

A study of the $d-p$ elastic scattering

$$
\text { at } \mathbb{Z}_{d}=270 \mathrm{MeV}
$$

A study of the $d-p$ elastic scattering at $E_{d}=270 \mathrm{MeV}$

Naruhiko Sakamoto

submitted to

Department of Physica
School of Science
University of Tokyo Bunkyo-ku, Tokgo 113, Japan
for the degree of
Doctor of Science

December, 1995

論文題目 重陽子陽子散乱の $E_{d}=270 \mathrm{MeV}$ での研究

氏名 坂本成彦

1．序

 ある。

比僌を行うことがくきる。

Faddenvの神算は，低いエネルギー镇城てのデータをあまりよく軵見しない

 と巻える。

$\left.\frac{d \sigma_{\text {pul }}(\theta)}{d \Omega}=\frac{d \sigma_{\text {unpul }}(\theta)}{d \Omega} \right\rvert\, 1+\frac{3}{2} p_{v} A_{v}(\theta)+\frac{2}{3} p_{x z} A_{z=}(\theta)$

$$
\left.+\frac{1}{3}\left(p_{x x} A_{x x}(\theta)+p_{y y} A_{y y}(\theta)+p_{2 z} A_{z x}(\theta)\right)\right]
$$

2．実験

実験はサイタロトロンによって270メカ電子ボルトまで加速ぎれた重犕子

 データを元に收正をれた。

検出器（NE102a $1 \mathrm{~cm}^{\mathrm{t}}+\mathrm{H} 1161$ ）を用いた。角度の分解能は，腸子检出器によっ

 て䍝別ぎれ，信号襍音比は 200 から 300 程度であった
 $A_{z z}$ は，スヒンの向きから治道方向を何いたビームを用いた計数事から，$A_{z z}$ は水

 \pm 压（電信量）である。

 きいということが宫える。

3．理論計算との比較と考察

実験デー夕とインパルス近似，Faddeev 計算の2つのモデルによる社算侯 との比㪀を行った。

インバルス近似

Faddeev 計隼

䄳がテンシャル法て三体のFaddeev 方權式を解いて得られたちのでたる。桹子核子相互作用としてはArgonne v_{14} が用いられ，杸子一核子闌の全夰連動量が」の

 キーて $130 \times$ か龟子ホルルトと 190 スか电子ボルトに相当けるエネルキーに凉して

4．結論と今後の課題

城くの状沙を考えると非营に無陳深い。しかしながら，断面皘が最小になる雉
 るいはFaddeev 性算に何らかの，侧えば三体力を取り入れる等の変更を要する

味のあるところである。

Contents

1 Introduction
1．1 Introduction 1
1．2 Analyzing powers for the polarized deuteron scattering 3

1．3 Historical background for studies of the $d-p$ seattering at intermediate energies
1．4 Aim of this thesis 6

1．5 Preparation of the polarized deuteron beam for physics experiments at an intermediate energy

2 Measurement of the vector and the tensor analyzing powers for the $d-p$ elastic scattering at 270 MeV
2．1 RIKEN accelerator research facility ．．．．．．．．．．．．．．．．．．．． 10
2.2 Polarized Ion Source ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 11
2.3 Calibration of the absolute value of the beam polarization ．．．．．．． 19

2．4 Experimental procedure ．．．．．．．．．．．．．．．．．．．．．．．． 20
2．5 Data analysis ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 26
26 Results of the analyzing power measurement ．．．．．．．．．．．． 30
2．7 Application to a deuteron polarization analyzer ．．．．．．．．．．．． 32

3 Measurement of the differential cross sections for the d－p elastic scat tering at 270 MeV

3．1 Measurement and result
3.2 Effect of carbon in the polyethylene target 37
4 Impulse approximation for the $d-p$ elastic scattering 39
4.t Scattering matrix 39
4.2 Optimal factorization 42
4.3 Spin part of the scattering matrix 43
1.4 Form factor 45
4.5 Olservables 46
4.6 Remults of the PWIA calculations 49
4.7 Discussions 49
5 Three-body calculation 52
5.1 Faddeev theory 52
5.2 Calculation for the d-p elastic scattering at $E_{d}^{\text {h }}=270 \mathrm{MeV}$ 53
5.3 Comparison with the data and discussions 85
6 Summary and conclusions 59
Acknowledgment 62
References 67
Appendices 68
A. Spin polarization for $S=1$ - The Madison convention 68
B. Magnetic elements of RIKEN PIS 71
C. Hyper fine structure of the deuterium atom 75
D. ${ }^{12} \mathrm{C}(d, p)^{13} \mathrm{C}_{\text {gut }}$ at $E_{d}^{\text {th }}=14 \mathrm{MeV}$ 77
E. nucleot-nucleon scattering amplitudes 78
F. The parameterized deuteron wave function 80
G. Spis projection operator T^{12} 82

List of Figures

1.1 RIKEN Accelerator Research Facility

21 Block diagram of the production of polarized deuteron beam. The number $1 \sim 6$ stands for the hfs substates number (see Appendix C). Here pure vector polarized deuteron beam $\left(p_{2}=2 / 3, p z z=0\right)$ is obtained.
2.2 View of the RIKEN polarized ion source 12

23 The atomic beam intensity as a function of the nozzle temperature (a) and the If power (b)

24 Atomic beam intensity via the pole tip field strength of the sextupole magnets
2.5 (a) Horizontal component of Vector polarization via the Wien filter angle $\theta_{\text {wr }}$. (b) Schematic view of the RIKPN deuteron spin control system.
2.6 Time dependence of the beam polarization. The ideal values for vector and tensor polarizations are $-2 / 3$ and 0 . respertively
2.7 View of the experimental hall (analyzing power measurement) 21
2.8 Top and side views of the scattering chamber 23
2.9 Schematic view of the counters setup for kinematical coincidence de tection
2.10 Schematic diagram of the trigger logic circuit 24
2.11 Kinematics of the $d-p$ elastic scattering. (Angle in laboratory system vs. angle in center of mass svstem)
2.12 Spectrum of the light output of L11 vs. that of R2. The gate selects the region of the $d-p$ elastic scattering.
2.13 Spectrum of the difference of the time of flight between L11 and R2 $\quad 9$
2.14 Spectrum of the difference of the time of flight between L1 and R2 for the relected events by the gate shown in Fig. 2.12.
$2.15 A_{y}, A_{y y}, A_{y r}$, and $A_{z=}$ for the d-p elastic seattering at $E_{d}^{\text {th }}=270 \mathrm{MeV}$ The solid, dashed, dot-dashed lines are theoretical predictions of the Faddeev calculation with the NN partial waves $j \leq 4$, and that with $j \leq 3$, and PWIA for direct elastic scattering process, respectively Dotted lines are PWIA predictions for the neutron transfer reaction.
3.1 View of the experimental hall (cross section measurement) 35
3.2 Beam envelope for the cross section measurement. 3
3.3 Differential cross sections for the d-p elastic scattering at $E_{d}^{\text {tab }}=270$ MeV . The solid, dashed, dot-dashed lines are the same as in $2.15 \ldots$ 3s
4.1 Scattering diagram for the d-p elastic scattering 40
4.2 Scheme of the single seattering process \&
$4.3 \quad \hat{n} \dot{q} \hat{p}$ frame for the $N N$ scattering 42
4.4 Deuteron-proton scattering diagram in deuteron Breit frame 43
4.5 Scattering diagram between the target proton and one of the nucleons in deuteron
4.6 Kinematics for the optimal factorization approximation 45

4.8 Diagram for the direct neutron exchange reaction 50
5.1 The first few terms in the multiple scattering series for clastic and rearrangement processes. The hatching represents that two nucleons are in bound.
5.2 Difference of the calculation ($j \leq 4$) and the data. The size of the discrepaney is 30% at $\theta_{\mathrm{cm}}=117^{\circ} \sim 138^{\circ}$.
5.3 Two-pion exchange three-nucleon force. Delta is generated in the intermediate state.
5.4 Differential crose sections at $E_{t}^{4 t h}=130 \mathrm{MeV}$ [39], 190 MeV [40]. and 270 MeV (present) data with the predictions of the three-body calculation.
6.1 Definition of the spin angles β and δ. The deuteron is scattered in the $x-s$ plane.
6.2 The pole tip fields of the first (a) and the second (b) sextupole magnets. The entrance aperture of the first magnet is small as 14 mmo so as to have a strong field.
(a) Fxcitation function of the SFT magnetic field measured at the center of the magnetic pole. (b) The magnetic field strength of the adiabatic passage SFT. The field gradient can be varied independent form the center field strength.

4 (a) Excitation function of the WFT magnetic field measured at the center of the magnetic pole. (b) The magnetic field strength of the adiabatic passage WFT. The field gradient can be varied independent form the center field strength.
6.5 (a) Axial magnetic field strength of the ECR mirror magnet with a typical parameters of 111 A (1st coil) and 96 A (2nd coil). (b) Radial magnetic field strength of the ECR sextupole permanent magnet (B_{R} $=53.11$ Gauss $/ \mathrm{cm}^{2}$).
6.6 Hyper fine states. $\Delta W=h \times 327.4 \mathrm{MHz}$ and $B_{i}=117 \mathrm{G}$. 76
6.7 Vector and tensor polarization of the deuteron 76
6.8 Differential cross sections and the analyzing powers for the ${ }^{12} \mathrm{C}(d, p)^{13} \mathrm{C}_{\text {pod }}$

6.9 Radiat part of the deuteron wave function in configuration space.

Chapter 1

Introduction

1.1 Introduction

The deuteron-proton (d-p) scattering at intermediate energies ($E / A \geq 100 \mathrm{MeV}$) is a particularly good sonrce of information on the spin-dependent nucleon-nucleon (NN) interaction. The spin-dependent forces are strong and manifest themselves mainly through the polarization observables. Due to the spin-structure $1-\frac{1}{2}$, there exist various polarization observables for the $d-p$ scattering. Since magnitudes of polatization observables for the $d-p$ scatteriug become large with the increase of the scattering energy, the d-p scattering at intermediate energies is a convenient means for the study of the spin-dependent forces.

Since the small binding energy of the deuteron produces a rather large separation distance between its constituent proton and neutron, the $d-p$ scattering can be well described by a scattering model whose fundamental scattering process is the twobody $N N$ scattering. Furthermore, since the wave-length of the target proton in the deuteron rest frame becomes as small as the size of nucleon, the single scattering process in which one of the constituent nucleons of the deuteron undergoes a single scattering with the target proton becomes dominant in the d-p elastic scattering at intermediate energies. Therefore it is interesting to study how well the d - p scattering can be described by the single scattering description, which is generally called as an impulse approximation (1A), utilizing the NN scattering amplitudes obtained from a
number of the experimental data on the $N \mathrm{~N}$ scattering.
Such a study is also helpful to understand the various spin-dependent phenomena of the deuteron induced reactions at intermediate energies, for example, the d-p elastic scattering at backward angles, the deuteron elastic scattering, the isoscalar spinexcitation by the denteron inelastic seattering, and the spin-isospin excitation by the $\left(d,{ }^{2} \mathrm{He}\right)$ reaction. The analyzing powers, which represent the deviation of the differential cross sections with polarized beam from that with unpolarized beam, are closely related to various physics interests [1] as follows:

- The tensor analyzing power T_{20} for the d-p elastic scattering at 180° is served for the study of the deuteron structure. In the plane wave impulse approximation (PWIA). T_{20} at 180° is directly related to the D-state to S-state ratio of the deuteron wave function [2]
- Three types of the tensor interactions i.e, the coordinate dependent, the angular momentum dependent, and the momentum dependent tensor interactions can be investigated through the tensor analyzing powers $A_{5 z}$ and $A_{2 z}$ for the deuteron elastic scattering at intermediate energies $\{3 \mid$.
- Deuterons have spin 1 and iso-spin 0 so that the deuteron inclastic scattering possesses selectivity of $\Delta S=0,1,2$ and $\Delta T=0$. Hence, the deuteron inelastic scattering is particularly a good probe to study the isoscalar spin excitation of the meleus whose origin is the spin-spin interaction term of the NN interaction [4].
- The (d_{2}^{2} He) reaction ${ }^{1}$, which is (n, p)-type charge exchange reaction, is a powerful probe to study the spin-dipole excitation ($\Delta S=1, \Delta L=1$) of the nucleus. From the predictions of PWIA calculations, the states of the spin-dipole excitation can be resolved into the substates of the spin-parity $j^{*}=2^{-}, 1^{-}$, and 0^{-} ${ }^{2} \mathrm{He}$ is two emitted protons coupled to the singlet S state.
by observing the tensor analyzing powers $A_{z y}$ and $A_{z z}$ for the ($d_{2}^{2} \mathrm{He}$) reaction [5].

This favorable situation is considered to be due to the fact that the reaction mechanism becomes simple at intermediate energies. Since the deuteron wave-length be comes as small as the size of the nucleon, the denteron-nucleon single scattering pro cess is expected to be be dominant in these reactions at intermediate energies. Thus the d-p wrattering is important as a fondamental process in describing the deuteron induced reactions at intermediate energies.

1.2 Analyzing powers for the polarized deuteron scattering

Analyzing powers for the scattering of the polarized beams are obtained by meat suring the ratios of the scattering yields. Typical ratios might be "left-right" and "up-down" asymmetries, or polarized beam to unpolarized beam yield ration.

For the scattering of the polarized deuteron beams whose spin is 1 , the most general form of the differential cross sections is written as:

$$
\begin{align*}
\frac{d \sigma_{p a d}(\theta)}{d \Omega}=\frac{d \sigma_{\text {mpual }}(\theta)}{d \Omega}[1 & +\frac{3}{2} p_{v} A_{v}(\theta)+\frac{2}{3} p_{e z} A_{z z}(\theta) \\
& \left.+\frac{1}{3}\left(p_{x z} A_{s z}(\theta)+p_{r r} A_{r r}(\theta)+p_{e z} A_{z z}(\theta)\right)\right] \cdot(1 . \tag{1.1}
\end{align*}
$$

The coefficients p ' x are the polarizations of the incident deuterons and the A 's represent the analyzing powers for the polarized deuteron scattering. These properties are defined in the Cartesian coordinates of $\hat{\vec{z}} / / \vec{k}_{i}, \overrightarrow{\vec{y}} / / \vec{k}_{i} \times \vec{k}_{f}$, and $\hat{\vec{z}} / / \hat{\vec{j}} \times \overrightarrow{\hat{z}}$, where $\vec{k}_{\text {; }}$ and \vec{k}_{f} are the incident and the scattered deuteron momenta, respectively (Details are described in Appendix A.). In general, an incident beam may have vector polarization components p_{x}, p_{v}, and p_{x}, but because of parity conservation through the reaction process, the reaction is sensitive only to the component normal to the scattering plane so that A, and A, are zero. Similarly, although an incident beam
may contain all six tensor polarization components $p_{c y,}, p_{z z}, p_{y z}, p_{z z}, p_{y y}$, and $p_{z z}$, the reaction is sensitive, again because of parity conservation, only to those indicated in Eq. (1.1).

The tensor analyzing powers $A_{z z}, A_{p z}$, and $A_{1 z}$ satisfy the following relation

$$
\begin{equation*}
A_{a z}=-\left(A_{z z}+A_{b z}\right) \tag{1.2}
\end{equation*}
$$

so that there remain four independent observables of

$$
A_{n,} A_{2 x}, A_{z n} \text { and } A_{z z}
$$

The analyzing powers contain various information of spin-dependent interactions. The component of the analyzing powers normal to the scattering plane A_{9} and A_{y} are sensitive mainly to the spin-orbit \vec{L}. \vec{S} force. The $A_{1 z}$ and $A_{z z}$, have physically much more interesting information such as the tensor interaction or the D-state of the denteron wave function. The measurement of $A_{z z}$ and especially $A_{z z}$ is very difficult since it requires to rotate the deuteron spin to an appropriate angle at the target point. Usually the control of the spin orientation of the beam to the arbitrary direction is not easy. In this work, $A_{r=}$ and $A_{r,}$ have been successfully obtained by a new method of the spin control for the cyclotron laboratory.

1.3 Historical background for studies of the $d-p$ scattering at intermediate energies

There is a wide interest in how well few-nucleon systems can be described by using $N N$ interactions determined by $N N$ scattering data. Among the few nucleon systems. the $d-p$ scattering should be recognized to be be studied at the beginning since it is the simplest possible reaction between nucleon and nucleus. A number of the vector and tensor analyzing powers are useful to examine the $N N$ interaction especially for the spin dependent part, e.g. the spin-orbit force and the tensor force.

In the high energy region such as the incident deuteron energy ($\left.E_{d}^{\text {alk }}\right)^{2}$ of 1-2 GeV , the experiments of polarized proton scattering from polarized deuteron target at 0.8 GeV incident proton energy ($E_{\nu}^{\text {the }}$) were made by the LAMPF group [6$]$ and the experiments of the polarized deuteron scattering from bydrogen target at $E_{d}^{\text {ab }}=$ 1.2, 1.6, and 2.0 GeV were made by the Argonne group [7]. Many kinds of spin ob servables were measured at the momentum transfer range of $q \leq 1 \mathrm{GeV} / \mathrm{c}$. The data are compared with a modified Glauber model [8]. The effects due to large seattering energy such as the delta intermediate states and double scattering process have been reported to be important to reproduce the experimental data.

In the low energy region, $E_{f}^{\text {th }} \leq 100 \mathrm{MeV}$, proton and deuteron polarization observables for the $d-p$ elastic scattering have been measured extensively with high accuracy. Recent review of the study on the few-body systems has been made by Glöckle in Ref. [10]. The bighly accurate data are compared with the theoretical predictionis of Faddeev theory. The three-mueleon system can be described exartly, in principle, by a Faddeev theory [9] if two-body VN interactions are known. However, the fit of the Faddeev calculations with realistic $N N$ potentials is not satisfactory especially for the vector analyzing powers at energies, $E_{d}^{\text {lh }} \leq 30 \mathrm{MeV}$ where the treatment of the Coulomb force frequently gives ambiguity in the calculations. On the other hand, at high energy region, the effect of the Coulomb distortion becomes less important so that an accurate comparison between experimental data and calculations becomes possible. Consequently, it is interesting to compare the experimental data with the Faddeev calculations at intermediate energy. Such a study will give us information on the effects due the delta degrees of freedom, relativity, and higher partial wave components of the NN interaction. At present, the experimental data of the spin observables for the $d-p$ elastic seattering at high energy region are scarce. At a deuteron incident energy of 187 MeV , the comparison between the data and ${ }^{2} E_{d}^{\text {tut }}=2 E_{p}^{\text {tit }}=3 E_{v m}$
the Faddeev calculations has been made [11]. However, the accuracy of the data is not good enough to compare in detail. Thus the experimental datn of the d p elartic scattering with high accuracy at an intermediate energy are needed for the detailed study on the $d-p$ scattering in terms of the Faddeev calculation.

