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MUON SPIN RELAXATIO MEASUREME TS

OF

SINGLET GROUND-STATE MATERIALS

1\:E:\JI 1\:OJnIA'

Abstract

This thesis reports experimental investigations of three types of spin systems, namely. (1) spin­
ladder materials 5r._l CU.+1 0,., (2) a Haldane material Y, 8a:\i05 and (3) a spin- Peierls compound
CuGe03' The common feature of these spin systems is the absence of conveIlLional Neel order due to
quantum mechanical effects: the ground state structures are characterized by singlet-pair formations
of spins, as introduced in Chapter 1. In this thesis, the muon spin relaxation (jtSR) method is the
main experimental technique. Therefore in Chapter 2. the 1l5R technique is introduced, followed by
a brief introduction to spin relaxation theories in solids (Chapter 3). !\Iost of the content of these t\"'O
chapters is important for the understanding of the subsequent chapters, in which the experimental
results are presented.

In Chapter 4, the magnetism of the spin-ladder materials Srrl_ 1ClI ll +I02n is discussed. \\'ith the
j.LSR technique, it was found that magnetic behavior of these spin ladder cuprates strongly depends
on the width of the ladder. The jl5R spectra from the ladder materials provide a good experimental
example of the spin relaxation theories introduced in Chapter 3. The content of this chapter has
been published as Ref. [II.

Chapter 5 presents the jl5R results of a Haldane malerial Y, 8a:\i05 · A related vacancy-doped
system, Y2Ba(\""il_y).lgy)Os. and charge-doped system. (Y2_,rCa,r)Ba:"i05 . were also investigated.
It was found that vacancy doping and charge doping lead to completely different ground states. In
the charge-doped compounds especially. unconventional spin dynamics were observed in the milli­
helvin regime. ~Iost of the results in this chapter have been published in Ref. [2, 3).

In Chapter 6. .uSR results of an inorganic spin-Peierls material C'lIGe03 and two types of doped
compounds [(Cul_xZnx)Ge03 and Cu(Gel_y5iy)031 are reported. It was found that these two types
of doping result in a magnetically ordered state; it was clearly :\eel order in the 5i-doped system.

Concluding remarks are given in the last chapter. Chapter j'.
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1 GESERAL ISTRODCCTIOS I.J Antiferromagne,ic Spin systems without See/order
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rigure 4:
(a) The X-leg spin ladder structure and (b) a schematic
ground state of the 2-leg spin ladder system

which acids a biquadratic term to the Heisenberg model.
The ground stale or this Hamiltonian (Valence Bond
Solid state: Fig.5b) was mathematically proved to have
a spin-gap and an exponentially decaying correlation
function [24. 2.;. 26. 27J. The model without the bi­
quadratic term (Heisenberg model) is believed to have

(b) PIrrr

11. = ,f;", (5, . 5'+1 + ~(5i' 5,+1)') (2)

Haldane systeuls

The two systems introduced above have a geometrical
reason for two specific spins to form a singlet pair. In
the next system. the S= I antiferromagnetic spin chain,
the value of the spin (integer) makes it possible to form
singlet pairs.

In 198;3. F. D. ~l. Haldane conjectured that in 'he
Heisenberg model. anti ferromagnetic chains of mteger
spins would ::Iltow a finite energy gap between the ::)in­
glet ground state and the triplet first excited state. He
also claimed that the spin correlation of the ground
state quickly decays as an exponential function of dis­
tance [22. n). These two features propose that the
integer-spin Heisenberg model has a highly disordered
ground state. which is far from the :\eel state. Hal­
dane·s predictions were surprising, because the same
Heisenberg model. with 5=1/2 spins, is gap-less and
has a powN-law decay of the correlation function {II].

In 1987. an intuitive picture for the Haldane's ground
state was proposed, with an exactly soluble 5=1 spin
Hamiltonian [24. 2.;J:

Th€' finite energy gap of this system originates from the
locahza,ion of the". singlet pairs In the 3-leg ladder
s'·stem. thf> localized pair formation on the rungs be­
c~mes impossible. and hpnce thE" energy gap collapses
These systems arE" discllssed in Chapter 4.

--- -----........----.___e--.
J+OJ J+OJ J+OJ

HJ J·OJ

Ibl

Figure 3:
(a) An 5=1/2 spin chain with an uniform antiferromagnetic
interaction J. (b) The lattice dimerized state below the spin
Peierls transition temperature Ts p .

Spin ladder systenl

If one changes the stacking orientation of the singlet
pairs from that of the spin Peierls state, the ground
state of the smallest ·spin ladder' system is obtained
[19]. The spin ladder system is an S=I/2 antiferromag·
netic square lattice with finite width and infinite length
(FigAa). The ground state of this system depends on
the lattice width, namely, the number of 'legs' in the
ladder. If the number of the legs is even, the ground
state becomes non-magnetic with a finite energy gap
to the excited states [20, 21]; if it is odd, the energy
gap collapses [2IJ. For the 2-leg ladder system, the
non-magnetic ground state can be visualized as shown
in FigAb; it is a stacking of singlet pairs on the rungs.

The ground state structure of the spin-Peierls sys­
tem is a stacking of singlet pairs along the chain. The
ground state is non-magnetic, because each singlet pair
produces no magnetic field. Since the singlet pairs are
well localized. there is a finite energy gap between the
ground state and the excited states. This system is
studied in Chapter 6.

Spin Peierls systelll

Historically, the 'spin Peierls' system was the first macro-­
scopic system proposed to have a spin gap [14, 15, 16J.
It consists of an 5=1/2 antiferromagnetic spin chain
with a spin-lattice coupling. If the lattice is soft in the
chain direction, and the chains are magnetically well
separated from each other [17, 181, a periodic deforma­
tion (dimerization) of the lattice takes place at a finite
temperature Tsp (Fig.3a-+b). The lattice dimerization
alternatively enhances [J(I + el)J or reduces [J(I - ell]
the antiferromagnetic interactions, and brings about
singlet pair formations on the enhanced exchange links
(Fig.3b).

spin gap, namely, the spin systems with relati"ely well
localized singlet pairs. are investigated.

1.1.1 An overview of singlet ground state sys­
tenlS

111111

II~III(bl

lal

Figure 2:
(a) An example of a trivial spin-gap syslem: local singlet
pairs witham any correlations. (b) The first excited Slate.

As shown in the next section, some macroscopic
spin systems still prefer a ground state based on the
singlet pair formations of the spins. Some of these un­
conventional spin systems are characterized by an en-
ergy gap between the ground state and the magnetic
excited states. Since this energy gap originates from
the spin degrees of freedom. it is often called a 'spin
gap'. The existence/absence of the spin gap is proba­
bl\' related 1O how well the singlet pairs are localized.
F~r example, a crystal made up of many uncorrelated
singlet pairs (Fig.2a) is a trivial example of a spin-gap
system; the energy excitation spectrum of this system
will have a gap. which corresponds to the singlet-triplet
excitation of a singlet pair (Fig.2b). Another exam-

(l) pie, the S=I/2 spin·chain with an antiferromagnetic
Heisenberg interaction is a non-trivial gap-less system.
The ground state of this system is a many-body singlet
[II]. which is approximately expressed as the superpo·
sition of ft'e,.y possible singlet pairing on the chain [12].
This ground state. which is known as the Resonating
\'alence Bond (R\'B) state. has completely delocalized
singlet pairs. and the excitation to the triplet state be­
comes gap-less [13J. In this thesis, materials with a

Singlet pair

J
(e) ....---...

n

V

Neel slate

11. = JS I ·S,

J(SfS; +S~S~ +SrSn
J( fS;+~(S;S'+Slst))

General introduction

no
(b) 0---U

<} J
(a) U

In classical mechanics, the ground state of this two-­
spin syst.em is the ~eel slate, in which the two spins
point in opposite directions (Fig.la, b). In quantum
mechanics, spin-flips caused by the xy terms of the
Hamiltonian (eq.l) prevent the i'eel state from serving
as an eigenstate of the Hamiltonian. After a simple
calculation, one finds that the spin singlet pair (I H

Suppose two =1/2 spins interact with an antifer­
romagnetlc coupling (J):

Figure I:
ta. b) The ),"eel stale and (c) lhe singlet pair Slale for a two
5=1/'2 spin system.

[t has been believed that a macroscopic spin system
with an anti ferromagnetic interaction would freeze at
a ~eel temperature. which is comparable to the magni­
tude of the interaction (J). But recently, several theo­
retical situations have been proposed. in which an an­
tiferromagnetic spin system prefers a many-body sm­
g/et ground state, rather than the :-<eel state. These
situations include low dimensionality and/or geomet­
rical frustration of the spins, so that the conventional
Neel order is suppressed. Amazingly, several materials
have been discovered which may realize the theoreti­
cal siwations. In this thesis, I will report experimental
results of three such spin systems, namely, (1) the spin­
ladder system Srn_1 CUn+IO'n, (2) Haldane compound
y,BaNiO, and (3) the spin·Peierls system CuGe03
Although the detailed structures of the ground states
differ among these spin systems, they share one impor­
tant concept for a general understanding of the many­
body singlet.. ground states; it is the singlet pair forma­
tion of two spins.

) _I i))/J'i is the quantum mechanical ground state
of this system (Fig.Ic).

1.1 Antiferromagnetic spin systems with-"eeJ:;a~:g~~,~,:~~s~:\e~:v: ~~~:i:t~t~o~n~~;p~~;o
ou t eel order Still. this statt" i~ often realized in localized two electron

svstems. such as "alenee bonds in molecules. One char­
a·cteriSlic feawre of the singlet pair is that the magnetic
dipolar field from each spin is exactly canceled; in other
words. there is no magnetic field induced around a sin­
glet pair. This is the main reason why most molecules
do not show magnetism. In macroscopic localized spin
systems, singlet pair formation becomes difficult, be­
cause a spin on a lattice has at least two nearest neigh­
bors. Since the singlet pair is a state for just two
5=1/2 spins, one spin on the lattice must select one
specific partner from the equivalent neighboring spins.
which is difficult in translationally symmetric systems
Consequently. most macroscopic spin systems with an
antiferromagnetir interaction exhibit Neel order
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a similar ground state structure to that of the \"alence
Bond Solid Slate. See Chapter 5 for more about the

Haldane systems

(b)~

The structure of this thesis is as follows: the follow­
ing two chaptrrs (Chapter 2 and 3) introduce the I"SR
technique and the spin relaxation theories. which are
necessar\' to under:)tand the experimental results. The
sub:)equ;nt three chapters are devoted to spin-ladder
materials Sr"_,Cu,,+,O,,, (Chapter 4). a Haldane ma­
terial Y,BaSi05 (Chapter 5) and a spin-Peierls ma­
terial CuGe03 (Chapter 6) Concluding remarks are

gi\"en in Chapter 7

2 The muon spin rotation/relaxation
(JiSR) technique

2.1 The basics

The I"SR technique is based on the two properties of

muons:

(a) muons are 100% spin-polarized. when produced

from the "I" decay:

Figure 5:
(a) An $=1 spin chain. (b) A schematic view of the Valence
Bond Solid (VBS) state, which is based on many singlet
pairs. The circle at each site represents the projection of

two 5=1/2 spins to one $;::;1.

(b) muons decay into one positron and two neutrinos Figure 7:
with a lifetime of TJ.I=2.2/ls: Angular distribulion of the positron after integrating over

its energy. The radial distance represents the relative prob-

J1.+ -+ e+ + LIe + vJ.I (4) ability that a po!'ilroli is emitted in a given direction.

(6) Figure 8:
(7) A positron counter configuration to reconstruct muon spin

polarizat ion

Figure 6:
Schematic view of the 7:/.1 decay. The muon is spin polar­
ized. because pion has spin 0 and neutrino is spin-polarized.

left-handed ,_,

¢ ~-------{~~}----. <¢::J
v. 5=0 11'

Positron
counter 2

r--.-.

sOlid angle: 01

L_----

(2) the muon spin changes its direction because of
the magnetic environrnent around

(1) a muon is implanted in the sample with its spin
polarized.

(3) the muon decays into a positron and two neu­
trinos. The muon spin polarization at the time
of the decay is reconstructed by measuring the
positron direclions for many incident muons.

Detection of positrons

To reconstruct the rnuon spin direction, it is convenient
to ha\"e two positron counters which are placed sym­
metrically with respect to the sample (muon) position,
as shown in Fig.S.

\\"e define the muon spin polarization along the
counter axis"" P"(I) = cos8(1), where 8(tl is the
time evolution of the muon spin angle relative to the
counter axi:s (see Fig.8). The positron count rate of
each counter ,';;(1) (;=l,2) is found by integrating the
positron angular distribution of this tilted muon spin

(5)

0«) = (2< - 1)/(3 - 2<)

p«) = 2(3 - 2<)<'

d.Y = 1 + a(f) cos 0dO x p«jd<
4"

where

The feature (a) results from the 'parity violation' of
the weak decays, namely, the fact that only left-handed
neutrinos exist. As shown in Fig.5 1 the muon from the
liJ-l decay has to be spin-polarized, in order to conserve
the total spin zero of the pion.

The feature (b) yields an asymmetric angular distri­
bution of the decay-positrons relative to the muon spin
direction. The angular distribution of decay positrons
depends on their kinetic energy, which ranges from 0
to E max ::::::.mJ.lc'1/2=53 MeV. The angular distribution
is expressed as [29J:

and (: = E/ £max is the normalized positron energy, () is
the angle of positron emission measured from the muon
spin direction l and dO is a small solid angle. After in­
tegrating the positron energy, the angular distribution
behaves as shown in Fig. 7.

The basic idea of the I"SR technique follows the
next three steps:

The three spin systems introduced above (spin Peierls,
even-leg-number spin-ladder and the Haldane system)
are characterized by (I) a non-magnetic ground stale
and (2) a finite energy gap between the ground state
and the first excited state. Up to now, numerous ex­
periments have been performed to detect the energy
gap in model materials of these spin gap systems, and
some of these have successfully found the gap.

The experiments presented in this thesis investi­
gate other feature of the spin gap systems: the absence
of an tnlernal magnetic field tn Ihe ground slale. As
the main experimental technique, 1 have utilized the
Positive ~Iuon Spin RotationfRelaxation (I"SR) tech­
nique {6, 7, 28}, which is the most sensitive microscopic
probe currently available for small and/or dilute mag­
netic moments. For example l it is straight forward
for the I"SR technique to detect the nuclear dipolar
fields which originate from nuclear magnetic moments
as small as - 1O-31"B (I"B denotes the electron Bohr
magneton) [6J. The high sensitivity to dilute moments
is seen in investigations of dilute spin glass alloys (7J:
static momenls as dilute as ....... 0.1 % are easv to investi­
gate with the jJ R technique. These two ~xperiments
have shown that jJ. R is the most sensitive probe to
confirm the absence/presence of magnetic order in a
spin system.

Another favorable feature of J-l5R is that one may
investigate spin fluctuations around the muon with the
help of spin relaxation theories in solids. In some of the
spin gap materials, non-magnetic ion and/or charge
doping to the system has been performed, and it was
found that the doping induces moments from the sea of
singlet pairs. This thesis presents jJ5R measurements
of these doped systems as well. in order to clarify the
fluctuations of the induced moments.

1.1.2 The idea of the measurements in this

thesis
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Figure 10:
A schematic view of the Ml5 beam line at TRIU~IF.

BeamhneM15

2.2.2 pSR spectrouleter

The muon beam is tightly collimated to the sample size
at the end of the beam pipe. which is sealed with a thin
h~apton or mylar window. !\luons pass through the
beam window and reach the spectrometer: a complex
of a crY0:5tat. particle counters and magnets. Fig.ll
shows a schematic top-view of a typical pSR spectrom­
eter

Pal·tide countel'S

Figure 11:
A top-view of a typical tl5R spectrometer, which is an as·
sembi." of particle counters. magnets and a cryostat.

The particle counters used in conventional pSR mea­
surements are usually plastic scintillator (dark gray
in Fig.ll) attached to a photo-tube (black) through
a light-guide: the photo-tube gives an electrical pulse

-3 x 10' (DC)
_ 2 x 10' (DC)

_ 1 x 10' (0.7ms)

:\luons/cm- /sec
(pulse width)

- 1 x 10' (lOOns)
- 3 x 10' (50ns)

Accelerator

synchrotron
synchrotron

cyclotron
cyclotron

synchrotron

Name (location)

RAL (U.K.)
KEK (Japan)

PSI (Switzerland)
TRIUylF (Canada)

LA:-"IPF (U.S.A)

Since all the data in this thesis were obtained at
TRIl'~1 F. I "'ill explain more details of the continuous­
beam pSR method in the following sections.

2.2.1 Production of a muon beam

The heart of TRIUMF (TRI-Universities Meson Fa­
cility) is a 520 MeV H- cyclotron with a high beam­
intensity (I40pA). An accelerated proton beam is lead
to a production target made of Graphite or Beryllium.
Proton hit the target-nuclei and create pions via nu­
clear reactions.

To obtain muons. one must wait for the pions to
decay, which typically takes 26 ns (pion lifetime). To
obtain positive muons (p.+), one can stop positive pi­
ons (r.+) in the production target and wait for their
decay, because the positive charge of the pions pre­
vent them from being absorbed into the surrounding
nuclei. These stopped positive pions produce posi­
tive muons which are fully polarized anti-parallel to
their momenta (see Fig.6). These muons are called
the 'surface muons', because they are emitted from the
surface of the production target. Surface muons ha\·e
(I) high spin-polarization (-100%), (2) low momentum
(29.8 ~le\)c-I70 mg/cm' as the stopping range), and
(3) small beam image (a few centimeters in diameter).
These features are all favorable for pSR measurements.
The muon channels ~II3. ~115 and M20 at TRIC~IF
are designed to deliver surface muons.

Fig.tO shows a schematic view of the .\115 muon
channel at TRIl:~IF. Four dipole magnets (81-84) on
the beam line bend the beam and select the momentum
of the muons. Quadrupole magnets (QAQ8, QI-QI7)
focus the muon beam. The DC-separators (SEPARA­
TORI and 2) provide crossed electric and magnetic
fields perpendicular to the beamline (see the inset of
Fig.IO). This apparatus eliminates positrons from the
muon beam by setting the field ratio (E / B) to the
muon velocity (UJ.l). Secondly, this apparatus can ro­
tate muon spins away from the momentum direction.
by applying higher E and B fields. All of the surface
muon channels at TRIUMF are equipped with at least
one DC-separator; M20 and M15 have the capability
to rotate the muon spins by 90°.

Table I: ~Iuon facilities in the world
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The cyclotron-based facilities (TRIU~1 F and PSI)
provide a continuous muon beam. As a result, one
needs a muon counter on the beam path right before
the sample. so that one knows a muon arrival time (t =
0). The timing resolution of this 'continuous-beam

1

pSR method is theoretically infinitesimally small; with
carefully tuned electronics and small counters, sub­
nanosecond resolution (~t < t 115) may be achieved
[33J. The experimental time window is typically -12
1'5, which is limited by the random background and the
pile-up of second muon arrival (see section 2.2.3).

(10)n l'--'- x p(f)ry(f)df
4". 0

f; a(f)p(f)ry(<)df x ~ r Icosoldn

f; p(f)ry(f)df n, In,
(11)

A,

In order to perform j.J R measurements, one has to
visit a facility which produces many muons. Currently,
there are five such 'meson factories' available in the
world (see Table I). The heart of these facilities is
a particle accelerator which provides a particle beam
with an kinetic energy of a few hundred mega electron
volts (~leV). For this high energy regime, there are two
types of accelerators available, namely, the cyclotron
and the synchrotron. The time structure of the muon
beam reflects the accelerator type of the facility and it
determines the details of the p.SR setup.

