vanishes. Each

energy band of metallic C I's is two-fold degenerate except those for n=O.

When v = ±1, on the other hand. there exists no integer leading to I>: = 0 and

the spectm have a minimum gap given by Eg = 47r1'/3L inversely proportional to the

tube diameter. The band parameter l' is related to the transfer integral 1'0 for nearest­

neighbor atoms in a tight-binding model through l' = V3a1'0/2. If we use 1'0 ~ -3.03 eV

(-Y=6.46eVA),9 we have Eg =0.45 ~ 0.034 eV for circumference 60~800 A (corresponding

(3.20)

(3.19)

(3.21)

(3.18)

(
27r1')exp(iK-T) = exp i3 '

Note that this can be obtained from eq. (3.19) though the replacement v by -v.

For translation r-->r+T, the Bloch function acquires the phase:

with integer N and v (= 0, ±1). Since the phase change should be canceled by that of

the envelope functions, the boundary conditions for the envelope functions are given by
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Fig. 13 Band gap of CN's with L = (n.O) as a function of the circumference.
The dots represent tight-binding results and the dotted line represents 41l'l'/3L for
semiconducting CN's given in the k·p theory.

The first equation shows that p cannot be a multiple of 3 for v ¥ O. which means that

3M + I-' is a multiple of 3 according to the second equation and consequently I-' = O. On

the other hand, the second equation shows that p must be a multiple of 3 for I-'¥ 0, which

leads to v = 0 according to the first equation.

By combining the results obtnined nbove and those described in the last paragraph

of the previous section, we can cOllclude that the conduction-band bottom and the va­

lence band top exist at the r poillt of the one-dimellsional Brillouin zone whenever the

1.0

v=-1

!'-o

v=O

0.5

magnetic flux (units of hc/e)

Type

v=1
1.5

:::J
C'?
?'­
!':v
'0 10
.~

2-
Q.
ell
Ol
>.e> 0.5
Ql
e
Ql

Table 2 Nallotubes can be chnracterized into three types by two iutegers 1/ nnd IL
determined by the chiraJ vector. Eg is the bnnd gap (0 for metallic CN's) 'tnd "'0
represents the wave vector corresponding to the bottom of the cOlld uction band in
the one-dimensional Brillouin zone.

Fig. 14 Energy gap versus magnetic flllx passing through the cross section for v = 0
and ±1.

Fig. 15.

A zigzag CN hIlS the circumference length L = ma and the first Brillollin zone is

-1l'1 v3(L::; /,; < 1l'1 v3a. It is metallic for m being multiple of 3 and semiconducting for

all other m's as is seen in eq. (3.18). From eq. (3.5) we get (ma • mb) = (1. 2) and it leltds

(i) 0 0 0 0
(ii) 0 ±1 0 ±21l'/3T

(iii) ±l 0 41l'l'/3L 0

nallotube has a band gap and is a semiconductor. For a metallic llanotube. 011 the other

hand. the conduction and valence band touch either at the r point or at ±21l'/3T. Table

2 summarizes three different types of C 's and Table 3 gives a table showing the type

for some values of n a and nb.

In general. C 's have some helical structure lIS is shown in Fig. 11 (a) except for

two cases havlllg chiral vectors L=ma and L=m(2a+b). The former is called zigzag

nanotubes and the latter is called nrmchair nnnotllbe. Their structures arc illustrated ill

(3.27)
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to diameter 19.1~255 A). Figure 13 shows the band gap of CN's with L = (n. 0) as a

function of the circumference calculated in a tight-binding model and the k· p theory.

Gaps obtained in the kp approximation is in good agreement with those obtained ill the

tight-binding model. For a CN with (n a . nb) = (13. 0) corresponding to L = 13a = 31.98

A. we have Eg =0.85 eV. which is slightly larger than Eg =0.70 eV obtained by Hamnda

et a/. 7 in a tight-binding model u ing different parameters.

In the presence of a magnetic flux <P throngh the cross section of CN·s. the bnnd gap

oscillates ranging from 0 to 21l'l'IL in the period of <Po due to the Aharonov-Bohm effect.

Figure 14 exhibits the energy gap as a function of magnetic flux. If we use l' =6.46 eV·A.

21l'l'1L varies as 1.85 ~ 0.044 eV for diameter 7 ~ 300 A. Since energy levels around K'

point are obtained by changing the sign of v, the oscillation at the K point is different.

There arc three cases: (i) v=I-'=O. (ii) v=O and 1-'=±1. and (iii) v=±l and 1-'=0.

The case that v = ±1 and I-' = ±1 is forbidden as shown below. From Eqs. (3.5). (3.18).

and (3.22) we have



Page 18 Chapter 3 Electronic State~ 3.1 Efr('ciiv{'-M;L'~ ApproximatioJj Page 19

nh\na 0 1 2 3 4 5 6 7 8 9 10
0 (iii) (iii) (i) (iii) (iii) (i) (iii) (iii) (i) (iii)
1 (iii) (iii) (ii) (iii) (iii) (ii) (iii) (iii) (ii) (iii) (iii)
2 (iii) (ii) (iii) (iii) (ii) (iii) (iii) (ii) (iii) (iii) (ii)
3 (i) (iii) (iii) (i) (iii) (iii) (ii) (iii) (iii) (i) (iii)
4 (iii) (iii) (ii) (iii) (iii) (ii) (iii) (iii) (ii) (iii) (iii)
5 (iii) (ii) (iii) (iii) (ii) (iii) (iii) (ii) (iii) (iii) (ii)
6 (i) (iii) (iii) (ii) (iii) (iii) (i) (iii) (iii) (i) (iii)
7 (iii) (iii) (ii) (iii) (iii) (ii) (iii) (iii) (ii) (iii) (iii)
8 (iii) (ii) (iii) (iii) (ii) (iii) (iii) (ii) (iii) (iii) (ii)
9 (i) (iii) (iii) (i) (iii) (iii) (i) (iii) (iii) (i) (iii)
10 (iii) (iii) (ii) (iii) (iii) (ii) (iii) (iii) (ii) (iii) (iii)

Table 3 Each nanotube specified by the chiral vector (na , nb) is classified into (i)
v=f.L=O, (ii) v=o and f.L=±I, and (iii) v=±1 and f.L=0.

_________--- k

2y11

l2y/1

___..:0+- k

-,flil

- 2 il

Fig. 15 The structure of (a) zigzag and (b) armchair nanotubes.

(3.29)

(3.28)

E2D =O. F K =k exp(ikyY) ( ,~o ) K point.

E2D =O. F K , = k exp(ikyY) ('~o) K' point.

Fig. 16 The energy b"nds of a 2D graphite near the K "nd K' points in t.he presence
(a) and the absence (b) of a magnetic field.

is rewritten as

where upper and lower signs correspond to K and K' points. respectively. This Hamilto­

nian leads to the presence of a Landau level with a vanishing energy eigenvalue. For the

Landau gauge (0. Hx). we have

(b)(a)

with L y and ky being the system size and the wave vector. respectively. in the Y direction.

Other Landau levels are given by

where upper and lower signs correspond to conduction and valence bands, respectively,

and h" is the harmonic oscillator eigenfunctions written as

i" [1 (X+l2ky )2] (X+l2ky )
h.,,= J2"n!.j1il exp - 2' -l- H" -l- , (3.31)

(3.30)

K' point.

K point,F K = r.h-exp(ikyy) (,±h,,). n=O,I,·
V 2Ly L,,+l

FK,= k- exp(ikyY) (±~"+l), n=O.I·
V 2Ly ""

Before discussing electronic states of CN's in a magnetic field perpendicular to the

axis, the states of 2D graphite sheet will be reviewed. We introduce the ladder operators

£± =(l/ .,f2)(l',;±iky ) with l =Jch/cH being magnetic length. Then, t.he k-p Hamilt.onian

3.1.3 States in magnetic fields

f.L=0 from eq. (3.22) for any integer m. Thus, the band structure near the Fermi energy

corresponds to the case (i) for m being multiple of 3 and the case (iii) for all other m.

For an armchair C the circumference length is L = J3ma and the first Brillouin

zone is -7[/a :s: k < 7[ /a. Armchair C 's are all metallic and f.L = 1 because (ma . mb) =

(0,1). Consequently the band structure always corresponds to that of the case (ii).



Page 20 Chapter 3 Electronic States 3.1 Effectivc-Mass Approximation Page 21

with the Hermite polynomial Hn(x). These eigenfunctions have the properties:

with Gi<'!: being expansion coefficients. The equation for Gi<'~ is written as

0.0 1.0 2.0 3.0 4.0 5.0

Wave Vector (units of 2n/L)

6.0

0.0

(a)

--'

l.q-

'0 4.0
(f)

1
>-
~
~ 2.0
ill

(3.34)

(3.33)A = (0, LH sin 2JrX).
27r L

Figure 16 shows the energy levels of a 2D graphite near the K and K points in the

presence and the absence of a magnetic field.

Let us consider the electronic states of CN's in a magnetic field perpendicnlar to the

tube axis. The component of magnetic field perpendicular to the CN surface is given by

Hcos(2JrxjL). The corresponding vector potential is given by

We expand the envelope function near the K point into plane waves along the x direction,

which satisfy the boundary condition eq. (3.19), as

(b) (c)

Fig. 17 The energy bands of metallic (solid lines) and semiconducting (dotted
lines) CN in the absence and presence of a lllaguetic field perpendicular to the tube
axis. (a) Lj2JrI=0, (b) Lj2JrI=1.5, aud (c) Lj2JrI=2.5. The dashed lines represent
the Landau levels of a graphite sheet.
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(3.35)

with

';:v<p(n)=n+'P-i. (3.36)

The strength of the magnetic field is characterized by Lj2JrI, which is the ratio of the

radius of a CN and the magnetic length. The equation for Gi<',~ at the K' point is given

by the replacement of v by -v. k by -k. and (Lj2JrI)2 by -(Lj2JrI)2

Figure 17 shows calculated energy levels for a metallic (v = 0) and semiconducting

(1J=±I) CN. With increasing magnetic field the energy levels for small k approach those

of Landau levels of a graphite sheet denoted by the dashed lines. Because there always

exists a Landan level at E: =0 in the graphite sheet, the band gap of semiconducting CN's

tends to zero with increasing magnetic field. In strong magnetic fields Lj2Jrl = 2.5, for

example, both energy bands and wave functions become independent of v in contrast to

the case in the absence of a field where the band gap depends on v quite sensitively.

Figure 18 shows the band gap for various values of the zero-field band-gap as a

function of Lj2Jrl. The band gap becomes negligible when Lj2Jrl is much larger than

unity as has been mentioned above.
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Fig. 19 Some examples of calcul"ted probability den ity of the lowest conduction
subb"nd of" metallic CN in magnetic fields. (a) L/21rl=0.5 and (b) L/21rl=3.

Fig. 18 Calculated band gap as a function of a m"gnetic field. The solid line
represents the gap for metallic CN (v = 0 and ¢ = 0), the dotted line that for
semiconducting CN (v = ±1 and ¢ = 0), and the dashed line that for CN with a
largest gap (v=O and ¢/¢0=1/2).

(a) (b)

Examples of calculated probability density for the lowest Landau level are given

in Fig. 19. In a weak magnetic field (Fig. 19(a)), the probability density has a small

maximum at x = 0 and x = ±L/2 for k = O. The maximum position is rapidly shifted

to x = -L/4 with increasing k. Figure 19(b) in a strong magnetic field shows a clear

formation of Landau states at the top (x=O) and bottom (x=±L/2) for k=O and their

gradual shift toward x = - L / 4 with increasing k. For sufficiently large k the probability

has only a single peak at x=-L/4.

The Landau level for CN's can be understood as follows: Let us consider the position

x = X+ == LII(k)/21r with -1r/2 ~ lI(k) < 1r/2 where lI(k) is the angle corresponding to

the position X+ as is shown in Fig. 20 and satisfies sini/(k) = -21rl 2k/L. Note that

1r - lI(k) also satisfies sin[1r - lI(k)] = -21rl2 k/ L and define the corresponding position

as X_ == L/2 - X+. In a perpendicular magnetic field, the (1,2) element of the k·p

Hamiltonian near the K point given by eq. (3.15) is expanded around x=X± as

"nd th"t for K' point as

Then. the k·p H"miltonian for the K point around X=X± is written as

(3.38)

(3.39)

where upper sign corresponds to X+ and lower sign to X_. Thus. it is fonnd th"t

the Landau level of CN's having wave vector k is reg"rded as that of a 2D graphite in

magnetic field H cos II( k).

For k=O, in particular, the wavefunction is given by a lineal' combination of L"ndau

wavefunctions at the top (x = 0) and bottom part (x = L/2) of the cylinder surface. With

the increase of k, the center of the cyclotron orbit is shifted toward x = L/4 and the

effective magnetic field decreases in proportion to cos II(k). Those states stay just at the

Fermi energy independent of k, since they correspond to a L"ndau level in 2D gmphite

sheet. existing "I. the Fermi energ)' independent of the field. With further increase of

k > kH. two Landau wavefunctions with center X+ and X_ start to overlap eacll other

(3.37)
[
1 {) .( e LH . 21rX)] . [{) x-X± 21rX±]I .,---1 k+--sm- "" -If -+--cos--
I {)x cft 21r L {)x /2 L

_{../'hL_VCOSII(k)/1 forX+
- ../'hL+Vcosll(k)/l for X_
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Heose
tight-binding approximation a wave fnnction is

Fig. 20 The wave function in Landau level with k> O. The center of the cyclotron
motion exists at elk) and 7r-e(k) satisfying sine(k)=-27r12 k/L.

appreciably and the energy starts to become dependent on k.

In the high-field limit L/27r1 --+ 00 the critical wave vector LkH/27r approaches

(L/27r1)2 and the corresponding angle eH becomes 7r/2. Actual numerical results show

that kH is approximately given by

(3.43)

(3.41)

(3.42)

N N

1/Jdr ) = LCA.'PkA.(r) + L CB • 'Pkl3. (r).
i=l i=l

where A(R) is a vector potential. The derivation of this expression is given in Appendix

A.

For simplicity we assume that transfer integrals do not vanish only between nearest

neighbors and the overlapping of the wave functions at different atoms is neglected. Let

Rand R' be positions of nearest neighbor atoms. Then, the matrix element is written

as

1
'PkA.(r) = L ~eXP(ikRr.)<I>RA. (r).

RA. V"A,

'PkB.(r) = L ~exP(ikR~ )<l>RB (r),
RB. VNB. "

where NA, = N B , = ... = N BN are the numbers of ea.ch site and <I>R(r) is the wave

function for an isolated atom at R in a magnetic field. The wave function <I>R(r) is

related to the wave function <I>o(r-R) in the absence of a magnetic field through

with

(3.40)LkH ( L )2
-~0873x - -211827r . 27r1 .,

HRR, = .!dr <I>o(r-R)*'H'<I>o(r-R') exp{ ~[A(R)(r-R)-A(R')(r-R'))}' (3.45)

In the case l::;Pa we can safely replace r in the phase factor appearing in eq. (3.45)

by (R+R')/2 because the expansion in terms of the exponent rapidly converges. We

shall use the same approximate expression even for I~a in the following. assuming that

(3.46)

(3.44)

1
'H' = 2[V(r-R) + V(r-R')].

with

HRR• '" jdr<I>R(r)*[:': +V(r-R)+V(r-R')] <I>R,(r)

If '2 '2
= - dr <I>R(r)' [L+V(r-R) + L+V(r-R')] <I>R,(r)

2 2m 2m

+ ~.!dr <I>R(r)* [V(r-R)+ V(r-R')] <I>R,(r),

where p=p+(e/etL)A and V(r) is the potential of an atom located at the origin. The

first term vanishes because it is proportional to the overlapping integral. We then have

3.2 Tight-Binding Model

3.2.1 Hamiltonian

Let us calculate full energy bands in a magnetic field using a tight-binding model.

We choose the y axis along the tube axis and the z axis in the direction of a magnetic

field. Note that the x axis is perpendicular to the y and z axes, different from the

coordinate system of Fig. 11. In a magnetic field a unit cell should usually be extended

such that the total flux is an integer multiple of the flux quantum <1>0' In the case of

CN's, however, the total flux passing through the unit cell in the absence of a magnetic

field always vanishes because of the cancellation between the field passing into and ou t

of CN. Therefore the unit cell or the first Brillouin zone of CN's does not change even in

a magnetic field.

Let us denote c,trbon atoms in the unit cell as Ai and Bi with i = 1, 2, ... ,N. In the

which is valid within a few percent for (L/27r1)2 ;::; 20.