1.4 Aim of this thesis

In the present experiment, the differential cross sections and all components of the analyzing powers $A_{50}, A_{50}, A_{2 x}$ and $A_{5 n}$ for the $d-p$ seattering have been measured at $E_{d}^{\text {loh }}=270 \mathrm{McV}$. This is the first measurement of the deuteron analyzing powers with high statistical precision at an intermediate energy.

The ultimate goal of this work is to clarify how well few-nucleon systems can be described by using NN interaction determined from NN scattering data. In this work it is tried to examine how well the experimental data at $E_{8}^{\text {th }}=270 \mathrm{MeV}$ can be reproduced by two models of the PWIA calculation and the three-body Faddeev calculation ${ }^{3}$.

The scattering amplitude for the single scattering description is obtained by the PWIA calculation. The PWIA has been successfully applied to the the ${ }^{2} \mathrm{H}\left(d_{1}{ }^{2} \mathrm{He}\right)$ reaction at $E_{d}^{\text {lab }}=200 \mathrm{MeV}$ for the momentum transfer ranges of $q \leq 400 \mathrm{MeV}$. Our data cover the momentum transfer range of $q=350-650 \mathrm{MeV} / \mathrm{c}$. The predictions of the single scattering description of the d-p elastic scattering are compared with the data at a rather large momentum transfer region where the analyzing powers are expected to have large values.

The Faddeev calculations are compared with the experimental data at an intermediate energy for the first time. As the energy increases, it is needed to include higher partial waves of the NN interaction in the calculation. Calculations are, up to ${ }^{3}$ Threebody Fadderv calculations preented in this thesis were made by Dr. Koike.
now, made employing an $N N$ interaction of total angular mornentum $j \leq 3$ since the inclusion of higher partial waves remuire considerable computing power. In this work, three-body calculations with $j \leq 3$ and ≤ 4 are presented to see the contribution of higher partial waves of $j=4$ to the differential cross sections and the analyzing powers. It is also interesting to see whether some discrepancies found in the low energy region $[13,14,15]$ are also found at $E_{d}^{\text {dh }}=270 \mathrm{MeV}$ or not.

1.5 Preparation of the polarized deuteron beam for physics experiments at an intermediate energy

The RIKEN accelerator research facility (RARF) has an accelerator complex which consists of an injector AVF eyclotron and a main ring cyelotron (see Fig. 1.1). The ring cyclotron has a large K-number of 540 so that deuteron beams can be accelerated up to an energy of 270 MeV . This is the highest energy deuteron beam produced by the cyclotrons in the world. Therefore. RARF is a suitable and a unique facility to study the spin-dependent phenomena by using the deuterons at intermediate energies.

The construction of the polarized ion source at RIKEN started at the end of 1990. The source is an atomic beam type with ECR ionizer whose original design was close to that of HIPIOS at IUCF [16]. HIPIOS was based on the source at TUNL [17]. Many modifications from the original design have been made to the RIKEN polarized ion source and consequently the performance of the source of beam intensity of 140 $\mu \mathrm{A}$ at the ion source exit with $80 \%^{4}$ polarization of the ideal value has been achieved [25]

Simultaneously, preparation of the spin control system was made in order to measure the analyzing powers $A_{r=}$ and $A_{r z}$ which contain various information such as the tensor interaction. For an intermediate energy deuteron, the spin rotation sys${ }^{4}$ At the time when this experimeat was made, the achieved polarization was $00-70 \%$.

Figure 1.1: RIKEN Accelerator Research Facility
tem becomes extraordinary large due to the small magnetic moment of the deuteron. At RIKEN the spin orientation control is made with a unique technique with Wien filter which is commonly employed at the Van de Graff accelerators. The spin axis is rotated by a Wien filter which is located in the injection line to the AVF cyclotron. This method has been considered unsuitable to the cyclotron accelerators, since the single-turn extraction of the beam from the cyclotron is required to maintain the polarization of the beam. During the acceleration, the deuteron spin precesses along the cyclotron field (Larmour precession). Because the g-factor of the deuteron is 0.8457 , the spin orientation β with respect to the beam differs turn by turn ${ }^{5}$. Therefore, the polarization amplitude will be reduced if the deuterons which have different spin orientations are simultaneously extracted from the cyclotrons. The RIKEN cyclotrons can extract the single-turn beam so that the polarization amplitude is maintained.

[^0]It is also important to measure efficiently the polarization of the accelerated beam in order to determine the final orientation of the spin on the target. Although the deuteron polarimeter at intermediate energies is not well established, the most probable candidate for the polarization analyzer is the elastic scattering on the hydrogen target [18]. Thus, one of the purposes of the present experiment is to examine whether the $d-p$ elastic scattering is usable or not for the polarization analyzer.

Chapter 2

Measurement of the vector and the tensor analyzing powers for the $d-p$ elastic scattering at 270 MeV

In this chapter the experimental procedure and technique for the analyzing power measurement is presented. All components of the analyzing powers $A_{y,} A_{m}, A_{z r}$ and A_{n} for the $d-p$ elastic scattering at $E_{d}^{\text {blb }}=270 \mathrm{McV}$ have been measured for the angular range between 57° and 138°. The measurement was made by a kinematical coincidence method so that the ratio of the true events to accidental events was as good as a few hundred. This is the first measurement of a complete set of analyzing powers with high statistical precision at an intermediate energy. In the section 2.5. applicability of the d-p elastic scattering to a polarization analyzer of deuteron is considered.

2.1 RIKEN accelerator research facility

The measurement was pefformed at RIKEN accelerator research facility (RARF). This facility is particularly suited for the measurement of the deuteron polarization observables for the following reasons:

- The newly constructed polarized ion source provides a beam with large intensity and high polarization.
- The single-turn beam extraction is available both for the injector AVF cyclotron and the main RING cyclotron. This technique is crucial for maintaining the deuteron polarization during acceleration in the cyclotrons when the spin quantization axis is not parallel to the magnetic field of the cyclotrons.

Thus, RIKEN is a unique facility which provides a large intensity highly polarized deuteron beam whose opin quantization axis is freely controlled

2.2 Polarized Ion Source

Block diagram of producing of the polarized denteron beam is shown in Fig. 2.1. Moleculat deuterimm is dissociated by means of rf (radio frequency) induced discharge (dissociator). The atoms then pass through a nozzle which is cooled down to 35 K by a He refrigerator. An atomic beam with an appropriate emittance is selected by a skimmer from the atomic flow leaving the nozzle. Two sextupole magnets are used for focusing the atomic beaun with the particular electron spin orientation, for example, "up" state component (see Fig. 2.1). The electron polarization is transferred to the meleus by means of rf transitions. The nuclear polarized atomic beam is

Figure 2.1: Block diagram of the production of polarized deuteron beam. The number $1 \sim 6$ stands for the hifs substates number (see Appendix C). Here pure vector polarized deuteron beam $(p z=2 / 3, p z z=0)$ is obtained.

\checkmark
AVF cyclotion

Figure 2.2: View of the RIKEN polarized ion source
ionized by an ECR ionizer under the axial magnetic field strength of about 1 kG and then extrarted with a kinetic energy of 7.5 keV . The spin orientation of the beam is freely controlled by the Wien filter which is installed at the exit of the source.

A schematic view of the polarized ion source is shown in Fig. 2.2. The vertical de sign of the source provides a beam with longitudinal polarization which is convenient for the injection of the beam into the cyclotron without using an electro-magnetic deflector. Earch element of the source is described in some detail in the following iections.

1. Dissociator

Molecular denterium is dissociated into deuterium atoms by 13.56 MHz if discharge in a Pyrex tube whose imer diameter is 8 mm . Dissociated denterium atoms are cooled down by a cold nozzle which is placed at the exit of the dissociation tube.

The atomic beam intensities are shown as a function of the nozzle temperature in Fig. 2.3-(a). The intensity increases with the decrease of the nozzie temperature. However it decreases suddenly at 40 K . This temperature dependence is well un-

Figure 2.3: The atomic beam intensity as a function of the nozzle temperature (a) and the off power (b)
derstood due to complete recombination of the atoms at the surface of the nozzle (indicated by the dashed curve). The temperature at which the intensity starts to decrease can be shifted to 30 K if a small amount of N_{2} is added to the surface of the copper nozzle (indicated by the solid curve).

The atomic beam intensity as a function of the dissociator if power is shown in Fig. 2.3-(b). The intensity saturates with the rf power of about 100 W . The S / N of the atomic beam, the ratio of the beam intensity with the sextupole magnets on to that with the sextupole magnet off, which has been measured at the exit of the injector AVE cyclotron depends on the amount of D_{2} gas and was found to be maximized with the D_{2} flow of $20 \mathrm{cc} / \mathrm{min}$.

2. Sextupole magnets

In the sextupole magnetic field, the deuterium atoms with their electron spin up are separated from those with the electron spin down and are focused at the ionizer. The dimension of two sextupole magnets are summarized in Table. 2.2. In order to gain the focusing power, the first sextupole magnets was designed to have strong field at the entrance (see Appendix B).

Fig. 2.4 shows the atomic beam intensity for various magnetic field strength of the first sextupole magnet as a function of magnetic field strength of the second sextupole magnet. The atomic beam intensity seems to saturate with the pole tip field strength of 7 kG .

No.		aperture mm ϕ	length nm	pole tip field kG ($\mathbf{0 2 5 0 \mathrm { A } \text {) }) ~}$
\#1	entrance	150	14	8.6
	exit		28	6.5
\#2		100	30	8.0

sextupole field dependence

Figure 2.4: Atomic beam intensity via the pole tip field strength of the sextupole magnets
3. rf-transition

The state of polarization of nucleus is chosen by utilizing the adiabatic transitions between the hype-finestructure (hfs) states of the deuterium atom. Two kinds of the If-transition units called as strong- and weak-field transition are located at the exit of each sextupole magnets (see Table. 2.2), With the combination of four transition units, any kind of vector and/or tensor polarizations can be produced.

If units		$\begin{aligned} & \text { If frequency } \\ & 330 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \hline \text { transitions } \\ & \hline 3 \leftrightarrow 5 \end{aligned}$
SFT	\# 1		
WFT	\#1	10 MHz	$1 \leftrightarrow 4,2 \leftrightarrow 3$, and $5 \leftrightarrow \rightarrow 6$
SFT	\#2	460 MHz	$3 \leftrightarrow 5$ (high field)
			$2 \leftrightarrow 6$ (low field)
WFT	\#3	10 MHz	$1 \leftrightarrow 4,2 \leftrightarrow 3$, and $5 \leftrightarrow \rightarrow 6$

4. Ionizer

Due to the high electron density of an ECR plasma a higher ionization efficiency is expected compared to an electron bombardment ionizer. Furthermore the space-charge-neutral ECR plasma enables us to extract a beam of small energy spread.

The ECR plasma is isolated from the ground potential by a Pyrex chamber and biased to +7.5 kV by the four-stage extraction electrodes. The ionized deuterium is extracted by the electric field gradient formed by the four-stage electrodes whose aperture is $5 \mathrm{~cm} \phi$. The degrec of the polarization is largely depends on the background pressure in the ECR chamber. Two Ti sublimation pumps and one cryo pump are used to evacuate the ECR chamber through a large aperture of the extraction electrodes.
6. Wien filter

Schematic view of the spin control system at RIKEN is shown in Fig. 2.5-(b). The deuteron spin is rotated by a $-\vec{E} \times \vec{B}$ - Wien filter, which is installed in the injection line to the AVF cyclotron, without bending the beam direction. Owing to the low energy of the beam $(7.5 \mathrm{keV})$, the Wien filter is very compact. The single turn extraction is made for the cyclotrons so as not to reduce the polarization amplitude.

The spin orientation at the target point is obtained by using a polarimeter which can measure "left-right" and "up-down" asymmetries. In order to make the spin have appropriate angle at the target point, a certain Wien filter angle θ_{wF} is chosen from the θ_{WF} dependence of the horizontal vector component p_{ε}. A typical θ_{wr} dependence p_{z} is shown in Fig. 2.5-(a) and is fitted by a sine curve,
6. Operation

A typical set of the operation parameters is summarized in Table. 2.3

Table 2.3: Operation parameters of the polarized ion source

Dissociator			
If power		100	W
D_{2} gas flow		20.0	cc/min.
N_{2} gas		0.01	cc/mili.
Nozzle termp.		35.0	K
Sextupole magnets			
lst sextupole		250	A
2 nd sextupole		250	A
ECR			
Mirror coil	\# 1	111.2	A
	\#2	110.0	A
Micro wave		25.3-10.6	W
Buffer N_{2}		0.020	cc/min.
Extraction electrodes H.V.	\#1	7.5	kV
	\#2	7.4	kV
	\#3	5.0	kV
	\#4	gnd	
Vacuum			
Chamber	\#1	2.1×10^{-5}	Torr
	\#2	1.2×10^{-6}	Torr
	\#3	3.9×10^{-7}	Torr
	\#4	7.8×10^{-8}	Torr
	\#5	5.9×10^{-8}	Torr

Figure 2.5: (a) Horizontal component of Vector polarization via the Wien filter angle θ_{wF}. (b) Schematic view of the RIKEN deuteron spin control syatem.
2.3 Calibration of the absolute value of the beam polarization

The vector and tensor polarized deuteron beams are at first accelerated up to 14 MeV by the injector AVF cyclotron and then op to 270 MeV bv the main RING cyclotron. The absolute values of the beam polarizations, vector and tensor compo nents, have been calibrated by using the ${ }^{12} \mathrm{C}(d, p)^{13} \mathrm{C}_{\text {gnt }}$ reaction at $E_{d}^{\text {lob }}=14 \mathrm{MeV}$ The energe of 14 MaV corresponds to the injection energy of the main Ring evelotron. The analyzing powers for the ${ }^{12} \mathrm{C}(d, p)^{12} \mathrm{C}_{\text {keut }}$ reaction at $E_{d}^{\text {lub }}=14 \mathrm{MeV}$ have been measured (see Appendix. D) in advance by using the well calibrated polarized deuteron beam at the Tandem van de Graaf accelerator of Kyushu University [19].

At $E_{d}^{\text {ah }}=270 \mathrm{McV}$, the polarization monitor system makes use of the analyzing powers A_{y} and A_{n} of the $d-p$ elastic scattering. The analyzing powers of the analyzer have been determined as

$$
\begin{equation*}
A_{y}=-0.391 \pm 0.007 \quad \text { and } A_{k z}=0.478 \pm 0.016 \tag{2.1}
\end{equation*}
$$

where the errors are statistical ones only. Thase values have been extracted under the asrumption that the deuteron polarization was maintained and atable during the acceleration. This assumption can be justified as follows. The beam polarization was stable during this calibration procedure which was completed in a few hours is small. Typical vector and tensor polarizations are plotted as a function of time in Fig. 2.6. The uncertainty from the instability of the polarization is estimated to be about 2%. One of the major mechanism of depolarization is spin resonances in the cyclotron betatron oscillations. The depolarization resonance in the cyclotron oscillations occurs on the condition of

$$
\begin{equation*}
\gamma \cdot G=n \quad \text { (integer) }, \tag{2.2}
\end{equation*}
$$

where $\gamma=\left(1-\beta^{2}\right)^{-1 / 2}$ and G is anomalous magnetic moment. In the case of the deuteron the lowest kinetic energy which fulfill the resonance condition is 1.2 GeV so

Figure 2.6: Time dependence of the beam polarization. The ideal values for vector and tensor polarizations are $-2 / 3$ and 0 , respectively
that no depolarization resonance is passed through duting the acceleration up to 270 MeV . Furthermore, the anomalous magnetic moment of the denteron is so small that a partial depolarization arising from the spatial dispersion of the beam is expected to be negligible. At Saturne [20] and Dubna [21], the normalization for the absolute values of the proton and deuteron polarizations has been done based on the same assumption.

Although the method to derive the A, and $A_{y y}$ values of the polarization analyzer is quite reliable, it is important to measure the absolute values of the deuteron polarizations directly. We are preparing to measure the absolute values of the vector and tensor polarizations of the deuteron beam at $E_{d}^{\text {tab }}=200 \mathrm{MeV}$ by using a unique reaction whose spin structure is $0^{+}+1^{+} \rightarrow 0^{+}+0^{-}$. Details are described in Appendix H.

2.4 Experimental procedure

The measurement for the d-p elastic scattering at $E_{d}^{\text {lab }}=270 \mathrm{MeV}$ was made by using a scattering chamber at the position (a) shown in the Fig. 2.7 in the experimental

Figure 2.7: View of the experimental hall (analyzing power measurement)
hall D. As shown in Fig. 2.7, deuteron beams of the kinetic energy of 270 MeV came from right side along the solid line and bombarded the CH_{2} target at the position (a). After hombarding the target, the beam was bent about 90° by the bending magnet (b) and was transported to the polarization monitor (c) in the experimental hall E3. The beam charge was collected by the Faraday cup (d) which was located about 2 meters downstream of the polarization monitor (c). The top and side views of the scattering chamber (a) are shown in Fig.2.8. In order to measure the d-p elastic scattering in four directions of left, right, up, and down, the chamber has four exit windows whose opening angles are ranging from 12° to 70° in the horizontal plane and from 12° to 60° in the vertical plane. Four pairs of detectors for kinematical coincidence detection of deuteron and proton were placed symmetrically in four directions, left, right, up, and down. Schematic view of one pair of the detectors are shown in Fig. 2.9. Each detector consisted of an NEI02A plastic scintillator with a thickness of 1 cm coupled to an H1161 photo-multiplier tube. An aluminum block was placed in front of the plastic scintillator' to degrade the kinetic energy of the scattered particles such that

Ta the degriader material, absorption of the charged particles is taken place. Since the ahmorption does not drpend on the state of the polarization of deuteron or proton, the correction due to the orientation of polarization is not necessary in the analymis. (continued to next page)
their energy loss in the plastic scintillator was maximized. The block diagram of the electronics is shown in Fig. 210. The data were taken for coineidence trigger etents generated by the signals of the proton counter and the deuteron counter in an interval of $\pm 100 \mathrm{~ns}$. The interval $\pm 100 \mathrm{~ns}$, which is larger than the interval of the bunched beams of the cyclotron, was chosen so as to obtain the accidentally coincidences. The dead time of the data acquisition was obtained by counting the number of the triggered events and the number of the accepted events

The deuteron beams of intensity of $10-30 \mathrm{nA}$ bombardied a polyethylene $\left(\mathrm{CH}_{2}\right)$ target with a thickness of $8.1 \mathrm{mg} / \mathrm{cm}^{2}$. The detection of the scattered deuterons and recoil protons it a kinematic coincidence was essential to discriminate the d-p elastic scattering from other scattering processes such as the clastic scattering from carbon or the deuteron break-up process.

