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Chapter 1

Introduction

Carbon nanotubes (CN's) discovered by lijima' are a new elass of quantom wire
having the structure of two-di ional (2D) graphite sheet rolled up in a oylindrical
form. The CN's are grown on the negative end of the carbon electrode used in the de
are-lischarge evaporation of carbon. A ON consists of concentric tubes, each of which
has carbon-atom hexagons arranged in a helical fshion abont the axis. The distance
of adjacent tubes is about 0.34 nm, e, roughly the same as the distance of adjacent
honeycomb lattice planes of graphite. The dinmeter of each tube is nsually between about
20 and 300 A and the maximum length of a ON exceeds Lpm in general. The purpose of
this thesis is to study the effects of magnetic fields on electronic states, optical absorption,

lattice instability, and magnetic properties of carbon nanotubes.

Usnally, ON samples contain many other carbon particles (nanoparticles) which
sometimes canse nndesirable effects in the study of the properties of CNs. Tt was found
recently that CNs can be purified through the 1 of particles idation. 2
A single-shell be with di tor ranging from T to 16 A was also produced ™5

In this thesis we shall study effects of magnetic fields on various electronic properties
of a single-shell carbon bes. In a magnetic field passing through the tube axis, the
band gap changes with the period of the magnetic flux quantum due to the Aharonov-
Bohmn (AB) effect. The AR effect manifests itself in optical absorption spectra and
magnetic properties. In & magnetic field perpendicular to the tube axis, well-defined
Landan levels are formed at the Fermi energy originated from that of a 2D graphite.
This leads to intriguing properties of CN's including & iderable enl t of
lattice distortion,

Tt was first shown in tight-binding models” = Tthat o single-shell CN's can be either
a metal or i on the and the helical arrangement. A
condition for such a characteristic change has been derived based on the band structure
of 2D graphite sheet. Since the distance between adjacent layers is larger than that of
nearest-neighbor atoms, interlayer interactions can be negleeted, T fact, a calenlati
based oo a model Hamiltonian for donble layer bes sl 1 that el ic states
are not affected by the interlayer ion appreciably.'®

T all ealenlations mentioned above, effects of the curvature of the cylindrical surface
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linve heen ignored. Although the approximation is valid for CN's having a large diameter,
the hybridization of o and 7 states may play some roles in CN's with a small diameter.
In fact, ab mitio psendopotential caleulations showed that the gap is lowered by more
than 50 % due to the hybridization for CN's with dimmeter ranging from 4.7 A to 7.0
Ao

In this thesis, we shall confine ourselves to CN's with a large diameter for which such
curvature effects can be neglected. We shall use a k-p method throughout this thesis and
compare the results with these in a tight-binding model whenever . This thesis
is organized as follows: In Chapter 2, a brief review is given of experimental investigations
on electronic properties of CN's. Electronie states in magnetic fields are calenlated in
Chapter 3, optical absorption sp are studied in Chapter 4, and a lattice instability
is diseussed in Chapter 5. Magnetic properties of a single CN and realistic ensembles of
CN's are studied in Chapter 6. Summary and conclusion are given in Chapter 7.

Chapter 2

Carbon Nanotubes

In this Chapter, a brief review is given of experimental investigations on el i
properties of CN's,

2.1 Discovery and Synthesis

Carbon nanotubes (CN's) were first produced by Ljima' nsing a de arc-discharge
evaporation of carbon in an argon-filled vessel (100 torr). The apparatus is very similar to
that nsed for the production of Cgg. The macroscapic quantitics of CN's were synthesized
in a helium atmosphere at ~ 500 Torr, 2 where a large quantity (~ 75%) of the consumed
graphite rod was converted to CN's. There have been two different proposals on the
mechanism of the growth of CN's, the open end growth' "2 and closed end growth.*

A high lution electron mic ph of CN's is shown in Fig. 1, which suggests
that CN's consist of several coneentric tubes. The distance between adjacent tubes is
about 034 nm. e, roughly the same as the distance of adjacent honeycomb lattice
planes of graphite. The diameter of cach tube is usually between about 20 and 300 A
aud the maximum length of & CN exceeds 1. From electron diffraction patterns it is
found that each tube has carbon-atom hexagons arranged in a helical fashion about the

axis, Such a cl i is directly confirmed by nsing a scanning tunneling
microscope (STM) as is shown in Fig. 2.3

CN's are also sy I by thermal d position of B vapor.®® Benzene

vapor was introduced, together with hydrogen, into a i tion tube in which the
I isted of u lly-placed carbon block. CN's can also be generated by
vapor condensation of carbon on an ically flat graphite surface.

Single-shell nanotubes can be synthesized by arc-discharge evaporation of carbon
with catalyst.*® In ref. 5 the cathode has a shallow dimple used to hold & small piece of
iron during evaporation. The evaporation chamber is filled with o gas mixture typically
consisting of 10 torr meth and 40 torr argon. Figure 3 shows an electron transmission

micrograph image of the obtained single-shell CN's and & histogram of the diameters of
30 tubles having a diameter ranging between 0.7 nm and 16 nm. A CN as long ws 700
nm having a diameter of 0.9nm was found.

4
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2.2 Purification
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becanse of the strong local curvature and imperfect geometry cansed by the presence
of five pentagons. Thus, CN's having open tips are produced throngh oxidation.”
The geometry of nanoparticles, which are often yielded with CN's. mnch resemble that

of the tube caps, although they are comparative

Iy larger.*® Therofore, nanoparticles are
similarly consamed by oxidation although at a slower rate than the highly curved tips
of CN's and CN samples can be purified if the oxidation is allowed to proceed for long

tions.? Figure 7 shows the dramatic improvement in the CN's-to-nanoparticle ratio

after the oxidation. To remove all the nanoparticles from the samples, one has to oxidize

more than 99 % of the material. Sim purification methods throngh oxidation

ire

reported by other groups.

2.3 Electronic Properties
It was first shown in tight-binding models™ =7 that a single-shell CN's ean be either
a metal or a semiconductor depending on the diameter and the helical arrangement. A

condition for such a characteristic change has been derived based on the band structure of
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Fig. 5 (Up) Electron micrograph showing recurrent terminations of CN's,

ig, 6 (Down) Terminations with identical conical caps at the tips of CN's.

a two-dimensional (2D) graphite sheet. A part of metallic CN's is classified into narrow-

gap semiconductor by including the effect of finite corvature.” Some typical examples

aof calenlated energy bands are shown in Figs. 8 and 9.7 Figure 8 {b) corresponds to a
CN classified as a narrow-gap semiconductor, Fig. 8 (c) as a semiconductor, and Fig. 0
{b) & metal. It has been noted that the gap of semiconducting CN's is roughly inversely

proportional to the diameter, 1718

Tight binding Present calculations

Tube Ref. [2] TB LDA
(6.0 ~0.2 0.05 Metal (—0.83)
2.0 ~1 1.04 0.09
(8,00 1.22 119 0.62
9,00 0.04 0.07 0.17

Table 1 Band gap (in V) of selected CN's, For the metallic case, the overlap of
the bands is given as a negative gap.

Electronic properties caleulated by a tight-binding model are significantly altered by
detailed plane wave ab initio psendopogential ealeulations for CN's with small diameter 19

Electronic Properties

stron mictoscope ages of (a) typical
rhon-are method, and (b) purifisd sample of

Fig. T Low-maguification trans
samples of CN's produced by the
CN's.
Some comparisons with the tight-binding ealenlation in ref. 7 are shown in Table 1 in
which CN's denoted by (n.0) have the structure shown in Fig. 8 (a). In the psen-
dopotential calenlation a CN with (6.0) becomes & metal in contrast to the narrow-gap
semiconductor predicted in a tight-binding model. In addition, CN's with (7.0) and (8.0)
become semiconductors. consistent with the tight-binding caleulation. but give o much

v comes from a strong o*-5° Lybridization due to the large

smaller gap. This discrey

curvature of cylinder surface of narrow CN's.

The above studies are all on single-shell CN's. A ealenlation based on a model

tight-binding Hamiltonian for a donble-layer nanotube shows that el
not affected by the interlayer interaction appreciably.’® This is becanse of the fact that

0 that between nearest-

the distance between adjacent interlayers (3.4 A) is larger tl

neighbor atoms (1.42 A), The electroni es of disclinations and caps have been studied
g

3,32

also,

Some experiments support the theoretical prediction on electronic states. Current-
valtage characteristics were measured by o seanning tunneling spectroscopy (STS). 33—
Figure 10 (b) shows the result at the points shown in Fig., 10 (a).* The top inset shows
the conduetance (df fdV) eurve and the bottom inset shows the -V eurve taken on the
gold substrate for comparison. The trace (1), taken on a tube with 8.7 mmn diameter, has
an ohmic behavior, providing evidence for the metallic CN's. Two tubles (trace (2) for a
CN with 4.0 nm diameter and trace (3) for a CN with L7 nm dinmeter) show plateaus in
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Tubule
Axis
unit
I
{a)
5
33
]Tubu:e w
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le—unit —f -4
=5
() {b)

Fig. 8 (Up) (a) The geometric configuration for CN's with (n,0). (b) The band
strncture of CN with (12.0) (narrow-gap semicondunetor). (e) The band strueture of
CN with (13,0) (semiconductor).

Fig. 9 (Down) (a) The geometric configuration for CN with (2n,n). (b) The band
structure of CN with (12,6) (metal).

the I-V characteristics at zero cnrrent. showing that these CN's are semiconducting. The
of states and exhibits 1/ E;—F type
singnlarities in the 1D density of states at peaks, The energy gap of the semiconducting

CN's was e

conductance (top insert) corresponds to the der

nated aronnd ¥V =0 V and found to vary in inverse proportion to the

dinmeter as is predicted in tight-binding ealenlations, 718

Another experiment carried out to study the electronic properties was the electron
spin resonance (ESR) for purified CN's.397 [n ref. 36 conduction electron spin resonance
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(1), (2). and (3) in Fig. 10 {a). The top inset show

The bottom inset shows a characteristic [-1° taken on gold substrate,

(CESR) were not observed and therefore it was concluded that CN's are semiconducting,
However in ref. 37 CESR wq SR showed

etallic and/or

fly observed. Sinee the intensity of CE

no temperature dependence, leading to the conclusion that there exist

narrow-gap semiconducting
The direct

bundle?*¥® At higher temperatures a typical semimetallic behavior was observes

setrical resistance measurements were performed first on a single CN's
A

magnetic field applied perpendicular to the sample axis rednees the resistivity. In ref. 30

the r

ance in the low temperature region exhibits a logarithmic dependence on tem-

peratire consistent with a 2D weak localization. A theoretical caleulation for CN's also

shows the characteristic temperature dependence. ¥ Recently the electrical resistance was
measured for an individual CN.A4! A magnetoconductance exhibits universal conductance

fluctuations similar to those observed in quasi-1D mesoscopie systems,
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Chapter 3

Electronic States

In this chapter we study electronic states of CN's near the Fermi energy in the
and p of magnetic fields based on the effective-mass theory.*? Using a
tight-binding model, full energy bands in & magnetic field of metallic CN's are obtained
and the validity of the k-p method in magnetic fields is d trated
This Chapter is organized as follows: In Sec. 3.1 the el ic states in it

h

fields are studied in the effective-mass theory. The energy bands in a magnetic field
perpendienlar to the tube axis are ed in a tight-binding model in Sec. 3.2. The
higher order k-p Hamiltonian is derived and the electronic states are studied in Sec, 3.3,
A summary is given in Sec. 3.4,

Rt

3.1 Effective-Mass Approximation
3.1.1 Hamiltonian

Although CN's take a multi-shell structure in general, we consider a CN consisting
of a single tube. Since the distance between adjacent layers is much larger than the bond
length hetween nearest-neighbor sites within a layer, characteristic features of CN's are
expected to be obtained by those of a single nanotube. In fact, it was demonstrated by
a model caleulition that the effect of the interlayer interaction on electronic states is
small.' Further, we assume an infinitely long tube for simplicity.

Every structure of single tube CN's can be construeted from a monatomic layer of
graphite as shown in Fig. 11 (a). Each hexagon is denoted by the chiral vector

L=mn.a+mb=(n,m), {3.1)

with basis vectors a and b, defined by

a=ae, and b=u(—%e;+? ;]. (3.2)

with [a]=[b|=0=246 A, where the unit vectors (ef,e}) are fixed onto a graphite sheet
as shown in Fig. 11 (a). We shall construct a nanotube in such & way that the hexagon
at L is rolled onto the origin, For convenience, we introduce another unit basis vectors

10
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(b)

Fig. 11 (a) A single layer of graphite. The structure of a nanotube is specified by
the ehiral vector L= n,a+nb with a and b being primitive translation vector. The
primitive translation vector along the axis of CN's iz T. The unit vectors e, and e,
denoted by = and g are along the cirenmference and the axis of a CN, respectively.
Another unit vectors €, and e}, denoted by =’ and y' are fixed on the graphite sheet.
The augle 5 between e, and L is a chiral angle. The vectors 7, Ty, and 73 counect

nearest-neighbor A and B sites. (b) A carbon tube in the p of migneti
field H perpendicnlar to the tube axis and tic flux ¢ passing through its cross
section.
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(a) (b)
Fig. 12 (a) Energy bands of a 2D graphite. (b) First Brillouin zone of a 2D
graphite,

(s, e,) as shown in Fig. 11. The direction of e, or = is along the circumference of CN,

ie. e, =L/L with
L=|L| = ay/ni+nf—nany, (3.3)

and e, or y is along the axis of CN. Further. the origin =0 is chosen always at a point
corresponding to the top side when the sheet is rolled and the point == L/2 at point
corresponding to the bottom side as is shown in Fig. 11(b).

A primitive translation vector in the e, direction is written as

T = mga + myb, (3.4)
with
Pfig =ng—2n, mnd pmy=2n,—ny, (3.5)

where p is the greatest common divisor of n,—2ny, and 2n,—ny. The first Brillouin zone
of the nanotube is given by the region —7/T <k, <7/T with

T= u‘,l'mi+m§~ gt (3.6)

The unit cell is formed by the rectangular region determined by L and T.
Figures 12 (a)* and (b) slmw the electronic states and the first Brillonin zone of
2D graphite sheet, respectively. A graphi sheet is a zero-gap semiconductor in the

. = === =
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sense that the conduction aud valence hands consisting of = states touch at the K and
K’ points, whose wave vectors are given by

K= 27' LI ‘;Ee‘;) and K'= 2—’3.:’ (3.7)
In the following we shall consider CN's with a large dismeter.  For such nanotubes,
electronic states in the vicinity of the Fermi level are determined by the states near the
K and K* points and further effects of the eurvature of the graphite sheet can safely be
neglected.

In the vicinity of the K point electronic states are deseribed well by a k-p Hamilton-
ian % We introduce wave vector k measured from the K point and consider the set of
Tunetions

dilr) = explik-r)¥x(r). (3.8)
with i =A. B where A and B represent the two 7 bands degenerate at the K point and

Wk and Py are their Bloch funetions.® These funetions are orthonormal:¥0

(hite- e ) = By s (3.9

We consider the region of small k where interband matrix el et the 7-
electron states and others can be ignored. Then, the wave function near the K point can
be expanded as

dk .
wir) = — O (k) (1) = k(r) Waxc(r). (3.10)
8= 3 ImpChinn=3 et
where Fie(r) is the envelope function defined by
dk §
Fk(r:=f@cxp[ik<r](}“'tk]. (3.11)

Substituting eq. (3.10) into the Schridinger equation, we obtain the following 2 x 2 k-p
equation near the K point:

('rlf:'.:-il?,} T[*'E !L") (;5) (p'ﬁ) (3.12)

where 7 is a band parameter and k is a wave vector operator defined by

k=-iV + iA. (3.13)

» Tlu- k-p Hamiltoniau is also obtained from a tight-binding model and the envelope
1 to orbitals at A and B site as will be shown later. Thus, we choose
the notation (A and B) for two 7 bands.
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Effects of a magnetic field are included by the vector potential A appearing in the above
operator. The energy origin hns been chosen at the Fermi level of a graphite sheet.
Similarly, the k-p Hamiltonian near the K* point is given by

0 olke+ik)\ (EEY_ [ F&
(e ™0 ()= () i
It is noted that eqs. (3.12) and (3.14) are rewritten in terms of Pauli matrix & =(o,.0,)
a8

Hoeke+ayky, ) Fi(r) = eFx,
Hoeke—0yky)Fro(r) = eFre.
These eguations have the same form as Weyl's equation for neutrinos.
The electronic states of CN's are obtained from eq. (3.15) by imposing the generalized
boundary condition in the e fi or x direction such as

(3.15)

ir+L) = ti(r) exp(2miy), (3.16)

with =g /¢y, where ¢ is the total magnetic flux passing through the cross section of CN
and g =ch/fe is the magnetic Bux quantum. A Bloch fanction at the K point changes
its phase according as

Wxe(r+L) = ¥e(r) exp(iK-L) = ¥ 5 (r) exp (,'—’ﬂ)

3 (3.17)

where
Tty = 3N 40, (3.18)

with integer N and v (= 0.£1). Since the phase change should be canceled by that of
the envelope functions, the boundary conditions for the envelope functions are given by

Fi(r+L) = Fx(r) exp [Zﬂ(\o- g)] (3.19)
The corresponding conditions for the K' point are given by
Fio(r+L) = Fye(r) exp [axi_(rp+ %)] (3.20)

Note that this can be obtained from eq. (3.19) thongh the replacement v by —v.
For translation r—r+7T, the Bloch function acquires the phase:

expliK-T) = exp i%). (3.:21)
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where
g+ = 3M+p, {3.22)
with integer M and g (=0, £1). Thus. the K point in the graphite sheet is mappod onto
kg =421 /3T of the one-dimensional Brillonin zone. Similarly, we can show that the K
point is mapped to kj = —2m/3T,
3.1.2 Band gap
In the absence of a magnetic field perpendicular to the axis. the envelope fune-
tions in the o direction are plane waves o explice), Thus, discrete wave vectors in the
cicenmfercnce direction are obtained as

Fup(n) = %(ﬂ-ﬁ-w-;—)‘ (3.23)

where 11 is an integer. Noting that the wave function in the axial or y direction is
proportional to expliky). we get energy levels around K and K' points

:i,:,’l:u] =ﬂ:7\|fx..‘,l:rl]’+k’. (3.24)

where the upper (+) and lower (=) signs represent the conduction and valence bands,
ively. The ling wave functions are written as

Fx(r)= iﬁ ( "‘”;'; k) ) exp [iru )ik,

. (3.25)
Fgir)= J—E (h""’;[‘;' k) ) exp ix_w[njz-l-iky}.
with
Bl MBI (3.26)

\.f'x,\,{u]’ ¥R
where upper and lower signs in oq. (3.25) correspond to valence and conduction bands,
respectively.

B of the one-di donal energy band, the density of states remains nonzero
even for £ =0 and the system is metallic for v =10, This is quite in contrast to the graphite
sheet for which the density of states vanishes at ¢ =0 oven if the band gap vanishes. Each
emorgy band of metallic CN's is two-fold degenerate except those for n=0.