-0.5 0.0 0.5

Wave Vector (units of 2rtf.fJa)

O.O~~

0.0

3.2 Tight-Binding Model
3.0

(c)

-0.5 0.0 0.5

Wave Vector (units of 2rtf.fJa)

0.0

0.0

~ 2.0

o
(J)

.§i ~~~~~;::~~~~~~ 10~

~
W

Fig. 22 The band structure of a mctallic zigzag CN (L/a = 24 or m = 24) in a
magnetic field perpendicular to the tube axis. (a) L/27f1=0. (b) 1.2. (c) 2.5. and (d)
4.6. In (a). (b). and (c) the solid lines represent the bands calculated in the tight­
binding model and the dotted lines those calculated in the lowest-order k·p theory.
In (d) the solid and dotted lines represent tight-binding bands for two different
microscopic orientations of C with respect to the field direction as is illustrated in
Fig. 21 (1) and (2). respectively.
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pz orbitn.! and chosen to be zero. In the following we shall confine ourselves to metallic

CN's having zigzag or armchair structure. which is shown ill Fig. 15, in the absence of

magnetic flux passing through the axis.

H

Zigzag H

(2)

0'" A site
•... B site

Armchair

(4)

Chapter 3 Electronic States

H

H

(3)

(1)

Fig. 21 Cross section of zigzag and armchair CN's and the coordinate system used
in tight-binding calculations. (1) and (2) correspond to the microscopic orientation
used for zigzag nanotubes and (3) and (4) correspond to that for armchair nanotubes.
Open circles and closed circles represent A and B carbon atoms. respectively.

In a Landau gauge, the vector potential is given by (0. H X, 0) and the matrix elements

are written explicitly as

electrons are strongly localized at each atom. In this case the transfer integral comes

from the region in the vicinity of the middle point of two atoms.

The matrix element of the Hamiltonian in the basis of 'PA, and 'PB, is given by

Page 26

The energy bands can be calculated by diagonalizing 2N x 2N matrix with off-diagonal

elements given above and diagonn.! elements HA,A, and HB,B,. which are the energy of

3.2.2 Zigzag nanotubes

A zigzag CN has a chirn.! vector L = ma with circumference length being L = ma

and the first Brillouin zone -7f / v'3a :<::: k < 7f / v'3a. A ~igzag CN is metallic for Tn being

Illultiple of 3 and semiconducting for n.!l other m's. Since both K and K' points where
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Fig. 25 (Left) Energy bands at k = 0 for metallic zigzag C . with circumference
L/a=24 (top). 48 (middle), and 72 (bottom) as a function of perpendicular magnetic
field calculated in the tight-binding model.

Fig. 26 (Right) Energy b,\nds ca1culated in the lowest-order kp t1l('ory correspond­
ing to Fig. 25.

the bands for the orientation of magnetic field given in Fig. 21 (1) and the dotted lines

for the orientation in Fig. 21 (2). For HS/<po« 1. this dependence on the microscopic

orientation is negligibly small.

There is a small deviation from the result of the kp theory in intennediate magnetic

fields L/27rl~1. although it is not clearly seen in Fig. 22(b). Figure 23, a blow-up of the

energy bands ncar the Fermi level for L/27r1= 1.2, shows the opcning of a sma11 band-gap

at k = 0 in contrast to no band-gap predicted in the k· p theory. Figure 24 shows the

band gap as a function of the magnetic field for three zigzag nanotubes with different

circumference lengths. The band gap clearly falls on a universal curve independent of

L/a if measured in units of 10 (a/L)2. It will be shown below that this small gap is a

result of higher order terms in the k- p perturbation.

The top of Fig. 25 gives the energy bands at k = 0 for met;illic zigzag CN's as a

~'10~m~~~~"0 ~
~ -2.0

i ~~~~~~~~~~g
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Wave Vector (units of 2rrJ13a)

0.0

Fig. 23 (Left) A blow-up of Fig. 22(b) near the Fermi level. The solid lines represent
the bands calculated in the tight-binding model, the dotted lines those calculated in
the lowest-order kp theory, and the dashed lines those calculated in the higher-order
k· p theory. The dashed lines overlap the solid lines almost completely.

Fig. 24 (Right) A small band gap of metallic zigzag CN's with circumference L/a=
36 (solid line), 60 (dotted line). and 84 (dashed line) as a function of perpendicular
magnetic field calculated in the tight-binding model.
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the valence and conduction bands touch in a 2D graphite sheet are mapped onto k = O.

valence and conduction bands are always two-fold degenerate.

The calculated energy bands of a zigzag C with L/a=rn=24 are shown in Fig. 22.

The magnetic-field strength is characterized by L/27r1 and also by HS/<po. The latter is

the ratio of magnetic flux passing through a hexagon with area S = J3a2 /2 to magnetic

flux quantum <Po and HS/<po = 1 corresponds to 7.9 x 104 T. The former is the parameter

introduced in the k·p theory (eq. (3.35)). As is shown below, the validity of the k·p

theory is determined only by the condition HS/<Po«l, which is usually satisfied.

Figures 22(a), (b), and (c) represent the results for HS/¢o« 1 and contain those

calculated in the k·p theory. The bands calculated in the k·p theory are in excellent

agreement with those in the tight-binding model particularly near the Fermi level.

Figure 22(d) gives the results for HS/<po = 0.2. The energy bands deviate from

those obtained in the k· p theory considerably. This can be seen most easily from a

large Harper broadening of the bands in the vicinity of the Fermi level. Further, the

bands depend also on the microscopic orientation of a CN. In fact, the solid lines show
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Fig. 28 (Left) A blow-up of Fig. 27(b) near the Fermi level. Only the part in the
vicinity of k = 27': /3a is shown and that near I.: = -27': /3a is its mirror image. The
solid lines represent the bands calculated in the tight-binding model, the dotted
lines those calculated in the lowest-order k· p theory, itnd the dashed lines those
calculated in the higher-order k· p theory. The dashed lines overlap the solid lines
almost completely.

Fig. 29 (llight) The shift in the witve vector at which the valence and conduction
bands touch for armchair CN's with circumference L/a=10 (solid line). 20 (dotted
line), and 30 (dashed lille) as a fUllction of perpendicular maglletic field calculated
ill the tight-binding model.

3.2.3 Armchair nanotubes

for CN's with large circnmferellce length in high magnetic fields. The merging of bands

both fr0111 above and below at HS/¢0=0.08 for L/a=48 itnd HS/¢0=0.04 for L/a=72

is it result of the folding of such Landitu-level-like bands.

As is shown in eq. (3.48) the expansioll parameter to obtain the k-p Hamiltonian is

not ky but l.:y+Rx /12. Therefore. the kp theory is vitlid even for large k in high magnetic

fields as long as the energy is elose to the Fermi level. This meitns that the Litlld,,-u level

neitr the Fermi level is a1Witys well represented by the k·p theory. The k-p theory starts

to break down when "- Landau level starts to have a dispersion alld be broadened (the

Harper broadening). For the Landau level lying at the Ferttll level, the critical field is

estim,,-ted as HS/<po ~ 0.1, corresponding to 7.9 x 103 T. The criticitl field is smaller for

Landitu levels ,,-way from the Fermi level as is expected.
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Fig. 27 The band structure of an armchair CN (L/a = 14V3 or m = 14) in a
magnetic field perpendicular to the tube axis. (a) L/27':1=0, (b) 1.5, (c) 2.5, and (d)
4.6. In (a), (b), and (c) the solid lines represent the bands calculated in the tight­
binding model and the dotted lines those calculated in the lowest-order k-p theory.
In (d) the solid and dashed lines represent tight-binding bands for two different
microscopic orientations of CN with respect to the field direction as is illustrated in
Fig. 21 (3) and (4), respectively.

3.0

(b)

function of a magnetic field, HS/¢o. It is noted that a huge oscillation of the total

band width reported by Saito et al.47 is not reproduced in the present calculation.48 The

middle and the bottom of Fig. 25 show the energy bands in the range of -'a ::; c:::; 'A at

1.:=0 for CN's with larger circumference lengths.

Figure 26 gives the corresponding results obtained in the kp theory. The kp theory

works quite well for the energy range close to the Fermi level (c: = 0) in weak magnetic

fields H 5/<Po;; 0.1. Since the range of I.: where the Landau level is formed is given in eq.

(3.40) in high magnetic fields, it easily exceeds the boundary of the first Brillouin zone
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with e~ and e~ being unit vedors fix('d onto a graphite sheet as is shown in Fig. 11.

Expanding the envelope functiou and vector potential up to the second order of fi·.;7
and (ie/hc)A(RA ) .1'/. we get a continuum-limit equation of eq. (3.50) for the envelope

function

It should be noted that we have actually expanded in terllls of Td-i.;7 + (e/cn.)Aj

instead of fi·.;7 and (ie/hc)A(RA )·1'1 separately. For large A(r). in fact. we can first make

a gauge transforlll<l.tion such that A becomes sufficiently small and then make expansion

in terms of (ie/hc)A(RA)·TI. The resulting expression is exactly the same as eq. (3.52).

Using the relations with w=exp(27ri/3):

(3.53)

L -iK7', Y /3 2
l e T l = Twa,

Le-iK7"(Tn 2 = ~w2a,z.
l 4

L -iK·7', x /3. 2
I e TI = T 1W a,

L e- iK7"(Tl)2 = _~w2a2,
l

3.3 Effective-Mass Theory in Higher Order

3.3.1 Hamiltonian

Armchair CN's are all metallic and are specified by L = m(2a + b) with L = /3ma

and the first Brillouin zone -1r/a ~ k < 7r/a. The K and K' points are mapped onto

+27r/3a and -27r/3a. respectively.

Figure 27 shows calculated energy bands for an armchair nanotube L/a = 1-!/3
(m=14). The bands in the k·p theory represented by dotted lines in Figs. 27(a), (b).

and (c) are calculated around both k= -27r /3a and 27r /3a. The k-p theory is again quite

successful in reproducing the tight-binding results near the Fermi level. For HS/<f>o =0.2

the bands deviate from the k· p result and depend on the microscopic orientation in

agreement with the case of zigzag nanotubes.

Figure 28 shows a blow-up of the energy bands near the Fermi level for L/21rl = 1.5.

No band gap opens up at the Fermi level in contrast to the case of zigzag nanotubes,

but the wave vector corresponding to the Fermi level deviates slightly from k=±27r/3a.

Figure 29 gives the shift as a function of the magnetic field for CN's with different

circumference lengths. The shift falls on a universal curve ex: (a/ L)(L/27rl)4 in a good

approximation if being measured in units of 21r/ L. It will be shown below that this

deviation is again a result of higher order terms in the k·p perturbation.

Let us consider a 2D graphite sheet. First we make a difference equation with

respect to envelope functions and then take a continuum limit to get a higher order k·p

Hamiltonian. In the tight-binding model. the wave function is expressed in terms of

envelope wave functions at the K point as

the k-p equation of 2D graphite in the higher order is given by

with NA = N B being a half of the total number of the <l.tomic sites and K being the wave

vector corresponding to the K point given by (27r/a)(1/3.1//3).

The envelope function satisfies the following difference equations:

where 1 = /30,0/2 and r/ is the chira'! angle between e~ axis and the chiral vector L as

is shown in Fig. 11. given by

'lj;(r) = L L ~FK(R,)eXP(iKR,)91R.(r).
,=A.B R,

(3.49) with

k = -i.;7 + ~A(r).
he

(355)

-,oL e-iK 7"exp {- ~~[A(RA)+A(RA-T/)J'fi}F~(RA-fi)=[F~(RA),
1=1,2,3

(3.50) (3.56)

for na=O.

and a simila.r one in which F~ and F~ are exchanged. In the above, l' represents one of

the three vectors connecting nearest A and B sites given by

(3.51)

The phase factor exp(3i1J) reflects the trigonal symmetry of 2D graphite and gives warping

of the band around the K point.

It is worth noting that the k- p Hamiltonian in a magnetic field is obtained by just

replacing k by -i.;7+(e/ch)A. This corresponds to the fact that the coefficient of kTky
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is the same as that of kykx in the present case. leading to the absence of antisymllletric

terms proportional to kxky -kJ"x. 49 The k·p Hamiltonian at the K' point can similarly

be obtained through the replacement of K by K' = (211' / a)(2/3. 0). The result is

Thus. the Shriidinger equation near the K' point are obtained by the replacement T)--+

T)+11' /3 and ky--+ -kyo
For a 2D graphite there exists a Landau level just at the Fermi energy even in the

higher-order k·p equation and the wave function is given by

Zigzag Nanotubes
• Tight Binding
...... 4rry/3L

- Higher Order k'p0.4

0.1

~
o
2l 0.3

~
a.

'"a-g 02

'"[l)

(3.58)

Fig. 30 Dand gap of zigzag nanotubes as a function of the circumference. The
dots represent tight-binding results. The dotted line represents 411',/3L for semi­
conducting CN's given in the lowest order k· p theory and the solid lines for those
given in the higher O!·der kp theory. The shift in the gap due to higher order terms
is negative for 11=+1 and positive for 11=-1.

(3.60)

5010 20 30 40

Circumference: Ua

0.0 '-+ 4-.........,
o

written as

where C is a normalization factor. This shows that the Landau level of CN's formed

at the Fermi energy is not affected by higher order terms in the k· p perturbation. It

is worth noting that the sum over the level index n of the harmonic oscillator in eq.

(3.58) diverges. It should be cut off at a certain n c corresponding to the wave vector

kc ~ .,f'[ii:;/I where the energy band given in the k· p theory starts to deviate from the

corresponding actual bands.

The electronic states of CN's are obtained by replacing kx by discrete wave vectors

given by eq. (3.23). Then. the energy levels around the K point are written as

where the upper (+) and lower (-) signs represent the conduction and valence bands,

respectively. A zigzag CN corresponds to T) = 0 and an armchair C corresponds to

T) =11'/6. Further. the bands for T) =11' /3 in eq. (3.59) correspond to those of a zigzag C

near the K' point and those for T) = 11'/2 correspond to those of an armchair CN near the

K' point.

It turns out from eq. (3.59) that a CN is metallic for II = 0 and semiconducting for

II = ±1. The band gap changes in the presence of magnetic flux passing through the tube

axis. These are in complete agreement with the prediction of the lowest order kp theory.

However, this band gap is slightly modified in the higher order tenn.

In a magnetic field perpendicular to the tube axis, we expand the envelope function

into plane waves along the x direction as in eq. (3.34) Then the equation for G~,B is

with

(3.61)

The energy levels can be calculated through the diagonalization of the matrix.

3.3.2 Numerical results

Figure 30 compares the band gap of zigzag CN's as a function of the circumference,



Fig. 31 (Left) A smalJ band gap of metallic zigzag CN's with circumference L/a=36
(solid line), 60 (dotted line), and 84 (dashed line) as a function of perpendicular
magnetic field calculated in the higher-order k·p theory.

Fig. 32 (Right) The shift in the wave vector at which the valence and conduction
bands touch for armchair CN's with circnmference L/a=10 (solid line), 20 (dotted
line). and 30 (dashed line) as a function of perpendicular magnetic field calculated
in the higher-order k·p theory.
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3.4 Summary

The energy-band structure of CN in the vicinity of the conduction-band bottom 'Uld

the valence-band top has been calculated in the effeetive Illass theory ill both absence

and presence of a magnetic field. The band gap changes sensitively depending on the

structure of the nanotube between zero and a nonzero value inversely proportional to

the tube diameter. It oscillates also as a function of a magnetie flnx passing through the

circular cross section of the tube due to an Aharonov-Bohm effect. In the presence of a

magnetic field perpendicular to the tube axis. the band gap is rednced due to a formation

of 2D Landau states. The energy spectra approach Landau levels of ,t 2D graphite sheet

in high magnetic fields.

The validity of the kp method in a magnetic field perpendicular to the tnbe axis

has been studied in a tight-binding model. For states near the Fermi level. the results of

a tight-binding model are in good agreement with those calculated in the lowest order kp

theory except in extremely high magnetic fields where the magnetic flux passing through

the hexagonal unit cell of a 2D graphite becomes comparable to the flux quantum. i.e.

HSj¢>o;<:O.l.

There are some slight deviittions. In weak mitgnetic fields such that the magnetic

length is larger than the circumference length and therefore Landau levels are not formed,

a small band gap appears in zigzag CN's and the wave vector crossing the Fermi level is

shifted slightly in armchair C 's, in contrast to the predictions of the lowest order k·p

theory. In high magnetic fields where the magnetic length is smaller than the circum­

ference length, this gap disappears due to the formation of Landau levels corresponding

to the cyclotron motion on the top and bottom side of a CN where the perpendicular

magnetic field is strongest, in agreement with the prediction of the lowest order k· P

theory.