In the synchrotron-based facilities (KEK and RAL),
muons come in a pulse, with a spread of ....... 50 ns and a

pulse-to-pulse inten·al of ....... 20 ms. Since the muon ar­
rival time (t = 0) is known from the timing signal of the
synchrotron. pSR measurements are performed by tak­
ing the time spectra of decay positrons relative to the
muon pulse. The timing resolution of this 'pulse-pSR'
method is limited by the muon pulse-width (.......50 I1S).

but the experimental time window is virtually infinite
(- 20 ms » T" = 2.2 ps). The long experimental
time window makes this method convenient for mea-

. surements of slow muon spin relaxation. The pulse-
2.2 Expenmental setup for the /lSR tech- p R method is also convenient to introduce extreme

nique conditions. such as high-magnetic fields [30) and op­
tical radiations [:ll. 32J. using a pulse magnets/lasers
synchronized to the muon pulse.

Figure 9:
(12) (a) A typical time spectrum of one positron counter. (b)

The corrected asymmetry (Eq.12) of the same measure·

where the parameter 0;; NN.VP = n,;n, (= I; ideally) memo
corrects the deviation of the solid angles between the
two counters, and f3 ;; 04,/04, (= I; ideally) corrects
the difference of the counter asymmetries.

In Fig.9, an example of the positron counts [1\', (t)]
and the corrected asymmetry [A,P"(t)] is shown. A
Larmor precession of the muon spin is seen, as an ex­
ternal magnetic field perpendicular to the initial muon
spin direction was applied during this measurement.

The next section presents more details of the ex­
perimental setup which is required for the j.JSR mea­
surements.

where

sItt) Spexp(-t/T")(I+A,P"(t)) ()

S,(t) .Vgexp(-t/T")(I - A,P"(t)) (9)

Here, T"(= 2.2 ps) is the muon lifetime, ry(f) is the de­
tection efficiency of the positron counters and OJ is the
solid angle of the counter i (=1,2). A; is called the
asymmetry of the individual counters, which is typi­
cally 0.2-0.3 in a conventional pSR setup

The muon spin polarization p"(t), which is the in­
formation one would like to obtain from the pSR tech­
nique, is calculated by taking the corrected asymmetry
(eq.12), which is essentially the count difference of the
two counters normalized by the total count:

over the counter solid angle and positron energy. The

answer becomes:

- -

- -------- -
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The T I relaxation is defined as the relaxation of the
spin componenl parallel to the external magnetic field
[34]. In order to mt>asure the T I relaxation with jlSR.
one uses the configuration shown in Fig.14a. because
the muon spin is parallel to the beam axis by default
(see Fig.B).

\\"ith the same counter configuration (Fig.14b). it
is also possible to measure T2 relaxation, which is the
relaxation of the spin components perpendzcula,. to thp
external field [:1-1]. In this counter geometry, there
is a certain upper limit for the transverse field RTF

(-200 G for surrace muons), because the muon tra­
jectory curves in the magnetic field, and in the worst
case. it misses tht" sample. Por T2 relaxation measure­
ments in higher fields. the ·Left-Right' (or 'Up-Down·)
configuration has to be employed (Fig.14c). The mea­
surement with this configuration requires a good DC­
separator on the beamline, which is capable of rotating

2.2.4 Counter/illuon spin geometries

In general. [here are two types of spin relaxation de­
fined: the T1 and the T, relaxation [34]. In jlSR mea­
surements. [he meaning of these two spin relaxation
becomes intuiti\·e. because the muon spin is polarized
at t = O.

.\fter :mbtraclillg the background, one calculate:-.
the correclE'd a:;ymnlPtry (eq.12). and obtains the lime
evolu[ion of I ht> muon :)pln polarization. as shown ill
Fig9b.

Figure 14:
(al Longiludinal field (LF) and Zero field (ZF) "SR. (b)
Weak lran~'·en.e field (wTF) J-.lSR. (c) high transHrse field

(hTF) "SR.
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time range is usually set ......500 ns shorter than the time
,.... indow for the pileup rejection.

Figure 13:
A typical time spectrum of one positron counter. The inset
shows the same spectrum at the early time range.

Figure 12:
A block diagram or the logical circuit for a pSR measure­
ment.

Using the electronics described as above. as well
as the muon-beam and the spectrometer, one obtains
the time spectrum of the J.le decay, as shown in Fig.l3.
There is, however, random background overlapping the
spectrum, an inevitable feature of continuous-beam ex­
~er~ments. Usually, one assumes that the background
IS time independent, and estimates its level from the
spectrum at the t<O range (the inset of Fig.13). The
estimated background is evenly subtracted from the
measured spectrum. The existence of the background
sets the technical upper-limit of the experimental time
range (-12/,s) available for the continuous-beam /,SR
method

Longitudinal
Magnets (Hmu )

Superconducting
Solenoid (,0 kG)

:\ormal Helmholtz
coil (3.5 kG)

Superconducling
Helmholtz (60 kG)

He flo\\' cryostat
(1.8 1,-300 1,)
He flow cryostat
(31'-3001')

Cryostat
(temperature range)

Dilulion Refrigerator
(20 mk-20 K)

DR

Table 2: The /,SR spectrometers at TRIU~IF
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OW,I

HEllOS

2.2.3 Electronics and data handling

The signals from the muon/positron counters are shaped
to a logical pulse using the CFD (Constant Fraction
Discriminator). which is commonly used in nuclear ex­
periments. The logical pulses are handled by the cir­
cuits shown in Fig.12. in order to take the time spec­
trum of the J1€ decay. The main scheme of the electron­
ics follo\\'s the t hick solid lines: the ·muon signal' starts
the stopwatch called TDC (Time to Digital Converter)
and olle of thp 'positron signals' stops it. The elapsed
timt> between these [\\'0 events is stored in the his­
togram memory. along with the information of which
positron counter gave the stop signal. The histogram
memory is read by lhe data-taking VAX-computer typ­
ically every.) minutes.

The circuit is equipped with 'pile-up rejection' logic
(thin solid line in Fig.12). which is necessary for p.5R
measuremeillS using a continuous beam. as at TRI­
lj~1 F. This circuit rejects situations where more than
two muons reside in the apparatus within the experi­
mental time window; in this situation, there is no way
of knowing which muon decays to a given positron, and
therefore. the data must be thrown away. The gate
generator with the dashed lines determines the time
range of interest for the measurements (-12 jJs). This

Cryostats

For the /,SR measurements of this thesis, two types of
cryostats were employed: a "He gas flow cryostat and a
dilution refrigerator. In the "He gas ftow cryostat, the
samples were suspended close to the end of a sample
chamber, which is a lUbe (0 - 7.5cm x L - 50cm)
with a sealed beam window at the sample position.
The chamber has a 4He-diffuser close to the sample
position, which is connected to a "He dewar through
a capillary with a needle valve. The diffuser provided
gaseous "He to the sample chamber. The cooling power
was roughly controlled with the needle valve. The
other end of the sample chamber is connected to a ro­
tary vacuum pump. By reducing the pressure in the
sample chamber, the cryostat can reach ....... 1.8 K. There
are two heaters equipped in this cryostat: one at the
diffuser, and the other at the sample position. The dif­
fuser heater finely tuned the cooling power, and deter­
mined the temperature of the 4He gas flowing to the
sample chamber. The sample heater was connected
to a temperature controller (Lakeshore DRC-92C) and
stabilized the temperature at the sample position. For
temperalUre reading and control, a carbon glass regis­
ter and a platinum thermometer (or a GaAIAs diode
for the full temperature range) were used at the sample
position and at the diffuser.

The dilution refrigerator we used (Oxford 400) is
a conventional closed-cycle refrigerator, circulating the
3Hej4He mixture. The sample was attached to a sam­
ple holder, which was screwed onto the mixing cham­
ber. Since the samples were in vacuum, the cooling
power for the sample depends on the thermal conduc-

tlon. To maximize the thermal conduction. Apiezon
grease or G E varnish was applied bet ween the sample
and the sample holder. The cooling power was con­
trolled b\ the circulation rate of the 3He/4He mixture.
whill:' th~ temperaturE' was controlled using a heater
on the mixing chamber. The mixing chamber was
equiPPE'd with a carbon resistor for temperature read­
ing: the base temperature of the refrigerator was typ­
ically 20 ml'. The dilution refrigerator shares a 4He
dewar with a superconducting Helmholtz coil which
supplied a field parallel to the beam axis at the sample

position.
Table 2 summarizes the features of the three spec­

trometers currently available at TRIU~IF. ,lost of the
data presented in this thesis have been obtained using

Magnets the O~lr\I and the DR spectrometers, often in combi-

A /,SR spectrometer is usually equipped with three nation.
pairs of Helmholtz coils: one longitudinal (Hllbeamline),
one vertical and one horizontal pair. These three mag­
nets makes it possible to null the magnetic field at the
sample position for zero-field (ZF) /,SR measurements
The longitudinal magnet is also used to apply higher
external magnetic field during the measurements.

when a charged particle (/,+ or e+) passes through the
scintillator The muon counter, which is placed be­
tween the beam window and the sample. provides the
muon arrival signal (t = 0) The scintillator of the
muon counter is thin (thickness -0.2.) mm) so that It
doesn't prevent muons from reaching the sample. The
positron counters (Backward, Forward, Left and Right
counters) are placed symmetrically with respect to the
sample position, so that the muon spin polarization c.an
be reconstructed as described in section 2.1. The scm­
tillators for the positron counters are relatively thick
(-I em) to have a good detection efficiency for the
relativistic decay positrons (momentum -50 ~leVIe).
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A con\'entional spin relaxation theory in zero and low
external fields (I';ubo-Toyabe theory (4. 5. 6]) begins
with the a.ssumption that there are no fluctuations in
the spin system. In this static situation, each muon
detects a local field (Hloc) which causes Larmor pre­
cession of the muon spin (Fig.15). The time evolution
of the muon spin in the static local field behaves as:

S.(t;H,ocl = cos' 0 + sin' ocos "y. IH'oclt (13)

where 0 is the angle between the static local field (H,oc)
and the initial muon spin direction (5.(t =0)), and"y.
is the gyromagnetic ratio of the muon spin (=2iiX 13.554
kHz/G). Hereafter, the :-axis is defined to be the di­
rection of the initial muon spin polarization

the muon spin perpendicular to the beam (see inset of 3

Fig~~~. benefit to the I'SR method is that measure- 3.1
ments in ::ero magnetic field are possible. This con­
dItion yields the highest sensitivity to small internal
magnetic fields. To understand the spin relaxation in
the zero-field. the spin relaxation theories developed
for the :"uclear ~lagnetic Resonance (:\~IR) method
become inadequate, because those theories assume the
existence of an external magnetic field. The next chap­
ter introduces spin relaxation theories which are appli­
cable to this zero-field condition.

Spin relaxation theories

Gaussian Kubo-Toyabe theory [4. ·5.
6]

tial muon spin polarization. This term is an impor­
tant signature of static relaxation. because its existence
doesn't depend on the shape of the field distribution.
The second term (2/3-component) is the Fourier trans­
form of the field distribution, and hence, contains all
information about p(H).
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This re~lIlt. known as the 'static Gaussian Kubo-Toyabe
function· in zero-field. W3..'S first derh'ed b\" R. Kubo and
T. Toyabe in 1966 [4 ..jJ. -

.-\:::i :shown larer III this chapter. it is important to
il1\·estigate rhf> muon spin relaxation in a 'longitudi­
nal field'. which i. the external magnetic field applied
parallel to the initial muon spin polarization (HLF; see
Fig.15). The static Gaussian I~ubo-Toyabe function in
longitudinal fields is expressed as [6J:

GGKT(t:-".HLF)

JdHpG(H - ZHLF)Sp(t;H)

1- 2 (--"-) , (l-e-"-"'I'coS"y.HLFt)
-,~HLF

+2 (_-,,_)3 ~ {' e-t>'T'I' sin "ypHLFrdr
illfhF Jo

( 19)

1.0

,
Ot

___==~0=.5=l1/3

~06
.;

In Fig.ll. the static Gaussian I{uho-Toyabe func­
tion CG1": T (I:...1. HLF) is shown for various longitudinal
fields. In zero magnetic field, the function first de­
cays as a Gaussian and then comes back up to the
n';n-relaxing 1j:3-component. With a longitudinal field
applied. the amplitude of rhe flat component increases.
because the fraction of the field which is parallel to the
initial muon spin polarization increases. In static relax­
ation. the magnit ude of rhe longitudinal field which de­
couples the relaxation is comparable to the field distri­
bution widlh (HLF - -"11.). The distribution width
can also be extracted from the Gaussian decay-rate at
early times before the recovery.

Figure [7.

The muon spin relaxation in the randomly orienLed frozen
dense spin sysLelll: static Gaussian I<ubo-Toyabe funcLion
CGKT(t:u.I-hF). The circle in the figure represenLs the
isotropic random field distribution, which is centered at
zero in zero external field; if Lhe longitudjnal field UhF)
is applied. Lhe random field is cenLered at HLF'

( l7)

(18)

( ,.)3 ("Y~IHI')PG(lHI) = v"'2T.-" exp -~

where L1 is the width of the Gaussian distribution. The
corresponding muon spin relaxation is derived by per­
forming the integral:

In a randomly oriented frozen spin system, with
a static moment at every lattice point (Fig.16), the
dipolar field at a muon site is well approximated by an
isotropic Gaussian distribution:

Pc(HJ isotropic

~ ~~H;VV
-01>. 01>.

Figure 16:
Randomly oriented dense spin system. The local field is
well approximated with an isotropic Gaussian distribution.

PG(H,) = ~-" exp(-'~;n, i=x,y.:

(16)

(15)

('dol' dcosO (OO H'dHp(H)
Jo -I Jo

x (cos' 0 + sin'Ocos"y.Ht)

I 21'"- + - 4r.H'p(H) cos "y. HtdH
3 3 0

Figure 15:
Larmor preces:sion of a muon spin in a static local field Hlor:·

\\'hell the local field has a distribution p(H), the
muon spin relaxarion observed is the ensemble a\·erage
of rhe indi\·idual muon spin precession:

If rhe field distribution is isotropic, or the measurement
is done on a polycrystalline specimen! one can integrate
the angular part:

The first term (I/J-component) originates from the
fraction of the local field which is parallel to the ini-
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3,2 Lorentzian theory [7J

This procedure has been formulated [7], using a
weighting fUBction Pa(:o.). which is the probability of
finding a muon site (Gaussian field width: Ll.) in a di­
lute spin system environment (Lorentzian field width:

In the presence of field fluctuations, the Lorentzian
relaxation function is modulated in a similar manner
as the Gaussian I\ubo-Toyabe function. Still, one must
notice that the Lorentzian distribution results from
many lneqllll'a/fl1lmuon sites. A particular muon. which
resides at site.-\ (Fig.19). never experiences the local
field at site B during the field fluctuation processes. If
one is not a,,·are of this point. and applies the strong
collision series (eq.21) to the static Lorentzian relax­
ation function (;L(l:a. HLF). one obtains an unphys­
ical result: the absence of motional narrowing in the
fast fluctuation regime.

The proper treatment to dynamisize the Lorentzian
relaxation function is as follows [T]:

5.0

;06

00 0'-----....-..L~...L-~3'-----'-~~---..J

ot

(3) Add each contribution, to restore the Lorentzian
field d ist ri bu t ion

'dip' at at ...... 2 IS shallower and broader than that of
the Gaussian Kubo-Toyabe functlon (Fig.I7). reflect­
ing the broadnf's~ of the Lorentzian distribution Thp
relaxation at early limes shows an exponential decay.
as the result of Founer transform of the Lorentzian
distribution.

(1) Decompo:,p lhe Lorentzian field distribution to
the sum of manv Gaussian distributions, each of
which represent; the local field distribution at an
indi,·idualmuon site.

Figure 20:
The muon spin relaxation in the frozen dilute spin system:

static Lorentzian I"':ubo-Toyabe function GL(t:a. HLF').

static Lorentzion relaxatIon

(2) Obtain the dynamical Gausswn l\ubo-Toyabe func­
tion for each muon site. This treatment reflects
the inpquivatence of each muon site for the Lorentzian
distribution

(26)

(, I \'\

: <J

I A. I

n I
V .B

~ .~

I I " r
I I

The static muon spin relaxation for the Lorentzian
field distributiDn has been obtained [39J as:

GL(t;a)

~ + ~ r""4rrH'pdH)cos,"HtdH
3 3 i o

~ + ~(I - at) exp( -at) (27)

is expressed (7) as:

Figure 19:
A dilute spin system. The local field takes an isotropic
Lorentzian distribution.

for zero-field, and in the presence of a longitudinal field
(HLr! [7J:

GL(t: a. HLF)

1- "Y"~LFh(-r"HLFt)exp(-at)

- (-H
a

)' (jO(-r"HLFt)exp(-at) -I)
IP LF

- (1 + (_a_)') a f' jO(-r"HLFT)exp(-aT)dT
"y"HLF i o

(28)

where the jdx) are spherical Bessel functions
In Fig.20, the static Lorentzian relaxation func­

tion GL(t;a, HLF) is shown. In zero-field, the relax­
ation converges to 1/3 of the full amplitude, which is,
again, the signature of static relaxation functions. The

(25)

i =x.y.: (24.)

3

lit
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3.2 Lorentzian theory [TI

In this fast fluctuation regime, the relaxation rate (A)
decreases with fa5ter fluctuation rates. This phenomenon
is known as the 'motional narrowing' of the T1 relax­
ation rate. The longitudinal field dependence of the
relaxation rate (.x) is consistent with that of the T1

relaxation theory [:34J. which has been developed for

lJuclear magnetic resonance (:\".\IR).

The Gaus:sian I":ubo-Toyabe theory introduced abo\'e
is based on Gaussian local field distribution. which is
often realized in dense spin systems. In dilute spin
system~. such as dilute spin glass alloys, it is known
that the dipolar fields from the local moments take a
more Lorenlzian distribution [38J:

(22) The Lorentzian distribution width (a) is a calcula-
ble quantity. if one knows the concentration of the di­
lute moments (c) and the hypothetical Gaussian width
for the c = I dense spin system (...1 100%), In the low

(23) concentration regime (c ;S 5%). the Lorentzian width

Figure 18:
The zero-field muon spin relaxation in the fluctuating Gaus­

sian local field (dynamical Gaussian l\ubo-Torabe function
(20) GDGKT(t: 21. HLr. v)).

GD(t:v)

,-"'G(t)

+ ,-"'v 1'dt'G(t - t')G(t')

+ ,-"'v'l'dt' 1" dt"G(t - t')G(t' - t")G(t")

+ (21)

where the relaxation rate is:

The terms of this series account for the muons which
experienced 0.1,2"" field fluctuations in the time in­
terval of 0 - L

Fig.l shows the dynamical Gaussian Kubo-Toyabe
function in zero-field for various fluctuation rates (v).

In the slow fluctuation regime (vl:o. ~ 0.1), the fluc­
tuation induces slow relaxation of the 1/3-component.
The asymptotic behavior of this relaxation has been
obtained as - 1/3exp(-2vt/3) [6J. In the intermedi­

ate fluctuation regime (0.1 ~ 1I/~"::: 2). the relaxation where a is the width of the Lorentzian field distribu­
has a Gaussian behavior in the beginning, but loses the tion The oria-in of the Lorentzian distribution is the
1/3-com ponent.. Hence. the existence/absence. or the larg~ "ariety oOr the muon sites relative to the local 1110­

1/3-co~ponentls a clue which distinguishes statlc/dynan"¥nents (see Fig.19). Since some muons locate relatively

relaxation .. > far from the local moments (site A of Fig.19), and some
In the fast fluctuatIon regIme (vl:o. - 10), the re- close (site B of Fig.19).the local field distribution has a

l~xa~on IS approximated by an exponential functlon sharper peak around zero (from site A's) and a broader

[,,3,J: tail (from site B's) than the Gaussian field distribution.