Since the mass of the incident particle is heavier than that of the target nucleus, the seatured particles are confined to forward angles and their energy varies quite rapidly with the increase of the scattering angle. The relations between the laboratory scattering angles $\theta_{p}\left(\theta_{\mathcal{A}}\right)$ and the scattering angle in the center of mass system $\theta_{\text {s.m. }}$. are shown in Fig. 2.11. An appropriate thickness of the aluminum degrader was chosen depending on the scattering angles. Scattering angles in the center of mass system θ_{cm}. were determined by the angles of recoil protons $\theta_{\text {, }}$. The opening angle of the proton detector $\Delta \theta_{7}$ was $\pm 1.14^{\circ}$. The deuteron detector was designed to be large enough to cover the solid angle determined by the proton detector. Beyond $\theta_{r}=60^{\circ}$, the kinetic energy of the recoil proton becomes too small to detect and consequently

[^1]

Figure 2.8: Top and side views of the scattering chamber

Figure 2.9: Schematic view of the connters setup for kinematical coincidence detec tion

Figure 2.10: Schematic diagram of the trigger logic circuit

Figure 2.11: Kinematios of the $d-p$ elastic scattering. (Angle in laboratory system vs. angle in center of mass system
the measurement was restricted to the angular range $\theta_{F} \leq 60^{\circ}$ for left and right and A $\leq 60 \%$ for up and dorn. In order to measure angular diatributions, three different detector setups were employed (see Table 2.4). Consistency between the counter

Table 2.4: The distances between the proton detectors and the target and the solid angles of the proton detectors

set	θ_{p}	$l_{p}(\mathrm{~mm})$	$\Delta \Omega_{p}$ (mst)
I	$20.0^{\circ}, 25.0^{\circ}, 35.0^{\circ}, 40.0^{\circ}$	500	2.83
II	$40.0^{\circ}, 43.3^{\circ}, 45.0^{\circ}, 50.0^{\circ}, 55.0^{\circ}, 60.0^{\circ}$	350	2.79
III	30.0°	500	3.15

systems I and II has been confirmed at $\theta_{p}=40^{\circ}$.
For the special case in which the outgoing deuteron and proton have the same laboratory angle of nearly 30°, the $d-p$ elastic scattering in the directions of the both of left and right (up and down) was measured by one pairs of detectors. The two particles, protons and flenterons, tould be elearly distinguished by their different
energy losses in the plastic scintillator and the differences between their time of fight from the target. The details of the data analysis are described in the next section.

The data were taken with polarized and unpolarized beams of the theoretical maximum values $\left(p_{z}, p_{z z}\right)=(1 / 3,1),(0,-2),(-2 / 3,0)$, and $(0,0)$, where p_{z} and $P_{z z}$ are vector and tensor polarizations, respectively, defined as

$$
\begin{array}{r}
p_{z}=N_{+}-N_{-}, P_{z z}=1-3 N_{0}, \\
\text { where } \quad N_{-}+N_{0}+N_{-}=1, \tag{2.3}
\end{array}
$$

$N_{+} N_{-}$, and N_{0} are the occupation probabilities of the deuteron substates with the spin projections $1,-1$, and 0 , respectively. The polarization modes were changed cyclically at intervals of 20 seconds by switching the RF transition units of the ion source. The polarization monitor system, which was installed downstream of the target, also utilized the $d-p$ elastic scatteting at $\theta \mathrm{cm}= \pm 900^{\circ}$ is a polarization analyzer The beam polarizations were monitored continuously and were found to be $60-70 \%$ of the theoretical maximum values throughout the experiment,

2.5 Data analysis

The analyzing powers $A_{y}, A_{v y}$, and $A_{z c}$ were measured simultaneously with the deuteron spin normal to the horizontal plane. The analyzing powers are defined in the $x y z$ frame of $\vec{z} / / \vec{k}_{1}, \vec{y} / / \vec{k}, \times \vec{k}_{f}$, and $\overrightarrow{\dot{z}} / / \overrightarrow{\dot{y}} \times \vec{z}$, where $\vec{k}_{\text {, }}$ and \vec{k}_{j} are the incident and scattered deuteron momenta, respectively. Following the Madison convention $[23,24]$, yields of the $d-p$ elastic scattering with the deuteron polarization ($p_{z}, p_{z z}$) can be written as

$$
\begin{align*}
N_{\mathrm{pol}}(\theta, \phi)=n_{\mathrm{pel}} \frac{N_{\text {unpol }}(\theta, \phi)}{n_{\text {unpel }}}[1 & +\frac{3}{2} p_{z} A_{y}(\theta) \cos \phi \\
& +\frac{1}{2} p_{z z} A_{z z}(\theta) \sin ^{2} \phi \\
& \left.+\frac{1}{2} p_{z z} A_{y v}(\theta) \cos ^{2} \phi\right] . \tag{2,4}
\end{align*}
$$

Figure 2.12: Spectrum of the light output of $\mathrm{L1}$ vs. that of R2. The gate selects the region of the $d-p$ elastic scattering.

Here $\lambda_{\text {pa }}$ and $N_{\text {unpol are the the }}$ yields with polarized and unpolarized beams respectively, n is the number of denterons incident on the target, θ is the scattering angle, and ϕ is the azirnuthal angle (with respect to the beam) between the normal to the scattefing plane and the spin symmetry axis. The azimuthal angles ϕ for four pairs of detectors in the directions of left, right, up, and down are $0_{;} \pi,-\pi / 2$, and $\pi / 2$ radian, respectively.

The yield N is obtained by selecting events with the gate for the plastic scintillator light output of the deuteron counter and the proton counter (see Fig. 2.12) from the coincidence events which were taken by data taking system shown in Fig. 2.10. Accidental coincidence events which were obtained from the spectrum of the difference between the time of flight of the deuteron and that of the proton is corrected for.

Figure 2.13: Spectrum of the difference of the time of flight between L1 and R2.

Figure 2.14: Spectrum of the difference of the time of fight between LI and R2 for the selected events by the gate shown in Fig. 2.12.

In Fig. 2.13 and 2.14, the peak of the true timing events is located at the channel of erero and the peaks of the acridental coincidence events are located at the chamel of ± 480. The difference of 480 channels corresponds to the intervals of the bunched beam from the cyclotron. Note that the peak count of the true events is not reduced by the selection. It implies that the gate for the light output of the counters was set appropriately. Correction of the efficiency of the data acquisition is obtained from the ratio between the number of "event" and that of "triggered" (see Fig. 2.10).
 $A_{z e}$ were extracted as

$$
\begin{align*}
& A_{y}(\theta)=\frac{N^{\prime}(\theta, 0)-N^{\prime}(\theta, \pi)}{3 p_{z}}, \\
& A_{z p}(\theta)=\frac{N^{\prime}(\theta, 0)+N^{\prime}(\theta+\pi)-2}{p_{z z}}, \\
& A_{z z}(\theta)=\frac{N^{\prime}(\theta,-\pi / 2)+N^{\prime}(\theta, z / 2)-2}{p_{z z}} . \tag{2.5}
\end{align*}
$$

This method does not require an accurate knowledge of the detector geometries and/or efficiencies of the detection system. The analyzing powers $A_{y} . A_{y y}$, and $A_{z z}$ extracted by Eqs. (2.5) were averaged over polarization modes.

In the measurement of the tensor analyzing power $A_{z x}$, the spin symmetry axis of the deuteron beam was rotated into the horizontal plane and inclined to $\beta=142.2^{\circ}$ $\pm 0.7^{*}$ where β is the angle between the beam direction and the spin symmetry axis by using a Wien filter system [26]. The d-p elastic scattering yields for $\phi=\pi / 2$ and $-\pi / 2$ (left and right) are written by using β as

$$
\begin{align*}
N_{\text {pol }}(\theta, \mp \pi / 2)= & n_{\text {pol }} \frac{N_{\text {matpol }}(\theta, \mp \pi / 2)}{n_{\text {urpol }}} \times \\
& \left\lceil 1 \pm \frac{1}{2} p_{z z} A_{z z}(\theta) \sin 2 \beta+\frac{1}{2} p_{z z}\left(A_{z s}(\theta) \sin ^{2} \beta+A_{z z}(\theta) \cos ^{2} \beta\right)\right\rceil \tag{2.6}
\end{align*}
$$

$A_{x e}$ can be extracted from these yields as

$$
\begin{equation*}
A_{z z}(\theta)=\frac{N^{\prime \prime}\left(\theta_{1}-\pi / 2\right)-N^{\prime}\left(\theta_{2} \pi / 2\right)}{p_{2 z} \sin 2 \beta} \tag{2.7}
\end{equation*}
$$

and were averaged over the polarization modes.

2.6 Results of the analyzing power measurement

The measured vector and tensor analyzing powers $A_{y}, A_{y y}, A_{z a}$, and $A_{z z}$ are listed in Table 2.5 and plotted via. the scattering angle in the center of mass system θ_{C}. in Fig. 2.15 with statistical errors. All the analyzing powers vary smoothly with the scattering angle θ_{cm}. The vector analyzing power A, crosses zero at $\theta_{\mathrm{cm} .}=60^{\circ}$ and 140° and have minimum at $\theta_{c \mathrm{~cm} .}=100^{\circ}$. The tensor analyzing powers $A_{y y}, A_{z z}$ have large positive values while $A_{z z}$ have negative values in the angular range between 57° and 138°. The solid, dashed, dot-dashed lines in Fig. 2.15 are the theoretical predictions of the Faddeev

Table 2.5: Analyzing powers for the $d-p$ elastic scattering at $E_{d}^{\text {lab }}=270 \mathrm{MeV}$

$\begin{gathered} \theta_{p} \\ (\mathrm{deg} .) \end{gathered}$	$\begin{aligned} & \theta_{0.0 . .} \\ & (\mathrm{deg} .) \end{aligned}$	A_{v}	ΔA_{y}	$A_{y y}$	ΔA_{p}	$A_{z x}$	$\Delta A_{\text {Iz }}$	$A_{E=}$	ΔA_{s}
20.0	137.8	-0.046	0.006	+0.559	0.020	-0.285	0.014	0.656	0.150
25.0	127.3	-0.199	0.007	+0.600	0.011	-0.248	0.008	0.566	0.072
30.0	116.9	-0.302	0.019	$+0.687$	0.074	-0.326	0.043	0.581	0.093
35.0	106.7	-0.382	0.006	+0.612	0.018	-0.385	0.013	0.360	0.033
40.0	96.6	-0.400	0.005	+0.544	0.013	-0.438	0.011	0.463	0.043
43.3	90.0	-0.391	0.007	+0.478	0.016	-0.450	0.014	0.481	0.032
45.0	86.5	-0.381	0.006	+0.491	0.016	-0.492	0.014	0.377	0.038
50.0	76.6	-0.297	0.006	+0.382	0.015	-0.502	0.016	0.339	0.040
55.0	66.8	-0.164	0.004	$+0.329$	0.013	-0.500	0.015	0.311	0.039
60.0	57.0	+0.030	0.003	+0.314	0.010	-		0.152	2.4e-02

Figure 2.15: $A_{y,} A_{y x}, A_{z x}$, and $A_{x z}$ for the $d-p$ clastic scattering at $E_{d}^{\text {lat }}=270$ MeV . The solid, dashed, dot-dashied lines are theoretical predictions of the Faddeev calematation with the NN partial waves ; <4, and that with; <3, and PWIA for direct elastic scattering process, respectively. Dotted lines are PWIA predictions for the neutron transfer reaction.
calculations with the $N N$ partial waves $j \leq 4$, and with $j \leq 3$, and the predictions of PWIA for direct elastic scattering process, respectively. Details of the calculations are described in chapter 4 and 5 .

The statistical errors are ± 0.006 or less for $A_{y}, \pm 0.02$ or less for $A_{y y}$ and $A_{z z}$, and $\pm 0.02 \sim \pm 0.15$ for $A_{z z}$. A rather large errors for $A_{z s}$ is dne to the fact that the sensitivity of $A_{z z}$ to the tensor polarization $p_{z z}$ is smaller by $\sin 2 \beta$ than those of $A_{y y}$ and $A_{m z}$ (compare Eq. (2.7) with Eqs. (2.5)). There remain a systematic error $\pm 2 \%$ from the uncertainty of A_{y}, and $A_{y y}$, of the polarization analyzer. The tensor analyzing power $A_{z z}$ has an additional uncertainty from the uncertainty of $\pm 2 \%$ the spin angle β;

2.7 Application to a deuteron polarization analyzer

Finally, we would like to mention the applicability of the $d-p$ elastic scattering as a polarization analyzer at intermediate energies. In general, the elastic scattering with carbon is utilized to measure a polarization of denterons at intermediate energies. Although the clastic scattering with carbon has large vector analyzing powers with large cross sections, the tensor analyzing powers are very small. On the other hand. the d-p elastic scattering has following advantages as a polarization analyzer :

1. All components of the analyzing powers are large.
2. The angular distributions of the analyzing powers are smooth.
3. The dear event identification by a coincidence method is possible.

Therefore the d-p elastic scattering is suitable for the simultaneous measurement of vector and tensor components of deuteron polarization. There exist deuteron polarimeters which utilize the d-p elastic scattering. AHEAD [18] is dedicated to measure the tensor polarization t_{20} of scattered deuterons. DPOL [27], which has been
constructed to measure polarization transfer coefficients for the deuteron inelastic scattering, was designed to measure all componente of the seattered denteron polarization simultancously by utilizing the d-p elastic scattering as well as ${ }^{12} \mathrm{C}(d, d)$, and ${ }^{1} H(d, 2 p) n$ reactions. At RIKEN, the $d-p$ elastic seattering is also utilized to measure the beam polarization. It takes only 10 minutes to obtain the vector and tensor polarizations to a statistical accuracy of a fow percent.

It should be noted that the tensor analyzing power $A_{z u}\left(=-\left(A_{y y}+A_{z r}\right)\right)$ crosses zero at $\theta_{\mathrm{cm}}=86.6^{\circ}$ and consequently the beam intensity of the polarized beam can be obtained by the sum of the count-rates of left, right, up, and down at $\theta_{\text {em }}=$ 86.6° irrespective of the beam polarization. From Eq. (2.4) the sum of the left, right, up, and down yields are derived as

$$
\begin{align*}
N_{\text {pal }}(\theta, 0) & +N_{\text {pol }}\left(\theta_{,} \pi\right)+N_{\text {val }}(\theta+\pi / 2)+N_{\text {pal }}(\theta, \pi / 2) \\
& =n_{\text {rel }} \frac{N_{\text {mppal }}(\theta)}{n_{\text {unpel }}}\left[4-\frac{1}{2} p_{z z} A_{z z}\right] . \tag{2.8}
\end{align*}
$$

Therefore, at the angle where $A_{2 n}=0$, the sum of the left, right, up, and down yield is proportional to the number of incident particles $n_{\text {pol }}$ irrespective of the beam polarization.

As is clear that the d-p elastic scattering is a converient and reliable tool to analyze the deuteron polarizations. Therefore the $d-p$ elastic scattering will be used extensively as a polarization analyzer at intermediate energies.

Chapter 3

Measurement of the differential cross sections for the $d-p$ elastic scattering at 270 MeV

The measurement of the differential cross sections were made separately to improve an accuracy in the absolute values. The beam transport downstream the target was changed to minimize the loss of the beam current between the target and the Faraday cup. In the case of the analyzing power measurement, the beam was transported to the polarization monitor after bombarding the target. In this arrangement, the loss of the beam charge was expected at the bending magnet (b) (see Fig. 2.7) which has a small aperture. The new arrangement has made an accurate measurement of the beam charge possible.

3.1 Measurement and result

The differential cross sections were measured with unpolarized deuteron beam with a polyethylene film target whose thickness was $40.5 \pm 0.8 \mathrm{mg} / \mathrm{cm}^{2}$. The size of multiple scattering of the beam by the target is estimated to be ± 0.04. The beam intensity was $1 \sim 3 \mathrm{nA}$. Note that the thickness of the target was not changed by bombarding the beam. The yield at $\theta_{\nu}=20^{\circ}$ which was measured at the beginning of this experiment agrees with the yield at $\theta_{y}=20^{\circ}$ measured at the end of the experiment within the statistical error. The diameter of the beam spot on the target was less than 2 mm . The experimental setup was basically the same as in the analyzing power

Figure 3.1: View of the experimental hall (cross section measurement)
measurement

Figure 3.2: Beam envelope for the cross section measurement.
except for the following points to retain the accuracy:

1. The counters of up and down were not used in the cross section measurement.
2. Aluminum degraders were not used in the cross section measurement to avoid the loss of deuteron and proton flux by interactions in the degrader material.
3. After bombarding the target, the beam was transported by two triplet Q-lenses to the new Faraday cup which was about 10 meters downstream the target along the straight line

It should be noted that the effective solid angle of the Faraday cup (f) is 0.7×10^{-3} sr so that the number of particles which are scattered into the Faraday cup is neg. ligibly small. The diflerential cross sections are listed in Table 3.1 and plotted in Fig. 3.3. The solid, dashed, and dot-dashed lines are the same as in Fig. 2.15. The statistical uncertainties, which are smaller than the size of the solid circle symbols are within $\pm 1 \%$ for all angles. The measured yields of left and right counters agreed within $\pm 3 \%$, which implies the error arising from a geometrical misalignment of the

Table 3.1: Differential cross sections for the d-p elastic scattering at $E_{d}^{\text {lab }}=270 \mathrm{MeV}$

θ_{j} $[\mathrm{deg}]$	θ $[\mathrm{deg}]$.	$(\sigma / d \Omega$ $[\mathrm{mb} / \mathrm{st}]$	$\Delta d \sigma / d \Omega$ $[\mathrm{mb} / \mathrm{st}]$
20.0	137.8	0.233	0.003
25.0	127.3	0.227	0.002
30.0	116.9	0.228	0.004
35.0	10.7	0.240	0.003
40.0	96.6	0.288	0.005
43.3	90.0	0.357	0.003
45.0	86.5	0.401	0.003
50.0	76.6	0.541	0.004
55.0	66.8	0.766	0.006
60.0	57.0	1.088	0.011
The errors are statistical ones only.			