The higher order k·p I-Iitllliitonian has been derived from the tight-binding model.

It leads to a trigonal warping of bands near the K aud K' POilitS ['or a 2D gmphite. The

deviations of the tight-binding results from the lowest-order k-p theory in wt'ak magnetic

gap is H"" in eq. (3.61) and t!H'J"({ore the gap is proportionRI to io{n/L)2(L/21r1)4 in a

weak field. In magnetic field 10 T. for example. the peak in the gap in Fig. 31 corresponds

to abont 0.51 meV and the circnmference length 580 A.
Figure 32 gives the shift of the wave vector as a fnnction of a magnet ic field for

armchair C 's (rl = 1r/3) with various circumference lengths. The resnlts agRin explain

the tight-binding result given in Fig. 29 almost perfectly. The term responsible for this

shift is again H"" in eq. (3.61) and therefore the shift is proportionRI to (a/ L)(L/21r1)4

ill a we:tk field if being measured ill units of 21r / L. For a CN wit h di,uneter 300 A. for

example. the shift is abont 2.4 x 10-5 (21r fa) in magnetic fidd 10 T.
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calculated in the tight-binding model. the lowest order k· p theory (41ri /3L). and the

higher order k·p theory. The gap calculated in the lowest order k·p theory reproduces

the tight-binding result remarkably well. The inclusion of higher order terms explains

the slight deviation of the tight-binding result from 41ri/3L depending on the signature

of 1J. The deviation depending on 1/ as cos(31/) has been calculated including the effect of

the mixing between 1r and a orbitals due to nonzero curvature and has shown that the

mixing enlarges the deviation. 50 .51

Figures 23 and 28 contain the energy bands calculated in this higher-order k· P

theory. The slight deviation of the tight-binding result from that in the lowest-order k-p

theory is explained fully by the inclusion of the higher order terms, i.e. by the band

warping effect.

Figure 31 shows the band gap of metallic zigzag CN's as a function of magnetic field

for various circumference lengths. The gap energy is given by a universal function of

the magnetic-field parameter L/21r1 if being measured in units of io(n/L)2, in complete

agreement with the tight-binding result given in Fig. 24. The term responsible for this
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fields can be explained by the higher order terms almost perfectly. In particular. it

predicts that a weak magnetic field leads to opening of a small band gap in zigzag CN's

and a slight shift in the wave vector corresponding to the conduction-band minimum and

valence-band maximum from ±21f/3a (the K or K' points in 2D graphite) in armchair

CN·s. For other C 's having chirality both modifications occur in general.

These deviations are quite small and the lowest-order kp theory is usually sufficient.

Therefore, in the following we shall use the lowest-order kp method and neglect the

higher order term completely.

Chapter 4

Optical Absorption

In the previous chapter, it has been shown that C 's can be metallic or semicon­

ducting depending on the structure and that the band gap is drastically changed due

to the AB effect in a magnetic field passing through the cross section of CN's. In this

chapter we shall study the optical absorption spectra which can give direct information

on the band gap. 52-54

This chapter is organized as follows: In Sec. 4.1 dynamical conductivity is obtained.

The absorption spectra for polarized light parallel and perpendicular to the tube axis are

calculated ill Secs. 4.2 and 4.3, respectively. A summary is given in Sec. 4.4.

4.1 Dynamical Conductivity

We shall calculate the optical absorption of CN's with an Aharonov-Bohm flux using

the linear response theory. We first expand electric field E{(B, w) and induced current

density j{(B,w) into a Fourier series:

where a~{(w) is the dynamical conductivity. The dynamical condllctivity ncar the K

point is calculated IIsillg the Kubo formula as

where ~ denotes x or y and B= 21fx/L represents the angle shown in Fig. 33 (a). It is

quite straightforward to show that the induced current has the ame Fourier component

as that of the electric field as follows:

(4.2)

(4.1)

EdB.w) = LE~(w)exp(iLB-iwt).
I

j{(B.w) = Lj~(w)exp(iLB-iwt).
I

(4.3)

39
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(a)

Chapter 4 Optical Absorption

(b)

4.2 PIl.ntlleJ PoJarizlltiOll

n=±1

Pagc 41

Fig. 33 The schematic picture of the polarized electric field parallel (a) and per­
pendicular (b) to the tube axis. <1>/<1>0=0 <1>/<1>0=1/4 <1>/<1>0=1/2

with

K 1 (w)=_2-L: L: f[cS'J(n,k)]-f[cS~)(n+l,k)]
~~ AL nk v,w=± cS'J(n, k)-cS~)(n+l, k)+liw+i8 (4.4)

x I(n, k, vI3~ln+l, k, wWgo[lcS'J(n, k)llgo[lcS~)(n+l, k)I],

where ftc) is the Fermi distribution function, the factor 2 comes from the spin degen­

eracy, and go(c) is a cutoff function. The cutoff function has been introduced to get

the contribution of the electronic states for which the kp approximation is valid. More

details on the importance of the cutoff function will be discussed in the following chapters.

The current-density operator 3~ at the K point is given by

Fig. 34 The band structures of metallic eN's with <p=0, 1/4, and 1/2. The arrows
denoted by 'x' and 'y' show the allowed transitions for axx and for ayy , rcspectivcly.

matrix clcments of the current-density operator near thc K point are givcn by

(4.7)

4.2 Parallel Polarization

(4.5)
When the polarization of external electric field D is parallel to the tube axis as is

shown in Fig. 33, the Fourier components of a total field are written as

where ~ = £, if and Iz is a 2 x 2 identity matrix. At the K' point, operator 3; is the

same as that at the K point but 3t has the opposite sign of that at the K point. The

factor I(n, k, vI3~ln+l, k, wW, however, provides the same value for both K and K' points.

Substituting eq. (4.4) into eq. (4.3) we get the conductivity

(4.6)

where phenomcnological relaxation time T has been introduced. Using eq. (3.25), the

Thus the Il.bsorption in a unit area is given by

(4.8)

For l = O. transitions occur between bands with the sll.mc band indcx n as is seen from

eq. (4.6). Sincc Il.ll the conduction bll.nds Il.re specified by different n's, there is no transi­

tion among conduction bands. At a bll.nd edge k = O. in particular, bY<p(n. 0) =sgn[KY<p(n)]

with sgn[x] representing the sign of x, and therefore it is found that transitions between

valence and conduction bands having the same index n Il.re all allowed.
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Fig. 35 Calculated real part of (Jyy of undoped metallic CN's for <p = O. 1/4, and
1/2.

In the limit T -> co absorption spectra near the K point except for intraband Drude

terms is proportional to

Fig. 36 (Left) Calculated real part of (Jyy of undoped semiconducting CN's for
<p = O. 1/4, and 1/2. The symbols K and K' show transitions between states ncar
the K and K' points, respectively.

Fig. 37 (Right) Calculated real part of (Jyy of doped metallic CN"s for <p = 0, 1/4,
and 1/2.

where B(x) is the step function defined by B(x)=l for x:::: 0 and B(x)=O for x<O.

Fig. 35 shows the calculated results of Re(J~~O(w) of a metallic CN for <p=0, 1/4,

and 1/2. The peaks in Fig. 35 correspond to the transitions shown in Fig. 34. Since

elements of the current-density operator for metallic CN's vanish between valence and

conduction bands with n = 0 except at the band edge k = 0, there is no absorption in

the region nw < 3.0(47r, /3L) for metallic CN's with <p = O. A corresponding result for a

semiconducting CN's is given in Fig. 36. The spectra of a semiconducting CN's are more

complicated becanse of the lifting of the degeneracy between the K and K' points in the

presence of a magnetic flux.

Figure 37 exhibits Re[(J~~O(w)] of an electron-doped metallic CN. The electron con­

centration is fixed in such a way that the chemical potential in the absence of a magnetic

flux is given by JJ-=(3/4)(47r,/3L). For this doping, only the lowest conduction bitnd is

occupied for <p=0 and 1/4, while two degenerate lowest bands are occnpied for <p=1/2.

the corresponding induced charge density localized on the cylinder surfitce is written itS

The potential formed by line chitrge with the density pdx at distance 7" is given by

(4.10)

(4.11)

~pleil9-iWl+~~J.l ei19-iwt = 0
at L aB x ,

When an external electric field is politrized in the direction perpendicular to the

CN axis, effects of an electric field induced by the polarizittion of nitnotubes should he

considered. This depolarization effect is quite significant for absorption spectra.

Suppose an external electric field D~ exp(iLB-iwt) is applied in the direction normal

to the tube axis itnd let j~ be the induced current. With the use of the equation of

continuity

4.3 Perpendicular Polarization

These figures demonstrate clearly that the AD effect on the b,tnd structure manifests

itself as a shift of the absorption peaks.(4.9)
Re[(Jl=O(W)]=~'" [2,K y '!'(n)j2 ,(27r/L)

yy h ~ liw J(liw)2_[2,lI: y,!,(n)]2

x B[lliwl-2,IKy,!,(n)l]go(lliwl/2)2,
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(4.13)

(4.12)

(4.14)

(4.15)

-2pdx In rand r is expressed itS r= (L/,1flJ sin[(0-O')/2]1 for CN·s. Then it is found thitt

the induced charge leads to potential

L (27' L 0-0' L .
¢(O) = -22;'/0 dO' / exp(iIO') In I:; sin -2-1 = jlf/ellO

,

itnd therefore the total electric field is obtained as

The potential gives rise to electric field

and the Fourier component of the potentiitl is written as

With the use of j~=o~xE~ we get

(4.16)

Fig. 38 (Left) Calculated reitl part of 0xx (indicitted by 'Perturbittion') and axx
(indicitted by 'Self-Consistent") of undoped metallic CN's for <p=0. 1/4, and 1/2.

Fig. 39 (Right) Calculated reitl part of 0xx and axx of doped metallic CN's for
<p= O. 1/4, and 1/2.

with

n±l.

Let us consider a spectral edge corresponding to k=O in which bv",(n, 0) =sgu[I>:v",(n)].

From eq. (4.7) it is found that transitions between valence- and conduetion-bitnd states

become itllowed only when I>:v",(n) and I>:v",(n±1) have a sign opposite to each other.

This leads to the conclusion in a metallic CN's, for example, that transitions from n=O

to n=-1 and from n=-1 to n=O are allowed for 0~<p<1 as is shown in Fig. 34. Note

that the corresponding energy 27rry/L remains independent of an AD flux. Transitions

between conduction bands become allowed for I>:v",(n) and I>:v",(n±1) being the same sign.

Even in this case the energy giving allowed transitions are alwitys 27rry / L independent of

a flux again.

In Fig. 38 Reaxx (indicated by 'Self-Consistenf) and Reoxx (indicated by 'Perturbation)

are shown for a metallic CN with magnetic flux <p=0, 1/4, and 1/2. The peaks around

27rry / L correspond to the allowed transitions at k = 0 discussed above. In the mitgnetic

flux <p = 0, the peak of 0xx is suppressed in comparison to the others. This is because

of the absence of the divergence in the joint density of stittes at the bitnd edge. It is

quite interesting that these peaks disappear itlmost completely if the depolarization ef­

fect is taken into account. The Reaxx and Reoxx of metallic CN's doped with electrons

(4.20)

(4.19)

(4.18)

(4.17)

According to eq. (4.6) the absorption occurs between bands having band index nand

Thus the absorption is given by

with

For the external field being D = (D x sin 0, 0), the Fourier components of the external

field and the induced current are written as
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(4.23)

As is seen from eq. (4.19) absorption peaks exist at the frequency where Re[axx(w)]

diverges. From eq. (4.16) it is found that an absorption peak occurs at a frequency wp

higher than the absorption edge W2. For wp ~W2, we have

1.5 which is nothing but a plasma frequency corresponding to the three-dimensional electron

density ?rn/L. This is the reason for the strong suppression of absorption peaks for

perpendicular polarized field. A example of R.ea" and R.efJ" is shown for the model

conductivity in Fig. 40.

l !
~. /:

o~,-:"~""~--'L....-._•••_.i..-:...........,'--~\..-....J

0.0 0.5 1.0

Energy (units of woo)

Fig. 40 Calculated real part of axx (solid lines) and fJ" (dotted line) of a model
conductivity.

2 _ ?r 4?rne2
_ 2

Wp - I---:;:;;:- = Woo' (4.24)

are shown in Fig. 39. Again the peaks are suppressed almost completely due to the

depolarization effect.

To understand the strong suppression of absorption peaks for perpendicular polar­

ization, we consider a simple model in which the real part of conductivity is proportional

to a joint density of states of one-dimensional materials and the oscillator strength is

constant. The model conductivity is written as

4.4 Summary

The absorption spectra of CN's are calculated in the presence of an Aharonov­

Bohm flux. The AB effect, which gives rise to the band-gap oscillation between 0 and

2?r"( / L with the period of the magnetic flux quantum. can be observed directly by optical

absorption for light polarization parallel to the tube axis as the oscillation of absorption

peaks. When the polarized light is perpendicular to the axis, the depolarization field

almost completely suppresses the optical absorption peaks. These characteristic features

are not modified by carrier doping.

(4.21)

where n is the electron density in an unit area and m is the mass of the electron. This

conductivity satisfies the intensity sum rule given by

2 100

ne
2

- dwRefJxx(w)=-.
?r 0 m

(4.22)

By the use of the Kramers-Kriinig relation, we get the imaginary part of the conductivity
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Chapter 5

Lattice Instability

It is well-known that 1D metallic systems tend to be unstable against lattice dis­

tortions. In fact. based on the extended Su-Schrieffer-Heeger (SSH) model,55.56 the

possibility of bond alternation patterns (the so-called Kekule pattern) has been studied

within a simple 1D model8 and for finite-size tubules. 57.58 The Kekule structure consists

of a network of hexagons with the alternating short and long bonds like in the classical

benzene molecule. Although these works predict that the distortion does not alter elec­

tronic properties of CN drastically, there remains a considerable disagreement in their

estimated energy gaps. On the other hand, the possibility of an out-of-plane distortion

was considered also. 9

In this chapter. a comprehensive study is made on both in-plane and out-of-plane

distortions in metallic CN's using both k-p and tight-binding approaches. 59 It is shown

that two kinds of distortion cannot coexist in general and two different approaches pre­

dict amount of distortions in excellent agreement with each other. Further. effects of a

magnetic field on lattice distortions are studied. 53.60.61 In the presence of a magnetic

field perpendicular to the tube axis, the energy bands turn into flat Landau levels near

the K and K' points at the Fermi energy. It gives rise to considerable lowering of the

electronic energy.

This section is organized as follows: In Sec. 5.1 the k-p Hamiltonian in the presence

of in-plane and out-of-plane distortions are obtained. The gap equation is solved analyt­

ically and the use of the k-p method is justified by comparing with the results given by a

tight-binding model. In Sec. 5.2 the effect of a magnetic field perpendicular to the tube

axis are studied in the approximation that the gap parameter is uniform. In Sec. 5.3 the

spatial variation of the gap parameter is discussed in a magnetic field. A summary is

given in Sec. 5.4.

5.1 Absence of Perpendicular Magnetic Field

5.1.1 Effective-mass approximation

to be unstable agail/st lattice distortions which opcn an l'llergy gap at t hc Fl'rllli energy

and consequeutly lowcr the total l'nergy. In the following. we consider two different kiuds

of distortions. (i) in-plan lattice distortions which indllce the formation of a Kekulc

structure and (ii) out-of-plane distortions.

The Kekulc structure illustrated iu Fig. 41(b) is a three-sublattice system. The Ilnit­

cell area is 3V3a2 /2 nnd contains six carbon atoms (three ks and three Irs). There are

two kinds of bonds and each atom has one large and two small distorted bOllds ntla.chcd

to it. One changes its length by -2uI a..lId another cha.llges by UI. where LLI is positive

or negative. In Fig. 41(c) the hlrge (-2uJl and the small (IIJl distortion are indicated

by the thick and normal lines, respectively.