When v = £1, on the other hand, there exists no integer leading to & = 0 and
the spectra have a minimum gap given by Ep = 4ny/3L inversely proportional to the
tube diameter. The band parameter -+ is related to the t for integral 4 for nearest

neighbor atoms in a tight-binding model through = v3ayy /2. If we use 4= —3.03 eV
(7=6.46eV:A)? we have B, =0.45 ~ 0.034 eV for cirenmfercnce 60-800 A (corresponding
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Fig. 13 Band gap of CNs with L = (n,0) as a function of the ci fi

The dots represent nght binding results and the dotted line represents 47y /3L ror
semicondneting CN's given in the k-p theory.

to dinmeter 19.1~255 A). Figure 13 shows the hand gap of CN's with L = (r,0) as a
function of the ci fi ¢ caloulated in a tight-bindi
Gaps obtained in the k-p approximation is in good

z model and the k-p theory.
with those obtained in the
tight-binding model. For a CN with (n,.ns) = (13.0) corresponding to L =134 =231.98
A, we have B, =0.85 oV, which is slightly larger than E; =0.70 ¢V obtained by Hamada
et al” in a tight-binding model using different parameters.

In the presence of a magnetic fux ¢ through the eross section of CN's, the band gap
oscillates ranging from 0 to 279 /L in the period of ¢y due to the Aharonov-Bolim effect,
Figure 14 exhibits the energy gap as a function of magnetic flux. If we use y=6.46 eV-A,
2y /L varies as 1.85 ~ 0.044 eV for dinmeter 7 ~ 300 A. Since energy levels around K7
point are obtained by changing the sign of », the oscillation at the K* point is different.

There are three cases: (i) p=p=0, (ii) v=0 and p==+1, and (iii) ¥==%1 and p=0.
The case that p==%1 and p==+1 is forbidden as shown below. From Eqs. (3.5), (3.18),
and (3.22) we have

pmg =3 N-—ny)+r and M'Tﬁml =3M+p (3.27)

The first equation shows that p cannot be a multiple of 3 for v # 0, which means that
3M +p is & multiple of 3 according to the second equation and consequently =0, On
the other hand, the second equation shows that p must be a multiple of 3 for 20, which
leads to »=0 ling to the first eqnati

By hining the results of 1 above and those described in the last paragraph
of the previous section, we can conclude that the conduction-band bottom and the va-
lence baud top exist at the I' point of the one-dimensional Brillowin zone whenever the
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Fig. 14 Energy gap versus magnetic flux passing throngh the cross seetion for =10
amd +1.

Type v n E, by
@ o o 0 0
i) Hell 0 +2x/37
(i) #£1 0 4x7/3L 0

Table 2 Nanotubes can be chiaracterized into three types by two iutegers ¢ and g
determined by the chiral vector. Eg is the band gap (0 for metallic CN's) and ky
represents the wave vector o ponding to the bottom of the conduction band in
the one-dimensional Brillonin zone.

nanotube has a band gap and is a semiconductor. For a metallic nanotube, on the other
liand, the conduction and valence band tonch either at the I' point or at £27 /3T, Table
2 swmmarizes three different types of CN's and Table 3 gives a table showing the type
for some values of n, and ny.

In general, CN's have some helical structure as is shown in Fig. 11 (a) except for
two cases having chiral vectors L= ma and L=m(2a+b). The former is called zigrag
aanotibes and the latter is called hai be. Their st wre ill lin
Fig. 15.

A zigzag CN has the cirenmference length L = ma and the first Brillowin zone is
—x/V3a <k <3, It is metallic for m being multiple of 3 and semiconducting for
all other m’s as is seen in eq. (3.18). From eq. (3.5) we get (g, ma)=(1,2) and it leads
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i\ Ny i 1 _E 3 4 5 6 _?_ [ [] 10
0 (i) | (i) | (6 | Ga) | g | (5) ] (i) | () | O(B) ) (i)
(i) | (5in) | (i) | Ci) | (o) | Cia) | Co) | Ci) | Cia) | (i) | (o)
(i) | i) | (i) | i) | (a) | (a6 | G |G | G | () | G
(30| Gii) | () | () [ (o) | (i) | () | (i) | () | G | (i)
(iia) | (i) | (i) | () | (i) | i) | (6 ] Gid) | () ﬂ{ﬁi}
(i) | (i) | (i) | (i) | (58) | (i) | (i) | () | (i) | (i)
{3) | (i) | (i) | () [ i) | Ga) |G | ) | Gy | ]G
(i) | (i) | (i) | Gis) | (i) | () | (i) | (i) | () | (i) | (idi
(i) | (u) f (i) | (i) | (i) | (i) | (i) | () | (idd) | (idi) | (id)
(1) | (i) | (i) | (i) | i) | GE) | OG) | i) | () | G) | (i)
(in) | (i) | (i) | Gid) | () | (i) | Giia) | Gid) | () | (§ad) ] (i)

B

= e R T R ) 0 T

Table 3 Each nanotube specified by the chiral vector (n,, ) is classified into (i)
v=p=0, (i) r=0 and p==1, and (iii) r==%1 and p=0.

(a) (b)
Fig. 15 The structure of (a) zigzag and (b) armchair nanotubes.

p=0 from eq. (3.22) for any integer m. Thus, the band structure near the Fermi encrgy
corresponds to the case (i) for m being multiple of 3 and the case (iii) for all other m,

For an armchair ON the cireumference length is L= 3ma and the first Brillouin
zone is —w/a < k<wfa. Armchair CN's are all metallic and p=1 because (mg, my) =
(0, 1). Consequently the band structure always corresponds to that of the case (ii).

3.1.3 States in magnetic fields

Before discussing electronic states of CN's in a magnetic field perpendicular to the
axis, the states of 2D graphite sheet will be reviewed. We introduce the ladder operators
Ls =1/ V2)(kutiky) with 1= \/ch[eH being magnetic length. Then. the k-p Hamiltonian
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Fig. 16 The energy bands of 4 2D graphite near the K and K° points in the presence
(a) and the absence (b) of a magnetic field.

is Tewritten as

0 V2L 1
H:(\/i'!‘id;tf]l u“' ) (3.28)

where upper and lower signs correspond to K and K’ points, respectively. This Hamilto-
nian leads to the presence of a Landan level with a vanishing energy cigenvalne. For the
Landau gange (0, Hx), we have

= 0 v
eap=0, Fg= 7]"-_ explikyy) (h..) K point,
v

Eap=0, FK.—_-ﬂL—mslik'y] (-'3;) K’ point,
v

with L, and k, being the system size and the wave vector. respectively. in the y di
Other Landan levels are given by

+ xhy .
E:D:iﬁ)’@. Fg= 7211.-“'“'1:'"} (Iz.:; ) < n=0,1,-.+ K point,
L
e =tVE L Fie == explikys) (*f:;*’) =Dl Kt
5 "

(3.30)
where upper and lower signs correspond to conduction and valence bands, respectively,
and Jy, is the harmonic oseillator eigenfunctions written as

A |2,

(3.20)

i‘
e
J?"n!?ﬂ
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with the Hermite polynowial H,(x). These vigenfunctions have the properties:
Libioha=nhey Liha = VaFibags, Loba=hha-y (3.32)

Figure 16 shows the energy levels of o 2D graphite pear the K and K’ points in the
presence and the absence of a magnetic field.

Let us consider the electronic states of CN's in a magnetic field perpendicular to the
tube axis. The component of magnetic field perpendicular to the CN surface is given by

H cos(2xz/L). The corresponding vector potential is given by

LH . 2wz
A= (ﬂ. s sin T) (3.33)

We expand the envelope function near the K point into plane waves along the z direction,
which satisfy the boundary condition eq. (3.19), as

PP = }: AP exp [ ’”"(nww %) +iky]. (3.34)
with G‘:‘f being expansion coefficients. The equation for G‘&:‘ is written as

z;{(m:nw—)cu,, ,,(;t) (Ghnsi— GK,._,]}—eGK,,,

(3.35)

a2

.;T{(awtn}-afi)s 1( )(GK,,_,_agﬂ+l]}==.G:‘n‘

with
Rp(n)=nte-z. (3.36)

The streugth of the magnetic field is characterized by L/27l, which is the ratio of the
rading of a CN and the magnetic length. The equation for ch‘.?‘ at the K' point is given
by the replacement of v by —v, k by —k, and (L/2n1)* by —(L/2x1)?.

Figure 17 shows caleulated energy levels for a metallic (v =0) and semiconducting
(r==£1) CN, With increasing magunetic field the energy levels for small & approach those
of Landan levels of a graphite sheet denoted by the dashed lines. Because there always
exists a Landau level at £ =0 in the graphite sheet. the band gap of semiconducting CN's
tends to zero with increasing tuagnﬂll field. In strong magnetic fields L/2xl=2.5, for
example, both energy bands and wave functions b ind lent of ¥ in contrast to

the case in the absence of a field where the band gap depends on v quite sensitively.

Figure 18 shows the band gap for various values of the zero-field band-gap as a
function of Lf2xl. The band gap becomes negligible when L/2x0 is much larger than
nuity as has been mentioned above.
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Fig. 18 Calculated band gap as a function of a magnetic field. The solid line
represents the gap for metallie CN (¢ = 0 and ¢ = 0), the dotted line that for
semiconducting CN (v = 41 and ¢ = 0), and the dashed line that for CN with a
largest gap (=0 and §/¢n=1/2).

Examples of calculated probability density for the lowest Landan level are given
in Fig. 19. In a weak magnetic field (Fig. 19(a)), the probability density has a small
maximum at = =0 and £ =%L/2 for k=0. The maximum position is rapidly shifted
to x=—L/4 with increasing k. Figure 19(b) in a strong magnetic field shows a clear
formation of Landau states at the top (z=0) and bottom (z==L/2) for k=0 and their
gradual shift toward z=—L/4 with increasing k. For sufficiently large k the probability
has only a single peak at r=—L/4.

The Landau level for CN's ean be nnd 1 as foll Let ns consider the position
r=X, = Lo(k)/27 with —=/2 < 8(k) < =2 where #(k) is the angle corresponding to
the position Xy as is shown in Fig. 20 and satisfies sin f{k) = =2x%k (L. Note that
7 —f(k) also satisfies sin[x —6(k)] = —2n0%k/L and define the corresponding position
as X_ = Lf2-X,. In a perpendicular magnetic field, the (1.2) element of the k-p
Hamiltonian near the K point given by eq. (3.13) is expanded around 2= X4 as

i o ) el S s
= (VR R e X §20
~ |\ v2yLyJeosBlR) /. for X_ °
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Fig. 19 Some examples of caleulated probability density of the lowest conduction
subband of a metallic CN in magoetic fields, (a) L/2x1=0.5 and (b) L/2xl=3.

Then, the k-p Hamiltoninn for the K point aronnd == X4 is written as

i 0 V2 feos Ik L+ ,u)
s ( V2y\feos k) L 1 0 » (3:38)
and that for K point as
H—( 0 \/ﬁy‘/tmﬂ(HLgﬂ) (3.39)
T\ Ve Bk L1 0 ! :

where upper sign corresponds to Xy and lower sign to X_. Thus, it is found that
the Landan level of CN's having wave vector & is regarded as that of a 2D graphite in
magnetic field H cos#(k).

For k=0, in particular, the wavelnnction is given by a linear combination of Landan
wavefunctions at the top (z=0) and bottom part (= L/2) of the cylinder surface. With
the increase of k. the center of the cyclotron orbit is shifted toward == L/4 and the
effective magnetic field decreases in proportion to cos (k). Those states stay just at the
Fermi energy independent of k. since they correspond to a Landan level in 2D graphite
sheet, existing at the Fermi energy independent of the field. With further increase of
k> Ky, two Landan wavefunctions with center Xy and X_ start to overlap each other
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s

Fig. 20 The wave function in Landau level with k>0, The center of the eyclotron
motion exists at (k) and w—#{k) satisfying sin #(k)=—271k/L.

appreciably and the energy starts to become dependent on k.

Iu the high-field limit L/2x] — oc the critical wave vector Lkg /27 approaches
(L/2x1)* and the corresponding angle #y becomes x/2. Actual numerical results show
that ky is approximately given by

Lkg L N2
ok ~ 0873 (ﬁ) —2.118. (3.40)

which is valid within a few percent for (L/2x1)* <20,

3.2 Tight-Binding Model
3.2.1 Hamiltonian

Let us calculate full energy bands in a magnetic field using a tight-binding model.
We choose the y axis along the tube axis and the z axis in the direction of & magnetic
field. Note that the = axis is perpendicular to the y and = axes, different from the
coordinate system of Fig. 11. In a magnetic field a unit cell should usually be extended
such that the total fux is an integer multiple of the flux quantum ¢y, In the case of
CN’s, however, the total flux passing through the unit cell in the absence of a magnetic
field always vanishes | of the lation b the field passing into and out
of CN. Therefore the unit cell or the first Brillouin zone of CN's does not change even in
a magnetic field.

Let us denote carbon atoms in the unit cell as Aj and By with i=1,2,.--, N. In the
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tight-binding approximation a wave function is

N N
vilr) = 3" Onka, (1) + Y s, (1), (3.41)
=1 =1
with
1
wia,lr) = ——explikR} &g, (r).
2T
E: 1 (3.42)
win (r) = ‘/——-'E*P[ikﬁg_i@n r).
LTS N, s
where Ny, = Ny, = -+- = Ny, are the numbers of ench site and $gr(r) is the wave

function for an isolated atom at R in a magnetic field. The wave function $g(r) is
related to the wave funetion #4(r—R) in the absence of a magnetic field through

i
Pr(r) = np[-—h—iA{R} (r=R)|#o(r~R), (3.43)

where A(R) is a vector potential. The derivation of this
A

i8 given in App

For simplicity we assume that transfer integrals do not vanish only between nearest
neighbors and the overlapping of the wave finctions at different atows is neglected, Let
R and R’ be positions of nearest neighbor atoms, Then. the matrix element is written
as

2
Hrr "-'-'ﬁlr‘ik{rl‘[-z%+V{r-R}+V(r-R’)]¢n-{r}
1 2 a2
= Efth"nlrj' [%#Wr—l\] + %+V{r—R’}]@n-{rl (3.44)
+ %fmwn{rr[wr—nnVlr—R*I]-}w(r].

where p=p+{efeh)A and V(r) is the p
first term vanishes becanse it is proportional to the overlapping integral. We then have

ial of an atom |

1 at the origin. The

Hage :j-lr@u[r—R]‘?ﬂ("@u[r—ﬁ.’}up{%]Alﬁ}-(r—ﬁ}~A{R"|-{r-ll‘:]}. (3.45)
with
Hi= 'E{vu—a) +V(e-R)]. (3.46)

In the case [0 we can safely replace rin the phase factor appearing in eq. (3.45)
by (R+R')/2 beeause the expansion in terms of the exp rapidly ges. We

shall nse the same approximate expression even for {~a in the following, assuming that
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Fig. 21 Cross section of zigzag and armchair CN's and the coordinate system used
in tight-binding calculations. (1) and (2) correspond to the microscopic orient ation

used for zigzag nanotubes and (3) and (4) correspond to that for armehair nanotubes.
Open circles and closed cireles represent A and B carbon atoms. respectively.

(3)

electrons are strongly localized at each atom, In this case the transfer integral comes

from the region in the vicinity of the middle point of two atoms.
The matrix element of the Hamiltonian in the basis of s, and pga, is given by

1 ie

T2he

Hy,p, = —q0 explik(RE - H:_chp{ [A(Rp, J+ARA, )| lRA.—Ra,]}- (3.47)

In a Landau gauge, the vector potential is given by (0, H=z,0) and the matrix elements

are written explicitly as
Han, =70 ;Axp{i[i‘+2%fﬂ"+ﬁln,]l[ﬂ%1 -R:_}]}, (3.48)

The energy bands can be caleulated by diagonalizing 2V x 2N matrix with off-diagonal

clements given above and diagonal elements Ha,a, and Hp,g,. which are the energy of
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Fig. 22 The band structure of a metallic sigzag CN (Lfa =24 or m
maguetic ficld perpendicular to the tube axis. (a) L/271=0, (b) 1.2, (¢) &
4.6. In (a), (b), and {c) the s ines represent the bands cal
binding model and the dotted lines those ealenlated in the lowest-order k-p theory.
In () the solid and dotted lines represent tight-hinding 5 for two diffe
microscopic orientations of CN with respect to the field direction as is illustrated in
Fig. 21 (1) and (2). respectively.

24) in a
and (d)
tedd o the tight-

e orhital and chosen to be zero, In the following we shall confine ourselves to metallic
CN's having igeag or armchair structure, which is shown in Fig. 15, in the absence of

magnetic flux passing throngh the axis.

3.2.2 Zigzag nanotubes

A vigzag CN has a chiral vector L = ma with cirenmference length being L =ma

andl the first Brillouin zone -w,f\/:_ln <k < wg'\/:_ln. A
multiple of 3 and semiconducting for all other m's. Since both K and K' points where

geag CN i metallic for m being
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Fig. 23 (Left) A blow-up of Fig. 22(b) near the Fermi level. The solid lines represent
the bands caleulated in the tight-binding model, the dotted lines those calculated in
the lowest-order kp theory, and the dashed lines those calenlated in the higher-order
k:p theory. The dashed lines overlap the solid lines almost completely.

Fig. 24 (Right) A small band gap of metallic zigzag CN's with circnmference Lfa=
36 (solid line), 60 (dotted line), and 84 (dashed line) as a function of perpendicular
magnetic field calenlated in the tight-binding model.

the valenee and conduction bands tonch in a 2D graphite sheet are mapped onto k=0,
valence and conduction bands are always two-fold degenerate.

The calculated energy bands of a zigeag CN with Lfa=m =24 are shown in Fig. 22.

The magnetic-field strength is characterized by L/2xl and also by HS/dg. The latter is
the ratio of magnetic flux passing through a hexagon with area §=1/3a?/2 to maguetic
fux quantum ¢y and HS/ ¢ =1 corresponds to 7.9 x 10T, The former is the parameter
introduced in the k-p theory (eq. (3.35)). As is shown below, the validity of the k-p
theory is determined only by the condition HS/ég <1, which is usually satisfied.
Figures 22(a), (b), and (c) represent the results for HS/¢y < 1 and contain those
calculated in the k-p theory, The bands calenlated in the k-p theory are in excellent
agreement with those in the tight-binding model particularly near the Fermi level.
Figure 22(d) gives the results for HS/¢g = 0.2. The energy bands deviate from
those obtained in the k. p theory considerably. This can be seen most easily from a
large Harper broadening of the bamds in the vicinity of the Fermi level. Further, the

bands depend also on the microscopic orientation of a CN. In fact, the solid lines show
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Fig. 26 (Left) Encrgy bands at k=0 for metallic
Lja=24 (top). 48 (middle), s (Bottom) ns a
field ealeulated in the tight-binding model.

aag CN's with cirenmferenee
ar magnetic

Fig. 26 (Right) Encrgy bands caleulated in the lowest-order kep theory correspond-
ing to Fig. 25
dotted lines

the bands for the orientation of magnetic field given in Fig. 21 (1) aud the

for the orientation in Fig, 21 (2). For HS/¢y < 1, this dependence on the microscopic

onentation is negligibly small,
There is & small deviation from the result of the kp theory in intermediate magnetic

fields L/271~1, although it is not clearly seen in Fig. 22(b}. Figure 23, a blow-up of the

energy bands near the Fermi level for L/ 2x1= 1.2, shows the opening of a small band-gap
at k=0 in contrast to no band-gap predicted in the k-p theory. Figure 24 shows the

band gap as a function of the magoetie field for three zigzag nanotubes with different

ut of

circumiference lengths. The band gap clearly falls on a universal curve pe

Lfa if measure its of qp{a/L)* It will be shown below that this small gap is a
result of higher order terms in the k«p perturbation.