Table 3.2. Systematic errors for the differential cross sections

Origins of systematic errors
Target thickness
Detection efficiency
Charge collection
2%

counters, efficiencies of the data taking syatem, and background subtraction, is estitmated to be within ± 34. There remains a systematic error due to incomplete charan collection of the beam. The calculated beam envelope of the present measurement is shown in Fig 3.2. The maximum size of the beam downstream the target is less than 2 cm in diameter which is much smaller than the size of the beam tube of 6 cm in diameter. Therefore the beam charge was collected by the Faraday cup without any loss. However, in practice, the efficiency of the collection depends on the condition of the beam tramsport which is largely affected by the cyclotron condition. Based on several experiences, we estimate the size of the systematic error by the incomplete charge collection less that $\pm 5 \%$. The total uncertainties in the final cross section are statistical error of $\pm 1 \%$ and systematic errors of $\pm 2 \%$ (target thickness) $\pm 3 \%$ (detection efficiency) $\pm 5 \%$ (beam charge).

3.2 Effect of carbon in the polyethylene target

It should be noted that the proton knock-out reaction from the carbon contained in the polyethylene target might influence the result of the $d-p$ elastic scattering mensurement since some of the final products in some eases such as the knock-out reaction ${ }^{12} \mathrm{C}(d, d p){ }^{11} \mathrm{~B}$ are indistinguishable from those of the $d-p$ elastic scattering We bave measured coincidence yields of denterons and protons with a carbon target at an angle corresponding to $\theta_{\text {c.m }}=86.6^{\circ}$ of the $d-p$ elastic scattering. It is found that the contribution of the ${ }^{12} \mathrm{C}(d, d p)^{11} \mathrm{~B}$ knock-out reaction to the measured d - p elastic
scattering is found to be less than 1%. The size of the contribution to the analyzing powers is also found to be less than 1\%

Figure 3.3: Differential cross sections for the d-p elastic scattering at $E_{d}^{\text {lat }}=270$ MeV . The solid, dashed, dot-dashed lines are the same as in 2.15

Chapter 4

Impulse approximation for the $d-p$ elastic scattering

In this chapter the d-p elastic scattering is considered in terms of impulse approxfimation model where one of the mucleons in the denteron makes a single seattering with proton. Since the wave length of the incident deuteron at $E_{i}^{\text {hb }}=270 \mathrm{MeV}$ becomes as small as the size of the macleon, it is expected that the single scattering process becomen dominant. The basic formalism of the impulse approximation for the 1 -p elastic scattering is introduced in the following sections $4.1,4.2,4.3$, and 4.4 . In order to simplify the calculation of the scattering matrix, an additional approximation of optimal factorization is made and described in section 4.2. In section 4.5, the differential cross sections and the spin observables are derived. Comparisons of the impulse approximation model prediction with the experimental data at $E_{d}^{\text {tat }}=$ 270 MeV are presented in section 4.6 and discussions are made in section 4.7.

4.1 Scattering matrix

An impulse approximation formalism for the $d-p$ elastic scattering is derived following the basic idea of the PWIA for the $\left(d_{1}{ }^{2} \mathrm{He}\right)$ reaction which is introduced by Bugg and Wilkin [28]. The following approximations are made; The effects arising from multiple scattering are neglected; The D-state component of the deuteron wave function is not included; Non-relativistic treatment is made; Exchange process is not

Figure 4.1: Scattering diagram for the $d-p$ elastic scattering considered.

Fig. 4.1 shows a scattering diagram for the d-p clastic scattering in the center of mass system. In the diagram, time-axis and spatial axis are taken along horizontal (left to right) line and vertical (down to up) line, respectively [29]. The initial and final state of the d-p elastic scattering are described by the deuteron internal wave function v^{M} with spin projection M, the proton internal wave function $\phi^{m "}$ with spin projection m, and the deuteron-proton wave function with relative momentum $2 \vec{k}$. In impulse approximation, one of the nucleons in the deuteron undergoes a single seattering with proton as shown in Fig. 4.2 where \vec{p} is the deuteron internal momentum. The impulse-approximation amplitude is represented as

$$
\begin{equation*}
\dot{F}\left(\vec{q}: M_{i}, M_{f}, m_{i}, m_{f}\right)=\sum_{j=1}^{2}\left(\psi_{f}^{M_{t}}, \phi_{f}^{m_{r}}\left|f_{j 3}^{N N} \exp \left(-\frac{i}{2} \vec{q} \cdot \vec{r}\right)\right| \psi_{l}^{M_{t}}, \phi_{i}^{m_{i}}\right\rangle \tag{4.1}
\end{equation*}
$$

The argument \vec{r} is the relative position between two nucleons in the deuteron. $f_{\beta}^{N N}$ is the $N N$ scattering amplitude between the j th ${ }^{1}$ nucleon in the deuteron and the proton. In calculating this amplitude the $f^{N N}$ should be integrated over the deuteron internal momentum \vec{p}. To simplify the calculation, the optimal factorization ${ }^{1}$ 1: protan in the deuteron, 2: neutron in the deuteron, 3: target proton

Figure 4.2: Scheme of the single scattering process
approximation is introduced. Since $f^{N N}$ varies slowly with the target momentumion the deuteron scale), it is permissible to take it out of the integration at some optimal value of \vec{p}. Then the amplitude can be represented by the product of the deuteron form factor $A *(t)$ and spin scattering matrix Z:

$$
F=A v(\vec{q}) \cdot Z
$$

The form factor of the deuteron is

$$
\begin{equation*}
A s(\vec{q})=\int \dot{v}(\vec{r}) \exp \left(\frac{i}{2} \vec{q} \cdot \vec{r}\right) v s(\vec{r}) d d^{r} \tag{4.3}
\end{equation*}
$$

and Z represents the spin part;

$$
\left.\left.Z=\sum_{j=1}^{2}\left(x_{m}^{E}\left|\left(x_{N}^{A}\left|\left\langle\vec{k}_{i}-\vec{q}_{i}-\frac{1}{2} \vec{k}_{i}+\vec{p}_{0}+\vec{q}\right| f_{3}^{N N}\right| \vec{k}_{i}-\frac{1}{2} \vec{k}_{i}+\vec{p}_{n}\right)\right| x_{m}^{2}\right) \right\rvert\, x_{m}^{2}\right)
$$

The NK amplitude $f_{5}^{N N}$, eg. neutron-proton and proton-proton scattering amplitudes, are given as a function of $\theta_{N N}$ and scattering energy $T_{N N}$ in the convention of KMT (Kerman-McManus-Thaler) notation [30] by
$f_{j}^{\mathrm{NN}}(T, \theta)=A+C\left(\sigma_{j} \cdot \dot{n}+\sigma_{3} \cdot \hat{n}\right)+B\left(\sigma_{j} \cdot \dot{n}\right)\left(\sigma_{3}+\hat{n}\right)+E\left(\sigma_{j} \cdot \dot{q}\right)\left(\sigma_{3} \cdot \dot{q}\right)+F\left(\sigma_{j} \cdot \dot{p}\right)\left(\sigma_{3} \cdot \hat{p}\right)$.

Figure 4.3: $\bar{n} \frac{9}{p}$ frame for the $N N$ scattering
with the unit vectors $\dot{n}, \dot{q}, \dot{p}$ which are defined by the initial momentum $\vec{k}_{\text {, }}$ and the final momentum \vec{k}_{f}

$$
\begin{equation*}
\dot{n}=\frac{\vec{k}_{i} \times \vec{k}_{f}}{\left|\vec{k}_{i} \times \vec{k}_{f}\right|}, \quad \dot{q}=\frac{\vec{k}_{y}-\vec{k}_{f}}{\left|\vec{k}_{f}-\vec{k}_{i}\right|}, \quad \dot{\beta}=\dot{q} \times \dot{n} \tag{4.6}
\end{equation*}
$$

The parameters $T_{N N}, \vec{q}$ and the initial and final momenta \vec{k}_{1}, \vec{k}_{f} are related through

$$
\begin{equation*}
\vec{q}=\vec{k}_{1}-\vec{k}_{j} \text { and } T_{N N}=\sqrt{\left|\vec{R}_{i}\right| 2+m_{N^{2}}}-m_{N} \tag{4.7}
\end{equation*}
$$

Note that, since the effect of the Coulomb force is included in the proton-proton scattering amplitude, the effect of the Coulomb force betwewn deuteron and proton is automatically taken into account in the calculation with the form of Born approximation.

4.2 Optimal factorization

The single scattering diagram in the deuteron Breit frame (or Brick Wall system) [31] is shown in Fig. 4.4. In this frame the most appropriate choice of the optimal momentum is $\vec{P}=0[32]$. The choice of the optimal momentum $\vec{P}=0$ results the $1-3$ scattering itself in the NN Breit frame (Fig. 4.5) on the on-energy-shell condition in $N N$ scattering. The choice of the optimal momentum in the deuteron Breit frame \vec{P}_{n} as zero implies that the optimal internal momentum is $-\frac{1}{4} \vec{q}$ in the Breit frame.

Figure 4.4: Deuteron-proton scattering diagram in deuteron Breit frame
i.c., the optimat infernal momentum in the d_{-p} center of mass frame \vec{p}_{0} is $-\frac{7}{4} \vec{q}$. The NN scattering amplitudes of Eq. 4.5 are obtained from the nucleon-mucleon scattering phase shift analysis code SAID(SP94) [33].

4.3 Spin part of the scattering matrix

The $N N$ amplitudes for the diagram shown in Fig. 4.5 corresponds to the amplitudes of scattering angle $\theta_{N N}$ and kinetic energy $T_{N N}$ as;

$$
\begin{align*}
& \theta_{N N}=\cos ^{-1} \frac{\left(\frac{1}{2} \vec{K}+\frac{1}{2} \vec{q}\right) \cdot\left(\frac{1}{2} \vec{K}-\frac{1}{2} \vec{q}\right)}{\left|\frac{1}{2} \vec{K}+\frac{1}{2} \vec{q}\right|\left|\frac{1}{2} \vec{K}-\frac{1}{2} \vec{q}\right|}=\cos ^{-1} \frac{|\vec{K}|^{2}-|\vec{q}|^{2}}{|\vec{K}|^{2}+|\vec{q}|^{2}} \\
& T_{N N}=\frac{1}{2 m}\left(|\vec{K}+\vec{q}|^{2}\right)=\frac{1}{2 m}\left(|\vec{K}|^{2}+|\vec{q}|^{2}\right) \tag{4.8}
\end{align*}
$$

and averaged over the nucleon number in deuteron, i.e. the amplitudes are averaged over the neutron-proton and the proton-proton channels.

The spin part of the deuteron wave function $\left|X_{M}\right|$ can be written by using proton

Figure 4.5: Scattering diagram between the target proton and one of the nueleons in denteron
and neutron spins as

$$
\begin{align*}
|X M|_{d} & =\sum_{m_{1}, m,= \pm 1}\left\langle 1 M \left\lvert\, \frac{1}{2} m_{1} \frac{1}{2} m_{2}\right.\right\rangle \tag{4.9}\\
& =\sum_{m+1, m+= \pm 1} T^{12}\left|X_{m_{1}}\right\rangle_{p}\left|X_{m_{2}}\right\rangle_{n}
\end{align*}
$$

where T^{12} is a spin projection operator (see Appendix G) for $S_{d}=1$ triplet state represented as

$$
\begin{equation*}
T^{12}=\frac{1}{4}\left(3+\vec{\sigma}^{1} \cdot \vec{\sigma}^{2}\right) \tag{4.10}
\end{equation*}
$$

Spin operator Z is written as

$$
\begin{align*}
& +B_{y 3}\left(\theta_{N N}, T_{N N}\right)\left(\vec{\sigma}^{j} \cdot \hat{n}+\vec{a}^{3} \cdot \hat{n}\right) \\
& +C_{j 3}\left(\theta_{N N}, T_{N N}\right)\left(\vec{\sigma}^{\prime} \cdot \hat{n}\right)\left(\vec{\sigma}^{3} \cdot \hat{n}\right) \\
& +E_{p y}\left(\theta_{N N}, T_{N N}\right)\left(\vec{\sigma}^{\prime} \cdot \hat{q}\right)\left(\vec{\sigma}^{3}-\hat{q}\right) \\
& \left.+F_{j a}\left(\theta_{N N}, T_{N N}\right)\left(\vec{\sigma}^{\prime} \cdot \hat{p}\right)\left(\overrightarrow{\sigma^{3}} \cdot \hat{p}\right)\left|T^{12}\right| X_{m-1}\right\rangle_{p}\left(X_{m-}\right\rangle_{n} \tag{4.11}
\end{align*}
$$

$K\left(\theta_{N N}\right)$ is a kinematical factor defined as

$$
\begin{equation*}
K\left(\theta_{\mathrm{NN}}\right)=\frac{\sin \theta_{\mathrm{NN}} d \theta_{\mathrm{NN}}}{\sin \theta_{\mathrm{cm}} d \theta_{\mathrm{cm}}} \tag{4.12}
\end{equation*}
$$

which is required becanse the $N N$ amplitudes are given in the $N N$ center of mass system. It is also needed to translate the spin part to that in the deuteron-proton

Figure 4.6: Kinematics for the optimal factorization approximation
center of mass system, though it is neglected here since the difference between θ_{NN} and $\theta_{\text {c.m. }}$ is as small as a few degrees.

4.4 Form factor

The from factor

$$
\begin{equation*}
A_{s}(\vec{a})=\int \phi_{s}(\vec{r}) e^{i \vec{r} / 2} \phi_{s}(\vec{r}) d \vec{r} \tag{4.13}
\end{equation*}
$$

can be analytically integrated over angular part θ, and δ as

$$
\begin{equation*}
A_{s}(\vec{q})=4 \pi \int\left|\phi_{s}\right|^{\frac{\sin }{} \frac{\sin / 2}{q r / 2} r^{2} d r} \tag{4.14}
\end{equation*}
$$

By using this form the form factor was numerically integrated over radial part r. In the calculation a parameterized denteron wave function (Appendix F) is used.

$$
\begin{equation*}
\phi_{s}(r)=\frac{U(r)}{r} Y_{0}^{0} \chi_{1}^{\prime}=\sqrt{\frac{1}{4 \pi}} \sum_{i=1}^{13} c_{1} \frac{\exp \left(-m_{j} r\right)}{r} \tag{4.15}
\end{equation*}
$$

The form factor vs. transferred momentum q is shown in Fig. 4.7.

Figure 4.7: Form factor $A_{s}(q)$
4.5

Observables

Making an optimal factorization approximation, the scattering matrix for the d-p elastic scattering is represented as

$$
\begin{equation*}
F=A_{S} \cdot Z_{i}, \tag{4.16}
\end{equation*}
$$

where A_{s} is a form factor and Z is a spin scattering matrix. From the scattering matrix, the differential crows section is obtained as follows:

$$
\begin{align*}
\frac{d \sigma}{d \Omega_{r, m}} & =\operatorname{Tr}\left[F F^{+}\right] \\
& =A s^{2} \operatorname{Tr}\left[Z Z^{+}\right] \tag{4.17}
\end{align*}
$$

The spin observables of spin operator \hat{S} are

$$
\begin{align*}
(\dot{S})= & \frac{\operatorname{Tr}\left[F \dot{S} F^{+}\right]}{\operatorname{Tr}[F F+]}=\frac{\operatorname{Tr}\left[Z S Z^{+}\right]}{\operatorname{Tr}[Z Z+]} \\
= & \sum_{-1, m_{1}, m_{1}= \pm 1}\left(m_{1}, m_{2}, m_{3}\left|T^{12} \dot{S} T^{12+}\right| m_{1}, m_{2}, m_{3}\right\rangle \\
& / \sum_{-1, m_{2}, m^{2}= \pm 1}\left\langle m_{1}, m_{2}, m_{3}\right| T^{12} T^{12+}\left|m_{1}, m_{2}, m_{3}\right\rangle
\end{align*}
$$

The spin observables are independent from the form factor and the kinematical factor The vector and tensor spin operators in the spherical coordinate are defined in terms of the spin operators of the individual nucleons $\vec{\sigma}^{1}$ and $\vec{\sigma}^{2}$ and total spin $S=\frac{1}{2}\left(\vec{\sigma}^{1}+\vec{\sigma}^{2}\right)$ by

$$
\begin{align*}
\Omega_{20} & =\frac{1}{\sqrt{2}}\left(3 S_{z}^{2}-2\right)=\frac{1}{2 \sqrt{2}}\left(3 \sigma_{z}^{1} \sigma_{x}^{2}-1\right) \tag{4.19}\\
\Omega_{2 \pm 1} & =\mp \frac{\sqrt{3}}{2}\left(S_{ \pm} S_{x}+S_{s} S_{ \pm}\right) \\
& =\mp \frac{\sqrt{3}}{4}\left(\sigma_{x}^{1} \sigma_{x}^{2}+\sigma_{x}^{1} \sigma_{x}^{2} \pm i \sigma_{x}^{1} \sigma_{y}^{2}+ \pm i \sigma_{y}^{1} \sigma_{x}^{2}\right) \tag{4.20}\\
\Omega_{2 \pm 2} & =\frac{\sqrt{3}}{2}\left(S_{ \pm}\right)^{2}=\frac{\sqrt{3}}{2}\left(S_{z} \pm i S_{y}\right)^{2} \\
& =\frac{\sqrt{3}}{4}\left(\sigma_{x}^{1} \sigma_{x}^{2}-\sigma_{y}^{1} \sigma_{y}^{2} \pm i \sigma_{x}^{1} \sigma_{y}^{2}+ \pm i \sigma_{y}^{1} \sigma_{x}^{2}\right) \tag{4.21}\\
\Omega_{10} & =\sqrt{\frac{3}{2}} S_{z} \tag{4.22}\\
\Omega_{i \pm 1} & =-\frac{\sqrt{3}}{2}\left(S_{z} \pm i S_{y}\right) \tag{4.23}
\end{align*}
$$

The traces of bi-linear combinations of the spin operator Z are evaluated by using rules shown in appendix G and the ohservables are derived as follows:

$$
\begin{align*}
\left\langle Z Z^{+}\right\rangle & =3|A|^{2}+5|C|^{2}+2|B|^{2}+2|E|^{2}+2|F|^{2} \tag{4.24}\\
\left\langle Z \Omega_{20} Z^{+}\right\rangle & =-\frac{1}{\sqrt{2}}\left[|C|^{2}+|B|^{2}+|E|^{2}-2|F|^{2}\right] \tag{4.25}\\
\left\langle Z \Omega_{2 \pm 2} Z^{+}\right\rangle & =-\frac{\sqrt{3}}{2}\left[|C|^{2}+|B|^{2}-|E|^{2}\right] \\
\left\langle Z \Omega_{2 \pm 1} Z^{+}\right\rangle & =\left\langle Z \Omega_{10} Z^{+}\right\rangle=0 \\
\left\langle Z \Omega_{1 \pm 1} Z^{+}\right\rangle & =\mp 2 \sqrt{3} i \operatorname{Re}\left((A+B)^{-} C\right\rangle
\end{align*}
$$

and the vector and tensor analyzing powers in spherical coordinate are

$$
\begin{align*}
& T_{20}^{\prime}=-\frac{1}{\sqrt{2}}\left[\frac{|C|^{2}+|B|^{2}+|E|^{\mid 2}-2|F|^{2}}{3|A|^{2}+5|C|^{2}+2|B|^{2}+2|E|^{2}+2|F|^{2}}\right] \tag{4,29}\\
& I_{22}^{\prime}=-\frac{\sqrt{3}}{2}\left[\frac{|C|^{2}+|B|^{2}-|E|^{2}}{3|A|^{2}+5|C|^{2}+2|B|^{2}+2|E|^{2}+2|F|^{2}}\right] \\
& T_{21}^{\prime}=0
\end{align*}
$$

$$
T_{11}^{2}=\mp 2 \sqrt{3} i \frac{\operatorname{Re}\left((A+B)^{\bullet} C\right)}{3|A|^{2}+5|C|^{2}+2|B|^{2}+2|E|^{2}+2|F|^{2}}
$$