The area of the Brillouin zone for the distorted lattice is one-third of that of graphite

as shown in Fig. 42, where the six corners (i.e. K and K' points) of the original Brillouin

zone come to the center (r point with k = 0). When the Kekulc distortion is introdllced,

a small energy gap proportional to lUll a.ppears at the Fermi level due to an interaction

between bands at K and K' points crossing at the r point in the new Brillouin zone. The

possibility of this distortion was pointed out within a simple 1D model8 and stllclied for

fillite-size tubules in the absence of an AB flux. 57 .58

For the out-of-pla.ne distortions. the sites A and n move lip ,tlId down by ±LL2 ill

the z directions perpendicular to the graphite sheet, which are represellted in Fig. 41(c)

by open and full circles. The size of the unit cell is lInchanged and the site energy of

CN's for A and B carbon atoms is shifted by an energy proportional to 112. leading to

a gap at K and K" points of the original Brillouin zone. We note that this distortion is

possible because of finite curvature of C ·s. which breaks the mirror sYlllmetry of the

2D graphite sheet a.bout z = O. The possibility of this distortion has been considered in

the absence of an AB flux.9

In the presence of two kinds of lattice distortions. the k·p Hamiltonian is given by

the following 4 x 4 matrix

where to l represents energy corresponding to the in-plane Kekulc distortion and to2 that

to the out-of-plane distortion. This Hamiltonian will be derived in a tight-binding model

in a following section.

Illtroduciug a three components wave vector k= (kx , ky . kz ) with /';z =-to] /, anel a

4-column vector of envelope functio.lls

In the presence of electron-phonon interactions, metallic CN's (v=O), for which the

energy bands cro s at the K and K' points of the graphite Brillouin zone, are expectcd

48

""(1') _ (FA(1'))
v - F8(1') , (5.2)
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(5.7)

(5.6)

(5.5)

(5.3)

(5.4)

FB() (Fll,(r))
and r = FR.(r) ,

. (h 0)mId (3 = 0 -h '
. _(0 a,)
Q; - a, 0

5.1.2 Gap equations

Fig. 42 The larger hexagon represents the first Brillouin zone of non-deformed
lattice. When the in-plane lattice-distortion occurs. the Brillouin zone is reduced to
the smaller hexagon.

The gap parameters ~I and ~2 are determined by the condition that the total

energy is minimum. The total energy consists of the electronic part given in the k·p

When cp = O. a gap E g =2J.0'l2+~22 opens up at k=O.

with h being a 2 x 2 identity matrix.

It is well-known that the eigenvalues of Dirac's equation are doubly degenerate and

given by

where Q; (i=x.y,z) and fJ are the 4x4 matrices defined as

The energy bands of a metalEc carbon nanotube in the presence of the lattice distortions

are obtained by putting kx = "",(n) and ky = k in the above solution

we can rewrite eq. (5.1) into the form of Dirac's relativistic equation

with

Fig. 41 A single layer of graphite. (a) The structure of a nanotube is specified
by the chiral vector L=naa+nbb with a and b being primitive translation vector.
There are two kinds of sites A and B. (b) In-plane Kekule lattice distortion. Thick
and normal lines show larger and smaller distorted bonds, respectively. There are
six kinds of sites AI, A2, "', B3 . (c) Out-of-plane lattice distortion. The black­
dot atoms shift in the positive z direction and the white-dot ones in the opposite
direction.
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scheme by the contribution coming from the region ncar the Fermi energy and the lattice

or phonon part. The latter can be written as
where !ldE) is a new cutofr fl/nction given by

(5.8)
(5.13)

where K 1 and K 2 are the in-plane and out-of-plane force constants. respectively. N is

the tota.! number of carbon atoms. and

which satisfies

(5.14)

with hand h being appropriate constants. It should be noted that there is no cross term

proportiona.! to U1 U2 in (5.8). This can be understood when we consider the fact that

the A and B carbon atoms are equiva.!ent even in the presence of the Kekule structure

and therefore the energy under the distortion +'uz should be the same as that under -'U2

even for nonvanishing U1.

The total energy is written as

_~ ~ 100

• (_) (_)) K 1 t>? K2t>~
E-427rn~00 -00 dkE", 90 IE", I +N 21f +N 21i. '

(5.9)

(5.10)

This plays an important role in the elimination of the cut-off pa.nuneters Ec a.nd Qc. as

will be shown later.

It is straightforward to show that the gap equations (5.12) have a non-trivia.! solution

(1) t>1 > 0 and t>z = 0 and (2) t>1 = 0 and t>2 > 0 and that the total energy takes an

absolnte minimum at (1) when K 1/ If < K2/ Ii. and at (2) when KI/ ff > K2/ /f. In

the casc (1) only an in-plane distortion can exist, while only ,til out-of-plane occurs in

the case (2). Only exception is the special case KI/If = K2/ Ii. , for which the energy is

degenerate a.!ong a circle given by t>?+t>~ =t>2. In the following, we sha.!l consider only

one kind of distortion and put t>=t>;, f=J;, and K=K; (i=I,2).

Because a unit cell of a 2D graphite with arc it l3a2 /2 cOl/tains two carbon atoms.

the tota.!llumber of site is calculated as N=4AL/l3aZ, The gitp equation is writtel/ as

where E~-) is va.!ence-bands energy given by eq. (3.24), a factor 4 comes from the double

degeneracy of each energy band and the summation over two spin states. and !lorE) is a

cutoff function defined as

(5.11)

This cutoff function contains two parameters. Ec and Qc. The parameter Ec represents an

energy cut off and should be selected in such a way that the effective-mass approximation

is va.!id for the energy range given by lEI;:; Ec . The parameter Q c determines the way of

cutoff. For sma.!l Q c the cutoff function decreases slowly, while for large Q c it approaches

a step function. As will be shown later. the results are independent of the choice of Q c

and Ec as long as Ec is sufficiently large.

Minimizing the total energy with respect to t'l and t>2 we obtain a system of self­

consistent gap equations

with

( )_ ~ 100
• 91 (IE~-)(n. k. t»1)

[<p.t> -, L..J dk (_) .
n=-oo -oc IE", (n. k. t»1

and

where AL is the L dependent effective coupling constant given by

with

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.12)

A = l3a
f2

.
7rK,

which is the coupling constant for a 2D graphite.

The gap will appeal' only when the original gitp in the absence of lattice distortion

is small. i.e. only when <p is close to an integer. Because all the qualltities arc periodic
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where ~ is the position of the 7/-th kind of carbon atolUs.

In the SSH modcl the transfer integral for bond with larger ,md smaller length

changes from -,0 into p and q. respectively. with

in 'P. we shall limit ourselves to the case I'PI «1. As is described in Appendix B.

analytic expression for I('P.~) is obtained for sufficiently large cutoff Cc as

(5.20)

with a constant C given by
p = -,0 - 2Qui illid q = -,0 + QUI. (5.27)

00 ((21)
C = L 1(21+1)221 ~ 0.1445972.

l=!

(5.21)
where Q being the electron-phonon coupling constant. The Hillniltonian matrix is ob­

tained as

Combining eqs. (5.15) and (5.20), we find a quite simple analytic expression for the

gap Eg('P)=2~('P),

where ((p) is Riemann's zeta-function defined as

00 1
((z) = L;:;:;'

n=l

(5.22)

Aj A z A3 TI j Bz 133

Al pe- iT1 -k qe- iT3 ·k qe- if2 ·k

A z qe- iT2 ·k qe- iT1 ·k pe-iT:j.k

A3 qe- iT3 ·k pe- iT:rk qe- iT1 ·k

BI peif'\.k qeiT2 ·k qeiT3 ·k

Bz qeif'3·k qeiT1 ·k peiT2 ·k

B3 qeif':rk peiT3 ·k qeiT\.k

(5.28)

(5.23)

where Eg=2~(O) is the gap in the absence of a magnetic flux. given by

where 71,7Z, and 73 are shown in Fig. 11 and given in eq. (3.51).

Introduce the following unitary matrix:

and the critical flux 'Pc is given by

5.1.3 Tight-binding model

The energy gap is a monotone decreasing function of the circumference L/a. As will

be discussed later in this chapter. the coupling constant>' for the Kekule distortion is

not much larger than unity and that for the out-of-plane distortion decreases rapidly

with increasing circumference length. Therefore. it is safe to conclude that the lattice

distortion is not important for metallic C 's with large tubule diameter.

(5.29)

r A r B K A KB K' K'A B

0

0 wZ

1 wZ 0

J3 -1

-w wZ

_wz

with w = exp(27ri/3). The column vectors denoted as KA. KB, K~, and Kh are the

eigenvectors at K and K' points in a 2D graphite sheet. The bonding state formed by rA

'Uld r B corresponds to the bottom of the valence band at the r point in the unperturbed

Brillouin zone and the anti-bonding state to the top of the conduction billjd. For this

basis set the Hamiltonian is rewritten as

(5.24)

(5.25)

We introduce "ljJz(r) of the wave function which is a normalized pz orbital for an

isolated carbon atom. For simplicity we shall neglect the overlapping of the wave func­

tions for different atoms. In the tight-binding approximation the usual basis set is {-tfl'1k }

where 7)=Aj,Az,A3,Bj,Bz.B3, with

(5.26)

r A rB KA KB K' K'A B

r A 0 -,oR QUIT -QUjS

r B -,oR" 0 -QujT" 0 -QUjS"

KA 0 -Q·ujT 0 'oS -aujR
(530)

KB a·ujT" rOS" 0 aujR" 0

K' -au!S 0 a·ujH 0 -roTA
K' -au,S" -QujR" -roT" 0B
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R = exp( -iT] ·k)+exp( -iT2 ·k)+exp( -iT3·k).

S = exp( -i7']·k)+exp( -iT2 ·k-27ri/3)+exp( -i7'3 .k+27ri/3), (S.31)

T = exp( -i7']·k)+exp( -iT2 ·k+27ri/3)+exp( -iT3·k-27ri/3).

The 4x4 sub-m:l.trix with respect to K and K points is reduced to the k·p Hamiltonian

(S.l). if being expanded np to the first power in k. We have the rel:l.tion: 'Y = /3a'Yo/2.

~] = 30u]. :l.nd h = 30. It is almost evident th:l.t ±~2 represents a shift in the local

site energy of A and B carbon atoms due to the distortion in the z direction. A self­

consistent band structure calculation is necessary for the determination of h giving a

relation between ~2 and displacement U2, which is out of the scope of the present paper.

Therefore, we shall exclusively consider the in-plane Kekule distortion and put u=u] in

the following.

The elastic energy is written as

'"b
x

::;-
(') 6.0

1-
::!:-
a
Ul

~
a.
~ 30
>,

e'
~
<D

1.1EJCD
~ .
~ 1.0 .

0.9
o 246810

U(l3a)

-- Tight Binding

-Li~~~
<1>/<1>0=0

(S.32)
00 ........~.......-:::l:.................~~--'--'-'-'-'-'

0.05 0.10 0.15 0.20 0.25

effective coupling "-(all)

where Uij is the length displacement of the bond between i-th and j-th atoms and the

sum is taken over nearest-neighbor pairs of < ij >. Since the number of larger distorted

bonds is 1/3 of the total bonds 3N/2 and that of smaller distorted one is 2/3 of 3N/2,

we get

Fig. 43 The energy gap caJcu[;tted in the tight-billding model of CN's having
circumference L=5/3a as a function of the coupling constant>' (the solid line) :l.nd
analytic result obtained in the effective-mass scheme (the dotted line). The inset
shows the caJcul:l.ted force constant Ke(L) of C ·s as a function of the circumference.

It should be noted that this force constant K o is different from K = K] introduced

in eq. (S.8) in the k·p scheme. There is an ambiguity in separation of the total-energy

shift due to lattice distortion into the electronic part and the lattice part. In the k·p

scheme, the electronic part consists only of the contribution in the vicinity of the Fermi

level. where ID nature of CN's plays a decisive role. In the present SSH model. on the

other hand, an appreciable contribution comes from energy shifts of the whole occupied

valence bands. This contribution exists also in a 2D graphite sheet and can be written

as (1/2)NKeu2 with an appropriate force constant K e. In the k-p scheme, K e should be

added to the force constant and we have

Ko 3N [1 2 22] 1 2E =-- -(2u) + -u = -NKou .
p 6 2 3 3 2

K = Ko+Ke.

(S.33)

(5.34)

The electronic states of nanotubes are obtained from eq. (S.28) by the rep!;tcement

of wave vector in the circumference direction by discrete one given by eq. (3.23). Because

the electronic states are mainly determined by the sum na+nb, we shall confine ourselves

to the non-chiral armchair structure with chiral vector L = (2rn, rn)a with integer m

from now on. We have kx = (27r/L)n with n = 1, .... 2m. The first Brillouin zone is

given by -1r /3a :s; ky < 7r /3a. It is straightforward to calculate the total energy by

summing up energy of all occupied b:l.nds and determine gap ~ by a minimization. The

resulting gap for m= 5 corresponding to L/a= 5/3 is shown as a function of the effective

coupling constant >'( a/L) in Fig. 43. The :l.nalytic result obtained in the effective-mass

:l.pproximation is in excellent agreement with that of a tight-binding method even for

such :l. n:l.rrow tubule.

The force constant K e due to the occupied valence bands in 2D graphite can be calculated

in the second order perturbation theory within the present tight-binding model. The

result is K e = -S.8102 /ro. Details are given in Appendix C.

Because the contribution to the total energy shift due to l:l.ttice distortion is propor­

tional to u2 except in the vicinity of the top of the highest V:l.it'nce band where the k· p
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description i quite accurate. the total energy is formally rewritten as

In 10 20

(5.35)

Diilllleter (A)
Circumference (A)
Eg (meV)
u (A)

(T)

6.78
21.3
2.38
6.29 x 10-5

7.58 X 10-4

8.67

13.6
426
5.68 x 10-3

1.50 X 10-7

3.62 X 10-6

1.04 X 10-2

27.1
85.2
6.46 x 10-8

1.71x10-12

8.23 X 10-11

5.89 X 10-8

where v = 1,2.3 are three valence bands obtained from the 6x6 Hamiltonian (5.28), c~-)

is given by eq. (5.17), and K(L) is a force constant depending on the circumference. In

terms of K(L). the gap in the absence of a magnetic flux is written as

Table 4 SOUle ex<tmples of the energy g<tp. bond-length change, critic<tl flux. and
corresponding critical m,,-gnetic field He. calculated for armcha.ir uanotubes with
chiral vector L/a=(2m. m).

5.1.4 Comparison with other studies

Quantitative discussion is possible for the in-plane Kekule distortion, because param­

eters are known without performing self-consistent band-structure calculation. Following

Harigaya.62 we shall use the parameters appropri<tte for C60 :

The agreement between the tight-binding and k·p results is a direct result of the fact

that the force constant K(L) is almost independent of the circumference L/a. This is

demonstrated in the inset to Fig. 43. where calcul<tted Ke(L) == K(L) - K o is plotted

against circumference L / a.

E= 27ri exp [_ .£ K(L) -l-C].
g L aA K

(5.36) of the circumference. Mintmire et aL 8 gave Eg < 10-4 eV for nanotubes with the same

circumference. which is more than one order of magnitude smaller than the present result.

This is presumably due to their inappropriitte 1D model in which the gap is given by

Eg =4au instead of 6au and due to the wrong use of force constant Ko instead of K.

In the c<tSe of the ont-of-plane distortion, the coefficient 12 defined in eq. (5.9) be­

comes nonzero because of the finite curvature and is therefore expected to be proportional

to aiL. Thus, the coupling constant A is proportional to (a/L)2, leading to ALcx(a/L)3,

and the gap decreases very rapidly with the diameter as exp[-(L/a)3J. This is quite in

contrast to the result of Sa.ito et aL9 thitt the distortion appro<tches that of a 2D graphite

with increasing L.

io=2.5eV, a=!l/3=6.31eV/A. and K o =3x49.7eV/A2

Note that present K o is three times <tS large as K o used by H<trigaya and coworkers57 ,58

due to the difference of definition but gives the same value of force constant. For these

parameters, we have K e =-92.6 eV/A2 and K=56.5 eV/A2 Thus the dimensionle s

coupling constant is A"" 1.62. Table 4 gives some examples for Eg , u, 'Pc. and critical

magnetic field He for armcha.ir tubules L/a=(2m,m) with m=5, 10, and 20. It shows

that even for a narrOW tubule with m = 5 effects of the lattice distortion are quite small

and that a small magnetic flux easily destroys the distortion.

Harigaya and Fujita58 obtained Eg "" 4.4 X 10-3 eV and u"" 5.6 X 10-4 A for an

armchair nanotube with m = 5 from the extrapolation of the results for finite tubes to

infinitely long one. The present values given in Table I are slightly smaller but in the

same order of magnitude as this result. This disagreement is partly due to the fact that

Harigaya and Fujita allowed distortion different from the pure Kekule type and partly

due to an ambiguity in their extrapolation to an infinitely long nanotube. It is expected

that deviations from the pure Kekule p<tttem become less important with the incre<tSe

5.2 Effects of Perpendicular Magnetic Field

A magnetic field perpendicular to the tube axis modifies the energy bauds consid­

erably. In high magnetic fields where the magnetic leugth 1== J ch/eH is much smaller

thitu the circumference, well-defined Landau levels can be formed. Figure 44 gives some

ex<tlllpies of the lowest conduction band and the highest valence baud calculated numer­

ically, which become almost independent of k up to a certaiu critical wave vector kH

estimated in eq. (3.40). Correspondingly. the density of tates near the Fermi level is

drastically enhanced from the value 2/7riL in the absence of a magnetic field, as is shown

in Fig. 45. It causes the increase of instability against lattice distortion considerably.