The top of Fig. 25 gives the energy bands at k= 0 for metallic #igzag CN's as a

R T
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Fig. 27 The band structure of an armchair CN (Lfa = 14v3 or m=14) in a
magnetic field perpendicular to the tube axis. (a) L/2xl=0, (b) 1.5. (¢} 2.5, and (d)
4.6. In (a), (b), and (c) the solid lines represent the bands caleulated in the tight-
binding model and the dotted lines those ealenlated in the lowest-order k-p theory.
In (d) the solid and dashed lines represent tight-binding bands for two different
microscopic orientations of CN with respect to the field direction as is illustrated in
Fig. 21 (3) and (4), respectively.

function of a magnetic field, HS/#p. It is noted that a huge cscillation of the total
band width reported by Saito et al¥7 is not reproduced in the present calculation.*® The
middle and the bottom of Fig. 25 show the energy bands in the range of —y <& <y at
k=0 for CN's with larger circumference lengths.

Figure 26 gives the corresponding results obtained in the k-p theory. The k-p theory
works quite well for the energy range close to the Fermi level (£ =0) in weak magnetic
fields HS/dg = 0.1. Since the range of k where the Landan level is formed is given in eq.
(3.40) in high maguetic fields, it easily exceeds the boundary of the first Brillonin zone
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Fig. 28 (Left) A blow-up of Fig. 27(b) near the Fermi level, Ouly the part in the
vicinity of &= 27 /3a is shown and that near k= —2x/3a is its mirror image. The
solidl lines represent the bands caleulated in the tight-binding model, the dotted
lines those caleulated in the lowest-order k-p theory, and the dashed lines those
calculated in the er-orcder k- p theory. The dashed lines overlap the solid lines
almost completely.

Fig. 29 (Right) The shift in the wave vector at which the valence and conduction
bands tonch for armchair CN's with cirenmference Lfa=10 (solid line), 20 (dotted
line), and 30 (dashed line) as a funetion of perpendicular magnetic field calenlated
in the tight-binding model.

for CN's with large circnmference length in high magnetic ficlds. The
hoth from above and below at HS/dg=0.08 for L/o=48 and HS/iy
ig a result of the folding of such Landan-level-like bands.

wrging of hands
0.4 for Lja=T2

As is shown in eq, (348) the expansion parameter to obtain the k-p Hamiltonian i

not k, but ky+R* [I*, Therefore, the kp theory is valid even for large & in high magnetic

fields as long as th apy is close to the Fermi level. This means that the Landau level

near the Fermi level is always well represented by the k-p theory. The k-p theory starts
to break down when a Landan level starts to have a dispersion and be broadened (the
Harper broadening). For the Landau level lying at the Fermi level, the critical field is
estimated as B8/ gy~ 0.1, corresponding to 7.9x 10% T. The eritical field is smaller for

Landan levels away from the Fermi level as is expected,

3.2.3 Armchair nanotubes

B .
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Armehair CN's are all metallic and are specified by L=m(2a+b) with L=v3ma
and the first Brillonin zone —v/a < k < 7/a. The K and K* points are mapped onto
+2r /3a and —2x/3a. respectively.

Figure 27 shows calculated energy bands for an armchair nanotube Lfa = 14v3
(m=14). The bands in the k-p theory represented by dotted lines in Figs. 27(a), (b),
and (¢) are calenlated aronnd both k=—2%/3a and 25 /3a. The k-p theory is again quite
suecessful in reproducing the tight-binding results near the Fermi level. For HS/d=0.2
the bands deviate from the k-p result and depend on the microscopic orientation in
agreement with the case of zigzag nanotubes.

Figure 28 shows a blow-up of the energy bands near the Fermi level for L/2x]=1.5.
No band gap opens up at the Fermi level in contrast to the case of zigzeag nanotubes,
but the wave vector corresponding to the Fermi level deviates slightly from k= +2x /3a.
Fignre 20 gives the shift as a function of the magnetic field for CN's with different
cireumference lengths. The shift falls on a universal curve x (a/L)(L/2=1)! in a good

pproximation if being 1 in units of 25/L. It will be shown below that this
deviation is again a result of higher order terms in the k-p perturbation.

3.3 Effective-Mass Theory in Higher Order
3.3.1 Hamiltonian

Let us consider & 2D graphite sheet. First we make a difference equation with
respect to envelope functions and then take & continunm limit to get a higher order k-p
Hamiltonian. In the tight-binding model, the wave function is expressed in terms of
envelope wave functions at the K point as

vir)= 3 Eﬁfg{mmp{.x R.) P, (r), (3.49)
i=AB R,
with Ny = Ng being a half of the total sumber of the atomic sites and K being the wave
vector corresponding to the K point given by (2x/a)(1/3,1/V/3).
The Jope functi isfies the following difference

—'raz e KRy [— -—IA{RAJ‘fA(RA-ﬁ“ i }Fxmr'ﬂ) cFE(Ra),  (3.50)
E123

and a similar one in which Fit and F are exchanged. In the above, ¥ represents one of
the three vectors connecting nearest A and B sites given by

a

—:/%a"',, 7= gl = 5-:7-51;. = %e; = ﬁe;. (3.51)

=
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with €, and e, being wnit vectors fixed onto a graphite sheet as is shown in Fig. 11,
Expanding the envelope fanction and vector potential np to the second order of 7%
and (ie/he)A(RA) 7. we get & continnnm-limit cquation of cq. (3.50) for the envelope
function

—‘ch'“‘"‘[l—iﬁ (e-iv—-A{r)) {f. (E+—A|r|) ]F&m-sﬂhrl (3.52)
=123

It should be noted that we have actually expanded in terms of 7j-—i% +le/eh)A]
instead of 1% and (ie/he) AR 4 )7} separately. For large A(r), in fact, we can first make
a gange transformation such that A becomes sufficiently small and then make expansion
in terms of (ie/he]A(RA )7 The resulting expression is exactly the same as eq. (3.52).

Using the relations with w=exp(2+i/3):

K £W1" oAy V3 o
z 5

5w

—iK- 1 —iK- 1
g" iK ﬁh"F:-iwzﬂ!‘ ze K ﬁ{rw? _”:“l (3.53)
Ze"m""'r,'f“’ = -% iuta?,

the k-p equation of 2D graphite in the higher order is given by

i) + i YU(E, ik, )
( " Ly 7| (k kaﬁm (i +|k!])(.“§(tl) ( lg“") K

4 k,+ih,;+ﬁ5c-®v(k,—ik,;’] 0 Fi(r) (r)
with
k=-iV+ ﬁﬂ{rl. (3.55)

where 5 = v/Bay, /2 and 1 is the ehiral angle between ¢, axis and the chiral veetor L as
is shown in Fig. 11, given by

Ing—ny

—— for ng#0,
cosn = 2‘(‘“.!,'!-!1:—".!!5 (3.56)
0 for ng=1.
The phase factor exp(3ig) reflects the tri 1 £y of 2D graphite and gives warping

of the band around the K point.

It is worth noting that the k- p Hamiltonian in a maguetic field is obtained by jnst
replacing k by =iV 4 (e/eh)A. This corresponds to the fact that the cocfficient of k, ky
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is the same as that of kyk; in the present case, leading to the ab of antisy rie
terms proportional to kb, —E £.% The k-p Hamiltonian at the K point can similarly
be obtained through the replacement of K by K'= (27 /a)(2/3.0). The result is

0 T[Iﬁ.+iﬁvl‘7ﬂ'°qq”‘"&']=] (r) r) 5
(T[[’-\'t—ifl}_mﬂm“;’jﬁ')’] 0 )(Fg.ll‘}) ( ’é(r]) (3.57)

Thus, the Shridinger equation near the K point are obtained by the replacement n—
n4m/3 and k, — —ky,.

For a 2D graphite there exists a Landan level just at the Fermi energy even in the
higher-order k-p equation and the wave function is given by

0
(s gy o) o

where C is & normalization factor. This shows that the Landau level of CN's formed
at the Fermi energy is not affected by higher order terms in the k-p perturbation. It
is worth noting that the sum over the level index n of the harmonic oscillator in eq,
(3.58) diverges. It should be cut off at a certain n. corresponding to the wave vector
ke ~ /T jl where the energy band given in the k-p theory starts to deviate from the
corresponding actoal bands.

The electronic states of CN's are obtained by replacing k; by di

wave vectors

given by eq. (3.23). Then., the energy levels around the K point are written as

2 1/2
e =l 07+ =[x —3k? k2 — 37 ks TR (330
£ 11-[: - +2J5[" 352 ) cos In+( w) stu3r;l}+ﬁ(n )} (3.59)
where the upper (+) and lower (-] signs rep the luction and val bands,
respectively, A zigzag CN corresponds to =0 and an armchair CN corresponds to
n==x/6. Further, the bands for g=x/3 in eq. (3.59) correspond to those of a zigzag CN
near the K point and those for n=x/2 correspond to those of an armchair CN near the

K’ point.
It turns out from eq. (3.59) that a CN is metallic for »=0 and semiconducting for
v==x]1. The band gap changes in the p of ic flux p g through the tube

axis. These are in it with the prediction of the lowest order kp theory.

However, this band gap is slightly modified in the higher order term.
Ina ic field perpendicnlar to the tube axis, we expand the envelope function

into plane waves along the r direction as in eq. (3.34) Then the equation for GA8 is
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[E]

® o &
1 1 T

Band Gap (units of 1)

o
T

0.0 - - e
o 10 20 a0 40 50

Circumference: Lia

Fig. 30 Band gap of zigaag nanotubes as a function of the circumference. The
dots represent tight-binding results. The dotted line represents 45+ /3L for semi-
conducting CN's given in the lowest order k-p theory amd the solid lines for those
given in the higher order kep theory. The shift in the gap due to higher order ters
is negative for v=+1 and positive for v=—1.
writlen as
237
T2 HuaG =<6l
"
(3.60)
2y - .
=2 HnGR =eGl,
®

with

Ho = Fugln) Hige +

LJ‘% ‘M{["""“’] '2:] 2(2:1) }

Hounss = (;;I]’{ ; L\,-“ "[Fpln 1) i— z]} (3.61)
Hunzr = 3 \/- L( )

The energy levels can be caleulated through the diagonalization of the matrix.

3.3.2 Numerical results
Figure 30 compares the band gap of zigzag CN's as a function of the ci fi i
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Fig. 31 (Left) A small band gap of metallic zigzag CN's with cireumference Lfa =236
(solid line), 60 (dotted line), and 84 [dashed line) as a function of perpendicular
magnetic field ealculated in the higher-order k-p theory,

Fig. 32 (Right) The shift in the wave vector at which the valence and conduction
bands touch for armchair CN's with circumference L/n=10 (solid line), 20 (dotted
line), and 30 (dashed line) as a function of perpendicul ic field caleulated
in the higher-order k-p theory.

calculated in the tight-binding model, the Jowest order k-p theary (4x9/3L), and the
higher order k-p theory. The gap calculated in the lowest order k-p theory reproduces

the tight-binding result y well. The inclusion of higher order terms explains
the slight deviation of the tight-binding result from 47+4/3L depending on the signature
of ». The deviation depending on 1y as cos(3n) has been caleulated including the effect of
the mixing between 7 and o orbitals due to nonzero curvature and has shown that the
mixing enlarges the deviation.**!

Figures 23 and 28 contain the energy bands caleulated in this higher-order k. p
theory. The slight deviation of the tight-binding result from that in the lowest-order k-p
theory is explained fully by the inclusion of the higher order terms, t.e. by the band
warping effect.

Figure 31 shows the band gap of metallic zigaag CN's as a function of magnetic field
for various circumference lengths. The gap energy is given by a universal function of
the magnetic-field parameter L/2=1 if being measured in units of y(a/L)?, in complete

with the tight-binding result given in Fig. 24. The term responsible for this
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g i Hypy it e, (3.61) and therefore the gap is proportional to e/ LP(L/271)" in a
weak field. In magnetic field 10 T, for example, the peak in the gap in Fig. 31 corresponds
to abont (.51 meV and the crenmference length 580 A

Figure 32 gives the shift of the wave vector as o funetion of a magnetic fiekd for
armehair CN's (g ==/3) with various cicenmference lengths, The resalts again explain
the tight-binding result given in Fig. 29 almost perfectly. The term responsible for this
shift is again H,,, in eq. (3.61) and therefore the shift is proportional to (af/L)(L/2x1)*
in a weak field if heing measured in units of 2x/L. For a ON with diameter 300 A, for
example, the shift is about 2.4 % 107%(27 /) in magnetic field 10 T.

3.4 Summary

The energy-band structure of CN in the vicinity of the conduetion-band bottom and
the valence-hand top has been calenlated in the effective mass theory in both absence
and presenee of & magnetic field. The band gap changes sensitively depending on the
structure of the nanotube between zero and a nonzero value inversely proportional to
the tube diameter, 1t oscillates also as a function of a magnetic Hox passing through the
cireular eross seetion of the tube due to an Alaronov-Bohm effect. In the presence of a
magnetic field perpendicular to the tube axis, the band gap is reduced due to a formation
of 2D Landan states. The energy spectra approach Landan levels of a 2D graphite sheet
in high magnetic ficlds.

The validity of the k-p method in a magnetic field perpendicular to the tube axis
has been studied in a tight-binding model. For states near the Fermi level, the results of
a tight-binding model are in good agreement with those calenlated in the lowest order kp
guetic fnx passing througl
ble to the flux quantum, i.e.

theory except in extremely high magnetic ficlds where the
the hexagonal unit cell of a 2D g
HS (¢ 2 0.1

There are some slight deviations. In weak magnetic fields such that the magnetic

T €

length is larger than the circomference length and therefore Landau levels are not formed,
a small band gap appears in zigeag CN's and the wave vector erossing the Fermi level is
shifted slightly in armchair CN', in contrast to the predictions of the lowest order k-p
theory, In high magnetic fields where the magnetic length is smaller than the cireum-
of Landau levels corresponding
to the cyclotron motion on the top and bottom side of & CN where the perpendicular

metic ficld is strong

theory.

ference length, this gap disapp due to the fi

. in t with the prediction of the lowest order k- p

The higher order k-p Haumiltonian has been derived from the tight-binding model.
It leads to a trigoual warping of hands near the K and K' points for a 2D graphite. The
deviations of the tight-binding results from the lowest-order k-p theory in weak magnetic
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fiekds can be explained by the higher order terms almost perfectly. In particnlar, it
predicts that a weak magnetic field leads to opening of a small band gap in zigzag CN's

and a slight shift in the wave vector ponding to the Inetion-band and
valence-band maximum from +2x/3a (the K or K' points in 2D graphite) in armehair Chapter 4
CN’s. For other CN's having chirality both modifications oceur in general.
These deviations ase quite small and the lowest-order kp theory is nsually sufficieat, Optical Absorption

Therefore, in the following we shall use the lowest-order k-p method and neglect the
higher order term completely.

In the previons chapter, it has been shown that CN's can be metallic or semicon-
ducting depending on the structure and that the band gap is drastically changed due
to the AB effect in a magnetic field passing throngh the cross section of CN's. In this
chapter we shall study the optical absorption spectra which can give direct information
on the band gap, 3-%

This chapter is organized as foll In Sec. 4.1 dynamical conductivity is obtained
Thie absorption spectra for polarized light parallel and perpendicnlar to the tule axis are
caloulated in Secs. 4.2 and 4.3, respectively. A summary is given in Sec. 4.4,

4.1 Dynamical Conductivity

We shall caleulate the optical absorption of CNs with an Aharonov-Bolum flux using
the linear response theory. We first expand electric field E¢(#,w) and indneed current
density je(0.w) into a Fourier series:

Ee(f,w) =3 Ef{w) explild—iwt).,
]

(4.1)
Jeltw) =3 jilw) explild—iwt).
T

where £ denotes ¢ or y and # =2z2/L represents the angle shown in Fig. 33 (a). It is
quite straightforward to show that the indueed current has the same Fourier component

as that of the electric fiel] as follows:

(W) =oke(w) EL(w), (12)

where of(w) is the dynamical conductivity. The dynamical conductivity near the K
point is caleulated using the Kubo formula as

obe(w)= - {KLe(w)~ KL(O)] (43)

39
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(n) (b)

Fig. 33 The schematic picture of the polarized electric field parallel (a) and per-
pendicular (b) to the tube axis.

with

tv) fu)
- Euna (1, k] Ewp (n4-1, &
K= 5% 5 e~ el k)
,‘w*E {ny k) =i (4l k) +hw +id (4.4)
% |(n, &, u|_;£|rx+1 k, w}1ggu[|£("1[u.k}l]g\;[!e""]{rl+f.k)|}.
where f(£) is the Fermi distribution function, the factor 2 comes from the spin degen-
eracy, and gg(£) is a cutoff function. The cutoff function has been introduced to get
the contribution of the electronic states for which the k-p approximation is valid. More
details on the importance of the cutoff f ion will be di 1in the following ck
The current-density operator ji at the K point is given by

P

H= ol 73 Rl = - Sl oeem, (1:5)
where £ = £, § and I is a 2x 2 identity matrix. At the K' point, operator jL is the
same as that at the K point but ;; has the opposite sign of that at the K point. The
factor |(n, k, "UH“"‘L k. w)|2, however, provides the same value for both K and K' points,
Substituting eq. (4.4) into eq. (4.3) we get the conductivity

: SV (b, 1= £ ()] 2R

el vli;.,:’:.:* (82 (. k) =) (et b, )2 = ()2 =it
[(n kvl n+l kw)l?
Ll (n k)=l 1 k)

(4.6)
golleld(m, B)llgollebe) (L, k)],

where ph loggical

time 7 has been introduced. Using eq. (3.25), the
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g n=l £ n=2

n=

n=-1 -]
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®/60=0 O/do=1/4 ¢/po=1/2

Fig. 34 The band strnctures of metallic CN's with =0, 1/4, and 1/2. The arrows
denoted by *x' and ‘y’ show the allowed transitions for 0., and for o, respectively.

n=t1

matrix elements of the current-density operator near the K point are given by

lu.k.+|j;[n+f.k.=F}—————-[:Fb' [, k) +bugin+1, L)]
(4.7)
(s ko 4Lt L K, q:;-———[ﬂ-‘ (k)4 b0+

4.2 Parallel Polarization
When the polarization of external electric ficld D is parallel to the tube axis as is
ghown in Fig. 33, the Fourier components of a total field are written as

E:;= D.ﬂ]‘g,

Thus the absorption in a unit area is given by
6 Ol . S o -
Filw)= -.—[ dﬂRr.b,{ley ]=—Re{n" (w25, (4.8)
2%r J, 2w v

For [=0, transitions oceur between bands with the same band index roas is seen from
eq. (4.6). Since all the conduction bands are specified by different n's. there is no transi-
tion among conduetion bands. At a band edge k=0, in particalar, b (n, 0) =sgn[s,..(n)]
with sgnjs] representing the sign of 2, and therefore it is found that transitions between
valence and conduction bands having the same index n are all allowed.

i S R R o, A W e
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Fig. 35 Caleulated real part of oy, of indoped metallic CN's for ¢ =0, 1/4, and
1/2.