The results have been obtained by quantizing along the \dot{p} axis of Eq. (4.6) shown in Fig. 4.3. These variables can be converted into ones referring to quantization along the beam direction by using the standard transformations for tensor polarizations. Now the analyzing powers for the d p elastic scattering by an impube approximation with the deuteron S-wave function as follows:
$T_{20}=\frac{1}{2}\left(3 \cos ^{2} x-1\right) T_{20}-\sqrt{6} \sin x \cos x \operatorname{Re} T_{31}^{\prime}+\frac{\sqrt{3}}{\sqrt{2}} \sin ^{2} x \operatorname{Re} T_{22}$
$T_{21}=\left(2 \cos ^{2} x-1\right) \operatorname{Re} T_{21}^{\prime}-\sin \backslash \cos x\left(\operatorname{Re} T_{22}^{\prime}-\frac{\sqrt{3}}{\sqrt{2}} T_{20}^{\prime}\right)+i \cos x \operatorname{Im} T_{21}^{\prime}-i \sin \backslash \operatorname{Im} T_{22}$
$T_{22}=\frac{1}{2}\left(1+\cos ^{2} \backslash \operatorname{Re} T_{z 2}^{\prime}+\sin \chi \cos \chi \operatorname{Rc} T^{\prime 2} 21+\frac{\sqrt{6}}{4} \sin ^{2} \chi T_{20}^{\prime}+i \cos \backslash \operatorname{Im} T_{22}^{\prime}+i \sin \operatorname{Im} T_{2}^{\prime}\right.$
where X is the angle of rotation about $n \boldsymbol{n}$ between the two frames (see Fig. 4.6)

$$
\begin{equation*}
x=\frac{1}{2} \theta_{\mathrm{NN}}-\left(\theta_{\mathrm{cm}}-\theta_{\mathrm{NN}}\right) \tag{4.36}
\end{equation*}
$$

The other observables in the spherical frame were translated to Cartesian frame through the following relations shown in appendix A. Though, A, and $A y$ are easily obtained from T^{\prime} as

$$
\begin{align*}
A_{y} & =\frac{2}{\sqrt{3}} i T_{11}^{\prime} \\
& =\frac{4 \operatorname{Re}\left((A+B)^{\cdot} C\right)}{3|A|^{2}+5|C|^{2}+2|B|^{2}+2|E|^{2}+2|F|^{2}} \tag{4.37}\\
A_{y p} & =-\sqrt{3} T_{2 z}-\frac{1}{\sqrt{2}} T_{20} \\
& =\frac{4\left(|C|^{2}+|B|^{2}\right)-2\left(|E|^{2}+2|F|^{2}\right)}{3|A|^{2}+5|C|^{2}+2|B|^{2}+2|E|^{2}+2|F|^{2}}
\end{align*}
$$

4.6 Results of the PWIA calculations

The results of the PWIA calculations for the analyzing powers and the differential cross sections are shown by dot-dashed lines in Figs. 2.15 and 3.3 together with the experimental data.

The shape of the differential cross sections is reproduced by the PWTA calculation at forward angles ($\leq 00^{2}$) reasonably well. The PWIA prediction falls off rapidly with the increase of the seattering angle beyond 90°, while the experimental data show minimum and constant values at the scattering angles between 100° and 140^{*}. This rapid fall off is due to the behavior of the form factor $A s(f)$ with the increas of the momeutum transfer q (see Fig. 4.7)

Concerning with the analyzing powers of A_{v} and $A_{r n}$, their gross behaviors are roughly reproduced. The calculation does not reproduce the shape of the A, at backward angles. While the experimental data of $A_{n n}$ and $A_{2 x}$ have either positive of negative large values at angles between 57° and 138°, the predicted values are either crossing zero at 90° or almost zero.

Summarizing the comparison between the predictions of the present PWIA calculations and the data, the behavions of the experimental data at the angles less than 000 are roughly reproduced for the differential cross sections and the analyzing powers A_{y} and A_{z} by the calculation which is yet in a primitive stage. The tensor analyzing powers $A_{y y}$ and $A_{z z}$ are not reproduced. In order to improve the fit the inclusion of the effects which are neglected in the calculation might be needed.

4.7 Discussions

At this point it might be useful to review the effect which is neglected in the framework of the present PWIA calculation:

Figure 4.8: Diagram for the direct neutron exchange reaction

1. Neutron exchange process is not considered.
2. Deuteron D-state is neglected.

The neutron exchange process in which the neutron in the deuteron is transferred to the target proton forming a deuteron, might be dominant at backward angles since its form factor becomes maximum at 180°

The deuteron D-state is, in general, important for the tensor analyzing powers. Although the inclusion of the deuteron n-state in the PWIA calculations is pocsible in principle, it is too involved because of a number of the terms. The deuteron wave function is composed of 6 terms and the $N N$ scattering amplitude is composed of 5 terms so that the $d-p$ scattering amplitude consists of $6 \times 5 \times 6=180$ terms. It is not at all simple any more loosing the merit of the simplicity of the PWIA treatment.

Therefore, we investigate the neutron exchange process which is still simple enough to handle hoping that the fit of the analyzing powers at backward angles will be improved.

The simplest neutron exchange process might be the one shown in Fig. 4.8. Similar to the PWIA calculation for elastic channel, the scattering amplitude $F_{r,}$ for
the diagram shown in Fig. 4.8 can be expressed as

$$
\begin{aligned}
F_{e \pi} & =\left(\phi_{m,}^{1}, v_{M,}^{23} \mid \hat{o}_{m,}^{\alpha}+v_{M i}^{12}\right) \\
& =A_{a} \cdot Z_{\pi x}
\end{aligned}
$$

Here A_{ex} is the form factor;
where \vec{K}, \vec{R}, are initial and final momenta, respectively and \vec{R} is the relative position of the proton and the deuteron. The spin part of the scattering matrix Z is represented as!

$$
\begin{aligned}
& =\left(x^{1}, 1\left(x^{2}, 1\left(x^{3}\left|T^{22} \cdot T^{12}\right| x^{1},\right) \mid x_{m}^{2}\right) \mid x_{-2}^{3}\right)
\end{aligned}
$$

The calculated differential cross sections and the analyzing powers are shown in Fig. 3.3 and Fig. 2.15, respectively, by the dotted curves for the angles between 140° and 180°. Note that the A, is predicted to be zero in this model.

The differential cross sections are predicted to be large values at backward angles as expected, while those of the direct elastic process are almost zero. The behaviors of the analyzing powers differ from those of the direct elastic process. The predicted signs of $A_{y y}$ and $A_{z z}$ in this model are opposite to those in the direct process.

Inclusion of the neutron exchange process seems to improve the fit to the data However there still remains a discrepancy in the differential cross sections at $\theta=$ $90^{\circ} \sim 140^{*}$ where the cross sections have minimum values, It is certainly interesting how the prediection in PWIA can be improved by taking into sccoumt the interference between the direct and the exchange amplitudes as well as the deuteron D-state.

Chapter 5

Three-body calculation

In this chapter, the data are compared with the predictions of the three-body Faddeev calculation. The Faddeev theory describes few-body system exactly, in principle. In section 5.1, the basic idea of the Faddeev theory is described. In section 5.2, the outline of the three-body calenlation for the d_{-p} elastic scattering at $E_{d}^{\text {tht }}=270$ MeV with a separable potential method is described ${ }^{1}$. The result of the three-body calculation is compared with the data in section 5.3 and discussions are made.

5.1 Faddeev theory

L. D. Faddeev has succeeded to describe a three-body system in terms of two-body scattering. Faddeev equation in a general form is written as;

$$
\left(\begin{array}{l}
T_{12} \tag{5.1}\\
T_{21} \\
T_{31}
\end{array}\right)=\left(\begin{array}{c}
t_{12} \\
t_{23} \\
t_{31}
\end{array}\right)+\left(\begin{array}{ccc}
0 & t_{12} & t_{12} \\
t_{23} & 0 & t_{23} \\
t_{31} & t_{31} & 0
\end{array}\right)\left(\begin{array}{l}
T_{12} \\
T_{2} \\
T_{31}
\end{array}\right)
$$

where $T_{i j}$ is the three-body scattering t-matrix, $t_{j i}$ is a two-body $N N$ scattering t matrix which can be obtained by solving Lippman-Schwinger equation, and G_{\sim} is a Green function in a free space. From the Faddeev equation, it is easily understood that the three body t-matrix can be represented in a form of expansion by two-body scattering t-matrix as:

$$
T_{12}=t_{12}+t_{12} G_{0} t_{21}+t_{12} G_{0} t_{22}
$$

${ }^{1}$ The Faddeev calculations prosented in this thesis were made by Dr. Koike, Hoser unirersity

Figure 5.1: The first few terms in the multiple scattering series for elastic and rearrangement processes. The hatching represents that two nucleons are in bound.

$$
\begin{aligned}
& +t_{12} G_{0} t_{23} G_{0} t_{12} \\
& +t_{12} G_{0} t_{23} G_{\nu} t_{31}+
\end{aligned}
$$

In Fig. 5.1, the threebody scattering diagram expanded in terms of two-body scat-
tering process is shown.
In the throe-body calculation the multiple scattering process, rearrangement process (exchange), the contribution of off-the-energy-shell components of NV interac tions, and the deuteron D-state are fully included.
5.2 Calculation for the $d-p$ elastic scattering at $E_{d}^{\mathrm{lab}}=270$ MeV

A three-body calculation with a separable expansion method [34] was performed for the d - μ elastic scattering at $E^{\text {dot }}=270 \mathrm{MeV}$. Three-body force is not considered and the coordinates are treated non-relativistically. The d-p scattering t-matrix is approximated by a modified $d-n$ scattering t-matrix which is corrected for the effect
of the Coulomb distortion in the manner of Ref. [35]. The $d-n$ seattering 1 -matrix is obtained by solving the Faddeevy equation with an AN interaction. The calculation was performed with the full two-body interactions for $j \leq 4$ involving 98 coupled channels for the scattering system. To solve the equation with a large number of coupled channels as in the present case, a separable expansion method is conveniemt In the present calculation, the Argome v14 potential [36] is employed and converted to a separable series by USE [37,38]. The advantage of USE is that the reparable series converges quickly. The ranks in the separable expansion used are shown in Table 5.1. By using a separable two-body t-matrix, two-dimensional integral Faddeet

Table 5.1: The ranks in the separable expansion of the Argonne vi4 potential for, ≤ 3 and $j=4$

partial	$j=4$			
waves	${ }^{3} f_{4}{ }^{3} h_{4}$	${ }^{1} g_{4}$	${ }^{3} g_{4}$	
ranks	3	2	2	

equations are reduced to coupled one-dimensional integral equations. The resulting one-dimensional coupled integral equations are converted to a matrix with 32 -point Gaussian quadrature on a deformed contour. From the obtained matrix, a Born series is produced for the three-body on-shell scattering amplitude by using the Pade approximation which makes the Born series converge.

5.3 Comparison with the data and discussions

The results of the calculation with the $N N$ interaction of $j \leq 3$ and those of $j \leq 4$ are shown in Fig. 2.15 and 3.3. Dashed and solid lines are the results of the calculation with $j \leq 3$ and $j \leq 4$, respectively. In Fig. 5.2 , the difference between the calculation and the data is also shown. All components of the analyzing powers are found to be reproduced surprisingly well. The well-reproduction of the analyzing powers is notable because the fit of the calculation to the data is quite poor at fow energies. Since the tennor analyzing power $A_{z z}$, which is known to be sensitive to the tensor part of the NA interartion at low energies, is described well, it might indicate that the tensor part of the Argonne uth potential is determined adequately. Inclusion of the $j=4$ wave slightly improves the fits of the calculated analyzing powers especially for $A_{\text {rr. }}$ By Witala et al.. Faddeev calculations with $j \leq 4$ have been performed at $E_{d}^{\text {aht }}=131 \mathrm{MeV}$ and $187 \mathrm{MeV}[11]$. They also reported that the inclusion of the $j=$ 4 higher partial wave only slightly changes the theoretical prediction with $j \leq 3$.

In contrast, the fit to the differential cross sections is poor. The calculated cross sections are 30% smaller than the experimental values at angles around $\theta_{\mathrm{cm}}=120^{\circ}$ where the cross sections have a minimum (see Fig. 5.2). Inclusion of the $j=4$ partial wave does not improve the prediction obtained with $; \leq 3$.

The analyzing powers are ordinary thought to be much more difficult to be reproduced by calculation than the cross sections are so that it is surprising that the calculated cross sections are smailer by 30% than the data at the angles where the cross sections have minima while a good reproduction of the analyzing powers is obtained.

In order to see the energy dependence of the disagreement found in the differential cross sections, we have performed calculations with $j \leq 3$ for deuteron incident energies of 130 MeV and 100 MeV and compared these with the existing experimental data $[39,40]$ in Fig. 5.4 together with the data at $E_{8}^{\mathrm{tet}}=270 \mathrm{MeV}$. Note that the differential

Figure 5.2: Difference of the calculation $(j \leq 4)$ and the data. The size of the discrepancy is 30% at $\theta_{c, m}=117^{\circ} \sim 138^{\circ}$
cross seetions are not presented in Ref. [11]. The calculated differential cross sections are persistently smaller than the measured values. This might imply that a tuning of the Argonne V_{4} potential is needed although the analyzing powers are described well with it. Otherwise it might be peeded to make modification of the three-body Faddeev calculations because in the calculation only two-body force is considered.

It is generally difficult to modify the $N N$ interactions because of the constraint of their normalization. Therefore, here, considerations are made focusing to the modification of the three-body calculations.

One plausible explanation for this disagreement might be due to the S-wave component of deuteron-proton interaction. One of the candidates to correct the S wave interaction is the inclusion of the three-nucleon interactions (TNI), for example, the delta degrees of freedom. Note that TNI is not included in the present calculations. The delta intermediate state in the three-body scattering at intermediate energies is much more important than it is at low energies. The delta intermediate state is generated by exchanging two pions among the three mucleons as shown in Fig. 5.3.

Figure 5.3: Two-pion exchatige three-mucleon force. Delta is generated in the inter mediate state.

In TNI as an interaction of two-pion exchange, $L=0$ component is dominant so that TNI is directly related to the S-wave component of the partial wave interactions between deuteron and proton of ${ }^{2} S_{1 / 2}$. TN1 is known to be important to prediet the property of the binding energy of the three-nucleon bound state whose spin party is ${ }^{2} S_{1 / 2}$ [15]

At a low energy region, a discrepancy between the calculation and the data was pointed out in the ${ }^{2} S_{1 / 2}$ wave [13, 14]. In Ref. [13], a phase shift analysis has bee made for the d-p elastic scattering at $E_{p}^{\text {tah }}=3 \mathrm{MeV}$ and consequently a discrepancy between the result of the phase shift analysis and the Faddeev calculation in ${ }^{2} S_{1 / 2}$ partial wave interaction was found. In Ref. [14], a disagreement between the data and the calculation in the differential cross sections at $E_{g}^{\text {tab }}=5 \sim 18 \mathrm{MeV}$ is also reported. It is pointed out that one important reason for the disagreement is the wrong prediction of the S-wave component of the deuteron-proton interactions.

At present, the effect of the delta degrees of freedom on the three-nucleon system has been examined only for the bound state [41]. The inclusion of the delta degrees of freedom should be made for the three-body scattering state in order to see whether the puzzle can be proved by the inclusion of the delta in the calculation for the three body scattering processes

It should be noted that another possible explanation is the relativistic effect Although, at present, the size of the relativistic effect on the differential cross sections and on the analyzing powers can not be estimated. The relativistic treatment has not been established yet and it still remains one of the future interests.

Figure 5.4: Differential cross sections at $E_{d}^{\text {lah }}=130 \mathrm{MeV}$ [39], 190 MeV [40], and 270 MeV (present) data with the predictions of the three-body calculation.

Chapter 6

Summary and conclusions

With an interest in how well few-nucleon systems can be described by using two body $N N$ interactions determined by $N N$ scattering data, the differential cross sections and the vector and tensor analyzing powers $A_{y}, A_{y y}, A_{y z}$, and $A_{z e}$ for the d-p elastic scattering were measured at $E_{d}^{\mathrm{lah}}=270 \mathrm{MoV}$. This is the first measurement of a complete set of the deuteron analyzing powers for the d-p elastic scattering at an intermediate energy. All components of the analyzing powers show large absolute values at around $\theta_{\mathrm{cm}}=90^{\circ}$ and vary smoothly with the scattering angle. These features, large and smooth behavior of the analyzing powers, are extremely useful for the accurate determination of the deuteron polarizations. The polarimeter making use of the d-p elastic scattering, thetefore, allows us to measure very efficiently the vector and tensor components of the deuteron polarizations simultaneously.

The results are compared with the predictions of the PWIA calculations, In the single scattering description, one of the nucleons in the deuteron undergoes single scattering with the target proton. Note that there exists no adjustable parameters in the calculations. The experimental data, except for $A_{y y}$ and $A_{s z}$ are roughly reproduced at the angles less than 90°. Consideration was made for the neutron exchange process which have large cross sections at backward angles. In order to improve the fit, it might be needed to include the effects of the interference of the direct elastic and the neutron exchange processes as well as deuteron D-state. The experimental
data at forward angles and backward angles are desirable for further investigation.
The data are also compared with the three-body Faddonv calenlation with no adjustable parameters. While the fit of the Faddecy calculations to the data at low energies is poor, a good reproduction of the data is obtained at $E_{d}^{\text {lab }}=270 \mathrm{MeV}$. However, the fit of the differential cross section is not satisfactory. This is surprising since, in general, it is more difficult to obtain a good reproduction of the analyzing powers than the differential cross sections. At present, the explanation of the disagreement is not understood vet. The inclusion of the throe-mucleon interaction might improse the fit since its importance has been reported in the low energy region [13, 14, 15]. It is also interesting to investigate whether the fit is improved by an explicit inclusion of the delta degrees of freedom [41]. It should be also noted that it is important to study the role of relativity which is one of the current issues in the study of the few-nucleon systems [42]. We hope that our data with high statistical accuracy stimulate theoreticians to do a calculation by taking these effects into arcount.