It should be noted that the energy levels become almost independellt of 'P and also of

whether CN's are metals or semiconductors.

First we assume that lattice distortions itre independent of the position to understand

the effects of magnetic field Oil litttice distortions briefly in this section. Efl"ects of spitt.iaJ

variation of distortious will be included in the llext s('ctioll.

5.2.1 Gap equations
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(5.40)

(5.39)

In high magnetic fields where the magnetic length is much smaller than the circum­

ference. L/21fl~ 1, Landau states with no dispersion are formed at the Fermi level and

their contribution to the band-energy shift becomes dominant in the weak-coupling linlit

(Al, --> 0). Therefore, the total energy is approximately given by

where upper sign (+) and lower sign (-) correspond to conduction and valence bands,

respectively. The lattice distortion opens itn energy gap 2J6i+6~.

The gap equations in the presence of perpendiculitr field are given by just replace­

ment E~-)(n, k, 6 1 , 6 2 ) in eq. (5.12) by E~-)(n, k, H, 6 1 , 6 2 ) and one of the in-plitne and

out-of-plane distortions occurs in the same condition with thitt described below eq. (5.14).

In the following we shall consider only one kind of distortion and put 6 =6;, I =Ii, and

K=Ki (i=I,2).

5.2.2 High magnetic field

Thus. the energy ("an be obta.ined by the diitgonalization of the 4 x4 matrix as

lu the presence of the littti("c distortion. the Hitnliltonian in cq. (5.1) has a nonva­

nishing matrix element itnlong stittes {Fnk.uzFnd of it K point itnd {UxFnk.llzllxFnd

of a K' point. Within these bases the Hamiltoniitn is written as

U2nl
····_·1.5

---- 2.0

AL=0.04 -.-. 2.5
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Fig. 44 (Left) Calculated highest valence band and lowest conduction band of a
metallic CN for various magnetic fields perpendicular to the tube axis. The critical
wave vector kH given by eq. (3.40) is denoted by open circles.

Fig. 45 (Right) Calculated density of states in the vicinity of the Fermi level for a
metallic C in magnetic field perpendicular to the tube axis. The density of states
in the presence of a lattice distortion with a gap for Al, = 0.04 is also shown. The
density of states in the absence of a field and lattice distortion is given by 2j-ICfL.

Let F ndr) be the eigen function of the nth conduction band with wave vector k in

the y direction associated with the K point in the absence of a lattice distortion, i.e..

::J 2.0

1-
"<T 1.0

'0
(J) 0.0

1
>. -1.0
0>
Q;
J} -2.0

(5.37)
(5.41)

Then, it is easy to show that u zFnk(r) is the eigenvector of the valence band with energy

-E~k(n,k). F\lrther, uxFnk(r) and llzllxFnk(r) are the eigenvectors of the conduction

band with energy E~k(n, k) and valence band with -E~k(n,k), respectively, of the K'

point. The orthonormality conditions are written as

where LkH /21f';:; (L/21fl)2 The minimization of this gives the energy gap

(5.42)

where the former represents the condition among conduction bitnds and the latter that

between conduction and valence bands.

Jdr Fndr)+Fn'k,(r) = bnn,bkk',

Jdr Fndr)+llzFn'k,(r) = 0,

(5.38)

In the case of it 2D graphite sheet. a single nondegenerate Landau level is fonned at

the Fermi level for K itnd K' points in magnetic fields. These Landau levels are split into

±161 in the presence of a lattice distortion. Decause the number of states with energy

-161 is AL/21fl2 with AL being the itreit of the gmphite sheet, the total energy is given

by

(5.43)
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5.3.1 Effective-mass Hamiltonian

5.3 Position-Dependent Distortion

We should note first that the Kekulc distortion cOlTesponds to the phonon mode of

a 2D graphite sheet at the K and K' points having the highest energy. The displacement

corresponding the phonon at the K' point is written as

(5.45)u;(R;) = UR, ei exp(iK'·Ri ) + C.c,

Fig. 47 Calculated energy gap as a function of a magnetic field perpendicular to
the tube axis for metallic CN's with various circumferences. The solid lines represent
the gaps for 'P =0 and the dashed lines those for 'P =1/2. The results in the limit
L ---> 00 and for a 2D graphite are also included.

field. In high magnetic fields the gap parameter increases almost in proportion to the

field and approaches the value for infinite L. i.e. eq. (5.42). with the increase of m. It is

concluded that a strong magnetic field can induce a sizable amount of lattice distortions

in metallic carbon nanotubes though it may be expouentially small in the absence of a

field.

For CN's the effective magnetic field depends on the position in the circumference

direction as H cos e and the magnetic length changes as I/~. Since the lowering

of the electronic energy comes mainly from the Landau states at the Fermi energy, the

magnitude of distortions also depends on the position. In this section we shall study the

spatial variation of distortions in a perpendicular magnetic field.

(5.44)

Fig. 46 The highest valence band and lowest conduction band of a metallic CN
for various magnetic fields perpendicular to the tube axis in the presence of a lattice
distortion.

Figure 46 shows the highest valence band and lowest conduetion band as a function

of k. The corresponding density of states are given in Fig. 45.

Figure 47 gives the numerical results in CN's with L= v'3ma (armchair nanotubes)

for coupling constant .x = 1.62 corresponding to the in-plain Kekule distortion. Use has

been made of a = 2.46 A and, = 5.33 eV-A ('0 = 2.5eV). For 'P = 0, the gap parameter

increases from the value given by (5.24) monotonically with the increase of a magnetic

field. For 'P = 1/2 a gap parameter becomes nonzero suddenly at a certain critical

magnetic field and rapidly approaches the parameter for 'P = a with the increase of the

5.2.3 Numerical results

The result is 7r/2 times as large as that given by eq. (5.42). In nanotubes the effective

magnetic field is given by its component H cos e perpendicular to the cylinder surface.

Therefore, the number of states is reduced from that of a 2D graphite sheet by (I cos el) =
2/7r, where (... ) is an average over e. This explains the difference between a 2D graphite

sheet and nanotubes with infinitely large circumference.

where the factor 2 represents the double degeneracy of spin. Thus the energy gap is

obtained as
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Multiplying the Schrodinger equation from left-hand side by ~R" (r), integrating it over

r, and multiplying it by exp(-iK·RA), we have the following difference equation.

where i denotes A or B site and e, represents the eigenvectors of the phonon mode at

the K' point (k = K' with K' = (471" /3a. 0)). We shall introduce a slowly varying spatial

dependence in the amplitude UR for an atom at R. The second term ·c.c" in the right

hand side of the above equation denotes the complex conjugate of the first tenn. This

actually describes the displacement corresponding to the phonon mode at the K point.

because -K' corresponds to a K point after being subtracted by a reciprocal lattice

vector. The change in the length of the bond between atom at R A and that at R A-7'1

is written as

(5.51)
eA·(7'r/lfll)=-l. eB' (7'r/lfd) = 1,

eA' (7'2117'21) =ei 1l'/3. en' (7'2117'21) =e2i1l'/3,

eA' (7'3/17'31) =e-i1l'/3, eB' (7'3/17'31) =e-2i 1l'/3,

-,0 L e-iKf,F~(RA -7'1) - 0 L [eiK"f'UR"en - eiKf'UR"eA]' I~I F~,(RA -7'tl
£=1,2.3 1=1.2,3

= c:F~(RA)'
(5.50)

Expanding the envelope functions with respect to Ti'V up to the first order for the terms

proportional to ,0 and to the lowest order for terms proportional to 0, the effective-mass

equation is obtained as

where we have introduced the approximat.ion that uR,,-f, ~ ItR,,·

In Appendix D t.he eigenvectors of the four modes are given in a simple model

in which a force constant is introduced only for bond stretching between the nearest­

neighbor atoms, The phonon with the highest frequency has the eigen vector eA =

(-i/2. -1/2) and en = (-i/2, 1/2) at K' = (471" /3a, 0), We have

the first. in the !rft. hand side of the above equation vanish and the second tertII in the

right hand side vanishes also. Therefore, the differellce eqllation is reduced to

(5.48)

(5.47)

(5.46)

7jJ(r)= L L L ..r;r;;FG(R;)exP[iG'Ril~R,(r).
G=K.K' .=A.B R,

The wave function is expanded in terms of envelope functions as

In the SSH model the transfer integral is given by

The equations for F~(r), F~,(r), and F~,(r) are obtained in the similar manner.

There are other phonon modes at the K' point. For the mode with the smallest

frequency the bond-length change does not occur. For the two-fold degenerate modes

with an intermediate frequency, the leading term of electron phonon interaction is pro­

portional to h' and is small, Therefore, the mode having the Kekulc pattern has the

st.rongest int.eraction wit.h electrons among all modes at. the point K and/or K', In the

following calculation we shall consider only the Kekule pattern as the possible in-plane

lattice distortion,

The final kp equation becomes

L [-,oe-iK.f'F:(RA-7'tl- o(eiK'.f'uR,,_f,eB - eiKf'uR"eA) . I~IF:,(RA -Ti)]
1=1,2,3

-'0 L eiK.RAe-iK'T, F:,(RA-7'£)
£=1,2,3

-0 L eiK'RA[eiKf,u* -e _eiK'·"'u· eA]' ~ F:(RA-7'I)
1=1,2.3 R,,-T, B RA ITzi

- 0 L eiK'.RA[UR,,-f,eB - eiK'.f'UR" eA] , ~ F:(RA -7'£)
1=1,2.3 hi

- 0 L eiK'.R" [uR,,_f,eB - eiKf'uRAeA] , I~(:,(RA -7'£)
£=1,2,3

= c:F~(RA) + c:eiKR" F~,(RA),
(5.49)

where use has been made of the relations exp(iKRA)=exp(-iK'RA) and exp(2iK'RA)=

exp(iK'RA). We can safely assume that the displacement UR and the envelope function

Fl:;,(r) vary only slowly over the range corresponding to the extended unit cell which is

three times as large as the original cell of a 2D graphite sheet without lattice distortions.

When we take an average of eq. (5.49) over the extended unit cell, all the terms except

wit.h

L'.dr)=30u(r),

(5.52)

(5.53)
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Because exp[iK'· (r+L)J =exp(iK'·r) exp( -21rvi/3), we get the boundary condition:

0.5

(5.61)

0.0

Position (units of L)

2nJ3 r;:=:::::::v~=$/~$0:::;-r~-'":"L-=3::-:0::::0~a I
o 0 U2Td=4.0

1 0
---- -1 0

o 1/3

0,5

L=300a

0,0 L-~~e::..~-..L~~_iC.....~

·0.5 0.0

Position (units of L)

v $/$0

0.4 - 0 0
...... t1 0
---- 0 1/3
_._. Approximation

"'"

Fig. 48 (Left) Calculated Kekule distortion (absolute value of ~l) of metallic C 's
with 'P = 0 (solld llnes). 'P = 1/3 (dashed lines). and semiconducting C 's with
'P=O (dotted lines) in various perpendicular field as a fUllction of the po-ition in the
circumference direction. Dash-dotted lines correspond to the approximated results.

Fig. 49 (Right) Calculated phase of ~l versus the position in the circumference
direction. The dash-dotted line overlap the solid line completely.
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with

(5.59)

(5.58)

(5.57)

(5.55)

(5.56)

u,(R..+L)=u,(R,).

(
41rV)

'UR,+L = 'UR, exp - i3 '

~l(X)=J";;= ~;n)exP(i2~nx)exp( -i4~vlJ

~2(X) = "J;oc ~~,,) exp (i 2~nx).

~2(r+L) = ~2(r),

We expand the gap parameters for the circumference direction as

5.3.2 Minimization of total energy

Note that the extra phase factor guarantees the fact that the equations remain the same

under translation r -> r+ L even for v = ±l.. On the other hand, the boundary condition

for ~2(r) is given by

whi h leads to the following condition for the gap parameter:

since the wave vector of out-of-plane distortion is zero as is shown in Fig. 41 (c).

Note that the gap parameter for the in-plane Kekulc distortion (~tl is complex in con­

trast to the real ~2 describing the out-of-plane distortion.

In CN's the lattice displacement u,(R.) given in eq. (5.45) should satisfy the bound­

ary condition

with ~;,,) and ~~n) being expansion coefficients, and the envelope functions as in eq.

(3.34). The equations for C's are written as

(5.62)
21r{ ~(HKBKACA HKBKBCB HKBK~CA)_ CBL ~ mn Kn+ mn Kn+ mn K'n -£ Kml

21r{ ~(HKAKBCB HKAKACA HKAKsCB )_ CAL ~ mn Kn+ ron Kn+ mn K'n -E Km'

21r{ ~(HKSK~CA HKsKsCB HKSKACA)_ CBL ~ mn K' n + mn K'n+ mn K'n -£ Kim'

21r{ ~ K' K' B K' K' A K' K B AL ~(Hm;\ BCK,,,+Hm;\ ACK'n+ Hm;\ BCKn)=c:CK'm'

(5.60)

and

HKBK~ __ HKAKs __HKsKA _HK;,KB _..!:.... A (m-n)
mn - m,n - mn - mn - 21f

T
L1.] ,

HK"KA __HKBKB _ HK~K:, __HKsKs _..!:....6(m-n)
mn - mn - mn - mn - 2"n"'"'Y 2 .

The energy bands c:S;) (n. k. H. {6;n)}. {6~n)}) are obtained by the diagona.lization of eq.

(560).

The clastic energy of the Kekulc pattern distortion is given by

(563)



Page 68 Chapter 5 Lattice Instability 5.3 Position-Dl'pl')H/l'lIt Distortion Page 69

The energy of the out-of-plane distortion is obtained in a similar way and written as

0.2

~
~

;;
'0
Ul 0.0

~
>-
0>
Q)
C
W

-0.2

(5.44) the gap parameter .6.=.6.] or.6.2 at 8 is obtained as

-0.4 '--~----'-_~-'-~_-'--.Lo....---'

0.0 4.0 8.0 12.0 16.0

Wave Vector (units of 27t/L)

Fig_ 51 Calculated lowest conduclion band and highest valence band of metallic
and semiconducting CN's in a magnetic field perpendicular to the tube axis in the
presence and the absenee of in-plane lattice distortion.
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Fig. 50 Calculated lowest conduction band and highest valence band of metallic
(a) and semiconducting (b) CN's in various magnetic fields perpendicular to the
tube axis in the presence (solid lines) and the absence (dotted lines) of the in-plane
lattice distortion.
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(5.64)

Then the total energy is obtained by

(5.66)

It is noted that the average of eq. (5.66) over 8 agrees with the gap approximated by

constant distortions written as eq. (5.42).

In general, Kekule and out-of-plane distortions may coexist in contrast to the case of

constant distortion. in which only Kekule or out-of-plane distortion occurs. In this pa­

per we shall calculate gap parameter of Kekule distortion numerically. A series of gap

parameters .6.\n) is obtained by searching the minimum of the total energy numerically

with use of the conjugate gradient method instead of solving gap equations.

5.3.3 High magnetic field

In the limit of L/27f1 -+ the distortion at position 8 approaches that of a 2D

graphite sheet in magnetic field H cos 8 except in the region 8 ~ ±7f/2. Thus, from eq.

5.3.4 Numerical results

Figure 48 shows the absolute value of the gap parameter.6.] calculated for A] = 1.62 as

a function of the position in the circumference direction. The magnitude of the distortion

is independent of whether C 's are metallie or semiconducting and the magnetic flux.

The distortion becomes maximum at x/L=O (top) and ±1/2 (bottom) and minimum at

x/L=±1/4 (side). The maximum distortion increases with the increase of the magnetic

field. The approximate gap parameter .6. 1 (8) given by eq. (5.66) is denoted by the dashed

line' in the range of the position where a well-defined Landau level is formed.

Figure 49 exhibits the phase of .6. 1 as a function of the position. Decause of the

boundary condition of.6.] in eq. (5.57) a non-vanishing phase appears for semiconducting

CN·s.

Figure 50 shows the calculated energy bands of metallic (a) amI semiconducting
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Fig. 52 Calculated absolute value of gap parameter ~1 versus magnetic field for
metallic and semiconducting CN·s.