In the limit 7 — 0o absorption spectra near the K point except for intraband Drude
terms is proportional to

1=0(, 0128 5 [218ue(n)]? (27 /L)
Refo 20 (w)] flgi T ]\/{.'w}*-ﬁ'wwlﬂl]’ (4.9)

3 Off | — 2yl ) [ /217,

where #(z) is the step function defined by #(z)=1 for z =0 and #{z)=0 for =<0,

Fig. 35 shows the caleulated results of Reo"'i‘"lw] of & metallic CN for =0, 1/4,

and 1/2. The peaks in Fig. 35 correspond to the transitions shown in Fig. 34. Since

! of the current-density operator for metallic CN’s vanish between valence and
conduction bands with n =0 except at the band edge k=0, there i no absorption in
the region hw < 3.0(47/3L) for metallic CN's with g=0. A corresponding result for a
semiconducting CN's is given in Fig. 36. The spectra of a semiconducting CN's are more
complicated becanse of the lifting of the degeneracy between the K and K’ points in the
presence of a magnetic Aux.

Figure 37 exhibits Refa5®(w)] of an electron-doped metallic CN, The electron con-
centration is fixed in such a way that the chemical potential in the absence of a magnetic
flux is given by p=(3/4)(47y/3L). For this doping. only the lowest conduction band is
occupied for =0 and 1/4, while two degenerate lowest bands are occupied for p=1/2.
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Fig. 36 (Left) Calculated real part of oy, of undoped semiconducting CN's for
=0, 1/4, and 1/2, The symbols K and K' show transitions between states near
the K and K" points, respectively.

Fig. 37 (Right) Calenlated real part of oy, of doped metallic CN's for ¢=0, 1/4,
and 1/2,
These figures demonstrate clearly that the AB effect on the band structure manifests
itsell as a shift of the absorption peaks.

4.3 Perpendicular Polarization
When an external electrie field is polarized in the direction perpendicular to the
CN axis, effects of an electric field indueed by the polarization of manotnbes shonld be
considered. This depolarization effect is quite significant for absorption spectra.
Suppose an external electric field DY exp(ilf—iwt) is applied in the direction normal

Y R~ i)
GO T k0 =0, (4.10)

the corresponding induced charge density localized on the cylinder surface is written as

2t
A=Foib (4:11)

The potential formed by line charge with the donsity pdr at distance r is given by
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—2pide ln r and ris expressed as r=(L/7 )| sin[(#-6')/2]| for CN's, Then it is found that
the induced charge leads to potentinl

A - it
dm;:-z;;f |Iﬂ’;r‘|-:.|:[im’]1ll|§ain %I:ﬁ,:‘e"'. (4.12)
" (]

andd the Fourier component of the potential is writien as

L

#=—p 4.13
| ”P [ )
The potential gives rise to electric field
- 2— ﬂ = - -i i
A T ZTlmple - (4.14)

ani therefore the total electric field is obtained as
i dn?
E;:D',-Z:imp‘zﬂl-ﬂﬂ%j:. (4.15)

With the use of jl=cl E! we get

=gl Dl (4.16)
with
e
ai,::;i,(wqui%ag, ; (4.17)

For the external field being D= (D, sin 8,0), the Fourier components of the external
field and the induced current are written as

Di= D—.‘ﬁu - D—,'ﬁx.-h
2 2i (4.18)
it De ot e Doy .
Je= 50 (Wi — 5= (W)
Thus the absorption is given by
Pyt f Rl = L Refirau )] D2 (4.19)
= —_ 2 21r o £ s T 4 Tx xt o
with
Gua= 50114427, (20

According to eq. (4.6) the absorption occirs between bands having band index n and

4.3 Perpendicnlar Polarization Page 45
80 T T T rm 100 : . .
to —0 © It
Nanatube e 14
Nanotubg

tv=0) T 80| (vs0)
£ G 5 WAdmy3L)n0.00 -1 2 WHARyAL)=0,75
el B
= s
@ § 80| g
= =
a0} =
= >
= s Parturbation
g 5 4ot / -
£ B
O 20 S8 i "\‘

J Selt-Consistent N2
MJ
0.0 I I L
00 10 20 30 40 50 00 10 20 30 40 50

Energy (units of 4my/3L)
Fig. 38 (Left) Caleulated real part of a,, (indi 1 by ‘Perturbation’) and a,,
(indicated by ‘Self-Consistent’) of undoped metallic CN's for =0, 1/4, and 1/2.

Fig. 39 (Right) Caleulated real part of o, and ., of doped metallic CN's for
=0, 1/4, and 1/2.
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nk 1

Let ns consider a spectral edge corresponding to k=0 in which by (n, 0) =sgu s, (n)].
From eq. (4.7) it is found that trausitions bet lence- and Tetion-hand states
become allowed only when k,.(n) and g, (n£1) have a sign opposite to each other,

This leads to the conclusion in a metallic CN's, for example, that transitions from n=10
to n=—1 and from n=—1 to n=0 are allowed for D<p< 1 as is shown in Fig. 34. Note
that the corresponding energy 2ry/L remains independent of an AB flux. Transitions
I Iuction bands b 1 | for #us(n) and w,,(n1) being the same sign,

Even in this ¢ase the energy giving allowed transitions are always 259/ L independont of
a flux again,

In Fig, 38 Rea ., (indicated by *Self-Consistent’) and Rea . (indieated by ‘Perturbation)

are shown for a metallic CN with magoetic flux @=0, 1/4, and 1/2. The peaks arpund
2y (L correspond to the allowed itions at k=10 di 1 above, In the magnetie
fhix o =10, the peak of 7., is suppressed in comparison to the others. This is becanse
of the absence of the divergence in the joint density of states at the band edge. It is
quite interesting that these peaks disappear almost completely if the depolarization ef-
feet is taken into account. The Red,, and Reaz, of metallic CN's doped with electrons
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Fig. 40 Caleulated real part of 7., (solid lines) and 0., (dotted line) of a model
conductivity.

are shown in Fig. 39. Again the peaks are supp 1 almost pletely due to the

depolarization effect.

To understand the strong suppression of absorption peaks for perpendicular polar-
ization, we consider a simple model in which the real part of conductivity s proportional
to a joint density of states of one-dimensional materials and the oscillator strength is
constant, The model conductivity is written as

bt W ke W 1t 4 0 <wy <wsa) 4.21)
PR~ oy ore= v MR [

where n is the electron density in an unit area and m is the mass of the electron. This

ductivity satisfies the i sum rule given by

i e ne?
: L duRes e )= 2. (1.22)

By the nse of the Kramers-Krinig relation, we get the imaginary part of the conductivity
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B !
oy (w)= _E f .5...»M

Fii w'—w
"ﬁ%(\/l(w—w:](w—w} 3 \/{w+“:}‘”+”") oy
= { sm(w) 3 T an < |w| <an
szu('-’lgﬁr(\/tww:}!u—ml ’ v’{uw-]ll“”'“’“) K123 (4.23)

As is seen from eq. (4.19) absorption peaks exist at the frequency where Refd,.(w)]
diverges. From eq. (4.16) it is fonnd that an absorption peak occurs at a frequency w,
higher than the absorption edge wa. For wy, 3wy, we have

dmne?
g LBy 6 24

PLom Y (1.24)
which is nothing but & plasma frequency corresponding to the three-dimensional electron
density #nfL. This is the reason for the strong suppression of absorption peaks for
perpendicular polarized ficld. A example of Red,, and Rea,, is shown for the model
conductivity in Fig. 40,

4.4 Summary

The absorption spectra of CN's are caleulated in the presence of an Aharonov-
Bolu flux. The AB effect, which gives rise to the band-gap oscillation between 0 and
2ny/ L with the period of the magnetic flux quantum, ean be observed direetly by optical
absorption for light polarization parallel to the tube axis as the oscillation of absorption
peaks. When the polarized light is perpendicular to the axis, the depolarization feld
almost completely suppresses the optical absorption peaks, These characteristic foatures
are not modified by carrier doping.
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Chapter 5
Lattice Instability

It is well-known that 1D metallic sy tend to be ble against lattice dis-
tortions. In fact, based on the extended Su-Schrieffor-Heeger (SSH) model >0 the
possibility of bond alternation patterns (the so-called Kekulé pattern) has been studied
within a simple 1D model® and for finite-size tubules.**® The Kekulé structure consists
of a network of hoxagons with the alternating short and long bonds like in the classical
beazene molecule. Although these works predict that the distortion does not alter elec-

tronic properties of CN drastically, there ins a iderable disag in their

estimated energy gaps. On the other hand, the possibility of an out-of-plane distortion
was considered also.”

In this chapter, & comprehensive study is made on both in-plane and out-of-plane
distortions in metallic CN's using both k-p and tight-binding approaches.” It is shown
that two kinds of distortion cannot coexist in general and two different approaches pre-
dict amount of distortions in excellent agreement with each other. Further, effects of a
magnetic field on lattice distortions are studied. 9791 Iy the presence of a magnetic
field perpendicular to the tube axis, the energy bands turn into flat Landan levels near
the K and K’ points at the Fermi energy. It gives rise to considerable lowering of the
electronic energy.

This section is organized as follows: In Sec. 5.1 the k-p Hamiltonian in the presence
of in-plane and out-of-plane distortions are obtained. The gap equation is solved analyt-
ically and the use of the k-p method is justified by comparing with the results given by a
tight-binding model. In Sec. 5.2 the effect of a magnetic field perpendicular to the tube
axis are studied in the approximation that the gap parameter is uniform. In Sec. 5.3 the
spatial variation of the gap is di 1 in a magnetic field. A Y is
given in Sec. 5.4,

5.1 Absence of Perpendicular Magnetic Field

5.1.1 Effective-mass approximation

In the p of ¢l ph i metallic CN's (v=0), for which the

energy bands cross at the K and K' points of the graphite Brillouin zone, are expected

48
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to be mistable against lattice distortions which open an energy gap at the Fermi energy

and consequently lower the total encrgy. In the following, we consider two different kinds
of distortions. (i) in-plan lattice distortions which induce the formation of a Kekulé
strncture and (i) out-of-plane distortions.

The Keknlé structure illustrated in Fig. 41(b) is a three-sublattice system. The unit-
cell area is 3\!’511’!2 and contains six carbon atoms (three A's and three B's). There are
two kinds of bonds and each atom has one large and two small distorted bonds attached
to it. One changes its length by =20y and another changes by wy, where 1y is positive
or negative. In Fig. 41(c) the lange (—=2uy ) and the small {uy ) distortion are indicated
by the thick and normal lines. respectively.

The arca of the Brillouin zone for the distorted lattice is one-third of that of graphite
as shown in Fig. 42, where the six corners (Le. K and K points) of the original Brillonin
#one come to the center (I' point with k=10). When the Kekulé distortion is introduced,
a small energy gap proportional to [uy| appears at the Fermi level due to an interaction
between bands at K and K’ points crossing at the I point in the new Brillouin zone. The
possibility of this distortion was pointed out within a simple 1D model® and studied for
finite-size tubules in the absence of an AB flux.375%

For the ont-of-plane distortions, the sites A and B move up and down by £uy in

the = directions perpendicular to the graphite sheet, which are represented in Fig. 41(c)
by open and full cireles. The size of the unit coll is unchanged and the site energy of
CN's for A and B carbon atoms is shifted by an energy proportional to uy. leading to
agap at K and K' points of the original Brillouin zone. We note that this distortion is
possible because of finite enrvature of CN's, which breaks the mirror symmetry of the
2D graphite sheet about z=0. The possibility of this distortion has been considered in
the absence of an AB flux.”

In the presence of two kinds of lattice distortions, the k-p Hamiltonian is given by
the following 4 x4 matrix

(1[q,k,+a'krl+u,ﬁg —im Ay ) (Fx!l‘}) =E(FK':V}) (5.1)
imydy Nogk, —ayky)+o.08: Fi:(r) F(r) ) &

where Ay represents energy corresponding to the in-plane Keknlé distortion and A; that
to the out-of-plane distortion, This Hamiltonian will be derived in a tight-hinding model
in a following section,

Introducing a three ponents wave vector k= (k. Ky ke ) with ke ==28q /7 and a

veetor of it

A
w(e) = (afe) ). (5.2)




Page 30 Chapter 5 Lattice Instability

Fig. 41 A single layer of graphite. (a) The structure of a nanotube is specified
by the chiral vector L=mn,a+nb with a and b being primitive translation vector.
There are two kinds of sites A and B. (b) In-plane Kekulé lattice distortion. Thick
and normal lines show larger and smaller di | bonds, respectively. There are
six kinds of sites Ay, Az, ---, By, (c) Out-of-plane lattice distortion. The black-
dot atoms shift in the positive = direction and the white-dot ones in the opposite
direction,
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Fig. 42 The larger hexagon represents the fimst Brillonin zone of non-deformed
Iattice. When the in-plane lattice-distortion oceurs, the Brillonin zone is reduced to
the smaller hexagon,

with
Ay [ FAT) ) B (F“.m) :
FAr)= (F:’:c‘:rl and  FP(r) = Fé(r! : (5.3)
we can rewrite eq. (5.1) into the form of Dirac’s relativistic equation

(ke + ) ¢ = euh, (5.4)

where &; (i=x,y,2) and £ are the 4 x4 matrices defined as

&= (:. T]') and fi= (:I: _IL) - (5.5)

with Iz being a 2 x2 identity matrix.
It is well-known that the cigenvalues of Dirac’s equation are doubly degenerate and
given by

B = [ ay = 4\ PR +A 24O, (5.6)

The
are obtained by putting &k, = s, (n) and k= in the above solution

ergy bands of a metallic carbon nanotube in the presence of the lattice distortions

(B n, . 81, 8a) = 120, (0P $2R0 A, 442, (5.7)

When =0, n gap E, =2y A1° +A,° opens up at k=0.

5.1.2 Gap equations

The gap parameters &y and Az are determined by the condition that the total

energy is minimum. The total energy consists of the electronic part given in the k-p

————
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scheme by the contribution coming from the region near the Fermi energy and the lattice
or phonon part. The latter can be written as

E,(A1.89) = GNKyid + INKid. (5.8)

where Ky and Ky are the in-plane and out-of-plane force constants, respectively, N is
the total number of earbon atoms. and

= fimy and Ay= faus, (5.9)

with fy and f; being appropriate constants. It should be noted that there is no eross term
proportional to uyuy in (5.8). This can be und d when we ider the fact that
the A and B carbon atoms are equivalent even in the presence of the Kekulé structure
and therefore the energy under the distortion 4wy should be the same as that under —u;
even for nonvanishing ;.

The total energy is written as

Kiaf

AT ) Kmi
En-li;“z_:wf_”dke, i) + ¥ G + NS

(5.10)

where £ is valence-hands energy given by eq. (3.24), a factor 4 comes from the doible
degeneracy of each energy band and the summation over two spin states, and go(z) is a
cutoff function defined as
fole) = —%E;,,-— (5.11)

This cutoff functi ins two | £c atidd .. The parnmeter £, repremm an
energy cut off and should be selected in such a way that the effective-mass apy ti
is valid for the energy range given by |¢] £ .. The parameter o, determines the way of
entoff. For small e the cutoff function decreases slowly, while for large o, it approaches
a step function. As will be shown later, the results are independent of the choice of o
and £. as long as £, is sufficiently large.

Minimizing the total energy with respect to A; and Ay we obtain a system of self-

consistent gap equations
i= _4_‘3' Z d m[l 2 (kA1 83)]) +NK“&',
|57 i ke, Ay, A7) i

P el (ke Ay, 49)]) Kads
AR +N i
= .2: |65 (ks Ar, Ag)| Vi

(5.12)
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where g1(2) is a new eutoll function given by

aile) = lc}+ea"’;fd (5.13)
which satisfies
a
-L degie) = 0. (5.14)

This plays an important role in the elimination of the cut-off parameters ¢, and a,, as
will be shown later.

It is straightforward to show that the gap equations (5.12) have a non-trivial solution
(1) Ay >0 and Az =0 and (2) Ay =0 and Az >0 and that the total energy takes an
absolute minimum at (1) when Ky/ff < Ka/f} and at (2) when K;/f2 > Kz/f3. In
the case (1) only an in-plane distortion ean exist, while only an out-of-plane occurs in
the case (2). Only exception is the special case Ky /ff= K3 /72, for which the encrgy is
degenerate along a circle given by AT +A3 =A% In the following, we shall consider anly
one kind of distortion and put A=A, f=f, and K=K, (i=1,2).

Because a unit cell of a 2D graphite with area 3a?/2 containg two carbion atoms,
the total number of site is calenlated as N =4AL/V3n?. The gap equation is written as

A= A%"—!(w, A), (5.15)
with
ap e n k. 8)))
Ip.A gl 20 5.16
(p.a) = 'r“Z f ) (5.16)
and
Bk, A) = £y R (0P 9742 + 42, (5.17)
where Ay is the L dependent effective conpling given by
a
Ap=Ag. (5.18)
with
Viaf?
r= 0 (5.19)

which is the coupling constant for a 2D graphite.
The gap will appear only when the original gap in the absenee of lattice distortion
all the quantities are periodi

is small, i only when @ is close to an integer, 1
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in 2, we shall lmit ourselves to the case |@] < 1 As is deseribed in Appendix B, an
analytic expression for [{2. A) is obtained for sufficiently large cutoff =, as

2
Ip.A) = ~In [p=+(%a) | -2m2-2-20. (5.20)
with a constant €' given by
cilan
z Ty ~ 0 1Me072, (5.21)

=1

where ((p) is Riemann's zeta-function defined as
=3 = (5.22)
n=1

Combining eqs. (5.15) and (5.20), we find a quite simple analytic expression for the
gap Eg(e)=2Aa(g),

1
E,{p) = Eyy[1- (w_) y (5.23)
where E; =2A(0) is the gap in the absence of a magnetie flux, given by
27y L
Ey= Tup(- H—l—c} (5.24)

and the eritical flux g, is given by

b _LE
=—= y 5.25
B (5.25)
The energy gap is a d ing function of the ci fi L/a. As will
be discussed later in this chapter. the ling A for the Kekulé distortion is

not much larger than nnity us.d that for the out-of-plane distortion decreases rapidly
with i ing ci fi length. Ti it is safe to conclude that the lattice
distortion is not important for metallic CN's with large tubule diameter.

