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5.1 Introduction

tane's prediction

antiferr

d into two s
of the classical
mn which all ¢
direc

and all

posite

mechanics, the spin S, is represerited

atisfies the ¢
The Helsen

ws, using the

Hamiltonian is then mewr:

TWETING D

spin-flip terms

In order to obtain the ground state

ent the Hamiltoninn as o quan

g model, which assumes

tum along the chain. Since
shape as the cl

g model with larger

sy

I strongly depe of §

vt half-odd-integer spin syst

=]
lowing features

5 pre-

2 spin-chain. but integer

spin chains have
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gap (Haldane gap)
and the excited sti

{2} Ther

between the ground st

[3} The spin ¢

ation function quickly decays as

n exponential function

gap [2) is most surpris

s always 1o be mak:

ation-

ocld-integer spin systems |
Nuinely, the extended Lieb-Shuliz-
ibility of
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{ Hal

Heisenberg model

proof
o
Hamiltonian describing

wed Lo have

5.1.2 The Valence-Bond-Solid Ham

I Affleck, T. Kennedy, E. H. Lieb and H. Tasaki

)

Heisenberg model mod-
iaddratic second termi. The authors of Refl.
susly obtnined the ground state, which has
correlation function and a fi-
nl
is

ch is known as ‘Valence Bond Solid state
ted as follows

= /2 |J}||sin{k

(1) YT e :

2 spins {Fig
2} make let bonds b
(3)

store the !

The VBS ground state is non-magnetic singlet in
e, as it is built from many singlet pairs. From
numerical ealculations of the VBS Hamiltonian (eg.41)
with arbitrary magnitudes of the biquadratic term (1 /5—3
it has been shown that the non-magnetic ground state
of the pure Heisenberg model (J = 0) belongs to the
same category as the VBS ground state (63, 64]
Another characteristic of the VBS state apy
when a spin site is substituted with s foreign fon (Fig-3
The foreign ion breaks two singlet pairs, and introduces
two §=1/2 paramagnetic spins. The §=1/2 degrees of
freedom have actually been observed in electron spin
resonance (ESR) measurements of a Haldane material
NENP (sée section 5.1.4)

"

Fig
Phase diagram of the Hamiltonian eq 42 is shown {cite from
[68]). The symbels are: (H) Haldane phase, (N) Néel or
dered phase, [XY) XY phas
D

{F) Ferromagn ase and

arge- D) phase

The effect

besn invest 37 shows the |

tained from a numerieal simul

o = a3 -~ o s I'N 5.8 (4%

(L] .. B .
Figure 35
la} S=1 antiferromagnetic spin chain. Each 5
jecompased into two S=1/2 spins. (b} Singlet
the adjacen 1/2 spins The Valence B

spins on each L

{d} The VBS s

[VBS} state. The two

are symmetrized

with a foreign ion

5.1.3 Physical Hamiltonians

al He

have been

Since real materials may not realize the i of-
berg model, more general spin Hamiltonian

Investigated. mainly with numerical simy
& :

ations Figure

B4 87, 6 From these works, a phase diagram hbs  Phase diagrar the Hamiltonlan | ) [cite
besn obtained for the Ha oninn with the XX2- from [71]). The sy s are: (H) Haldane phase, [N} Néel
interaction and a unias ropy D ardered phase, (XY) XY phase. and (D] large-D phise
N = | The above introdured theoretical works all supported
Halc The next ssction intre

{42} resiilis of several S=1 spi
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ces u density of

ure

5). With vacancy dog

abaerl

Ancther
(NENP) was re

7 & the abse;

ime, it has been found that

ing strongly

resuly (3) implies that b

Zn = the T} relaxation rate

i tic ground state, whil
suggesting a

d unpaired

ping ine A

e ng presry
The magnitude of the Quantitatively, v

- Magnetic g
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6 Spin-Peierls system'

1)-th site

lattice, and u; is the dis
The first ter
spin system and th
term, the -||- tic energy of the lattice
mation along the chain, the antiferrorn

t presents our uSH resul
al CuGeOy and its Zn/Si doj
nominally p

m, the absence c Hamiltoniar

systenm

50 mK, supporting t

ls ground state. Inttice

netic coupling J{i.i+1] is expanded as

i i+ 1]
Jlii+ 1) = J+imp=—u)emg—— +
» Mg =)

order was
= which have been report
« systems, the charactorist
d [A) suggests that the si
Xt al the
m Néel v

(48}

filu-n dered mo- e
mcentration which e | shortened link

| steetched link

A is a spin-lattice coupling constant and a is the

6.1 Introduction 5 -
lattice spacing. The lost equation holds for the lat
u) with d = Au

eqy A8 the Hamiltonian (eq.47) i rewritte

6.1.1 Theories

tice dimerized state (dupl

The spin-Peicrls transition, which wis proposed for
hain [14, 15, 1], is

|I|»—ru'|nr|c d

an antiferromag 5
M IS - 5i.
in H S (IS 1

t pair for two §=1/2 spins +
Although the lat
he elastic energy. the

sing/
on the shortered link |

tice dimerization (1) increnses

assible if the singlet pair f
the energy increase. In
ta for spin Peierls transition
al treatment of the spin system is
-ause singlet-phir formations are involved

transition may still be

where,

||a-- =pin |I erls |

popular way to s

in the transition mechanism

map the spin Hamiltopian 1o a fermion system

() using the Jordan-Wigner transformation [115]