(b) C 's near the K and K" points in a various perpendicular field. In a weak field

(L/27r1 = 1.8) the band gap increases monotonically with increase of Ikl· However, in a

strong field the gap takes its maximum at k = 0 and decreases gradually with increasing

Ikl. The gap takes its minimum value near the critical wave vector in which the flat levels

in the absence of distortion (denoted by 'Without Distortion') start to depend on k. At

the minimum gap the degeneracy of K and K' points is lifted for semiconducting CN's

while the two-fold degeneracy remains for metallic CN's. This is discussed in Appendix

E.

Figure 51 shows the calculated energy bands of metallic and semiconducting CN's.

The dashed lines denote the gap parameter approximated by eq. (5.66) with sin (I(k) =
-27r12k/ L. It is demonstrated in Appendix E that the gap parameter corresponds to

the lowest conduction and the highest valence bands. The deviation from the numerical

results increase with wave vector. since the spatial extent of the wave function of the

cyclotron motion becomes larger and the approximation becomes less valid.

Figure 52 exhibits the absolute value of the gap parameter L'l.1 at k = 0 of metallic and

semiconducting CN's with various circumferences L = ma with integer m with use of A=

1.62. The gap parameter of semiconducting CN's approaches that of metallic CN's with

the increase of the magnetic field. The pammeter for both metallic and semiconducting

CN's having infinitely large circumference approaches that of a 2D graphite sheet as is

Fig. 53 (Left) Calculated band gap versus dimensionless magnetic field.

Fig. 54 (Right) Calculated band gap of metallic C "s versus magnetic field.

expected.

Figure 53 shows the band gap of metallic and senuconducting CN's with various

conpling constants. The band gap of semiconducting C 's does not agree with that of

met,alJic CN's even iu a strong magnetic field because two-fold degeneracy of bands is

lifted at the corresponding wave vector. The band gap of metallic CN's are shown in Fig.

54. The gap of CN's having larger circumference becomes smaller iu high maguetic field.

This is because of the fact that the highest conductiou bil.lld starts to decrease with 1/,;1

in a weaker magnetic field for CN"s having larger circumference.

Let us discuss the case of the out-of-plane distortion qualitatively without explicit

calculations. It is expected that the spatial variation of the absolute value of L'l.2 and its

dependence on the magnetic field are similar to those for L'l.l shown in Fig. 48. The phase

of L'l.2. however. beeomes zero everywhere independent of whether C 's are metallic or

semiconducting in contrast to that of L'l.1 having nonvanishing phase for semiconducting

CN's showu in Fig. 49. This is because of the fact that there is no extra phase factor

in the bOlludary condition for L'l.2 given by eq. (5.58) even for semiconducting CN·s.

The dispersion c\Il"ves of the lowest coud uction band and the highest valence band are

eX(Ject.ed to be similar to those for the Kekule distortion exhibited in Figs. 50 and 51.

However. the degeneraey in the conduction band is not lifted even for semiconducting
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C 's. Therefore the band gap of semiconducting CN's agrees with that of metallic CN's

in high magnetic fields in contrast to the case of the Kekule distortion shown in Fig. 53.

5.4 Summary

We have studied both in-plane Kekule and out-of-plane lattice distortion in CN·s.

In the absence of miLgnetic field perpendicular to the tnbe axis. it has been shown that

two kinds of distortion cannot coexist and an analytic expression has been derived for

the energy gap and the amount of distortion as a function of the AB flux by using the

k-p method. The distortion is a strong function of the AB flux and disappears except

in the case of vanishingly small flux. A tight-binding model is used also for the study of

Kekule distortion and gave results in excellent agreement with those in the k-p approach,

The distortion. presents only in metallic CN's in the absence of a magnetic field

and exponentially small. is enhanced drastically by magnetic fields for both metallic and

semiconducting CN's. A maximum di tortion occurs at the top and bottom of the cylin­

drical surface where electrons form Landau levels in a 2D graphite plane. The maximum

distortion is larger for CN's with a larger diameter, while the minimum distortion is

smaller for CN's with a larger diameter in strong magnetic fields.

Chapter 6

Magnetic Properties

In this chapter magnetic properties of CN's arc studied. 63-66 In a magnetic field

perpendicular to the tnbe axis. the miLgnetization is essentially determined hy that of a

graphite sheet. while it is indnced also by the Aharonov-Bohm (AB) effect iu a parallel

field. The AB errect manifests itself in the magnetic-field and temperatlll'e dependence

of the differential susceptibility even for ensembles of CN's having various circumfer­

ences and orientations. The theoretical results are compared with recent experiments on

magnetic properties.

This chapter is organized as follows: In Sec. 6.1 susceptibility and nHtgnetization

are studied for single-shell CN's with carrier doping. In Sec. 6.2 the miLgnetization alld

the susceptibility of realistic sample of CN's without ciLrrier doping arc calculated. A

summary is given in Sec. 6.3.

6.1 Magnetic Properties of Single Nanotubes

6.1.1 Magnetization and susceptibility

In the following calculation. the MII(XIl ) and M.l(X.l) represent the components of

magnetic moment (snsceptibility) in the direction of parallel and perpendicn[;,r direction

of tube axis, respectively, as shown in Fig. 55. FlIl'ther, a set of the Cjuantunl nnmbers

(A, n, k) specifying each state is represented by a single charitcter T. We have

and

A 00 joo2:=z:;;:2: 2: dk.
T >..::::± n=-oo -00

(6.1)

(6.2)

oting that v and <p appear in energy as a combination <p-v /3, we have the free energy

for electrons in the vicinity of the K point

73
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moment MM of a metallic C aud Ms of a semiconducting one as follows:

with

The susceptibility per unit area at nonzero temp('ratur('s can be also written in terms

of the susceptibility at zero tempemture in the same way as the magn('tic mom('nL

(6.7)

(6.6){
M~·.i(cp.H.i)=,1MP(cp.H.i)'

M~,.i(cp.}h)=2MP(cp+1/3.H.i) +2MP(cp-1/3.H.i)'

xll ..i( - ~.E) =.2- lim _8_MII,.i(cp_~.H.i.E). (6.8)
3 AL HII,.L~o 8HII ,.i 3

Adding the contribution of K' point. we get the susceptibility of metallic and semicon­

ducting CN's as follows:

H.i

Fig. 55 Components of magnetic moment (susceptibility) in the parallel (MII(X Il ))
and the perpendicular (M.i(X.i)) direction to the tube axis.

Let us first consider magnetic properties of undoped CN's at zero temperature in

the parallel field. In a straightforward calculation from eq. (6.5). we get

where T is temperature, kB is the Boltzmann constant, and iL is the chemical potential

satisfying the condition that the electron number is constant. Further, gOre) is the cutoff

function defined in eq. (5.11) containing two parameters, Ec and o!c. Results do not

depend on these parameters. as long as Ec is sufficiently large and O! is not extremely

large. In fact. this cutoff function can be eliminated in an appropriate procedure. Detail

are discussed in AppendLx F.

The magnetie moment in the direction parallel (II) or perpendicular (1.) to the axis

is calculated by taking a first derivative of F with respect to the field under the condition

that the total number of electrons is fixed. The result is represented as

{
X~.i(T, iL) =4XIl ,.i(0),

X~,.i(T, IL) =2XIl ,.i(1/3)+2XIl ,.i( -1/3).

6.1.2 Undoped eN's at Zero Temperature

(6.9)

(6.10)

where /(E) is the Fermi distribution function and MII,.i(E) is the magnetic moment at

zero temperature for the Fermi level E, given by

(6.5)

where ILB=en./2mc is the Bohr magneton and Wdcp) is dimensionless quantity given by

1 ~ JOO - ,,;o'l'(n) ((-) )1)
WI(cp) = -4 L dk J' ( )2 k2 gl IEo'l' (n,k, (6.11)

1r 11.=-00 -00 "'o<p 11 +

with k= Lk/27r. As is derived in Appendix F. in the vicinity of cp = n with n being an

integer. WI is obtained as

(6.12)

with 8(E-E r ) being the step function. Equation (6.5) is also obtained from the derivative

of a total energy under the condition of the particle number conservation. Adding the

contribution from K' point and multiplying the factor two of spin degeneracy (the spin­

Zeeman energy is small and therefore neglected for simplicity), we obtain the magnetic

There[ore, the moment itself vanishes but its derivative diverges logarithmically (positive

infinite) at cp=n, "nd metallic CN's show paramagnetism in a weak parallel field.

Figure 56 shows the magnetic moment of a metallic and semiconducting CN as a

[unction of cp obtained in the present k-p approximation (a) and in a tight-binding model
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an energy shift to the second order in its strength. We have
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The shift in the total energy becomes

(6.14)

(6.15)

(a) (b)

Fig. 56 Magnetic moment of metallic (solid line) and semiconducting (dotted line)
CN's versus magnetic flux parallel to the tube axis calculated in the effective-mass
approximation (a) and tight-binding model (b).

(b). The moment calculated in the effective-mass approximation is in excellent agreement

with that of a tight-binding modeL The magnetic moment is a periodic function of flux

with period of magnetic flux quantum since the moment is induced by the AB flux. In

a weak field metallic and semiconducting CN's show paramagnetism and diamagnetism,

respectively.

It should be noted that this magnetic moment is closely related to the persistent

current in metallic rings. 67 .68 For a small metallic ring with magnetic flux. each eigenstate

carries a nonzero current along the ring. Because of a large cancellation the total current

becomes very small after the summation over all occupied states up to the Fermi leveL69.70

Though the situation in C is certainly different from that in usual metallic rings, similar

large cancellation exists even in C

In order to ca.lculate the susceptibility for a magnetic field perpendicular to the tube

axis, we first calculate the shift of the energy levels up to the second order in magnetic­

field strength Hl.. As has been shown in Chapter 3, the magnetic field introduces the

following perturbation described by the Hamiltonian H' defined by
sion:

(6.17)

(6.16)

(
V) 1 A = 1 82t:,.£(-)(n k)

xl. cp-- = --- '" elk "<p. 91(1£(-)(n k)I).
3 AL 27r ~ 8H2 "<p'

n=-CX) -

The susceptibility per unit area is calculated as

Note thecl1:\nge in the cutoff function from 90(£) to 91(£) (defined in (5.13)) in the above.

There occurs an accidental degeneracy for some v;t!ues of II and cp. Consider the

case v=O and cp=I/2. for example. In this case, the valence-band states with n=O and

n = -1 are degenerate with each other and the second order perturb;ttion breaks down

because of the presence of the shift to the first order in H. When the energy shifts arc

summed over all the occupied valence band states, this first order energy shift cancels

out with each other and does not contribute to the total energy. The only modification is

that intermediate states n' accidentally degenerate with the band n should be excluded

in the summation in Eq. (6.15). This is a result of the fact that the trace of a matrix is

invariant under any unitary transformations.

After a straightforward manipulntion, X(CP) is tmnsformed into the following expres-

-0.6 L-~-L.-,-....L~--l.~_L-~
M ~ M M M 1~

Magnetic Flux (units of ch/e)

Tight Bindingk'p Method
'0.6 L-~-L.-,-....L--,--.L--,---l--"----.J

0.0 0.2 0.4 0.6 0.8 1.0
Magnetic Flux (units of ch/e)

(6.13) (6.18)
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Fig. 57 Susceptibility of metallic (solid line) and semiconducting (dotted line)
CN's versus magnetic flux parallel to the tube axis calculated III the effectIve-mass
approximation.

the band gap de<Teascs with magnetic field as has b,'en dis('llssed ill ChaptN 3. This

effect. which is the origin of the diamagnetism. is larger for C 's with larger band gap

in the itbsence of it magnetic field. Consequently. the diamagnetic 'Ilsceptihility takes

a maximum for C 's with largest band gap (<p = 1/2 for v = 0) and a minimlllll with

vanishing gap (<p=0 for v=O).

Equation (6.18) shows that the sllsceptibility is proport,iollid to the circllmference

Land tberefore diverges in the limit of infinitely litrge L. This depen(!<-uce is closely

related to the susceptibility of a 2D graphite sbeet. The following expression was derived

for the susceptibility per Ilnit area of it graphite sheet: 71 .72

(6.21)

For a single ideal 2D graphite layer. the Fermi energy IL vanishes and the susceptibility

diverges at zero temperature. Because of the large interlayer spacing in comp,trison with

a, the diamagnetic response of graphite is dominated by that of a single graphite layer.

Weak interlayer coupling leads to a small dispersion in the direction perpeudiculitr to the

layer and modifies the Fermi energy.73 Consequently, a 3D graphite has a finite but very

large diamagnetic sllsceptibility observed experimentally.74

An expression independent of the cutoff function is derived in Appendix F. In par­

ticular. the average over <p can be calculated analytically as W2 = 1/327r2, which gives

where W2 (<p) is the dimensionless quantity defined by

(6.19)

and X· is a characteristic susceptibility defined by

XM = xs = -1.27 X 10-2 x !:x·.
(L

Equation (6.21) is written as

(6.22)

(6.23)

• _ 27r, (A)-2~
X - a 7ra2 a2'

(6.20) This agrees with the susceptibility of CN if we replace JL by 0.85x,(27r/L) which is the

typical confining energy due to a finite circumference.

corresponding to 1.46 x 10-4emu/mol or 1.21 x 10-5emu/g for ,=6.46eV·A.

Figure 57 shows the calculated susceptibility of a metallic and semiconducting CN·s.

The susceptibility is negative irrespective of <po i.e., CN's are diamagnetic for a magnetic

field perpendicular to the axis. The ab olute magnitude of the susceptibility of a metallic

C is smallest for ¢ = 0 and takes a maximum at <p = 1/2, though the val;ation itself is

small. Further the susceptibility of metallic and semiconducting CN's is not so different

from each other.

The weak dependence of the susceptibility on the magnetic flux is understood as

follows. When a magnetic field perpendicular to the axis is applied, Landau levels begin

to be formed. The Landau levels are essentially those of a 2D graphite layer and therefore

6.1.3 Numerical results: susceptibility

Susceptibility at zero temperature is calculated by using eq. (6.8), and tbe results

are shown in Fig. 58 as a function of the Fermi energy IL. The susceptibility at JL = 0

agrees with that of it previous paper. 63,64,75 Botb metallic and semiconducting C 's

show positive divergent susceptibility in the parallel field where the Fermi energy lies at

band edges. The divergence for metallic CN's is logarithmic as shown in Appendix G.

while that for semiconducting CN's corresponds to thitt of the density of st,ttes at b,tnd

edges. When the Fermi energy moves away from bitnd edges, the parallel susceptibility

becomes negative (diamagnetic). For a perpendiculitr field. CN is dianlltgnetic but tllruS

into paramagnetic when the Fermi energy becomes away from IL= O.
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Fig. 60 (Left) (Up) Edges of the lowest and the second lowest conduction bands
(solid lines) and Fermi energy (dotted line) for metallic CN's with carrier density
ndL2 = 4 versus magnetic flux passing through the cross section of CN's in the
absence of perpendicular magnetic field. (Down) Calculated magnetization in the
parallel direction for metallic C 's for ndL2 =0 and 4 ill a magnetic field L/21r1 =0
and 1 at zero temperature.

Fig. 61 (Right) Calculated magnetization in the parallel direction for semiconduct­
ing CN's with n"L2 =0 and 4 in a magnetic field L/27(/=0 and 1 at zero temperature.

Figure 62 shows the magnetization of metallic C 's at zero temperature as a fnnc­

tion of perpendicular field. In the nndoped case, the itbsolute value of the magnetization

increases smoothly with the magnetic fidel. In the ('a.~e of "''' £2 = 7.5, on the other hand.

the magnetization changes from positive (paramitgnetic) to nC'gittive (diitmagnetic). This

negative corresponding to the diitmagnetic susceptibility shown in Fig. 58 in a weak

parallel field, but exhibits cusps when the Fermi level crosses band edges as shown in

the upper panel of Fig. 60. The magnetization for ndL2 = 4 nearly vanishes in a strong

perpelldicular magnetic field.

The results for semiconducting C 's are shown in Fig. 61. In the absence of carrier

and perpellelicular field. the magnetic moment decreases linearly in a weak field and

increases sharply in the range of 0.31:,</>/</>01:,0.4. The change of magnetization curves

due to carrier doping and perpendicular field can be understood in the same way of that

for metallic CN·s.
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Figure 60 gives calculated magnetization in a parallel direction of metallic C 's at

zero temperature. It shows that the parallel magnetization is reduced considerably in

a strong perpendicular magnetic field. This is a direct consequence of the fact that the

energy shift induced by the AB flux becomes small in a perpendicular magnetic field, as

has been discnssed in Chapter 3. The figure contains also the result for nonvanishing

carrier density nd per unit area. For ndL2 = 4, for example. the magnetic moment is

Fig. 58 (Left) (Up) The band structures of metallic (solid lines) and semiconducting
(dotted lines) C '5. Calculated susceptibility of metallic (solid lines) and semicon­
ducting (dotted lines) C 's in the direction of perpendicular (Middle) and parallel
(Down) to the tube axis versus chemical potential at zero temperature.