5.1.3 Tight-binding model

We introduce () of the wave fi which is a lized p. orbital for an
isolated carbon atom. For simplicity we shall neglect the overlapping of the wave func-
tions for different atoms. In the tight-binding approximation the usual basis set is {yiyx}
where n=A;, As. Ay, By, By, By, with

o) = [ & 3 expl R o, (), (520
I,

T T I R R R TR — W
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where Ry, is the position of the g-th kind of carbos atoms.
In the SSH model the transfer integral for bond with larger and smaller length
changes from —5y into p and g, respectively, with

p=-m—20u; and g= -9 +on, (5.27)
where o being the el ph pling tant. The Humiltonian matrix is ob-
tained #s

Ay Az Ay B, By By
s 0 0 0 peifik gk goifk
Ay 0 0 0 ge=tk =ik pa-ifak
Ay 0 0 0 gemiTk peifik gk d S
By | petfik geifek  geifik 0 0 0
By | gehk gtk pink 0 0 0
By \gel™k peifok geifide g 0 0
where 7y, 75, and 75 are shown in Fig, 11 and given in eq. (3.51).
Introduce the following unitary matrix:
Fx I'm Ka Kp Ky Ki
oL 0 1 0 1l 0
1 0w ] w' 0
1 N LT ] w 0
3 5.29
ol B R e T 2
] 1) 0 —-w 0 o
0 1 0 —w 0 w

with w = exp(27i/3). The column vectors denoted as Ka, Kp, K}, and Kj are the
cigenvectors at K and K points in 4 2D graphite sheet. The bonding state formed by 'y
awd I'p corresponds to the bottom of the valence band at the I' point in the unperturbed
Brillonin zone and the anti-bonding state to the top of the conduction band. For this
basis set the Hamiltonian is rewritten as

I'a I'n Ka Kp Ki Ky

1% 0 -t 0 oy T 0 —erty§
s | -wR* 0 —onT* 0 - S0
Ka 1] —omy T ] WS 1] —ory
Kp | owT* 1] TS 0 ooy B 0]
Ky 1} —am 5 0 oy 0 —5d

)
B

—ary §°

oy i

—wT*

0
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with
R = exp(—ity-k)+exp| -i7y-k) +exp{—ify-k).
5 = expl—if -k} +exp( —ify-k—27i/3) +exp{ —ify-k+2xi/3), (5.31)
T = expl—ify k) +expl=iTs-k+27i/3) +exp( —i75-k—2x7i/3).
The 4 x4 sub-matrix with respect to K and K’ points is reduced to the k-p Hamiltonian
(5.1), if being expanded up to the first power in k. Wo have the relation: 5 = v3aqg /2.
Ay = 3oy, and f; =3a. It is almost evident that £A; represents a shift in the loeal
site energy of A and B carbon atoms due to the distortion in the = direction. A self-
consistent band structure caleulation is necessary for the determination of f; giving a
tatian b Ay and diapl

ug, which is out of the scope of the present paper.

Therefore, we shall exclusively ider the in-plane Kekulé distortion and put a=u; in
the following.
The elastic energy 15 written as
E, = Koosu, (5.32)
[
<>

where u; is the length displacement of the bond between i-th and j-th atoms and the
sum is taken over nearest-neighbor pairs of <ij>. Since the number of larger distorted
bonds is 1/3 of the total bonds 3N/2 and that of smaller distorted one is 2/3 of 3IN/2,
we get
= -“%ﬁ%‘i[gm]’ + §u°] = VK. (5.39)
1t should be noted that this force constant Ky is different from K = K introduced
in eq. (5.8) in the k-p scheme. There is an ambiguity in separation of the total-energy
shift due to lattice distortion into the electronic part and the lattice part. In the k-p
h the el ic part only of the contribution in the vicinity of the Fermi
level, where 1D nature of CN's plays a decisive role. In the present SSH model, on the
other hand, an appreciable contribution comes from energy shifts of the whole occupied
valence bands, This contribution exists also in a 2D graphite sheet and can be written
as (1/2)NK.u® with an appropriate force constant K. In the k-p scheme, K, should be
added to the foree constant and we have

Ey

K =Ko+ Ke. (5.34)

The force constant K, due to the ocenpied valence bands in 2D graphite can be caleulated
in the second order perturbation theory within the present tight-binding model. The
result is K, =—5810% /4. Details are given in Appendix C.
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Fig. 43 The energy gap caleulated in the tight-binding model of CN's having
cireumference L=5v3a as a function of the coupling constant A (the solid line) and

analytic result obtained in the effective-mass scheme (the dotted line). The inset
shows the ealoulated force constant K (L) of CN's as a function of the circumference.

The electronic states of nanotubes are obtained from eq. (5.28) by the replacement
of wave vector in the cirenmference direction by diserete one given by eq. (3.23). Becanse
the electronic states are mainly determined by the sum n,+ny, we shall confine ourselves
to the non-chiral armchair strocture with chiral vector L = (2m,m)a with integer m
from now on. We have k; = (2¢/L)n with n=1,....2m. The first Brillouin zone is
given by —xf3a <k, < #f3a. It is straightforward to calenlate the total energy by
summing up energy of all occupied bands and determine gap A by a minimization. The
resulting gap for m=>5 corresponding to L/a =53 is shown as a function of the effective
coupling constant Ala/L) in Fig. 43, The analytic result obtained in the effecti

pproximation is in Hlent agreement with that of a tight-binding method even for

such a narrow tubmle,

Becanse the contribution to the total energy shift due to lattice distortion is propor-

tional to u* exeept in the vicinity of the top of the highest valence band where the k-p
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description is quite accurate, the total energy is formally rewritten as

Im
24 [ria 1
E= — diy £4(k) + = NKgu®
.-:;2_1 'E 2% Jxj2a ” 2 B

(5.35)
Al = ey oy o
=4 ) f‘xtlkci, JggilﬁL’|I+§Nﬂ'tLJu=.

m=—2""

where v = 1,2, 3 are three valence bands obtained from the 6x6 Hamiltonian (5.28), tL_:
is given by eq. (5.17), and K(L) is a force tant d ling on the ci i In

terms of K'(L), the gap in the absence of a magnetic flux is written as

Bw ey [_ ——~1-c]. (5.36)

The agreement between the tight-binding and k-p results is a direct result of the fact
that the foree constant K(L) is almost independent of the ci i L/a. This is
demonstrated in the inset to Fig, 43, where calculated K (L) = K(L)— Ky is plotted
against cirenmference Lfa.

5.1.4 Comparison with other studies
Quantitative discussion is possible for the in-plane Kekulé distortion, becanse param-

Rt Bl

eters are known without performing self- istent band-structure i g
Harigaya." we shall use the parameters appropriate for Cep:

Mw=25eV, a=/fi/3=631eV/A. and Kp=3x49.7eV/AL

Note that present K is three times as large as K used by Harigaya and coworkers®™ %8
due to the difference of definition but gives the same value of foree constant. For these
parameters, we have K, = —92.6 eV /A? and K =56.5 eV/A?. Thus the dimensionless
coupling constant is A= 1.62. Table 4 gives some examples for Eg, u, @, and critical
magnetic field H. for armchair tubules Lja=(2m,m) with m=35, 10, and 20. It shows
that even for a narrow tubule with m =5 effects of the lattice distortion are quite small
and that a small magnetic flux easily destroys the distortion.

Harigaya and Fujita®® obtained E, = 44x107% ¢V and u = 5.6x10~* A for an
armchair nanotube with m =5 from the extrapolation of the results for finite tubes to
infinitely long one. The present values given in Table I are slightly smaller but in the
same order of magnitude as this result. This disagreement is partly due to the fact that
Harigaya and Fujita allowed distortion different from the pure Kekulé type and partly
due to an ambiguity in their extrapolation to an infinitely long nanotube. It is expected
that deviations from the pure Kekulé pattern become less important with the increase
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m i) 10 20

Dinmeter (A) 6.78 13.6 27.1

Cirenmference (A) 213 426 85,2

E, (meV) 238 5.68x10™ G46x10~8

it (A) 620x107°% L50x1077 1.71x107"2

e TARx10™Y 3.62x10°° 823x107V

H. (T) 867 1L.04x1072  5.89x10~*

Table 4 Some examples of the energy gap, bond-length change, eritical fiux. and
COPTes] ing critical field H., ealenlated for armchair nanotubes with
chiral veetor Lfa=(2m, m).

of the ciremmference. Mintmire of ol.® gave E, < 10°* ¢V for nanotubes with the same
circumference, which is more than one order of magnitude smaller than the present result.
This is presumably due to their inappropriate 1D model in which the gap is given by
E, =4om instead of Gou and due to the wrong use of foree constant Ky instead of K.

In the case of the out-of-plane distortion, the coefficient fy defined in eq. (5.9) be-
comes nonzero beeanse of the finite curvature and is therefore expected to be proportional
to afL. Thus, the coupling constant A is praportional to {af LY, leading to Ay x(af/L)*,
and the gap decreases very rapidly with the dinmeter as exp|—(L/a)?]. This is quite in
contrast to the result of Saito ef al.? that the distortion hes that of a 2D graphi
with increasing L.

5.2 Effects of Perpendicular Magnetic Field

A magnetic field perpendicnlar to the tube axis modifies the energy bands consid-

erably. In high magnetic fields where the magnetic length [ = /ehi/eH is much smaller
than the circnmference, well-defined Landan levels can be formed. Figure 44 gives some

examples of the lowest conduction band and the highest valenee band ealealated numer-
ically, which b almost independent of k up to a certain eritical wave veetor ky
estimatesd in eq. (3.40). Correspondingly. the density of states near the Fermi level is
drastically enhanced from the value 2/ 7L in the absence of & magnetic fiehd, as is shown
in Fig. 45. It canses the increase of instability against lattice distortions considerably.
It should be noted that the energy levels b almost independent of o and also of
whether CN's sire metals or semiconductors,

First we assume that lattice distortions are independent of the position to understand
the effects of magnetic field on lattice distortions briefly in this section. Effects of spatial
variation of distortions will he included in the next section,

5.2.1 Gap equations
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Fig. 44 (Left) Calenlated highest valence band and lowest conduction band of a
metallic CN for varions magnetic fields perpendicular to the tube axis. The critical
wave vector kg given by eq. (3.40) is denoted by open circles.

Fig. 45 (Right) Cale: lllatrd density of states in the vicinity of the Fermi level for a
metallic CN in mag field perpendicular to the tube axis. The density of states
in the presence of a lattice distortion with a gap for Ay = 0.04 is also shown. The
density of states in the absence of a field and lattice distortion is given by 2/xyL.

Let Fyifr) be the eigen function of the nth conduction band with wave vector k in
the y direction associated with the K point in the absence of a lattice distortion, i.e.,

Yozkz+oyky JFar(r) = oy (n, k) Fax(r), (5.37)

Then, it is easy to show that o.Fu.(r) is the eigenvector of the valence band with energy
(np win. k). Furtlu:r. 0 Fuilr) and o:0,Fpi(r) are the eig of the Tueti
hmd with energy : {n k) and valence band with -e‘“’ w(n k), respectively, of the K’

point. The orthnnnmln]lty conditions are written as

j de P (6)* Pk () = BB,
(5.38)
fdr Forle)ta.Fuw(r) =0,

where the former represents the condition among conduction bands and the latter that
between conduction and valence bands,
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In the presence of the Iasttice distortion, the Hamiltonian in eq. (5.1) has a nonva-
nishing matrix element among states {Fo.0.Fou ) of a K point and (o, Fo.o.0.F
of a K’ point. Within these bases the Humiltonian is written as

K K'
- f ) e o
Mo () = K .\'.Hln,l]rr,+.lgdg[nj A, B (5.39)
K' Moy Eqpink)o.—Ma,

Thus, the energy can be obtained by the dingonalization of the 4x4 matrix as

e k) = el (n, k)24 AT +A, (5.40)

whoere upper sign (+) and lower sign (=) correspond to conduetion and valence bands,
respectively. The lattice distortion opens an energy gap ZM.

The gap equations in the presence of perpendicular field are given by just replace-
ment £ (n, b, Ay, Ag) in eq. (5:12) by el gk, H, Ay, Ag) and one of the in-plane and
ont-of-plane distortions ocenrs in the same condition with that deseribed helow eq. (5.14).
In the following we shall consider only one kind of distortion and put A=A, f= [, and
K=K; (i=1,2).

5.2.2 High magnetic field

In high magnetic fields where the magoetic length is mmch smaller than the circum-
ference, Li2x12 1, Landan states with no dispersion are formed at the Fermi level and
their contribution to the band-energy shift becomes dominant in the weak-coupling limit
(Ag —0). Therefore, the total energy is approximately given by

KA?

A
= 5.1
E = 45 28ky + NS0, (5.41)

where Lky /2x==(Lf2x1)%. The minimization of this gives the energy gap

A
By =2A = 2pyky = ;1'!-1. (5.42)
In the case of a 2D graphite sheet, a single nondegenerate Landan level is formed at
the Fermi level for K and K' points in magnetic ficlds. These Landau levels are split into
+|A| in the presence of a lattice distortion, Becanse the number of states with energy
~|A] is AL/278 with AL being the arca of the graphite sheet, the total energy is given
by

o o vl L

(5.43)

P 272
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Fig. 46 The highest valence band and lowest conduction band of a metallic CN
for varions magnetic fields perpend to the tube axis in the presence of & lattice
distortion.

where the factor 2 represents the double degeneracy of spin. Thus the energy gap is
obtained as

~2

Be=2A=

Aa -
3 (5.44)

|

The result is 7/2 times as large as that given by eq. (5.42). In nanotubes the effective
magnetic field is given by its component i cos f perpendicular to the cylinder surface.
Therefore, the mumber of states is reduced from that of a 2D graphite sheet by (| cos 8]) =
2/, where {- -} is an average over #. Tlis explains the difference between a 2D graphite
sheet and nanotubes with infinitely large cire

5.2.3 Numerical results

Figure 46 shows the highest valence band and lowest conduction band as a functi

of k. The corresponding density of states are given in Fig, 45.

Figure 47 gives the numerical results in CN's with L= /3ma (armehair nanotubes)
for coupling constant A=1.62 « ponding to the in-plain Kekulé distortion. Use has
been made of a =246 A and v=5.33 eV:A (95 =2.5eV). For =0, the gap parameter
increases from the value given by (5.24) monotonically with the increase of a magnetic

field. For v = 1/2 a gap parameter becomes nonzero suddenly at a certain critical
magnetic field and rapidly approaches the parameter for ¢ =0 with the increase of the

5.3 Position-Dependent Distortion Page 63

15

Energy Gap (meV)

L

Magnetic Field (T)
Fig. 47 Calculated energy gap as a function of a maguetic field perpendicnlar to
the tube axis for metallic CN's with varions cireumferences. The solid lines represent

the gaps for =0 and the dashed lines those for = 1/2, The results in the limit
L — o0 and for a 2D graphite are also included.

field. In high maguetic fields the gap parax
field and approaches the value for infinite L,

ter inereases almost in proportion to the
odp. (5:42), with the increase of m. It is
conchuded that a strong magnetic field can induce a sizable amount of lattice distortions

in metallic carbon nanotubes thongh it may be exponentially small in the absence of a
field,

5.3 Position-Dependent Distortion

For CN's the effective maguetic field depends on the position in the cirenmference
direction as M cos# and the maguetic length changes as U/ /] cos#]. Sinee the lowering
of the electror

: energy comes mainly from the Landan states at the Fermi energy, the
magnitude of distortions also depends on the position. In this section we shall study the

spatial variation of distortions in a perpendicnlar magnetic field,
5.3.1 Effective-mass Hamiltonian

We shonld note first that the Kekulé distortion corresponds to the phonon mode of
# 2D graphite sheet at the K and K* points having the highest energy. The displacement
corresponding the phonon at the K point is written as

u{R) = up, e expliK R, + c.e. (5.45)

~ |
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moide at

where i denotes A or B site aud e rep the eige of the pl
the K point (k=K' with K'= (47 /3a,0)). We shall introduce a slowly varying spatial
dependence in the amplitude ug for an atom at R. The second term ‘c.c.” in the right
hand side of the above equation denotes the pl jugate of the first term. This
actually describes the displacement ¢ ponding to the ph mode at the K point,
beeanse —K’ corresponds to a K point after being subtracted by a reciprocal lattice
vector, The change in the length of the bond between atom at Ry and that at Ry -7

is writton as

u(Ra, Ra—7) = [up(Ra—7i)—ua(Ry )l'l—:-l- (5.48)
The wave function is expanded in terms of lope functions as
W= Y Y Y\ 5a PR expliG R, (r). (547)
G=KK i=AB R, U
In the SSH model the transfer integral is given by
f e, () Hn,—n () = =10 — oi(Ra, RA—T1). (5.48)

Multiplying the Schrédinger eq from left-hand side by 5 (r), integrating it over
. and multiplying it by exp(—iK: Ry ). we have the following difference equati

z [—- 'mo'm"'f'&tnﬁ =)= ﬂ[em."'un‘_ﬂes - eix'“um_ﬂaj b 'I':";TFI‘E-IR\A —ﬁ)]
=123

=70 3 MR KA ER (R )

=113

—a T KR ey~ g 0] - I%Fﬁ(na-ﬁ)
=133 il

~a 3 KM [un,gep - X Tup er] - THFRRA-7)
=123 17l

= HMlur on — iy ey] - ILER (RA-

nl-:.u [‘lm #en "n‘EA] il K {Ra—1i)
= cFR(RA) + e M EL (R ).