The strong collision model generally calculates the dy­
namical muon spin relaxation GO(t; v) from the origi­
nal static relaxation function G(t) as follows:

Effect of spin fluctuations [36. 6J

In the framework of the Kubo-Toyabe theory, the ef­
fects of field fluctuations have been taken into account
with the 'strong collision model' [36, 6J. This model
assumes that (I) fluctuations occur suddenly, and that
(2) every time the local field fluctuates, the muon for­
gets the previous local field information. Hereafter 1 the
field fluctuation rate (v) is defined as the ~Iarkoffian

fluctuation rate, namely, the exponential decay rate of
the autocorrelation function of the local fields'

Experimentally. the Gaussian Kubo-Toyabe behO\'­
ior of the muon spin relaxation, as well as its longi­
tudinal field dependence. is typically observed in suI>­
stanc~ with nuclear magnetic moments. such as .\lnSi

[6J and copper [35J.
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(b) Lorentzion(aJ

As a conduding remark concerning the zero/low-field
spin relaxation theories, I will mention the importance
of the longit udinal fi€'ld measurements when using the
pSR technique a.< a local magnetic probe. In Fig.24. the
simulated muon spin relaxation in two different spin
systems are shown. One is a dense spin system with
fast fluctuations, and the other is a dilute spin system
with slow fluctuations. In zero-field, the two systems
presents almost identical exponential relaxation, and
the two situations are indistinguishable. In longitudi­
nal field measurements, however, these two systems be­
come distinguishable. In the slowly fluctuating system,
the relaxation is decoupled with relatively smalliongi­
tudinal fields, which are comparable to the field dis­
tribution width (Fig.24b). In the fast fluctuating sys­
tem (Fig.2~la), c1ecoupling requires much larger fi€'tds.
These qualitativPly different responses to the applied
longitudinal fields allow one to experimentally distin­
guish between slow and fast fluctuations of the local
fields

high temperature> [lOJ. The abo"e mentioned cut-off
field effect may explalll at least part of the phenomena.

3.4 Summary of the Kubo-Toyabe the­
ories

figure 24:
(a) ~Iuon spin relaxation in a fast fluctuating dense spin
system: CDGKT(t:~. HLF, vI, and (b) in a slowly ftucwat­
ing dilut.e spin system: CDL{t;a, HLF,V). These two sys­
tems are distinguishable in longitudinal field measurements,
but not in zero--field.

In the following chapter, the j.lSR technique is ap­
plied to a spin-ladder material, Srn _ 1Cu n+I02n. The
set of measurements presented there will exhibit how
I\ubo-Toyabe theories help us investigate the magnetism
of this material.

via
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Experimentally. muon spin relaxation in paramag­
netic dilute spin systems often exhibits a stretched ex­
Ponential behavior, with its power f3 approaching 1 at

6 mc• -corrected Lorentzian relaxation

Figure 22:
D.mu-corrected Lorentzian relaxation
function for D.mu/a = 20 (solid lines). The dotted lines
are square-root exponentiaJ functions (exp( -VIi)), which
is realized in the ideal Lorentzian field distribution.

o t

~4ml ~ ~ ~ ~ ~ ~ ~ d
Fluctuation rote II / 0

0.0 '--_-'--_-'--_--'-_--'-_...J
o

Figure 23:
Stretching power (3 derived from the stretched exponential
function fit to the J6. mu corrected relaxation function.

muons which locate at sites with large local fields. In
Fig.22, the 'u'max-corrected dynamical Lorentzian func­
tions [CDL(I; a. H LF , v, c"max)J are compared with the
square-root exponential functions of the ideal case,

The ~max-correcteddynamical Lorentzian function
is well approximated by a 'stretched' exponential func­
tion, exp( -('\t)~): in Fig.23, the stretching power (~) is
shown as a function of the normalized fluctuation rate
(via). At small fluctuation rates, the power converges
to 1/2, as expected for the square-root exponential be­
havior, and in the large fluctuation limit, fJ approaches
I.

(36)

IThis section is based on the author's original work: K. Ko­
jima.unpubllsht!d.

where p~(."j,) is normalized for the new upper bound

~m.,

where c is the dilule spin concentration and a is the
Lorentzian width.

(32) The most significant correction because of the cut-
off field ...\ma>; appears in the fast fluctuation regime. In
the traditional Lorentzian theory, the relaxation func­

(3:3) tion in this regime is a square-root exponential function
(eq.32). When the cut-off field is introduced, the re­
laxation at large fluctuation rates loses the fast fcont­
end of the square-root exponential behavior, because
the fast front-end originates from the T1 relaxation of

In the previou:) section. the Lorentzian theory was in­
troduced as a muon spin relaxation theory for dilute

(29) spin sytitems. This theory is based on the Lorentzian
field di::itribution at the muon sites. Still, a truly Lorentziar
distribution i:s unphysical. because some fraction of
the muons must locate at an infinitesimally small dis-

(30) tance from a magnetic ion, in order to realize the di­
verging second moment of the Lorentzian distribution
< HI~c > - < HIDe >'2-+ . To res.tore. the phys­
icality of the local field distribution, It will be nat­
ural to introduce a large cut-off field (~m.,) to the
Lorentzian distribution. This idea is easily formulated
in the Gaussian decomposed picture of the Lorentzian
distribution (eq.29,30), which has been introduced to
obtain the dynamical Lorentzian relaxation function
CDL(t;a. HLF, v)

In this picture, a weighting function P(1(~) was in­
troduced to sum up the contributions from every muon
sites (see eq.29). In real spin systems, the upper bound
of the site-sum integral should be replaced by a cut-off

field ~max:

3

a t

dynamical Lorentzion in zero-field

fi a (a' )
Pa(~) = V;/5Jexp -2~'

00
0

";:'0,8

ci
'La 6
I"

00.4

pd H,) = [a pc(H,)Pa(c,,)d~, i = x, y,: (31)

5::02

with the relaxation rate:

Experimentally, the Lorentzian relaxation function,
as well as the square-rool. exponential behavior in the
fast fluctuation regime, have been observed in dilute
spin gla.<s allo)'s [7J, and the theor), has been quite suc­
cessful in dilute spin systems.

Figure 21:
The zero--field muon spin relaxation in a fluctuating di- The physical meaning of the cut-off field ~max is the
lute spin system: dynamical Lorentlian relaxation function largest possible Gaussian field width for the dilute spin
GDL(t:a. HLF.V}. system considered. This quantity may be of the same

order of magnitude as the hypothetical Gaussian width

tionl~:~~'r~fi~~~~~~(~:i:~I;~;e:t~i,a:)r::~~~:~~f;~~ (...\1007(). which is expected when all the lattice points
. ... are filled up with moments. Since the relation between