} solve the fermion system, using various Approxi-
& veloped for fermion syst
fentures, with perturbation
Ermion-phonan coupling. which
coupling (the second
Figure 49 tertn of g 40)
(a) An 5 apin chain with a uniform antiferromagnetic

s of the
o this the

3 (2 invalves the quantum mechan
this part 18 the most crucial

1, the spin-Peierls transition

interaction J. (b) The lattice dimerized state below the

siin Peierls transition temperature Typ

A Hamiltonian of & one-dimenstonal #pin chain which temp ncds on this part
s It rmuntion can be expressed as Bl anil Pytte [120] adopted the Hartres
m for step (2) and enlculated the phonon
HLi e E'?'-' I+ 18 S above the spin Pelerls transition temper-

ature. Their tesult is:

LII-. — iy )* % el \
i < o= Wl in— 50)
— s (L —erin g ) o
{47)
K. Kijima ot o Where, g is the bare phonon frequency, if = A%J/Ka®
ngubliahed s & din onless spin-Inttice coupling parameter and

the constants are ¢, = 0.51 and 1.4. A softening of
phonons is predicted, as the result of fermion-ph
coupling. From the temperature which gives &
phonan frequency, the spin Peierls transition tempera-
tare Top has been estimated as

e

\

1
kTep = ffop( {511

o)

Since the Hartree approximation drops the exc
jon between two fermions, it may not

interac
include quantum fuctuations, In fact, & quantun:
chanical treatment introduced below gives an enhanced
spin Peierls transition temperature.

Cross and Fisher [121] appreximated the mapped
fermion system with an exactly soluble model
Luttinger model [122, 123]), preserving the phys
features around the Fermi surface. This approxima-
which was first introduced by Luther and Peschel
well describes the low temperature behavior of
inal fermion system, use that behavior is
tures around the Fermi surface. Since

e quan-
tum mecha should be included correctly in
the results. Cross and Fisher obtained the phonon fre-
quency above Typ as

—

the treatmen

f J

( 1-0.8 q’ﬁ_)

which gives the spin Pelerls transition temperature as
kTep = 0840 (B

Cross and Fisher's Tgp is higher than that from the

Hartree approximation (q.51); the spin Peierls state
it preferred in a more quantum mechanical treatment.

This behavior is opposite to that of Néel temperature
psunlly decreases with more quantum mechan-
| treatm: The difference probably originates
s the classical nature of the Néel state and the
antum mechanical singlet nature of the spin Peierls
ground state.

In 1980, Nakano and Fukuyama [125, 126] formu-
lated Cross and Fisher's approach using a phiase vari-
able

V() + Cp’lz) = Bsinfiz)

| ~Deos2(z) + 2—“.;’}
a
| (34)

where = i the position on the chain, #(z) is the phase
t-

variable and piz] is its momentum: f{z] and plr) sa

isfy the canonical relation

| [z}, pl2')] = iz = £)

OmONAER2G], Using the phase Hamiltonian appr

str) =

hown in eq. 57 and the

Iy in

et state [8 TlLas

i
this "phase Hamiltonian® (eq.54). 1t has been shown
his formalisim gives the same result as Cros:
h, but more easily and intul

at
Fuher + appr

feets of inter-chain interactions (J') and e
netic field (£ have been b
+ suntmarized a5 follows

results

{1} In zero-field, the ground state is either the Neel

state or spin: Pejerls state, depending on the mag
de of the inte

handary

where sa nornnll:cr. inter.

interaction. n =
lattice coupling parameter and d =

! f47 s a dimensionless spin-

The ground sate in finil
own in Fig.50, The spin
(SP) makes a first order transition to a magnet
phase (M®) at a e | field (Myy). There i
spin-flop phase (SF) in the large §° region, but ex-
the SP—SF transition may be diffi
rameter
-axis) as the condition

tained, ass

cult 1o c.I;-.-r\.- because of the narrow

range (B on

Figu

Theoretical ..muwl state phase diagram in magnetic field

s makes a first order transition o a
Cite fram Ref. [15]

The spiti-Peier

magnetic ph




i SPIN-PEIERLS SYSTEM"

rls mnterinls

6.1.2 Organic spin P
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Figure 31
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Struct

al investigations

Peierls transition involves a latt

e normalized with Tap( H =0}

e structures and phonons al Cite from Ref

| observed the superlnt-
g the dimeriz
d, though, that the super
do not necessarily appear along the
TTF-CuBDT, the lattice also de-

® same time as

o these s _\H—rllls MEASIrEments is
attice Bragg

3 were observed well above

phase (SP)

anans at the supe)
be Rrst-

o

at temperatures close to the stroctural tran

1 temperature Ty : therefore, this mode is probably

a feature of the la ¥

the spin Peierls behavior. The existence of the soft [140] obtained from
ably helps the spin Peierls transi-

il As A nuCTORCOPH

ther phases [SP and M”) is sec

& theorstical

e system, not being inc dary is well described wit

sced by

s and Fisher's approach

steucture of the M* phase. a lo-

ealized ate {dpin sol wsed the-

134, 133,

High-field measurements |
138]
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tindly

inhomogeneois
an investigation -.! the NMA line
ife [137] of
ntally suggested in the M®

first excited state of the spin Peierls phase is

let state, one can close the spin Peierls energy
ving a largs magnetic

the existen

leld. Experimentally. spin >.-.I||.,|,~ was experin
magnetization measurements (133, 134, 135] phase of TTF-AuBDT

have detected this signature. At T < Tgp, the mag-

ation M{H) remained small up to a critical field

1. and above H,. it linearly increased
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