(5.49)
where use has been made of the relations exp(iKR 4 ) =exp(—iK'R, ) and exp(2iK'Ra) =
exp(il-Ra ), We can safely that the displ ur and the envelope function
F&ir) vary only slowly over the range corresponding to the Jed unit cell which is
three times as large as the original cell of a 2D graphite sheet without lattice distortions.
When we take an average of eq. (5.49) over the extended unit cell, all the terms except
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the first in the left hand side of the above equation vanish and the second term in the
right hand side vanishes also, Therefore, the difference equation is redaced to

3K : K- 71
-7 Z e KA R, ) - E i Tup,en — ¢ K ?'Hn,.ea\]- F:-[.F&.(R_‘—?,:

=133 =123
=f P;’E[RJ\).
(5.50)
where we have i tuced the app tion that ug, —g ~uR,.
In Appendix D the eige of the four modes are given in & simple model

in which a force constant is introduced only for bond hing between the n t
neighbor atoms. The phonon with the highest frequency has the eigen vector ey =
(=if2,=1/2) and eg=(-i/2,1/2) at K'={47/3a,0). We have

c—il‘."f. =1 u—l.K',f' =|!ﬂ"r=.
ea(A/lfl)=-1. en-(fi/[AD=1
ea (BB =", ep(RflR])=c"/,

ex-(Bflnl)=e"",  en:(B/|B)=e",

oK 2w/

{5.51)

with respect to v up to the first order for the terms

Expanding the envelope funet
praportional to 7y and to the lowest order for terms proportional to o, the effective-miss
equation is obtained as

Yy —iky ) FR(r) — Ay () Pt (r) = Pt (x). (5.52)
with

Ay(r)=3au(r). (5.53)

The equations for F2(r), F (r), aud FZ (r) are obtained in the similar manner.
There are other phonon modes at the K point, For the mode with the smallest
frequency the bond-length change does not oceur. For the two-fold degenerate modes
with an intermediate frequency, the leading term of electron phonon interaction is pro-
portional to & and is small. Therefore, the mode having the Kekulé pattern has the
strongest interaction with eleetrons among all modes at the point K and/or K'. In the
we shall ider only the Keknlé pattern as the possible in-plane

PR ) Tonlatbl

lattice distortion.
The final k-p equation becomes

askytayky)to.dalr)  —iayd(r) Fxir)\ _ [ Fxlir)
( i0,A%(r) ‘rta.k.-a,;-,)q-a.a,{r;) (F.;-‘r})_'(!?x-lr})' S5
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Note that the gap parameter for the n-plane Kekulé distortion (&) is complex in con-
trast to the real Ay describing the out-of-plane distortion.
In CN's the lattice displacement u, (R, ) given in eq. (5.45) should satisfy the bound-

ary condition
w{Ri+L)=uw(R,). (5.55)

Because expliK'- (r+L)| =exp(iK'-r) exp(—2xwi/3), we get the boundary condition:
Awe £
HR,+L = UR, ﬂP(“‘T)‘ (5.56)
which leads to the following condition for the gap parameter:
Ay
Ay(r+L) = Ay(r)exp (i 3-)- (5.57)

Note that the extra phase factor gnarantees the fact that the equations remain the same
under translation £ — r+L even for #==1. On the other hand, the boundary condition
for Ag(r) is given by

Aj(r+L) = Azlr), (5.58)
since the wave vector of ont-of-plane distortion is zero as is shown in Fig, 41 (c).

5.3.2 Minimization of total energy

We expand the gap 1 for the i fi direction as
Ayz)= i d‘"'cxp[ih—":)up(—ih—"i)
D 7 SR T
N (5.59)
- 2an
= n) £
A,[:]—ngxa: exp (I 7 :).

with Al™ and A" being expansion coefficients, and the envelope functions as in eq.
(3.34). The equations for G's are written as

B (A Gl HEEK G+ HEA™ Glon) = G,
"

2’—’E:H&:"-oanuﬂ‘.a"*cm+Hr'§:"*'c=§,,1=zci‘c..

21 (5.60)
Z(H"- G AR S GR A+ HER A Gh Y= £C R,

231 me*x.cx +H“*“*G" -+Hx,,xac L)=EGh

8.3 Position-Depondent Distortion
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Fig. 48 (Left) Caleulated Kekulé distortion (absolute value of Ay} of metallic CN's
with =0 (solid lines), @ = 1/3 (dashed lines), and semiconducting CN's with
=0 (dotted lines) in varions perpendicular field as a function of the p(mhln.l in the
cirenmference direction. Dash-dotted lines « pond to the apy 1 results.

Fig. 49 (Right) Calenlated phase of Ay versus the posi in the ci fi
direction. The dash-dotted line overlap the solid line completely.

with

a2t I
SR = g g ()il R ke ) i
x'“ R i) (5.61)
Ky Ky Kj,
HA =—HARr = —abld = il =52 (),
and

A = HAT = — A = BN = A,

(5.62)
K K K K; L\ (m—n)
HK:KA_ HK:I(.._H R 132 )

The energy bands e£5) (n.k, H, {A™ ], {A8]) are abtained by the diagonalization of eq.
(5.60).
The elastic energy of the Kekulé pattern distortion is given by

By ({ai"h= 'E Y (R, m-ﬁ:’—-Nn’. L (5.63)

Ry 1=123 nE—
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Fig. 50 Caleulated lowest uction band and highest valence band of metallie
(a) and semiconducting (b) CN's in various magnetic fields perpendicular to the

tube axis in the presence (<olid lines) and the absence (dotted lines) of the in-plane
lattice distortion.

The energy of the out-of-plane distortion is obtained in a similar way and written as
Lok S quinhe
Eyy=5NK ..;T‘_‘xh" [k (5.64)

Then the total energy is obtained by

:-::221,r mng;xdkz!,;‘gg[iff,;’]}-i- ":;;’ uz_:m;-.\‘,"‘|’+§7? “z_:n;.ag“P. (5.63)
In general, Kekulé and out-of-plane distortions may coexist in contrast to the case of
constant distortion, in which only Kekulé or out-of-plane distortion occurs. In this pa-
per we shall caleulate gap parameter of Kekulé distortion numerically. A series of gap
I Al™ is obtained by searching the minimum of the total energy numerically
with use of the conj gradient method instead of solving gap equations.

5.3.3 High magnetic field

In the limit of Lf2x! — oo the distortion at position # approaches that of a 2D
graphite sheet in magnetic field H cos# except in the region 8 ~=£x/2. Thus, from eq.
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Fig. 51 Calculated lowest conduction band and highest valence band of metallic
and semiconducting CN's in & magnetic field perpendicular to the tube axis in the
presence and the absence of in-plane lattice distortion,

(5.44) the gap parameter A=A or Ay at # is obtained as
AB)=2 con) 566
=317 cos 0], {5.66)

It is noted that the average of eq. (5.66) over @ agrees with the gap approximated by
constant distortions written as eq. (5.42).

5.3.4 Numerical results

Figure 48 shows the absolute value of the gap parameterd; ealealated for Ay =1.62 as
a funetion of the position in the ci fi direction. The magnitude of the distortion
is independent of whether CN's are metallic or semiconducting and the magnetic flux.
The di ion becomes at of L=0 (top) and £1/2 (bottom) and minimum at
zfL=%1/4 (side). The maximum distortion inereases with the increase of the magnetic
field. The approximate gap parameter Aq(#) given by eq. (5.66) is denoted by the dashed

lines in the range of the position where a well-defined Landan level is formed.

Figure 49 exhibits the phase of Ay as a function of the position. Becanse of the
houndary condition of Ay in eq. (5.57) a non-vanishing phase apy for semiconducting
CN's,

Figure 50 shows the cneulated energy bands of metallic (a) and semiconducting

— A —————

L i -
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Fig. 52 Calculated absolute value of gap parameter &) versus magnetic field for
metallic and semiconducting CN's.

(b) CN's near the K and K' points in a varions perpendicular field, In a weak field

(L/2xl=1.8) the band gap increases tonically with i of k. H ,in a
strong field the gap takes its maximum at k=0 and decreases gradually with increasing
[k, The gap takes its minimum value near the eritical wave vector in which the flat levels
in the absence of distortion (denoted by *Without Distortion’) start to depend on k. At
of K and K' points is lifted for semiconducting CN's
while the two-fold degeneracy remains for metallic CN's. This is discussed in Appendix
E.

the mini gap the d

Figure 51 shows the caleulated energy bands of metallic and semiconducting CN's,
The dashed lines denote the gap parameter approximated by eq. (5.66) with sin8(k) =
~2x7lk/L. It is demonstrated in Appendix E that the gap parameter corresponds to
the lowest conduction and the highest valence bands, The deviation from the numerical
results increase with wave vector, since the spatial extent of the wave function of the
eyelotron motion becomes larger and the approximation becomes less valid.

Figure 52 exhibits the absolute value of the gap parameter &g at k=10 of metallic and
semiconducting CN's with varions cirenmferences L=ma with integer m with use of A=

1.62. The gap parameter of semiconducting CN's approaches that of metallic CN's with
the increase of the magnetic field. The parameter for both metallic and semiconducting
CN’s having infinitely large i i e approaches that of a 2D graphite sheet as is
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Fig. 53 (Left) Calenlated band gap versus dimensionless magnetic field.
Fig. 54 (Right) Calculated band gap of metallic CN's versus magnetic field.

expected.

Figure 53 shows the band gap of metallic and semiconducting CN's with varions
coupling constants. The band gap of semiconducting CN's does not agree with that of
motallic CNs even in a strong magnetic field b two-fold deg of bands is

lifted at the corresponding wave vector, The band gap of metallic CN's are shown in Fig.
54, The gap of CN's having larger cirenmference becomes smaller in high magnetie field.
This is because of the fact that the highest conduction band starts to decrease with |k
in a weaker magnotic field for CN's having larger civenmference.

Let us disenss the case of the ont-of-plane distortion qualitatively without explicit
calculations. It is expected that the spatial variation of the absolute value of Ay and its
dependence on the magnetic field are similar to those for Ay shown in Fig. 48. The phase
of Az, however, becomes zero everywhere independent of whether CN's are metallic or
semiconducting in contrast to that of Ay having

ishing phase for semie =
CN's shown in Fig. 49. This is because of the fact that there is no extra phase factor
in the boundary condition for Ay given by oq. (5.58) even for semiconducting CN's.
The dispersion cnrves of the lowest conduction band and the highest vadence band are
expected to be similar to those for the Kekulé distortion exhibited in Figs. 50 and 51

However, the degeneracy in the comnduction band is not lifted even for somicondueting
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CN's. Therefore the band gap of semiconducting CN's agrees with that of metallic CN's
in high magnetic fields in contrast to the case of the Kekulé distortion shown in Fig. 53.
5.4 Summary

W
In the absence of magnetic field perpendicular to the tube axis, it has been shown that

pave studied both in-plane Kekulé and out-of-plane lattice distortion in CN's,

two kinds of distortion cannot coexist and an analytic expression has been derived for
the energy gap and the amonnt of distortion as a function of the AB fux by using the
k-p method. The distortion is a strong function of the AB flux and disappears except
in the case of vanishingly small flux. A tight-binding model is used also for the study of
Kekulé distortion and gave results in excellent agreement with those in the k-p approach.

The distortion, presents only in metallic CN's in the absence of a magnetic field
and exponentially small. is enhanced drastically by magnetic fields for both metallic and
semiconducting CN's. A maximum distortion occurs at the top and bottom of the cylin-
drical surface where electrons form Landan levels in a 2D graphite plane. The maximum
distortion is

distortion is larger for CN's with a larger diameter, while the
smaller for CN's with a larger diameter in strong magnetic fields.

Chapter 6

Magnetic Properties

In this chapter magnetic properties of CN's are studied. @<% I o magnetic field
perpendienlar to the tube axis, the magnetization is essentially determined by that of a
graphite sheet, while it is induced also by the Abaronov-Bolin (AB) effect in a parallel
field. The AR effect manifests itsell in the magnetic-field and temperature dependence
of the differential susceptibility even for ensembles of CN's having various circumfer-
ences and orientations. The theoretical results are compared with recent experiments on
magtietic propertics.

This chapter is organized as follows: In Sec. 6.1 susceptibility and magnetization
are studied for single-shell CN's with carrier doping. In Sec. 6.2 the magnetization and
the suzceptibility of realistic samples of CN's without earrier doping are caleulated. A
sumnary is given in See. 6.3.

6.1 Magnetic Properties of Single Nanotubes
6.1.1 Magnetization and susceptibility

In the following calculation, the MU(x!) and A4 (") represent the components of
magnetic moment (susceptibility ) in the direction of parallel and perpendicular direction
of tube axis, respectively, as shown in Fig. 55, Further, a set of the quantum mumbers
(A, m, k) specifying each state is represented by a single character 7. We have

er=elM(n k. Hy), (6.1)

and

-2y > [
== dk. (6.2)
¥ L A=t a=—ap? T

Noting that » and @ appear in energy as a combination @—p /3, we have the free energy
for electrons in the vicinity of the K point

F(g'h g JfL) = Np~ i-n‘]"gy\,[s, )l [l+l'x|’( - %{:)] (6.3)

T3

T e
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Fig. 55 Components of ( ibility) in the parallel (M0{x1))
and the perpendicnlar [M‘Lh(*]} direction 16 the bubs Rk

where T is temperature, kp is the Boltzmann constant, and y is the chemieal potential
satisfying the condition that the electron number is constant. Further, gol2) is the cutoff

function defined in eq. (5.11) ining two | ters, £ and a.. Results do not
lepend on these | as long as £, is sufficiently large and a is not extremely
large. In fact, this cutoff function can be eliminated in an approp I 1 Details

are discussed in Appendix F.
The magneti in the directi Hel (J]) or perpendicular (L) to the axis

is calenlated by taking a first derivative of F with respect to the field under the condition

that the total number of electrons is fixed. The result is represented as

it (-t ) = [T a5 (- 22). @

whoere f{z) is the Fermi distribution function and M1-(¢) is the magnetic moment at
zoro temperature for the Fermi level . given by

¥ Dey
Mn.:.(,p_i, m,e)=_gmme,:a(e—e,:. (6.5)

with f{z—c.) being the step function. Equation (6.5) is also obtained from the derivative
of a total energy ander the condition of the particle number conservation. Adding the
contribution from K' point and multiplying the factor two of spin degeneracy (the spin-
Zeeman energy is small and therefore neglected for simplicity). we obtain the magnetic

fi.] Magnetic Properties of Single Napotybes Page
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@

moment My of a motallic CN and Mg of a semiconducting one as follows:

MU (o ) =AM (o, H
{ (o Hy)= (e Hok (6.:6)

MU (o, Hy ) =2M W (@4 1/3, H o)+ 2M0 4 (=13, H ).

The susceptibility per unit area at nonzero temperatures can be also written in terms
of the susceptibility at zero temperature jn the same way as the magnetic moment.

b (-5) = Lot (-5 (-4,

with

(=39 = e DH“M"_L( o= He). (6:8)

Adding the contribution of K' point, we get the susceptibility of metallic and semicon-
ducting CN's as follows:

II.L L
{ (T, p=ax(0), 4t

XA, ) =2x 1 (1/3) +2x0 (-1/3),

6.1.2 Undoped CN’s at Zero Temperature

Let us first consider magnetic properties of undoped CN's at gero temperature in
the parallel field, In a straightforward caleulation from eq. (6.5), we get

A 2may

MU(p.0) ==

Wilp). (6.10)

where ppg=ch [2me is the Bohr magneton and Wy () is dimensionless quantity given by

Wi =~ 3 i ﬁ;—"‘%}f—f,’iﬁ (16 o ). (6:11)

with k= Lk/27. As is derived in Appendix F, in the vicivity of p=n with n being an
integer. Wy is obtained as

Wilp) = ~3-(p—n)lnfp—n] (e=nl<). (6.12)

Therefore. the moment itself vanishes but its derivative diverges logarithuically {positive
infinite) at w=n and metallic CN's <how paranagnetism in o weak parallel feld,

Figure 56 shows the magnetic moment of & metallic and semiconducting CN as a

funetion of @ obtained in the present kep approximation (a) and in s tight-binding model
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Fig. 56 Magnetic moment of metallic (solid line) and semiconducting (dotted line)
CN's versus magnetic flux parallel to the tube axis calenlated in the effective-mass
approximation (a) and tight-binding model (b).

(b). The moment calculated in the effective-mass approximation is in 1l t
with that of a tight-binding model. The magnetic moment is a periodic fnm,l.lon of flux
with period of magnetic flux q since the t is induced by the AB flux. In
a weak field metallic and semiconducting CN's show p ism and diamagnetism
respectively.

It should be noted that this magnetic moment is closely related to the persistent
current in metallic rings.* For a small metallic ring with magnetic flux, each cigenstate
carries a nonzero current along the ring. Because of a large cancellation the total current
becomes very small after the jon over all istates up to the Fermi level 70
Though the situation in CN is certainly different from that in usual metallic rings, similar
large cancellation exists even in CN.

In order to calculate the pribility for & ic field perpendicular to the tube
axis, we first calculate the shift of the energy levels up to the second order in magnetic-
field strength He. As has been shown in Chapter 3, the magnetic field introduces the
following perturbation described by the Hamiltonian H' defined by

_12my Lafo 1
H:.--.—FET[EFI (1 0)'5n'ﬂtt~ (6.13)
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The matrix elements between the eigenstates in the absence of a waguetic field are
calenlated as

12x9, L

A

]21';
L ‘oml

(', +|H'n~) = £~ e (TS S TR S B ) PSS
(6.14)

(0= In, =) = Fx

) (B ) t-bumpmzt 1 k)] Bt

Except in the case of an accidental degenericy mentioned Inter, the magnetic ficll causes

an energy shift to the second order in its strength. We have

|(m, =] H"|n", lrl'j|2

AN k) = (6.15)
" S S k)= k)
The shift in the total energy becomes
!J 11. =
B(p-5) = ZJdk [ 842 a5 4ae5) ~3) a1
(6.16)
i f dk A "llu k) an (65 s k)]
n=—oo
The susceptibility per unit area is caleulated as
TR T D T (el s 0 1) Z
He=5) == > L, Blnsm R (8:4%)

nE—a0

Note the change in the cutoff function from go(e) to gile) (defined in (5.13)) in the above.

There oceurs an accidental degeneracy for some values of v and . Cousider the
case v=0 and p=1/2, for example. In this case, the valence-band states with n=0 and
n=—1 are degenerate with each other and the second order perturbation breaks down
becanse of the presence of the shift to the first order in H. When the energy shifts are
summed over all the occupied valence band states, this first order energy shift cancels
out with each other and does not contribute to the total energy. The only modification is
that intermediate states 0’ accidentally degenerate with the band n should be excluded
in the summation in Eq. (6.15). This is a result of the fact that the trace of a matrix is
invarant under any unitary transformations.

After a straightforward ipulation, x{y) st formed into the following expres-

ston:

L
xlp)==x* = Walw). 16.18)
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Fig. 57 Susceptibility of metallic {solid line) and semiconducting (dotted line)
CN’s versus magnetic flux parallel to the tube axis caleulated in the effective-mass
approximation.

where Wylp) is the di ionl ity defined by

o : Ry
Wi =55 Y [ a L2 o e m, (629)

24 1—4{n+p)?

n=—oe

and x* is a ol teristi pribility defined by

-2

T 6 \wa?

(6.20)

corresponding to 1.46 % 10~ e /mol or 1.21x 10~ emu/g for y=6.46eV-A.

Figure 57 shows the ealculated susceptibility of a metallic and semiconducting CN's.
The susceptibility is negative irrespective of ¢, ie., CN's are diamagnetic for a magnetic
field perpendicular to the axis. The absolute magnitude of the susceptibility of a metallic
CN is smallest for $=0 and takes a maximum at »=1/2, though the variation itsell is
small. Further the susceptibility of metallic and semicouducting CN's is not so different
from each other.

The weak depend of the ptibility on the magnetic flux is
follows. When & magnetic field perpendicular to the axis is applied, Landau levels begin
to be formed. The Landan levels are essentially those of a 2D graphite layer and theref,

1.

d as
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the band gap decreases with magnetic ficld as has been discussed in Cliapter 3. This
effect, which is the origin of the diamagnetisne, is larger for CN's with larger baud gap
in the absence of & magnetic field. Consequently, the diamagnetic suseoptibility takes
A maximum for CNs with largest band gap (@ = 1/2 for » =0) and & winimum with
vinishing gap (=0 for v=0).