effect of the field fluctuations IS similar to that of the ...\1009.: and the Lorentzian width (a) has been obtained

~~~~~~:n~a:~~:;s~h:lo~~;~I~~~\~:~li:~e~~~:~~~~~~;/3)(eq.26).~max is estimated to be:

(7], and in the fast fluctuation regime, motional nar- (2 a
rowing is e.xhi~ited. For the Lo~entzia~ dis.tribution, ~max ;::::: ."j,IOO%;:: V;- ~

the relaxation 111 the fast fluctuation regIme IS approx­
imated by a square-root exponential function (7]

where,

This weighting function, by definition, converts a Gaus­
sian distribution to a Lorentzian distribution:

a). The dynamical Lorentzlan relaxation function is 3.3 A minor correction to the Lorentzian
obtained: theory'

CDL(I. a, HLF. v)

J.~ CDGKT(t;.:l.. HLF. V)Pa(~)d~
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4.2 Spin-ladder material Srn_l CUn+1 02n

Sr2CU,O~ (2-le9 lodder)

JlSR aile can best investigate the expected absence of
static order 10 the 1-leg ladder system.

Temperature (K)

Figure 27:
Susceptibility of the :::pin ladder materials Srn_l CUn+1 O2 ,,.

Cite from Ref. [5l].

For our pSR mea.-iUrements, polycrystalline spec­
imens of the spin laddf"r cuprates (Srn_ 1Cun+10'2n:
n=:J. ;')) were prepared at the Institute for Chemical
Research. h~yoto Cniversity, using a cubic am··il-type

Figure 28:
Temperature dependence of the 63CU_N~[R T1 relaxation
rate (cite from [.52J). The right axis is an estimated muon
spin relaxation rare for the same relaxation mechanism.
(See the discussion tater.)

(b)

(a)
-J Jr- b

,
a

Figure 26:
(a) The 'spin ladder' structure ofSrn_1Cun +I02n. Oxygen
ions locate at each corner of the squares. The figure shows
the 3-leg ladder Slruolure (n=5). (b) A magnified ladder­
edge. The dotted lines represent the 90° Cu-O-Cu bonds
which mediate the ferromagnetic inter~ladder interaction
(-J')

cuI"°.• .CJ'
J

Sr
cL

b

":';:"'::;'::"'::'::''''=''::'''''-Cu-Qlayer

netic interactions (-J') and one antiferromagnetic in­
teraction (J) (19, 21].

Previous investigations OfSC n _l CUn+l 02n have mea­
sured magnetic susceptibility (Fig.27; [51)) and 63CU_
:\~IR (Fig.28; [52)). In the 2-leg ladder system (n=3).
the temperature dependence of the susceptibility and
the T1 relaxation rate are well described bv thermal
excitations over a gap, which may correspo"nd to the
spin gap between the non-magnetic ground state and
magnetic excited states. The magnitude of the gap has
been reported as 420 " (susceptibility: [51)) and 680 11:
(63Cu_:\~IR: [52]).

The 3-leg ladder system (n=5), in contrast, has a
finite susceptibility in the T -+0 limit. demonstrating
that the ground state of this system can respond to the
external magnetic field. Therefore, the ground state
may exhibit magnetic order. In the 3·leg ladder sys­
tem. the T1 relaxation rate of 63CU nuclear moments
was so large that it was hardly measurable with the
conventional ::\~[R technique. This result implies the
existence of strong magnetic correlations in the 3-leg
system [521.

As introduced in Chapter 2, continuous-beam muon
spin relaxation (/,SR) is a NMR-like local magnetic

probe. but with a higher timing resolution (~l ns) than
typical N~lR methods (-10 /,s). Consequently, /,SR is
an adequate probe to study the 3-leg ladder system.
in which the N.\IR relaxation rate was beyond its time
resolution. Another advantage of JlSR is its high sen·
sitivity to small and/or dilute static moments. Using

S.112

:'lv-n--rr"Jf--r-+-}-J;-
~+--o~-

(a)

(b) trrrrr

The spin-laddPr material Srn_l CUn+l 020' which is syn­
thesized under high pressure and high temperature [49.
.'i0]. takes lhe structure shown in Fig.26a. The lat­
tice structure is composed of (n+ I}/2-leg spin-ladders.
namely. SHips of CuO::! square lattice which have (n +
1)/2- Cu2+ ion~ across their width. Each Cu 2+ ion has
spin 5=1/2 with antiferromagnetic couplings within a
ladder (strength: .f). both in the 'rung' and the 'Ieg'
directions. In the two directions. the difference of the
coupling strengths are presumably small, because the
180' Cu-O-C'u bond lengths are almost equal for both
directions [491.

In this matrrial. the neighboring ladders are dis­
placed by half the lattice constant. leading to a small
inter~ladder interaction. Since the 90° eu-o-cu bonds
mediate thE' inter-ladder interaction. the interaction
may be ferromagnetic (-J'; see Fig.26b). The mag­
nitude of the inter-ladder interaction has been theoret­
ically estimated as J' / J '" 0.1- 0.2 [19, 21]. The inter­
ladder interaction brings about a geometrical frustra­
tion of the spins at the edge of the ladders, because of
the triangular structure constituent of two ferromag-

Behavior of wider spin-ladder systems was first em­
phasized by T. ~1. Rice el of. in 1993 [19J. In Ref.
[19J. the authors first pointed out that the homolo­
gous series of cuprate Srn_1Cun+lO:?n should realize
the .\'-Irg ladder structure. and pointed out contrast­
ing magnetic beha\'ior between the even-number-Ieg
ladders and the odd-number-Ieg ladders. The even­
number-leg ladders were to manifest a spin-gap. while
the odd-number-Ieg system should be gapless. This
idea of alternating ground states has been supported
by numerical simulations of the spin ladders up to 4­
legs [48J and a mean-field calculation of the 2-leg and
the 4-leg ladder systems [21J.

Figure 25:
(a) The X-leg spin ladder structure and (b) a schemaLic
ground Slate of the 2-leg spin ladder system.

4.1 Introduction

f~lost of the content of this chapter has been published as
K. Kojima et at., Phys. Rev. Lett. 74. 2St2 (1995)

The first discovery of a high-To superconductor in 1986
[41] initiated a surge of interest in new materials which
have a higher superconducting transition temperature
(Te ). As a result of vital experimental researches, vari­
ous copper oxides, doped with charges, have been iden­
tified as a high-Te superconductor. One remarkable
structural similarity among these high-Te cuprates is
the existence of the CU02 planes, and there have been
many theoretical studies trying to explain the super­
conductivity as a nature of the doped CU02 square
lattice. Still, the problem of correlated electrons on
the two-dimensional lattice is difficult, and no rigorous
solution to the problem has been found.

For the one-dimensional chain system. on the other
hand. quite a few things are known exactly. For ex­
ample, the anti ferromagnetic Heisenberg model of the
5= 1/2 spin-chain was exactly solved by H. A. Bethe
in 1931 [11], and using a similar technique, the one di­
mensional Hubbard model. as well as the t-J model in
special cases (J=O and 21) have also been solved [42.
43). Considering these successes in one-dimensional
systems, one approach to tackle the superconducting
cuprates is to investigate the quasi one-dimensionallat­
tices known as 'spin ladder' structures (Fig.25a), which
are strips of square lattice with a finite width and infi­
nite length.

Early theoretical works of the spin ladder system
were numerical studies on isolated 2-leg spin ladders.
For the Heisenberg model of a 2-leg spin ladder, a
many-body singlet ground state was suggested, with
a finite energy gap (spin-gap) to the excited states
(20. 44]. The ground state structure is mainly com­
posed of spin singlet pairs on the rungs. as shown in
Fig.25b [20). The hole doped 2-leg ladders have also
been investigated theoretically, in relation to the su­
perconductivity [45,46,47]. These works suggest that
two doped holes will form a bound state so that the
surrounding spins can remain spin singlet. The paired
holes, which behave as hard-core bosons. were sug­
gested to take a superconducting ground state [45. 46].

4 Spin-ladder system!

This chapter rep0rl~ our pSR measurements of the
spin-ladder cuprates Srn_1Cun+IO'n (n=3 . .'i). The
measurements have revealed contrasting magnetic be­
haviors between the '2-leg' (n=3) and the '3-leg' (n=5)
spin-ladder materiab, which qualitatively agree with
the theoretical predictions. The results presented in
this chapter, in addition. provide a good example of
how JlSR detects the existence/absence of magnetic or­
der.
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4.3.2 The 2-leg ladder material (,,=3)

1 2 3 4 5 6

Time [,us]

Figure 31:
LF=lOO G IJSR speClra around the transition tempera-

nets Sr,ClI03 [.;5). Ca,C'u03 [.; ) and a spin-densit)­
\\"ave syStRl11 (T~IT Flo-PF6 [.;9]. In these systems.
the absence of critical tilowing down ha\'e been ex­
plained a.., follows: in onr-dimensional systems. the or­
dering temperature is determllled by the small intN­
chain interactions. and therefore. there may be pre­
formed short-range ordered regions before the threE'­
dimensional order take. place [60]. Then the order­
ing process is a phase-lockings of these short-range or­
dered regions. which do not involve a slowing down
of the moments. The absence of the critical slowing
down in the 3-leg ladder system may also reflect its
low-dimensionality, if the 'phase-Iocking' picture of the
magnetic order is relevant

Sr.Cu,Ooo (J-Ieg lodder)

Zero- and longitudinal-field measurements

The magnetic bE'ha\·ior of the 2-leg ladder system dif­
fers markedly from that of the 3-leg system. In Fig.32a.
we show typical JiSR spectra in the 2-leg ladder sys­
tem. :\"ote thaI Fig.32 has a horizontal scale about
10 times larger 'han that for Fig.29a and Fig.30. In
the 2-leg systl"lll. weak relaxation below .......50 h: was
observed. However. from the longitudinal field (LF)
measurements (Fig.32b), the source of this relaxation
was found to bE' fluctuating rather than static internal
fields. If the slow relaxation in the zero-field measure­
ment were due to a static field distribution, the charac­
teristic field distribution width would be oH ....... 10 G, as
the relaxation rale suggests. In this case, the .uSRspec­
trum would be flattened in a LF ....... IOO G. As shown in
Fig.32b. the relaxation persists up to LF ....... 2 kG, prov­
ing that this slow relaxation is a TI-like dynamical one
(see section 3.4).

\Ve analyzed the muon spin relaxation in the 2-leg
ladder system using a square-root exponential function

T:o< .......5 h:.l
T 52±51\b
T~ 540 j('

magnetic order
CuO chain (to)

3-leg ladder
CuO, plain (20)

compound
Sr2 Cu03

Sr4 Cu6 0lO
Cao86SrO 14CU02

Discussion

Figure 30:
Longitudinal field (LF) decoupling measurements of the 3­
leg ladder system at 50 mK. The solid lines are the fit with
static Kubo-Toyabe functions (eq.19).

Another feature of the magnetic order in the 3­
leg ladder system is the absence of critical slowing
down of the Cu moments in the .uSR time window
(- 10Jis). In Fig.31, we show JiSR spectra at long
times. 1\0 enhancement of the relaxation rate was
observed around the transition temperatures. This
'abrupt' onset of magnetic order has been observed in
other one-dimensional systems, such as antiferromag-

Table 3: Structure and magnetic beha\'ior of Sr(Ca)­
Cu-O compounds

\Ve compare in Table 3 the ordering temperatures of
the Sr(Ca)-Cu-O series of compounds, which is a one­
dimensional chain system for Sr2Cu03 [55], and a two­
dimensional layer system for Cao86Sro 14CU02 (n~oc

structure of the spin-ladder series) [56J. The order­
ing temperature of the 3-leg ladder system is between
those of the chain system (Sr,Cu03) and the layer
system (Cao 86SrO !.CuO,). Suppression of T." in the·
chain system has been explained as an effect of the
low-dimensionality [55]; the intermediate ordering tem­
perature for the 3-leg system is consistenL with this
idea. because the 3-leg ladder structure is the small­
est extension of the one-dimensional chain toward two­
dimensionality.

'Obt<Uned by pSR [55].
'Obtained by pSR: this work [1].
'Obtained by neULron scattering [57] and IJSR [55].

i
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Temperature [K]
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i Sr.Cu.O., (J-Ieg ladder)
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Figure 29:
a' Zero·field pSR spectra in the 3-leg ladder system. The
solid lines are the fit with the model function, eq.(3i). b'
Temperature dependence of the Gaussian field-distribution
width (...).) and the paramagnetic volume fraction (fpu.J.).

The broken line i~ a guide to the eye.

T~-10 1'. J represents an 'average' of the field-widths
at the muon sites, \Ve show the temperature depen­
dence of !para and J in Fig.29b. The ordering temper­
ature is around ,)2 1\. with a distribution of ±5 1\.. as
deduced from the temperature dependence of !para.

In Fig.30. \\·e show pSR spectra from longitudinal field
(LF) dl"C"oupling measurements. which investigate fluc­
tuations of the internal fields (see section 3.4). The
spectra in longitudinal fields clearly demonstrate the
static nature of the muon relaxation. being consistent
with the ohsen'alion of the ·1/3-component' and the
'dip' in the zero-field measurements. The recoveries of
thl" Illuon spin polarization in LF's are well described
by the static Gaussian I\ubo-Toyabe theory (solid lines
in Fig. :30). which seems to imply a random freezing of

(37) moments. rather than true r\eel order. However, as a
local probf'. the pSR resuhs can not exclude the possi­
bility of long range spin correlations. When there is a
distribution of T". the muon spin precession is some­
times smeared out because of the distribution in the
local fields (See the discussion in Chapter 6 for an ex­
ample.) Therefore. we just propose an existence of a
statIC arde,. at T - 52 I, in the 3-leg ladder system.

where !para is the paramagnetic volume fraction in the
sample and Gstatlc(t;,j,) is the static Gaussian I~ubo­

Tovabe function at T<30 K or a static Gaussian fune­
tio~ (1/3 +2/3 exp( -f~t)')) at T:::40 K. The parame­
ter ~ is the Gaussian field distribution width, which is
proportional to the size ofthe ordered Cu moments. At

4.3.1 The 3-1cg ladder material (n=5)

4.3 liSR measurements

We performed JiSR measurements at ~!l5 and ~1l3

beamlines at TRIU~IF, using the counter configura­
tions for the LF/ZF-JiSR measurements (Fig.14a). De­
tailed technical aspects of the JiSR method have been
described in Chapter 2.

Zero-field lneasurements

Fig.29a shows typical zero-field JiSR spectra in the 3­
leg ladder system. Below .......55 1<, there observed muon
spin relaxation, which suggests a magnetic order of the
eu moments. The signal amplitude was large enough
to conclude that it comes from the ladder structure,
rather than from the CuO impurity phase. The spec­
tra belo\\" 45 I, converge to 1/3 of the total amplitude:
this '1/3-component' is a signature of static order in
polycrystalline specimens (see section 3.1). The spec­
tra below 30 " exhibited a 'dip' between the initial
decay and the 1/3-component; the existence of such a
dip is another signature of a static order. The solid line
for the 50 mE: data is a phenomenological fit with the
Gaussian Kubo-Toyabe function, which is appropriate
to randomly oriented. frozen dense spin systems (see
section 3.1).

The spectra near the transition temperature (Fig.29a) Longitudinal-field ll"leaSUren"lents
beha\'e as if there is a distribution of ordering tempera­
tures: (I) the relaxation amplitude (0< ordered volume
fraction) decreases as temperature increases and (2)
the 'dip' in the spectra disappears above .......40 1\:. al­
though the relaxation is static as shown by the decay
to the 1/3-component. The absence of the dip in the
static relaxation suggests a distribution of the field­
widths (~), which would result from a distribution in
the ordering temperatures. \Ve analyzed the jiSR spec­
tra with a functional form of'

high pressure apparatus [53]. Powder X-ray analysis
of our sampl~ showed the stOIchiometric ladder struc­
ture, except for small amounts (-10 Cu at.'I'< ) of a
CuO Impurity ph.... [51). Since CuO is an anti ferro­
magnet (7\-230 K [54]). the impurity phase should
not affect the muons which did not land within an im­

pUrity cluster. Therefore. in our pSR measurements
-90'1'< of the signal amplitude comes from the pure lad­
der structure.
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Table 4: The parameters in the T, relaxation fit (2-leg
ladder. 20 1111..:)

T .2: -10 1\ in Fig.:l:1). reflecting more dynamic local
fields.

A::; shown in tht' ins('l of Fig.33, we analyzed t1w
LF dependence of muon Spill relaxation rate >'(T~ 0)
with the T1 relaxation formula in dilute spin systems
(eq.3:3). The re5ulIing Lorentzian field width (0) and
lhe field flucluation rate (v) are shown in Table 4. In
the same tablt". estimates of these parameters are given.
which are based on the unpaired spin concentration
from tht" susceptibility measurements (see the caption
of Table 4 for detail.) Although the quantitative agr e­
ment between the estimates and the experimental re­
sults is poor, it is worth while to point out that the
unpaired spins assumed here will induce a muon spin
relaxation rate (>' = 4a'1/v :::::: 5.7 x 10-3 j..IS-l) which
is in the time range of j1SR measurements. Therefore.
the scenario of muon spin relaxation from the unpaired
spins is better than that from the excited states. See
the concluding remark at Chapter 7 for more discus­
sions.

a An estimate using eq.26. For the calculation, the hy­
pothetical Gaussian width (~lOO%) with all the spin-cites
filled with static moments was taken as the Gaussian width
observed in the ordered 3-leg ladder system (6.(T --40 0) =
26 jJs-I; see Fig.29b). The unpaired spin concemralion
(c = 0.26CJc:) has been estimated from the susceptibility
measurements [St]. b The dipolar Rucwation rate or the
unpaired spins. which is ..... 60 (:::::: .jlO13/2rr x "Yd1p.) times
larger ,han the Lorent7.ian width (0). See the discussion in
Chapter 5 for more details or the estimation procedure.

a Ivs- ) 3.1(1) 0.085'
v (~lHz) 51(6) 5.08b

Parameter Experiment Estimate
(native spins)

4.4 Summary

From the jiSR measurements of the spin-ladder mate­
rial Srn_ 1Cu n+I0'1n. we observed static magnetic or­
der for the 3-leg ladder system at T-52 1-\. \\·hile. in
the 2-leg ladder system, no magnetic order was presem
down to 20 ml\:. Our results support the theoretical ex­
pectations of the magnetic ground states of the ladder
systems. namely. a non-magnetic ground state for the
2-leg ladder system, and a magnetic ordered state for
the 3-leg ladder system.

(38)5.6 X 10-3

Figure 34:
Possible muon spin relaxation mechanism. The unpaired
spins associated with the defects may cause muon Spill re­
laxation.

Csing these parameters and the T1 relaxation formula
[34], the scaling factor of the muon/63Cu T1 relaxation
rates is estimated as:

Since the 63Cu T1 relaxation rate in the 2-leg ladder

system is ~ 4 X 102 [sec-I) (Fig.28). the corresponding
muon spin relaxation rate should be - 2 x 10-6 (PS-I]
at room temperature, and smaller at lower tempera­
tures (see the right axis of Fig.28). These relaxation
rates are too small for the ~SR time window, and there­
fore, the magnetic excited states do not contribute to
(he muon spin relaxation.

Then, what would be a relevant relaxation mecha­
nism for the muon spins? One possible scenario is that
the muons detect the unpaired spins which are related
to vacancies and defects in the system (Fig.3-t). From
susceptibility measurements, the amount of native un­
paired moments has been estimated as ....... 0.26 at.% of
the copper ions [51). The idea of the relaxation from
the unpaired moments qualitatively explains the gen­
eral temperature and longitudinal field dependence of
the muon relaxation rate; since the couplings between
the unpaired spins are presumably small! these spins
should remain paramagnetic down to the milli-l\elvin
regime, giving a temperature-independent relaxation

rate (T ~ 40 I, in Fig.33). At higher temperatures,
the unpaired spins may have additional fluctuations
related to the magnetic excited states: in this situa­
tion, the muon spin relaxation rate should decrease,
and respond less to the longitudinal fields (see data at

[J]"o1ODG

It. 1 l(G

o21<G

..'>(T --70)11" = 2r. x 13.554 [~IHz/kOe]
= 0.:305 [kOe/size of ordered moments]

i" 2r. x 13.554 [~IHz/kOe)

2r. x 1.1285 [~IHz/kOe)

A, = -120 [kOe/l's)

Aab = 48 [kOe/l's]

Figure 33:
Temperature dependence of muon spin relaxation rate p..)
in the 2-1eg ladder system. The solid lines are guide to the
eve. The inset is the longitudinal field dependence of the
r~laxation rate at 20 ml\:, with the fit to the T. relaxation
thear)' (eq.33)

As has been shown by gap excitation type tempera­
ture dependence [52]. the 63Cu nuclear spin relaxation
is most likely caused by magnetic excited states which
produce fa:;t field fluctuations. From a simple scaling
argument below. these excited states do not cause fast
enough muon spin relaxation detectable in the JiSR
time window

The only difference between the muon spin relax­
ation and the 63Cu nuclear spin relaxation is the gy­
romagnetic ratio of the probe spins Ci'p and leu) and
the electron-nuclear spin coupling strength, which re­
flects the probe spin site. From previous h:night-shift
and susceptibility measurements. the hyperfine cou­
pling parameter between a 63Cu nuclear spin and elec­
tron moments has been obtained as [52):

40
Temperature [K]

The gyromagnetic ratio of the two probe spins are [28.
61):

where the suffix (c and ab) indicates the crystalline
orielHation of the parameter. The coupling between
a muon spin and (he electron moments is probably a
dipolar coupling. and its magnitude can be estimated
from Ihe SIalic field-widlh of the ordered 3-le9 ladder
system (Fig.29):

LF
t~~"-t.L-+-f.-H-w...,~-L.LJ 5,G

IkG

'r.-t.,..gJcJ..J...'.," IOOG(D)

0.0 OL-~-2~~3~...L....l"""""'--l......L'6ZF(Jjj

T;me [I's]

Discussions

(0)

1.0 1;:-r~"""""+"-H--.-I-l~H--'J
-::- 0.8

~06

04

Figure 32:
a: LF=lOO G pSR spectra in the 2-leg ladder system. b:
Longitudinal field decoupling measurements at 20 mK. For

both panels the solid lines are fits with a square-rOOL ex·
ponential funclion. ~ote that the horizontal scale is -to
times larger than that in Fig.29a and Fig.3D.

(P"(i)=exp(-J>J)), which is appropriate for dilute