Fig. 59 (Right) Calculated susceptibility of metallic (solid lines) and semiconduct­
ing (dotted lines) C 's in the direction of parallel and perpendicular to the tube
axis versus temperature.

Figure 59 shows the susceptibility in the parallel and perpendicular directions for

/"=0 as a function of temperature. Note that the chemical potential does not vary with

temperature due to the symmetry of the density of states about e = O. The positive sus­

ceptibility of metallic CN's in the parallel direction decreases rapidly with temperature,

while the other negative susceptibilities rise very slowly. This temperature dependence

can easily be understood from the Fermi-level dependence of the zero-temperature sus­

ceptibility shown in Fig. 58.

6.1.4 Numerical results: magnetization
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6.1.5 Tight-binding model

(6.24)

(6.25)

as

{
M~,s(H)=x~,sH cosO· AL,

(6.26)
Mii.s(H) =xti.,sH sin 0 . AL.

From eqs. (6.24)-(6.26), the magnetic moment of ensembles of CN's is represented as

(MMs(H))av =fdLP(L)Jdn[M~s(L2~cosO,HsinO)cosO
, 47r '47r'l-'0

L
2
H ]+Miis(--cosO,HsinO)sinO.

, 47rtPo

with H being the strength of magnetic field. n being solid itngle, 0 being the itllgle between

a magnetic field itnd tube's axis. itnd p(L) being a normalized distribution function of

circumference length of a sample.

In weak magnetic fields. the magnetic moment is written by using the susceptibility

6.2 Magnetic Properties of Ensembles
6.2.1 Average

where

Realistic samples contain CN's with different !ityer nnmbers, circnmferences, and

orientations. Because interactions between adjacent layers of a multi-shell CN are weitk,

its magnetic properties are expected to be given by those of an ensemble of single-shell

CN's with different circumferences. In the following, we shall calculate the mitgnetic

moment of ensembles of CN's. We shall confine ourselves to the case of undoped C 's

for simplicity. The ensemble average of magnetic moment is given by

binding model in which effects of a magnetic field c<\n he incorporated as a Pei<'rls' phase

f<\etor in transfer inlegrals. In Fig. 63 the magnetization of zig-zag nanotuhes (L/a=51

<\nd 81 with llb = 0) in the perpendicular field is compar('d with thitt obtained in the

k· p approximation. The two results are in good itgreement with each other except in

extremely high m<\gnetic fields or in the case of CN's wit,h smitll circumfNenees. The

arrows indicate the ll1itgnetization at H = 100 T, where the m<\gnetic length I is about

10 times as large as the lattice constitnt a. The discrepancy between the results of two

approximations becomes itppreciable ronghly around this magnetic field.

The magnetic susceptibility was recently calculitted in a tight-binding model 76 and

therefore will not be presented here. It is worth mentioning. however. that the tight­

binding result is again in good agreement with the present k· p result shown in Fig.

58.
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Fig. 62 (Left) (Up) Edges of the lowest and the second lowest conduction bands
(solid lines) and Fermi energy (dotted line) for metallic eN's versus perpendIcular
magnetic field with AB flux 'P = 1/2 and carrier density ndL2 = 7.5. (Down) Cal­
culated magnetization for metallic CN's versus perpendicular magnetic field in AB
flux ¢/tPo=O and 1/2 for carrier density ndL2=0 and 7.5.

Fig. 63 (Right) Calculated magnetization of metallic CN's with ndL2 = a versus
perpendicular magnetic field in both kp approximation (solid line) and tight-bindmg
model of zigzag CN's having circumference L = 5la (dotted line) and 8la(dashed
line). The magnetization in the k·p method shows good agreement with that in the
tight-binding model up to about 100 T.
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change is again due to the band-edge crossing of the Fermi level. In sufficiently high mag­

netic fields, the magnetization becomes nearly independent of the carrier concentration.

This is a consequence of the fact that the lowest band forms dispersionless Landau level

and does not contribute to magnetization when L/27rl:» 1.

Figure 62 contains results for the AB flux tP/<Po = 1/2. In the absence of the perpen­

dicular field. two bands with n = a and -1 are degenerate and this degeneracy is lifted

linearly with increasing field as shown in the upper panel and as has been discussed in

Sec. 6.1.2. The magnetization becomes independent of the AB flux agitin in sufficiently

high magnetic fields.
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The magnetization itnd susceptibility of CN's can be calculated also in a tight- (M(H))av = (X)avH·ALav' (6.27)
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Fig. 64 (Left) Calculated magnetization and differential susceptibility of realistic
samples in which the distribution of circumference is delta-funct.ion (-olid lines),
Gaussian with a = 0.3Lav (dotted lines), and triangular having Lmn =0.5Lav nnd
Lmx = 2Lav (dashed lines). Solid lines represent the results of single CN's having
the same circumference length.

Fig. 65 (llight) Calculated susceptibility of realistic samples without carrier versus
temperature in which the distribution of circumference is delta-function (solid lines)
Gaussian with a = 0.3Lav (dotted lines). and triangulnr having Lmu =0.5Lav a.nd
Lmx = 2Lav (dnshed lines). The susceptibility rises at low temperature because of
the AD effect.

parallel field. Further, the negative contribution present for the magnetic-field range

(L/27f1)2;S 0.7 is essentinily due to the diamagnetic moment of senllconductiug CN's in

the parnllel field.

Figure 65 shows the zero-field susceptibility of ensembles as a function of temper­

ature. In this figure L means L av for the Gaussian and triangular distributions and it

is found that the tempernture dependence of susceptibility is essen tinily given by that

of single-shell CN's having the average circumference also. The absolute value of sus­

ceptibility gradually decreases with temperature except at low temperatures. The sharp

rise at kBT;S 0.1 x (47f1 /3L) is again due to the divergent paramagnetic susceptibility of

metallic CN·s. i.e .. a direct manifestntion of the AD effect.

The magnetic properties of CN's were recently mensnred experimentally.77.79 Fig­

nrc 66 shows the experimentnl result of ref. 77 together with the magnetization aud

differ('ntinl susceptibility cnlcnlated for the rectangu];tr and triangulnr dist.ribution with

Lmu =22A corresponding to the finest CN 50 far observed and Lmx =942.5 A correspond­

ing to the thickest C . The calcnlntion Citil explain the experiments qualitatively. but
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p(L)=~ (Lmn<L<Lmx ): Rectangular Distribution. (6.29)

p(L)=2 OOXLmxU:::L )2 (Loon <L<Lmx ): Triangular Distribution.
(Lmx-Loon

6.2.2 Numerical results

Figure 64 gives the calculated magnetization and differential susceptibility of CN

ensembles at zero temperature as a function of a magnetic field. Results for the Gaussian

and triangular distributions are shown and the unit (L/27f1)2 of the magnetic field is

for Lav . TillS shows clearly that characteristic features of the magnetic properties are

essentially determined by those of single-shell C 's having the average circumference.

The magnetic moment is negative (diamagnetic) and its absolute value increases as

a function of the magnetic field. This overall dependence is governed by that of the

magnetic moment for perpendicular magnetic field shown in Fig. 62 and the parallel

contribution or the AB effect appears as a slight deviation. This deviation becomes

clearer in the differential susceptibility. In fact, the differential susceptibility increases

with the decrease of the magnetic field sharply in weak magnetic fields (L/27fL)2 ;S0.2.

This is a result of the divergent paramagnetic susceptibility of metallic CN's in the

The first is the Gaussian distribution around a certain average circumference L av with

the root-mean-square deviation a. The rectangular distribution roughly corresponds to

the situation that C 's with different circumferences are distributed equally and the

average layer number of multi-shell CN's is independent of the circumference. When the

average layer number of CN's increases with the circumference, on the other hand, the

number of CN's with small circumferences is effectively enhanced and the distribution

becomes asymmetric about L av . The most extreme case can be realized if we assume

that each CN has layers such that the circumference of the inner-most shell is always

Loon. In this case the distribution is given by a triangular form.

with

(X)av = JdLP(L)~[X~+2X~+2X~+4xt]. (6.28)

At zero temperature the susceptibility diverges for some values of JL corresponding to band

edges, where the magnetization is not given by eq. (6.26). However, this divergence is

removed at nonzero temperatures. At sufficiently low temperatures and in low magnetic

fields, the magnetization exhibits a small paramagnetism due to the AB effect of metallic

CN's.66 The corresponding temperature is very low and is given by kBT;S 1(27f/ L)xlO-7

as shown in Appendix G.

The distribution function p(L) is not known and therefore we shall consider following

three different kinds:
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Fig. 66 (Left) Calculated ensemble average of magnetic moment and differential
susceptibility for CN's with rectangular (dotted lines) and triangular (dashed lines)
circumference distribution having Lmn =22A and L mx =942.5A. Solid lines denote
the experimental results of magnetization and differential susceptibility.77

Fig. 67 (llight) Ensemble average of susceptibility versus temperature by Yumura
et aL. 78 and Heremans et aL. 77 . Calculated results are obtained for CN's with rectan­
gular and triangular circumference distribution having Lmn = 22A and Lmx = 942.5A.

the period of the magnetic flux quantum <Po. The phase of the oscillation is opposite

between metallic and semiconducting C ·s. i.e.. for a small flux the moment is in the

same direction as the flux in the metallic case and in the opposite din'ction in the

semiconducting case. In both cases the moment docs not depend on the circumference.

The susceptibility of a single CN is negative (diamagnetic) and docs not depend so

much on whether it is metallic 01' semiconducting. It is proportional to the circumference

and becomes infinite in the limit of infinite circumference. This has been understood in

conjunction with the susceptibility of a 2D graphite sheet.

The magnetization in a weak field and the susceptibility of single CN's chauge dras­

tically by carrier doping. However. the magnetization becomes independent of carrier ill

a strong field where all the carriers exist in well-defined Landau level.

The magnetization and the susceptibility of realistic undoped samples are calculated

for three different kinds of the distribution of the circumference; a Gaussian. rectangular.

and triangular distributions. The Aharonov-Bohm effect manifests itself as the increase

of the differential susceptibility in a weak field. The experimental results by Heremans

et al. 77 exhibit the characteristic structure and lie between those for the rectangular and

triangular distribution. The AB effect also appears as the increase of the susceptibility

at low temperatures. The experimental results by Heremans et (11.77 and Ramirez et al. 79

do not exhibit the increase of susceptibility in a weak field, while that by Yumura et al.78

seems to this characteristic features predicted theoretically.
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more detailed information on the distribution of C 's is indispensable for more quanti­

tative comparison.

The temperature dependence of the susceptibility was measured also and the results

are shown in Fig. 67 including the calculated results for the circumference distribution

being rectangular and triangular. The experimental results of Ramirez et al. 79 and

Heremans et aL.77 do not exhibit the increase at low temperatures predicted by the

theory (Fig. 65). However. Yumura et aU8 observed an increase of the susceptibility in

the range of 0 to 30K in samples of purified nanotubes without other carbon structures.

The susceptibility of bundles of aligned CN's was measured als080 However. the

experimentally observed susceptibility is larger for the parallel field than for the perpen­

dicular field, quite in contrast to the theoretical prediction shown in Figs. 58 and 59.

The origin of this discrepancy is not known.

6.3 Summary

The magnetic properties of single and ensembles of CN's have been studied in an

effective-mass approximation. The magnetic moment oscillates as a function of <p with
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Chapter 7

Summary and Conclusion

In this paper we have studied electronic states. optical absorption. lattice instability.

and magnetic properties of carbon nanotubes in magnetic fields in the effective-mass

theory.

In Chapter 3 electronic states of CN's have been calculated. The sensitive change

of CN's from a metal to a semiconductor depending on its structure is well reproduced

in the k-p method. The band gap is inversely proportional to the tube diameter and

exhibits a drastic change as a function of magnetic flux passing through the cylinder

cross-section with the period of the magnetic flux quantum due to the Aharonov-Bohm

effect.

In a magnetic field perpendicular to the tube axis, a well defined Landau level is

formed at the Fermi energy, which agrees with the result of a tight-binding model in a

wide magnetic-field range except in except extremely high fields where the flux passing

through the unit cell of a two-dimensional graphite is comparable to the flux quantum,

i.e. ~ 4000T. A slight deviation of the tight-binding results from that in the k-p method

in weak magnetic fields can be explained by the inclusion of higher order terms in the

k-p expansion leading to trigonal warping of bands.

In Chapter 4 optical absorption spectra have been calculated in the presence of a

magnetic field parallel to the tube axis. A drastic change in the bitnd gap due to the

AB effect manifests itself in optical spectra for light polarization parallel to the axis. In

the case of perpendicular polarization. the absorption is suppressed strongly by a large

depolarization effect. These characteristic features are not modified by carrier doping.

In Chapter 5 we have studied lattice instability toward in-plane Kekule and out-of­

plane distortions is studied. The k-p model Hamiltonian with the distortions is given by

Dirac's relativistic equation. In the absence of a magnetic field perpendicular to the tube

axis. only metallic CN's are unstable against the distortions. The resulting gap equation

has been solved analytically in the presence of an AB flux, leading to the conclusion

that the Kekule and out-of-plane distortions cannot coexist. A tight-binding model gives

results in excellent agreement with k-p results and justifies the k-p model Hamiltonian.

The distortion is enhanced drastically by a perpendicular magnetic field for both

metallic and semiconducting CN's. A maximum distortion occurs at the top fl.nd bottom
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of the cylinder surface where <'!<,e(rons form Landau kvds in " 2D graphite pl1U1<'. and

its magnitude is independent of the magnetic flux and whether C 's are metallic or

semiconducting. A minimum distortion occurs at th<' sid<' wall rcgion of th<' cylinder

surface where the effective perpcndiculaT magnetic field vanishes.

In Chapter 6 magnetic properties of C 's have been cakulat<'d in til(' k·p model. Th<'

magnetic moment in a magnetic flux parallel to the tubc axis osdllat<'s as a function of

the flux and exhibits paramagnetism and diamagnetism for metallie and semicondllcting

C 's in a weak field. respectively. In a magnetic field perpendiclIlar to the axis. both

metallic and semiconducting C 's exhihit a large diamagnetism originated from fl. 2D

graphite sheet.

The paramagnetism of metallie CN's induced by the AD flux m"nifests itsdf ill the

magnetic-field and temperature dep<'llClence of the diffNential susc<,ptihility of ensemhks

of CN's having various circumfer<'nce and orientations. The magnetic properties turn

out to be strongly dependent on carrier doping.
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Peierls' Phase

For a uniform magnctic field, wc havc rotA(r) = rotA(r - R) = Hand conscquently

rot[A(r)-A(r-R)]=O. Dcfiuc XR(r) such that
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callcd thc Pcierls' phasc. In this Appcndix we will rcvicw this phasc.

Introduce a wavc function iJiR(r) for a nondcgcllcratc lcvel of an atolll locatcd at

position R. The Schrodingcr cquation is writtcn as
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~XR(r) = A(r) - A(r-R).

It is straightforward to show that thc wave function

<'iiR(r) = iJiR(r)cxp [i~XR(r)]
ch

satisfics

[
1 (e )2 ]_ _

2m p+~A(r-R) +V(r-R) iJiR(r) = EiJiR(r).

i.e., <'iiR(r)cx:iJio(r-R). This mCans

iJiR(r)=iJio(r-R)cxp [ - ~XR(r)] cxp[i19(R)].

(AI)

(A2)

(A3)

(A4)

(A5)

whcrc 1?(R) is any function of R.

For Landau or symmctric gaugcs in which A(r) is a lincar function of r. we can

choosc
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Thcrefore, wc have

~XR(r) = A(R) or XR(r) = A(R) . r.

iJiR(r) =iJio(r-R) cxp [- ~A(R)(r-R)].
r~c

91

(A6)

(A7)
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where we have chosen the phase such that v(R) = (e/ch)A(R)· R. As long as the

magnetic length I is much larger than the extent of the atomic wave function. effects

of the magnetic field can be neglected and we can safely replace cPo(r-R) by the wave

function in the absence of the field. Appendix B

Gap Equations with Infinite Cutoff

It is possible to obtain an analytic expression for I(cp.~) for small ~ and cpo First.

we note that eq. (5.14) can be written as

0= of r= dk11
/

2
dt 91 (I~:~)(n+t, k. 0)1) .

n=-=.I-= -1/2 110<,0 (n+t,k,O)1

Thus, eq. (5.16) is rewritten as

(B1)

We first separate the snllll1latioLl into

-= =
I=f(O.cp.b)+ L f(n.cp.b) + Lf(n.cp.b),

where

(I33)

(I34)

with k=Lk/21r and o=~L/21rf.