Equation (6.18) shows that the susceptibility is proportional to the cirenmference
L and therefore diverges in the lmit of infinitely large L. This dependence is closely
related to the susceptibility of a 2D graphite sheet. The following expression was derived
for the susceptibility por unit area of a graphite sheet:™ ™

X=‘£%(é)’- (6.21)

For a single ideal 2D graphite layer, the Fermi energy o vanishes and the susceptibility

at zero temy ure. Becanse of the large interlayer spacing in comparison with
a, the diamagnetic response of graphite is dominated by that of a single graphite laver.
Weak interlayer coupling leads to a smadl dispersi

it the direction perpendicnlar to the
layer and modifies the Fermi energy.™ © uently, a 3D graphite has a finite but very
large diamagnetic susceptibility observed experimentally.™

An expression independent of the entoff funetion is derived in Appendix F. In par-
ticular, the average over i can be caleulated analytically as Wy =1/32x%, which gives

T =ds=—-12Tx 10" x E,t'. (6.22
a
Equation (6.21) 1s written as
1 2%y 5L g 2y L.
=—— =l Sxt==1. . —-x". 6.2
A 33 L" oX S Tali (G2)

This agrees with the snsceptibility of CN if we replace p by 0.85 % y(2x /L) which is the
typical confining energy due to a finite cirenmference.

6.1.3 Numerical results: susceptibility

Q Kotk

ptibility at zero temy is I by using eq. (6.8), and the results
are shown in Fig. 58 as a function of the Fermi energy jr. The susceptibility at g =0
agrees with that of a previons paper. 27 Both metallic and semiconducting CN's
show positive divergent susceptibility in the parallel field where the Fermi energy lies at
band edges. The divergence for metallic CN's is logarithmic as shown in Appendix G,
while that for semiconducting CNs ponds to that of the density of states at band
edges. When the Fermi encrgy moves away from band edges, the parallel susceptibility
licnlar field, CN is dinmagnetic but turns
into paramagnetic when the Fermi energy becomes away from p=10.

becomes negative (di ic). For a pery
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Fig. 58 (Left) (Up) The band structures of metallic (solid lines) and semiconducting
(dotted lines) CN's. Caleulated susceptibility of metallic (solid lines) and semicon-
dueting (dotted lines) CN's in the direction of perpendicular (Middle) and parallel
(Down) to the tube axis versus chemical potential at zero temperature,

Fl;. 59 (Right) Caleulated susceptibility of metallic (solid lines) and semiconduct-
ing (dotted lines) CN's in the direction of parallel and perpendicular to the tube
axis versus temperature,

Figure 59 shows the susceptibility in the parallel and perpendicular directions for
j=0 as a function of temperature. Note that the chemical potential does not vary with
temperature due to the symmetry of the density of states about £=0. The positive sus-
ceptibility of metallic CN's in the parallel direction decreases rapidly with temperatire,
while the other negative susceptibilities rise very slowly. This temperature dependence
can easily be understood from the Fermi-level depend of the zero-temp s
ceptibility shown in Fig. 58.

6.1.4 Numerical results: magnetization

Figure 60 gives caleulated magnetization in a parallel direction of metallic CN's at
zero temperature. [t shows that the parallel magnetization is reduced considerably in
a strong perpendicular magnetic field. This is a direct consequence of the fact that the

energy shift induced by the AB fux | small in a perpendicul gnetic field, as
has been discussed in Chapter 3. The figure contains also the result for nonvanishing
enrrier density ny per unit area. For ngl® = 4. for ple, the mag is
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Fig. 60 (Left) (Up) Edges of the lowest and the second lowest conduction bands
{solid. lines) and Formi energy (dotted line) for metallic CN's with carrier density
n.|L = 4 versus magnetic flux passing throngh the cross section of CN's in the
absence of perpendicular magnetic field. (Down) Caleulated magnetization in the
parallel direction for wetallic CN's for ngL* =0 and 4 in a magnetic field L/2x1=0
and 1 at zero temperature.

Fig. 61 (Right) Caleulated magnetization in the parallel direction for semiconduct-
ing CN's with ng L* =0 and 4 in & magnetic field Lf2zl=0and 1 at zero temperatare.

negative corresponding to the di tic susceptibility shown in Fig 58 in a weak
parallel field, but exhibits cusps when the Fermi level crosses band edges as shown in
the upper panel of Fig. 60. The magnetization for ngL? =4 nearly vanishes in a strong
perpendicnlar magnetic field.

The results for semiconducting CN's are shown in Fig. 61, In the absence of carrier
and perpendicular field, the magnetic moment decreases linearly in & weak ficld and
inereases sharply in the range of 0326 /¢a<0.4. The change of magnetization curves
dué to earrier doping and perpendicular ficld can be nnderstood in the same way of that
for metallic CN's,

Figure 62 shows the magnetization of metallic CN's at zero temperature as a fune-
tion of perpendicalar field, In the undoped case, the absolite value of the magnetization
inereases smoothly with the magnetic field. In the case of ng L2 =7.5. on the other hand.
the magnetization changes from positive (paramagnetic) to negative (dinmagnetic). This

=
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Fig. 62 (Left) (Up) Edges of the lowest and the second lowest conduction bands
(solid lines) and Fermi energy (dotted line) for metallic CN's versus perpendicular
magnetic field with AB flux p=1/2 and carrier density ngL* =7.5. (Down) Cal-
culated magnetization for metallic CN's versus perpendicalar magnetic field in AB
flux ¢/du=0 and 1/2 for carrier density ngL*=0 and 7.5.

Fig. 63 (Right) Calculated magnetization of metallic CN's with ngL? = 0 versus
perpendicular magnetic field in both kp approximation (solid line} and tight-binding
model of zigrag CN's having cireumference L = 51a (dotted line) and 8la{dashed
line)., The magnetization in the k-p method shows good agreement with that in the
tight-binding model up to about 100 T.

change is again due to the band-edge crossing of the Fermi level. In sufficiently high mag-
netic fields, the magnetization becomes nearly independent of the carrier concentration.
This is a consequence of the fact that the lowest band forms dispersionless Landan level
and does not contribute to magnetization when L/2x13%1.

Figure 62 contains results for the AB flux ¢/é;=1/2. In the absence of the perpen-
dicular field, two bands with n=0 and —1 are degenerate and this degeneracy is lifted
linearly with increasing field as shown in the upper panel and as has been discussed in
Sec. 6.1.2. The magnetization becomes independent of the AB flux again in sufficiently
high magnetic fields.

6.1.5 Tight-binding model
The magnetization and susceptibility of CN's can be calenlated also in a tight-
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binding model in which effects of & magnetic fiekl can be incorporated as a Peiorls phase
factor in transfer integrals. In Fig. 63 the magunetization of zig-zag nanotubes (Lo =251
and 81 with ny, = 0) in the perpendicular field is compared with that obtained in the
k-p approximation. The two results are in good agreement with each other exeept in
extremely high magnetic fields or in the case of CN's with small cirenmferences. The
arrows indicate the magnetization at H = 100 T, where the magnetic length [ is about
10 times as large as the lattice constant o, The discrepancy hetween the results of two

approximations becomes appreciable roughly around this magnetic field.

The maguetic susceptibility was recently cal L in a tight-binding model™ and
therefore will not be presented here. It is worth mentioning, however, that the tight-
binding result is again in good agreement with the present k-p result shown in Fig,
58,

6.2 Magnetic Properties of Ensembles
6.2.1 Average

Realistic samples contain CN's with different layer numbers, ciccnmferences, and
orientations, Becanse interactions between adjacent layers of a multi-shell CN are weak,
its magnetic propertics are expected to be given by those of an ensemble of single-shell
CN's with different circumf es. In the following, we shall calculate the magnetic
moment of ensembles of CN's. We shall confine ourselves to the case of undoped CN's
for si

plicity, The bl ige of i L is given by
(MCH Yy = (M (H Dy + 3 (M5 (). (6.24)

where
b 111 il L*H o
(Mus(H))ay -—deﬂ{L]];[Mu.s(m cos Ha-mﬂ)umﬁ )
. .2

L*H
+M¢-5(4

7o

cosfl, H sin 0) sin f?] .

with H being the strength of magnetic field, 2 being solid angle, # being the angle between
a magoetic fiekd and tube’s axis, and p(L) being o normalized distribution function of
cirenmference length of a sample.

In weak magnetic fields, the magnetic moment is writton by using the susceptibility

{M{Jum}=xﬂuﬂmo»u.. o

Miss(H)=x sHsind- AL

From eqs. (6.24) —(6.26). the magnetic moment of ensembles of CN's is represented as

(M(H )y = (X)awH- ALy (6.27)

P
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with
1
(s =fdmm;[xe,+2‘-:,+2\-£+4xgi. (6.28)

At zero temperature the suseeptibility diverges for some values of j corresponding to band
edges, where the magnetization is not given by eq. (6.26). However, this divergence is
removed at nonzero temperatures. At sufficiently low temperatures and in low magnetic
fields, the magnetization exhibits a small paramagnetism due to the AB effect of metallic
CN's ™ The corresponding temperatire is very low and is given by kaT < (27 /L)x107
as shown in Appendix G.

The distribution function p( L) is not known and therefore we shall consider following
three different kinds:

”‘—;j‘,‘i] ; Ganssian Distaibation,

wL)= 7':_"E exp [ -

plLy= Ty (Lmn < L < Lix) Rectangular Distribution, (6.29)

ML) =2[—£:[:% (L € L< L) :  Triangular Distribution.
The first is the Gaussian distribution around a certain average cirenmference Ly, with
the root-mean-square deviation ¢. The rectangular distribution roughly corresponds to
the situntion that CN's with different circumferrnces are distributed equally and the
average layer number of multi-shell CN's is independent of the circumf ¢, When the
average layer ber of CN's with the circumfe on the other hand, the
number of CN's with small circumferences is effectively enhanced and the distribution
becomes asymmetric about L,,. The most extreme case ean be realized if we assume

that each CN has layers such that the cirenmference of the inner-most shell is always
L. In this case the distribution is given by a triangular form.

6.2.2 Numerical results
Figure 64 gives the caleulated magnetization and diff ial susceptibility of CN

ensembles at zero temperature as a function of a magnetic field. Results for the Gaussian
and triangular distributions are shown and the unit (L/2x1)? of the magnetic field is
for L,,. This shows clearly that characteristic features of the magnetic properties are
essentially determined by those of single-shell CN's having the average circumference.
The magneti is negative (di ie) and its absolute value i as
a function of the magnetic field. This overall dependence is governed by that of the
gueti t for perpendicul ynetic field shown in Fig. 62 and the parallel
contribution or the AB effect appears as a slight deviation. This deviation becomes

clearer in the differential susceptibility. In fact, the differential susceptibility increases
with the decrease of the magnetic field sharply in weak magnetic fields (L/27L)* £0.2.
This is a result of the divergent paramagnetic susceptibility of metallic CNs in the
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Fig. 64 (Left) Calenlated maguetization and differential susceptibility of realistic
samples in which the distribution of circumference is delta-function (solid lines),
Ganssian with o = 0.3L,, (dotted lines), and triangular having Ly, = 050, and
Ly = 2L, (dashed lines), Solid lines represent the results of single CN's having
the same circnmference length,

Fig. 65 (Right) Calculated susceptibility of realistic samples without carrier versus
temperature in which the distribution of circumference is delta-function {solid lines)
Ganssian with o = 0,31, (dotted lines), and triangular having Ly, = 050, and
Lyx = 2L (dashed lines). The susceptibility rises at low temperature becanse of
the AD effect.

parallel field. Further, the negative contribution present for the magnetic-field range
(L/270)* 0.7 is essentially due to the di tie of iconducting CN's in
the parallel field.

Figure 65 shows the zero-ficld susceptibility of ensembles as a function of temper-
ature, In this figure L means Ly, for the G ian and tri lar distributi and it

is found that the temperature dependence of susceptibility is essentially given by that
of single-shell CN's having the average circinnference also. The absolute value of sns-
ceptibility gradually decreases with temperature except at low temperatures. The sharp
rise at kT <0.1%(475/3L) is again due to the divergent paramagnetic susceptibility of
metallic CN's, Le., a direct manifestation of the AR effect.

The magnetic properties of CN's were recently measured experimentally, ™™™ Fig-
ure 66 shows the experdmental result of ref. 77 together with the magnetization and
differential susceptibility calenlated for the rectangular and triangular distribution with
Linne= 22A corresponding to the finest CN so far observed and Ly, =942.5 A correspond-
ing to the thickest CN. The ealeulation can explain the experi qualitatively, but
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Fig. 66 (Left) Caleulated ensemble average of magnetic moment and differential
susceptibility for CN's with rectangular (dotted lines) and triangular (dashed lines)
cxrtumfmnn- dwlﬁhul:nn having L.,.,, =22A and Lge =942.5A. Solid H:ma denote
the exp | results of mag: and differential susceptibility.””

Fig. 67 (Right) E b of ibility versus temperature by Yumura
ot al.™ and Heremans et o7, Caleulated results are obtained for CN's with rectan-
gular and triangular ﬂrrumfer!'nr- distribution having Luye =224 and Ly, =042.54.

more detailed information on the distribution of CN's is indisy ble for more quanti-
tative comparison.

The temperature dependence of the susceptibility was 1 also and the results
are shown in Fig. 67 including the calculated results for the circumference distribution
being rectangular and triangul The experimental results of Ramirez ef al™ and
Heremans ef al™ do not exhibit the increase at low temperatures predicted by the
theory (Fig. 65). However, Yumura ef al™ observed an increase of the susceptibility in
the range of 0 to 30K in samples of purified nanotubes without other carbon structures.

The susceptibility of bundles of aligned CN's was measured also.® However, the

peri ally ohserved ptibility is larger for the parallel field than for the perpen-
dicular field, quite in to the theoretical prediction shown in Figs. 58 and 59.
The origin of this discrepancy is not known.

6.3 Summary

The magnetic pmpurtiu of single lmd ensembles of CN's have been studied in an
oscillates as a function of ¢ with

effective-mass approxi The
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the period of the magnetic flux quantum ¢y, The phase of the vscillstion is opposite
between wetallic and semiconducting CN's, e, for a small fux the moment is in the
same direction as the flux in the metallic case and in the opposite direetion in the
semicondueting ease. In both cases the woment does not depend on the circamferenee.

The susceptibility of a single CN is negative (diamagnetic) and does not depend so
mnch on whether it is metallic or semicondueting. It is proportional to the cirenmference
and hecomes infinite in the limit of

nite circumference, This has been nnderstood in
conjunction with the susceptibility of a 2D graphite sheet.

The magnetization in a weak ficld and the susceptibility of single CN's change dras-
tically by carrier doping. However, the magnetization becomes independent of earrier in
a strong field where all the carriers exist in well-defined Landan level.

The magnetization and the suseeptibility of realistic undoped samples are calculuted
for three different kinds of the distribution of the ¢ fi o; & Ganssian, rectangnl
and trinngular distributions. The Baolun effect ifests ftsell ns the increase
of the differential snsceptibility in a weak fiecld. The experimental results by Heremans
et al™ exhibit the characteristic structure and lic between those for the rectangular and
triangular distribution. The AD effect also appears as the increase of the susceptibility
at low temy ures. The experimental results by Heremans ef ol™ and Ramirez et al.™

do not exhibit the inerease of suscoptibility in a weak field, while that by Yamura ef ol™
seemns Lo this characteristic features predicted theoretically.




Chapter 7

Summary and Conclusion

In this paper we have studied electronic states, optical absorption. lattice instability.
and magnetic properties of carbon nanotubes in magnetic ficlds in the effective-mass
theory.

In Chapter 3 electronic states of CN's have been calculated. The sensitive change
of CN's from a metal to a semiconductor depending on its structure is well reproduced
in the k-p method. The band gap is inversely proportional to the tube diameter and
exhibits a drastic change as a function of magnetic flux passing through the cylinder
cross-section with the period of the magnetic flux quantum due to the Aharonov-Bolun
effect.

In & magnetic ficld perpendicular to the tube axis, a well defined Landau level is
formed at the Fermi energy, which agrees with the resnlt of a tight-binding model in a
wide magnetic-field range except in except extremely high fields where the flux passing
through the unit cell of a two-dimensional graphite is comparable to the flux quantum,
e~ A000T. A slight deviation of the tight-binding results from that in the k-p method
in weak magnetic fields can be explained by the inclusion of higher order terms in the
k-p expansion leading to trigonal warping of bands.

In Chapter 4 optical absorption spectra have been calculated in the presence of a
magnetic field parallel to the tube axis. A drastic change in the band gap due to the
AB effect manifests itself in optical spectra for light polarization parallel to the axs. In
the case of perpendicular polarization. the absorption is suppressed strongly by a large
depolarization effect. These characteristic features are not modified by carrier doping.

In Chapter 5 we have studied lattice instability toward in-plane Kekulé and out-of-
plane distortions is studied. The k-p model Hamiltonian with the distortions is given by
Dirac’s relativistic equation. In the absence of a magnetic field perpendicular to the tube
axis, only metallic CN's are unstable against the distortions. The resulting gap equation
lias been solved analytically in the presence of an AB flux, leading to the conclusion
that the Kekulé and out-of-plane distortions cannot coexist. A tight-binding model gives
results in excellent agreement with k-p results and justifies the k-p model Hamiltonian,

The distortion is enhanced drastically by a perpendienlar magnetic field for both
metallic and icondueting CN's. A distortion occnrs at the top and bottom
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of the cylinder surface where electrons form Landan levels in a 2D graphite plane, and
its magnitude is independent of the magnetic fux and whether CN's are metallic or

Sermi ting. A

distortion ocours at the side wall region of the eylinder
surface where the effective perpendicalar magnetic field vanishes,

In Chapter 6 magnetic propertics of CN's have been ealenlated in the kp model. The
magnetic moment in a magne

stic flux parallel to the tube axis oscillates as o funetion of

the flux and exhibits § gnetism and di enetism for metallic and semiconducting
CN's in o weak field, respectively. In a magnetic field perpendicular to the axis, both
metallic and semiconducting CN's exhibit a large diamagnetism originated from a 2D
graphite sheet.

The paramagnetism of metallic CN's indueed by the AB flux manifists itself in the
magnetic-field and temperature dependence of the differential suse

lity of ensembles
of CN's having varions circumference and orientations. The magnetic properties turn
out to be strongly dependent on carrier doping.
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Appendix A

Peierls’ Phase

In a magnetic field, a translation of au electron is accompanied by a phiase factor
called the Peierls” phase, In this Appendix we will review this pliase.

Introdnce a wave function $gr(r) for a nondegenerate level of an atom located at
position R. The Schridinger cquation is written as

[%(p&%;\[r])z+l'[r-R]]¢n{r}=e¢n(rJ. (A1)

For a uniform magnetic field, we have rotA(r) = rotA{r —R) = H and consequently
rot[A{r)—A(r—R)|=0. Define yp(r) such that

Vxr(r) = A(r) - A(r=R). (A2)

It is straightforward to show that the wave function

dn(r) = dx(r)exp i vn ()] (A3)
satisfies
1 e 2 2 -
7 (PHEAG-R)) +Vir—Rl]'Pn{rl = ribp(r), (A4)

L., 'in(rlﬂ@ﬂlf— R). This meaus
@n(r)=@o(r~R)exp [ - 2= yn(r)] expliv (R}, (AB)

where ¢(R) is any function of R,
For Landan or symmetric ganges in which A(r) is a linear function of r, we can
chioose

Vin(r) = A(R) or xn(r)=A(R)-r. (AB)
Therefore, we hiave
in
'l’n{rl=¢nlr—mr-x|:[— FMR}vlr-Rl}. (AT)
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where we have chosen the phase such that J{R) = (¢/ch)A(R)-R. As long as the
magnetic length | is much larger than the extent of the atomic wave function, effects
of the magnetic field can be peglected and we can safely replace &y (r—R) by the wave

function in the absence of the field.