fluctuating moments (see section 3.2). The temper­
ature dependence of the relaxation rate (..x) is shown in
Fig.33. The increase of >. down to ...... 40 K indicates a
slowing down of field fluctuations. Still the field fluc­
tuations persists down to the milli-Kelvin regime. as
shown by the saturation of A. This result indicates
that there is no static order in the 2-1eg ladder ma­
terial. supporting the theoretical expectations for the
non-magnetic ground state of this system.

Comparing the temperature dependence of the muon
T, relaxalion rate (Fig.33) with that of 63Cu_"~[R

(Fig.28). one question may arise: why the tempera­
ture dependence is oppo lie between jlSR and "~IR. In
the :X~1 R measurements. the T1 relaxation increased at
higher temperatures. as has been ascribed to the exci­
tation o\'er the spin gap. while in j..ISR, it decreased as
shown in Fig.33. As discussed below, the qualitatively
different temperature dependence of the T1 relaxation
rates may be attributed to the different scales of the
experimental time windows.

The time window of the j..ISR method is typically
I ns-IO I's. and for "~IR. it is 1001'5-103 s. There­
fore. in the paramagnetic fluctuation regime, i\~IR is
more capable of detecting faster fluctuations than j..ISR.
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(43)

1i = L (5, ·5,+1 + D(S! )')

-"'J'L 5 ,.5J

(i.J)

The abo\'e introduced theoretical works all supported
Haldane's conjecture. The next section introduces pre­
vious experimental results of several 5=1 spin systems,

Figure 3T:
Phase diagram of the Hamiltonian (eq.-l3) is shown {cite
from [Till. The symbols are: (HI Haldane phase. (i\1 :-ieel
ordered phase. (:-':)'1 XV phase. and (Di large-D phase

The effect of the inter-chain interactions has also
been ill\'estigated [69. TO, Tl]. Fig.37 shows the phase
diagram [TI] obtained from a numerical simulation of

the Hamiltonian:

where (i. j) denote:;,. the nearest inter-chain neighboring
pair. It has been found lhal the Haldane phase (H)
survi\'es in the prf"sence of the inter-chain interaction
(J'). if the single ion anisolropy (D) is small.

Figure 36:
Phase diagram of the Hamiltonian eq,42 is shown (cite from
[6811. The symbols are: (H) Haldane phase. (N) Neel or­
dered phase. (XY) XY phase. (F) Ferromagnetic phase and

(Dllarge-D phase.

(42)+ D(S,'f)

(d)~O~

(b) __....--.....--..--..--..........._

Figure 35:
(a) 5=1 antifeITomagnetic spin chain. Each 5=1 spin is
decomposed into two 5=1/2 spins. (b) Singlet pairing of
the adjacent 5=1/2 spins. (e) The Valence Bond Solid
(\'B5) Slate. The two 5=1/2 spins on each lattice point
are symmetrized to restore 5=1. (d) The \'BS state doped
with a foreign ion.

5.1.3 Physical Hamiltonians

Since real materials rna\" not realize the ideal Heisen­
berg modeL more gener~l spin Hamiltonians have been
investigated. mainly with numerical simulations [65.
66. 67. 68J. From lhese works. a phase diagram has
been oblained for lhe Hamillonian wilh lhe :-'::-':Z-lype
interaction and a uniaxial single ion anisotropy D'

(I) decompose the 5= I spins at each site into two The phase diagrC\1ll IS shown in Fig.:36 {6 1· It has been
5=1/2 spins (Fig.3.5a) found thaI the Haldane phase (H) exisl in a relali'·el;

large paramett"r region. which includes the pure Helsen­
(2) ~~~e3~~fel bonds belween adjacenl 5= [/2 spins berg model (,\ = I. D = 0)

(3) symmetrize the two 5=1/2'5 on each site to re­
slore lhe 5= 1 degrees of freedom (Fig.30c).

The VSS ground state is non-magnetic singlet in
nature. as it is built from many singlet pairs. From
numerical calculalions of lhe VBS Hamillonian (eqAI)
wilh arbilrary magnitudes of the biquadratic lerm (1/3~J).

it has been shown that the non-magnetic ground state
of lhe pure Heisenberg model (fJ = 0) belongs lo lhe
same calegory as the VBS ground stale [63, 64).

Anolher characterislic of the VBS slate appears
when a spin site is substituted with a foreign ion (Fig.35d)
The foreign ion breaks two singlet pairs, and introduces
lWo 5= 1/2 paramagnelic spins. The 5= 1/2 degrees of
freedom have actually been observed in electron spin
resonance (ESR) measurements of a Haldane material

NEKP (see section 5.1.4).

5.1.2 The Valence-Bond-Solid Hamiltonian

(I) The ground Slate is unique.

(2) There exists a large energy gap (Haldane gap)
between the ground state and the excited states.

(3) The spin correlalion funclion quickly decays as
an exponent ial function.

Among Haldane's conjectures about the integer spin
systems. t he existence of the gap (2) is most surpris­
ing. because it seerns always to be possible to make
low energy excitations. such as spin-waves, for rotation­
ally invariant Hamiltonians like the Heisenberg model
(eq.39). AClUally. the absence oflhe spin-gap had been
proved in lhe 'Lieb-Shullz-~[allislheorem' [62) for lhe
5=1/2 Heisenberg model. This theorem was extended
to larger spin values 5, but the gapless feature was
pro"ed only for the half-odd-inleger spin systems [8}
(see seclion A.I). :"amely. lhe eXlended Lieb-Shullz­
~Iattis theorem could not eliminate the possibility of
lhe Haldane gap.

Although there has been no rigorous proof of Hal­
dane'sconjeC'tures for the integer-spin Heisenberg model.
there is an antiferromagnetic Hamiltonian describing
an 5=1 spin chain. which was rigorously pro\'ed to have
the features of the Haldane system.

(39)

Haldane system!

?i = L 0(5,+ SJ- + 5,- Sj )+ 5,' SJ) (40)
<I.J>

5.1 Introduction

5.1.1 Haldane's pl"ediction

The antiferromagnetic Heisenberg model, which assumes
an isotropic interaction between neighboring spins, is
the most fundamental model of localized antiferromag­
netic spin systems. Its Hamilt.onian is written as:

where < i, j > represents all the nearest neighboring
spin pairs.

In classical mechanics, the spin 51 is a three dimen­
sional veclor (Sf. sy, St) wilh a fixed lenglh 15>1=S. If
the lauice structure is decomposed into two sublattices
Without frustration, the ground Slate of the classical
Heisenberg model is lhe Neel slale. in which all lhe
spins on one sublanice point in one direction, and all
the spins on the other sublattice point in the opposite
direction.

In quantum mechanics, the spin 51 is represented
by a set of three operators. which satisfies the com­
mutation rules of angular momenta. The Heisenberg
Hamiltonian is then rewritten as follows. using the rais­
ing and lowering operators of the spins (St, Sj-):

5

It is easy to show that the :\'eel state is not an eigen- In 198T. I. Affleck. T. Kennedv, E. H. Lieband H. Tasaki
state of this Hamiltonian, because of the spin-Rip terms proposed a Hamiltonian for 5= 1 spins [24]'

S; 5 j- and S,- st. In order to obtain the ground state (I)
rigorously, one has LO lreallhe Hamillonianas aquan- ?i'BS = L, 5,·5'+1 + 3"(5, .5,+,)' (41)
tum mechanical operator.

In the investigatio~softhe antiferromagnetic Heisen- which is the antiferromagnetic Heisenberg model mod­
berg model, the one-dimensional chain of 5= 1/2 spins ified by a biquadralic second lerm. The aUlhors of Ref.
was the first system to be solved e~actly. Based on an [24.25] rigorously obtained the ground state, which has
ansat=. all the eigenstates were obtallled by H. A. Sethe an exponentially-decaying correlation function and a fi-

fYlost of the contents of Ihis chapter have been published as nite energy gap to the excited states. The exact ground
K. Kojima d at.. Phys. Rev. Lett. 74. 3·HI (1995) and K. Kojima state, which is known as 'Valence Bond Solid state', is
et at, J. ),lag. )'lag. ),tatrs. 140-144, 1657 (l994) constructed as follows:

in 1931 [II). Beth" ground stale is (1) a many-body
:;pin singlet. and has (2) no energy-gap to the excited

This chapter contains our JiSR and susceptibility mea- statp:; and (:1) lhp spin correlations decay slowly as
surements for the Haldane material, Y2Ba:\iOs. First. a power-law of di:;lance. The lowest triplet excita-
in the nominally pure system. the absence of magnetic tion of the = 1/2 :;,ystem was rigorously expressed by
order was confirmed with the ZF/LF-I'SR measure- J.de,CloizeallxandJ.J.Pearson,as«k)=r./2IJllsin(k
ments down lO [00 mI'. Second, lhe effecls of charge [[3). ,,·here k i, lhe momentum along lhe chain. Since
doping (y3+~Ca2+) and vacancy doping (i\iH ~~lgH) this eXCtlalion curve has lhe sameshape as lhe classical
were invesligaled. The charge doped syslem exhibiled spin wave dispersion «k) = IJII slll(k)l, It was Implied
a spin-glass like behavior in the susceptibility, while that the beha\'ior of the Heisenberg model With larger
our j.lSR measurements revealed unconventional spin S smoothly converges to the classical case.
dynamics in the milli-Kelvin regime. In the vacancy Contrary to this expectation, F. D. M. Haldane con­
doped syslems, lhe non-magnelic ground slale sur- jeclured in [983 [22, 23] lhal lhe ground slale of the
vives. Heisenberg model strongly depends on the value of S.

He predicted that half-odd-integer spin systems pre­
serve the features of the 5=1/2 spin-chain, but tnleger
spin chains have the following features'
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• In order to reduce excess oxygen, the sample was
annealed in an Ar atmosphere at 1200'C for 10
hours.

• After being pressed into a pellet, the sample was
baked in air at 1250'C for 10 hours

(1) the doped holes did not induce a clean metallic
beha\·ior. but a localized state with hopping (p).

(2) the doped hole. locate mainly at the 2p, orbital
of the oxygen ion, which has a lobe in the chain
direction (XAS).

• The mixl ure was baked in air at 1050°C for 10
hours

(3) charge doping induces a density of stales within
the Haldane gap (:'\15). With vacancy doping (;'o:iH -;ZnH )
such 'in-gap states' were absent.

• Stoichiometric rnixtures of Y:!03. BaC03, :\iO
plus CaC03 and/or ~lgC03 \\'ere prepared.

The result (3) implies that hole-doping strongly per­
turbs the non-magnetic ground state, while vacancy­
doping preserves the non-magnetic ground state.

Quantitatively. vacancy doped Y2 BaNiOs has shown

a mysterious response. Ramirez et al. (104] measured
specific heat or the vacancy-doped compounds (Ni2+-+ZI1 2+)
and found that the number of doping-induced spins
does not follow the \'alence Bond Solid state scenario:
the \'BS picture predicts the creation of two S=I/2
spins for each vacancy (see fig.35d), but the Zn-doped
Y:!Ba:'\iOs system exhibited one 5=1 spin for lll'O Zn
ions. To understand this phenomenon, Ramirez et 0/.
suggest a heuristic 'singlet-triplet moder, which as­
sumes t hat half of' he broken chains form a triplet 5= I
and the other half. a singlet 5=0. :\either the origin
of the couplings between the chain-end spins nor the
local structure of the doping-induced spins is clear al
the present Sl age.

To ill\-estigale the ground state properties and dy­
namics of spin systems. ttSR is a powerful technique
as introduced in the previous chapter. The folio\\'­
ing presents p5R results of the nominally pure/doped
Y:!Ba:\iOs . as well as their susceptibility data in low
magnetic fields. For our measurements, polycrystalline
specimens of nominally pure Y:!Ba:"iOs . Ca doped sys­
tems ((Y'_rC'ar )Ba:\i05 : x=4.5, 9.5, 14.9 and 30.59f]
and :\Ig doped systems [Y2Ba(~il_y:\lgy)Os: y=1.7
and 4.19f] were prepared at the University of Tokyo.
Superconducti\'ilY Laboratory. using a standard solid
state reaction described belo\\' [105]:

DiTusa fI 01 [10:1J measured resistl\it) (p). X-ray
absorption spe('troscopy (:'~AS). and inelastic neutron
scattering (:\15) of the Ca/Zn-doped systems, and found
the following feature:s:

a:3.7703(6) A

b=5.7760(11) A

c=11.3581(23) A

c

a}-b

Figure 38:
The crystal structure of Y2 BaNiOs . 4 x 2 x 1 unit cells are
shown. The chain djrection is the a~ax..is.

5.2 Haldane material Y,BaNi05

there have been discussions that high-Tc superconduc­
tivity may be realized when a spin-gap system is doped
with charge. charge doping to the Haldane system is
an interesting process from this point of view. Cnfor­
tunately, the Haldane material ;'o:E:\P does not allow
charge doping. But recently, a charge-dopable Haldane
compound (Y,Ba:\i05 ) has been discovered, which is
introduced in the next section.

One valuable feature of this material is that both
off-chain charge doping (y3+-;Ca3+) and on-chain va­
cancy doping (Ni'+ -;Zn3+, Mg3+) is possible [98, 104.
103], Since charge-doping to the Haldane ground state
is a unique feature, some previous measurements have
been aimed to clarify the behavior of the doped charge.

In Fig.38, we shm.... the crystal structure of the inor­
ganic Haldane material Y,Ba:--li05 [97J. The structure
is characterized by chains of compressed XiOs octa­
hedra, which are separated by non-magnetic y3+ and
BaH ions. The shortened Ni-O bonds along the chain
(a-axis) lead to a relatively large super-exchange in­
teraction J "" 285 - 340 K, as estimated from the
magnetic susceptibility [98, 99]. The magnitude of the
Haldane gap has been obtained as Eg - 100 K with
susceptibility [100, 101, 99J and inelastic neutron scat­
tering measurements [102, 103].

The ESR technique experimentally confirmed the Va­
lence Bond Solid picture of the Haldane ground state
[89,90]. In a Cu doped NENP. Hagiwara et of. [89] ob­
served the ESR.ignal from the ·three 5=1/2 spin clus­
ter', which corresponds to one Cu 2+ atomic moment
and the two 'chain-end 5=1/2 spins (see Fig.35d).
A similar experimenl confirmed the chain-end 5=1/2
spins with a non-magnetic ion (Zn. Cd and Hg) doping
to :\E:\P [90}.

Another ESR measurement observed a transition
within the triplet excited states [91. 93J. Date and
I~indo [91] proposed. from the sign of the single ion
anisotropy parameter D, that the excited state of :'\E:'\P
is a local excitation which runs quickly along the chain.

Eleelron spin resonance (ESR) [89,90.91,92.9:3]

As introduced in Chapter 1. JiSR is sensitive to di­
lute and/or :small static moments. In the measure­
ments of :\ E:\ P. there were no static fields observed
down TO 20 ml~. supporting the non-magnetic ground
state [94]. Similar measurements ha\'e been performed
on other Haldane materials. such as Ag\·P,S. [95].
T~I:\I\' [96] and :\1:\0 [96), and none of these mea­
surements have detected any static order down to the
milli-Keh'in regime.

As listed above. most of the experimental results on
NE,\iP supported (I) existence of the Haldane gap,
and (2) a singlet ground state described by the Valence
Bond Solid picture.

One interesting question regarding the Haldane ground
sl.ate is what happens LO the gap and the ground state.
when charge is doped to the Haldane system. Since

Muon spin relaxation (I'SR) [94.9.;]

The first report [75] presents two energy gaps at k = "
(E~Y "" l.l me\' and E~ "" 2.5 meV).

The work by Regnault et 01. [82J is very detailed:
the high energy-resolution measurements resolved the
lower energy gap (E~Y) to two gaps (E~ "" 1.05 meV
and E~ "" 1.23 meV); magnetic fields (up to 10 T)
shifted the gap energies, as expected for a triplet state;
a Lorentzian and/or square-root Lorentzian correlation
function was observed with the finite correlation length
(E,zy/d"" 8 and E,,/d "" 4). They concluded that the
observed gaps were well understood as the Haldane gap
of an anisotropic 5= 1 spin chain.

High-field magnetization [79. 80J

The magnetization of ;'o:E:--IP at 1.3 K was small and al­
most field independent up to a critical field H, - 9.5 T.
and above He. linearly increased. This phenomenon
was attributed to the crossover in the field between
the singlet ground state and one of the triplet excited
states. The Haldane gap (Eg "" 17 K) and the sin­
gle ion anisotropy (D "" 16 K) were obtained from the
critical field and its crystalline axis dependence.

eutl'on scattering measurenlents [75, 76, 81,82.
83]

Susceptibility [75, 76, 77, 78]

The temperature dependence of the magnetic suscepti­
bility (\) was well described by the thermal excitation
over an energy gap (\ "" exp(-Eg/kT); Eg "" 17 K).
Avenel et 01. [78] measured \ down to 0.3 mh: and
confirmed the absence of a magnetic order to the milli­
h~elvin regirne.

which were studied to test Haldane. conjecture in real Nuclear magnetic resonance (NMR) [84. 85. 86.
materials. 87]

The tempe-rat ure dependence of the proton T1 relax­

5.1.4 Expel'imental evidence for Haldane's con- ation ratp ":'a.:; aI50_\~'ell described by eX~ita:ion_s O\'er
jccture an energy gap. "" T, :x exp( - Eg/ kT) [80.86,8/]. Fu­

jiwara fl 01 [87] reported that the field dependence of
the gap (Eg ) agreed well with that of the gap observed
in the neutron scattering measurements [82]. Belo\\'
4 K. the T. relaxation rate took a maximum at around
the critical field (H, - 9.5 T). This is because the ex­
ternal field brought the first excited state to the zero­
energy. maximizing the spectral density responsible for
the T, relaxation of the proton nuclear spins [871. In
magnet ic fields belo\\' - 3 T, the field suppressed the T,
relaxation rate. In this regime l it has been found that
Zn doping to :'\ Ei'\ P enhances the T1 relaxation rate,
suggesting a contribution of doping induced unpaired
spins [88J.

The first material investigated to test Haldane's con­
jecture was a hexagonal ABX 3 -type material Cs:'\iCb.
\Vith inelastic neutron scattering measurements [72.
73, 74), an energy gap was observed above the :\eel
temperature 7;,,=4.9 K. The authors identified the ob­
served energy gap as the Haldane gap, but the existence
of 3D i\eel order made a clear conclusion difficult.

Another model material 'i(C,H8:\8),:"O,(CIO,)
(i\Ei\P) was reported by J. P. Renard et 01. in 1987
[75]. Since the absence of Neel order was reported down
to 1.2 K in the first paper [75], various measurements
have been performed on this compound, most of \vhich
looked for the Haldane gap
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NOIninally pure and the vacancy doped systems

For the pure and vacancy-doped systems, the relax­

ation rate (.A) at T :s. 10 K is temperature indepen­
dent (FigAl): this is a characteristic of paramagnetic
relaxation. As shown in FigA2a,b. we also performed
longitudinal field (LF) decoupling measurements in the
milli-l\:eh'in regimt:'. and proved the dynamic nature of
the relaxation. The LF measurements confirm the ab­
sence of a static order in the vacancy doped system.

Figure 41'
Temperature dependence or muon spin relaxation rate (,\).
Par the doped samples, the results from LP= LOO G mea­
surements are shown: for the nominally pure sample, the
data in higher LP's are shown as well. The solid lines (for
the doped systems) and the dashed lines (for the pure sys­
tern) are guides to the eyes

As shown in Fig,42c, we have analyzed the LF de­
pendence of I he relaxation rate .A using the TI for­
mula for dilute spin systems (eq.33). The resulting
Lorentzian field width (a) and field fluctuation rate (v)
are sho\\'n in Table 5. It wa'i suggested that vacancy­
doping results in fa;o;ler field fluctuations (v) and a
larger field width (a) than the nominally pure system
sho\\'s. Qualitatively. this result may be understood. if
muons detect the dipolar fields from unpaired spins in
the sample: as susceptibility has indicated, the number
of unpaired spins increases upon doping. Therefore,
the doped system should exhibit a larger field-width
(a) at muon loratioll, if the muons detect the di.polar
fields from the doping induced moments. If the II1ter­
actions between these unpaired spins are also dipolar
interactions, the field fluctuation rate (v) should in­
crease upon doping, as has been observed in the ~Ig

doped syst€"ms. A rnore quantitative discussion, which
leads to the estimates shown in Table 5, is given later .

LF100G

2 3 4

Time Lus]

regime. in order to obtain the appropriate temperature
and/or field dependence of the relaxation rate (>.).

0.2

08

1.0

~ 0.6

0.4

For the analvsis of the nominallv pure sample. we
fixed as {3 = 0.5·, namely, to the squ'are-root exponen­
tial function. The overall fit was good, as shown in
Fig.40a. In the ~Ig-doped systems, the I'SR spectra
do not exhibit the fast front-end (Fig.40b). suggesting
13 > 0.5. We fixed .8 to 0.72 (~lg 1.7%) and 0.77 (:'Ig
4.1%) which is the average of 13, obtained from a pre­
ceding analysis without constraints on {3. For the Ca­
doped systems at T > 6 K, we adopted 13=0.5. Below
6 K, we were able to obtain 13 and>. independently. It
Was fou nd that 13 of the Ca-doped systems approaches
1.5 _ 2 in the milli-Kelvin regime. In FigAI, relaxation
rates (>') for the LF=100 G measurements (and for the
pure sample, the results of higher LF measurements as
well) are shown, as a function of temperature.

Figure 40:
(a) I-lSR spectra of the nominaUy pure Y2Ba:\iO~. The
solid line is the fit with the square-root exponential func­
tion. (b) LF=lOO G I-JSR spectra are compared at
T:5,:loo mI<. The solid lines are the fit with the stretched
exponential functions.

5.2.2 J1Srr rneasurenlents

Pig. 40a shows the J-15R spectra of the non:ina!ly pure
(.x=y=O) system. There was slow relaxation 111 zero­
field (ZF. 2.8 K). but the relaxation did not disappear
in an external longitudinal field (LF=lOO G). This LF
measurement proves that the relaxation is in the fast
fluctuation regime: if the slow relaxation in zero-field
were due to a stalic random field distribution, it should
have been decoupled in a small LF-5 G (see section
3.4). In the nominally pure system. \\I'e have confirmed
the absence of static order down to 100 mI\..

The slow relaxation of the muon spin follows a square·
root exponential function (P.(tj",exp(-v'Il); solid lines
in Fig.40a). which is characteristic of dilute spin sys­
tems in a paramagnetic state (see section 3.2). As
discussed later. the slow T 1 relaxation is most likely
caused by native unpaired spins in the sample.

In Fig. 40b. we compare J1SR spectra from the pure.
charge doped (Ca: £=4.5 and 9.5o/c) and vacancy doped
pig: y=.tlClc) systems in the milli-Kelvin regime. In
the Ca doppd . .r = 9.5c.7c. sample, there is fast muon
spin relaxation. reflecting the spin-glass behavior in