Acknowledgment

I am particularly indebted to Professor Hideyuki Sakai, who proposed this ex peciment and provided mo with an opportunity to study thive interestines subject. He also gave me encouragement and excellent advice during the course of the study. I also express my gratitude to Dr. Hiroyuki Okamura, who gave me appropriate advice and physics training.

I would like to express thy gratitude to the collaboratoss of this experiment. I am indebted to all following collaborators. Professor Hideyuki Sakai gave me a chance to take major part of this experiment and encouraged me during the experiment. Dr. Hiroyuki Olamura gave me guidance and help throughout this experiment. Especially the excellent data taking and data analyzing system "Polly-Anna" was written by him. I would like thank Mr. Tomohiro Uesaka for his assistance. I was largely helped by him. I also thank Mr. Satoru Ishida, Mr. Hideaki Otsu, Mr. Tomotugu Wakasa, Mr. Yoshiteru Saton, Mr. Takashi Niizeki, Mr. Kenichi Katob, Mr. Toshiyuki Yamashita, and Mr. Takamasa Nonaka.

I thank Professor Kichiji Hatanaka for his collaboration and useful advice.
I would like to thank Professor Yasuro Koike who made the three-body calculation and taught about the Faddeev calculation.

I wish to acknowledge Mr. Atsuhi ltabashi for valuable discussions on the impulse approximation calculation.

I wish to appreciate the staff of the RARF, In particular, Dr. Yasushige Yano, who is the director of the facility, gave me continuous encouragement. Mr. Kumio Ikegami and Mr. Jiro Fujita helped me in constructing the polarized ion source.

I would like to express best regards to Professor T. B. Clegg for his advice concerning with the construction and operation of the polarized ion sotree

Lastly, but not least, I thank my friends in RIKEN and my family for their continuous encouragement during the course of the study.

References

[1] Recent review was made by H. Sakai, AIP Conf. Proc, 339(1995) p. 482.
(2) 1. Punjabi. R. Abegg, S. Belontotsky, M. Boivin, A. Boundard, E. Cheumg V. Ladygin, 1. Oh, I. Penchev, N. Piskmov, C. F. Perdrisat, 1. Sitnik, E. A. Strokovsky, E. Tomasi-Gustafsson, V. Vikhrov, J. Yomet, and A. Tghiche, Phys. Lett. B350(1995)178.
(3) Y. Iseri, M. Tanifuji, H. Kameyama, M. Kamimura. M. Yahiro, Nucl. Phys. A533(19917574; M. Tanifuij, H. Kameyama, M. Kamimura, Y. Is cri, and M. Yahiro, Phys. Lett. B217(1989)375; M. Tanifuji and Y. Iseri. Prog. Theor. Phys. 87(1992)247.
[4] M. Morlet, E. Tomasi-Gustafsson, A. Willis, J. Van de Wiele, N. Marty, C. Glashauseer, B. N. Jhoneon, F. T. Baker, D. Beatty, L. Bimbot, C. Djalali, G. W. R. Edwards. A. Green, J. Guillot, F. Jourdan, H. Langevin-Joliot, L. Rosier, and M. Y. Youn, Phys. Rev. C46(1992)1008; M. Morlet, A. Willis. J. Van de Wiele, N. Marty, J. Guillot, H. Langevin-Joliot, I. Bimbot, E. Tomasi-Gustafsson, G. W. R. Edwards, R. W. Fergerson, C. Glashausser, D. Beatty, A. Green, C. Djalali, F. T. Baker, and J. C. Duchazeaubeneix, Phys. Lett. B247(1990)228.
[5] H. Okamura, S. Fujita, Y. Hara, K. Hatanaka, T. Ichihara, S. Ishida, K. Katoh. T. Niizeki, H. Ohnuma, H. Otsu, N.S., Y. Satou, T. Uesaka, T. Wakasa, T. Yamashita, and H. Sakai, Phys, Lett. B345(1995)1.
[6] G. Igo, A. Masaike, B. Aas, E. Bleszinski, M. Bleszinski, M. Gazzaly, S. J. Greene. H. Hesai, S. Shimoto, S. Fagawa, K. Jones, D. Lopiano, 1. B. McClelland, F. Nishiyama, Y. Ohashi, A. Okihana, G. Pauletta, F. Sperisen, Tsu-Hsun Sun, N. Tanaka, G. S. Weston, and C. A. Whitten, Jr., Phys. Rev. C38(1988)2777.
(7] M. Haji-Saied. E. Bleszynski, M. Bleszynski, J. Carroll, G. J. Igo, T. Jaroszewicz, and A. T. M. Wang. Phys. Rev. C36(198712010
[8] G. Alberi, M. Bleszinski, and T. Jarozzewic, Ann. Phys, (N. Y.) 142 (1982)299.
[9] See, for example, J. S. Levinger, Springer Tracts in Modern Physics, vol.71. cd. G. Höhler, (Springer, New York, 1974 p p, 88; W. Glöckle, The Quantum Mechanical Few-Body Problem, (Springer, New York, 1983) p. 83.
[10] W. Glöckle, H. Witala, H. Kamada. D. Hüber, and J.Golak AIP Conf. Proc. 334 (1994) p. 45.
[11] H. Witada, W. Glöckle, L. E. Autonuk, J. Arvieux, D. Bachelier, B. Bonin. A. Boudard, J. M. Cameron. H. W. Fielding. M. Garon, F. Jourdan, C. Lapointe. W. J. MacDonald, J. Pasos, G. Roy, I. The, J. Tinslay, W. Tornow, J. Yonnet, and W. Zeigler, Few Body Systems 15(1993)67.
[12] S. N. Bunker, J. M. Cameron, R. F. Carlosn, J. Reginald Richardson, P. Toms, W. T. H. Van Oers, and J. W. Verba, Nucl. Phys. A113(1968)461.
[13] L. D. Knutson, L. O. Lamm, and J. E. McAninch, Phys. Rev. Lett. 71(1993)3762.
[14] K. Sagara, H. Oguri, S. Shimizu, K. Maeda, H. Nakarnura, T. Nakashima, and S. Morinobu, Phys. Rev. C50(1994)576.
[15] A. Kievsky and M. Vviani, Phys. Rev. C52(1995)R15
[16] V. Derenchuk, R. Brown, and M. Wedekind, AIP Couf. Proc. 293(1994) p. 84
[17] T. B. Clegs, AIP Conf. Proc. 187 (1989) p. 1227.
[18] J. M. Cameron. B. NF, L. E. Antoruk, E. B. Cairns, H. W. Fielding, L. Holm, R. Igarashi, C. Lapointe, W. J. MeDonald, J. Pasos, N. L. Rodning, G. Roy,
J. Soukup, and W. Zieglet, J. Arvieux, J. Tinslay, J. Yonnet, B. Bonin, A. Boudard, M. Gargn, D. Bachelier, and 1. The, Nucl. Instr. and Meth. A305(1991)257.
[19] N.S., H. Okamura, H. Sakai, T. Uesaka, T. Kubo, N. Inabe, K. Ikegami, J. Fujita, M. Kase, A. Goto, Y. Yano, and K. Hatamaka, RIKEN Accel. Prog. Rep. 26(1992)138.
[20] J. Bystricky, F.Lehar, A. de Lesquen, A. Penzo, L. van Rossum, J. M. Fontine, F. Perot, G. Leleux, and A. Nakach. Nucl. Instr. and Meth. A234(1985)412.
[21] V. G. Ableev, S, Dzhemukhadze. V. P. Ershov, V. V, Fimushkin, B. Kühn, M. V. Kulikov, A. A. Nomofilov, I. Penchev, Yu. K. Pilipenko, N. M. Piskutov, V, I. Shatov, V. B. Shutov, I. M. Sitnik, E. A. Strokovsky, L. N. Strunov, and S. A. Zaporozhets, Nucl. Instr, and Meth. A306(1991)73.
[22] H. Okamura ef al., contribution paper to the 7 th Int. Conf. on polarization phenomena in nuclear physics (Paris 1990).
[23] Proc, of the third Int. Conf. on polarization phenomena in nuclear reactions, eds. H. H. Varschall and W. Haeberli (Univ. Winsconsin Press, Madison 1971).
[24] G. G. Ohlsen, Rep. Prog. Phys, 35 (1972)717; G. G. Ohlsen and P. W. Keaton, Jr., Nucl. Iustr, and Meth. 109(1973)41.
[25] H. Okamura, H. Sakai, N.S., T. Vesaka, S. Ishida, H. Otsu, T. Wakasa, K. Hatanaka, T. Kubo, N. Inabe, K. Ikegami, J. Fujita, M. Kase, A. Goto, and Y. Yano, AIP Conf. Proc. 293(1994) p. 84.

26] H. Okarnura, N.S., T. Uesaka, H. Salai, K. Hatanaka, A. Goto, M. Kase, N. Inahe, and Y, Yano, AIP Courf. Proe, 343 (1995) P. 123,
[27] S. Ishida, S. Fujita, Y. Hara, K. Hatanaka, T. Ichihara, K. Katoh, T. Niizeki, H. Okamura, H. Otsu, H. Sakai, N.S., Y. Satou, T. Uesaka. T. Wakasa, and T. Yamashita, AIP Conf. Proc. 343 (1995) p. 182.
[28] D. V. Bugg and C. Wilkin, Nucl. Phys. A467(1987)575.
[29] J. Carbonell. M. B. Barbaro, and C. Wilkin Nuel. Phys. A529(1991)653.
[30] A. K. Kerman, H. McManus, and R. M. Thaler, Ann. Phys. (N. Y.) 8(1959)551.
[31] see, for example, R. Hagedorn, Relativistic Kinematics, (W. A. Benjamin INC., Massachusetts, 1963) p. 65.
[32] S. A. Gurvitz Phys, Rev. C33(1986)422.
[33] R. A. Arudt and L. D. Roper, Scattering Analysis Interactixe Dial-In program (SAID), Virgitia Polytechnic Institute and State University (unpublished).
[34] Y. Koike, D. R. Lehman, L. C. Maximon, and W, C. Parke AIP Conference Proceedings 334 (1994) p. 836 .
[35] W. Grübler, Nucl. Phys. A353(1981)31c.
[36] R. B. Wiringa, R. A. Smith, and T. A. Ainsworth, Phys, Rev. C29(1984)1207.
[37] Y. Koike, W. C. Parke, L. C. Maximon and D. R. Lehman, in preparation.
[38] Y. Koike, Prog. Theor. Phys. $87(1992) 775$.
[39] H. Shimizu, K. Imai, N. Tamura, K. Nishimura, K. Hatanaka, T. Saito, Y. Koike, and Y. Taniguchi Nucl. Phys. A382(1982)242.
[40] O. Chamberlain and M. O. Stern, Phys. Rev. 94 (1954)666.
[41] C. II. Hajduk and P. U. Sauer, Nucl. Phys, A322(1979)329; A. Stadler and P. U. Sauer, Phys. Rev, C46(1992)64: A. Picklesimer, R. A. Rice, and R. Brandenburg. Few Body Systems 19(1995)47.
[42] J. A. Tjon, AIP Conf. Proc, 334(1994) p. 177.
43 M. Lacombe, B. Loisean, J. M. Richard, R. Vinh Man, J. Cóté, P. Pirés, and H. de Tourreil. Phys. Rev. C21(1980)s6f.
[44] M. Lacombe, B. Loiscau, R. Vinhman, J. Côté, P. Pirés, and R. de Toutrell, Phys. Lett. 101B(1981)139.
[45] N. S., Master thesis of University of Tokyo, unpublished (in Japanese).
46) M. Simonius, Polarization Nuclear Physics, in Lecture Notes in Physics 30, ed. D. Fick (Springer. 1974), p. 38.
[47] K. Stephenson, L. D. Knutson, and W. Haebrli, Nucl. Phys. A227(1977)365.
48) M. Fujiwara, H. Akimune, Y, Fujita, K. Hatanaka, T. Noro, H. Megami. N. Mat swoka, S. Hirata, A. Tamii, H. Sakaguchi, Y. Sakemi, A. Yamagooki, S. Yama mura, and M. Yosoi, RCNP annual report (1992) p. 170.
[49] K. Hatanaka, K. Takahisa, H. Tamura, H. Kaneko, and I. Miura AlP Conf. Proc. 339 (1995) p. 702.

Appendices

A. Spin polarization for $S=1$ - The Madison convention -

Figure 6.1: Definition of the spin angles β and ϕ. The deuteron is scattered in the $x-z$ plane.

Following the Madison convention, the form of the differential cross sections is written as

$$
\begin{align*}
\frac{d \sigma_{\text {pul }}(\theta)}{d \Omega}=\frac{d \sigma_{\text {unpal }}(\theta)}{d \Omega}[1 & +\frac{3}{2} p_{y} A_{y}(\theta)+\frac{2}{3} p_{z t} A_{z z}(\theta) \\
& \left.+\frac{1}{3}\left(p_{x z} A_{z x}(\theta)+p_{y y} A_{y y}(\theta)+p_{z z} A_{z z}(\theta)\right) \right\rvert\, \tag{6.1}
\end{align*}
$$

and the vector and tensor polarizations are defined as

$$
\vec{p}=\left(\begin{array}{l}
p_{z} \\
p_{y} \\
p_{z}
\end{array}\right)=p_{z}\left(\begin{array}{c}
\sin \beta \sin \phi \\
\sin \beta \cos \phi \\
\cos \phi
\end{array}\right)
$$

$$
\begin{aligned}
& p_{z y}=-\frac{3}{2} p_{z z} \sin ^{2} \beta \cos \phi \sin \phi, \\
& p_{0 x}=\frac{3}{2} p_{z z} \sin \beta \cos \beta \cos \phi, \\
& p_{z n}=-\frac{3}{2} p_{2 z} \sin \beta \cos \beta \sin \phi . \\
& p_{x z}=\frac{1}{2} p_{z z}\left(3 \sin ^{2} \beta \sin ^{2} \phi-1\right), \\
& p_{y n}=\frac{1}{2} p_{z z}\left(3 \sin ^{2} \beta \cos ^{2} \phi-1\right), \\
& p_{x x}=\frac{1}{2} p_{z z}\left(3 \cos ^{2} \beta-1\right),
\end{aligned}
$$

where β and ϕ are the spin angle shown in Fig. 6.1. p_{z} and $p_{z_{2}}$ are vector and tenso polarizations, respectively, defined as

$$
\begin{align*}
P_{z}= & N_{+}-N_{-}, p_{z z}=1-3 N_{0} . \\
& \text { where } N_{+}+N_{0}+N_{-}=1 . \tag{6.4}
\end{align*}
$$

$N_{+}, N_{-,}$and N_{0} are the occupation probabilities of the deuteron substates with the spin proiections $1,-1$, and 0 . respectively

The quantities defined are normalized so that the vector quantitien (p_{x}, p_{v}, p_{t}, and A_{y}) may vary between +1 and -1 , the tensor quantities ($p_{x y}, p_{x x}, p_{y z}$, and $A_{z z}$) may
 may vary between +1 and -2 . The spherical and Cartesian tensor analyzing powers are related as follows:

Cartesian to spherical

$$
\begin{gather*}
T_{10}=0 \\
T_{1 \pm 1}=-i \frac{\sqrt{3}}{2} A_{y} \\
T_{20}=\frac{1}{\sqrt{2}} A_{z z} \\
T_{2 \pm 1}=\mp \frac{1}{\sqrt{3}} A_{x z} \\
T_{2 \pm 2}=\mp \frac{1}{2 \sqrt{3}}\left(A_{x z}-A_{y y}\right) \tag{6.5}\\
69
\end{gather*}
$$

spherical to Cartesian

$$
\begin{align*}
& A_{y}=\frac{2}{\sqrt{3}} ; T_{11} \\
& A_{y y}=-\sqrt{3} T_{22}-\frac{1}{\sqrt{2}} T_{20} \\
& A_{z z}=\sqrt{3} T_{22}-\frac{1}{\sqrt{2}} T_{20} \\
& A_{2 z}=\sqrt{2} T_{20} \\
& A_{z z}=-\sqrt{3} \operatorname{Re}\left(T_{21}\right) \tag{6,6}
\end{align*}
$$

The tensor analyzing power $A_{z z}, A_{y y}$, and $A_{z u}$ satisfy the identity

$$
\begin{equation*}
A_{x z}+A_{y x}+A_{z z}=0 . \tag{6.7}
\end{equation*}
$$

Thus four of the analyzing powers which appears above for the polarized deuteron scattering with unpolarized target are independent

B. Magnetic elements of RIKEN PIS

(Sextupole magnets)

b) Pole Tip Field of the 2nd Sextupole magnet

Figure 6.2: The pole tip fields of the first (a) and the second (b) sextupole magnets. The entrance aperture of the first magnet is small as 14 mmo so as to have a strong field.
(Adiabatic passage field for the strong field transition)

b) SFT filed for adiabatic passage

Figure 6.3: (a) Excitation function of the SFT magnetic field measured at the center of the magnetic pole. (b) The magnetic field strength of the adiabatic passage SFT. The field gradient can be varied independent form the center field strength.

b) WFT filed for adiabatic passage

Figure 6.4: (a) Excitation function of the WFT magnetic field measured at the center of the magnetic pole. (b) The magnetic field strength of the adiabatic passage WFT. The field gradient can be varied independent form the center field strength
(Magnets for ECR ionizer)

Figure 6.5: (a) Axial magnetic field strength of the ECR mirror magnet with a typical parameters of 111 A (1st coil) and 96 A (2nd coil). (b) Radial magnetic field strength of the ECR sextupole permanent magnet ($B_{h}=53.11$ Gauss $\left./ \mathrm{cm}^{2}\right)$.