Because f(n. cpo 0) decays rapidly for large n and the series couverges. we can extend

the cutoff to infinity and eliminate the cutoff functions. Thus we have

(B5)

For small 0 and cp, the leading contribution comes from the first t.erlll n = O. which is

calculat.ed as

(B6)
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For n i' o. we can neglect 6 and <p safely and get

Thcrefore. the integral becomes

(B7)

(BS)

Appendix C

Force Constant for Graphite Sheet

For graphitc shcct thc cffcctivc forcc constant which comcs from clectronic statcs

can be calculated by the sccond ordcr pcrturbation. Wc first pcrform a unit,uy transfor­

mation for the Hamiltonian (5.30) to diagonalize thc uon-perturbative part:

where

oc ((21)
Co = L 1(21 + 1)221 "" 0.1445972.

l=]

with ((p) is Riemann's zeta-function. defined as

00 1
((p) = L;P'

n=l

(B9)

(BlO)

r- r+ K- K+ K'- K'+

r- -IoIRI 0 -au6 au6 -au6 m'~4

r+ 0 lolRI -au6 aU~1 -au~4 m'6
K- -au~i -au~2 -IoISI 0 -au~5 aU~G

K+ auG au~i 0 lolSI -au~G au6
K'- -auG -au~: -au~5 -au~6 -IoITI 0
K'+ au~: auG aU~6 aU~5 0 lolTI

with

ROT TOS ROT TOS ROS SOT
6 = 21RI + 2iSf' 6 = 21RI - 2iSf' 6 = 21RI + 21TI'

ROS SOT SOR ROT SOR ROT
~4 = 2jRf - 2jTf' ~5 = 2iSf + 2jTf' ~G = 21ST - 2jTf'

(Cl)

(C2)

whcrc (-) and (+) mcan valcncc and conduction b,tnds, respcctively.

Bccause the trace of a matrix is invariant under any unitary transformation. cncrgy

shifts due to interaction among valence-band states do not contributc to thc total encrgy

shift anel those due to interactions between valence and conduction bands should be

calcnlated. It is elcar that the cncrgy shift is O(u2 ) cxcept in the vicinity of thc r
point whcre valence and conduction bands are degeneratc. At the r point. thc encrgy

changes to the first ordcr in u. but the vanishing density of states at thc Fcrmi level

in 2D graphite makes this contribution ncgligibly small. Thcrefore thc sccond ordcr

pcrturbation is applicable all ovcr the first Brillouin zonc. The elcctronic contribution

to thc forcc constant f(c is obtaincd through the rclation 6E = N f(c'u 2 /2 in terms of the

cnergy shift 8E given by

(C3)
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where the integral is carried out over the first Brillouin zone in the distorted lattice.

Actual numerical calculation is performed by introducing a small imaginary number in

the denominator and gives K e = -5.8102/'0'
Appendix D

Phonon Modes of 2D Graphite

In this appendix in-plane phonon modes are discussed using a simple model in which

a force constant is nonzero for only the nearest-neighbor stretching motion. The La­

grangian for phonon is given by

(Ol)

where M is the mass of carbon atoms. K is the force constant, and u is the displacement

of carbon atoms. From Euler's equation

d o£ o£
ill ounR.;) - OUnRi) = O. (,L = X, y).

we get equations of motion

(D2)

(D3)

Substituting unR.;. t) =unk) exp(ik·R, - iwt) into (D3). we get the dynamical matrix

up, u~ un u~

C'
0 D]

D, 1arb ~;
3/2 D 2 D 3 (D4)
D* 3/2

3~2
2

D* D* 02 3
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Fig. 68 (a) Calculated phonon dispersions of in-plane modes given by using only
one force constant for bond stretching between nearest-neighbor atoms. (b) Cal­
culated phonon dispersions of in-plane and out-of-plane modes given by using four
bond stretching and four bond bending force constants. Dots denotes an experimen­
tal data.

Wavevec[or,q

(b)

3.0'"""'---+----+-------:::....-i

o.or.!,-oo<'=------.....M--~K------"-...J
Wave Vector

(a)

(D5)

eigen vector (-i/2.1/2. i/l.l/2) is shown in Fig. 69 (b). The distortion for another eigell

vector is obtained by rotating e:tch vector by 7r /2 clockwise. For the phonoll mode of

w = 0 there is no bOlld length change as is shown in Fig. 69 (c).

Fig. 69 Displacement patterns of atoms for in-pl:tne~ollon modes hitving wave
vector K and K' with w = /3a.fKTM (a). w = V3/2a.fKTM (b) itlld w = 0
(c). Thick :tnd normal lines show larger and smaller distorted bonds, respectively,
and dotted lines show undistorted bonds. Distortion (:t) corresponds to the Kekulc
p:tttern.

with

D 1 = -~ exp [i~/i; ] cos (9:/i; ).2 2}3 y 2 x

}3 [. a ]. (a )D 2 =-iZ exp 1
2

}3ky sm ?ikx,

D J = -exp [- i ';ky ] -~exp [i2~ky] cos (~kx).

The dispersions of the four in-plane modes given by eq. (D4) are shown in Fig. 68

(a). Since the force constants for bond bending are neglected, two branches with w = 0

and }3a.fKTM are independent of the wave vector. Figure 68 (b) exhibits calculated

phonon dispersion curves of a 2D graphite using four bond stretching and four bond

bending force constants81 Two dispersions crossing in the lowest energy at the K point

are the branches of out-of-plane mode. The dots denote experimental data.

The eigen vectors (eA,ea) at K'=(47r/3a,O) are obtained as

(a) (b) (c)

w/a/KiM = /3, 13f2,

Displacement of carbon atoms are given by taking the real part of ui(Ri) and that of

each mode at K' point are shown in Fig. 69. The pattern for w= /3aJ'KlM in Fig. 69

(a) is so-called the Kekule structnre which consists of a network of hexagons with the

alternating short and long bonds like in the classical benzene molecule. The modes with

w= lf12a.fKTM are two-fold degenemte. The corresponding lattice distortion for the



Appcndix E: £;uu/;w Ll'vd, ill Distortcd Latticc

ilnd ncar thc K' point

Page 101

Appendix E

Landau Levels in Distorted Lattice

1 ( ho(.l'-X+) )
J2 -iho(x-X_) sgn(k)

1 (ho(x-X+))J2 iho(x-X_) sgn(k)

for conduction band.

for valcncc bilnd.
(E5)

With use of the abovc fo111' wavc functions as the bases. thc HilllJiltonian 7-l{;, relatcd

to thc lattice distortions arc givcn by

As is shown in Figs. 50 and 51. the two-fold degeneracy of band coming from K and

K' points remain in the Kekule distortion except near the band gap of semiconducting

CN's. In this appendix we study the lowest conduction band and the highest valence band

in a perpendicular magnetic field in the presence of Kekule and out-of-plane distortions

analytically.

From eqs. (3.38) and (3.39), the wave functions of the lowest Landau level near the

K point are given by

with

K K'

7-l{;, = (~~~ ~:J,

K'(e) K'(v)

7-l{;, = K(e) (-Dl(X_)+Dl(X+) DI(X_)+Dl(X+))
, K(v) DI(X_)+DI(X+) -D1(X_)+D1 (X+) ,

(E6)

(E7)

(
0 ) and (hO(X-OX_)) ,

ho(x-X+)

and the wave functions near the K' point

(El)
and

K(e) K(v)

7-l{;" = K(e) (D2(X_)-D2(X+) -D2(X_)-D2(X+)) ,
- K(v) -D2(X_)-D2(X+) D2(X_)-D2(X+)

(E8)

The next order term in Hamiltonian eqs. (3.38) and (3.39) around X+ is written as

where + and - reprcscnt conduction and valence bands. respcctively, and D1,2(X±) are

given by(
hO(X-OX+)) and ( 0 )

ho(x-X_) .
(E2)

(E3)

D1.2(X±)=~1£ dxh6(x-X±)~J.2(X)'

The Hamiltonian in the abscncc of distortions are writtcn as

K K '

7-l0 = ( coO', 0) .
o coO',

(E9)

(E10)

with upper and lower signs corresponding to near the K and the K' points, respectively.

For the term around X_ is given by the replacement of X+ by X_. The wave functions

near the K point undcr this perturbation is given by

for conduction band,
(E4)

for valence bitnd.
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whcre co becomcs zcro when a wcll-defincd Landau level corrcsponding to that in a 2D

graphite plane is formcd.

Let us consider only thc Kckulc distortion. For metallic CN's therc is no phase of

~1 and its absolutc valucs itt X+ and X_ itre thc samc with cach othcr as is shown in

Figs. 48 and 49. Thus D 1 (X±) has thc rclation of

(Ell)
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and energy levels are obtained as

(E12)

where each level is two-fold degenerate. It is noted that the degeneracy is not lifted even

forfoiO.
From Figs. 48 and 49 it is found that D1(X±) for semiconducting C 's has the

relation of

Appendix F

Infinite Cutoff on Magnetic Properties

(E13)

where e is the phase of C,I(X+) and we approximate that the phase is constant over the

width of wave function ho(x-X±). In the range of fO =0 the energy levels are obtained

It is possible to eliminate the cutoff function ,91 for both magnetic moment in a

parallel magnetic field and snsceptibility in a perpendicular magnetic field. Let us first

consider the magnetic moment in a magnetic field parallel to the tube axis. Equation

(6.11) can be rewritten as

as

where each level is two-fold degenerate. For fO i O. however, there are four different en­

ergy levels are obtained. This corresponds to the lifting of degeneracy for semiconducting

CN's near the band gap as is exhibited in Fig. 50 (b) and Fig. 5l.

For out-of-plane distortion, there is no phase of C,2 for both metallic and semicon­

ducting C 's because of the absence of extra phase in the boundary condition given in

eq. (5.58). Thus, the relation of D 2 (X±) is given by

(F2)

(Fl)

We note that f(x) is an odd function of x and decays rapidly bnt smoothly for Ixl» l.

For small x, the leading contribu tion comes from the region 0 < Y < 6 with 6;:; 1 and is

given by

with h=27r'Y/Lfc and

(E15)

(E14)

D2(X+)=D2(X-)=D2(X),

(F3)and energy levels are obtained as

(E16)

f(x) "" r6

dy ~ "" -x In ~6'1 "" -x In Ixl·Jo V X2 +y2 2

This logarithmic singularity of f(T) at the origin dominates the magnetic moment in the

limit fc-'oo or h-.O as is shown below.

where each level is two-fold degenerate.

Since the spatial extent of the Landau wave function ho decreases with magnetic

field, in high magnetic field D1.2 is approximated as

(E17)

Therefore the energy level is determined by the value of the gap parameter at the center

of the cyclotron motion.

We separate the summation over n into three regions: n::; nl, nl +1::; n::; n2-1, and

n?n2, with

oting the antisymmetry of f(x) around x=O. we have

In the first term we can use Eq. (F3). For the second term. we shall usc the following
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Euler-Maclaurin formula which can easily be proved by a partial integration:

oc 1 roc 1 h2 t ""
Lg(a+nh) = hJn dxg(x) + "2 g(a) +"2In dtt(l-t) Lg(2)[a+h(nH)].
n=O a 0 n=O

where g(2) is the second derivative of g. We then have

27fWd<p)=- L (n+<p)lnln+<pl- L (n+<p)lnh
n=nl+1 n=nl+ 1

(F6)

(F7)

C1

I-1 +1
( ... )

• I

C2
-1 +1

-1I2r +1/2r

It should be noted that the moment given by the above equation is independent of the

choice of nl and n2. In the vicinity of 'I' = j, we have immediately

For small h, we can substitute the approximate expression (F3) except in the last term.

All terms proportional to in h cancel out with each other. In the last term containing the

summation over n from 0 to 00, we introduce a cutoff n c ~ f3 / h with f3 being a parameter

of the order of unity and replace the summation over n for n > nc by an integration.

It turns out that the contribution coming from the integral can be safely neglected for

small h. In the summation 0::; n::; nc, on the other hand. we can use Eq. (F3). Then. the

cutoff nc can be extended to infinity in the final expression. because the series converges

very rapidly. In this way. the expression without the cutoff parameters Ec and a becomes (FlO)

(Fll)

(F12)

Fig. 70 Contours CI and C2 in the complex z plane. The contribution from the
pole at z = ±1/2r is pure imaginary and can be neglected.

with

function can be eliminated easily by the use of a Fourier-series expansion. We have

Then. the summation over n in W2 (cp) and the integration over 'I' in the above can be

converted into a single integration and

with
(F9)

(F8)

WI ('I') ~ _2-(cp-j)ln lcp-j! (Icp-jl«l).
27f

n2-1

27fWI (<p) = - L (n+cp)lnln+<p1
n=nl+1

1 [ 1 2-"2 (nl +cp)(nl +1+'1') Inlnl +'1'1- "2(nl +'1')

- (n2+cp)(n2-1+cp)lnln2+cpl + ~(n2+cp)2]

1 00 11 t(l-t)+ -(nl +n2+ 2cp) L dt .
2 n=O 0 (n-nl-<p+t)(n+n2+<p+t)

Therefore. the moment itself vanishes but its derivative diverges logarithmically (positive

infinite) at cp=j.

For the susceptibility corresponding to a perpendicu\;tr magnetic field, the cutoff

R (r) = r2~dfJ r2 cos(27fprcosfJ)
p Jo 1-4r2 cos2 fJ

A principal value should be taken at singularities.

(F13)
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The 0 integration is converted into a contour integral along C1 shown in Fig. 70.

Let us first consider the case p= O. For r> 1/2 the integral vanishes identically, because

C j is converted into the integral at infinity. For r < 1/2. it is given by the residues at

z=±1/2r. Therefore, we have

R ()
.i r· 2 exp( -211"ipr'z)

P r = 1 dz .
c, (1-4r2 z 2)JZ2=l

(FI4)

Appendix G

Divergent Susceptibility of Metallic eN's

where ott) is the step function defined as ott) = 1 (t > 0) and Ott) =0 (t < 0). Replacing

gj(hr) by unity. we have

Let us next consider the case p> O. We first transform the contour C1 into C2 shown

in Fig. 70 for r > 1/2. Note that the poles at z = ±1/2r give a pure imaginary and can

be neglected. Then. we have
(Gl)

The usceptibility is logitrithmically divergent with respect to the chemical potential.

The susceptibility of metallic C 's of ".=0 itt low temperature is obtained as

The metallic ulldoped CN's exhibit divergent susceptibility in the pitrallel direction

to the tube axis itt zero temperature. In this appendix we will study the susceptibiEty

of metallic C 's as a function of temperature.

The leading contribution of magnetic moment for ep «: 1 at zero temperature comes

from the vicinity of Fermi energy63 and the the susceptibility at zero tempemture is given

by

(F17)

(FI6)

(FI5)

w? = ~w:(o) = _1_.
- 2 2 3211"2

(
1 ) 211" r

2

Ro(r) = 0 --r ---
2 vl-4r2 '

For r» 1/2, the integrand oscillates rapidly and the main contribution comes from the

region ItI~ 1. After replacing 4r2 t 2 -1 by 4r2 -1 "=' 4r2 and then converting the contour

back to C j and then to the integration over 0, we have

(G2)

where Jo(t) is the Bessel function. Because the Bessel function oscillates rapidly for large

r' and its integral for large r converges fast. we can safely replace gj (hr) by unity. For

small r, we can immediately obtain Rp(r) ,,=,211"r2 Jo(211"pr-). It is expected, therefore, that

the resulting integral w:Jp) decays rapidly for p» 1 and the Fourier series converges. (G3)

l1z" 11"Rp(r) "=' -- dO cos(2?rprcosO) = --Jo(211"pr).
4 0 2

(FI8)
Thus eq. (6.26) is valid for finite temperature, because the susceptibility is not infinite.

The critical temperature where the susceptibility of realistic samples becomes neg­

ative, is given from eq. (6.28). For p(L) being the delta function. we get the critical

temperature as

1 1-+ 11+ 2 1-
kuT = -Ike exp [ _ 411"4 XM Xs Xs ]

2 x*(L/a)

~6.0 x 1O-8/kc ,

The critical temperature is inverse proportional to L because of kc ~ 211" / L. Even for

CN's with the smallest circumference so far reported. the band gap is a few eV and the

critical temperature is less than 10 mK.
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