the susceptibility. In the ~lg doped y = 4.19C sam­
ple, muon spin relaxation is even slower than in the
nominally pure system. which suggests an absence of
static order in tht' ~Ig doped systems. This point was
also confirmed with longitudinal field decoupling mea­
surements (Fig.42)

In order to obtain the muon spin relaxation rate
(i\). we analyzed the spectra with a phenomenological
stretched exponential function, exp(-(>.t)p), which de­
scribes paramagnetic relaxation with {3 = 0.5 - 1 (see
Chapter :3), as well as the slow fluctuation regime of
dilute spin systems (3 - I) and the dense spin systems
(13 - 2). One problem of this universal relaxation func­
tion is that it often shows correlations between i3 and
.A. when tht:' relaxation rate (.A) is small. Therefore, it
is safer to fix 3 for the analysis of the fast fluctuation

1510
Temper-oture [K]

~ 0.015

.e;, 0.010

~
:: 0.005

One possible reason for the different magnetic be­
haviors of the charge/vacancy doped systems may be
the existence/absence of an interaction across the dop­
ing site: although we do not know the local structure
of the doping-induced paramagnetic moments, the in­
teraction across a non-magnetic ~lg2+ ion is probably
negligible. Therefore, the broken chains of the vacancy
doped system are isolated from each other, leaving no
chance for magnetic order. In the charge doped system,

Figure 39:
'\lagnetic susceptibiljlies of (Y2_zCa.r)Ba(Nil_!l~[g!l)O~

(£=y=O. £=4.5, 9.5, 14.9. 30.5% and y= I.T. 4.1 '/oj.

5.2.1 Susceptibility measurements

In Fig. 39, we show the DC magnetic susceptibilities
of our specimens. The increase of susceptibility at low
temperatures indicates the creation of paramagnetic
moments; their numbers are related to the doping con­
centrations (x and y). The number of paramagnetic
moments created from doping is discussed later.

One significant difference between charge doping
and vacancy doping appeared as a spin-glass like be­
havior for the charge doped systems (x=9.5, 14.9% and
30.5%). From the cusp of the zero-field-cooling (ZFC)
susceptibilities, the glass temperatures (Tg ) were de­
termined as 2.5, 2.9 and 3.0 K for the x=9.5, 14.9 and
30.5 % systems, respectively. The spin-glass like be­
havior indicates that the doped hole destroy the non­
magnetic ground state.

The vacancy doped systems (y=1.7 and 4.1%) re­
main paramagnetic down to 2 K. As presented in the
next section, the absence of a magnetic order was con­
firmed to the milli-l'elvin regime.

Powder X-ray analysis of the samples did not detect on th: other hand. there s~ould. be ~.:!s~pe~e~~~:nge
an\' impurity pha;es The Ca and ~lg concentrations (x couphng (J') acro,s the dopll1g sIte. \1 -0 -. I (or
and y) were determined with the atomic light-absorption ~i:?+_~i3+-\'i:?+). as was the case 111 ~n analogous s~'s­
method. which \Va; commercially available (Robertson tem (Cu doped \E\P) [ 9]. The eXIstence of the 111­

~licrolit Laboratory, \'J, lJSA) teraction between the cham ~gments may allow the
unpaired spins to freeze at kT-J', if there is a strong
coupling within the broken chain segments. The fail­
ure of the simple '·85 picture to describe the number
of unpaired spins in the Zn-doped systems [104) seems
to support the existence of strong coupling within the
broken chains. To estimate the magnitude of j' is dif­
ficult; ifone uses J' in Cu doped :-IE, P ("'0.7-0.9 K),
and a<;sumes a scaling with the magnitude of Haldane
gap (Eg ). J' in our system falls on the order of a few
Kelvin. which is consistent with the cusp temperatures
of the Ca doped systems.
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Figure 45:
The same LF-pSR data Wilh Fig.43. The solid lines are the
fit with the hypothetical relaxation function (eq...l4) lO lhe
LF= toO, 200. 500. 1k and 2kG data.

('-0 I

last slow
Ilucl.llucl.

e/(t) = eDGKT(Jl.Ll..HLF,v)

xexp(-(,\t(1-j))3)

Figure 44:
HYPolhetical field dynamics which has slow fluclualions
randomly appearing in the quickly flucluating majority

(~) is almost independent of the Ca concentrations (J.'),
while the fraction parameter (I) reflects the concentra­
tions: a smaller Ca concentration results in a smaller
fraction parameter (I). indicating more unconventional
fluctuations (note that regular i\iarkoffian spin fluctu­
ations are described with 1 = 1). The indifference of
the Gaussian width (~) to the charge concentrations
suggests thaI the muon spin relaxation mechanism is
common to all the charge doped systems. but how fre-
quently the relaxation is caused (~ I) is determined
by the charge concentration.

One possible description of the relaxation mecha­
nism is thal the doped hole. which takes a localized
state with hopping (103]. occasionally comes close to
the muon site and induces muon spin relaxation. \\'hen
the charge is far away. the muon relaxation should be
small and dynamic. because the majority of the spins
on the chain may Slay in the non-magnetic ground
state.

(44) Phenomenologically. the magnetic beha\'ior of the
charge doped IIaldane malerial (Y'_rCar )Ba:,\i05 is

where CDGKT is the dynamical Gaussian Kubo-Toyabe \'ery similar to that of the I~agome-Iatticecompound
function (see seclion 3.1), which originates from the (SrCr,Gal2_'O,o). a geometrically frustraled antifer­
slow fluctuation time, and the stretched-exponential romagnel of Cr moments (5=3/2). The susceptibil­
part from fast fluctuation time. \Ve have analyzed our ily measurements of lhe Kagome-Iattice system [107.
Jl5R spectra with this hypothetical relaxation function: 108. l09] ha\'e revealed the existence of a small portion
Fig.45 shows the filS to the dala from the Ca doped of unpaired spins (- ·50/( of the lotal Cr ions for the
x = 9.5% sample. The overall longitudinal field de- : = 8 sample). which exhibit a spin-glass-like history
pendence IS deSCribed by mamly adJustmg the tlme- dependence belo\\" Tg ....... 3.5 I~. The unpaired moments
fraction parameter f""" 0 2 observed in the susceptibilities are probably caused by

Using the same hypothetical relaxation function (eq.44P-a substitution:> to the Cr sites, which are inevitable in
we have analyzed the spectra from other Ca-doped sys- lhis series of I\agome compounds [1091· The ZF-I'SR
terns (x=4.5, 14.9 and 30.5%). The fraction parame- spectrum of thE" :=8 I~agome material approaches a
ler (J) and the instantaneous Gaussian width (Ll) are Gaussian shape as T -> 0 [106], while LF-I'SR mea­
shown in Fig.46. It was found that the Gaussian width surements at 100 ml\. suggest fast field fluctuations

rate (v). For the corresponding Gaussian Kubo-Tovabe
function in the slow fluctuation regime, the zero--field
relaxalion rale (Ll) refleclS the Gaussian field widlh.
and the decoupling longiludinal field is comparable lo
thal width (HLF - Ll.h., see seclion 3.1). ;\0\\·, sup­
pose the local field is almost static during a certain
fraclion of time (0 < f 'S 1). and fasl fluclualing
otherwise (Fig.44). If the muon spin relaxation oc­
curs only during [he slow fluctuation time, a Gaussian
relaxation rate may be observed, but with a diluted
relaxation rate as ~ ---; 1 . .Q.. Even in this unconven­
tional situation, the decoupling field HLF' will remain
comparable to the instantaneous internal-field width
:;h., because the decoupling happens as the compe­
tition between the external longitudinal field H LF and
'he internal random fields Llh.. Therefore, in lhis
hypothetical situalion, the decoupling may happen at
much larger longitudinal fields than the zero-field re­
laxation rate suggests.

Taking into account the slow paramagnetic relax­
ation caused during the fast fluctuation time. the muon
spin relaxation due to this unconventional field fluctu­
ations may be expressed as [106J:

50mK LF=500G. 2kG (KT-th~or)'}

1.0 r~o-;=;=====~/===1
f fl.
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5.2.3 Discussion

Thi~ result is further ill\'estigated in the next section.

Unconventional dynanlics in the charge doped
systems

In the milJi-Kelvin regime of the charge doped sys­
tems, we observed a Gaussian relaxation which showed
much weaker LF' decoupling than the Gaussian Kubo­
Toyabe theory predicts. One idea to explain the un­
conventional Gaussian relaxation is to introduce dilu­
tion of the local field in a time-wise manner [106]. As
has been presented in Chapter 3. conventional Kubo­
Toyabe theory assumes that the local fields exist at all
times, fluctuating with a time independent fluctuation

(I) The weak LF dependence of the relaxalion sug­
gests persistent dynamics in the spin system, e,'en
lhough the temperalure (T =50 ml') is well be­
low the glaos temperature (TITg '" 0.02).

(2) There has been no lheories which allow the coex­
istence of the zero-field Gau.ssian deca,' and fast
Reid fluctuations. In the framework o~f the con­
ventional I\:ubo-Toyabe theory, fast fluctuation
induces either an exponential funclion (dense spin
system) or a square-root exponential function (di­
lute spin systern). but never a Gaussian decay
(see Chapter 3). -

Gaussian beha\'ior in the zero-field were due to almost
static Gaussian field distribution. the relaxation should
have been decoupled in a LF-200 G, while in facl, lhe
relaxation \\"as present up to LF=2 kG. There are two
uncol1\'entional behaviors presented in this result:

Figure 43:
LF-pSR spectra in the Ca doped r = 9.5% sample at
50 mh". The solid line on lhe zero-ReId (ZF) dala is the
fit with a dynamical Gau::>sian l\:ubo-Toyabe funclion. The
broken line is lhe I\ubo-Toyabe function in static case.

(oj

Sample Parameler Experiment ESlimale.a
Pure a (I'S ) 0.74(4) 0.3 - 3

v (~lHz) 72(12) 18 - t80
~Ig 1.7'7< a (liS-I) 2.0(2) 0.8 - 6

v (~IHz) 600( 100) 50 - 360

2 4 6 2 4 6 8
T,m~ ~s] T~me ~s]

10-' r--~----=-"':"

a see the discus:;ion later.
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Table 5: Results from the T1 relaxation analysis

Charge doped systems

) 10-3 "--~-~">"""'--''----'
..... 10' 103 105

Longitudinal Field [G]

• '1"'1,7% 50mK

In the Ca doped systems. a sharp increase of the re­
laxation rate (A) was observed as the temperature ap­
proached Tg from the paramagnetic side (Fig.4I). The
increase of the relaxation rate probably reflects the crit­
ical slowing down of the moments, as has been observed
typically in spin glass syslems [7). In the Ca doped
x = 4.5% sample. the temperature dependence of ).
suggests a glass temperature Tg ....... 1.5 1-\, which was
below the temperature of our SQUID magnetometer.

In order to investigate field fluctuations in the charge
doped system, we performed longitudinal field mea­
surements. The results are shown in Fig. 43. The zero­
field (ZF) speclrum exhibited a Gaussian decay, which
seemed to be the Gaussian Kubo-Toyabe function in
the slow fluctuation regime (see section 3.1). However,
lhe LF dependence of the relaxalion didn'l follow lhe
predictions of the Gaussian Kubo-Toyabe lheory. If lhe

Figure 42:
The LF-pSR spectra of (a) the nominally pure sample and
(b) the Mg doped y = I.7% doped system. The solid
lines are the Rt to the stretched exponential functions,
P,.lt) = exp(-(At)P) with (a) {3 = 0.5 and (b) {3 = 0.72.
(c) The relaxation rate (,x) as a function of the longitudinal
fields applied. The solid lines are the analysis with the T1

relaxation t.heory (eq.33).
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(46)

5.3 Summary

\\'e ha\'e ilwestigated charge/vacancy-doped Haldane
systems with magnetic susceptibility and pSR. The
nominally pure sample does not show magnetic order
down to lOO m1'\. supporting the singlet nature of the
Haldane ground state. In the vacancy-doped systems.
unpaired spins were created because of the doping. but
they remained paramagnetic down to T=50 mi\:. In
these two non-magnetic systems, muons are most likely
detecting th€' dipolar fields from the unpaired spins.

In the charge-doped Haldane compounds, the sus­
ceptibility exhibited a spin-glass like history depen­
dence below Tg= 1.5-3 I\:. However, p.SR has revealed
persistenl spin dynamics down to 50 m"~, which is well
below the glass temperature Tg . It was also found that
the spin fluctuations of the charge-doped systems in
the milli-Kelvin regime follow an unconventional, non­
Markoffian processes.

L'sing the Gaussian width ~~tO%' the estimated un­
paired spin concentration c = Co + 0.5 y (y is the ~Ig

concentration) and eq.26, the Lorentzian field widths
(a) were estimated as 9hown in Table 5. Although the
ambiguity frol11 the rnuon site is large, the experimental
data is within the range of the estimated magnitude.

[f the fluet uations of the unpaired spins are gov-
erned by their dipolar interactions, the fluctuation rate
(v) should scale wilh the Lorentzian width (a). The
ratio v/a \I·ill be the order of the ratio of the e1ec­
tron/muongyromagnetic [actors (v/a '" "h. x .jlOf3/2rr '"
60), where the faclOr .jlOf3 comes [rom the fact that
an electron moment detects the entire spin of other
electrons. and the factor 21T corrects the units (a in
rad/sec and v in Hz). The fluctuation rates estimated
as above are shown in Table 5. The experimental re-
sults again are in the same order of magnitudes with
these estimates

The above eSlimates of the field width (a) and the
fluctuation rale (v) in lhe nominally pure and ~Ig­

doped systems supports the scenario in which the muon
detects the dipolar fields of the unpaired spins in these
systems.

6U'CIO'Iro{A]-616J1S-'

6U 'CIO'Iro[8] _200j.LS""

6lF,CIO'Iro[C] -75.6J1S'
a}-b

ZF, 25(5) '(h )'''\' -.
(~tOO%) =:3 + 1 '. " ~ r,

(1) obtain the hypothetical Gaussian field width (~lOO7"JleaslirenH>nb For paramagnetic T1 relaxation. the
for the situation in which all the spin sites are secular contribution is :3/10 o[ the zero-field T, relax­
filled up with randomly oriented moments. In at ion ra1e (the 10/3-effecl [9, 101: see section A.2).
zero external field, this Gaussian width (~f%o7c.) Therf'fore. the hypothetical Gaussian width appropri­
is expressed as [6]: ate to lhe longitudinal field measurements (~~~o%) be-

comes:

Figure 48:
Possible muon sites in Y2Ba:-JiO~. The Gaussian widths
were calculated for these three sites, u.sing eq.45

Possible Muon sites in Y2BaNiOs

0'-

(45)

If an external field is applied to a paramagnetic spin
system, the electron moments undergo Larmor preces­
sion. Since the gyromagnetic ratio of muon and elec­
tron differ by two orders of magnitude, the precessing
electron spin component becomes invisible to a muon.
:\amely, only the secular part of the dipolar field con­
tributes to muon spin relaxation in longitudinal field

where, S is the size of the spins at each site,
,.h,) is the muon(electron) gyromagnetic ratio.
(h" == 91'B, where 9 is the 9-factor and I'B is the
electron Bohr magneton.)

(2) using eq.26, obtain the Lorentzian width (a) from
the hypothetical Gaussian width.

Since we do not know the muon site in Y2Ba~i05'

we assumed locations shown in FigA8. These sites as­
sumed are all - lA away from a oxygen ion, where a
muon usually resides in oxides [113, 114, 115,116, 117J.
We numerically performed the dipolar sum (eq.45), as­
suming that the g-factor is 2 for the doping induced
5=1 spins. The results (~f%o%) are shown in FigAS.

'520253035

o (: Cc dOP:' 1
• M9 CCP"9 j

'0 '520253035

dooirg ~%J

a 5

that muon~ are detecting the dipolar fields from the
unpaired spins (~ef" Table 5). In this section. a more
quantllau\,e dis("ussion is given.

In order to ~timate the numbers of unpaired spins.
we analyzed the paramagnetic region of the suscepti­
bilities with the Curie-Weiss law \(T) '" C/(T +T\\').
a model which as~umes that all the doping effect is a
creation of local mornents. The results are shown in
Fig.47.
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Paramagnetic fluctuations in the pure and Mg
doped systems

From the longitudinal field (LF) dependence of the
muon spin relaxation rate (A), it was shown that the
nominally pure and the vacancy doped systems stay
paramagnetic down to the milli-helvin regime (Fig.42).
The doping dependence of the Lorentzian width (a)
and the field fluctuation rate (v) qualitatively suggests

[95, 106, 110J. i\eutron scattering measurements of Fiaure 47:

the :=7.1 I'agom.ecompound [Ill} have als~ suggested The doping concelllration (I. y) dependence of (a) the Curie
persistent dynamiCs below the cusp temperature: a large const3m (C) and (b) the Weiss temperature (Tw).
fraction (- 80%) of the scattering intensity was found
to remain in the inelastic channel at T ITg ...... 0.5.

Theoretically, theS=l/2 Kagome-Iatticesystem may In the \"acancy doped systems. the ~lg concentra-
have a ground slale composed of many singlet pairs tion (y) dependence of the Curie constant (C) is con­
[112], as expressed by the resonating "alence bond (R\'B) sistent with the heuristic 'singlet-triplet' model. which
state. In this situation, the unpaired spins created by assumes that tu'o \l g2+ ions effectively create one 5=1
non-magnetic ion doping still have the ability to mi- spin (104J. In the charge doped systems. one Ca .ion
grate spatially, because lhe surrounding spins have a seems LO create '"'- 1 x 5=1 spin, or - 3 x 5=1/2 SpillS.
large number of combinations for their singlet pairings. Since susceptibility has no information about the lo­
In the charge doped Haldane system. the doped charge cal structure- of the unpaired spins. it is not possible
may also move, with the surrounding spins in the sin- to distinguish these two situations. Por simplicity. "'f'
glet state. Considering these similarities. the persistent assume hereafter that - I x 5= 1 effective spins are
dynamics below the spin-glass like cusp temperature, created for one Ca ion, and 0.5 x 5= I spins for one :\Ig
as well as the hardly decoupled Gaussian relaxation of ion.
jJSR spectra may be common signatures for migrating It is known that the paramagnetic moments of the
unpaired spins in singlet ground state materials. nominally pure Y::?Ba:"iOs are created by excess oxy-

gen, which works as a hole-dopant [105J. The Curie
constant of the nominally pure specimen corresponds
to the native charge concentration of Co - 0.6 at.%,
which has been estimated by extending the Ca concen­
tration dependence of the Curie constant (Fig.47a) to
the negative 1: side.

In order to estimated the Lorentzian field width
(a) generated from the unpaired spins, we utilized the
procedure de\'eloped for analysis of the dilute spin-glass
allo)'s [71:

Figure 46:
(a) The fraction parameter (f) and (b) the instantaneous
Gaussian width (6) obtained from the analysis using the
hypothetical relaxation function (eq.44).
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(2) The ground stat.e in finite magnetic field was ob­
tained. as sho\\"11 in Fig.50. The spin-Peierls phase
(SP) makes a first order transition to a magnetic
phase (:-1') al a critical field (h tl ). There is a
spin-flop pha'ie (SF) in the large j' region, but ex­
perimenlally Ihe SP~SF transition may be diffi·
cult to obseT\·e. because of the narrow parameter
range (8 Oll the l/ry-axis) as the condition.

(1) In zero-field. the ground state is either the :'\eel
state or spin-Peierls stale. depending on the mag­
nitude of the inter-chain interaction. The phase
houndary j' /1] = J( 1- d)/(I + d) is first order.
where j' = :P/rr'2J is a normalized inter-chain
interaction. 1] = TJ' /4rr'2 is a dimensionless spin­
lattice coupling parameter and d =a'2D/2;o'2.4.

Figure 50'
Theoretical ground stale pha.<:.e diagram in magnetic field

The 5pin-Peierlg phase makes a first order transition to a
magnetic phase (.\1"). Cile from Ref. [18]

For a dimerized Heisenberg chain. the coefficients take
the following \'alues

l'sing the phase variable B(.r). the :-component of a
spin is expressed as'

(51)kTsp '" c,J exp (-~)
cJ1]'

[e(x).p(£')] = io(x - x') (55)

Where .r is the position on the chain. O(x) is the phase
variable and p(x) is its momentum: e(x) and pix) sat·
isfy the canonical relation:

(54)

1i = Jdx{A(\e(x))' + Cp'(£) - Bsin e(x)

-Dcos2e(x) + ~u'}

which gives the spin Peierls transition temperature as

w' = w6 (I - 0.8 ~'~) (52)kT

Cross and Fisher's Tsp is higher than that from the
Hartree approximation (eg.51); the spin Peierls state
is preferred in a more quantum mechanical treatment.
This behavior is opposite to that of Neel temperature
which usually decreases with more quantum mechan­
ical treatments. The difference probably originates
from the classical nature of the Neel stat.e and the
quantum mechanical singlet nature of the spin Peierls I

ground state.
In 1980, Kakano and Fukuyama [125. 126) formu­

lated Cross and Fisher's approach using a phase vari­
able:

Since the Hartree approximation drops the exchange
interaction between two fermions, it may not adequately :\s shown ill eq.;)I. I he ~eel state [8(.r) = 0] and the
include guantum fluctuations. In fact, a guantum me· singlet state [e(l') = rr/2] are both expressed egually in
chanical treatment introduced below gives an enhanced this 'phase Hamiltonian' (eq.54). It has been shown
spin Peierls transition temperature. that lhis formalism gi\'es t,he same result as Cross and

Cross and Fisher [121] approximated the mapped Fisher's approach. bUI more easily and intuitively [125.
ferm.101l system With an exactly soluble model (Tomonaga12G]. Csing the phase Hamiltonian approach, t.he ef­
LuttlOger model [122, 123]), preserving. the physical fects of inter-chain interactions (J') and external mag­
features around the Fermi surface. ThiS approxima- netic field (H) h"'e been investigated [17. 18J. The
tiOIl, which was first introduced by Luther and Peschel results are summarized as follows:
[124], well describes the low temperature behavior of
the original fermion system, because that behavior is
determined by features around the Fermi surface. Since
the treatment after the approximation is exact. quan­
tum mechanical effects should be included correctly in
the results. Cross and Fisher obtained the phonon'fre­
quency above Tsp as:

the constants are Cl :::::: 0.5 I and c'!. :::::: 1.4. A softening of