Appendix B
Gap Equations with Infinite Cutoff

It is possible to obtain an analytic expression for 1(, A) for small A and . First,
we note that eq. (5.14) can be written as

z j‘ -lkfm _y:[l-"'ruﬂknlll_ B

vt 12 e ke b, 0))

Thus, eq. (5.16) is rewritten as

a7k A)) (157 ekt ks 0))
= E 1k
I'=q f d fm [ . (B

e [, e, )] e ekt ke, 0)

We first separate the summation into

1= 1(0,.8) + Z fin, vﬂ!+z.ﬂrl 2.8, (B3)

where

Flnag.6) fm./m ['" (Vi (nrpiten) 5"'(\/“""‘"’”’*” )]

i \/k’+{u+wl’+6’ ‘/l.=+|n+‘s+.'}=

with k=Lk/2x and §=AL/2x7.
Becanse f(n, g, &) decays rapidly for large n and the series converges, we can extend
the cutoff to infinity and climinate the cutoff functions. Thus we have

L ] (B35)

x (12 1
f .mj dt | — =
B S OV (TR Ry [E e

J(n, . 8)=

For small & and @, the leading contribution comes from the first term n= 0, which is
calenlated as

J(0.0.6) = —In(p* +6%) -2n 2~ 2. (B6)

a3
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For n#0, we can neglect § and  safely and get

fn,p.8) = —2[1 = u+£)ln (1+-];) + (u—é)ln (l—%)]

1 1 (BT)
z 1020+ 1)2% it
Therefare. the integral becomes
(g, &) = ~In[p?+8%)—2In 2-2-2C5, (B8)
where
Z ﬂ?f‘fl’l o~ 01445972, (B9)
with ¢(p) is Riemann’s zeta-function. defined as
=
(=3 = (B10)

n=l

Appendix C
Force Constant for Graphite Sheet

For graphite sheet the effective force constant which comes fron

can he calenlated by the second order perturbation. We first perform a nnitary {ransfor-
mation for the Hamiltonian (5.30) to diagonalize the non-perturbative part:

= r+ K- K+ gl
iy —u| R 1] —oufy oufy —onfy  ouly
B 0 Wl —onfs  oufy  —oufy  oufy
K= | —ouf; —ouff -wl|S| 0 —oufy  oufy ] (©n
K+t aufy  ouf} 0 1w|S| —oufs auls
K'™ | —oufy —ouff -oaufd —oufy —w|T| 0

K™\ oufl  ouf  ouwfl  oufl ] 7l7

with
RE S BT TS5 ’s 8F
S=amtas ST Em o mEr O T Em T E ;
Y RS S8'T SR RT - S*R RT (€2)
S=gm A ST e A YT EE

where [ =) and (4+) mean valence and conduection bands,; respectively.

Becaunse the trace of a matrix is invariant under any unitary transformation, energy

shifts due to ‘tion among valence-band states do not contribute to the total energy
¢ and conduction bands should be
caleulated. It is elear that the energy shift is O(u®) except in the vicinity of the I’
point where valence and conduction bands are degenerate. At the T point. the energy
changes to the first order in u, but the vanishing deosity of states at the Fermi level
in 2D graphite makes this contribution negligibly small. Therefore the second order
perturbation is applicable all over the first Brillonin zone. The electronic contribution
1o the foree constant K, is obtained throngh the relation 4E= N K, 4?2 in terms of the

shift and those due to interactions between valen

energy shift SE given by

op  tatut AL ] ;_( &) 1€ &l ) (€3)

™ (2%

TRI+1S] TR+ * IS
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where the integral is carried out over the first Brillouin zone in the distorted lattice,

Actual numerical calculation is performed by introducing a small imaginary in

the denominator and gives K, =—5.81a% /5.

Appendix D
Phonon Modes of 2D Graphite

In this appendix in-plane phonon modes are discussed nsing a simple model in which

a force constant is nonzero for only the nearest

hbor stretching motion.  The La-

grangian for phonon is given by

=5 T Ylump —-Z {i“n[Rnl-Uann-ﬁ]] I‘I] (D1)

i=A0 R R

where M is the mass of carbon atoms, K is the force constant, and n is the displacement

of carbon atoms. From Eunler’s equation

d ac

ac
wo oy O e o

we et equations of motion

Fil 77
a1l [F52

Miig, = -K El“a(nn+7}"unlnu)i

Miigy, = —K 3 [ua(Ra)—up(Rp — 7)) -1
[}

|T:l ;
Substituting «! (R;, t)=u"{k) explik-R, — iwt) into (D3}, we get the dynamieal matrix

uy 4y uy up

32 0 Dy Dy

K | 0 32 by b

& , DI
VM | p; by a2 0 e
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NI

&= |

-
LA i fin R

: i

Energy (Maw?/K)
Ll
=

M K B 'y C X
‘Wave Vector Wavevecior, §
(a) (h)

Fig, 68 (a) Caleulated phonon dispersions of in-plane modes given by using only
one force constant for bond stretching between nearest-neighbor atoms, (h) Cal-
ctilated phonon dispersions of in-plane and out-of-plane modes given by using four
bond stretching and four bond bending force constants. Dots denotes an experimen-
tal data.

with
D.:--c\p{T ]vus ,<

Dy = _iT exp [i

sin -kr ‘ (D5}

273 "
D:=—-cxp[-|—l] 2#:(1)[?‘/_ 1ms(2k)

The dispersions of the four in-plane modes given by eq. (D4) are shown in Fig. 68
(n). Since the force constants for bond bending are neglected, two branches with w=0
and V':MV/K_,M.? are independent of the wave vector. Figure 68 (b) exhibits ealeulated
phonon dispersion curves of a 2D graphite using four bond stretching and four bond
bending force constants.®* Two dispersions crossing in the lowest energy at the K point
are the branches of ont-of-plane mode. The dots denote experimental data.

The eigen vectors (ey. eg) at K'=[4r/3a.0) are obtained as

o =i =i 1 3
e} _1(-1 {1 T (e i
ef | 2| i 24 b aba gl =
5 1 1 -i —i
wlayK/M = /3, 3/3. 3/2, 0

Displacement of carbon atoms are given by taking the real part of uw(R;) and that of
each mode at K point are shown in Fig. 69. The pattern for w= \ﬁa\/ K/M in Fig. 69
(a) iz so-called the Kekulé structure which consists of a network of hexagons with the
alternating short and long bonds like in the classical benzene molecule. The modes with

3/2uy/K[M are two-fold deg The cor g lattice distortion for the
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m,_,-‘-.&,-'\., -"\ _.a",m

r""'r‘j'-xj'u— vi‘ E\

(a) (b} ()
Fig. 69 Displacement patterns of atoms for in-plane_phonon modes having wave
vector K and K’ with w = V3a /KM (a), w = B/20/ KM (b) and w = 0
{e). Thick and normal lines show larger and smaller distorted bonds, respectively,
and dotted lines show undistorted bonds, Distortion (a) corresponds to the Kekulé
prattern.

elgen vector (=i/2,1/2.i/1,1/2) is shown in Fig. 69 (b). The distortion for another vigen
vector is obtained by rotating each vector by =2 elockwise. For the phonon mode of
w=0 there is no bond length change as is shown in Fig. 69 (),




Appendix E
Landau Levels in Distorted Lattice

Az is shown in Figs. 50 and 51, the two-fold degeneracy of bands coming from K and
K’ points remain in the Kekulé distortion except near the band gap of semiconducting
CNs. In this appendix we study the lowest conduction band and the highest valence band
in a perpendicular magnetic field in the presence of Kekulé and out-of-plane distortions
analytically.

From eqs. (3.38) and (3.39), the wave functions of the lowest Landau level near the

K puoint are given by

0 holz—X_)
(i«.[m-xd) = ( 0 ) W
and the wave functions near the K point
ho(z—X4) 1] )
it ) it (joemxsy): ()

The next order term in Hamiltonian eqs. (3.38) and (3.39) around X4 is written as

0 ;;(!f)’c:x,m) _ o

s (t%(ﬁ!)’{:—xmk 0

with upper and lower signs corresponding to near the K and the K' points, respectively.
For the term around X_ is given by the replacement of Xy by X_. The wave functions

near the K point under this perturbation is given by

% ( _}::‘Fii_xt;! ) sgn(k) for conduction band,

% (:::{!:':“-’f:}]) sgn(k) for valenee band,

(E4)
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and pear the K point

L hale—-X)
W2\ —ihg(r—X_
1 (’m(f*-\'+}

V2 \iho(z—X_)

')f‘Klli‘rl for conduction band,
(E5)
)sgn(l-j for valence band.

With use of the above four wave functions as the bases, the Hamiltonian Ha related
to the lattice distortions are given by

K K
Ha= (Hf’ H“'), (E6)
Ay Hﬂ,
with
K K'v)
Hy e B (—D,[.Y_HD,{XA Dy(X_)+Di(X5) ) @
"KM\ DXL +D(XY)  —Dy(X)4Di(X4) )
and
K« Kv)
o o - -
Ha, = K ( Da(X-)=Da(Xs)  ~Da(X_)-Da(X4)) i
K! —Dy(X_)=D2(Xy) Di(X_)-Dy(Xy)

where + and — represent conduetion and valence bands, respectively, and Dy o{ X4 ) are
given by
1 L
Dua(Xe)=; [ dehi(e- X0 2(0), (E9)
The Hamiltonian in the absence of distortions are written as

K K

Hy = (f"t"" ,1) (E10)
-0y

where £y becomes zero when a well-defined Landan level corresponding to that in a 2D
graphite plane is formed.

Let us consider only the Kekulé distortion. For metallic CN's there is no phase of
Ay and its absolute values at X and X_ are the same with ench other as is shown in
Figs. 48 and 49, Thus Dy (X4 ) has the relation of

DX ) =Dy X_)=Dh(X). (E11)
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and energy levels are obtained as

=4y [efH2D0 (X)) (E12)

where each level is two-fold degenerate. It is noted that the degeneracy is not lifted even
for eg #0.
From Figs. 48 and 49 it is found that Dy(X+) for semiconducting CN's has the

relation of
PE .
Dy(X2) =Dy () oxpi0) and DyX)=IDr(X)exp (i5-=i8),  (B13)

where @ is the phase of A, (X4) and we approximate that the phase is constant over the
width of wave function hg(z—Xz). In the range of eg=10 the energy levels are obtained
as
e=+2D,(X)|, (E14)

where each level is two-fold degenerate. For £9#0, however, there are four difféerent en-
ergy Jevels are abtained. This corresponds to the lifting of degeneracy for semiconducting
CN’s near the band gap as is exhibited in Fig. 50 (b) and Fig. 51.

For ont-of-plane distortion, there is no phase of Ay for both metallic and semicon-
ducting CN's because of the absence of extra phase in the boundary condition given in
eq, (5.58). Thus, the relation of D4(X+) is given by

DX ) =Dy X_)=Da(X). (E15)
and energy levels are obtained as

e=ky/ed+[2D2(X) P, (E16)

where each level is two-fold degenerate.
Since the spatinl extent of the Landan wave function hg decreases with magnetic
field, in high magnetic field Dy 3 is approximated as

Dy(Xs)= 3A12(Xa). (E17)

Therefore the energy level is determined by the value of the gap parameter at the center
of the eyelotron motion.

Appendix F
Infinite Cutoff on Magnetic Properties

It is possible to eliminate the cutofl function gy for hoth magnetic moment in a
parallel magnetic field and susceptibility in a perpendicular magnetic field. Let us first

consider the magnetic moment in & magnetic field parallel to the tube axis. Equation
(6.11) can be rewritten as

1 a0
Wilg)=5- 3 %[lhinwll- (F1)

P

with h=2ry/Le, and
=)= fu. Ay~ Vaiy?). F2
II y .-: 191( ] ( ]

W note that f(r) is an odd faonetion of = and decays rapidly but smoothly for |2 1.
For small x. the leading contribution comes from the rogion 0 <y <8 with § <1 and is
given by

fx)e liyvfj_eu :hl——lz —x1n |z, (F3)

This logarithmie singularity of f{x) at the origin dominates the magnetic moment in the
limit £.—oc or i—0 as is shown below.

We separate the summation over ninto three regions: n<ny, ny+l<n<ng—1, and
n>=ny, with

1 1
m<—p —p<ny |mtpl Lo oand |nade| < - (F4)

Noting the antisynimetry of f(z) around z=0, wo have

ns=1 ::,
2Wip) = 3 Lilhntel + Y 3 (Flhntna o] - Slbin=ma-g)]).  (¥5)
w=ag 41 e

In the first term we ean use Eq. (F3). For the socond term, we shall nse the following
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Euler-Maclanrin formula which can easily be proved by a partial integration:

x = ¥ 3 x
Zg[u-{-nh} = %[‘ dzr g{z) + %ytn] + %ﬁdlrll—tlnzwym[nd-h{nﬂ]]. (FG)

n=0

where 5! is the second derivative of 3. We then have

ny=1 nz=1
TWilp)=— Y (n+p)mjntg|- Y (nt+p)ink
n=ny+1 ne=ng+1
2 M_”I_a}d:!{rﬁL(![-‘*(ﬂ:ﬂ"l-ﬂ-"l-"i'»’1]) (F7)
h* hing+y) 2h

+ﬁf’1nn-ni(ﬂ"[m: +tatipHt)] = 12 hin—n; — +ﬂ])
3 n( P (had (b5l 1§ .

For small h. we can substitute the approximate expression (F3) except in the last term.
All terms proportional to ln k cancel out with each other. In the last term containing the
summation over n from 0 to oo, we introduce a cutoff ng~ 3 /h with 8 being a parameter
of the order of unity and replace the summation over n for n > n, by an integration.
It turns out that the contribution coming from the integral can be safely neglected for
small i In the summation 0 <n<n, on the other hand. we can use Eq. (F3). Then. the
cutoff ne can be extended to infinity in the final expression, because the series converges
ithout the cutoff g £e and o becomes

very rapidly. In this way, the exp

nz=1
2Wi(e)=— 3 (n+p)lnjn+y|
ne=ndl

1
= l[tu1+w){m+l+w11nlm +¢l = 5 (m+p)?
2 Z (F8)

1
~ (na+¢)ma~1+p)Inna+ol + 5 (na+)’]

+ Ynpana 2 }Zx:fd: Hi=2)
G L | -t Ottt

It should be noted that the moment given by the above equation is independent of the
choice of ny and ny. In the vicinity of p=j. we have immediately

! 3 5 g
Wilp) = —5—(p—j)inle—jl (le-jl<1). (F9)
Therefore, the t itsell vanishes but its derivative diverges logarithmically (positive
infinite) at p=j.
For the ptibility corresponding to a perpendicul gnetic field, the cutoff
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e e e
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-1 +1
—_—— =l [ —
. - i Cal Lol
-1/2r|+1/2r

Fig. 70 Contonrs C; and Cz in the complex z plane. The contribution from the
pole at z=£1/2r is pure imaginary and can be neglected,

function can be eliminated easily by the use of a Fourier-series expansion. We have

-l oo
Walp) = 3W3" + 3~ WP cos(2npp), (F10)
p=1
with
1
wir =2‘£de2[¢] cos(2apy). (F11)

Then, the summation over n in Wa(y) and the integration over @ in the above can be

converted into a single integration and

LR AR
wir = ;;f dady ———-—-li“;; cos(2npz) g (hy/27+47)
o=

1 = (F12)
= 55 [Car By (o,
with
3 ¢ cos(Zxprcos )
Ry = [ a0 EZED), (F13)

A principal value should be taken at singularitics.
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The # integration is converted into a contour integral along C; shown in Fig. 70.

b r? exp(—2xiprz)
Rylr —_-lf dz ——————. (F14)
oir) o (1—artz2)yE=o1
Let us first consider the case p=0. For r>1/2 the integral vanishes identically. because
C, is converted into the integral at infinity. For r < 1/2, it is given by the residues at

z=+1/2r. Therefore, we have
1 et A
alr) =0 =— 3 F13)
Rolr) =43 r)w,I — (
where 8(t) is the step function defined as #(t)=1 (£ >0) and 8(t)=0 (¢ <0). Replacing
gi{hr) by unity, we have
1

3252

Let us next consider the case p> 0, We first transform the contour Cy into Cy shown
in Fig. 70 for r > 1/2, Note that the poles at z=£1/2r give a pure imaginary and can
he neglected. Then, we have

W, = —u.“" (F186)

2 expl —2mipra) e ¥ sin(2xprt)

it o Tt F17
R"{r}_‘fc,d* (1-4r2z2)/zT 1 1 r{h-*:’—l}\/t--l G

For 3 1/2, the integrand oscillates rapidly and the main contribution comes from the
region [t]~ 1. After replacing 4r3*—1 by 4r° —1==4r? and then converting the contour
back to €y and then to the integration over #, we have

2w
Ry(r) = -‘%jo dfl cos(2mpreosd) = —§J||(2ﬁpf!- (F18)

where Jy(t) is the Bessel function. Because the Bessel function oscillates rapidly for large
r and its integral for large r converges fast, we can safely replace gy (hr) by unity, For
small r, we can immediately obtain H,,[r]sr"nrz.foﬂﬁ'pr) 1t is expected, therefore, that
the resulting integral W;.” decays rapidly for p2= 1 and the Fourier series converges.

Appendix G
Divergent Susceptibility of Metallic CN’s

The metallic undoped CN's exhibit divergent suseeptibility in the parallel direction
to the tube axis at zero Iu this appendix we will study the susceptibility

of metallic CN's as a function of temperature,

The leading contribution of magnetic moment for @ < 1 at zero temperature comes
from the vicinity of Fermi energy®™ and the the susceptibility at zero temperature is given

" - .—-L —E—
X () ~—x ST ‘1"|'|rk,- J (G1)

The susceptibility is logarithmically divergent with respect to the chemical potential.
The susceptibility of metallic CN's of p=1 at low temperature is obtained as

Xh(T) = f dexly(e)( = 5-0(6))

G2
L1 kT )
X aa T

Thus eq. (6.26) i= valid for finite temperature, becanse the susceptibility is not infinite.

The eritical temperature where the susceptibility of realistic samples becomes neg-
ative, is given from eq. (6.28). For p(L) being the delta function, we get the critical
temperature as

kaT= %1;‘, ][ .,,rt.*.&tsa.*_"‘is.]

x*(Lfa) (G3)

~B.0 % 10~ ke,
The critical it i5 inverse proportional to L | of ke ~2xfL. Even for
CN's with the smullest cirenmference so far reported, the band gap is a few eV and the
eritical temperature is less than 10 mK.
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