C. Hyper fine structure of the deuterium atom

The spin dependent part of the Hamiltonian of atomic deuterium with a magnetic field \vec{B} in terms of total, muclear und electron spin operators \vec{F}, \vec{l}, and \vec{j} is represented as

$$
\begin{aligned}
H & =-\left(\vec{\mu}_{l}+\vec{\mu}_{J}\right) \cdot \vec{B}-\alpha^{\prime} \vec{\mu}_{l}-\vec{\mu}_{J} \\
& =-\left(g_{i} \mu_{N} \vec{l}+g_{J} \mu_{B} \vec{l}\right) \cdot \vec{B}+\alpha \vec{l} \cdot \vec{l} .
\end{aligned}
$$

where g_{t} are g_{2} are g -factors for deuteron and electron, respectively, μ_{N} and μ_{H} are nuclear and Bohr magneton, respectively, and a is the hyper fine splitting energy of $\Delta W=h \times 327.4 \mathrm{MHz}$. The eigen-states of the Hamiltonian are analytically obtained as

$$
\begin{aligned}
& \left.\|>=|1,1 \gg| \frac{1}{2}, \frac{1}{2}\right\rangle \\
& \left\lvert\, 2>=\frac{1}{\sqrt{a_{2}^{2}+b_{2}^{2}}}\left(a_{2}|1,1>1| \frac{1}{2},-\frac{1}{2} \gg+b_{2}|1,0>1| \frac{1}{2}, \frac{1}{2} \gg\right)\right. \\
& a_{2}=\frac{\sqrt{2}}{3}, b_{2}=\frac{1}{2}\left(\frac{1}{3}+x+\sqrt{x^{2}+\frac{2}{3} x+1}\right) \\
& \left\lvert\, 3>=\frac{1}{\sqrt{\epsilon_{3}^{2}+d_{3}}}\left(c_{3}|1,0>1| \frac{1}{2},-\frac{1}{2}>f+d_{3}\left|1,-1 \gg_{1}\right| \frac{1}{2}, \frac{1}{2}>s\right)\right. \\
& c_{3}=\frac{\sqrt{2}}{3}, d_{3}=\frac{1}{2}\left(-\frac{1}{3}+x+\sqrt{x^{2}-\frac{2}{3} x+1}\right) \\
& \left.|4\rangle=|1,-1 \geqslant,| \frac{1}{2},-\frac{1}{2}\right\rangle \\
& \left\lvert\, 5>=\frac{1}{\sqrt{\frac{s}{5}+d_{f}^{2}}}\left(\cos _{s}|1,0 \gg| \frac{1}{2},-\frac{1}{2} \gg+d_{s}|1,-1 \gg| \frac{1}{2}, \frac{1}{2}>j\right)\right. \\
& c_{\mathrm{s}}=\frac{\sqrt{2}}{3}, d_{\mathrm{s}}=-\frac{1}{2}\left(-\frac{1}{3}+x-\sqrt{x^{2}-\frac{2}{3} x+1}\right) \\
& \left\lvert\, 6>=\frac{1}{\sqrt{a_{i}^{2}+b_{6}^{2}}}\left(a_{e}|1,1 \gg| \frac{1}{2},-\frac{1}{2}>s+b_{e}|1.0>t| \frac{1}{2}, \frac{1}{2}>f\right)\right. \\
& a_{6}=\frac{\sqrt{2}}{3}, b_{0}=-\frac{1}{2}\left(\frac{1}{3}+x-\sqrt{x^{2}+\frac{2}{3} x+1}\right)
\end{aligned}
$$

Here x is the strength of the magnetic field in the unit of $B_{z}=117 \mathrm{G}$. The energies and the denteron polarizations for the six eigen states are shown in Pig. 6.6 as a function of the magnetic field strength of $x=B / B_{e}$

Figure 6.6: Hyper fine states. $\Delta W=h \times 327.4 \mathrm{MHz}$ and $B_{e}=117 \mathrm{G}$

Figure 6.7: Vector and tensor polarization of the deuteron
D. ${ }^{12} \mathrm{C}(d, p){ }^{13} \mathrm{C}_{\mathrm{gnd}}$ at $E_{d}^{\mathrm{lab}}=14 \mathrm{MeV}$

The absolute values of the deuteron polarization have been obtained on the basis of the analyzing powers of the ${ }^{12} \mathrm{C}(d, p)^{13} \mathrm{C}_{\text {knd }}$ reaction which were measured at the Kyushu University tandem accelerator laboratory. Detail description on the experiment can be found in [45].

Figure $6.8:$ Differential cross sections and the analyzing powers for the ${ }^{12} \mathrm{C}(d, p)^{13} \mathrm{C}_{\mathrm{nn}}$.
reaction.

E. $N N$ scattering amplitudes

The NN scattering amplitudes of Bystricky parameters $A_{B}, B_{B}, C_{H}, D_{H}, E_{B}$ are obtained by using a code SAID [33]. In the convention of Bystricky, NN amplitude is written as;

$$
\begin{aligned}
f_{3}^{N N}=\frac{1}{2}\left(\left(A_{B}+B_{B}\right)\right. & +E_{B}\left(\overrightarrow{\vec{a}^{\prime}} \cdot \dot{n}+\vec{\sigma}^{3} \cdot \hat{n}\right) \\
& +\left(A_{B}-B_{B}\right)(\overrightarrow{\vec{\sigma}} \cdot \vec{n})\left(\vec{\sigma}^{3} \cdot \hat{n}\right) \\
& +\left(C_{B}+D_{B}\right)\left(\overrightarrow{\sigma^{\prime}} \cdot \vec{q}\right)\left(\vec{\sigma}^{3} \cdot \hat{q}\right) \\
& \left.+\left(C_{B}-D_{B}\right)(\vec{\sigma} \cdot \vec{p})(\vec{\sigma} \cdot \vec{p})\right)
\end{aligned}
$$

Here the amplitudes are complex functions of two variables, e.g, the scattering angle $\theta_{N N}$ in the $N N$ center of mass system and the scattering energy $T_{N N}$ in the target rest frame. The center of mass system basis vectors are:

$$
\begin{equation*}
\hat{n}=\frac{\vec{k}_{i} \times \vec{k}_{f}}{\vec{k}_{i} \times \vec{k}_{f}}, \quad \dot{q}=\frac{\vec{k}_{y}-\vec{k}_{i}}{\vec{k}_{f}-\vec{k}_{i}} \quad \hat{p}=\dot{q} \times \hat{n}+ \tag{6.10}
\end{equation*}
$$

where $\vec{k}_{\text {, }}$ and \vec{k}_{f} are the initial and final momenta, respectively. The amplitudes are normalized such that

$$
\begin{equation*}
d \sigma / d \Omega_{N N}=\left|A_{B}\right|^{2}+\left|B_{B}\right|^{2}+\left|C_{B}\right|^{2}+\left|D_{B}\right|^{2}+\left|E_{B}\right|^{2} \quad\left(\mathrm{fm}^{2} / \mathrm{sr}\right) \tag{6.11}
\end{equation*}
$$

The KMT parameters A, B, C, E, and F, by which the $N N$ scattering amplitude is written as;

$$
\begin{align*}
& f_{j}^{N N}(T, \theta)=A+C\left(\vec{\sigma}^{\prime} \cdot \hat{n}+\vec{\sigma}^{3} \cdot \hat{n}\right)+B\left(\vec{\sigma}^{\prime} \cdot \hat{n}\right)\left(\vec{\sigma}^{3} \cdot \hat{n}\right) \\
&+E\left(\overrightarrow{\vec{\sigma}^{\prime}} \cdot \dot{q}\right)\left(\vec{\sigma}^{3} \cdot \dot{q}\right)+F\left(\vec{\sigma}^{\prime} \cdot \hat{p}\right)\left(\vec{\sigma}^{3} \cdot \vec{p}\right) . \tag{6.12}
\end{align*}
$$

The KMT parameters and the Bystricky parameters are related thorough

$$
\begin{aligned}
& A=\frac{1}{2}\left(A_{B}+B_{B}\right) \\
& B=\frac{1}{2}\left(A_{B}-B_{B}\right)
\end{aligned}
$$

$$
\begin{aligned}
& C=\frac{1}{2} E_{B} \\
& E=\frac{1}{2}\left(C_{B}+D_{B}\right) \\
& F=\frac{1}{2}\left(C_{B}-D_{B}\right)
\end{aligned}
$$

The differential cross nections are

$$
\begin{equation*}
d \sigma / d \Omega_{N N}=\frac{1}{2}\left(|A|^{2}+|B|^{2}+2|C|^{2}+|D|^{2}+|E|^{2}\right) \quad\left(\mathrm{fm}^{2} / \mathrm{sr}\right) \tag{6.14}
\end{equation*}
$$

By nsing the KMT parameters The impulse approximation calculations in chapter 4 for the $d-p$ elastic scattering were made by using the KMT parameters.

F. Parameterized deuteron wave function

The deuteron wave function can be represented by summation of Sstate ($L=0$) and D-state ($L=2$) components as:

$$
\begin{equation*}
v_{1}=\psi_{s}+\psi_{D} \tag{6,15}
\end{equation*}
$$

and each components is given as follows:

$$
\begin{align*}
& \psi_{S}=\frac{U(r)}{r} Y_{0}^{e} \lambda_{i}=\sqrt{\frac{1}{4 \pi}} \frac{U(r)}{r} \lambda_{i}^{i} \tag{6.16}\\
& v_{0}=\frac{W(r)}{r}\left(\sqrt{\frac{6}{10}} Y_{2}^{2} X_{1}^{-1}-\sqrt{\frac{3}{10}} Y_{2}^{2} X_{1}^{0}+\sqrt{\frac{1}{10}} Y_{2}^{0} X_{1}^{1}\right) \\
& \left\{Y_{2}^{2}=\sqrt{\frac{15 \pi}{17}} \sin ^{2} \theta e^{2 / 0}\right. \\
& \left\{\begin{array}{l}
Y_{2}^{1}=\sqrt{\frac{12}{12}} \cos \theta \sin \theta \mathrm{c}^{2 \pi} \\
Y_{2}^{0}=\sqrt{\frac{15}{16}}\left(3 \cos ^{2} \theta-1\right)
\end{array}\right.
\end{align*}
$$

The radial parts of the deuteron wave function are parameterized based on Paris NN potential [43] in Ref. [44]. The radial parts of the deuteron wave function, $U(r)$ and W (r) is given in both configuration space and momentum spaces as follows.

$$
\begin{align*}
& U(r)=\sum_{j=1}^{13} C_{j} \exp \left(-m_{j} r\right) \\
& W(r)=\sum_{j=1}^{13} D_{2} \exp \left(-m_{j} r\right)\left(1+\frac{3}{m_{j} r}+\frac{3}{m_{j}^{2} r^{2}}\right) \tag{6.18}\\
& \dot{U}(r)=\sqrt{\frac{2}{\pi}} \sum_{j=1}^{13} \frac{C_{j}}{p^{2}+m_{j}^{2}} \\
& \tilde{W}(r)=\sqrt{\frac{2}{\pi}} \sum_{j=1}^{13} \frac{D_{j}}{p^{2}+m_{j}^{2}}
\end{align*}
$$

 typical deuteron diameter defined by
$\alpha=\sqrt{2 m_{R}\left|E_{D}\right|} / h=0.23162461 \mathrm{fm}^{-1}$.

$$
m_{R}: \text { reduced mass }
$$

E_{D} : the deuteron binding energy
The values of the parameters $C_{;}$and D_{j} are lited in Table 6.1.

Table 6.1: Coefficients of the parameterized deuteron wave function.

;	C	D
1	$0.88688076 \mathrm{e}+00$	$0.23135193 \mathrm{e}-01$
2	$-0.34717093 \mathrm{e}+00$	$-0.85604572 e+00$
3	$-0.30502380 \mathrm{c}+01$	$0.56068193 \mathrm{c}+01$
4	$0.56207766 \mathrm{c}+02$	$-0.69462922 c+02$
5	$-0.74957334 \mathrm{c}+03$	$0.41631118 \mathrm{c}+03$
6	$0.53365279 \mathrm{c}+0.4$	$-0.12546621 \mathrm{e}+04$
7	$-0.22706863 \mathrm{c}+05$	$0.12387830 \mathrm{c}+04$
8	$0.60434469 \mathrm{c}+05$	$0.33739172 c+04$
9	$-0.10292058 \mathrm{c}+06$	$-0.13041151 \mathrm{e}+05$
10	0.11223357c+06	$0.19512524 \mathrm{e}+05$
11	$-0.75925226 \mathrm{e}+05$	$-1.56343237 \mathrm{e}+04$
12	$0.29059715 \mathrm{c}+05$	$6.62310892 \mathrm{e}+03$
13	$-4.81573680 c+03$	$-1.16981847 \mathrm{e}+03$

Figure 6.9: Radial part of the denteron wave function in configuration space.
G. Spin projection operator T^{12}

The triplet spin projection operator T^{12} defined as

$$
\begin{equation*}
T^{12}=\frac{1}{4}\left(3+\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\right) \tag{6.21}
\end{equation*}
$$

has eigenvalues of I and 0 for the triplet and singlet deuteron spin functions:

$$
\begin{aligned}
& T^{12}\left|S_{d}=1, M_{d}=+1\right\rangle=\left|M_{d}=+1\right\rangle \\
& T^{12}\left|S_{d}=1, M_{d}=0\right\rangle=\left|M_{d}=0\right\rangle \\
& T^{12}\left|S_{d}=1, M_{d}=-1\right\rangle=\left|M_{d}=-1\right\rangle \\
& T^{12}\left|S_{d}=0, M_{d}=0\right\rangle=0 .
\end{aligned}
$$

Therefore $\left.T^{12} \mid 1 / 2, m_{1}\right) \mid 1 / 2, m_{2}$ becomes;

$$
\begin{aligned}
& T^{12}|1 / 2,+1 / 2\rangle|1 / 2,+1 / 2\rangle=|1 / 2,+1 / 2\rangle|1 / 2,+1 / 2\rangle \\
& T^{12}|1 / 2, \pm 1 / 2\rangle|1 / 2, \mp 1 / 2\rangle=\frac{1}{2}(|1 / 2,+1 / 2\rangle|1 / 2,-1 / 2\rangle+|1 / 2,-1 / 2\rangle|1 / 2,+1 / 2\rangle) \\
& T^{12}|1 / 2,-1 / 2\rangle|1 / 2,-1 / 2\rangle=|1 / 2,-1 / 2\rangle|1 / 2,-1 / 2\rangle
\end{aligned}
$$

It is also casily obtained that

$$
\left(T^{12}\right)^{n}=T^{12}
$$

H. Analyzing power measurement at $E_{d}=200 \mathrm{MeV}$

Thie analyzing power $A_{y}\left(90^{\circ}\right)$ and $A_{v y}\left(90^{\circ}\right)$ for the $d-p$ clastic scattering has been determined at $E_{d}^{\text {ab }}=200 \mathrm{MeV}$. The final goal of this measurement is a direct callbration of the absolute values of the vector and tensor polarization of the deuteron beatns.

It is known that the analyzing powers for the deuteron induced reactions with the spin parity structure

$$
1^{+}+0^{+} \rightarrow 0^{+}+0^{-}
$$

for example the ${ }^{16} \mathrm{O}\left(d, a_{3}\right)^{14} \mathrm{~N}^{*}$ reaction, have the following model-independent retations ${ }^{4} 46$),

$$
\begin{array}{r}
\mathrm{T}_{21}+\sqrt{6} \mathrm{~T}_{22}=-\sqrt{2}\left(\Leftrightarrow A_{y v}=-1\right) \tag{6.26}\\
\left|\because \mathrm{T}_{11}\right|^{2}+\frac{1}{2}\left|\mathrm{~T}_{20}\right|^{2}+\left|\mathrm{T}_{22}\right|^{2}+\left|\mathrm{T}_{22}\right|^{2}=1
\end{array}
$$

The tensor polarization can be calibrated by utilizing the first relation and, consequently, the vector polarization is also calibrated with the help of the second relation.

In a low energy region there are experiments for the purpose of the deuteron polarization calibration by utilizing the ${ }^{16} \mathrm{O}\left(d_{1} \alpha_{3}\right)^{14} N^{*}$ reaction [47], However in the intermediate energy region such kind of the experiment has not been reported so far. The measurement of the ${ }^{16} \mathrm{O}\left(d, \alpha_{3}\right)^{14} \mathrm{~N}^{*}$ reaction requires at ultra-high energy resolution since the energy separation of ${ }^{14} \mathrm{~N}$ " is small. The energy resolution $\pm 100 \mathrm{keV}$

Table 6.2: Excited states in ${ }^{14} \mathrm{~N}$.

	Ex (MeV)	\mathbf{j}^{+}
α_{0}	0.000	1^{+}
α_{1}	2.319	0^{+}
α_{2}	3.918	1^{+}
α_{3}	4.915	0^{-}
α_{4}	5.106	2^{-}

is required to distinguish α_{3} from α_{4}.

Supplement (published paper)

The experimental data of all components of the analyzing powers and the differential cross sections have been published in the paper Physics Letters B367(1996)60 with the title -MEASUREMENT OF THE VECTOR AND TENSOR ANALYZING POWERS FOR THE $d-p$ ELASTIC SCATTERING AT $E_{\gamma}^{\text {tah }}=270 \mathrm{MeV}^{-}$(Editor R. H. Siemssen. Accepted : 07-Nox-1995)

MEASUREMENT OF THE VECTOR AND TENSOR ANALYZING POWERS

FOR THE $d-p$ ELASTIC SCATTERING AT $E_{d}=270 \mathrm{MeV}$
N. Sakamoton , H. Olamura* T. Vesaka*, S. Ishida"*, H. Otsu*, T. Wakasa", Y. Satou*

CDepartment of Physios, Unisersity of Tokyo, Bunkyo-ku, Tokyo It?, Japat!
Department of Physics, Takyo Institate of Trelnology, Megum-kn, Takyo 152, Japon
${ }^{\text {'Research Center for Nerlear Physics, Osekn } V \text { Hriversity, Phemk, Oseker 567, Japan }}$
${ }^{\text {a }}$ Depariment of Physicr. Hosci University, Chiyoda-ku, Tokyo 10s, Japan

Abstract

The differential cross sections and the vector and tensor analyzing powers $A_{y,} A_{y y}, A_{z=}$, and A_{z-} for the $d_{\text {-p }}$ elastic seattering were measured at Etht $=270 \mathrm{MeV}$ over the $\mathrm{c} \cdot \mathrm{m}$. angulat range from 37° to 138°. The data are compared with a Faddeev calculation. A good description is obtained for all components of the analyzing powers, while a discrepancy of about 30% is found in the cross section around $\theta_{\mathrm{cm}}=120^{\circ}$
-Present address: Cyclotron Laboratory, Institute of Physical and Chemical Rescarch (RIKEN), Wako, Saitama 351-01, Japan

There is a wide interest in how well few-nucleon systems can be described by using nucleon-nucleon (NN) interactions determined by $N N$ scattering data. Among the fewnucleon systems, the nucleon-deuteron (Ad) scattering is a rich source of information on the NN interaction. The vector and tensor spin observables of the Nd scattering are useful to examine the spin dependent part of the $N N$ interaction, the spin-orbit force and the tensor force. In the low energy region the Nd scattering, except for the analyzing power A_{y} is well described by a Faddeev calculation with realistic $N N$ interactions \{1]. In the intermediate energy region, at an incident deuteron energy ($E_{f}^{\text {bh }}$) of several hundred MeV , experimental data of deuteron polarization observables for the Nd scattering are scarce. Since the higher partial waves and the large momentum behaviors of the $N N$ interaction become significant with increasing the scattering energy, it is interesting to investigate whether or not observables of the Nd scattering in the intermediate energy region can be described by a Faddeev calculation in a similar manner. Such a study is useful and also helpful for the analysis of the forthcoming CEBAF data on few-nucleon systems since the large momentum behavior is one of the central topics there [2,3].