phonons is predicted. as the result of fermion-phonon
coupling. From the temperature which gives a zero
phonon frequency. the spin Peierls transition tempera­
ture Tsp has been estimated as:

(50)

8J(i,i+ I)
J+(Ui+I -U;)8(u;+I_ U i) +.

J + ¥a-(U;-u;+tl (48)

J( I ± 0) { shortened link
stretched 11Ilk

o 0 ( ,coJ)...r = W o I-elf] In-=-
kT

J(i,i+ I)

(I) map the spin Hamiltonian to a fermion system
using the .Jordan- \Vigner transformation [i18]

(2) solve the fermion system , using various approxi­
mation techniques developed for fermion systems

(3) obtain the phonon features, with perturbation
treatments of the fermion-phonon coupling. which
arose from the spin-lattice coupling (the second
term of egA9)

where J(i, i+I) is the antiferromagnetic interaction be­
tween the spins on the i-th and the (i+ I)-th site, I,'
is the spring constant of the lattice, and Uj is the dis­
placement of the lattice point i. The first term of this
Hamiltonian describes the spin system and the second
term, the elastic energy of the lattice system. Under a
lattice deformation along the chain, the antiferromag­
netic coupling J(i. i+l) is expanded as

1i = L{JSi Si+1

+¥a-(Ui-Ui+JlSi,Si+1

+~(Ui - Ui+Jl')

where. the second term gives a spin-lattice coupling.
Analytical approaches to the spin Peierls problem

have been unsuccessful; one popular way to solve the
problem is as follo\\'s·

(49)

where A is a spin-lattice coupling constant and a is the
lattice spacing. The last equation holds for the lat­
tice dimerized state (displacement u) with 0 = Au/2a.
Using eq.48 the Hamiltonian (eq.47) is rewritten as·

(47)

J.&J

1i = LJ(i.i+I)S;.Si+1

: : : ; :

-----------...-..--------------
J+&J J+OJ J+OJ

J.&J

(b)

6 Spin-Peierls systemtt

Figure 49:
(a) An S= l/2 spin chain with a uniform antiferromagnetic
interaction J. (b) The lattice dimerized state below the Since step (2) involves the quantum mechanics of the
spin Peierls t.ransition temperature Tsp. spin system. this part is the most crucial to this the-

oretical approach; indeed, the spin-Peierls transition
A Hamiltonian of a one-dimensional spin chain which temperal lire strongly depends on this part.

allows lattice deformation can be expressed as' Bulaevskii [119] and Pytte [120] adopted the Hartree
approximation for step (2) and calculated the phonon
frequency (...;) above the spin Peierls transition temper­
ature. Their result is:

This chapter presents our IlSR results of the spin-Peierls
material CuGe03 and its Zn/Si doped compounds. In
the nominally pure system, the absence of static mo­
ments was confirmed down to 50 ml{, supporting the
non-magnetic nature of the spin-Peierls ground state.
In the Zn-doped systems (CuI_,Zn,)Ge03 (x=2, 4
and 8%) and a Si-doped system Cu(Gel_ySiy)03 (x =
2 %), static order was observed below the Neel tem­
peratures which have been reported previously. In the
Zn-doped systems, the characteristic magnitude of the
local field (6.) suggests that the size of the ordered mo­
ments takes a maximum at the Zn concentration which
gives the maximum Neel temperature.

The spin-Peierls transition, which was proposed for
an antiferromagnetic 5=1/2 spin chain [14, 15, 16], is
characterized by two features: (1) alternating defor­
mation of the lattice along the chain direction, and
(2) singlet pair formations of the two 5=1/2 spins
on the shortened link (Fig.49b). Although the lat­
tice dimerization (I) increases the elastic energy, the
transition may still be possible if the singlet pair for­
mation (2) compensates the energy increase. In order
to estimate the conditions for spin Peierls transition,
a quantuI11 mechanical treatment of the spin system is
necessary, because singlet-pair formations are involved
in the transition mechanism

ttUnpublished work under collaboration, K. Kojima et al. ~vhere, Wo i~ the bare phonon frequency, r/ = A'!.J/A-a'2
unpubli5hed. IS a dimenSionless spin-lattice coupling parameter and

6.1.1 Theories

6.1 Introduction
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6.1.2 Organic spin PeieI"ls nlaterials

The spin Peierls transition was observed experimen­
tally in the 1970'5. with organic materials such ~.

TTF-CuBDT, TTF-AuBDT (12 •. 128J and ~IDl-(TC:"Qb

[1291 These materials show a structural transition
at relatively high temperatures (TL=240 K for TTF­
CuBDT and 340 K for ~IDl-(TC;-;Qb), so that a one
dimensional chain structure is prepared. The 5=1/2
spins are held by a lone-pair on a molecule (TTF+ and
(TCNQ),).

In these materials J the spin Peierls transition was
identified with an exponential drop of susceptibility be­
low Tsp (11 K for TTF-CuBDT [12;, 128] and 18 K for
MEM-(TCNQh [129]). Contrary to an antiferromag­
netic Neel order I the drop of susceptibility is isotropic,
suggesting a spin singlet formation. In the following,
other experimental signatures of spin Peierls transition
are introduced.

Stl'uctural investigations [130, 131J

Since the spin Peierls transition involves a lattice de­
formation , lattice structures and phonons also reflect
the onset of the transition. X-rav and neutron scat­
tering measurements [130, 131J observed the superlat­
tice reflections below Tsp, supporting the dimerization
of the lattice. It was found, though, that the super­
lattice reflections do not necessarily appear along the
chain direction; in TTF-CuBDT , the lattice also de­
forms perpendicular to the chain at the same time as
the dimerization takes place [130).

Another finding ofthese scattering measurements is
the existence of soft phonons at the superlattice Bragg
point. These soft phonons \"'ere observed well above
Tsp. at temperatures close to the structural transi­
tion temperature TL : therefore, this mode is probably
a feature of the lattice system, not being induced by
the spin Peierls behavior. The existence of the soft
phonon mode probably helps the spin Peierls transi­
tion. because the lattice dimerization corresponds to
the freezing of this mode [132].

High-field measurements [133. 134. 135. 136. 13;.
138]

Since the first excited state of the spin Peierls phase is
the triplet state. one can close the spin Peierls energy
gap by applying a large magnetic field. Experimentally.
high-field magnetization measurements [13:3, 134. 135]
have detected this signature. At T < Tsp. the mag­
netization .~J(H) remained small up to a critical field
(Hc ). and above HCI it linearly incre~ed. This exper­
imental result indicates that one branch of the triplet
states crosses levels with the singlet ground state at
the critical field H,.

High-field magnetization measurements have pro­
vided the phase diagram of spin Peierls materials as

q 1.5 f ~ : , ~;\cr@]
- f . . .. "'."
~1Or ~ •. g • ~ ....:~

~ f CuGe03 ~
~a5 :~~~~D :~~ down

'TIF-CuBDT
'TIF-AuBDT
'MEM(TCNQl2

O.OL..-~~.......J~~~'-"'--'

0.0 0.5 1.0
T/Tsp(O)

Figure 51:
Phase diagram of spin Peierls systems. Temperature (T)

and magnetic field (H) are normalized with T3P(H = 0).

Cite from Ref. (l39].

shown in Fig.?> 1. It was found that the ph~e bound­
aries fall on uni\'ersal curves. if temperature (T) and
magnetic field (H) were normalized with Tsp(H =0).
which is the spin-Peierls transition temperature in zero­
field [13.;). From the hY5teresi5 of magnetization [1:35).
the phase boundary between the spin-Peierls phase (SP)
and the magnetic phase (:\r) was found to be first­
order. The phase boundary between the uniform phase
(l') and other phase5 (SP and M') is second order
This boundan' is well described with a theoretical CUf\'e
[140] obtained frolll Cro,;, and Fishers approach.

As a microscopic structure of the :\r- phase. a lo­
calized spin state (spin soliton) has been proposed the­
or€'lically [120J. If this localized spin state is realized.
the local field at a certain position of the crystalline
unit cell should have a relativelv broad distribution.
because the spin soliton is spac"ially inhomogeneous.
From an ilwe5tigation of the lH_ and 19F_~~[R line­
5hape [1:36J and ESR line-shift [13;]. the exi5tence of
spin solitol1s \\"as experimentally suggested in the :\,.
phase of TTF-.~uBDT.

Theoretically. the spin soliton is accompanied by
incommensurate lattice modulations; in the vicinitv of
a spin soliton. the lattice dimerization should be lif~ed.
Recently. h:iryukhin et al. performed high-resolution
X-ray diffraction measurements on TTF-CuBDT. and
found the incommensurate modulations of the lattice
appearing in Ihe ,I' phase (1:38J.

As introduced above. the spin Peierls transition can be
investigated with \·ariety of experimental techniques.
because the transition involves both the spin systems
and the lattice system. Therefore, when a new spin
Peierls material CuGe03 was discovered in 1993 [141J.
there was a surge of experiments on this material. The
next section introduces these experiments, along with
our J,SR results.

6.2 Spin-Peierls material CuGe03

The first spin Peierls materials were all organic. This
may be attributed to the characteristics of organic ma­
terials that (1) the lattice is soft and its deformation is
relatively easy and (2) the distance between the spin­
chains is relatively large, so that they are magnetically
well isolated from each other. As an morganlc mate­
rial, CuGe03 was the first material identified to exhibit
a spin Peierls transition [141J.

CuGe03

a=4.81 A J. =-O.OlJ,

b=8.47 A Jo=O.lJ,

c=2.94 A J, =10.4meV

Figure 52:
Crystal structure of CuGe03. In the c·ax.is direction, CuO:!
chains are present. The lattice parameters are cited from
Ref. [1-12]; the in-chain magnetic coupling parameters are
from Ref. (143].

The crystal structure ofCuGeOJ is shown in Fig.52.
A Cu'+ ion (5= 1/2) is surrounded by six 0'- ions,
which form a distorted CU06 octahedron. Cu~H ions
are bridged with four closer 0 2- ions , making a CU02
chain (ribbon) in the c-axis direction. These chains are

supportf"d with Ge4T ion:). which locate at the tetrahe-­
dral ;;itp :)urrounded by four 0 2- iOI\:). Reflectivity and
photopmission mpa:)urpments [144] have shown that the
p-d hybridizalion of the CuO:! chalO is small. Hence
the localized-moment picture of the Cu 2+ spins should
be good in CuGe03

In Ihe firsl report, Hase et 01. [141J presented (1)
an isotropic drop of susceptibilily at Tsp=14 h: and (2)
the field dependence of Tsp(H) '" H2, as signatures
of the spin Peierl;; transition in CuGeOJ. Since then.
there ha\'e been many experiments performed on this
material. and some of them report typical signatures
of spin Peierls transition, as reviewed in the following.

6.2,1 Previous lneasurmnents

Supel'lattice reflections [145, 146, 14;]

Superlattice reflections for lattice dimerization were
found at 11/2. k./ /2 (11, k, I all odd) with electron dift'rac­
tion (I~amilllura et al. [145]) and X-ray measurements
(Pouge! et 0/. [146]). Almost at the same time, Hirota
el at. confirmed with neutron scattering measurements
that el'en-number k's are also allowed [147J

Softening of the lattice [148, 149, 150. 15[, 1521

Poirier et 0/. invpstigated elastic constants with ultra­
sonic \'elocitv measurements. Thev observed a soft­
ening of the ·Iattice in the chain di;ection, starting at
- 3 h: _bOl'e Tsp [148]. This softening may be induced
by the spin Peierls transition.

In contrast. neutron scattering measurements [149]
have found a 50ft phonon mode perpendicular to the
chain (b-axis direction). In addition, X-ray diffraction
measurement:) [1.10] found a large contraction of the b­
axis lattice parameter at Tsp. :\'eutron scattering mea­
Surements under pre:)sure (151) showed a pronounced
decrease of the b-axi:) lattice parameter.

Chen fl 0/. obsPrved diffuse scattering below ...... 100 I~

with electron diffraction measurements (152). They
proposed a twi:)ting mode of the CU02 ribbons to ex­
plain their re:;ults.

Structural signature of SP...M· transition [15:3}

I~iryukhin d al. observed the SP--+,M' transition with
high-resolution X-ray measurements; the superlattice
Bragg reRection split at the SP - ~1· phase boundary.
indicating an incommensurate modulation of the lat­
tice dimerized state in the I\!' phase [153J.

Magnetic phase diagl'alll [139, 148J

Ha~e el 0/. performed magnetization measurements and
obtained the H-T phase diagram (Fig.51). They found
that the phase boundaries follow the universal curve of
the previous organic spin Peierls systems [139]. The
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In order to estimate the characteristic field distri­
bution "'id,h (.:>/-,.). we phenomenologically analyzed
thespec(ra with a stretched exponential function, PIJ{l) =
exp(-(-,t)J). Since the stretching power {3 represents
the shape of the field distribution, we assumed that it
is temperature indeppndent; we obtained {3 frolll the
lowest temperalure data and fixed it all through the
fit (3 = J..53. 1.61 and 2.00 for the x = 2,4 and 8 o/c
sample. respectively.) ~ear the Neel temperature. the
relaxation amplitude (<x ordered volume fraction) de­
creased as (he temperature go through the transition
temperature; this result suggests a distribution of T.~.

Figure 56:
Zero-field pSR speclra of (CUt_sZns )Ce03. Wilh Zn con­
cenlration r = "17< (a). -I 9((b) and 8 9( (c). The solid line~

are the phenomenological filS described in the text.

In Fig.'lil. zero-field I' R spectra of the Zn-doped com­
pound::) are shown Contrary to the pure system. Wf"

obsen'ed Gau~~ian-likemuon spin relaxation. suggest­
ing that SIalic local fields are induced by Zn doping.
In the ordered phase (T < T,,). we confirmed that the
spectra converges to the 1/3 of the full amplitude: the
existence of (he ·t/3-component· is an unambiguous
signature of static freezing of moments, as has been
explained in Chapter 3.

Zn-doped systenlS

12 ,....~__....;C:.::.uG:..:e:.::.0cl-,-,-_,.---.----,

Since a magnetic ordered phase is expected from
previous measurements, pSR is a good probe for fur­
ther investigations of the Zn/Si-doped systems. Pre­
viously. Tchernyshyov et al. [16.5J and Garda-,Iunoz
et al. [166J performed I'SR measurements on Zn 4'7c
samples and found a spin-glass-like muon spin relax­
ation. In the next section. more extensi\'e p5R stud­
ies of Zn/Si-doped systems [(Cu'_xZnr)(Ge,_ySiy)03:
J: =2,4,8 %, and y =2%J, are presented in addition
to the I'SR results from the nominally pure CuGe03'

6.2,3 I'SR measurements

For our I'SR measurements, polycrystalline pellets of
(Cul_xZnx)Ge03 (x =0,2,4 and 8 %) were prepared
at the Department of Applied Physics, the University
of Tokyo, using the solid state reactions, starting from
a stoichiometric mixture of CuO, GeO:? and, for the
Zn-doped compounds, ZnO [167J. Powder X-ray mea­
surements could not detect any impurity phase.

Figure 55'
J-lSR spectra of the nominally pure CuCe03. The inset is
longitudinal field decoupling measurements to investigate
field fluctuations. The solid lines are fits with square-rool
exponential function, which is appropriate for paramagnetic
dilute spin systems (see section 3.2 in Chapter 3).

Nominally pure CuGe03

In Fig.55. I'SR spectra of the nominally pure system
are shown. There was slow relaxation observed below
T - 3 I" but, as shown by the longitudinal field (LF)
measurements in the inset. the relaxation is in the fast
fluctuation regime; in the LF measurements. the relax­
ation "'as present up to LF- 200 G, while the zero-field
relaxation rate corresponds to 6H ..... 6 G, if it were
caused by static field distribution. (See section 3.4 for
I'SR spectroscopic technique.) Our I'SR measurements
of the nominally pure CuGe03 confirmed the absence
of static order down to 50 m1\.

S 6 7 a 910 [I

TEMPERA11JR.E (K)

Figure 54:
H - T phase diagram of Cu(Gel_ySiy)03 (y=O.T%). Cite
from Ref. [l64J.

Ha:,f' et al measured magnetic susceptibility of the
Zn-doped compounds (Cul_rZn,)Ge03. and found thai
(1) the spin Peierls transition disappears at .r -... 2 9(
and (2) a new cusp appears in the Zn concentration

range of 2 ~ J: ~ 8 '7c [158J. The cusp temperalure
takes a maximum at I. -... 4 9( . .-\. magnetic phase dia­
gram W35 obtained as shown in Fig.53.

Oserolf fl al. measured the specific heat (Cp ) of
Zn. :\i and ,In-doped CuGe03 and found a peak at
the cusp temperature [159). Since a peak in the spe­
cific heat should be absent for the spin-glass transition
[160J. but present for Neel order, they proposed a :\eel
ordered ground state for the doped materials.

Recent neutron scattering measurements of single
crystalline (CuI_,Zn,)Ge03 (J: = 3.4 %) showed the
existence of antiferromagnetic Bragg reflections [161};
this result directlv indicates the Neel order. The size of
the ordered mom"ents was obtained as ..... 0.2 JiB, which
is less t han half of what \\o'as observed in a ?\eel ordered
spin chain (0,491'8 for h:CuF3 [162])

Si-doped systems Cu(Gel_ySiy)OJ were investigated
by Renard ft al. with susceptibility and '3Cu-:'I~IR

measurements [16:3]. The spin Peierls transition disap­
peared at Si concentration y ....... 1 % and a l\eel ground

state appeared at 0.5 ~ y ~ 5 %. The phase dia­
gram for the Si-doped compounds is similar to that of
the Zn-doped systems (Fig.53). with the 7:,-maximum
concentration shifted from .x = 4% to y = 2% for the
Si doping.

Poirier fl ai. measured elastic constants in high
magnetic fields and obtained an H - T phase diagram
for a Si O.T'7c doped system [164]. They found that the
o,'erall structure of the H -T phase diagram (Fig.54)
was similar to the general phase diagram of spin Peierls
systems (Fig.51). except that the spin Peierls phase
(SP) is split to a SP-phase and a :\eel ordered phase
(AF).

6.2.2 on-magnetic ion doping

As shown above, most of the previous measurements
of CuGe03 support the identification of a spin Peierls
transition at Tsp ::::::: 14 K.

H - T phase diagram has also been reported from ul­
trasonic measurements [148J.

15\ '
g [,-,\ CUI_XZnxGe03

fO~f~"p"

E5[ ....
~ '_;l.Q .,-,__

0 1 '.'

0.00 0.05 0.10
x

Figure 53:
Zn-concentration (x) verses Lemperature (T) phase diagram

of (Cul_rZnr)GeO,. Cite from Ref. [158J. The spin-glass
phase (SG) was later proposed to be a ~Mel ordered phase.

One interesting feature ofCuGe03 is that non-magnetic
ion doping on the chain (Cu'+ -.Zn'+) and out of the
chain (GeH --+SiH ) is possible. It has been shown that
these two kinds of doping lead to a ~eel ordered ground
SLate.

Spin Peieds gap [143, 154J

Spin relaxation measurements [155, 156, 15i]

Oseroff et aJ. measured the EPR signal from Cu 2+
ions, and found a decrease of signal intensity below Tsp
[155]. Brill et af. performed high-field ESR measure­
ments and identified singlet-triplet and triplet-triplet
transitions [156J. ltoh et af. performed 63,65 Cu_:'I'IR
and NQR measurements [157], and found a drop of the
63Cu nuclear Tt relaxation rate below Tsp.

:\"ishi et at. observed the spin Peierls energy gap with
inelastic neutron scattering measurements [143]. From
the dispersion curve of the triplet excited state. the
in-chain (Je ) and the inter-chain (J. and Jb) mag­
netic coupling parameters were also obtained (shown
in Fig.52). Fujita et oJ. performed neutron scattering
measurements in magnetic fields up to 6 T (1541. They
found the excited state split into three branches, indi­
cating its triplet nature.
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Absence of precession in the Zn-doped samples

F'igure 60:
Temperature dependence of the precession frequency (f)
and the relaxalion rate (.J.). The dashed line is a power­
law fit described in the text. The inset is the ratio f / U.
which was found to be temperature independent.

the relaxation (the t1md term of eq.59) is caused b, a
distributed local fif'ld which reflecb the moment size.

A power-law fit ('" (T,,_T)3) to the frequency (f)
and the relaxation rate (J.) found T." =5.02(2) h: and
3 = 0.24(2). The exponent (3) is consistent with that
of the ant iferromagnetic Bragg peak intensity obsen'ed
in (Cul_rZnr)Ge03 [16l).

6.2.4 Discussion

Cu(Ge,..,S',)OJ (y~2%)

1.2
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~ 0.8
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\\'e analyzed the spectra with the functional form:

Figure 59:
(a) Zero-field pSR spectra of the Si 2% doped crystal. and
(b) the same spectra with longer time range. The solid lines
are the fit with the function described in the text (eq.59).
The line drawn on the 5.5 K data is a fit with Gaussian
Kubo-Toy-abe function from nuclear dipolar fields.

In the Si-doped system, antiferromagnetic order was
P~(t) clearly exhibited ali the spontaneous muon precession

A I / 3 + A~f:, exp(-J.°"'t)cos(2;rIt + 0) (Fig.59). In the Zn-doped systems, :\eel order was nOI

+.4~i';x exp( -~t) (59) ~\~:r~~I;~:~t~~I\;~ln:~i~~e~~i:3~::n;~~~:n~~~~i:.~~;\·a~~
the decoupling beha\'iors in longitudinal-fields (Fig.58).

with -4. 1/ 3 + .4~j; + .-\;i';x = 1 The absence of muon spin precession suggests that our
Zn-doped samplE:' has more randomness than the Si­

The first term of eq.59 corresponds to the '1/3-componentdoped crystal
in polycrystalline measurements; in a single crystal. the One apparent randomness of the Zn-doped samples
direction of the local field depends on the crystal ori- appeared as the distribution of the :'\eel temperatures
entation (see Fig.I5 in Chapter 3), so that the muon (Fig.57). The spread of T". which probably originates
spin component which does not show a precession could from inhomogeneity of the sample, may have smeared
be any amplitude (A 1/ 3 == cos:? f) defined in Fig.L5 of out the j1SR spectral structures, as discussed in the
Chapter 3). The time-dependent part of the muon spin following.
polarization seems to have two sub-components: one \\'e may suppose that the spread of T'J was caused
precession signal (the second term of eq.59) and relax- by an inhomogeneity of the Zn concentration (x). Us­
aLion (the third term). ing the J:-T phase diagram shown in Fig.53, the distri-

In Fig.60, we show the precession frequency (I) and bUlion of the :\eel temperatures (ar.,,) may be mapped
t.he relaxation rate (~) as a function of temperature. It to a fluctuation of the Zn concentrations. The result