In this work, differential cross sections and all components of the analyzing powers A_{y}, $A_{y y}, A_{x a}$ and $A_{2 x}$ for the $d-p$ elastic scattering were measured at $E_{q}^{\text {tab }}=270 \mathrm{MeV}$ over the $c . m$. angular range from 57° to 135° with a high statistical precision and the results were compared with a Faddeev calculation with the Argonne v14 potential [4]. The Faddeev calculation with the full $N N$ partial wave interactions of $j \leq 4$ was made by extending a calculation of $j \leq 3[5]$ with a new method of separable expansion USE (unified separable expansion) [6].

The measurement was performed at the RIKEN Accelerator Research Facility (RARF). The vector and tensor polarized deuteron beams were provided by the newly constructed polarized ion source $[7,8]$ and at first accelerated up to 14 MeV by the injector AVF cyclotron and then up to 270 MeV by the main Ring cyclotron. The deuteron beams of intensity of $10-30 \mathrm{nA}$ bombarded a polyethylene $\left(\mathrm{CH}_{2}\right)$ target with a thickness of $8.1 \mathrm{mg} / \mathrm{cm}^{2}$. Four pairs of detectors were placed symmetrically in the directions of azimuthal angles left, right,
up, and down. Each detector consisted of an NE102A plastic scintillator with a thickness of I cm coupled to an H1161 photo-multiplier tube. An aluminum block was placed in front of the plastic scintillator to degrade the kinetic energy of the scattered particles such that their energy loss in the plastic scintillator was maximized. The detection of the scattered deuterons and recoil protons in a kinematic coincidence was essential to discriminate the $d-p$ clastic scattering from other scattering processes such as the elastic scattering from carbon or the deuteron break-up process. Scattering angles in the center of mass system $\theta_{\text {cm. }}$ were determined by the angles of recoil protons θ_{ψ}. The opening angle of the proton detector $\Delta \theta_{p}$ was $\pm 1.14^{\circ}$. The deuteron detector was designed to be large enough to cover the solid angle determined by the proton detector. For the special case in which the outgoing deuteron and proton have the same laboratory angle of nearly 30°, the d-p elastic seattering was measured by two pairs of detectors in the horizontal and vertical planes. The two particles could be clearly distinguished by their different energy losses in the plastic scintillator and the differences between their time of flight from the target.

The data were taken with polarized and unpolarized beams of the theoretical maximum values $\left(p_{z}, P_{z z}\right)=(1 / 3,1),(0,-2),(-2 / 3,0)$, and $(0,0)$, where p_{z} and $p_{z z}$ are vector and tensor polarizations, respectively, and are defined as

$$
\begin{array}{r}
p_{z}=N_{+}-N_{-}, p_{z z}=1-3 N_{0} . \\
\text { where } \quad N_{+}+N_{0}+N_{-}=1 . \tag{1}
\end{array}
$$

N_{+}, N_{-}, and N_{0} are the occupation probabilities of the deuteron substates with the spin projections $1,-1$, and 0 , respectively. The polarization modes were changed cyclically at intervals of 20 seconds by switching the RF transition units of the ion source. A polarization monitor system, which was installed downstream of the target, also utilized the d-p elastic scattering at $\theta_{\text {c.m. }}= \pm 90^{\circ}$ as a polarization analyzer. The beam polarizations were monitored continuously and were found to be $60-70 \%$ of the theoretical maximum values throughout the experiment. The absolute values of the beam polarizations have been calibrated by using the ${ }^{12} \mathrm{C}(d, p)^{13} \mathrm{C}_{\mathrm{md}}$ reaction at $E_{d}^{\text {thb }}=14 \mathrm{MeV}$. The energy of 14 MeV corresponds to the
injection energy of the main Ring cyclotron. The analyzing powers for the ${ }^{12} \mathrm{C}(d, p)^{13} \mathrm{C}_{g n d}$ reaction at $E_{l}^{\text {lat }}=14 \mathrm{MeV}$ have been measured in advance by using the well calibrated polarized deuteron beam at the Tandem van de Graaf accelerator of Kyushu University [7]. For the polarization monitor system, the analyzing powers A_{y} and $A_{y y}$ of the $d-p$ elastic scattering at 270 MeV have been determined under the assumption that the deuteron polarization was maintained and stable during the acceleration. The depolarization during the acceleration process is expected to be negligible since the anomalous magnetic moment of the deuteron is small and consequently to depolarization resonance is passed through during the acceleration up to 270 MeV

The analyzing powers $A_{y}, A_{y y}$, and $A_{z z}$ were measured simultaneously with the denteron spin normal to the horizontal plane. The analyzing powers are defined in the $x y=$ frame of $\dot{z} / / \boldsymbol{k}_{1,} \hat{\boldsymbol{y}} / / \boldsymbol{k}_{1} \times \boldsymbol{k}_{f}$, and $\dot{\boldsymbol{x}} / / \dot{\boldsymbol{y}} \times \mathfrak{\sum}$, where $\boldsymbol{k}_{\text {, }}$ and \boldsymbol{k}_{f} are the incident and scattered deuteron momenta, respectively. Following the Madison convention [9,10], yields of the $d-p$ elastic scattering with the denteron polarization ($p_{z}, p_{z z}$) can be written as

$$
\begin{align*}
N_{\text {pul }}(\theta, \phi)=n_{\text {peal }} \frac{N_{\text {utipata }}(\theta, \phi)}{n_{\text {unpel }}}[1 & +\frac{3}{2} p_{z} A_{y}(\theta) \cos \phi \\
& \left.+\frac{1}{2} p_{z z}\left(A_{z z}(\theta) \sin ^{2} \phi+A_{n y}(\theta) \cos ^{2} \phi\right)\right] . \tag{2}
\end{align*}
$$

Here $N_{\text {pel }}$ and $N_{\text {unpul }}$ are the yields with polarized and unpolarized beams, respectively, n is the number of deuterons incident on the target, θ is the seattering angle, and b is the aximuthal angle (with respect to the beam) between the normal to the scattering plane and the spin symmetry axis. The azimuthal angles ϕ for four pairs of detectors in the directions of left, right, up, and down are $0, \pi,-\pi / 2$, and $\pi / 2$ radian, respectively. From Eq. (2), by using normalized yields $N^{\prime}(\theta, \delta)=\frac{N_{m=1}(\theta, \phi) / N_{z=1}}{N_{n n}(\theta, \theta) / n_{n y}}, A_{y}, A_{y x}$, and $A_{z z}$ were extracted as

$$
\begin{align*}
& A_{v}(\theta)=\frac{N^{\prime \prime}(\theta, 0)-N^{\prime}(\theta, \pi)}{3 p_{z}}, \\
& A_{y v}(\theta)=\frac{N^{\prime}(\theta, 0)+N^{\prime}(\theta, \pi)-2}{p_{z z}} \\
& A_{z r}(\theta)=\frac{N^{\prime \prime}(\theta,-\pi / 2)+N^{\prime}(\theta, \pi / 2)-2}{P_{z z}} \tag{3}
\end{align*}
$$

This method does not require an accurate knowledge of the detector geometries and/or efficiencies of the detection system. The analyzing powers A, A, y and A, extracted by Eqs. (3) were averaged over three polarization modes.

In the measurement of the tensor analyzing power $A_{z z}$, the spin symmetry axis was rotated into the horizontal plane and inclined to $\beta=142.2^{\circ} \pm 0.7^{\circ}$ where β is the angle between the beam direction and the spin symmetry axis by using a Wien filter system [11]. The $d-p$ elastic scattering yields for $\phi=\pi / 2$ and $-\pi / 2$ (left and right) are written by using 8 as

$$
\begin{align*}
N_{\text {pol }}(\theta, \mp \pi / 2)=n_{\text {pou }} \frac{N_{\text {umpal }}(\theta, \mp \pi / 2)}{n_{\text {unpul }}}[1 & \pm \frac{1}{2} P_{z z} A_{z r}(\theta) \sin 2 \beta \\
& \left.+\frac{1}{2} P_{z z}\left(A_{z z}(\theta) \sin ^{2} \beta+A_{z z}(\theta) \cos ^{2} \beta\right)\right] . \tag{4}
\end{align*}
$$

Ase can be extracted from these yields as

$$
\begin{equation*}
A_{z}(\theta)=\frac{N^{\prime}(\theta,-\pi / 2)-N^{\prime}(\theta, \pi / 2)}{p_{z z} \sin 2 \beta} \tag{5}
\end{equation*}
$$

and were averaged over three polarization modes.
The measured vector and tensor analyzing powers are plotted in Fig. 1. The error bars are statistical only. There remains a systematic error of $\pm 2 \%$ from the uncertainty of the normalization of the beam polarization. $A_{z z}$ has an additional uncertainty of $\pm 2 \%$ from the uncertainty of B.

The differential cross sections were measured separately with an unpolarized deuteron beam. The diameter of the beam spot on the target was less than 2 mm . The target was a polyethylene film with a thickness of $40.5 \pm 0.8 \mathrm{mg} / \mathrm{cm}^{2}$. The d-p elastic scattering data were measured on the left and right sides of the beam direction by two pairs of detectors whose setup was basically the same as in the analyzing power measurement. Aluminum degraders were not used in this cross section measurement to avoid the loss of deuteron and proton flux by interactions in the degrader material. The differential cross sections are shown in Fig. 2. The statistical uncertainties, which are smaller than the size of the solid circle symbols, are within $+1 \%$ for all angles. Since the meaxured yields of left and right counters agreed within
$\pm 3 \%$, the error arising from a geometrical misalignment of the counters, efficiencies of the data taking system, and background subtraction, is estimated to be less than $\pm 3 \%$. There remains a systematic error due to incomplete charge collection of the beam. It is estimated to be smaller than $\pm 5 \%$. The total uncertainties in the final cross section are statistical error of $\pm 1 \%$ and a systematic error of $\pm 6 \%$

It should be noted that the proton knock-out reaction from the carbon contained in the polyethylene target might influence the result of the d-p elastic scattering measurement since come of the final products of the knork-ont reaction ${ }^{12} \mathrm{C}\left(d\right.$, tp $^{11}{ }^{11} \mathrm{~B}$ are indlatinguishable from those of the d-p elastic seattering. We have measured coincidence yields of deuterons and protons with a carbon target at an angle corresponding to $\theta_{\mathrm{cm} .}=86.6^{\circ}$ of the d-p elastic scattering. The contribution of the ${ }^{12} \mathrm{C}(d, d p)^{11} \mathrm{~B}$ knock-out reaction to the measured $d-p$ clastic scattering is fomed to be less than 1\%

A three-body calculation with a separable expansion method [5] was performed for the $d-p$ elastic scattering at $E_{t}^{\text {th }}=270 \mathrm{MeV}$. The $d-p$ scattering $\&$-matrix is approximated by a modified $d-n$ scattering l-matrix which is corrected for the effect of the Coulomb distortion in the manner of Ref. [12]. The d-n scattering l-matrix is obtained by solving the Faddeev equation with an $N N$ interaction. The calculation was performed with the full two-body interactions for $j \leq 4$ involving 98 coupled chantels for the scattering system. To solve the equation with a large number of coupled channels as in the present case, a separable expansion method is suitable. In the present calculation, the Argonne M14 potential is employed and converted to a separable series by USE. The advantage of USE is that the separable series converges quickly. By using a separable two-body t-matrix, two-dimensional integral Faddeev equations are reduced to coupled one-dimensional integral equations. The resulting one-dimensional coupled integral equations are converted to a matrix with 32-point Gaussian quadrature on a deformed contour. From the obtained matrix, a Born series is produced for the three-body on-shell scattering amplitude by using the Padé approximation which makes the Born series converge.

The results of the calculation with the $N N$ interaction of $j \leq 3$ and those of $j \leq 4$ are
shown in Fig. 1 and 2. All components of the analyzing powers are reproduced well. Since the tensor analyzing power A m,x which is known to be smossitive to the tensor part of the $^{\text {w }}$ NN interaction at low energies, is described well, it might indicate that the tensor part of the Argonne v_{14} potential is determined adequately. Inclusion of the $j=4$ wave slightly improves the fits of the calculated analyzing powers especially for $A_{t, s}$. By Witala et al Faddeev calculations with $\leq \leq 4$ have been performed at $E_{i}^{\text {loh }}=131 \mathrm{MeV}$ and 187 MeV [13]. They also reported that the inclusion of the $j=4$ higher partial wave only slightly changes the theoretical prediction with $;<3$

In contrast, the fir to the differential cross sections is poor. The calculated cross sections are 30% smaller than the experimental values at angles around $\theta_{\mathrm{cm}}=120^{\circ}$ where the cross sections have a minimum. Inclusion of the $y=4$ partial wave does not improve the prectiction obtained with $j \leq 3$. In order to see the energy dependence of this disagreement, we have performed calculations with $j \leq 3$ for deuteron incident energies of 130 MeV and 190 MeV and compared these with the existing experimental data $[14,15]$ in Fig. 2. Note that the differential cross sections are not presented in Ref. [13]. The calculated differential cross ections are persistently smaller than the measured values. This might imply that a tuning of the Argonne v_{4} potential is needed although the analyzing powers are described well with it. Moreover, it is interesting to investigate whether the fit is improved by an explicit inclusion of the delta degrees of freedom whose effect on the three-nucleon bound state has been recently examined in Ref. [16]. Finally, it would also be interesting to study the role of relativity [17] which is one of the current issues in the study of the few nucleon systems.

In summary, differential cross sections and analyzing powers $A_{y}, A_{y p}, A_{x x}$, and $A_{z z}$ for the $d-p$ elastic scattering were measured at $E_{d}^{\text {h/t }}=270 \mathrm{MeV}$. Three-body calculations using a separable expansion method USE were performed including the NN partial wave interac tions of $j \leq 3$ and $j \leq 4$. It is found that the analyzing powers are described fairly well while the caleulated differential cross sections are smaller by about 30% than the experimental values at around $\theta_{\mathrm{cm}}=120^{\circ}$. A discrepancy of similar size is also found in fits to the data at lower energies, $E_{d}^{\text {lat }}=130 \mathrm{MeV}$ and 190 MeV .

We would like to thank the staff of the RARF, in particular Y. Yano, for their assistance and encouragement during the experiment. We thank K. Ikegami and J. Fujita for their teclmical support on the RIKEN polarized ion source. Wo thank T. Nonaka for his help during the cross section measurement. One of the authors, N. S., acknowledges valuable discussions with A. Itabashi, M. B. Greenfield, and S. Oryu. Data analysis was performed with the VAX6610 computer system of RIKEN. Theoretical calculations were performed with the work station IBM7006-41T of Hosei University. This work is supported in part by JSPS Fellowships for Japanese Junior Scientists and aloo sopported financially in part by the Grant-in-Aid for Scientific Research No. 04402004 of Ministry of Education, Science and Culture of Japan.

REFERENCES

[1] W. Glöckle el al., AIP Conference Proceedings 334 (1994) p. 45.
[2] K. Dow et at., Phys. Rev, Lett. $61(1988) 1706$.
[3] S. Ishikawa et al., Phys. Lett. B339(1994)293
[4] R. B. Wiringa, R. A. Smith, and T. A. Ainsworth, Phys, Rev, C29(1984)1207.
[5] Y. Koike el al., AIP Conference Proceedings 334 (1994) p. 836
[6] Y. Koike, W. C. Parke, L. C. Maximon and D. R. Lehman, in preparation.
[7] N. Sakamoto ct al., RIKEN Accel. Prog. Rep. 26(1992)138
[8] H. Okamura ct al., AIP Conference Proceedings 293(1993) p.84.
[9] Proc, of the third Int. Conf. on polarization phenomena in nuclear reactions, eds. H. H. Varschall and W. Haeberli (Univ. Winsconsin Press, Madison 1971).
[10] G. G. Ohlsen, Rep. Prog. Phys. 35(1972)717; G. G. Ohlsen and P. W. Keaton, Jr. Nucl. Instr. and Meth. 109(1973)41.
[11] H. Okamura et al., contribution to SPIN94 at Bloomington, 1994. to be publistied in AIP Conference Proceedings.
[12] W. Grübler, Nucl. Phys. A353(1981)31c
[13] H. Witala of al., Few Body Systems 15 (1993)67.
[14] H. Shimizu et al,, Nucl. Phys. A382(1982)242.
[15] O. Chamberlain and M. O. Stern, Phys, Rev. 94(1954)666.
[16] CH. Hajduk and P. U. Sauer, Nucl. Phys. A322(1979)329; A. Stadler and P. U. Saner, Phys. Rev. C46(1992)64; A. Picklesimer, R. A. Rice, and R. Brandenburg. Few Body Systems 19 (1995)47.

FIG. 1. The vector and tensor analyzing powers for the d-p elastic scattering at $E_{-}^{4 b}=270$ MeV . The error bars are statistical ones only. Dashed and solid curves are the results of Faddeev calculations with the Argonne $v_{44} N \cdot N$ interaction for $j \leq 3$ and $j \leq 4$, respectively.

FIG. 2. The differential cross sections for the d-p elastic scattering at $E_{d}^{\text {thb }}=130 \mathrm{MeV}[14], 190$ $\mathrm{MeV}[15]$, and 270 MeV (present data). The systematic errors are not thown in the figure. Solitif and dashed curves are the same as in Fig. 1

[^0]: ${ }^{3} \Delta B=360 \times(0.8457-1) \gamma$ dez./turn. Here, γ is the ratio of the total energy to the denteron ret mass.

[^1]: The atsorption occurs through the interaction with aluminum nuclei. The total cross section of the reaction is independent from the vector polarization so that there is no eflect arising from the vector polarization of deuterons or protons. However, the total croas extion, in general, depends on the tensor polarization of deuterons $I_{2 n}$. Even under condition, the correction bs not needed since the tensor analyzing power $T_{\text {se }}$ is expected to be zero. This in because the main procoss of the deuteron absorption is due to the Coulomb break up process which is independent of the deuteron polarizationis. In fact, the tensor analyzing poave $T_{2 n}$ of the devteron break up with aluminum target has been measured at $\mathrm{K}_{\mathrm{s}}^{\mathbf{t a}}=56 \mathrm{MeV}$ and is found to be zero [22].
 In the crows section measurement, the aliminum energy degraders were not employed