Was found that relaxation rate (~) scales with the pre- yields .II - 0.5. 1 and 0.5 % for the I = 2,4 and 8 o/c
cession frequency (I), as shown in the inset of Fig.60. systems. respectively. These variations of the Zn con­
Since the frequency (I) is proportional to the size of centrations may be mapped to t.he spread of the field­
t.he ordered moments, this scaling result indicates that width ~ using the inset of Fig.57; the result becomes

Figure 58:
LF decoupling measurements of the Zn 49( sample at
50 mh:. The solid lines are the Gaussian Kubo--Toyabe func­
tion (eq.19 in ..ection 3.t).

Si-doped system

Recent technical de\'elopment at TRIC~[Fmade it pos­
sible to measure small specimens, such as - .) mm x
5 mm single crystal. \\"e measured such single crys­
tals of Cu(Get_ySiy)03 (y = 2 'It), using the newly
de\"eloped 'Iow background apparatus', which has an
additional particle CQunter (veto-counter) on the beam
path. behind the sample. If a muon misses the sample
and hit::. the veto-counter. it makes a rejection signal so
that this e\"ellt is thrown away. This way, background­
free measurements of small crystals has become possi­
ble.

.-\ single crystal ofSi-doped system Cu(Gel_ySiy)03
(y = 2 9() was synthesized at Laboratoire de Chimie
des Solides. Cni\'ersite Paris-Sud (Orsay, France), us­
ing the floating zone method. A single crystalline rod
(0'" 3 111111; long-axis = c-axis) was cleaved to a thick­
ness of '" 1 111m and tiled , so that the surface area
across the muon beam becomes large. \Ve llsed three
such sliced pieces for our measurements.

III Fig.59. J.lSR spectra of the Si 2% doped system
are shown. A spontaneous muon spin precession was
observed. indicating the l\eel order of the moments.

(Cu,_.Zn.)GeOJ (x~4%)

iled the characteristics of static relaxation. namely.

time Independent muon spin polarization at t ~ 3/~
and the decoupling field comparable to the field dis­
tribution \\·idth (J.h.). The solid lines in Fig.58 are
static Gaussian Kubo-Toyabe function (eq.19), using
the field-width parameter (J.) obtained from the stretched
exponential fit shown in Fig.56b. In small LF's, the
Gaussian h: ubo-Tovabe function described the recov­
ery at long times reiatively well; the deviation at higher
LF's may suggest that there exists a larger local field
component than true Gaussian distribution assumes.

Figure 5T;
Temperature dependence of (a) the static field width (6.)

and (b) the paramagnetic fraction (fpa.r.l.)' The inset of
(a) is Zn concentration (x) dependence of the saturated

relaxation rate u(T -t 0). The arrows are placed at the
average Neel temperatures 1'~. The dashed curves in (b)
are Gaussian analysis of the distribution in T;~.

p"(t)

= Ipm + (1- I pm){l/3 + 2/3exp(-(J.t)3)j

(58)

• 1.0 (b) Zn 8" Z" 4"
_1 0.8 ?:,-...;,it"'-o-- ..... ---..

06 ~!,;': Zn 0, (6T,)

.:; 0.4 .::: pi z" 3 Z4(88)K

~o 0,2 P ,0 ;~ ;:;~~:~~~,f •
0. 0.0O~~--'w4--,6:--=-8-..,.,10

Temperature (K]

In Fig.58, results of longitudinal field (LF) decou­
pIing measurements are shown. The spectra exhib-

\Ve introducoo a paramagnetic volume fraction (!para).
and analyzed the spectra with the functional form of:

where the first term represents the muons which land
in the paramagnetic volume fraction and the second
term, in the ordered fraction. The fits are shown in
Fig.56 as the solid lines.

In Fig.57, we show the field width (~) and the para­
magnetic volume fraction (!para) as a function of tem­
perature. The field width (~) saturates at low temper­
atures, being consistent with the static order. In the
inset of Fig.57a, the saturation magnitude of the field
width [~(T -+ O)J are plotted as a function of the Zn
concentration (x). It was found that ~(T-+O) mimics
the Zn concentration (x) dependence of TN (Fig.53).

The temperature dependence of the paramagnetic
fraction (!para) suggests a distribution of Neel temper­
atures; with an assumption of Gaussian distribution to
T;-.; ('" eXp((TN-t;,,)'/2aT~)),the average Neel tem­
perature t"J and t.he spread 6T:'\J have been deduced as
shown in Fig.57b.
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Y:80NiO, Co-dopedCuCeO,
Zn-doped

2-leg
loader

singlet ground state materials
10'

"§ 10-'

~ 10-
J

..
C:::

lO-'lO_. 10-' 10-J 10-' 10°

Low temp Curie const. eU [emu Klmol]

f~t fluctuation regime But. when '"acancy and/or
charge i~ dopro . t he response to these perturbal ions
seerns to reflrel the rharacter of the indi\'idual Splll
systellb, For example. with a small amount of \'a­
cann' introduced to the chain. the spin Peierls mate­
rial (Cul_,Zn,)(;e03 exhibited bulk :\eel order. while
the Haldane material Y2Ba(:\il_y~lgy)05 preserved
the singlet ground state. The contrasting responsf'
to the \'acancy doplllg may reflect the difference in
the ground state structures; it seems that the ground
state constituent of isolated singlet pairs are unstable
against vacancy doping. To test this hypothesis. JlSR
in\'estigations of the Zn-doped 2-leg ladder materials
Sr(Cul_rZnrb03 is underway.

The experimental results presented in this thesis
may be summarized in the next figure:

Figure 62:
~Iuon spin relaxation rate in the ground stale A(T -+0). as a
function of low temperature Cune conslant CLT

. The open
symbols correl:<pond to relaxation in fast fluctuation regime:
the closed symbob. to the static relaxation. The symbol~

with a cro~::. in~ide indicales unconventionally dynamiC re­
laxation. The d&hed lines are the estimale of the para­
magnetic relaxation rate due to doping induced unpaired
momenl~. ($oee the second subsection of section 5.2.3,)

puresystem

In this thesis work. I have presented pSR investigations
of several many-body singlet ground slale materials.
and studied their response to vacanc)' /charge doping.
Since the spin singlet is a most apparent quantum me­
chanical state of a spin system, this thesis work was
intended to detect how quantum mechanics are real­
ized in macroscopic spin systems. I also presented how
quantum mechanical ground states are destroyed upon
the perturbations due to doping.

The spin ladder materials Srn- 1Cun+102n, which
alternate between a classical and quantum mechan­
ical ground state were presented first. The experi­
mental results supported the theoretical predictions
about the ground state structures; the spin-gapped.
non-magnetic ground state for the 2-leg ladder system,
and a gap-less, ordered ground state for the 3-leg sys­
tem.

The Haldane material Y2 BaNi Os was confirmed to
take the non-magnetic ground state. \Vith the ~'I'lg dop­
ing to the Cu site, this ground state was found to be
stable against the vacancy doping on the spin chain. If
positive charge is introduced to the chain, though. the
non-magnetic ground state was strongly perturbed; on
a maC1'OSCOplC time scale, the system exhibited a spin­
glass like signature. such as history dependent suscep­
tibilities. On the other hand, on a mic1'Oscopic time
scale. however. the spins kept fluctuating down to milli­
Kelvin regime in a unconventional way. If one calls a
fluctuating spin ground state a 'spin liquid'. the charge
doped Haldane system may be called as a 'viscous' spin
liquid

The spin Peierls material CuGe03 exhibited a non­
magnetic ground state. But, with a small amount
of non-magnetic perturbation, a classical ground state
was induced to appear: well defined :\"eel order was
confirmed with a spontaneous muon spin precession in
a Si-doped single crystal.

The experimental results presented in this thesis
may be summarized as in the next table:

7 Concluding remarks

Table 6: The ground state of spin systems

In all of the singlet ground state materials investigated.
the non-magnetic ground state was realized in the pure
systems. and it induced muon spin relaxation in the

6T..fT.

0.14

o
Zn 4~

Si 2%

sirnuloteo }.LSR spectrum

S; 2% (<<pt.)

-.,/ Zn 4%.J

05 L...~-'-'-~""""""~~~"::'::-~-:'.
0.0 04 0.6

Time [I's]

~09

~O,8

6.3 Summary

We have presented with /lSR that the Zn/Si-doped
CuGe03 exhibits static order. In the Si-doped Cu(Gel_ySiy)03
cryslal (y=2'7c). 2\eel order "·as clearly observed with
spontaneous muon :spin precession. The critical expo-
nent (3) of the order parameter was found to be the
same with lhe previously-reported ,ralue for a Zn-doped
crystal. suggesl ing a uni"ersal ordering mechanism be-
tween the Si and Zn doping

In the /lSR measurements of the Zn-doped poly­
cr\"stalline pellets. \'eel order was not clear, probably
d~e to a macroscopic sample inhomogeneity. From the
static muon spin relaxation rate, the size of the ordered
moments were proposed to mimic the Zn concentration
dependence of the ~eel temperatures.

(61) is partly attributed to trivial dilution of moments due
to the Zn substitutions; even if the size of ordered mo­
ments doesn't change upon Zn doping, the muon relax­
ation rate should decrease as j,(x) - 1;.0(1- x), simply
because of the decrease in the number of spins. Still.
the experimental result suggests more pronounced de­
crease: the relaxation rate decreased by - 20 '7c [j,(T->
0) ....... 5 ~ 4 j.J.S-I] in the change of Zn concentration
x:=:4 --+ 8 9(. This result suggests that the ordered
moments shrinks in the Zn over-doped regime.

(60)

p"(t)
A

'
/ 3 + A~i~ exp(-(1;.0"'+7rJf)t)cos(2,,!t + ¢)

+.4,73' exp(-LS.t)

p"(t)

1
00 100 1 (f-fl' 1 ,~_s,'

df d~ --e-u;r--e-~

o 0 .j2;Jf .j2;~

x p~d"'(t; f,~) x (normalizing factor)

Doping dependence of the size of Oloment

In the discussion above. the absence of muon spin pre­
cession in the Zn doped system was attributed to the
macroscopic sample inhomogeneity. This discussion. at
the same time. expects a muon spin relaxation in the
Zn doped system with its rate mostly determined by
the average relaxation rate Li. Contrary to the preces­
sion, this relaxation rate is robust to the sample inho­
mogeneity, as shown in Fig.61. Since in the 5i-doped
crvstal the relaxation rate 1:1 was found to be propor­
ti~nal to the size of moments (Fig.60). the relaxation
rates measured in the Zn-doped samples should also
reflect the average size of the ordered moments.

As shown in the inset of Fig.57, the saturated relax­
ation rate [j,(T-> O)J takes a maximum at the optimum
doping concentration. The increase of j,(T ->0) in the
Zn 'under-doped' regime indicates a creation of static
moments upon doping. being consistent '\'ith the sup­
pression of Tsp and the enhancement of TN (Fig.53)
The decrease of j,(T ->0) in the Zn 'over-doped· regime

where the precession suffers extra damping as ..lose -+
j,0'C + "Jf, due to the distribution of the frequencies

In Fig.61, we show a simulated JlSR spectrum for
the Zn 4% doped system (JIlf :::: ~/j, = 0.2). ob­
tained from a numerical integration of eq.60. The pre­
cession became less ob"ious than the Si-doped crystal;
this result implies that the macroscopic sample inho­
mogeneity may be one of the reasons for the absence
of muon spin precession in the Zn-doped systems

The effects of more microscopic randomness, such
as substitutions to the spin site with the non-magnetic
Zn ions, are not clear at the present stage.

where. we assumed the ideal muon relaxation p~deal(t; f.~)

to be the relaxation observed in the Si 2% single crystal

(eq.59). In the small inhomogeneity limit (JII f, M/1;. « Figure 61:

I), the integral is approximately performed as: A simulated IJSR spectra for the Zn 4% system ~[uon spin

precession in our Zn-doped samples should be suppressed
because of the trivial sample inhomogeneity See the text
for the simulation procedure.

~/~ = 0.16.0.2 and 0.04 for the x = 2.4 and 8 '7c
samples. respectively. The above-mentioned spreads
are all Gaussian standard deviation.

The JlSR spectrum wIth the spread of internal fields
can be obtained from a convolutlon:
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One interesting question is why the pure CuGe03
and the 2-leg ladder system SrCu,03 doesn't fall in the
dashed-line region. There may be two explanations:
(I) the nati"e unpaired spins are already correlated
and their fluctuation rate (v) becomes slow, and (2)
muon itself works as an impurity to the system. and
creates unpaired spins around it; namely, the dipolar
field width (a) at the muon site becomes larger than
that from the native unpaired spins observed in sus­
ceptibility. In the 2-leg ladder system, the enhanced
dipolar field widths (a) estimated from the longitudi­
nal field measurements (Table 4 in Chapter 4) seem
to suggest a possibility of the latter case, namely, a
muon-impurity effect.

Among all the results presented in this thesis, the
most interesting one is the unconventional spin dynam­
ics of the charge doped Haldane system. Since this
problem involves two degrees of freedom, namely, the
'spin' and the 'charge', theoretical understanding may
be challenging. But this system should contain inter­
esting dynamical features inside.
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Figure 64:
An electron moment and a mllon spin in an external mag­
netic field (flo). If the Larmor precession of the electron
is fast. muon detects only the .::-component of the electron
spin S,:;.

where. ~II is the Larmor precession frequency orthe nu­
clear spin (muon). H;.(t) (a = x. y) is the x, y-componenl
of the fluctuating local fields at the probe spin site and
H; ~ H~ ± ;H~. The bracket < ... > denotes the en­
semble average. If the muon-electron interaction is the
dipolar field:,. the local field at the muon site becomes:

where T') i:, the distance between the muon and the
j-th electron and I'j is the unit vector parallel to the
distancf>.

To write H;7(t), it is convenient to define r; ==
I'J ± il'j, where. rj (a = .r.y) is the J:,y-component of
the unit "ector ".J. The local fields are expressed as:

(70)

e-i"H.ot/h(7iD}e+i"H.ot/~

e-il<,'/h (~DijSiSj) e+il<"/h

L Dij(e-i"H.ot/hSje+l"Hor/1'I)

ij

x (e-j1-lot/hSje+iH.ot/~)

L OijSi.RSj:R

D1jSjS j

= 1'~i~13{S,.5j-3(5i.i'ij)(Sj.r,j)} (69)

and D jj represents the tensor for the dipolar interac­
tion, namely,

where, T'ij = Tj - Tj is the distance between the i-th
and the j-th electrons and i'ij = "ij/lrijl is the unit
vector parallel to the distance.

It is easily shown that the fluctuation rate (1/) of the
electron moments doesn 't depend on the external field:
if one writes the Hamiltonian (eq.68) in the rotating
reference frame (RRF) for the electrons. one can elim­
inate the external field. while the dipolar interaction is
expressed as:

Til
-' = (73)!J:.} e-iW_'dt < W(O)W(t) + HY(O)HY(t) >
2 IJ IJ J.I IJ L"sinu the rotating reference frame (RRF) for the

-00 0 b,}= electrons. the electron spin correlations < 5;(0)5dt) >f e-'W-'dt < H:(O)H;(t) + H;(O)H:(I) >(a. b = ±.:) are expressed as:

-= (71) <5;(0)5t(t» e±,w"<5;R(0)5tR(I»

where 11 0 is the first term of the Hamiltonian (eq.68)
and SI.R the RRF representation of the spin S" This
result indicates that the dipolar interaction between
the electrons (namely the associated fluctuation rate
v) doesn't change in RRF, because the interacting two
spins Sj and S, have the same gyromagnetic ratio, and
conduct coherent precession in the external field H a.

To the probe nuclear spin. the Larmor precession of
the electron moment in a reasonably large external field H;
He is so fast that its xy components becomes invisible
(Fig.64). In this limit, the probe spin detects only the
:-component of the electron moments, which changes
its length with the dipolar fluctuation rate (v). In this
situation. the T, relaxation rate of the probe spin may
be reduced by - 1/3 from that in the zero-field case,
because the average size of the .:-component squared
is 1/3 of the full spin: < (5')' >= 1/35'. As shown
below, the precise factor is 3/10.

Generally, the T1 relaxation rate of a probe nuclear
spin is expressed as [34J:

!
(66)RIO> = 10>

RUR-tRIO>

exp(- L i8j5~j)10>

exp(-2;;i L 5nltwist>
):-r

{
+Itwist> 5: integer. (67)
-Itwist> 5: half odd Integer

njtwist>

ThiS result does not necessarily mean that the sys­
tem is gapless. because the twisted state Jtwist> may
possibly contain much of the ground state, and the 6£
may not estimate the energy of the excited states. Only
after one proves that the twisted state Itwist> is or­
thogonal to the ground state 10>. can one say that the
system does not have a gap. For the half-add-integer
spin system. the proof is as follows.

First, one defines a unitary operator 7(., which is
a combination of space inversion and ii-rotation about
the y-axis in the spin space:

Since the ground state is unique, and the Heisenberg
HamilLOnian is invariant for space inversion and rota­
tion in the spin space. the ground state is transformed
to itself:

A.2 The 10/3 effect [9. 10]

The factor exp( -2;;i I:5j) rotates the (21' + I) spins
in the twist by 2;;. In the case of half-odd-integer
spins, this factor is -1 (= (_lf~r+l), and the twisted
state Itwist> is orthogonal to the ground state 10>
«Oltwist> = <OIR-IRltwist> = -<Oltwist».

For the integer spins. the above argument says noth­
ing about the o\·erlap <twistIO>. and hence. the Lieb­
Shultz-~Ialtis theorem does not exclude the existence
of the Haldane gap,

On the other hand, the twisted state is transformed as:

This section considers nuclear spin relaxation in a para­
magnetic localized spin system, with the interaction
between the moments described by the dipolar fields.

\\'e assume the Hamiltonian of the spin system to

where. Ho is the external magnetic field applied in the
.:-direction. 51 is the spin of the i-th localized electron

6£ <twistI1lItwist> - <011110>

<0!(lr ' 11U -11)10>

~J)t. <01 {(e'; - 1)5! 5)-+1 + h.c.} 10>

~J(cos.":. - I) ~ <015! 5)-+1 + h.c.IO>
2 l' )~r

O(~)O(,.)

0(;)

A Appendix

Itwist> = UIO> (62)

The low-lying state is mathematically expressed as:

Figure 63:
A schematic view of the twisting operation.

where

A.l Extended Lieb-Shultz-Mattis The-
orem [8]

This theorem claims that there is no gap between the
ground state and the excited states, if the ground state
of the one-dimensional Heisenberg model is unique and
the the spin is half-odd-integer. The idea of the follow­
ing proof is (I) to make a state with an energy that
approaches the ground state energy as the lattice size
L .... 00, and then (2) to confirms that this state is
orthogonal to the ground state [8].

The underlying spin system is a one-dimensional
Heisenberg model, with an even number of spins 2L
and a cyclic boundary condition (5_L == 5Ll. A 101'­
lying state Itwist> is prepared by introducing a 21i
twist over an odd number of spins (2r+ l) in the ground
state 10>, as shown in Fig.63.

The energy increase of the twisted state measured from
the ground state is

Hence. by selecting the twist length r = L - I, the
energy of the twisted state (6£) becomes infinitesimal
small as L .... x.
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Figure 66:
Beha\'ior of the Gaussian h: ubo-Toyabe function with a
static local field Ho. The dashed lines are the envelope
for the damped oscillation in the large 1-/0 limit.
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where the integral about H 0 is taken over the sam­
ple geometry. In a polycrystalline sample (IHol = Ho.
isotropic) , the integral about H ° is analytically per­
formed, yielding the muon relaxation as:

(90)

Here, the integral over H is expressed in polar coordi­
nate. Since the Gaussian distribution is isotropic. the
angular part is easily integrated; it gives the 1/3 and
2/3 components. The integral of the radial part is also
performed analytically:

In the H o -t 0 limit, this function becomes the Gaus­
sian KubOoToyabe function (eq.18), and in the large Ho
limit. it exhibits a damped oscillation with a frequency
associated with Ho. In Fig.66, the function obtained
GGKT+Ho(t) is drawn for various Ho. A crossover from
the Gaussian h~ubo-Toyabe behavior to a damped os­
cillation is shown.

( 6)
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p(H) = pc(H - H o) (87)

In the true .'\eel state. a muon spin exhibits a Larmor
precession. In a randomly frozen spin system. it ex.
hibits the Gaussian h~ubo-Toyabe function. In the fol­
lowing. an intermediate situation between these cases
is considered

If a spin system is frozen almost randomly, but ha\-­
iog a non-zero sublauice magnetization (Fig_65). the
local field at muon site will be a Gaussian distribution
around a static field:

where. pc(H) is the isotropic Gaussian distribution
induced by the randomly frozen spin component and
H ° is a well defined static field from the Neel ordered
component.

Figure 65:
A Xeel order with randomness. Each spin bears a sublat.
tice magnetizalion. but the remaining spin component is
randomly frozen

IThis section is based on the author's original work: K. Ko­
jima. u.npu.bI13hed.

(75)

:\amely. if the Larmor precession of the electron mo­
(76) ments are fast, the local field width at the muon site is

effectively reduced to J.LF = J37T0J.ZF.
(ii)

(i8) A.3 Relaxation function in Nee! state
(i9) with randomness!

(82) ~Iuon spin relaxation in this field distribution is
expressed as:

(84)
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< S;IO)Sk(t) > = < S;n(O)Sk.R(t) > (i4) Introducing the dipolar field width (J.) defined in eq.45.

where."""/o is the electron Larmor frequency. SJ,R(t) (a = the T1 relaxation yipld::i;

±, =) IS the electron spins expressed in the RRF. As- T,-'
suming a Markoffian fluctuation processes, decay of the
spin correlation is expressed as

where v is the dipolar fluctuation rate, and a, b = ±,::.

In paramagnetic state, there is no correlation between
the j-th and the k-th spin, yielding the t = 0 correla­
tion functions as:

Using the above presented expressions, the field cor­
relation at the probe spin site becomes:
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In the same manner, < H;(O)H;(t) > is calculated.
yielding the T1 relaxation rate as"

T,-'

In an isotropic sample. the coefficients are replaced by
the angular averages'
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